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Prólogo

El teorema espectral es de gran importancia en la teoría de operadores acotados sobre espacios de
Hilbert. El propósito de este trabajo es proporcionar una descripción espectral completa de la estruc-
tura de los operadores normales.

Mucha de la información sobre un operador lineal T se obtiene estudiando el operador T −λ I,
en donde I es el operador identidad y λ es un número complejo. Por otra parte, a veces, el inverso
de un operador es más importante que el propio operador. En particular, la teoría espectral estudia el
operador inverso (T −λ I)−1, cuando éste existe.

En el caso finito dimensional, se tiene que dada una aplicación lineal T : Cn→ Cn, su comporta-
miento viene determinado por los valores {Te1, . . . ,Ten}, siendo {e1, . . . ,en} una base de Cn. En este
caso la matriz A = (ai j)i, j=1,...,n definida por

Tei =
n

∑
j=1

a jie j, i = 1, . . .n (1)

representa la aplicación T. Si λ es tal que (T − λ I)−1 no existe, entonces λ recibe el nombre de
valor propio de T. Estos valores propios son precisamente las raíces de la ecuación característica
det(A−λ I) = 0 (donde el operador T se identifica con su matriz asociada A). Se llama vector propio
correspondiente al valor propio λ a todo vector no nulo x ∈ Cn que cumple que T x = λx.

El teorema tiene raíces en Álgebra Lineal, donde se establece que si H es un espacio de Hilbert
sobre C de dimensión n, un operador lineal T : H → H es diagonalizable si y sólo si existe una base
del espacio H, formada por los vectores propios de T, de manera que la matriz de representación de
T respecto a la dicha base sea diagonal. Los elementos diagonales λ1, . . .λn son los valores propios
correspondientes. Además, entonces el espacio H se puede poner

H = ker(T −λ1I)⊕ker(T −λ2I)⊕·· ·⊕ker(T −λnI). (2)

La suma anterior es la suma directa ortogonal. Esta descomposición permite dar una descripción de T
en sus elementos básicos. Cada x ∈ H se puede escribir de manera única como

x =
n

∑
k=1

xk, con xk ∈ ker(T −λkI), 1≤ k ≤ n,

con lo cual

T x =
n

∑
k=1

λkxk.

Siendo Pk la proyección ortogonal de H sobre ker(T −λkI), 1≤ k≤ n, entonces resulta la descompo-
sición espectral de T :

T =
n

∑
k=1

λkPk. (3)

En particular, la anterior descripción es aplicable a cualquier operador T normal, pues está de-
mostrado que una matriz normal es diagonalizable.
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IV Capítulo 0. Prólogo

La descomposición anterior del espacio H en términos del operador T, y la representación del
mismo T en sus elementos básicos, dada en (2), son de utilidad teórica y practica. Es por tanto de
mucho interés extender (1) y (2) para operadores normales en espacios de dimensión infinita. En
este caso existe la dificultad de que en general un operador normal puede no tener valores propios. Sin
embargo es posible generalizar (1) y (2) con una adecuada interpretación de la representación anterior.
En vez de utilizar proyecciones ortogonales sobre los subespacios ker(T −λ I) se emplearán medidas
espectrales; y en lugar de la suma se utilizará la integral.

A continuación se da una breve descripción de esta generalización. Se considera un operador
autoadjunto T, ya que sus valores propios son números reales y por lo tanto se pueden ordenar de una
manera natural: λ1 < λ2 < · · · < λn. Se usan las proyecciones Pk de la fórmula (3) para definir otras
nuevas:

Eλ0 = 0,

Eλ1 = P1,

Eλ2 = P1 +P2,

. . .

Eλn = P1 +P2 + · · ·+Pn.

Por lo tanto, (3) se puede reescribir de la siguiente manera:

T = λ1(Eλ1−Eλ0)+λ2(Eλ2−Eλ1)+ · · ·+λn(Eλn−Eλn−1) =
n

∑
k=1

λk(Eλk −Eλk−1).

Denotando Eλk −Eλk−1 por ∆Eλk se tiene que

T =
n

∑
k=1

λk ∆Eλk ,

lo cual sugiere una representación integral de la forma

T =
∫

λ dEλ .

Siguiendo esta idea, la descomposición espectral del operador T puede extenderse también en el
contexto de los espacios de dimensión infinita. Un resultado semejante se obtendrá para operadores
normales.

El contenido de este trabajo se divide en tres partes:
En el primer capítulo (Álgebras de Banach) el objetivo es dar definiciones, propiedades y teoremas

clásicos de la teoría de Gelfand de las álgebras de Banach conmutativas que son necesarios para la
teoría espectral que se presenta después.

El segundo capítulo está dedicado a la teoría espectral de operadores normales acotados que
mediante el cálculo funcional relacionado con la teoría de las C∗-álgebras presentada en el primer
capítulo, nos llevará a varios enfoques del teorema espectral. Se discutirán algunas propiedades de los
operadores normales acotados, incluyendo la representación espectral de los mismos.

El último capítulo, empieza con algunas propiedades de los operadores normales que son conse-
cuencias inmediatas del teorema espectral. Después se presentan algunas aplicaciones para operadores
normales compactos, como por ejemplo, la alternativa de Fredholm para la resolución de ecuaciones.
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Summary

The spectral theorem is of great importance in the theory of bounded operators on a infinite di-
mensional complex Hilbert space. The purpose of this paper is to provide a complete description of
the structure of normal operators, which is very useful in applications.

The content of this paper is divided into three parts:
In the first chapter the spectral theory for Banach algebras is outlined, including the Gelfand-

Naimark theorem for commutative C∗-algebras.
The second chapter deals with continous functional calculus, which is relevant in the theory of

C∗-algebras presented in first chapter. Resolutions of the identity or spectral measures are introduced;
and finally the spectral theorem for bounded normal operators on a Hilbert space is given. Some im-
portant applicactions are showed in the third chapter.

CONTENTS
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1.1 Preliminaries

1.2 Gelfand representation
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2.2 Spectral measure
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3.1 Basis properties

3.2 Eigenvalues of normal operators

3.3 Applications to equations with compact normal operators
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1. Banach Algebras

1.1. Preliminaries

A Banach algebra is a Banach space A over the complex field C which posesses an associative,
distributive multiplication, satisfying the following properties for all x, y ∈ A, α ∈ C :

α(xy) = (αx)y = x(αy) y ‖xy‖ ≤ ‖x‖‖y‖.
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VI Capítulo 0. Summary

If A contains a unit element e such that xe = ex = x, then it is asumed that ‖e‖= 1. It is said that
A is commutative if xy = yx, ∀x,y ∈ A.

There are two classes of Banach algebra which are important to mention. One is the algebra C(K)
of all complex continuous functions on a nonempty compact Hausdorff space K, with pointwise ad-
dition and multiplication, and the supremum norm. The other is the space B(X) of all bounded linear
operators on X , with the usual operator norm and multiplication defined as composition. The latter is
not commutative.

An element x ∈ A is said to be invertible if there exists an element y ∈ A such that

xy = yx = e,

where e is the unit element of A. In this case, the unique element y is called the inverse of x and is
denoted by x−1. Let A−1 be the set of all invertible elements of A; it is clear that A−1 is a group.

Theorem. If A is a Banach algebra and x ∈ A with ‖x‖< 1, then

a) e− x ∈ A−1,

b) ‖(e− x)−1− e− x‖ ≤ ‖x‖2

1−‖x‖
.

Note that this theorem implies that A−1 is an open subset of A.

Let A be a Banach algebra. The spectrum of x ∈ A is defined as the set

σ(x) = {λ ∈ C : x−λe is not invertible }.

The complement of σ(x) is called the resolvent set of x and the spectral radius of x is the number

ρ(x) = sup{|λ | : λ ∈ σ(x)}.

Theorem. If A is a Banach algebra and x ∈ A, then σ(x) is a nonempty compact subset of C.

Note that, ρ(x)≤ ‖x‖ for all x ∈ A. In fact,

ρ(x) = lı́m
n→∞

(‖xn‖)1/n = ı́nf
n≥1

(‖xn‖)1/n.

The following theorem will be important in Gelfand theory.

Theorem (Gelfand-Mazur). If A is a Banach algebra such that ∀x ∈ A, x 6= 0, ∃ x−1 ∈ A, then A is
isometrically isomorphic to the algebra of complex numbers.

1.2. Gelfand representation

First let introduce some definitions.
If A is a complex algebra, then a character of A is a linear functional ϕ on A, which is not

identically 0 and
ϕ(xy) = ϕ(x)ϕ(y), ∀x, y ∈ A.

Let ΦA be the set of all characters of A. Obviously each character of a Banach algebra with unit e
satisfies ϕ(e) = 1.

El teorema espectral de operadores acotados
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If A a commutative complex algebra with a unit, then a subset J of A is called an ideal if xy ∈ J
whenever x ∈ A, y ∈ J. An ideal is proper if J 6= A, and a proper ideal is maximal if is not contained
in another proper ideal of A.

Note that every proper ideal J of A is contained in a maximal ideal of A. If J is an ideal then its
closure J is also an ideal. Therefore every maximal ideal of A is closed.

Let A be a commutative Banach algebra. From the above definitions one has:

a) x ∈ A−1⇔ x /∈ J, for all J proper ideal of A.

b) x ∈ A is invertible⇔ ϕ(x) 6= 0, ∀ϕ ∈ΦA.

c) σ(x) = {ϕ(x) : ϕ ∈ΦA}, ∀x ∈ A.

d) If ϕ ∈ΦA, then ker(ϕ) is a maximal ideal.

If M is a maximal ideal of A, then A/M is a Banach algebra with multiplication defined by

(x+M)(y+M) = xy+M;

and the quotient map ϕM : A→ A/M given by ϕM(x) = x+M is a homomorphism. The unit element
of A/M is e+M and ‖ϕM(e)‖= 1, with e the unit of A.

The quotient map ϕM, defined as before is a character of A, which proves that for any ϕM(x) 6= 0
exists its inverse in A/M. By the Gelfand-Mazur theorem, there is an isometrically isomorphism h of
A/M to C.

Put ϕ = h◦ϕM. Then ϕ is a character of A (ϕ ∈ΦA), with ϕ(e) = 1 and M = ker(ϕ). This asser-
tion means that every maximal ideal of A is the kernel of some ϕ ∈ΦA.

The spectrum of A, SpecA, is defined as the set of maximal ideals of A.
Now using property d), it is possible to identify all maximal ideales of A with the set of characters

of A, SpecA≡ΦA.

Let A be a commutative Banach algebra. For each x ∈ A, the Gelfand transform of x is the
function

x̂ : SpecA→ C

defined by
x̂(ϕ) = ϕ(x), ϕ ∈ SpecA.

Let Â be the set of all x̂, for x ∈ A. The Gelfand topology of SpecA is the smallest topology that makes
every x̂ continuous. Then Â⊂C(SpecA).

The term Gelfand transformation is applied to the homomorphism of A into SpecA given by

G : A→ Â⊆C(SpecA)

x→ x̂ : SpecA→ C

An involution on an algebra A is an application ∗ : A→ A, satisfying the following properties for
all x, y ∈ A, λ ∈ C :

i) (x+ y)∗ = x∗+ y∗,

ii) (λx)∗ = λx∗,
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VIII Capítulo 0. Summary

iii) (xy)∗ = y∗x∗,

iv) x∗∗ = x.

If x∗ = x, x is said to be hermitian, or self-adjoint. And x ∈ A is said to be normal if xx∗ = x∗x.
A Banach algebra A with an involution that satisfies ‖xx∗‖= ‖x‖2 for all x ∈ A is called a C∗-algebra.

The fundamental result of the theory of C∗-algebras and the key to the proof of the spectral theo-
rem that will be given in the next chapter is as follows:

Theorem (Gelfand-Naimark). If A is a commutative C∗-algebra with a unit and ∆ := SpecA is its
spectrum of maximal ideals, then the Gelfand transform G : A→C(∆) is an isometric isomorphism of
A such that

(x∗)̂ = x̂, ∀x ∈ A,

or, equivalently, ϕ(x∗) = ϕ(x) for all ϕ ∈ ∆ and x ∈ A.
Therefore, x is hermitian⇔ x̂ is real.

2. Spectral theory of bounded normal operators

2.1. Continuous functional calculus for normal operators

In order to fix the notation that will be used, it is convenient to recall the definition of a Hilbert
space, denoted by H with 〈·, ·〉 the scalar product. The scalar product leads to a norm ‖ · ‖, which is
defined as ‖x‖=

√
〈x,x〉. Every Hilbert space is also a Banach space.

Throughout this paper, will stand for B(H) the Banach algebra of bounded linear operators T on
a Hilbert space H with the norm

‖T‖= sup{‖T x‖ : x ∈ H, ‖x‖ ≤ 1}.

If T ∈ B(H), then there exists a unique operator T ∗ ∈ B(H) for which

〈T x,y〉= 〈x,T ∗y〉 ∀x,y ∈ H.

T ∗ is called the adjoint of T.
An operator T ∈ B(H) is said to be normal if T T ∗ = T ∗T, and is hermitian or self-adjoint if T = T ∗.

Then:

a) T is normal if and only if ‖T x‖= ‖T ∗x‖, ∀x ∈ H.

b) If T is normal and T x = λx for some x ∈ H and λ ∈ C, then T ∗x = λx.

c) If T is normal, then exists λ ∈ σ(T ) such that |λ |= ‖T‖.

Theorem (Continuous functional calculus). Let T ∈B(H) be a normal operator. There exists a unique
*-homomorphism

ΦT : C(σ(T ))→ B(H)

such that ΦT (u) = I y ΦT (v) = T, with u(λ ) = 1, v(λ ) = λ for all λ ∈ σ(T ). Furthermore, ΦT is an
isometry and its range is the closed subalgebra generated by I, T and T ∗, with I the identity on H.

With the notation of the previous theorem, will denote f (T ) = ΦT ( f ) for all f ∈C(σ(T )).

El teorema espectral de operadores acotados
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2.2. Spectral measure

As observe in the section 2.1, B(H), is a C∗-algebra, and the theory developed on C∗-algebras may
be applied to it to obtain representation theorems of normal operators.

Let X be a compact Hausdorff space and B(X) be a σ -algebra of Borel subset of X . Suppose H
is a Hilbert space. Then a resolution of the identity or spectral measure is a mapping

E : B(X)→ B(H)

such that

i) E( /0) = 0, E(X) = I.

ii) Each E(ω) is a self-adjoint projection, i.e. E(ω)2 = E(ω) = E(ω)∗, ∀ω ∈B(X).

iii) If ω ′, ω ′′ ∈B(X), then E(ω ′∩ω ′′) = E(ω ′)E(ω ′′).

iv) If ω ′, ω ′′ ∈B(X) with ω ′∩ω ′′ = /0, thenE(ω ′∪ω ′′) = E(ω ′)+E(ω ′′).

v) For every x, y ∈ H, the function Ex,y : B(X)→ C defined by

Ex,y(ω) = 〈E(ω)x,y〉

is a regular complex measure on B(X).

Once established the continuous functional calculus for a normal operator T, for fixed x, y ∈ H
one defines a linear functional

Λx,y : C(σ(T ))→ C

by Λx,y( f ) = 〈ΦT ( f )x,y〉; and the Riesz theorem provides a Borel measure µx,y representing this
functional,

〈E(ω)x,y〉= µx,y(ω).

This assertion is the key to the proof of the next theorem:

Theorem. Let A be a closed subalgebra of B(H) which contains the identity operator I, and SpecA
the maximal ideal space of A.

a) There exists a unique spectral measure E on the Borel subsets of ∆ that satisfies

T =
∫

∆

T̂ dE

for every T ∈ A, where the integral is interpreted as

〈T x,y〉=
∫

∆

T̂ dEx,y, x,y ∈ H.

In other words, it can be defined Φ : B(∆)→ B(H) such that

〈Φ( f )x,y〉=
∫

∆

f dEx,y

for every bounded Borel function f on ∆.

b) If S ∈ B(H), then ST = T S for all T ∈ B(H) if and only if SE(ω) = E(ω)S,∀ω ⊂ ∆.
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2.3. The spectral theorem

As a consequence of the theorem of the previous section, we obtain the spectral theorem for boun-
ded normal operators:

Theorem. If T ∈ B(H) is a normal operator, then there exists a unique spectral measure E on the
Borel subset of σ(T ) which satisfies:

T =
∫

σ(T )
λ dE(λ ).

The spectral measure E that gives this theorem describes the spectral decomposition of T.
Clearly, the proof of the theorem is based on the previous one particularizing to a single operator.
If E is the spectral decomposition of a normal operator T ∈ B(H) and f is a bounded Borel

functions on σ(T ), since Φ( f ) = f (T ), will have

f (T ) =
∫

σ(T )
f (λ )dE(λ ).

In particular the spectral decomposition of the identity operator I is

I =
∫

σ(T )
dE(λ ).

3. Applications

3.1. Basis properties

Let H be a Hilbert space, an operator T ∈ B(H) and σ(T ) its spectrum. A number λ is an eigen-
value of T if ker(T −λ I) 6= 0 and its corresponding eigenspace is ker(T −λ I).

The point spectrum σp(T ) of T is the set of all eigenvalues of T.
If λ ∈ σp(T ) and T x = λx with x 6= 0, then x is an eigenvector of T corresponding to the eigen-

value λ .

Theorem. A normal operator T ∈ B(H) is self-adjoint if and only if σ(T )⊂ R.

Theorem. If T ∈ B(H), then

〈T x,x〉 ≥ 0 ∀x ∈ H⇔ T = T ∗ and σ(T )⊂ [0,∞).

If T ∈ B(H) satisfies that 〈T x,x〉 ≥ 0, we call T a positive operator.

3.2. Eigenvalues of normal operators

Theorem. If T ∈ B(H) is a normal operator and E is its spectral decomposition, then the following
assertions are true:

a) If f ∈C(σ(T )), then ker( f (T )) = Im(E( f−1(0))).

b) For every λ ∈ σ(T ), ker(T −λ I) = Im(E({λ})).

c) Suppose λ ∈ σ(T ). Then λ is an eigenvaue of T if and only if E({λ}) 6= 0.

El teorema espectral de operadores acotados
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d) If the spectrum of T is a countable set, then every x ∈ H has a unique expansion of the form

x =
∞

∑
i=1

xi

with T xi = λixi. Also, xi⊥x j, i 6= j.

Next, will describe the spectrum of normal compact operators in Hilbert space. But first it is
necessary to define the concept of compact operator.

A linear operator T between two Banach spaces X and Y, is said to be compact if T (BX(0,1)) is
compact in Y, where BX(0,1) is the open unit ball in X .

A normal operator T ∈ B(H) is compact if and only if all points of σ(T ), except possibly 0, are
isolated and their corresponding eigenspaces are finite dimensional.

In the next section, 3.3. Applications to equations with compact normal operators, we want to
find the solution to the functional equation

x = λT x+ y,

where T ∈ B(H) is a compact normal operator, λ ∈ C and y ∈ H; specifying the Fredlom alternative:
Either, for each y ∈H, the equation x = λT x+y has a unique solution, or the homogeneous equation
x = λT x has a non-zero solution, in which case the complete equation has a solution if and only if y
is ortogonal to each solutions of the homogeneous equation.

The latter section, 3.4. Fredholm integral equations discusses the Fredholm equations of the
second kind

f (s) =
∫ b

a
K(s, t) f (t)dt +g(s)

with K, g known functions and f a function to determine. As in the previous section, the Fredholm
alternative is specified.

Autor: Iuliana Alexandra Loiszli
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Capítulo 1

Álgebras de Banach

En este capítulo se exponen algunos resultados elementales sobre la teoría de Gelfand de las
álgebras de Banach que hay que tener en cuenta para el posterior desarrollo del trabajo.

1.1. Definición y primeras propiedades

Se dan por sentado los hechos básicos sobre espacios de Banach, que por definición son espacios
normados y completos; es decir, espacios normados tales que toda sucesión de Cauchy en ellos es
convergente.

Definición 1.1.1. Un espacio A se llama álgebra de Banach si A es un espacio de Banach sobre C
con una multiplicación asociativa y distributiva tal que ∀x,y ∈ A, α ∈ C se cumple:

α(xy) = (αx)y = x(αy) y ‖xy‖ ≤ ‖x‖‖y‖.

Se dirá que A posee unidad si existe e ∈ A(unidad) tal que xe = ex = x,∀x ∈ A con ‖e‖= 1.
Se dirá que A es conmutativa si xy = yx, ∀x,y ∈ A.

Ejemplos

Un ejemplo trivial es C con el producto usual de números complejos, con elemento unidad
1+ i0 = 1.

El espacio de las funciones continuas con valores complejos sobre un espacio topológico
compacto K con la norma del supremo, denotado por C(K), es un ejemplo de álgebra de Banach
conmutativa con la función constante 1 como unidad del espacio. En este caso las operaciones
son la de suma y producto punto a punto de las funciones.

Otro ejemplo de álgebra de Banach, no conmutativa, es el espacio de operadores lineales y
acotados sobre un espacio de Banach X, que se denotará por B(X). El producto en este espacio
se define como la composición de operadores, y la unidad es el operador identidad I.

L1(Rn) = { f : Rn→ C :
∫
Rn | f | < ∞} con el producto llamado convolución y denotado por ∗.

Se define de la siguiente manera:

( f ∗g)(s) =
∫
Rn

f (s− t)g(t)dt
(

f ,g ∈ L1(Rn)
)
.

L1(Rn) es conmutativa pero no posee unidad.

Cuando X es un espacio de Hilbert X = H existe una relación estrecha entre el espacio C(K)
y B(H), que se manifiesta en la parte de la teoría de álgebras de Banach que se dedica a la teoría
espectral.

1



2 Capítulo 1. Álgebras de Banach

Definición 1.1.2. Sea A álgebra de Banach con unidad e ∈ A. Se dice que un elemento x ∈ A es
inversible si existe un elemento y ∈ A tal que

yx = xy = e.

En este caso, el inverso y de x es único y se denota por x−1.
El conjunto de los elementos inversibles de A se denota como A−1. Claramente, A−1 es un grupo.

Proposición 1.1.3. Sea A álgebra de Banach y x ∈ A con ‖x‖< 1. Entonces

a) e− x ∈ A−1,

b) ‖(e− x)−1− e− x‖ ≤ ‖x‖2

1−‖x‖
.

Demostración. Sea la sucesión sn = e+ x+ x2 + · · ·+ xn.
Se cumple que

‖sn+1− sn‖= ‖xn+1‖ ≤ ‖x‖n+1

y como ‖x‖< 1 se tiene que ‖sn+1− sn‖→ 0.
Sea ahora m,n ∈ N con m≥ n. Se tiene que

‖sm− sn‖= ‖xn+1 + · · ·+ xm‖ ≤ ‖x‖n+1 + · · ·+‖x‖m

=
∞

∑
k=n
‖x‖k−

∞

∑
k=m+1

‖x‖k −−−−→
n,m→∞

0

pues ‖x‖< 1 y por lo tanto la sucesión es de Cauchy.
Por ser A completo se deduce que existe s ∈ A tal que sn→ s.
Además, como xn→ 0 y

sn(e− x) = e− xn+1 = (e− x)sn,

se deduce, haciendo n→ ∞, que s(e− x) = e = (e− x)s; es decir, s es el inverso de e− x.
Para el segundo apartado se utiliza lo anterior y así se tiene que

‖s− e− x‖= ‖e+ x+ x2 + · · ·− e− x‖= ‖x2 + x3 + · · ·‖ ≤
∞

∑
n=2
‖x‖n.

La hipótesis ‖x‖< 1 implica que la última serie es convergente con suma

∞

∑
n=2
‖x‖n =

‖x‖2

1−‖x‖
.

Teorema 1.1.4. Si A es un álgebra de Banach entonces

El grupo A−1 de los elementos inversibles de A, es un subconjunto abierto de A.

La aplicación x ∈ A−1 7→ x−1 ∈ A−1 es un homeomorfismo.

Demostración. Para demostrar la primera afirmación se prueba que: dado x ∈ A−1, h ∈ A con

‖h‖< 1
2
‖x−1‖−1

se tiene que x+h ∈ A−1.

El teorema espectral de operadores acotados
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En efecto, nótese que x+h = x
(
e+ x−1h

)
y ‖x−1h‖< 1

2 , con lo cual, por la proposición anterior
se tiene que e+ x−1h ∈ A−1 y por lo tanto x+h ∈ A−1.
Además, por el apartado b) de la misma proposición, se cumple que

‖
(
e+ x−1h

)−1− e+ x−1h‖ ≤ ‖x−1h‖2

1−‖x−1h‖
.

Multiplicando ahora por ‖x−1‖ y sabiendo que ‖x−1h‖< 1
2 , se obtiene

‖
(
e+ x−1h

)−1
x−1− ex−1 + x−1hx−1‖ ≤ 2‖x−1h‖2‖x−1‖.

Es decir,
‖(x+h)−1− x−1 + x−1hx−1‖ ≤ 2‖x−1‖3‖h‖2. (1.1)

Para que la aplicación x 7→ x−1 sea un homeomorfismo tiene que ser biyectiva y continua con la
inversa continua.
De la formula (1.1) se deduce la continuidad de la aplicación, pues dados x, x+h ∈ A−1 con

‖x+h− x‖= ‖h‖< 1
2
‖x−1‖−1

se cumple que
‖(x+h)−1− x−1‖ ≤ 2‖x−1‖3‖h‖2 +‖x−1‖2‖h‖.

Finalmente, ya que la aplicación coincide con su propia inversa se concluye que es un homeomorfismo
de A−1 en A−1.

Definición 1.1.5. Dada A álgebra de Banach y x ∈ A, se define como espectro de x al conjunto

σ(x) = {λ ∈ C : x−λe no inversible en A}

El complementario de σ(x) se llama conjunto resolvente de x, es decir, el conjunto

{λ ∈ C : ∃ (x−λe)−1 ∈ A}.

Al número
ρ(x) = sup{|λ | : λ ∈ σ(x)}

se le llama radio espectral de x.

Teorema 1.1.6. Si A es álgebra de Banach con unidad y x ∈ A, entonces el espectro de x es un
compacto no vacío del plano complejo.

Demostración. Sea |λ |> ‖x‖, lo que implica |λ−1|‖x‖< 1 y así por la proposición anterior se tiene
que e−λ−1x ∈ A−1, es decir λe− x ∈ A−1.
Luego λ /∈ σ(x), lo que implica que σ(x)⊆ B(0,‖x‖) y asi σ(x) es acotado.

Para probar que σ(x) es cerrado se define la función

g :C→ A

λ 7→ λe− x.

Evidentemente g es continua y por tanto el conjunto resolvente, C \σ(x) = g−1(A−1), es un abierto
ya que lo es A−1, por el Teorema 1.1.4. Por consiguiente σ(x) es cerrado y, al ser también acotado es
compacto.
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4 Capítulo 1. Álgebras de Banach

Se considera ahora la función f : C \σ(x)→ A−1 definida por la fórmula f (λ ) = (λe− x)−1.
Procediendo igual que en la demostración de la Proposición 1.1.3, con

sn = e+
x
λ
+

x2

λ 2 + · · ·+
xn

λ n y |λ−1|‖x‖< 1.

Se obtiene al hacer tender n a ∞, que el inveso de e−λ−1x, es

s =
∞

∑
n=0

λ
−nxn.

Es decir, (λe− x)−1 = λ−1s, con lo cual

f (λ ) = (λe− x)−1 = ∑
∞
n=0 λ−(n+1)xn (1.2)

=
1
λ

e+
1

λ 2 x+ · · ·+ 1
λ n+1 xn + · · ·

=
1
λ
· 1

1−λ−1x
,

cuando |λ | > ‖x‖. En particular, f es holomorfa (o analítica) con valores en A. Por tanto si ϕ es un
funcional lineal continuo definido sobre A, se tiene que

ϕ( f (λ )) =
∞

∑
n=0

λ
−(n+1)

ϕ(xn)

es holomorfa sobre el conjunto resolvente de x, que se anula en el infinito.
Si σ(x) fuera vacío, entonces ϕ( f (λ )) sería entera y acotada (por anularse en ∞). Por el teorema

de Liouville, ϕ ◦ f sería identicamente nula y luego por Hahn-Banach f (λ ) = (λe− x)−1 también
sería cero, lo cual es imposible. Entonces σ(x) no es vacío, quedando así demostrado el teorema.

Corolario 1.1.7. Sea A un álgebra de Banach con unidad y x∈ A, entonces ρ(x)≤ ‖x‖, ∀x. De hecho

ρ(x) = lı́m
n→∞

(‖xn‖)1/n = ı́nf
n≥1

(‖xn‖)1/n.

Demostración. Se ha visto en la demostración anterior que σ(x)⊆ B(0,‖x‖). Por lo tanto, si λ ∈ σ(x)
se tiene que |λ | ≤ ‖x‖, es decir

ρ(x)≤ ‖x‖, ∀x. (1.3)

También en el curso de la demostración anterior se ha establecido que, si |λ |> ‖x‖ entonces

ϕ( f (λ )) =
∞

∑
n=0

λ
−(n+1)

ϕ(xn)

es analítica en la bola de centro 0 y radio r > ‖x‖ y que se anula en el infinito, con la función f dada
por la fórmula (1.2). Por la relación (1.3), se puede reemplazar la condición r > ‖x‖ por r > ρ(x).

Luego {λ−(n+1)xn}∞
n=0 es acotada para todo |λ |> ρ(x). Sea entonces M(λ )> 0 tal que

‖λ−(n+1)xn‖< M(λ ) con |λ |> ρ(x).

Se obtiene
‖xn‖ ≤ |λ |n+1M(λ ).

Por lo tanto
lı́msup

n→∞

‖xn‖1/n ≤ |λ |, |λ |> ρ(x).

El teorema espectral de operadores acotados
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Luego
lı́msup

n→∞

‖xn‖1/n ≤ ρ(x). (1.4)

Por otro lado, se tiene que

λ
ne− xn = (λe− x)(λ n−1e+ · · ·+ xn−1),

Si λ ∈ σ(x) implica que λ ne− xn no es inversible, con lo cual λ n ∈ σ(xn). Utilizando de nuevo la
relación (1.3) se tiene que |λ n| ≤ ‖xn‖ para todo n ∈ N, de donde se deduce que

ρ(x)≤ ı́nf
n≥1
‖xn‖1/n.

Finalmente, reescribiendo la última relación y la (1.4), en la desigualdad

lı́msup
n→∞

‖xn‖1/n ≤ ρ(x)≤ ı́nf
n≥1
‖xn‖1/n ≤ lı́minf

n→∞
‖xn‖1/n,

se tiene igualdad, pues siempre se cumple que lı́minfn→∞ ‖xn‖1/n ≤ lı́msupn→∞ ‖xn‖1/n.

El teorema previo y el que viene a continuación son los resultados que generan la representación
de Gelfand.

Teorema 1.1.8 (Gelfand-Mazur). Si A es álgebra de Banach tal que ∀x∈A, x 6= 0, ∃ x−1 ∈A, entonces
A es isométricamente isomorfa al álgebra de los números complejos.

Demostración. Sea x ∈ A. Por el Teorema 1.1.6, se tiene que el espectro de x es no vacío y así
∃ λ ∈ σ(x) tal que @ (x−λe)−1 en A. Luego, como x−λe ∈ A de la hipótesis se deduce que necesa-
riamente x−λe = 0, es decir x = λe.

Así la aplicación que asocia a cada x ∈ A su correspondiente λ ∈C es un isomorfismo que cumple

|λ |= ‖λe‖= ‖x‖, ∀x ∈ A.

1.2. Representación de Gelfand

La teoría de Gelfand sobre álgebras de Banach conmutativas depende de tres conceptos funda-
mentales: homomorfismos complejos, ideales maximales y espectros.

Definición 1.2.1. Sea A álgebra compleja. Un funcional lineal complejo ϕ de A se llama homomorfismo
complejo de A si para cada x ∈ A y y ∈ A se cumple

ϕ(xy) = ϕ(x)ϕ(y).

Se llama carácter de A a cualquier homorfismo complejo no idénticamente nulo.

Evidentemente, todo carácter de un álgebra de Banach A cumple ϕ(e) = 1, con e elemento unidad,
pues dado y ∈ A tal que ϕ(y) 6= 0 se tiene que

ϕ(y) = ϕ(ye) = ϕ(y)ϕ(e).

Se denota por ΦA al conjunto de caracteres de A.

Definición 1.2.2. Sea A álgebra conmutativa con unidad. Un subespacio vectorial J de A se dice ideal
si xy ∈ J siempre que x ∈ A, y ∈ J. Un ideal J de A se dice propio si J 6= A y es maximal si es propio
y no está contenido en otro ideal de A.
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6 Capítulo 1. Álgebras de Banach

Observación. Todo ideal propio J de A está contenido en algún ideal maximal de A. Si J es un ideal
entonces J (la clausura topológica de J) es un ideal de A.

Nótese que si x ∈ A tal que ‖e− x‖ < 1 entonces x ∈ A−1, pues si ‖e− x‖ < 1, implica por la
relación (1.3), que 1 es elemento del conjunto resolvente de e− x y por la Proposición 1.1.3,

x = e− (e− x) ∈ A−1.

Por lo tanto, si J es un ideal propio de A, también lo es J, ya que si J = A entonces existe x ∈ J
con ‖e− x‖< 1, es decir xx−1 = e ∈ J y así J = A.

En particular, si M es ideal maximal de A entonces M es un ideal propio de A, pero por ser M
maximal, necesariamente M = M, luego todo ideal maximal es cerrado.

De estas definiciones se deducen las siguientes propiedades:

Propiedades 1.2.3. Sea A álgebra de Banach conmutativa con unidad y ΦA el conjunto de caracteres
de A.

a) x ∈ A−1⇔ x /∈ J, para todo J ideal propio de A.

b) x ∈ A es inversible⇔ ϕ(x) 6= 0, ∀ϕ ∈ΦA.

c) σ(x) = {ϕ(x) : ϕ ∈ΦA}, ∀x ∈ A.

d) Si ϕ ∈ΦA, entonces ker(ϕ) es ideal maximal.

Demostración. El segundo apartado es consecuencia del hecho de que dado ϕ, carácter de A, y
x ∈ A−1 se cumple

1 = ϕ(e) = ϕ(xx−1) = ϕ(x)ϕ(x−1).

Por tanto ϕ(x) 6= 0 y entonces si λ ∈ σ(x) implica que x− λe es no inversible y por lo anterior se
tiene que ϕ(x) es nulo, es decir ϕ(x) = λ . Esto prueba el tercer apartado.

Para probar la propiedad d), consideramos ϕ ∈ΦA. Por b) se deduce que si x∈ ϕ−1(0) se tiene que
x es inversible y luego por a), ϕ−1(0) es un ideal propio de A. Hay que probar que ϕ−1(0) es maximal.
Suponiendo que no lo sea, se tiene que ϕ−1(0) ⊆M, M ideal maximal de A. Si existe x ∈M tal que
ϕ(x) 6= 0, entonces de nuevo por el apartado b) se tiene que existe x−1 ∈ A, con lo cual x−1x = e ∈M
y así M = A.

Si M es un ideal maximal de A se tiene que M es cerrado y así A/M, cuyos elementos son de la
forma x+M con x ∈ A, es un espacio de Banach respecto a la norma

‖x+M‖= ı́nf
y∈M
‖x+ y‖. (1.5)

Sea x ∈ A y la aplicación cociente ϕM : A→ A/M dada por

ϕM(x) = x+M.

Si x, y ∈ A son tales que ϕM(x) = ϕM(x′) y ϕM(y) = ϕM(y′), es decir x−x′ ∈M y y−y′ ∈M entonces

x′y′− xy = (x′− x)y′+ x(y′− y) ∈M.

Por lo tanto ϕM(x′y′) = ϕM(xy). Así se define el producto en A/M como

(x+M)(y+M) = xy+M

o equivalentemente ϕM(x)ϕM(y) = ϕM(xy). Luego ϕM es un homomorfismo y es continuo, pues
‖ϕM(x)‖ ≤ ‖x‖, ∀x ∈ A por definición de la norma (1.5).

El teorema espectral de operadores acotados
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La misma fórmula, (1.5), implica que para x ∈ A se cumple que

‖x+ y‖ ≤ ‖ϕM(x)‖

para algún y ∈M. Nótese que para x,x′ ∈ A y y,y′ ∈M se tiene

(x+ y)(x′+ y′) = xx′+M,

con lo cual
‖ϕM(xx′)‖ ≤ ‖(x+ y)(x′+ y′)‖ ≤ ‖x+ y‖‖x′+ y′‖.

Es decir,
‖ϕM(x)ϕM(x′)‖ ≤ ‖ϕM(x)‖‖ϕM(x′)‖

siendo entonces A/M un álgebra de Banach.
Si e es el elemento unidad de A, se cumple que ϕM(e) 6= 0, y la última relación implica que

‖ϕM(e)‖ ≥ 1 = ‖e‖. Por otro lado, por la continuidad de ϕM(x) se tiene que ‖ϕM(e)‖ ≤ ‖e‖= 1. En
consecuencia e+M es la identidad en A/M con ‖ϕM(e)‖= 1.

Teorema 1.2.4. Si A es un álgebra de Banach conmutativa con unidad y M un ideal maximal de A
entonces A/M es isométricamento isomorfo a C.

Demostración. La aplicación cociente definida como antes, ϕM : A→ A/M resulta que es un carácter
de A, lo cual prueba que para cualquier ϕM(x) 6= 0 existe su inverso en A/M. Por el teorema de
Gelfand-Mazur, A/M es isométricamente isomorfo a C.

Definición 1.2.5. Al conjunto de los ideales maximales de A, que se denota por SpecA, se le llama
espectro de A.

Teorema 1.2.6. Sea A álgebra de Banach conmutativa con unidad y ΦA el conjunto de caracteres de
A. Entonces,

a) Todo ideal maximal de A es el núcleo de algún ϕ ∈ΦA.

b) ‖ϕ‖= 1 para todo ϕ ∈ΦA.

Demostración. a) Sea M un ideal maximal de A. Así M es cerrado y A/M es un álgebra de Banach.
Por el Teorema 1.2.4, A/M es isomorfo a C. Sea ϕM la aplicación cociente

ϕM : A→ A/M ∼= C.

Claramente, ϕM es un carácter y M = ker(ϕM).

Ahora poniendo ϕ = h◦ϕM, se tiene que ϕ ∈ΦA, con ϕ(e) = 1 y que M = ker(ϕ).
b) Debido a que ϕ(e) = 1 se tiene que ‖ϕ‖ ≥ 1. Ahora, por definición

‖ϕ‖= sup
‖x‖<1

|ϕ(x)|,

y por tanto si ‖ϕ‖ > 1, existe x ∈ A tal que ‖x‖ < 1 y ϕ(x) = 1. Por la Proposición 1.1.3, e− x es
inversible en A. Luego,

ϕ(e) = ϕ
(
(1− x)(1− x)−1)= (ϕ(e)−ϕ(x))ϕ

(
(1− x)−1)= 0,

lo cual es contradicción con ϕ(e) = 1. Así ‖ϕ‖= 1.
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8 Capítulo 1. Álgebras de Banach

En conclusión, este teorema y el apartado d) de la Propiedad 1.2.3, afirman que:
M es un ideal maximal en A si y sólo si M es el núcleo de ϕ para algún ϕ ∈ΦA.
Esto significa que todos ideales maximales de A se pueden identificar con los caracteres de A,

SpecA≡ΦA.

Este último hecho y el que ‖ϕ‖= 1, permiten identificar a SpecA con un subconjunto de la esfera
unitaria ΩA del dual A′ de A. Se define la topología de Gelfand en SpecA como la topología débil
inducida por la del dual A′ de A, σ(A′,A). Nótese que la topología débil en A inducida por el dual A′,
es la mínima topología que hace continuos a los elementos de ΦA.
Por tanto SpecA es un compacto, ya que ΩA es un compacto, por el teorema de Alaoglu-Bourbaki
(véase [B, p.193]).

Definición 1.2.7. Sea A un álgebra de Banach conmutativa con SpecA su espectro de ideales maxi-
males. Se define la transformada de Gelfand de x ∈ A como la función

x̂ : SpecA→ C

definida por
x̂(ϕ) = ϕ(x)

para todo x ∈ A y ϕ ∈ SpecA.
Sea Â el conjunto de todas las funciones x̂, para x∈A. Con la topología de Gelfand en SpecA inducida
por Â, se tiene que x̂ es continua.

La transformación de Gelfand es el homomorfismo de A en el álgebra de las funciones continuas
sobre SpecA dado por

G : A→ Â⊆C(SpecA)

x→ x̂ : SpecA→ C

Observación. La transformada de Gelfand satisface la relación

‖x̂‖∞ = ρ(x)≤ ‖x‖,∀x ∈ A, (1.6)

que es consecuencia del Corolario 1.1.7 y de la Propiedad 1.2.3, c), pues

‖x̂‖∞ = sup
ϕ∈SpecA

|x̂(ϕ)|= sup
ϕ∈SpecA

|ϕ(x)|= ρ(x)≤ ‖x‖.

En la siguiente definición se introduce una versión abstracta de la conjugación compleja. Entre
las álgebras de Banach, las que poseen involución son muy importantes en teoría de operadores, ya
que los operadores en espacios de Hilbert tienen adjunto, y éste juega un papel importante en la
descomposión espectral.

Definición 1.2.8. Una involución o conjugación en un álgebra A es una aplicación ∗ : A→ A que
∀x, y ∈ A y λ ∈ C, verifica:

i) (x+ y)∗ = x∗+ y∗,

ii) (λx)∗ = λx∗,

iii) (xy)∗ = y∗x∗,

iv) x∗∗ = x.

El teorema espectral de operadores acotados



1.2. Representación de Gelfand 9

Si se cumple que x∗ = x entonces se dice que x es hermitiano o autoadjunto.
Se dice que x ∈ A es normal si xx∗ = x∗x.
Toda álgebra de Banach dotada de una involución que satisface ‖xx∗‖ = ‖x‖2 para cada x ∈ A, se
llama C∗-álgebra y si tiene unidad e se debe cumplir que e∗ = e.

Definición 1.2.9. Si A es un álgebra con una involución, decimos que un subconjunto S⊂ A es
normal cuando

i) xy = yx, ∀x,y ∈ A

ii) x∗ ∈ A,∀x ∈ A.

Ejemplos

C con la norma dada por el valor absoluto y con involución: z∗= z para z∈C, es una C∗-álgebra
conmutativa con unidad.

De nuevo, el espacio C(K) definido al inicio de la sección, con la involución f ∗(x) = f (x) para
f ∈C(K) y x ∈ K.

Si A es una C∗-álgebra, toda subálgebra con involución y cerrada en A es una C∗-álgebra.

El resultado básico fundamental de la teoría de C∗-álgebras es el siguiente:

Teorema 1.2.10 (Gelfand-Naimark). Si A es una C∗-álgebra conmutativa con unidad y ∆ := SpecA
es su espectro de ideales maximales, entonces la transformación de Gelfand G : A→ C(∆) es un
isomorfismo isométrico tal que

(x∗)̂ = x̂, ∀x ∈ A,

o equivalentemente ϕ(x∗) = ϕ(x) para cada ϕ ∈ ∆ y x ∈ A.
Por tanto, x es hermitiano⇔ x̂ es real.

Nótese que en particular el teorema muestra que la transformada de Gelfand convierte la involu-
ción en conjugación compleja.

Demostración. Sea u ∈ A tal que u = u∗ y ϕ ∈ ∆. Se quiere ver ϕ(u) es real. Para esto se considera
z = u+ ite con t ∈ R y e el elemento unidad de A.
Si ϕ(u) = α + iβ con α y β reales, entonces

ϕ(z) = α + i(β + t) y zz∗ = u2 + t2e,

pues
zz∗ = (u+ ite)(u∗− ite) = uu∗− itu+ itu∗+ t2e.

Así
α

2 +(β + t)2 = |ϕ(z)|2 ≤ ‖z‖2 = ‖zz∗‖ ≤ ‖u‖2 + t2,

es decir,
α

2 +β
2 +2β t ≤ ‖u‖2 ∀t ∈ R,

lo que implica que necesariamente β = 0.
Si x ∈ A, entonces x = u+ iv con u = u∗, v = v∗; a saber,

u =
x+ x∗

2
y v =

x− x∗

2i
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10 Capítulo 1. Álgebras de Banach

nótese que x∗ = u− iv. Por tanto, como ϕ(u), ϕ(v) son números reales,

ϕ(x∗) = ϕ(u)− iϕ(v) = ϕ(u)+ iϕ(v) = ϕ(x).

Considerando ahora y = xx∗ con x ∈ A se tiene que y = y∗. Como A es C∗-álgebra implica que
‖y2‖= ‖y‖2. Por inducción se obtiene que ‖ym‖= ‖y‖m, ∀m = 2n, n ∈ N.
Entonces, por la fórmula (1.6) y Corolario 1.1.7, se tiene que

‖ŷ‖∞ = ρ(y) = lı́m
n→∞

(
‖y2n‖

)2−n

= lı́m
n→∞

(
‖y‖2n

)2−n

= ‖y‖.

Pero
ŷ = (xx∗)̂ = (x∗)̂ x̂ = x̂ x̂ = |x̂|2,

es decir, se cumple la igualdad en normas

‖x̂‖2
∞ = ‖ŷ‖∞ = ‖y‖= ‖xx∗‖= ‖x‖2, ∀x ∈ A,

lo cual significa que la transformación de Gelfand es isométrica.
Luego, por ser A completo y G una isometría resulta que Â es cerrado en C(∆.) En particular, la

fórmula del enunciado muestra que si x̂ ∈ Â entonces el conjugado complejo x̂ de x̂ también está en Â.
El teorema de Stone-Weierstrass afirma que dada A una subálgeba cerrada de C(K), K un espacio

compacto que contiene la unidad e, separa puntos de K (es decir, si x,y ∈ K con x 6= y, ∃ f ∈ A tal que
f (x) 6= f (y) ) y que si f ∈ A también f ∈ A, se tiene que A es denso en C(K).

Nótese que Â cumple las hipótesis del mismo y por lo tanto Â es denso en C(∆), luego Â debe
coincidir con C(∆).

Un caso particular del teorema anterior es el siguiente corolario:

Corolario 1.2.11. Si A es una C∗-álgebra conmutativa con unidad generada por un elemento x ∈ A;
es decir, tal que los polinomios en x y x∗ son densos en A, entonces ψ : C(σ(x))→ A dado por

(ψ f )̂ = f ◦ x̂

es un isomorfismo isométrico tal que
ψ f = (ψ f )∗

para todo f ∈C(σ(x)). Además, si f (λ ) = λ entonces ψ f = x.

Demostración. Sea ∆ = SpecA el espectro de A y ϕ ∈ ∆. Se tiene que x̂ : ∆→ C es una aplicación
continua tal que x̂(ϕ) = ϕ(x), donde x̂ es la transformada de Gelfand en ∆. Por la Propiedad 1.2.3, c)
se tiene que ϕ(x) ∈ σ(x). A continuación se prueba que la aplicación

ϕ ∈ ∆ 7→ ϕ(x) ∈ σ(x)

es un homeomorfismo entre compactos.
Sea ϕ1,ϕ2 ∈ ∆ de manera que

x̂(ϕ1) = x̂(ϕ2),

es decir, ϕ1(x) = ϕ2(x).
El teorema de Gelfand-Naimark implica que ϕ1(x∗) = ϕ2(x∗). Sea P un polinomio en dos varia-

bles. Ya que ϕ1 y ϕ2 son homomorfismos, resulta que

ϕ1(P(x,x∗)) = ϕ2(P(x,x∗)).

El teorema espectral de operadores acotados
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Por hipótesis, los elementos de la forma P(x,x∗) son densos en A. Se puede concluir que ϕ1(y) =ϕ2(y)
para y∈ A. Así ϕ1 = ϕ2, con lo cual x̂ es inyectiva. Más aún, x̂ es continua con ∆ compacto y por tanto
x̂ es un homeomorfismo de ∆ en σ(x).

Luego existe un isomorfismo isométrico de C(σ(x)) en C(∆) tal que f 7→ f ◦ x̂ que conserva
la conjugación compleja. Y de nuevo por el teorema anterior, como (ψ f ) = G−1( f ◦ x̂), se tiene la
conclusión.

Si f (λ ) = λ entonces f ◦ x̂ = x̂ y así ψ f = x.

A continuación se completará esta sección con un lema que también será util en la teoría del
cálculo funcional continuo que se verá en el siguiente capítulo.

Observación. Si el álgebra A es una subálgebra de un álgebra B, puede ocurrir que algún elemento
x ∈ A no es inversible en A, pero es inversible en B. Por tanto el espectro depende del álgebra. De la
definición del espectro se sigue que

σB(x)⊆ σA(x),

y en general no hay coincidencia de estos dos conjuntos. En el caso de C∗-álgebras se tiene el siguiente
teorema:

Teorema 1.2.12. Si B es una C∗-álgebra con x un elemento normal de B y A una subálgebra con
involución y cerrada de B que contiene la unidad e y x∗ ∈ A,∀x ∈ A, entonces

σA(x) = σB(x), ∀x ∈ A.

Demostración. Véase [Z, Theorem 24.6].

El teorema anterior permite evitar ambigüedades en la elección del espectro.

Autor: Iuliana Alexandra Loiszli





Capítulo 2

Teoría espectral de operadores normales
acotados

2.1. Cálculo funcional continuo para operadores normales

En esta sección se aplicarán los resultados de la teoría espectral de Gelfand, del capitulo anterior,
al estudio de operadores normales acotados sobre un espacio de Hilbert. Con el objetivo de fijar
la notación que será usada, es conveniente recordar la definición de un espacio de Hilbert, que se
denotará por H con 〈· , ·〉 su producto escalar. El producto escalar da lugar a una norma ‖ · ‖ que se
define como

‖x‖ :=
√
〈x,x〉.

H es un espacio de Hilbert si es completo con respecto a esta norma. Cada espacio de Hilbert es así
también un espacio de Banach.

A lo largo del trabajo, se denotará por B(H) al álgebra de Banach de operadores lineales y acotados
T sobre un espacio de Hilbert H con la norma

‖T‖= sup{‖T x‖ : x ∈ H, ‖x‖ ≤ 1}.

Un operador T es acotado si ‖T‖< ∞.

El siguiente resultado de Análisis Funcional será de gran utilidad a lo largo de este capítulo.

Teorema 2.1.1 (Teorema de Riesz). Sea H un espacio de Hilbert y ϕ ∈ H ′, donde se ha denota por
H ′ el espacio dual de H. Entonces existe un único y ∈ H tal que

ϕ(x) = 〈x,y〉

para todo x ∈ H. Además se cumple que ‖ϕ‖= ‖y‖.

Demostración. Para la demostración se puede consultar [M, p.111].

Definición 2.1.2. Dado T ∈ B(H) existe un único operador T ∗ ∈ B(H) definido por la relación

〈T x,y〉= 〈x,T ∗y〉 ∀x,y ∈ H.

Decimos entonces que el operador T ∗ es el operador adjunto de T.
Un operador T se dice normal si T T ∗ = T ∗T, y se dice hermitiano o autoadjunto si T = T ∗.
T es unitario si T ∗T = I = T T ∗ donde I es el operador identidad en H.

Siempre se tiene que ‖T ∗‖= ‖T‖.

13



14 Capítulo 2. Teoría espectral de operadores normales acotados

La existencia y unicidad del operador adjunto es consecuencia del teorema de Riesz, porque, fijado
y ∈ H, la aplicación

H→ C
x 7→ 〈T x,y〉

es lineal y continua, o sea, de H ′.
La aplicación T → T ∗ es una involución en B(H) cumpliendo las propiedades

1. (αT +βS)∗ = αT ∗+βS∗,

2. (ST )∗ = T ∗S∗,

3. T ∗∗ = T.

4. I = I∗, y si T es inversible (T−1)∗ = (T ∗)−1.

Aplicando ahora las propiedades de la norma y del producto escalar se tiene que

‖T ∗T‖ ≤ ‖T ∗‖‖T‖= ‖T‖2,

Por otra parte, de la desigualdad de Cauchy-Schwarz en espacios de Hilbert se deduce que para todo
x ∈ H,

‖T x‖2 = 〈T x,T x〉= 〈x,T ∗T x〉 ≤ ‖x‖‖T ∗T x‖ ≤ ‖x‖2‖T ∗T‖.

Es decir, ‖T‖2 ≤ ‖T ∗T‖. Por lo tanto

‖T‖2 = ‖T ∗T‖, ∀T ∈ B(H).

En consecuencia, B(H) resulta ser una C∗-álgebra (no conmutativa), con lo cual se puede aplicar la
teoría presentada en el capítulo inicial.

A continuación se destacan algunas propiedades de los operadores normales en un espacio de
Hilbert:

Proposición 2.1.3. Sea T ∈ B(H).

a) T es normal si y sólo si para cada x ∈ H se tiene ‖T x‖= ‖T ∗x‖.

b) Si T es normal y si para algunos x ∈ H y λ ∈ C se tiene que T x = λx, entonces T ∗x = λx.

c) Si T normal entonces existe λ ∈ σ(T ) tal que |λ |= ‖T‖.

Demostración. El primer apartado es trivial si considerando x ∈ H se calcula

‖T x‖2 = 〈T x,T x〉= 〈T ∗T x,x〉

y
‖T ∗x‖2 = 〈T ∗x,T ∗x〉= 〈T T ∗x,x〉= 〈T ∗T x,x〉.

Para el b), como T es normal entonces T −λ I también lo es y por la parte a) se tiene que

0 = ‖T x−λx‖= ‖(T −λ I)x‖= ‖(T −λ I)∗x‖
= ‖(T ∗−λ I)x‖= ‖T ∗x−λx‖.

De donde T ∗x = λx.

El teorema espectral de operadores acotados



2.1. Cálculo funcional continuo para operadores normales 15

La propiedad c) se prueba haciendo uso de que B(H) es un C∗-álgebra, es decir que ‖T 2‖= ‖T‖2.

Por inducción se obtiene que ‖T 2k‖= ‖T‖2k
para k ∈N, como en el Teorema 1.2.10. Luego, aplicando

el Corolario 1.1.7, resulta que

ρ(T ) = lı́m
n→∞
‖T n‖1/n = lı́m

k→∞

‖T 2k‖1/2k
= lı́m

k→∞

‖T‖= ‖T‖.

Finalmente, por ser σ(T ) compacto,

‖T‖= ρ(T ) = sup
λ∈σ(T )

|λ |= máx
λ∈σ(T )

|λ |.

Teorema 2.1.4 (Cálculo funcional continuo). Sea T ∈ B(H) un operador normal sobre un espacio de
Hilbert H, de modo que T T ∗ = T ∗T. Existe un único *-homomorfismo

ΦT : C(σ(T ))→ B(H)

tal que ΦT (u) = I y ΦT (v) = T, donde u(λ ) = 1, v(λ ) = λ para cada λ ∈ σ(T ). Además, ΦT es
isométrico y su rango es la subálgebra cerrada (conmutativa) C generada por I, T y T ∗, donde I es la
identidad sobre H.

Demostración. El último lema del capítulo anterior 1.2.12, permite escribir que

σC(T ) = σB(H)(T ),

con C la subálgebra cerrada (conmutativa) C generada por I, T y T ∗.
Por el teorema de Gelfand-Naimark, la transformación de Gelfand G de C es un isomorfismo

isométrico de C en C(SpecC). Además, por el Corolario 1.2.11 se tiene que SpecC es homeomorfo a
σ(T ) via el homeomorfismo

T̂ : SpecC→ σ(T ).

Considerando f ∈C(σ(T )) se define ΦT ( f ) como el único elemento de C tal que

ΦT ( f ) = G−1( f ◦ T̂ ).

Se verifica que ΦT es un *-homomorfismo de C(σ(T )) en B(H), y

ΦT (u) = G−1(u◦ T̂ ) = I,

ΦT (v) = G−1(v◦ T̂ ) = T, ΦT (v) = G−1(v◦ T̂ ) = T ∗,

pues u◦ T̂ = 1 y v◦ T̂ = T̂ . Más aún,

‖ΦT ( f )‖= ‖(ΦT ( f ))̂‖∞ = ‖ f ◦ T̂‖∞

= sup{| f (T̂ (ϕ))| : ϕ ∈ SpecC}
= sup{| f (λ )| : λ ∈ σ(T )}= ‖ f‖∞,

lo cual significa que ΦT es isométrico.
Queda por ver que el rango de ΦT es C. De las propiedades que tiene ΦT se deduce que su

rango es una subálgebra cerrada de B(H) que contiene a I, T y T ∗, es decir ΦT (C(σ(T ))) ⊃C. Por
otra parte Φ

−1
T (C) es una subálgebra cerrada de C(σ(T )) conteniendo a 1 y u, lo cual implica que

Φ
−1
T (C) =C(σ(T )) y por lo tanto ΦT (C(σ(T )))⊂C.

Definición 2.1.5. Con las notaciones del teorema anterior, se define f (T ) = ΦT ( f ) para todo
f ∈C(σ(T )).

Autor: Iuliana Alexandra Loiszli
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Corolario 2.1.6 (Teorema de la aplicación espectral y Regla de composición). Si T es un operador
normal sobre un espacio de Hilbert H, entonces

i) Para cada f ∈C(σ(T )) se tiene

σ( f (T )) = f (σ(T )).

ii) Para cada f ∈C(σ(T )) y g ∈C(σ( f (T ))) se tiene

(g◦ f )(T ) = g( f (T )).

Demostración. i) Sea f ∈C(σ(T )). Con la notación f (T ) = ΦT ( f ) del teorema anterior, se tiene
que σ( f (T )) es el rango de la transformada de Gelfand de ΦT ( f ), es decir

(ΦT ( f ))̂ = f ◦ T̂ .

ii) Considerando f ∈ C(σ(T )) se tiene que por el apartado i), σ( f (T )) = f (σ(T )). Esto prueba
que existe g◦ f cuando g ∈C(σ( f (T ))).
Sea entonces

Φ : C(σ( f (T )))→ B(H)

tal que Φ(g) = (g◦ f )(T ). Se cumple que

Φ(v) = (v◦ f )(T ) = f (T ),

cuando v(λ ) = λ es la función identidad en σ(T ). Además, Φ(1) = (1◦ f ) = 1.
Esto prueba que Φ es un *-homomofismo y satisface la hipótesis del Teorema 2.1.4 para f (T )
normal en B(H) (ya que f (T ) = ΦT ( f ) por la Definición 2.1.5). Por tanto Φ(g) se puede iden-
tificar con Φ f (T )(g) = g( f (t)). Luego

(g◦ f )(T ) = Φ(g) = g( f (T ))

para cada g ∈C(σ( f (T ))).

2.2. Medida espectral

Como se puede observar, en la sección anterior B(H) resultó ser un C∗-álgebra, así la teoría presen-
tada sobre las C∗-álgebras se puede aplicar para obtener teoremas de representación de los operadores
normales.

Definición 2.2.1. Sea X espacio compacto de Hausdorff y B(X) la σ -álgebra de los conjuntos de
Borel de X. Sea H espacio de Hilbert. Se define la medida espectral o resolución de la identidad
sobre B(X) a toda aplicación

E : B(X)→ B(H)

que satisface las propiedades:

i) E( /0) = 0, E(X) = I.

ii) Todo E(ω) es una proyección ortogonal autoadjunta, es decir E(ω)2 = E(ω) = E(ω)∗, para
todo ω ∈B(X).

iii) Si ω ′, ω ′′ ∈B(X) entonces E(ω ′∩ω ′′) = E(ω ′)E(ω ′′).

El teorema espectral de operadores acotados
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iv) Si ω ′, ω ′′ ∈B(X) y ω ′∩ω ′′ = /0 entonces E(ω ′∪ω ′′) = E(ω ′)+E(ω ′′).

v) Para todo x, y ∈ H, la función Ex,y : B(X)→ C definida por

Ex,y(ω) = 〈E(ω)x,y〉

es una medida regular compleja sobre B(X).

A partir de la definición surgen algunas observaciones:
De la segunda y última condición se deduce que

Ex,x(ω) = 〈E(ω)x,x〉= 〈E(ω)2x,x〉= 〈E(ω)x,E(ω)x〉= ‖E(ω)x‖2,

luego Ex,x es una medida positiva sobre B(X).
Más aún, se tiene que E es contablemente aditiva en la topología débil de los operadores y también

en la topología fuerte de los operadores, es decir

∞

∑
n=1

E(ωn)x = E(ω)x, ∀x ∈ H

donde ω es la unión de los ωn ∈B(X), disjuntos dos a dos. La afirmación se debe a que, dado un
x ∈ H se tiene que E(ωn)E(ωm) = 0 cuando n 6= m. Así E(ωn)x y E(ωm)x son ortogonales y por el
apartado v) se cumple

∞

∑
n=1
〈E(ωn)x,y〉= 〈E(ω)x,y〉,

para todo x, y ∈ H.

Ejemplo
Sea X compacto y B(X) la familia de los subconjuntos de Borel en X. Sea µ una medida positiva

sobre B(X) y H = L2(X ,µ), donde

L2(X ,µ) = { f : X → C µ-medible tal que
∫

X
| f (x)|2 dµ =: ‖ f‖2

µ < ∞}.

Entonces la función E : B(X)→ B(H) que para cada ω ∈B(X) define a E(ω) como la multipli-
cación por χω , la función característica de ω, es decir E(ω) f = χω f , es una medida espectral para
(X ,B(X),H).
Todas las condiciones son obvias, excepto que sea contablemente aditiva. Para esto, fijando
f ∈ L2(X ,µ) se tiene

‖E(
∞⋃

k=1

ωk) f −
n

∑
k=1

E(ωk) f‖2 = ‖χ∪∞
k=1ωk f −

n

∑
k=1

χωk f‖2 = ‖χ∪∞
k=1ωk f −χ∪n

k=1ωk f‖2

= ‖χ∪∞
k=1ωk−∪n

k=1ωk f‖2 = ‖χ∪∞
k=n+1ωk f‖2

=
∫

X
χ∪∞

k=n+1ωk | f |
2 dµ =

∫
χ∪∞

k=n+1ωk

| f |2 dµ
n→∞−−−→ 0.

Establecido el cálculo funcional continuo para un operador normal acotado T en la sección 2.1,
Teorema 2.1.4, fijados x, y ∈ H se puede definir la siguente forma lineal continua

Λx,y : C(σ(T ))→ C

por Λx,y( f ) = 〈ΦT ( f )x,y〉. El funcional está acotado, pues

|〈ΦT ( f )x,y〉|= |〈 f (T )x,y〉| ≤ ‖ f (T )‖‖x‖‖y‖= ‖ f‖∞‖x‖‖y‖.

Autor: Iuliana Alexandra Loiszli
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Por el teorema de representación de Riesz, tiene que existir una medida de Borel (compleja) µx,y

sobre σ(T ). A partir de estas medidas se construirá la medida espectral asociada a T mediante la
relación

〈E(ω)x,y〉= µx,y(ω),

como se presenta en el siguiente teorema.

Teorema 2.2.2. Sea A una subálgebra normal con unidad cerrada de B(H) y SpecA el espacio de
ideales maximales de A, denotado por ∆.

a) Entonces existe una única medida espectral E sobre los conjuntos de Borel de ∆ tal que

T =
∫

∆

T̂ dE (2.1)

para todo T ∈ A, donde la integral se interpreta como

〈T x,y〉=
∫

∆

T̂ dEx,y, x,y ∈ H.

Dicho de otra forma, se puede definir Φ : B(∆)→ B(H) tal que

〈Φ( f )x,y〉=
∫

∆

f dEx,y

para toda f de Borel acotada sobre ∆.

b) Si S ∈ B(H), entonces ST = T S para todo T ∈ B(H) si y sólo si SE(ω) = E(ω)S para todo
ω ⊂ ∆.

Demostración. Por la sección anterior, B(H) es una C∗-álgebra y así es claro que A es una C∗-álgebra
conmutativa. En consecuencia, el teorema de Gelfand-Naimark afirma que la aplicación T 7→ T̂ es un
isomorfismo isométrico de A sobre C(∆).

- Existencia de E: Fijados x,y ∈ H, la aplicación Λx,y : C(∆)→ C definida por

Λx,y(T̂ ) = 〈T x,y〉

es un funcional lineal y acotado tal que ‖Λx,y‖ ≤ ‖x‖‖y‖, pues ‖T̂‖= ‖T‖. El teorema de Riesz
implica que ∀x, y ∈ H existe una medida regular compleja µx,y sobre ∆ tal que

〈T x,y〉=
∫

∆

T̂ dµx,y, ∀T ∈ A.

Dicha medida cumple que µx,y = µy,x, pues∫
∆

T̂ dµy,x = 〈Ty,x〉= 〈y,T ∗x〉= 〈T ∗x,y〉

=
∫

∆

(T ∗)̂ dµx,y =
∫

∆

T̂ dµx,y =
∫

∆

T̂ dµx,y.

Además se tiene que ‖µx,y‖ = ‖Λx,y‖ ≤ ‖x‖‖y‖. Esto implica que, para toda f de Borel fija
acotada en ∆,

(x,y) 7→
∫

∆

f dµx,y

es una forma sesquilineal acotada sobre H. Ahora ampliando el cálculo funcional continuo, para
cada f de Borel acotada sobre ∆ se puede definir un operador Φ( f ) ∈ B(H) tal que

〈Φ( f )x,y〉=
∫

∆

f dµx,y, ∀x,y ∈ H.

El teorema espectral de operadores acotados
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Este operador Φ extiende a la inversa de la transformada de Gelfand, debido a que Φ(T̂ ) = T.
En particular, para f real se cumple que

〈Φ( f )x,y〉=
∫

∆

f dµx,y

=
∫

∆

f dµx,y =
∫

∆

f dµy,x = 〈Φ( f )y,x〉,

y por la definición del adjunto, resulta que Φ( f ) es hermitiano.
También se verifica que el operador Φ es multiplicativo

Φ( f g) = Φ( f )Φ(g),

para todo f y g de Borel acotados. En efecto, se sabe que esto se cumple para f ,g ∈C(∆), por
tanto ∫

∆

f gdµx,y = 〈Φ( f )Φ(g)x,y〉=
∫

∆

f dµΦ(g)x,y,

lo que implica que
gdµx,y = dµΦ(g)x,y

para cada x,y ∈ H y g ∈ C(∆). En consecuencia las integrales son ciertas si f es de Borel
acotada. Sea z = Φ( f )∗y. Así∫

∆

f gdµx,y =
∫

∆

f dµΦ(g)x,y

= 〈Φ( f )Φ(g)x,y〉

= 〈Φ(g)x,z〉=
∫

∆

gdµx,z.

De nuevo se tiene que f dµx,y = dµx,z. Por tanto

〈Φ( f g)x,y〉=
∫

∆

f gdµx,y =
∫

∆

gdµx,z = 〈Φ( f )Φ(g)x,y〉

para cada f ,g de Borel acotadas. Así queda visto que Φ es multiplicativo sobre las funciones
de Borel acotadas en ∆.

Para cada ω de Borel en ∆ se define entonces

E(ω) := Φ( f ),

con f la función característica de ω, denotada χω . Para que E sea la medida espectral buscada
deberá cumplir las condiciones de la Definición 2.2.1.

Sea E(ω) = Φ( f ) y E(ω ′) = Φ(g), entonces debido a que Φ( f ) es multiplicativo, se tiene que

E(ω ∩ω
′) = Φ(χω∩ω ′) = Φ(χω χω ′)

= Φ(χω)Φ(χω ′) = E(ω)E(ω ′).

Ahora si ω = ω ′ implica que E(ω) es una proyección y es autoadjunta, pues si f es real, Φ( f )
es hermitiano.
Como χ /0 = 0 está claro que E( /0) = Φ(0) = 0. y como Φ extiende a la transformada de Gelfand
se obtiene que E(∆) = Φ(χ∆) = Φ(1) = I.

Falta probar que E es contablemente aditiva en la topología débil de operadores, es decir

〈E(ω)x,y〉=
∞

∑
k=1
〈E(ωk)x,y〉

Autor: Iuliana Alexandra Loiszli
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donde ω es la únion de los ωk ∈B(σ(T )), k = 1, . . . . Esto es consecuencia de la igualdad

〈E(ω)x,y〉= 〈Φ(χω)x,y〉

=
∫

∆

χω dµx,y =
∞

∑
k=1

∫
∆

χωk dµx,y,

ya que µx,y es una medida y por tanto contablemente aditiva. En definitiva, se tiene que

〈E(ω)x,y〉= µx,y(ω),

y por tanto E es la medida espectral buscada.

- Unicidad de E: La unicidad de la medida espectral construida anteriormente es inmediata, de-
bido al teorema de representación de Riesz que implica la unicidad de la medida µx,y, para
cada x,y ∈ H. No obstante, la definición, 〈E(ω)x,y〉 = Ex,y(ω), determina unívocamente la
proyección E(ω), para cada ω. Por lo tanto si existirían dos medidas espectrales E, E ′, para
todo ω ∈B(σ(T )) se tendría que 〈E(ω)x,y〉= 〈E ′(ω)x,y〉, para todo x,y ∈H, lo cual implica
E(ω) = E ′(ω).

Para probar el apartado b) se considera S ∈ B(H), x, y ∈ H y tambíen T ∈ H. Aplicando la definición
del operador adjunto se tiene

〈ST x,y〉= 〈T x,S∗y〉=
∫

∆

T̂ dEx,S∗y

y

〈T Sx,y〉=
∫

∆

T̂ dESx,y.

Cuando ST = T S para todo T ∈ B(H), las dos medidas son iguales dEx,S∗y = dESx,y. Pero por la
definición de la medida espectral resulta que

Ex,S∗y(ω) = 〈E(ω)x,S∗y〉= 〈SE(ω)x,y〉

para todo ω ⊂ ∆. Análogamente,
ESx,y(ω) = 〈E(ω)Sx,y〉,

y por lo tanto SE(ω) = E(ω)S. El recíproco es cierto utilizando el mismo razonamiento.

2.3. Teorema espectral

En el Teorema 2.2.2 se ha demostrado que toda álgebra normal en un espacio de Hilbert induce
una medida espectral E sobre los conjuntos de Borel de su espectro y, recíprocamente, que a partir de
E se recuperan los operadores T del álgebra mediante una integral del tipo (2.1).

Como consecuencia se puede establecer el teorema espectral para operadores normales y acotados:

Teorema 2.3.1 (Teorema espectral para un operador normal acotado). Sea T ∈ B(H) un operador
normal. Entonces existe una única medida espectral E sobre los borelianos de σ(T ) tal que:

T =
∫

σ(T )
λ dE(λ ).

Además, todo E(ω) conmuta con cualquier operador S ∈ B(H) que conmute con T ∈ B(H).

La medida espectral E que da este teorema describe la descomposición espectral de T.

El teorema espectral de operadores acotados
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Demostración. Evidentemente, la demostración del teorema se apoya en el Teorema 2.2.2 particula-
rizando a un solo operador.
Debido al cálculo funcional continuo existe un *-homomorfismo

Φ : C(σ(T ))→ B(H)

tal que Φ( f ) = f (T ). Más aún, el rango de Φ es la subálgebra cerrada A de B(H) engendrada por I, T y
T ∗. Además, por el Corolario 1.2.10 se sabe que SpecA es homeomorfo a σ(T ) vía el homeomorfismo

T̂ : SpecA→ σ(T ).

Así se tiene que T̂ (λ ) = λ para todo λ ∈ σ(T ).
Aplicando el Teorema 2.2.2 para la subálgebra A, existe una única medida espectral E definida sobre
los borelianos de σ(T ), cumpliendo que

Φ( f ) =
∫

σ(T )
f (λ )dE(λ ).

Finalmente, por la fórmula (2.1) se tiene

f (T ) =
∫

σ(T )
f (λ )dE(λ ),

para toda f de Borel acotada, y en particular, reescribiendo la descomposición del operador identidad
se tiene

I =
∫

σ(T )
dE(λ ).

Si ST = T S con S normal, entonces también ST ∗ = T ∗S (véase [R, p.300]) y por consiguiente S
conmuta con todo elemento de A. Ahora por el apartado b) del Teorema 2.2.2 se tiene que
SE(ω) = E(ω)S para todo ω ⊂ ∆.

En resumen, usando las mismas notaciones que anteriormente y parte del contenido del Teorema
2.2.2 y del teorema espectral se puede ampliar el cálculo funcional continuo construyendo el cálculo
funcional extendido para un operador normal acotado:

Corolario 2.3.2. Dado un operador normal T ∈ B(H), existe un único *-homomorfismo Φ definido
sobre las funciones de Borel acotadas sobre σ(T ) en B(H) con

Φ( f ) =
∫

σ(T )
f dE,

tal que:

i) Φ(u) = I, Φ(v) = T donde u(λ ) = 1, v(λ ) = λ para cada λ ∈ σ(T ).

ii) Además, Φ verfica entonces

‖Φ( f )‖ ≤ ‖ f‖= sup{| f (λ )| : λ ∈ σ(T )},

siendo válida la igualdad si f es continua.

iii) Si ST = T S con S ∈ B(H), se tiene que SΦ( f ) = Φ( f )S para cada función f de Borel acotada.

Habitualmente se usa la notación f (T ) = Φ( f ).

Otra formulación de interés, que puede relacionarse directamente con la diagonalización de una
matriz normal, es la siguiente:
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Teorema 2.3.3 (Teorema de representación espectral de un operador normal acotado). Si T ∈ B(H) es
normal, existe un espacio de medida (X ,M ,µ) con µ medida positiva regular, una función ϕ ∈ L∞(µ)
y un isomorfismo isométrico U : L2(µ)→ H tales que el diagrama

L2(µ)
U // H

T
��

L2(µ)

Mϕ

OO

H
U−1
oo

es conmutativo ( U−1TU = Mϕ ). Mϕ : L2(µ)→ L2(µ) es el operador multiplicación definido por ϕ.

En esta formulación se pierde la unicidad: el espacio (X ,M ,µ) y la función ϕ no están determi-
nados unívocamente por T.

Idea de la demostración. Anteriormente en el ejemplo de medida espectral se ha probado que
en el espacio L2(µ) para cada ω ∈ B(X) se puede construir la aplicación E : B(X)→ B(H) con
H = L2(X ,µ) definido por la fórmula E(ω) f = χω f con χω la función característica de ω . E es así
una medida espectral para (X ,B(X),H).

A partir de este ejemplo y ahora aplicando el teorema espectral se tiene que si T es un operador
normal, existe E la descomposición espectral de T,

T =
∫

σ(T )
λ dE(λ ).

Un paso critico de la medida espectral E(ω) asociado a T a la medida µ es el siguiente: si x ∈ H se
tiene que

µ(ω) = 〈E(ω)x,x〉

es una medida finita y ω un conjunto de Borel.
Si se escribe Uχω

= E(ω)x, entonces U puede ser extendido a un isomorfismo del espacio L2(µ). Para
este isomorfismo U se tiene

U−1E(ω)U f = χω f .

Por lo tanto el operador multiplicativo definido por

Mϕ( f ) = ϕ f , f ∈ L2(µ) y ϕ ∈ L∞(µ)

se identifica con la descomposición espectral de T, pues si ϕ es la función característica χω , se tiene
Mϕ f = χω f .

El teorema espectral de operadores acotados



Capítulo 3

Aplicaciones del teorema espectral

3.1. Primeros resultados

Definición 3.1.1. Sea H un espacio de Hilbert, un operador T ∈ B(H) y σ(T ) su espectro. Un número
λ ∈ C se dice que es un valor propio de T si ker(T −λ I) 6= 0.

El conjunto de los valores propios de T se llama espectro puntual de T y se denota σp(T ). Obser-
var que σp(T )⊂ σ(T ).

Si λ ∈ σp(T ) y T (x) = λx con x 6= 0, entonces x se llama vector propio de T correspondiente al
valor propio λ .

Al subespacio ker(T −λ I) se le llama subespacio propio o autoespacio correspondiente al valor
propio λ .

Observación. Sea T ∈ B(H) normal. Si λ ,µ ∈ σp(T ) y λ 6= µ entonces los vectores propios corres-
pondientes a los valores propios son ortogonales. Es decir, ker(T −λ I)⊥ker(T −µI).

Proposición 3.1.2. Sea un operador T ∈ B(H) normal. Entonces

‖T‖= sup{|〈T x,x〉| : x ∈ H, ‖x‖ ≤ 1}.

Demostración. Es evidente que

sup{|〈T x,x〉| : x ∈ H, ‖x‖ ≤ 1} ≤ ‖T‖,

por la desigualdad de Cauchy-Schwarz.
Por otra parte, sea ε > 0. Hay que probar que

|〈T x0,x0〉|> ‖T‖− ε

para algún x0 ∈ H con ‖x0‖= 1. Por el teorema de Gelfand-Naimark se tiene que ‖T̂‖∞ = ‖T‖ y por
la Proposición 2.1.3, c), existe λ0 ∈ σ(T ) tal que |λ0|= ‖T‖. Sea el conjunto

ω = {λ ∈ σ(T ) : |λ −λ0|< ε}.

Si E es la descomposición espectral de T con E(ω) 6= 0, entonces existe x0 ∈ H con ‖x0‖ = 1 y
E(ω)x0 = x0.

Se define

f (λ ) =
{

λ −λ0 si λ ∈ ω

0 si λ /∈ ω

Entonces,
f (T ) = (T −λoI)E(ω) y f (T )x0 = T x0−λ0x0.

23
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Luego, ∣∣|〈T x0,x0〉|− |λ0|
∣∣≤ |〈T x0,x0〉−λ0|= |〈T x0,x0〉−λ0〈x0,x0〉|
≤ ‖ f (T )‖< ε,

pues | f (λ )|< ε, ∀λ ∈ σ(T ). Finalmente, como |λ0|= ‖T‖ se tiene la desigualdad buscada.

Proposición 3.1.3. Un operador normal T ∈ B(H) es autoadjunto si y sólo si σ(T )⊂ R.

Demostración. Sea A la subálgebra normal de B(H) generada por T. Entonces, por el Teorema 2.3.1,
T̂ (λ ) = λ sobre σ(T ). Así,

(T ∗)̂(λ ) = T̂ (λ ) = λ ,

para todo λ ∈ σ(T ). Luego, T = T ∗ si y sólo si λ = λ .

Teorema 3.1.4. Sea T ∈ B(H). Entonces,

〈T x,x〉 ≥ 0 ∀x ∈ H si y sólo si T = T ∗ y σ(T )⊂ [0,∞).

Demostración. Si 〈T x,x〉 ≥ 0, entonces 〈T x,x〉 es real y

〈x,T ∗x〉= 〈T x,x〉= 〈x,T x〉, ∀x ∈ H.

Por tanto, T = T ∗ y por la Proposición 3.1.3 se tiene que σ(T ) ⊂ R. Con la misma hipótesis y para
λ > 0, se cumple

λ‖x‖2 = λ 〈x,x〉 ≤ 〈(T +λ I)x,x〉 ≤ ‖(T +λ I)x‖‖x‖,

es decir,
‖(T +λ I)x‖ ≥ λ‖x‖.

Entonces, T +λ I es inversible en B(H) y así −λ /∈ σ(T ). Esto prueba que σ(T )⊂ [0,∞).
Por otro lado, sea T autoadjunto y σ(T )⊂ [0,∞). Aplicando el teorema espectral se tiene que

〈T x,x〉=
∫

σ(T )
λdEx,x(λ ), x ∈ H.

Como ya se ha visto en la sección 2.2, Ex,x es una medida positiva. Además, λ ≥ 0, y por tanto
〈T x,x〉 ≥ 0, ∀x ∈ H.

Para el siguiente teorema es necesario definir qué se entiende por un operador positivo.

Definición 3.1.5. Sea un operador T ∈ B(H). Se dice que T es positivo ó no negativo, y se escribe
T ≥ 0, si 〈T x,x〉 ≥ 0, ∀x ∈ H.

Teorema 3.1.6. Sea T ∈ B(H) es un operador positivo. Entonces existe un único operador positivo
S ∈ B(H) tal que S2 = T. Se dice que S es la raíz cuadrada positiva de T. Además, si T es inversible,
también lo es S.

Demostración. Sea A una subálgebra normal con unidad cerrada en B(H) que contiene a T, y ∆ el
espacio de ideales maximales de A. Entonces, por el teorema de Gelfand-Naimark (1.1.8) se tiene que
Â =C(∆).

Por hipótesis T es positivo, lo que implica que T es autoadjunto y σ(T )⊂ [0,∞) (Teorema 3.1.4).
Por otro lado, se tiene que T̂ (λ ) = λ , en σ(T ), es decir T̂ (∆) = σ(T ). Por lo tanto, T̂ ≥ 0. Luego,
T̂ ≥ 0 es equivalente con T ≥ 0.
Ya que toda función continua positiva tiene una única raíz cuadrada continua, se tiene que existe un
único S ∈ A tal que S2 = T y Ŝ≥ 0.

El teorema espectral de operadores acotados
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Falta probar que efectivamente S es único en B(H). Se considera A0 la más pequeña de estos
álgebras A. Entonces existe S0 ∈ A0 tal que S2

0 = T y S0 ≥ 0. Sea ahora S ∈ B(H) la raíz cuadrada
positiva de T y A la menor subálgebra con unidad cerrada de B(H) que contiene a S, entonces T ∈ A,
pues T = S2. Luego, como A0 ⊂ A, se tiene que S0 ∈ A, y por lo tanto S = S0.

Por último, si T es inversible, S2 = T implica que (T−1S)S = I. De hecho, ST = T S = S3, con lo
cual S = T−1ST. Entonces,

S(T−1S) = T−1ST T−1S = I,

es decir S−1 = T−1S.

3.2. Valores propios de operadores normales

Si T es normal, sus valores propios guardan una relación sencilla con su descomposición espectral.
Esta relación se deducirá de la siguiente aplicación al cálculo funcional extendido:

Lema 3.2.1. Sea T ∈ B(H) un operador normal y E su descomposición espectral. Si f ∈C(σ(T )),
entonces

ker( f (T )) = Im(E( f−1(0))).

Demostración. Considerando ω0 = f−1(0), se define

g(λ ) =
{

1 si λ ∈ ω0
0 si λ /∈ ω0

Entonces, si λ ∈ ω0, se sabe que f (λ ) = 0, y por lo tanto f (λ )g(λ ) = 0. Por otro lado, si λ /∈ ω0, se
tiene que g(λ ) = 0. Luego, f g = 0, es decir que f (T )g(T ) = 0. Como g es la función característica
de ω0, por el cálculo funcional extendido (Corolario 2.3.2) se tiene que E(ω0) = Φ(g) = g(T ), y por
lo tanto

Im(E(ω0))⊂ ker( f (T )). (3.1)

Por otro lado, si consideramos ω el complementario de ω0 relativo a σ(T ), entonces ω es la unión
de los conjuntos disjuntos de Borel ωn con n = 1,2, . . . , cada uno de los cuales está a distancia positiva
del conjunto compacto ω0. Para cada n = 1,2, . . . , se define fn(λ ) = 1/ f (λ ) sobre ωn y fn(λ ) = 0 en
el resto de σ(T ). Por construcción, fn ∈B(σ(T )) y además

fn(T ) f (T ) = E(ωn) n = 1,2, . . . .

Si x ∈ ker( f (T )), es decir f (T )x = 0, entonces E(ωn)x = 0, y por la propiedad de aditividad conta-
ble de la medida espectral se tiene que E(ω)x = 0. Pero como E(ω)+E(ω0) = I y por lo anterior
E(ω0)x = x, se cumple que

ker( f (T ))⊆ Im(E(ω0)). (3.2)

Por lo tanto, las relaciones (3.1) y (3.2) implican la igualdad del enunciado.

Proposición 3.2.2. Sea T ∈ B(H) un operador normal y E su descomposición espectral. Para cada
λ ∈ σ(T ) se tiene

i) ker(T −λ I) = Im(E({λ})).

ii) λ es valor propio de T si y sólo si E({λ}) 6= 0.

Demostración. Considerando λ ∈ σ(T ) y aplicando el lema previo a f (λ ′) = λ ′−λ , se tiene
f−1(0) = {λ} y por lo tanto f (T ) = T −λ I. Con esto queda probada la igualdad del apartado i).

El segundo apartado es trivial usando el i) y sabiendo que por definición λ ∈ σp(T ) implica que
ker(T −λ I) 6= 0.
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Corolario 3.2.3. Sea T ∈ B(H) un operador normal. Cada punto aislado de σ(T ) es un valor propio.

Demostración. Sea T ∈ B(H) con E su decomposición espectral. Si λ ∈ σ(T ) es un punto aislado
existe un entorno U de λ tal que U ∩σ(T ) = {λ}. Luego {λ} es un subconjunto abierto de σ(T ),
con lo cual E({λ}) 6= 0. Por la Proposición 3.1.2, esto significa que ker(T −λ I) 6= 0, o sea, λ es un
valor propio de T.

Corolario 3.2.4. Sea T ∈ B(H) un operador normal y f ∈C(σ(T )).Para cada x ∈ H,

T x = λx⇒ f (T )x = f (λ )x.

Demostración. Se aplica el Lema 3.2.1 a la función g definida por la fórmula g(ζ ) = f (ζ )− f (λ ) y
se tiene en cuenta la Proposición 3.2.2.

Proposición 3.2.5. Sea T ∈ B(H) un operador normal y E su descomposición espectral. Entonces, si
el espectro de T es un conjunto contable, cada x ∈ H tiene una única descomposición de manera

x =
∞

∑
i=1

xi

donde T xi = λixi. Además, xi⊥x j, cuando i 6= j.

Demostración. Sea σ(T ) = {λ1,λ2, . . .} y Ei = E({λi}) para cada i = 1,2,3, . . . . En los puntos de
acumulación λi de σ(T ), Ei puede ser 0 ó no. Pero, en cualquier caso por la Proposición 3.2.2 los
recorridos de Ei son ortogonales dos a dos, pues ker(T −λiI)⊥ker(T −λ jI), si i 6= j.

Como E es contablemente aditiva, se tiene que para x ∈ H

∞

∑
i=1

Eix = E(σ(T ))x = x.

La serie converge en norma. Entonces, si xi ∈ Im(Ei), es decir xi = Eix, se tiene la descomposición de
x del enunciado y se cumple xi⊥x j, cuando i 6= j. La unicidad es consecuencia de la ortogonalidad de
los vectores propio. De nuevo por la misma Proposición 3.2.2 se tiene que T xi = λixi.

A continuación se describe el espectro de los operadores normales compactos en espacios de
Hilbert. Pero antes es necesario definir el concepto de operador compacto y especificar algunas pro-
piedades del mismo. Se prescindirá de las demostraciones, ya que escapan del objetivo de este trabajo,
y además, se pueden encontrar en cualquier libro de Análisis Funcional (véase por ejemplo [R, p.98]).

Definición 3.2.6. Un operador lineal T : X → Y con X, Y espacios de Banach, se llama compacto si
T (BX(0,1)) es un conjunto compacto en Y, donde BX(0,1) es la bola unidad en X.

Propiedades 3.2.7. Sea H un espacio de Hilbert y un operador T ∈ B(H).

i) Si dimIm(T ) es finito entonces T es compacto.

ii) Si T es compacto y λ 6= 0 entonces ker(T −λ I) es de dimensión finita.

iii) Si T es compacto y λ 6= 0 con λ ∈ σ(T ) entonces λ es valor propio de T y de T ∗.

iv) T es compacto si y sólo si existe Tn ∈ B(H) con rango finito tal que ‖T −Tn‖ −−−→
n→∞

0.

Teorema 3.2.8. Un operador T ∈ B(H) normal es compacto si y sólo si todos los puntos de σ(T ),
salvo quizás el 0, son aislados y sus correspondientes autoespacios son finito-dimensionales.

El teorema espectral de operadores acotados
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Demostración. Debido a las propiedades de los operadores compactos, la implicación directa es in-
mediata.

Para demostrar la implicación inversa, nótese que σ(T ) es contable por la condición de que el
único punto de acumulación posible es el 0.
Sean λi los puntos no nulos de σ(T ) tal que |λ1| ≥ |λ2| ≥ · · · . Se define fn(λ ) = λ si λ = λi y i≤ n,
y fn(λ ) = 0 en los demás puntos de σ(T ). Usando la misma notación que en la Proposición 3.2.5,
Ei = E({λi}), se tiene que

fn(T ) = λ1E1 + · · ·+λnEn.

Por la Proposición 3.2.2, dimIm(Ei) = dimker(T −λiI) y este último es finito-dimensional (por hi-
pótesis). Por lo tanto fn(T ) es un operador compacto.

Nótese que |λ − fn(λ )| ≤ |λn|, para todo λ ∈ σ(T ). Esto implica que

‖T − fn(T )‖ ≤ |λn| −→ 0, cuando n→ ∞.

Luego por la Propiedad 3.2.7 iv) , T puede ser aproximado uniformemente por operadores de rango
finito, con lo cual T es compacto.

Con esta hipótesis de contabilidad del espectro, es inmediato llegar a una representación del ope-
rador T que puede considerarse como una buena generalización a cualquier dimensión de la diagona-
lización en dimensión finita: si (eα)α∈A, es una base ortonormal del espacio separable H formada por
vectores propios de T y Teα = λαeα con α ∈ A, de la igualdad

x = ∑
α∈A
〈x,eα〉eα , x ∈ H

se sigue por continuidad que
T x = ∑

α∈A
λα〈x,eα〉eα x ∈ H.

Análogamente, por el Corolario 3.2.4 se tiene

f (T )x = ∑
α∈A

f (λα)〈x,eα〉eα x ∈ H.

Mediante esta representación se comprueba el siguiente resultado:

Proposición 3.2.9 (Desarrollo de Hilbert-Schmidt). Si T ∈ B(H) es un operador normal y compacto,
existe un sistema ortonormal contable (en) de vectores propios de T, de modo que cada x ∈ H puede
representarse de manera única en la forma

x = ∑
n

cnen + z,

donde T (z) = 0 y cn = 〈x,en〉.
Además, si Ten = λnen para cada n, dado x ∈ H se verifica

T x = ∑
n

λncnen.

Demostración. Aplicando el Teorema 3.2.8 se sabe que σ(T ) es contable. Así, existe una base orto-
normal (eα)α∈A de H formada por los vectores propios de T. Separando los índices correspondientes
a los valores propios nulos y no nulos, sean

B = {α ∈ A : Teα = λαeα ,λα 6= 0}
C = {α ∈ A : Teα = 0}
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Dado x ∈ H, sea
z = ∑

α∈C
〈x,eα〉eα ∈ ker(T ),

quedando
x = ∑

α∈B
〈x,eα〉eα + z

y
T x = ∑

α∈B
λα〈x,eα〉en.

Tomando ahora (en) como los (eα)α∈B, se deduce la existencia del desarrollo. La unicidad se deduce
que para cada n se tiene que en⊥ker(T ), lo cual obliga a que

cn = 〈x,en〉 y z = x−∑
n
〈x,en〉en.

3.3. Resolución de ecuaciones con operadores normales compactos

En esta seción se quiere probar la existencia de soluciones de ecuaciones funcionales, denominada
la alternativa de Fredholm.

Considerando T ∈ B(H) un operador normal y compacto, λ ∈C e y∈H un vector dado. Se quiere
encontrar la solución a la ecuación funcional

x = λT x+ y.

Un caso particular se obtiene para y = 0, cuando la ecuación resultante

x = λT x

se llamará ecuación homogénea asociada. Si x 6= 0 entonces λ que dice valor característico de T. Si
λ es no nulo se tiene T x = 1

λ
x, lo que significa que los valores característicos de T son los inversos

de los valores propios no nulos de T y por lo tanto forman un conjunto contable, siendo todos puntos
aislados.

En consecuencia, se tiene que las soluciones de la ecuación homogénea correspondiente a un valor
característico λ son exactamente los vectores propios asociados al valor propio 1/λ , que formarán un
subespacio finito-dimensional; su dimensión es, por definición, la multiplicidad del valor caraterístico
λ (igual a la multiplicidad del valor propio 1/λ ).

Utilizando el desarrollo de Hilbert-Schmidt para este caso, se tiene que para un sistema ortonormal
(en) de vectores propios de T se puede escribir

T x = ∑
n

1
λn
〈x,en〉en, x ∈ H

donde los λn son los valores característicos de T contados tantas veces como indique su multiplicidad.
Entonces

x = λT x+ y⇔ x− y = ∑
n

λ

λn
〈x,en〉en

⇔ x = y+∑
n

cnen con cn =
λ

λn
〈x,en〉

⇔ x = y+∑
n

cnen y (1− λ

λn
)cn =

λ

λn
〈y,en〉.

Se sigue de aquí:

El teorema espectral de operadores acotados
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Si λ no es un valor característico, es decir λ 6= λn para todo n, entonces para cualquier y ∈ H
existe una única solución que viene dada por la fórmula

x = y+∑
n

λ

λn−λ
〈y,en〉en.

Si λ es un valor característico entonces, para que exista solución ha de ser necesariamente
〈y,en〉 = 0 siempre que λn = λ . Cuando λn = λ se tiene que (en) es una base del espacio de
soluciones de la ecuación homogénea

x = λT x,

obteniendo así como condición necesaria y suficiente para que exista solución que el término
independiente y, sea ortogonal a las soluciones de la ecuación homogénea. En este caso las
soluciones vienen dadas por

x = y+ ∑
λn=λ

cnen + ∑
λn 6=λ

〈y,en〉en,

donde cn son arbitrarios.

Los resultados anteriores incluyen y precisan la alternativa de Fredholm:

Corolario 3.3.1 (Alternativa de Fredholm para operadores normales compactos). Si T ∈ B(H) es un
operador normal y compacto, o bien la ecuación

x = λT x+ y

tiene solución única para todo y ∈ H, o bien la ecuación homogénea

x = λT x

tiene solución no nula, en cuyo caso la ecuación completa tiene solución si y sólo si y es ortogonal a
todas las soluciones de la ecuación homogénea.

3.4. Ecuaciones integrales de Fredholm

Existen muchos tipos de ecuaciones integrales, pero en esta sección se discutirán las ecuaciones
de Fredholm de segunda especie. Hay una relación estrecha entre las ecuaciones integrales lineales,
que especifican relaciones lineales entre funciones de un espacio de funciones de dimensión infinita, y
las ecuaciones lineales, que establecen relaciones entre vectores de un espacio vectorial de dimensión
finita.

Definición 3.4.1. Una ecuación de Fredholm de segunda especie es una ecuación

f (s) =
∫ b

a
K(s, t) f (t)dt +g(s) (3.3)

donde K, g son funciones conocidas y f es una función a determinar.
La función K : [a,b]× [a,b]→ C recibe el nombre de núcleo.

Autor: Iuliana Alexandra Loiszli
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En lo sigue, se supone que K ∈ L2([a,b]× [a,b]) y que satisface K(t,s) = K(s, t) para todo s, t en
[a,b] (núcleo simétrico). Con ello, el operador

T : f ∈ L2([a,b])→ T f ∈ L2([a,b]),

dado por la fórmula

T f (s) =
∫ b

a
K(s, t) f (t)dt, s ∈ [a,b],

es compacto y autoadjunto.
En términos de este operador, la ecuación (3.3) se escribe

f = T f +g,

o, equivalentemente,
(I−T ) f = g.

Por tanto, si las funciones g, f ∈ L2([a,b]), la ecuación tiene solución para una g dada si y sólo si
g ∈ Im(I−T ). En cuanto a la unicidad, hay a lo más una solución para cada g de L2([a,b]) si y sólo
si I−T es inyectivo, lo que equivale a que 1 /∈ σp(T ), es decir, a que 1 /∈ σ(T ) (por la compacidad de
T). Cuando 1 ∈ σp(T ), por ser T ∗ = T, se tiene que Im(I−T ) = ker(I−T )⊥. En resumen, se puede
enunciar:

Teorema 3.4.2 (Alternativa de Fredholm.). O bien la ecuación de Fredholm (3.3) tiene una única
solución, cualquiera que sea g ∈ L2([a,b]), o bien la ecuación homogénea

f (s) =
∫ b

a
K(s, t) f (t)dt

tiene solución no nula, en cuyo caso la ecuación completa tiene infinitas soluciones si y sólo si g es
ortogonal a todas las soluciones de la ecuación homogénea.

También se puden obtener expresiones explícitas de la solución. A continuación se esboza un
método. Se introduce un parámetro λ y se considera la ecuación

(I−λT ) f = g.

Los valores de λ para los que la correspondiente ecuación homogénea tiene solución no nula, los
valores característicos de la ecuación, que son los inversos de los valores propios no nulos de T,
formarán un conjunto finito o una sucesión (λn) tal que lı́mn→∞ |λn|=+∞.

Para valores propios pequeños del parámetro, la ecuación se puede resolver por el método de

aproximaciones sucesivas: si |λ |< 1
‖T‖

,

(I−λT )−1 = I +λT +λ
2T 2 + · · ·+λ

nT n + · · ·

(para la validez de este desarrollo, lo único que se necesita es que T sea continuo). También el operador
T n es un operador integral, de núcleo

Kn(s, t) =
∫ b

a
K(s, t)Kn−1(u, t)du (K1 = K),

y, sustituyendo, se obtiene el desarrollo de Neumann de la solución:

f (s) = g(s)+λ

∫ b

a
K(s, t) f (t)dt + · · ·+λ

n
∫ b

a
Kn(s, t) f (t)dt + · · ·

(con convergencia en L2([a,b])).

El teorema espectral de operadores acotados
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