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Prologo

El teorema espectral es de gran importancia en la teoria de operadores acotados sobre espacios de
Hilbert. El propésito de este trabajo es proporcionar una descripcion espectral completa de la estruc-
tura de los operadores normales.

Mucha de la informacién sobre un operador lineal T se obtiene estudiando el operador T — A1,
en donde [ es el operador identidad y A es un nimero complejo. Por otra parte, a veces, el inverso
de un operador es mds importante que el propio operador. En particular, la teoria espectral estudia el
operador inverso (T — AI)~!, cuando éste existe.

En el caso finito dimensional, se tiene que dada una aplicacion lineal T : C* — C”, su comporta-
miento viene determinado por los valores {Tey,...,Te,}, siendo {ey,...,e,} una base de C". En este
caso la matriz A = (a;;); j—1,.. » definida por

n
Te;=Y ajej, i=1,...n (1)
j=1

representa la aplicacién 7. Si A es tal que (T — AI)~! no existe, entonces A recibe el nombre de
valor propio de 7. Estos valores propios son precisamente las raices de la ecuacién caracteristica
det(A — AI) = 0 (donde el operador T se identifica con su matriz asociada A). Se llama vector propio
correspondiente al valor propio A a todo vector no nulo x € C" que cumple que 7Tx = Ax.

El teorema tiene raices en Algebra Lineal, donde se establece que si H es un espacio de Hilbert
sobre C de dimension n, un operador lineal T : H — H es diagonalizable si y s6lo si existe una base
del espacio H, formada por los vectores propios de 7', de manera que la matriz de representacion de
T respecto a la dicha base sea diagonal. Los elementos diagonales A1, ... A, son los valores propios
correspondientes. Ademads, entonces el espacio H se puede poner

H =ker(T —MI)@ker(T — ) & - dker(T — A,1). ()

La suma anterior es la suma directa ortogonal. Esta descomposicién permite dar una descripcién de T
en sus elementos basicos. Cada x € H se puede escribir de manera tinica como

n
x= Zxk, conxy € ker(T — A1), 1 <k<n,
k=1

con lo cual .
Tx = Z /lkxk.
k=1
Siendo P, la proyeccién ortogonal de H sobre ker(7T — Ail), 1 < k < n, entonces resulta la descompo-
sicién espectral de T :

n
T=Y AP 3)
k=1
En particular, la anterior descripcién es aplicable a cualquier operador 7" normal, pues estd de-
mostrado que una matriz normal es diagonalizable.
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v Capitulo 0. Prélogo

La descomposicion anterior del espacio H en términos del operador 7', y la representacion del
mismo 7" en sus elementos basicos, dada en (2), son de utilidad tedrica y practica. Es por tanto de
mucho interés extender (1) y (2) para operadores normales en espacios de dimensién infinita. En
este caso existe la dificultad de que en general un operador normal puede no tener valores propios. Sin
embargo es posible generalizar (1) y (2) con una adecuada interpretacion de la representacion anterior.
En vez de utilizar proyecciones ortogonales sobre los subespacios ker(7 — A[I) se empleardn medidas
espectrales; y en lugar de la suma se utilizard la integral.

A continuacién se da una breve descripcién de esta generalizacién. Se considera un operador
autoadjunto 7, ya que sus valores propios son nimeros reales y por lo tanto se pueden ordenar de una
manera natural: ; < Ay < --- < A4,. Se usan las proyecciones P, de la férmula (3) para definir otras
nuevas:

E;, =0,
Ey, = Py,
E)Lz =P +5,

E, =P+P+--+F,.

Por lo tanto, (3) se puede reescribir de la siguiente manera:
n
T =M(Ep, — Ex) +ha(Ep, —Ep) + -+ M(Ep, — B, ) = ) MlEp, — Bz ).
k=1
Denotando Ej, — E;, | por AE), se tiene que

T = Ql,kAE;Lk,
k=1

lo cual sugiere una representacion integral de la forma

Tz/)LdE,l.

Siguiendo esta idea, la descomposicion espectral del operador T puede extenderse también en el
contexto de los espacios de dimensién infinita. Un resultado semejante se obtendra para operadores
normales.

El contenido de este trabajo se divide en tres partes:

En el primer capitulo (Algebras de Banach) el objetivo es dar definiciones, propiedades y teoremas
clasicos de la teoria de Gelfand de las dlgebras de Banach conmutativas que son necesarios para la
teoria espectral que se presenta después.

El segundo capitulo esta dedicado a la teoria espectral de operadores normales acotados que
mediante el célculo funcional relacionado con la teorfa de las C*-dlgebras presentada en el primer
capitulo, nos llevard a varios enfoques del teorema espectral. Se discutirdn algunas propiedades de los
operadores normales acotados, incluyendo la representacion espectral de los mismos.

El dltimo capitulo, empieza con algunas propiedades de los operadores normales que son conse-
cuencias inmediatas del teorema espectral. Después se presentan algunas aplicaciones para operadores
normales compactos, como por ejemplo, la alternativa de Fredholm para la resolucién de ecuaciones.

El teorema espectral de operadores acotados



Summary

The spectral theorem is of great importance in the theory of bounded operators on a infinite di-
mensional complex Hilbert space. The purpose of this paper is to provide a complete description of
the structure of normal operators, which is very useful in applications.

The content of this paper is divided into three parts:

In the first chapter the spectral theory for Banach algebras is outlined, including the Gelfand-
Naimark theorem for commutative C*-algebras.

The second chapter deals with continous functional calculus, which is relevant in the theory of
C*-algebras presented in first chapter. Resolutions of the identity or spectral measures are introduced;
and finally the spectral theorem for bounded normal operators on a Hilbert space is given. Some im-
portant applicactions are showed in the third chapter.

CONTENTS
1. Banach Algebras

1.1 Preliminaries

1.2 Gelfand representation
2. Spectral theory of bounded normal operators

2.1 Continuous functional calculus for normal operators
2.2 Spectral measure

2.3 The Spectral Theorem
3. Applications

3.1 Basis properties
3.2 Eigenvalues of normal operators
3.3 Applications to equations with compact normal operators

3.4 Fredholm integral equations

1. Banach Algebras

1.1. Preliminaries

A Banach algebra is a Banach space A over the complex field C which posesses an associative,
distributive multiplication, satisfying the following properties forallx, yc A, a € C:

a(xy) = (ax)y =x(ay) vy |lxyll < [Ix][lIy].
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VI Capitulo 0. Summary

If A contains a unit element e such that xe = ex = x, then it is asumed that ||e|| = 1. It is said that
A is commutative if xy = yx, Vx,y € A.

There are two classes of Banach algebra which are important to mention. One is the algebra C(K)
of all complex continuous functions on a nonempty compact Hausdorff space K, with pointwise ad-
dition and multiplication, and the supremum norm. The other is the space B(X) of all bounded linear
operators on X, with the usual operator norm and multiplication defined as composition. The latter is
not commutative.

An element x € A is said to be invertible if there exists an element y € A such that
xXy=yx=e,

where e is the unit element of A. In this case, the unique element y is called the inverse of x and is
denoted by x~!. Let A~! be the set of all invertible elements of A; it is clear that A~! is a group.

Theorem. If A is a Banach algebra and x € A with ||x|| < 1, then

a) e—xc Al

Note that this theorem implies that A~! is an open subset of A.

Let A be a Banach algebra. The spectrum of x € A is defined as the set
o(x) ={A € C:x— Ae is not invertible }.
The complement of 6(x) is called the resolvent set of x and the spectral radius of x is the number

p(x) =sup{|A]: 1 € o(x)}.

Theorem. If A is a Banach algebra and x € A, then & (x) is a nonempty compact subset of C.
Note that, p(x) < ||x|| for all x € A. In fact,
— 17 n\1/n _ ¢ n(\1/n
p(x) = lim ([l|[) " = fnf (Jl"[])"".
The following theorem will be important in Gelfand theory.

Theorem (Gelfand-Mazur). If A is a Banach algebra such thatVx € A, x #0, 3x~' € A, then A is
isometrically isomorphic to the algebra of complex numbers.

1.2. Gelfand representation

First let introduce some definitions.
If A is a complex algebra, then a character of A is a linear functional ¢ on A, which is not
identically 0 and

P(xy) = @(x)p(y), Vx,y€A.

Let ®4 be the set of all characters of A. Obviously each character of a Banach algebra with unit e
satisfies ¢(e) = 1.

El teorema espectral de operadores acotados
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If A a commutative complex algebra with a unit, then a subset J of A is called an ideal if xy € J
whenever x € A, y € J. An ideal is proper if J # A, and a proper ideal is maximal if is not contained
in another proper ideal of A.

Note that every proper ideal J of A is contained in a maximal ideal of A. If J is an ideal then its
closure J is also an ideal. Therefore every maximal ideal of A is closed.

Let A be a commutative Banach algebra. From the above definitions one has:
a) x €A™' < x ¢ J, for all J proper ideal of A.
b) x € Ais invertible < @(x) # 0, Vo € Dy.

c) o(x)={@x): e D4}, Vx€A.

d) If @ € ®4, then ker(¢) is a maximal ideal.

If M is a maximal ideal of A, then A/M is a Banach algebra with multiplication defined by
(x+M)(y+M) =xy+M,

and the quotient map @y : A — A/M given by @p(x) = x+ M is a homomorphism. The unit element
of A/Mis e+M and ||@y(e)| = 1, with e the unit of A.

The quotient map ¢y, defined as before is a character of A, which proves that for any @y (x) # 0
exists its inverse in A/M. By the Gelfand-Mazur theorem, there is an isometrically isomorphism 4 of
A/M to C.

Put ¢ = ho ¢y. Then @ is a character of A (¢ € ®4), with ¢(e) = 1 and M = ker(¢). This asser-
tion means that every maximal ideal of A is the kernel of some ¢ € ®4.

The spectrum of A, SpecA, is defined as the set of maximal ideals of A.
Now using property d), it is possible to identify all maximal ideales of A with the set of characters
of A, SpecA = ®,.

Let A be a commutative Banach algebra. For each x € A, the Gelfand transform of x is the
function
xX:SpecA— C

defined by
X(@) = @(x), ¢ € SpecA.

Let A be the set of all X, for x € A. The Gelfand topology of SpecA is the smallest topology that makes
every X continuous. Then A C C(SpecA).
The term Gelfand transformation is applied to the homomorphism of A into SpecA given by

G:A— A CC(SpecA)
x—=Xx : SpecA—C

An involution on an algebra A is an application * : A — A, satisfying the following properties for
allx,yeA, A eC:

) (x4+y)"=x"+y",
i) (Ax)* = Ax*,

Autor: Iuliana Alexandra Loiszli



VIII Capitulo 0. Summary

i) (xy)" =y"x",
iv) x** =x.

If x* = x, x is said to be hermitian, or self-adjoint. And x € A is said to be normal if xx* = x*x.

A Banach algebra A with an involution that satisfies [xx*|| = ||x||? for all x € A is called a C*-algebra.
The fundamental result of the theory of C*-algebras and the key to the proof of the spectral theo-

rem that will be given in the next chapter is as follows:

Theorem (Gelfand-Naimark). If A is a commutative C*-algebra with a unit and A := SpecA is its
spectrum of maximal ideals, then the Gelfand transform G : A — C(A) is an isometric isomorphism of
A such that

(x) =X, VxeA,

or, equivalently, ¢(x*) = @(x) for all ¢ € A and x € A.
Therefore, x is hermitian < X is real.

2. Spectral theory of bounded normal operators

2.1. Continuous functional calculus for normal operators

In order to fix the notation that will be used, it is convenient to recall the definition of a Hilbert
space, denoted by H with (-, -) the scalar product. The scalar product leads to a norm || - ||, which is
defined as ||x|| = /(x,x). Every Hilbert space is also a Banach space.

Throughout this paper, will stand for B(H) the Banach algebra of bounded linear operators 7' on
a Hilbert space H with the norm

1T = sup{||Tx]| : x € H, [lx]| < 1}.
If T € B(H), then there exists a unique operator 7* € B(H) for which
(Tx,y) = (x,T"y) Vx,y€H.

T* is called the adjoint of 7.
An operator T € B(H) is said to be normal if 77* = T*T, and is hermitian or self-adjoint if 7 = T*.

Then:
a) T is normal if and only if || Tx|| = || T*x||, Vx € H.
b) If T is normal and Tx = Ax for some x € H and A € C, then T*x = Ax.

¢) If T is normal, then exists A € o(T') such that |A| = || T||.

Theorem (Continuous functional calculus). Let T € B(H) be a normal operator. There exists a unique
*-homomorphism
@7 :C(o(T)) — B(H)

such that ®p(u) =1y ®r(v) =T, withu(A) =1, v(A) = A forall A € 6(T). Furthermore, ®r is an
isometry and its range is the closed subalgebra generated by I, T and T*, with I the identity on H.

With the notation of the previous theorem, will denote f(7') = ®7(f) forall f € C(o(T)).

El teorema espectral de operadores acotados



IX

2.2. Spectral measure

As observe in the section 2.1, B(H), is a C*-algebra, and the theory developed on C*-algebras may
be applied to it to obtain representation theorems of normal operators.

Let X be a compact Hausdorff space and #(X) be a c-algebra of Borel subset of X. Suppose H
is a Hilbert space. Then a resolution of the identity or spectral measure is a mapping

E:%(X)— B(H)
such that
i) E(0)=0, E(X)=1.
ii) Each E(w) is a self-adjoint projection, i.e. E(®)?> = E(®) = E(®)*, Yo € ZB(X).
i) If 0, 0" € B(X), then E(0' N@") = E(0')E(@").
iv) If o, 0" € Z(X) with o' N@" =0, thenE (0’ Uw") = E(0') + E(®").
v) For every x, y € H, the function Ey , : (X ) — C defined by
Eyy(0) = (E(@)x,y)
is a regular complex measure on Z(X).

Once established the continuous functional calculus for a normal operator T, for fixed x,y € H
one defines a linear functional
Ayy:C(o(T))—=C

by Ay(f) = (®7(f)x,y); and the Riesz theorem provides a Borel measure [, representing this
functional,

(E(@)x,y) = try ().

This assertion is the key to the proof of the next theorem:

Theorem. Let A be a closed subalgebra of 98(H) which contains the identity operator I, and SpecA
the maximal ideal space of A.

a) There exists a unique spectral measure E on the Borel subsets of A that satisfies

T:/?dE
A

forevery T € A, where the integral is interpreted as
(Tx,y) = /A?dEx,y, x,yeH.
In other words, it can be defined ® : B(A) — B(H ) such that
(@()y) = [ fIEs,

for every bounded Borel function f on A.

b) If S€ B(H), then ST =TS forall T € B(H) if and only if SE(®) = E(®)S,V @ C A.

Autor: Iuliana Alexandra Loiszli



X Capitulo 0. Summary

2.3. The spectral theorem

As a consequence of the theorem of the previous section, we obtain the spectral theorem for boun-
ded normal operators:

Theorem. If T € B(H) is a normal operator, then there exists a unique spectral measure E on the
Borel subset of o(T) which satisfies:

T— / AAE(L).
o(T)

The spectral measure E that gives this theorem describes the spectral decomposition of T.
Clearly, the proof of the theorem is based on the previous one particularizing to a single operator.
If E is the spectral decomposition of a normal operator 7 € B(H) and f is a bounded Borel
functions on 6 (T), since ®(f) = f(T), will have

py= [ raaE).

In particular the spectral decomposition of the identity operator [ is

I:/G(T) dE(M).

3. Applications

3.1. Basis properties

Let H be a Hilbert space, an operator 7 € B(H) and ¢(T') its spectrum. A number A is an eigen-
value of T if ker(T — AI) # 0 and its corresponding eigenspace is ker(7 — AI).

The point spectrum o,(T') of T is the set of all eigenvalues of 7.

If A € 0,(T) and Tx = Ax with x # 0, then x is an eigenvector of T corresponding to the eigen-
value 1.

Theorem. A normal operator T € B(H) is self-adjoint if and only if (T) C R.

Theorem. IfT € B(H), then
(Tx,x) >0VxeH<T=T"and o(T) C [0,0).

If T € B(H) satisfies that (Tx,x) > 0, we call T a positive operator.

3.2. Eigenvalues of normal operators

Theorem. [f T € B(H) is a normal operator and E is its spectral decomposition, then the following
assertions are true:

a) If f € C(a(T)), then ker(f(T)) = Im(E(f~'(0))).
b) Forevery A € o(T), ker(T —AI) =Im(E({A})).

c¢) Suppose A € o(T). Then A is an eigenvaue of T if and only if E({A}) # 0.

El teorema espectral de operadores acotados
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d) If the spectrum of T is a countable set, then every x € H has a unique expansion of the form

X = Z.X,‘
i=1

with Tx; = Aix;. Also, x; Lx;, i # j.

Next, will describe the spectrum of normal compact operators in Hilbert space. But first it is
necessary to define the concept of compact operator.

A linear operator T between two Banach spaces X and Y, is said to be compact if 7(Bx (0, 1)) is
compact in ¥, where Bx (0, 1) is the open unit ball in X.

A normal operator T € B(H) is compact if and only if all points of 6(T), except possibly 0, are
isolated and their corresponding eigenspaces are finite dimensional.

In the next section, 3.3. Applications to equations with compact normal operators, we want to
find the solution to the functional equation

x=ATx+y,

where T € B(H) is a compact normal operator, A € C and y € H; specifying the Fredlom alternative:
Either, for each y € H, the equation x = ATx+ Yy has a unique solution, or the homogeneous equation
x = ATx has a non-zero solution, in which case the complete equation has a solution if and only if y
is ortogonal to each solutions of the homogeneous equation.

The latter section, 3.4. Fredholm integral equations discusses the Fredholm equations of the
second kind

b
1) = [ Kls.0f0)dr (0

with K, g known functions and f a function to determine. As in the previous section, the Fredholm
alternative is specified.

Autor: Iuliana Alexandra Loiszli
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Capitulo 1

Algebras de Banach

En este capitulo se exponen algunos resultados elementales sobre la teoria de Gelfand de las
dlgebras de Banach que hay que tener en cuenta para el posterior desarrollo del trabajo.

1.1. Definicion y primeras propiedades

Se dan por sentado los hechos basicos sobre espacios de Banach, que por definicién son espacios
normados y completos; es decir, espacios normados tales que toda sucesién de Cauchy en ellos es
convergente.

Definicion 1.1.1. Un espacio A se llama dlgebra de Banach si A es un espacio de Banach sobre C
con una multiplicacion asociativa y distributiva tal que ¥ x,y € A, o € C se cumple:

o(xy) = (ax)y =x(ay) 'y [Pyl < [[x[[[[y]l

Se dird que A posee unidad si existe e € A (unidad) tal que xe = ex = x,Yx € A con ||e| = 1.
Se dird que A es conmutativa si xy = yx, Vx,y € A.

Ejemplos

= Un ejemplo trivial es C con el producto usual de nimeros complejos, con elemento unidad
14+i0=1.

= El espacio de las funciones continuas con valores complejos sobre un espacio topolégico
compacto K con la norma del supremo, denotado por C(K), es un ejemplo de dlgebra de Banach
conmutativa con la funcién constante 1 como unidad del espacio. En este caso las operaciones
son la de suma y producto punto a punto de las funciones.

= Otro ejemplo de dlgebra de Banach, no conmutativa, es el espacio de operadores lineales y
acotados sobre un espacio de Banach X, que se denotard por B(X). El producto en este espacio
se define como la composicion de operadores, y la unidad es el operador identidad 1.

» LY(R") = {f:R" — C: [z |f| < o} con el producto llamado convolucién y denotado por .
Se define de la siguiente manera:

(Fr)0)= [ =g (f.geL'®).

L' (R™) es conmutativa pero no posee unidad.

Cuando X es un espacio de Hilbert X = H existe una relacién estrecha entre el espacio C(K)
y B(H), que se manifiesta en la parte de la teorfa de dlgebras de Banach que se dedica a la teorfa
espectral.



2 Capitulo 1. Algebras de Banach

Definicion 1.1.2. Sea A dlgebra de Banach con unidad e € A. Se dice que un elemento x € A es
inversible si existe un elemento y € A tal que

yx=xy=e.

En este caso, el inverso y de x es tinico y se denota por x .

El conjunto de los elementos inversibles de A se denota como A~'. Claramente, A~ es un grupo.
Proposicion 1.1.3. Sea A dlgebra de Banach'y x € A con ||x|| < 1. Entonces
a) e—x €A,

(1

b) |[(e—x)"'—e—x| < :
I | T[]

Demostracion. Sea la sucesion s, = e +x+x2 + -+ +x".
Se cumple que
[[$n1 = sall = " < el

y como ||x|| < 1 se tiene que |[s,+1 — sn|| — 0.
Sea ahora m,n € N con m > n. Se tiene que

s = sall = " 42| < el - 4 ™
=Y [lxl* - [ ———l
k—;l k:;—&-l n,m—»oo

pues ||x|] < 1y por lo tanto la sucesién es de Cauchy.
Por ser A completo se deduce que existe s € A tal que s, — s.
Ademads, como x" — 0y

sple—x) =e—x"" = (e —x)s,,

se deduce, haciendo n — oo, que s(e —x) = e = (e — x)s; es decir, s es el inverso de e — x.
Para el segundo apartado se utiliza lo anterior y asi se tiene que

Is —e—=xl| = [le+x+2%+--- —e—x]| = [+ +-- | < Y [Ixl]"
n=2

La hipétesis ||x|| < 1 implica que la dltima serie es convergente con suma

lx[1?

Ix* = :
ng’z 1= |l

Teorema 1.1.4. Si A es un dlgebra de Banach entonces
s El grupo A~ de los elementos inversibles de A, es un subconjunto abierto de A.
» La aplicacion x € A~" > x~' € A~ es un homeomorfismo.

Demostracion. Para demostrar la primera afirmacién se prueba que: dado x € A~!, 7 € A con

1
hl| < =[x~ 7!
Il < S|
se tiene que x +h € A~L.

El teorema espectral de operadores acotados



1.1. Definicién y primeras propiedades 3

En efecto, nétese que x+h = x (e +x7! h) y |x~'h|| < %, con lo cual, por la proposicién anterior
se tiene que e+x " 'h € A~ yporlotantox+he AL,
Ademds, por el apartado b) de la misma proposicion, se cumple que

IR . lx~"?
h) — h < —.
I (e+x ) e+x h|| < T

Multiplicando ahora por |[x~!|| y sabiendo que [x~ 4[| < 1, se obtiene
He+x"h) " x " —ex x| < 2l AP -
Es decir,
[(e+h) " = x| <2l P AP (1.1)
Para que la aplicacién x — x~!

inversa continua.
De la formula (1.1) se deduce la continuidad de la aplicacién, pues dados x, x+h € A~ con

sea un homeomorfismo tiene que ser biyectiva y continua con la

Ly
b=l = [lall < Sl

se cumple que 1 R )
-1_ -~ - -1
[Ge )" =2 < 20 {1l [ Al

Finalmente, ya que la aplicacién coincide con su propia inversa se concluye que es un homeomorfismo
deA 'enA~l. O

Definicion 1.1.5. Dada A dlgebra de Banach y x € A, se define como espectro de x al conjunto
o(x) ={A € C:x—Ae no inversible en A}

El complementario de 6 (x) se llama conjunto resolvente de x, es decir, el conjunto
{AeC: El(x—ke)_l €A}

Al niimero
p(x) = sup{|A| : A € o(x)}

se le llama radio espectral de x.

Teorema 1.1.6. Si A es dlgebra de Banach con unidad y x € A, entonces el espectro de x es un
compacto no vacio del plano complejo.

Demostracién. Sea |A| > ||x||, lo que implica |A ~!|||x|| < 1y asf por la proposicién anterior se tiene
quee—A"'xc A esdecirle—xec Al
Luego A ¢ o(x), lo que implica que o (x) C B(0, ||x||) y asi o(x) es acotado.

Para probar que o (x) es cerrado se define la funcion

g C—A
A Ae—x.
Evidentemente g es continua y por tanto el conjunto resolvente, C\ 6(x) = g !(A~!), es un abierto

ya que lo es A~!, por el Teorema 1.1.4. Por consiguiente & (x) es cerrado y, al ser también acotado es
compacto.

Autor: Iuliana Alexandra Loiszli



4 Capitulo 1. Algebras de Banach

Se considera ahora la funcién f: C\ o(x) — A~! definida por la férmula f(A) = (Ae —x)~!.
Procediendo igual que en la demostracién de la Proposicién 1.1.3, con

x2

x x" 1
sp=et sttty AT <L

Se obtiene al hacer tender n a o, que el inveso de e — A ~'x, es

s=Y A7
n=0
Es decir, (Ae —x)~! = 215, con lo cual
fA) =(Re—x) P =g Ay (12)
11 1,
= ettt
_L_
A 1A

cuando |A| > ||x||. En particular, f es holomorfa (o analitica) con valores en A. Por tanto si ¢ es un
funcional lineal continuo definido sobre A, se tiene que

oo

P(f(A) =Y A" Ve(x")

n=0

es holomorfa sobre el conjunto resolvente de x, que se anula en el infinito.

Si o(x) fuera vacio, entonces @(f(A)) seria entera y acotada (por anularse en o). Por el teorema
de Liouville, ¢ o f serfa identicamente nula y luego por Hahn-Banach f(1) = (1e —x)~! también
serfa cero, lo cual es imposible. Entonces o (x) no es vacio, quedando asi demostrado el teorema. []

Corolario 1.1.7. Sea A un dlgebra de Banach con unidad y x € A, entonces p(x) < ||x||, Vx. De hecho

p(x) = lim ([l"[[)"/" = inf (|lx"|)"/".

n—soo

Demostracion. Se ha visto en la demostracion anterior que o (x) C B(0, ||x||). Por lo tanto, si A € ¢(x)
se tiene que |A| < ||x||, es decir

p(x) < [lx], V. (1.3)
También en el curso de la demostracion anterior se ha establecido que, si |A| > ||x|| entonces

oo

o(f(A) =Y A"V

n=0

es analitica en la bola de centro 0 y radio r > ||x|| y que se anula en el infinito, con la funcién f dada
por la férmula (1.2). Por la relacion (1.3), se puede reemplazar la condicién r > ||x|| por r > p(x).
Luego {A~(""1x"}*_ es acotada para todo |A| > p(x). Sea entonces M(1) > 0 tal que

A= < M(A) con  |A|>p(x).

Se obtiene
| < A M(R).

Por lo tanto
limsup |[x"[|'/" <|A|, |A|>p(x).
n—oo

El teorema espectral de operadores acotados



1.2. Representacion de Gelfand 5

Luego
limsup |||/ < p(x). (1.4)

n—seo

Por otro lado, se tiene que
Ale —x"=(Ae—x) (A" le4 - 42",

Si A € o(x) implica que A"e — x" no es inversible, con lo cual A" € ¢(x"). Utilizando de nuevo la
relacion (1.3) se tiene que |A"| < ||x”*|| para todo n € N, de donde se deduce que

3 1/n
p() < i "

Finalmente, reescribiendo la dltima relacién y la (1.4), en la desigualdad

limsup [|x"||'/" < p(x) < inf |«"]|'/" < liminf]|]x"||'/",
N—yo0 n>1 n—oo

1/n

se tiene igualdad, pues siempre se cumple que liminf,, . [|"[|'/" < limsup, ... ||x"||'/". O

El teorema previo y el que viene a continuacion son los resultados que generan la representacién
de Gelfand.

Teorema 1.1.8 (Gelfand-Mazur). Si A es dlgebra de Banach tal que ¥x € A, x#0, Ax~! € A, entonces
A es isométricamente isomorfa al dlgebra de los niimeros complejos.

Demostracion. Sea x € A. Por el Teorema 1.1.6, se tiene que el espectro de x es no vacio y asi
JA co(x)tal que A (x—Ae)~! en A. Luego, como x — Ae € A de la hipétesis se deduce que necesa-
riamente x — Ae = 0, es decir x = Ae.

Asi la aplicacién que asocia a cada x € A su correspondiente A € C es un isomorfismo que cumple

(Al = l[Ael = [Ix], Vx € A.

1.2. Representacion de Gelfand

La teorfa de Gelfand sobre 4lgebras de Banach conmutativas depende de tres conceptos funda-
mentales: homomorfismos complejos, ideales maximales y espectros.

Definicion 1.2.1. Sea A dlgebra compleja. Un funcional lineal complejo @ de A se llama homomorfismo
complejo de A si para cadax € Ayy € A se cumple

?(xy) = o(x) ().
Se llama cardcter de A a cualquier homorfismo complejo no idénticamente nulo.

Evidentemente, todo carécter de un dlgebra de Banach A cumple @(e) = 1, con e elemento unidad,
pues dado y € A tal que ¢(y) # 0 se tiene que

o(y) = o(ye) = ¢(y)o(e).
Se denota por @4 al conjunto de caracteres de A.

Definicion 1.2.2. Sea A dlgebra conmutativa con unidad. Un subespacio vectorial J de A se dice ideal
si xy € J siempre que x € A, y € J. Un ideal J de A se dice propio si J # A y es maximal si es propio
Y no estd contenido en otro ideal de A.

Autor: Iuliana Alexandra Loiszli



6 Capitulo 1. Algebras de Banach

Observacion. Todo ideal propio J de A estd contenido en algun ideal maximal de A. Si J es un ideal
entonces J (la clausura topoldgica de J) es un ideal de A.

Noétese que si x € A tal que ||e — x| < 1 entonces x € A~!, pues si ||e — x| < 1, implica por la
relacion (1.3), que 1 es elemento del conjunto resolvente de e —x y por la Proposicién 1.1.3,

x=e—(e—x) €A™,

Por lo tanto, si J es un ideal propio de A, también lo es J, ya que si J = A entonces existe x € J
con ||e —x|| < 1, es decirxx~ ! =e € JyasiJ=A.

En particular, si M es ideal maximal de A entonces M es un ideal propio de A, pero por ser M
maximal, necesariamente M = M, luego todo ideal maximal es cerrado.

De estas definiciones se deducen las siguientes propiedades:

Propiedades 1.2.3. Sea A dlgebra de Banach conmutativa con unidad y ®4 el conjunto de caracteres
de A.

a) x €A™' < x ¢ J, para todo J ideal propio de A.
b) x € A es inversible < @(x) # 0, Vo € Dy.

c) o(x)={@x): @ e D4}, Vx€A.

d) Si @ € @y, entonces ker(Q) es ideal maximal.

Demostracion. El segundo apartado es consecuencia del hecho de que dado ¢, cardcter de A, y
x € A~! se cumple
L=9(e) = p(xx™") = p(x)o(x7").

Por tanto ¢(x) # 0 y entonces si A € o(x) implica que x — Ae es no inversible y por lo anterior se
tiene que ¢ (x) es nulo, es decir ¢(x) = A. Esto prueba el tercer apartado.

Para probar la propiedad d), consideramos ¢ € ®4. Por b) se deduce que si x € ¢~ !(0) se tiene que
x es inversible y luego por a), @' (0) es un ideal propio de A. Hay que probar que ¢! (0) es maximal.
Suponiendo que no lo sea, se tiene que ¢ ' (0) C M, M ideal maximal de A. Si existe x € M tal que
@(x) # 0, entonces de nuevo por el apartado b) se tiene que existe x ' €A, conlo cual x 'x=ec M
yasiM = A.

O

Si M es un ideal maximal de A se tiene que M es cerrado y asi A/M, cuyos elementos son de la
forma x + M con x € A, es un espacio de Banach respecto a la norma

M| = inf . 1.5
e+ M| = inf [lx+ ] (1.5)

Sea x € A y la aplicacién cociente @y : A — A/M dada por
op(x) =x+M.
Six, y € A son tales que @y (x) = @pr (X)) y O (y) = O (y'), es decirx—x’ € My y—y' € M entonces
Xy —xy = =x)y' +x(y' —y) e M.
Por lo tanto @y (x'y") = @u(xy). Asi se define el producto en A/M como
(x+M)(y+M)=xy+M

o equivalentemente @y (x)@u(y) = @p(xy). Luego @y es un homomorfismo y es continuo, pues
llos (x)]] < ||x]|, ¥x € A por definicién de la norma (1.5).

El teorema espectral de operadores acotados
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La misma férmula, (1.5), implica que para x € A se cumple que

[+ Y[ < [l ow ()
para algtin y € M. Nétese que para x,x' € Ay y,y € M se tiene
(x+y) (' +Y) =xx'+ M,
con lo cual
[loas (x| < [[ e+ 3) &+ < e+l + 71l

Es decir,
1w () @ur ()| < [1@ma () [ [ @na (X)

siendo entonces A/M un édlgebra de Banach.

Si e es el elemento unidad de A, se cumple que @y (e) # 0, y la dltima relacién implica que
llos(e)]] > 1 = ||e||. Por otro lado, por la continuidad de @y (x) se tiene que ||@u(e)|| < |le]| = 1. En
consecuencia e + M es la identidad en A/M con ||y (e)| = 1.

Teorema 1.2.4. Si A es un dlgebra de Banach conmutativa con unidad y M un ideal maximal de A
entonces A/M es isométricamento isomorfo a C.

Demostracion. La aplicacion cociente definida como antes, @y : A — A/M resulta que es un caracter
de A, lo cual prueba que para cualquier @y (x) # O existe su inverso en A/M. Por el teorema de
Gelfand-Mazur, A/M es isométricamente isomorfo a C. t

Definicion 1.2.5. Al conjunto de los ideales maximales de A, que se denota por SpecA, se le llama
espectro de A.

Teorema 1.2.6. Sea A dlgebra de Banach conmutativa con unidad y ®4 el conjunto de caracteres de
A. Entonces,

a) Todo ideal maximal de A es el niicleo de algiin ¢ € Py4.
b) |||l =1 para todo ¢ € Dy.

Demostracion. a) Sea M un ideal maximal de A. Asi M es cerrado y A/M es un dlgebra de Banach.
Por el Teorema 1.2.4, A/M es isomorfo a C. Sea @ la aplicacién cociente

oy :A—A/M=C.

Claramente, @y es un cardcter y M = ker(@u).
Ahora poniendo ¢ = ho @y, se tiene que ¢ € D4, con ¢(e) = 1y que M = ker().
b) Debido a que @(e) = 1 se tiene que ||@|| > 1. Ahora, por definicion

loll = sup [p(x)],

¥l <1

y por tanto si ||@|| > 1, existe x € A tal que ||x|| < 1 y @(x) = 1. Por la Proposicién 1.1.3, e —x es
inversible en A. Luego,

ole)=9¢((1-x)(1-x)7") =(p(e) — @)@ ((1-x)"") =0,

lo cual es contradiccion con @(e) = 1. Asi ||| = 1. O
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8 Capitulo 1. Algebras de Banach

En conclusion, este teorema y el apartado d) de la Propiedad 1.2.3, afirman que:

M es un ideal maximal en A si'y solo si M es el niicleo de ¢ para algiin ¢ € $y4.

Esto significa que todos ideales maximales de A se pueden identificar con los caracteres de A,
SpecA = Py.

Este dltimo hecho y el que ||@|| = 1, permiten identificar a SpecA con un subconjunto de la esfera
unitaria Q4 del dual A’ de A. Se define la topologia de Gelfand en SpecA como la topologia débil
inducida por la del dual A’ de A, 6(A’,A). Nétese que la topologia débil en A inducida por el dual A’,
es la minima topologia que hace continuos a los elementos de ®4.

Por tanto SpecA es un compacto, ya que Q4 es un compacto, por el teorema de Alaoglu-Bourbaki
(véase [B, p.193)).

Definicion 1.2.7. Sea A un dlgebra de Banach conmutativa con SpecA su espectro de ideales maxi-
males. Se define la transformada de Gelfand de x € A como la funcion

X:SpecA — C
definida por
paratodox €Ay @ € SpecA.
Sea A el conjunto de todas las funciones x, para x € A. Con la topologia de Gelfand en SpecA inducida
por A, se tiene que X es confinua.

La transformacion de Gelfand es el homomorfismo de A en el dlgebra de las funciones continuas
sobre SpecA dado por

G:A— A CC(SpecA)
x—Xx : SpecA—C

Observacion. La transformada de Gelfand satisface la relacion
I8l = p(x) < x|, ¥x € A, (1.6)
que es consecuencia del Corolario 1.1.7 y de la Propiedad 1.2.3, ¢), pues

Xl = sup [x(@)| = sup |@(x)]=p(x) <[]
pcSpecA pcSpecA

En la siguiente definicion se introduce una version abstracta de la conjugacién compleja. Entre
las dlgebras de Banach, las que poseen involucién son muy importantes en teoria de operadores, ya
que los operadores en espacios de Hilbert tienen adjunto, y éste juega un papel importante en la
descomposion espectral.

Definicion 1.2.8. Una involucion o conjugacion en un dlgebra A es una aplicacion * : A — A que
Vx,yeAyA eC, verifica:

i) (x+y)T=x"+y",
ii) (Ax)* = Ax*,
iii) (xy)* =y"x",

iv) x* =ux.

El teorema espectral de operadores acotados
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Si se cumple que x* = x entonces se dice que x es hermitiano o autoadjunto.

Se dice que x € A es normal si xx* = x*x.

Toda dlgebra de Banach dotada de una involucion que satisface ||xx*|| = ||x||*> para cada x € A, se
llama C*-dlgebra y si tiene unidad e se debe cumplir que e* = e.

Definicion 1.2.9. Si A es un dlgebra con una involucion, decimos que un subconjunto S C A es
normal cuando

i) xy=yx, Vx,y€A

ii) x* € A,Vx € A.

Ejemplos

= C con lanorma dada por el valor absoluto y con involucién: z* =Z para z € C, es una C*-dlgebra
conmutativa con unidad.

= De nuevo, el espacio C(K) definido al inicio de la seccidn, con la involucién f*(x) = f(x) para
feCK)yxeKk.

= Si A es una C*-dlgebra, toda subdlgebra con involucién y cerrada en A es una C*-algebra.
El resultado basico fundamental de la teoria de C*-dlgebras es el siguiente:

Teorema 1.2.10 (Gelfand-Naimark). Si A es una C*-dlgebra conmutativa con unidad y A := SpecA
es su espectro de ideales maximales, entonces la transformacion de Gelfand G : A — C(A) es un
isomorfismo isométrico tal que

(X)) =X, VxeA,
0 equivalentemente @(x*) = @(x) para cada ¢ € Ay x € A.
Por tanto, x es hermitiano < X es real.

Nétese que en particular el teorema muestra que la transformada de Gelfand convierte la involu-
cién en conjugacién compleja.

Demostracion. Sea u € A tal que u = u* y ¢ € A. Se quiere ver ¢(u) es real. Para esto se considera
z=u+itecont € Ry e el elemento unidad de A.
Si @(u) = a+if con oy f reales, entonces

) =a+if+1) y = =u’+r,

pues
22t = (u+tite)(u* —ite) = uu* — itu+ itu* +t>e.
Asi
o+ (B+1) = o()]° < ||zl* = llzz"|| < [lul*+7,
es decir,

o® + B2 +2Bt < ||ul|®> VieR,

lo que implica que necesariamente 3 = 0.
Six € A, entonces x = u-+iv conu =u*, v=v*; a saber,

_x—l—x* x—x*
2 Y 2

u
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10 Capitulo 1. Algebras de Banach

nétese que x* = u — iv. Por tanto, como ¢(u), ¢(v) son nimeros reales,

() = @o(u) —ip(v) = @(u) +ip(v) = @(x).

Considerando ahora y = xx* con x € A se tiene que y = y*. Como A es C*-dlgebra implica que
%]l = [Iy]|*. Por induccién se obtiene que ||y™|| = [|y||™, Vm = 2", n € N.
Entonces, por la férmula (1.6) y Corolario 1.1.7, se tiene que

n 27"
15 = p(y) = tim (Iy*'l)
, on 2
= tim (IIP")" = Iyl

Pero ~ ~ B
y= (o) = ()T =537 = 7,

es decir, se cumple la igualdad en normas
K112 = 31l = Iyl = e[| = [lx]1?,  Vx €4,

lo cual significa que la transformacién de Gelfand es isométrica.

Luego, por ser A completo y G una isometria resulta que A es cerrado en C (A.) En particular, la
férmula del enunciado muestra que si x € A entonces el conjugado complejo x de X también estd en Al

El teorema de Stone-Weierstrass afirma que dada A una subélgeba cerrada de C(K), K un espacio
compacto que contiene la unidad e, separa puntos de K (es decir, si x,y € K con x # y, 3f € A tal que
f(x) # f(y) ) y que si f € A también f € A, se tiene que A es denso en C(K).

Noétese que A cumple las hipétesis del mismo y por lo tanto A es denso en C(A), luego A debe
coincidir con C(A). O

Un caso particular del teorema anterior es el siguiente corolario:

Corolario 1.2.11. Si A es una C*-dlgebra conmutativa con unidad generada por un elemento x € A,
es decir, tal que los polinomios en x y x* son densos en A, entonces y : C(0(x)) — A dado por

(Wf) = fox
es un isomorfismo isométrico tal que _
v/ =(wf)
para todo f € C(o(x)). Ademds, si f(A) = A entonces yf = x.

Demostracion. Sea A = SpecA el espectro de Ay ¢ € A. Se tiene que x: A — C es una aplicacioén
continua tal que x(¢) = ¢@(x), donde x es la transformada de Gelfand en A. Por la Propiedad 1.2.3, ¢)
se tiene que @(x) € o(x). A continuacion se prueba que la aplicacion

oeA— @(x)€o(x)

es un homeomorfismo entre compactos.
Sea ¢, ¢, € A de manera que

(1) =x(¢2),

es decir, @;(x) = @2(x).
El teorema de Gelfand-Naimark implica que ¢@;(x*) = @2(x*). Sea P un polinomio en dos varia-
bles. Ya que ¢; y ¢, son homomorfismos, resulta que

@1 (P(x,x")) = ¢2(P(x,x7)).

El teorema espectral de operadores acotados
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Por hipétesis, los elementos de la forma P(x,x*) son densos en A. Se puede concluir que @ (y) = @2(y)
paray € A. Asi ¢; = @, con lo cual X es inyectiva. Mds atin, X es continua con A compacto y por tanto
X es un homeomorfismo de A en o (x).

Luego existe un isomorfismo isométrico de C(o(x)) en C(A) tal que f +— foXx que conserva
la conjugacién compleja. Y de nuevo por el teorema anterior, como (W f) = G~!(f oX), se tiene la
conclusion.

Si f(A) = A entonces fox =Xy asi yf =x. O

A continuacién se completard esta seccién con un lema que también serd util en la teoria del
célculo funcional continuo que se verd en el siguiente capitulo.

Observacion. Si el dlgebra A es una subdlgebra de un algebra B, puede ocurrir que algiin elemento
X € A no es inversible en A, pero es inversible en B. Por tanto el espectro depende del dlgebra. De la
definicién del espectro se sigue que

op(x) C o4 (x),

y en general no hay coincidencia de estos dos conjuntos. En el caso de C*-dlgebras se tiene el siguiente
teorema:

Teorema 1.2.12. Si B es una C*-dlgebra con x un elemento normal de B y A una subdlgebra con
involucion y cerrada de B que contiene la unidad e y x* € A,Vx € A, entonces

oa(x) = op(x), VxecA.
Demostracion. Véase [Z, Theorem 24.6]. ]

El teorema anterior permite evitar ambigiiedades en la eleccion del espectro.
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Capitulo 2

Teoria espectral de operadores normales
acotados

2.1. Calculo funcional continuo para operadores normales

En esta seccion se aplicaran los resultados de la teorfa espectral de Gelfand, del capitulo anterior,
al estudio de operadores normales acotados sobre un espacio de Hilbert. Con el objetivo de fijar
la notacién que serd usada, es conveniente recordar la definicién de un espacio de Hilbert, que se
denotard por H con (-,-) su producto escalar. El producto escalar da lugar a una norma || - || que se

define como
[[x[| ==/ (x,x).

H es un espacio de Hilbert si es completo con respecto a esta norma. Cada espacio de Hilbert es asi
también un espacio de Banach.

Ao largo del trabajo, se denotard por B(H ) al dlgebra de Banach de operadores lineales y acotados
T sobre un espacio de Hilbert H con la norma

1T = sup{[|Tx]| : x € H, [|x]| < 1}.

Un operador T es acotado si ||T|| < oe.
El siguiente resultado de Andlisis Funcional serd de gran utilidad a lo largo de este capitulo.

Teorema 2.1.1 (Teorema de Riesz). Sea H un espacio de Hilberty ¢ € H', donde se ha denota por
H' el espacio dual de H. Entonces existe un vinico y € H tal que

¢(x) = (x,y)
para todo x € H. Ademds se cumple que ||@|| = ||y||-
Demostracion. Para la demostracion se puede consultar [M, p.111]. 0
Definicion 2.1.2. Dado T € B(H) existe un tinico operador T* € B(H) definido por la relacion
(Tx,y) = (x,T"y) Vx,y€H.
Decimos entonces que el operador T* es el operador adjunto de T.
Un operador T se dice normal si TT* = T*T, y se dice hermitiano o autoadjunto si T =T*.

T es unitario si T*T =1 = TT* donde I es el operador identidad en H.
Siempre se tiene que || T*|| = || T

13
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La existencia y unicidad del operador adjunto es consecuencia del teorema de Riesz, porque, fijado
y € H, la aplicacion

H—C
x+— (Tx,y)

es lineal y continua, o sea, de H'.
La aplicacion T — T* es una involucién en B(H ) cumpliendo las propiedades

1. (aT +BS)* =aT* + BS*,

2. (ST)" =T*S",

3. T =T.

4. I=T*,ysiT esinversible (T~')* = (T*)~".

Aplicando ahora las propiedades de la norma y del producto escalar se tiene que
17T < 1T N7l = I,

Por otra parte, de la desigualdad de Cauchy-Schwarz en espacios de Hilbert se deduce que para todo
xeH,
T = (T, Tx) = (0, T*Tx) < |[[|T*Txe]) < ||| 7T .

Es decir, ||T'||> < ||T*T||. Por lo tanto
2 *
T\ =TT, YT € B(H).

En consecuencia, B(H) resulta ser una C*-dlgebra (no conmutativa), con lo cual se puede aplicar la
teorfa presentada en el capitulo inicial.

A continuacion se destacan algunas propiedades de los operadores normales en un espacio de
Hilbert:

Proposicion 2.1.3. Sea T € B(H).
a) T es normal siy solo si para cada x € H se tiene ||Tx| = ||T"x||.
b) Si T es normal y si para algunos x € Hy A € C se tiene que Tx = Ax, entonces T*x = Ax.
c¢) Si T normal entonces existe A € o(T) tal que |A| = ||T]|.

Demostracion. El primer apartado es trivial si considerando x € H se calcula

|7l = (T, Tx) = (T*Tx,x)

| T*x||? = (T*x, T*x) = (TT*x,x) = (T*Tx,x).

Para el b), como T es normal entonces T — A también lo es y por la parte a) se tiene que

0=[Tx—Ax|| = (T = AD)x[| = (T = A1)"x|
= [(T" = AD)x|| = [|T"x = Ax]].

De donde T*x = Ax.

El teorema espectral de operadores acotados
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La propiedad c) se prueba haciendo uso de que B(H) es un C*-dlgebra, es decir que ||T?|| = ||T||%.
Por induccién se obtiene que ||72%|| = ||T||*' para k € N, como en el Teorema 1.2.10. Luego, aplicando
el Corolario 1.1.7, resulta que

p(T) = lim | 7"[['/" = lim | 72|/ = 1im | 7| = |IT.
n—oo k—>oo k—>oo
Finalmente, por ser 6(7) compacto,

IT|l =p(T) = sup [A]= max |A].
rea(T) Aea(T)
O

Teorema 2.1.4 (Célculo funcional continuo). Sea T € B(H) un operador normal sobre un espacio de
Hilbert H, de modo que TT* = T*T. Existe un tinico *-homomorfismo

@7 :C(o(T)) — B(H)

tal que ®rp(u) =1y ®r(v) =T, donde u(A) =1, v(A) = A para cada A € o(T). Ademds, Pr es
isométrico y su rango es la subdlgebra cerrada (conmutativa) C generada por I, Ty T*, donde I es la
identidad sobre H.

Demostracion. El dltimo lema del capitulo anterior 1.2.12, permite escribir que

oc(T) = opw)(T),

con C la subdlgebra cerrada (conmutativa) C generada por I, Ty T*.

Por el teorema de Gelfand-Naimark, la transformacién de Gelfand G de C es un isomorfismo
isométrico de C en C(SpecC). Ademas, por el Corolario 1.2.11 se tiene que SpecC es homeomorfo a
o(T) via el homeomorfismo

T : SpecC — o(T).

Considerando f € C(o(T)) se define @7 (f) como el tnico elemento de C tal que
Or(f) =G (foT).

Se verifica que @7 es un *-homomorfismo de C(o(T)) en B(H), y

-~

dr(v) = G_l(vo?) =T, &r(v)= G_I(Vo T)=T~,

pues uoT =1 yvo/T\:/T\. Mas aun,

17 ()l = 1(@r(H)lle = lIf Tl
=sup{|f(T(9))| : ¢ € SpecC}
=sup{[f(A)]: 4 € o(T)} = || f]les,

lo cual significa que ®7 es isométrico.

Queda por ver que el rango de ®7 es C. De las propiedades que tiene ®7 se deduce que su
rango es una subdlgebra cerrada de B(H) que contiene a I, T 'y T*, es decir ®7(C(c(T))) D C. Por
otra parte @' (C) es una subalgebra cerrada de C(c(T)) conteniendo a 1y u, lo cual implica que
@' (C) =C(a(T)) y por lo tanto ®7(C(c(T))) C C. O

Definicion 2.1.5. Con las notaciones del teorema anterior, se define f(T) = ®r(f) para todo

fec(a(T)).

Autor: Iuliana Alexandra Loiszli



16 Capitulo 2. Teoria espectral de operadores normales acotados
Corolario 2.1.6 (Teorema de la aplicacion espectral y Regla de composicion). Si T es un operador
normal sobre un espacio de Hilbert H, entonces

i) Para cada f € C(o(T)) se tiene

ii) Para cada f € C(o(T))yg € C(o(f(T))) se tiene
(g0 f)(T) = g(f(T)).

Demostracion. i) Sea f € C(o(T)). Con lanotacién f(T) = Pr(f) del teorema anterior, se tiene
que o(f(T)) es el rango de la transformada de Gelfand de @7 (f), es decir

(@r(f)) =foT.

ii) Considerando f € C(o(T)) se tiene que por el apartado i), 6(f(T)) = f(o(T)). Esto prueba
que existe go f cuando g € C(a(f(T))).
Sea entonces
@:C(o(f(T))) — B(H)

tal que ®(g) = (go f)(T). Se cumple que
D(v) = (vo f)T) = (T),

cuando v(A) = A es la funcién identidad en o(7T). Ademaés, ®(1) = (1o f) = 1.
Esto prueba que ® es un *-homomofismo y satisface la hipétesis del Teorema 2.1.4 para f(7T)
normal en B(H) (ya que f(T) = ®7(f) por la Definicién 2.1.5). Por tanto ®(g) se puede iden-

tificar con @ (7)(g) = g(f(t)). Luego
(g fIT) =2(g) = g(f(T))

para cada g € C(o(f(T))).

2.2. Medida espectral

Como se puede observar, en la seccién anterior B(H) resulté ser un C*-dlgebra, asi la teoria presen-
tada sobre las C*-dlgebras se puede aplicar para obtener teoremas de representacion de los operadores
normales.

Definicion 2.2.1. Sea X espacio compacto de Hausdorff y B(X) la c-dlgebra de los conjuntos de
Borel de X. Sea H espacio de Hilbert. Se define la medida espectral o resolucion de la identidad
sobre B(X) a toda aplicacion

E:%(X)— B(H)

que satisface las propiedades:
i) E0)=0,EX)=1.

i) Todo E(®) es una proyeccién ortogonal autoadjunta, es decir E(®)*> = E(®) = E()*, para
todo ® € #B(X).

iii) Si 0, 0" € B(X) entonces E(0' N0") =E(0')E(0").

El teorema espectral de operadores acotados
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) Sio, 0" e BX)y o No’" =0 entonces E(0' U0") =E(0') +E(@").
v) Paratodo x,y € H, la funcion E,, : (X ) — C definida por
Exy(@) = (E(®)x,y)
es una medida regular compleja sobre B(X).

A partir de la definicién surgen algunas observaciones:
De la segunda y dltima condicion se deduce que

Exx(0) = (E(0)x,x) = (E(0)*x.x) = (E(0)x, E(0)x) = ||E(w)x]?,

luego E,  es una medida positiva sobre Z(X).
Mais atn, se tiene que E es contablemente aditiva en la topologia débil de los operadores y también
en la topologia fuerte de los operadores, es decir

Z E(w,)x=E(®w)x, VxeH
n=1

donde ® es la unién de los @, € #(X), disjuntos dos a dos. La afirmacién se debe a que, dado un
X € H se tiene que E(®,)E(®,,) = 0 cuando n # m. Asi E(®,)x y E(®,,)x son ortogonales y por el
apartado v) se cumple

oo

Y (E(@n)x,y) = (E(@)x,y),

n=1

paratodo x, y € H.

Ejemplo
Sea X compacto y (X)) la familia de los subconjuntos de Borel en X. Sea pt una medida positiva
sobre Z(X)y H = L*(X, ), donde

L*(X,u) ={f : X — C u-medible tal que/ F)Pdu =: ||} < oo}
X

Entonces la funcién E : (X) — B(H) que para cada @ € Z(X) define a E(®) como la multipli-
cacion por X, la funcién caracteristica de @, es decir E(®)f = Xof, es una medida espectral para
(X, #B(X),H).

Todas las condiciones son obvias, excepto que sea contablemente aditiva. Para esto, fijando
f€L*(X,u) se tiene

HE(U a)k)f_ ZE((L)k)fHZ = ”Xu;j:lcokf_ lekfuz = ”XU,T:la)kf_XU;:la)kaZ
k=1 k=1

k=1

2 2
= X a—u o fII° =120z, 0 f|l
n—soo

- /X%uz;mwk\fﬁdu = |FPdu "= 0.

Xuk:n+] O

Establecido el cdlculo funcional continuo para un operador normal acotado T en la seccién 2.1,
Teorema 2.1.4, fijados x, y € H se puede definir la siguente forma lineal continua

Ayy:C(o(T))—C
por Ay, (f) = (®r(f)x,y). El funcional estd acotado, pues

(P (x| = [(FT)x 0 < (ST IE= 11 Teo el 171

Autor: Iuliana Alexandra Loiszli



18 Capitulo 2. Teoria espectral de operadores normales acotados

Por el teorema de representacion de Riesz, tiene que existir una medida de Borel (compleja) p, ,
sobre o(T). A partir de estas medidas se construird la medida espectral asociada a T mediante la
relacién

(E(@)x,y) = phey(@),

como se presenta en el siguiente teorema.

Teorema 2.2.2. Sea A una subdlgebra normal con unidad cerrada de B(H) y SpecA el espacio de
ideales maximales de A, denotado por A.

a) Entonces existe una tinica medida espectral E sobre los conjuntos de Borel de A tal que

T:/ATdE 2.1

paratodo T € A, donde la integral se interpreta como

<Tx,y>:/?dEx,y, x,y€H.
A

Dicho de otra forma, se puede definir ® : B(A) — B(H) tal que

<q)(f)xv)7> = /Adex,y
para toda f de Borel acotada sobre A.

b) Si S € B(H), entonces ST = TS para todo T € B(H) si y sélo si SE(®w) = E(®)S para todo
o CA.

Demostracion. Por la seccidn anterior, B(H) es una C*-dlgebra y asf es claro que A es una C*-dlgebra
conmutativa. En consecuencia, el teorema de Gelfand-Naimark afirma que la aplicacion 7 — T es un
isomorfismo isométrico de A sobre C(A).

- Existencia de E: Fijados x,y € H, la aplicacién A, , : C(A) — C definida por

Ay y(T) = (Tx,y)

es un funcional lineal y acotado tal que ||A,, || < [lx||[lyll, pues || T|| = || T||. El teorema de Riesz
implica que Vx, y € H existe una medida regular compleja L, sobre A tal que

<Tx,y>:/fdux,y, VT €A.
A

Dicha medida cumple que fiy, = Uy, pues

/A Ty, = (Ty,x) = (0, T*x) = (Tox,y)

— T*Adx:/?dx,:/de.
./A( ) didyy | Tdbey = | Tdf,

Ademis se tiene que ||Lyy|| = [|Axy|| < ||x[/]|y||. Esto implica que, para toda f de Borel fija
acotada en A,

(x,y) = /A fdpey

es una forma sesquilineal acotada sobre H. Ahora ampliando el cdlculo funcional continuo, para
cada f de Borel acotada sobre A se puede definir un operador ®(f) € B(H) tal que

(@(f)x,y) :/Afdux,y, Vx,y € H.

El teorema espectral de operadores acotados
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Este operador @ extiende a la inversa de la transformada de Gelfand, debido a que @(f) =T.
En particular, para f real se cumple que

:/Afdm:/Afduy,x:(d’(f)y,X%

y por la definicién del adjunto, resulta que ®(f) es hermitiano.
También se verifica que el operador ® es multiplicativo

(fg) = P(f)P(g),

para todo fy g de Borel acotados. En efecto, se sabe que esto se cumple para f,g € C(A), por
tanto

/Afgd.ux:y = <q)(f)q)(g)x,y> - /Afd”‘ib(g)x,w
lo que implica que
gd.ux,y = d.“@(g)x,y

para cada x,y € H'y g € C(A). En consecuencia las integrales son ciertas si f es de Borel
acotada. Sea z = ®(f)*y. Asf

Afgd‘llx'ﬂy = Afdu¢(g)x,y
= (P(f)D(g)x.y)
= <<I>(g)x,z) = /Agd.ux,z'

De nuevo se tiene que f'du,, = dily ;. Por tanto

@(fg)ey) = [ Fedpny = [ gdpec = (@(1)()r)

para cada f, g de Borel acotadas. Asi queda visto que ® es multiplicativo sobre las funciones
de Borel acotadas en A.

Para cada w de Borel en A se define entonces

con f la funcidn caracteristica de @, denotada y. Para que E sea la medida espectral buscada
debera cumplir las condiciones de la Definicion 2.2.1.

Sea E(0) =®(f) y E(w') = ®(g), entonces debido a que ®(f) es multiplicativo, se tiene que

E(@Nao')=P(Xono') = P(XoXw')
= D(%0)P(Xar) = E(0)E().

Ahora si ® = @' implica que E(®) es una proyeccién y es autoadjunta, pues si f es real, ®(f)
es hermitiano.

Como yxp = 0 estd claro que E(0) = ®(0) = 0. y como P extiende a la transformada de Gelfand
se obtiene que E(A) = ®(xa) =D(1) =1.

Falta probar que E es contablemente aditiva en la topologia débil de operadores, es decir

gk

(E(@)x,y) = ) (E(0)x,y)

k=1

Autor: Iuliana Alexandra Loiszli
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donde w es la tinion de los @, € #(c(T)), k=1,.... Esto es consecuencia de la igualdad
(E(0)x,3) = (®(20)x,)
= /A Xo ditey = k;l /A Xa Ak,
ya que [, , es una medida y por tanto contablemente aditiva. En definitiva, se tiene que
(E(@)x,y) =ty (),
y por tanto E es la medida espectral buscada.

- Unicidad de E: La unicidad de la medida espectral construida anteriormente es inmediata, de-
bido al teorema de representacion de Riesz que implica la unicidad de la medida u, ,, para
cada x,y € H. No obstante, la definicién, (E(®)x,y) = Ey,(®), determina univocamente la
proyeccién E(®), para cada @. Por lo tanto si existirian dos medidas espectrales E, E’, para
todo ® € #(c(T)) se tendria que (E(w)x,y) = (E'(®)x,y), para todo x,y € H, lo cual implica
E(0)=FE'(o).

Para probar el apartado b) se considera S € B(H), x, y € H y tambien T € H. Aplicando la definicién
del operador adjunto se tiene

<STx7y> = <TX,S*y> = / ?dEx,S*y
A

(TSx,y) :/TdE5x7),.
A

Cuando ST = TS para todo T € B(H), las dos medidas son iguales dE g+, = dEg,,. Pero por la
definicién de la medida espectral resulta que

Eisy(0) = (E(0)x,S"y) = (SE(@)x,y)

para todo w C A. Andlogamente,
ESX-,)’((D) = (E((D)Sx,y),

y por lo tanto SE(w) = E(®)S. El reciproco es cierto utilizando el mismo razonamiento.

2.3. Teorema espectral

En el Teorema 2.2.2 se ha demostrado que toda dlgebra normal en un espacio de Hilbert induce
una medida espectral E sobre los conjuntos de Borel de su espectro y, reciprocamente, que a partir de
E se recuperan los operadores T del dlgebra mediante una integral del tipo (2.1).

Como consecuencia se puede establecer el teorema espectral para operadores normales y acotados:

Teorema 2.3.1 (Teorema espectral para un operador normal acotado). Sea T € B(H) un operador
normal. Entonces existe una tinica medida espectral E sobre los borelianos de 6 (T) tal que:

T:/ LAE(L).
Jo(T)

Ademds, todo E(®) conmuta con cualquier operador S € B(H) que conmute con T € B(H).

La medida espectral E que da este teorema describe la descomposicion espectral de T.

El teorema espectral de operadores acotados
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Demostracion. Evidentemente, la demostracién del teorema se apoya en el Teorema 2.2.2 particula-
rizando a un solo operador.
Debido al cdlculo funcional continuo existe un *-homomorfismo

®:C(o(T)) — B(H)

tal que ®(f) = f(T'). Mas atin, el rango de P es la subélgebra cerrada A de B(H) engendrada por I, T'y
T*. Ademds, por el Corolario 1.2.10 se sabe que SpecA es homeomorfo a 6(7) via el homeomorfismo

T : SpecA — o(T).

Asf se tiene que 7(A) = A para todo A € o(T).
Aplicando el Teorema 2.2.2 para la subdlgebra A, existe una tunica medida espectral £ definida sobre
los borelianos de ¢(7'), cumpliendo que

@)= [ FOIIER)
Finalmente, por la férmula (2.1) se tiene
j@= [ | FaaE),

para toda f de Borel acotada, y en particular, reescribiendo la descomposicién del operador identidad

se tiene
= / dE().
o(T)

Si ST = TS con S normal, entonces también ST* = T*S (véase [R, p.300]) y por consiguiente S
conmuta con todo elemento de A. Ahora por el apartado b) del Teorema 2.2.2 se tiene que
SE(w) = E(®)S para todo @ C A.

O

En resumen, usando las mismas notaciones que anteriormente y parte del contenido del Teorema
2.2.2 y del teorema espectral se puede ampliar el calculo funcional continuo construyendo el calculo
funcional extendido para un operador normal acotado:

Corolario 2.3.2. Dado un operador normal T € B(H), existe un tinico *-homomorfismo ® definido
sobre las funciones de Borel acotadas sobre o(T) en B(H) con

o(f) = / e

tal que:
i) ®(u)=1, ®(v) =T donde u(A) =1, v(L) = A para cada A € o(T).
ii) Ademds, ® verfica entonces
[P < [f]] = sup{|f(A)]: 2 € o(T)},
siendo vdlida la igualdad si f es continua.
iii) SiST =TS con S € B(H), se tiene que S®(f) = ®(f)S para cada funcion f de Borel acotada.
Habitualmente se usa la notacion f(T) = ®(f).

Otra formulacién de interés, que puede relacionarse directamente con la diagonalizacion de una
matriz normal, es la siguiente:

Autor: Iuliana Alexandra Loiszli
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Teorema 2.3.3 (Teorema de representacion espectral de un operador normal acotado). Si T € B(H) es
normal, existe un espacio de medida (X, .# , L) con W medida positiva regular, una funcion ¢ € L)
y un isomorfismo isométrico U : L* (1) — H tales que el diagrama

2(u) =— H
M(pT lT
L*(u) P

es conmutativo (U~'TU =My ). My : L*() — L (1) es el operador multiplicacion definido por .

En esta formulacién se pierde la unicidad: el espacio (X,.#, ) y la funcién ¢ no estdn determi-
nados univocamente por 7.

Idea de la demostracion. Anteriormente en el ejemplo de medida espectral se ha probado que
en el espacio L?(u) para cada @ € %(X) se puede construir la aplicacién E : %(X) — B(H) con
H = L*(X,u) definido por la férmula E(®)f = Xef con X la funcién caracteristica de @. E es asi
una medida espectral para (X, Z(X),H).

A partir de este ejemplo y ahora aplicando el teorema espectral se tiene que si 7 es un operador
normal, existe E la descomposicién espectral de 7',

T = / LAEQD).
o(T)

Un paso critico de la medida espectral E(®) asociado a T a la medida u es el siguiente: si x € H se
tiene que
H(w) = (E(o)x,x)

es una medida finita y @ un conjunto de Borel.
Si se escribe Uy, = E(®)x, entonces U puede ser extendido a un isomorfismo del espacio L?(u). Para
este isomorfismo U se tiene

U'E(@)Uf = xof.

Por lo tanto el operador multiplicativo definido por

My(f)=0f, feLl’(n)yepecLl(u)

se identifica con la descomposicién espectral de T, pues si ¢ es la funcion caracteristica X, se tiene
Myf = Xof-

El teorema espectral de operadores acotados
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Aplicaciones del teorema espectral

3.1. Primeros resultados

Definicién 3.1.1. Sea H un espacio de Hilbert, un operador T € B(H) y 6(T) su espectro. Un niimero
A € C se dice que es un valor propio de T si ker(T — AI) # 0.

El conjunto de los valores propios de T se llama espectro puntual de T'y se denota 6,,(T). Obser-
var que 6,(T) C o(T).

Si A €06,(T)yT(x)=Ax conx # 0, entonces x se llama vector propio de T correspondiente al
valor propio A.

Al subespacio ker(T — AI) se le llama subespacio propio o autoespacio correspondiente al valor
propio A.

Observacién. Sea T € B(H) normal. Si A, u € 6,(T) y A # u entonces los vectores propios corres-
pondientes a los valores propios son ortogonales. Es decir, ker(7 — AI) Lker(T — ul).

Proposicion 3.1.2. Sea un operador T € B(H) normal. Entonces

1T = sup{[{Tx,x)| : x € H, [lx]| < 1}.
Demostracion. Es evidente que

sup{[{Tx, )| : x € H, |lx]| <1} < [T,

por la desigualdad de Cauchy-Schwarz.
Por otra parte, sea € > 0. Hay que probar que

[(Txo0,x0)| > [|T|[ &

para algin xo € H con ||xo|| = 1. Por el teorema de Gelfand-Naimark se tiene que ||T|.. = ||7|| y por
la Proposicion 2.1.3, ¢), existe A9 € o(T) tal que |Ag| = ||T||. Sea el conjunto

w={Ae€o(T):|A—2]| <&}

Si E es la descomposicién espectral de T con E(®) # 0, entonces existe xo € H con |[xp|| =1y
E((D)X() = Xp.
Se define
A=A silew
JA) = { 0 siAfo

Entonces,
F(T)=(T - ADE(®) y f(T)xo=Txo— Aoxo.

23
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Luego,
|[(Tx0,%0) | = [2ol| < [{Tx0,%0) — Ao| = [{Tx0,%0) — Ao (x0,0)]
<|IF(D)ll <e,
pues |f(A)| < &, VA € o(T). Finalmente, como |Ag| = ||T|| se tiene la desigualdad buscada. O

Proposicion 3.1.3. Un operador normal T € B(H) es autoadjunto si 'y sélo si o(T) C R.

Demostracion. Sea A la subélgebra normal de B(H) generada por 7. Entonces, por el Teorema 2.3.1,
T(A)= A sobre 6(T). Asi,

(T")(2)=T() =12,
paratodo A € o(T). Luego, T = T* si y sélosi A = A. O
Teorema 3.1.4. Sea T € B(H). Entonces,
(Tx,x) >0VxeHsiysolosiT=T"yoc(T)C[0,00).
Demostracion. Si (Tx,x) > 0, entonces (Tx,x) es real y
(x,T*x) = (Tx,x) = (x,Tx), Vx€H.

Por tanto, T = T* y por la Proposicién 3.1.3 se tiene que o(7) C R. Con la misma hipétesis y para
A >0, se cumple
Allxl? = Ax,x) < (T +Ad)x,x) < ||(T + A |1,

es decir,
!

Entonces, T + A es inversible en B(H) y asi —A ¢ o(T). Esto prueba que 6 (T) C [0,00).
Por otro lado, sea T autoadjunto y o(T') C [0,e). Aplicando el teorema espectral se tiene que

(T +AD)x]| = Aflx]]-

(Tx,x) = / AdE, (L), x€H.
o(T)

Como ya se ha visto en la seccién 2.2, E, , es una medida positiva. Ademds, A > 0, y por tanto
(Tx,x) >0, Vxe€ H. O

Para el siguiente teorema es necesario definir qué se entiende por un operador positivo.

Definicion 3.1.5. Sea un operador T € B(H). Se dice que T es positivo ¢ no negativo, y se escribe
T>0,si(Tx,x) >0,VxeH.

Teorema 3.1.6. Sea T € B(H) es un operador positivo. Entonces existe un tinico operador positivo
S € B(H) tal que S*> = T. Se dice que S es la raiz cuadrada positiva de T. Ademas, si T es inversible,
también lo es S.

Demostracion. Sea A una subdlgebra normal con unidad cerrada en B(H) que contiene a T, y A el
espacio de ideales maximales de A. Entonces, por el teorema de Gelfand-Naimark (1.1.8) se tiene que
A=C(A).

Por hipétesis T es positivo, lo que implica que T es autoadjunto y 6(7') C [0,c) (Teorema 3.1.4).
Por otro lado, se tiene que T(A) = A, en 6(T), es decir T(A) = o(T). Por lo tanto, T > 0. Luego,
T>0es equivalente con T > 0.

Ya que toda funcién continua positiva tiene una Unica raiz cuadrada continua, se tiene que existe un
ﬁnicoSeAtalqueSZ:Ty§20.
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Falta probar que efectivamente S es tnico en B(H). Se considera Ay la mds pequeiia de estos
dlgebras A. Entonces existe Sy € Ag tal que S3 =T y Sy > 0. Sea ahora S € B(H) la raiz cuadrada
positiva de T y A la menor subdlgebra con unidad cerrada de B(H) que contiene a S, entonces T € A,
pues T = S2. Luego, como A C A, se tiene que Sy € A, y por lo tanto S = S.

Por dltimo, si T es inversible, $2 = T implica que (T_lS)S = 1. De hecho, ST =TS = S3, con lo
cual S = T~!ST. Entonces,

S(T7's)=T7'sTT7's =1,

esdecir S~ =7-18§. O

3.2. Valores propios de operadores normales

Si T es normal, sus valores propios guardan una relacién sencilla con su descomposicion espectral.
Esta relacion se deducird de la siguiente aplicacién al cdlculo funcional extendido:

Lema 3.2.1. Sea T € B(H) un operador normal y E su descomposicion espectral. Si f € C(c(T)),
entonces

ker(£(T)) = Im(E(f~(0)))-

Demostracién. Considerando @y = f~1(0), se define

1 sidey
g(l)—{o sid ¢ @y

Entonces, si A € ay, se sabe que f(A) =0, y por lo tanto f(A)g(A) = 0. Por otro lado, si A ¢ wy, se
tiene que g(A) = 0. Luego, fg = 0, es decir que f(7T)g(T) = 0. Como g es la funcién caracteristica
de ay, por el cdlculo funcional extendido (Corolario 2.3.2) se tiene que E(wy) = P(g) = g(T), y por
lo tanto

Im(E(an)) C ker(f(T)). G.1)

Por otro lado, si consideramos @ el complementario de @y relativo a ¢(T'), entonces ® es la unién
de los conjuntos disjuntos de Borel @, conn =1,2,..., cada uno de los cuales estd a distancia positiva
del conjunto compacto @y. Para cadan =1,2,..., se define f,(1) =1/f(A) sobre @, y f,(1) =0en
el resto de (7). Por construccion, f, € #(c(T)) y ademas

(M) f(T)=E(®w,) n=1.2,....

Six e ker(f(T)), es decir f(T)x = 0, entonces E(@,)x = 0, y por la propiedad de aditividad conta-
ble de la medida espectral se tiene que E(@)x = 0. Pero como E(w) + E(ay) = I y por lo anterior
E(mp)x = x, se cumple que

ker(f(T)) C Im(E(ay)). (3.2)

Por lo tanto, las relaciones (3.1) y (3.2) implican la igualdad del enunciado. ]

Proposicion 3.2.2. Sea T € B(H) un operador normal y E su descomposicion espectral. Para cada
A € 6(T) se tiene

i) ker(T — A1) =Im(E({1A})).
ii) A esvalor propio de T si 'y sélo si E({A}) # 0.

Demostracion. Considerando A € o(T') y aplicando el lema previo a f(A’) = A’ — A, se tiene
£~1(0) = {A} y por lo tanto f(T) = T — AI. Con esto queda probada la igualdad del apartado i).

El segundo apartado es trivial usando el i) y sabiendo que por definicién A € 6,(T) implica que
ker(T — A1) # 0. O

Autor: Iuliana Alexandra Loiszli



26 Capitulo 3. Aplicaciones del teorema espectral

Corolario 3.2.3. Sea T € B(H) un operador normal. Cada punto aislado de o(T) es un valor propio.

Demostracion. Sea T € B(H) con E su decomposicion espectral. Si A € ¢(T') es un punto aislado
existe un entorno U de A tal que UNo(T) = {A}. Luego {1} es un subconjunto abierto de o (T),
con lo cual E({1}) # 0. Por la Proposicién 3.1.2, esto significa que ker(7T — AI) # 0, o sea, A es un
valor propio de 7. O

Corolario 3.2.4. Sea T € B(H) un operador normaly f € C(o(T)).Para cada x € H,
Tx=Ax= f(T)x= f(A)x.

Demostracion. Se aplica el Lema 3.2.1 a la funcién g definida por la formula g(&) = f(§) — f(A) y
se tiene en cuenta la Proposicién 3.2.2. 0

Proposicion 3.2.5. Sea T € B(H) un operador normal y E su descomposicion espectral. Entonces, si
el espectro de T es un conjunto contable, cada x € H tiene una tinica descomposicion de manera

donde Tx; = Aix;. Ademds, x; L x i, cuando i # j.

Demostracion. Sea 6(T) = {A1,A2,...} y Ei = E({A;}) para cada i = 1,2,3,.... En los puntos de
acumulacién A; de o(T'), E; puede ser 0 6 no. Pero, en cualquier caso por la Proposicién 3.2.2 los
recorridos de E; son ortogonales dos a dos, pues ker(T — A;J) Lker(T — A1), sii # j.

Como E es contablemente aditiva, se tiene que parax € H

gE,-x — E(o(T))x=x.

La serie converge en norma. Entonces, si x; € Im(E;), es decir x; = E;x, se tiene la descomposicion de
x del enunciado y se cumple x; Lx;, cuando i # j. La unicidad es consecuencia de la ortogonalidad de
los vectores propio. De nuevo por la misma Proposicién 3.2.2 se tiene que Tx; = A;x;.

O]

A continuacién se describe el espectro de los operadores normales compactos en espacios de
Hilbert. Pero antes es necesario definir el concepto de operador compacto y especificar algunas pro-
piedades del mismo. Se prescindird de las demostraciones, ya que escapan del objetivo de este trabajo,
y ademads, se pueden encontrar en cualquier libro de Andlisis Funcional (véase por ejemplo [R, p.98]).

Definicion 3.2.6. Un operador lineal T : X — Y con X, Y espacios de Banach, se llama compacto si
T(Bx(0,1)) es un conjunto compacto en Y, donde Bx (0, 1) es la bola unidad en X.

Propiedades 3.2.7. Sea H un espacio de Hilbert y un operador T € B(H).
i) SidimIm(T) es finito entonces T es compacto.
ii) Si T es compactoy A # 0 entonces ker(T — Al) es de dimension finita.
iii) Si T es compactoy A # 0 con A € 6(T) entonces A es valor propio de T'y de T*.

iv) T es compacto siy solo si existe T, € B(H) con rango finito tal que |T —T,|| — 0.
n—yoo

Teorema 3.2.8. Un operador T € B(H) normal es compacto si 'y sélo si todos los puntos de o(T),
salvo quizds el 0, son aislados y sus correspondientes autoespacios son finito-dimensionales.

El teorema espectral de operadores acotados
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Demostracion. Debido a las propiedades de los operadores compactos, la implicacién directa es in-
mediata.

Para demostrar la implicacién inversa, nétese que o(7) es contable por la condicién de que el
unico punto de acumulacién posible es el 0.
Sean A; los puntos no nulos de o(7') tal que |A;| > |4, > ---. Se define f,(A) =AsiA =L yi<n,
y fu(A) =0 en los demds puntos de ¢(7'). Usando la misma notacién que en la Proposicién 3.2.5,
E; =E({A;}), se tiene que

fn(T) - A1E1 + -t knEn-

Por la Proposicion 3.2.2, dimIm(E;) = dimker(7 — A;I) y este ultimo es finito-dimensional (por hi-

pétesis). Por lo tanto f,,(T') es un operador compacto.
Nétese que |A — f,,(A)] < |4, paratodo A € o(T). Esto implica que

T — fu(T)|| < |Au| — 0, cuando n — oo.

Luego por la Propiedad 3.2.7 iv) , T puede ser aproximado uniformemente por operadores de rango

finito, con lo cual T es compacto.
O

Con esta hipdtesis de contabilidad del espectro, es inmediato llegar a una representacion del ope-
rador T que puede considerarse como una buena generalizacién a cualquier dimension de la diagona-
lizacién en dimension finita: si (eq)qea, € una base ortonormal del espacio separable H formada por
vectores propios de Ty Teq = Ageq con & € A, de la igualdad

X = Z (x,eq)eq, x€EH
aEA

se sigue por continuidad que
Tx = Z Ao(x,eq)eq x€EH.
acA

Andlogamente, por el Corolario 3.2.4 se tiene

f(T)x= Zf(),a)<x,ea>ea X€EH.

acA

Mediante esta representacion se comprueba el siguiente resultado:

Proposicion 3.2.9 (Desarrollo de Hilbert-Schmidt). Si T € B(H) es un operador normal y compacto,
existe un sistema ortonormal contable (ey) de vectores propios de T, de modo que cada x € H puede
representarse de manera tinica en la forma

X = chen +z,
n

donde T(z) =0y cn = (x,ep).
Ademds, si Te, = Aye, para cada n, dado x € H se verifica

Tx= ancnen.
n

Demostracion. Aplicando el Teorema 3.2.8 se sabe que 6 (7') es contable. Asi, existe una base orto-
normal (eq)qea de H formada por los vectores propios de 7. Separando los indices correspondientes
a los valores propios nulos y no nulos, sean

B:{Ot eA:Tea:)yaea,la#O}
C={a€A:Te,=0}
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Dado x € H, sea
2= (xeq)eq € ker(T),

acC
quedando
x= Z (x,eq)eq+2

acB

Tx= Z Aa(x,eq)en.
aeB
Tomando ahora (e,) como los (eq)qep, se deduce la existencia del desarrollo. La unicidad se deduce
que para cada n se tiene que e, L ker(7'), lo cual obliga a que

cn=(x,en) 'y z:x—Z(x,en>en.

3.3. Resolucion de ecuaciones con operadores normales compactos

En esta secion se quiere probar la existencia de soluciones de ecuaciones funcionales, denominada
la alternativa de Fredholm.

Considerando T € B(H) un operador normal y compacto, A € C e y € H un vector dado. Se quiere
encontrar la solucién a la ecuacién funcional

x=ATx+y.
Un caso particular se obtiene para y = 0, cuando la ecuacion resultante
x=ATx

se llamard ecuacion homogénea asociada. Si x # 0 entonces A que dice valor caracteristico de T. Si
A es no nulo se tiene Tx = %x, lo que significa que los valores caracteristicos de T son los inversos
de los valores propios no nulos de 7" y por lo tanto forman un conjunto contable, siendo todos puntos
aislados.

En consecuencia, se tiene que las soluciones de la ecuacién homogénea correspondiente a un valor
caracteristico A son exactamente los vectores propios asociados al valor propio 1/4, que formarén un
subespacio finito-dimensional; su dimensién es, por definicidn, la multiplicidad del valor carateristico
A (igual a la multiplicidad del valor propio 1/1).

Utilizando el desarrollo de Hilbert-Schmidt para este caso, se tiene que para un sistema ortonormal
(en) de vectores propios de T se puede escribir

1
Tx= Z;Tn@c,e,)en, xeH
n

donde los A, son los valores caracteristicos de T contados tantas veces como indique su multiplicidad.
Entonces

xz?LTx+y<:>x—y:ZiL<x,en>en

A
@x:y—i—chen con ¢, = A—(x,en>

(:)x:y—kzn:cnen y (1 —}L—n)cn = l—ﬂ(y,e,,}.

Se sigue de aqui:

El teorema espectral de operadores acotados



3.4. Ecuaciones integrales de Fredholm 29

s Si A no es un valor caracteristico, es decir A # A, para todo n, entonces para cualquier y € H
existe una unica solucion que viene dada por la formula

A
XZY+Zm<y,€n>€n-

» Si A es un valor caracteristico entonces, para que exista solucion ha de ser necesariamente
(y,en) = 0 siempre que A, = A. Cuando A, = A se tiene que (e,) es una base del espacio de
soluciones de la ecuacion homogénea

x=ATx,

obteniendo asi como condicion necesaria y suficiente para que exista solucion que el término
independiente y, sea ortogonal a las soluciones de la ecuacion homogénea. En este caso las
soluciones vienen dadas por

x=y+ Z Cnén+ Z <y,€n>€n,

A'n:l l}ﬁéx
donde c,, son arbitrarios.
Los resultados anteriores incluyen y precisan la alternativa de Fredholm:

Corolario 3.3.1 (Alternativa de Fredholm para operadores normales compactos). Si T € B(H) es un
operador normal y compacto, o bien la ecuacion

x=ATx+y
tiene solucion iinica para todo y € H, o bien la ecuacion homogénea
x=ATx

tiene solucion no nula, en cuyo caso la ecuacion completa tiene solucion si y sélo si y es ortogonal a
todas las soluciones de la ecuacion homogénea.

3.4. Ecuaciones integrales de Fredholm

Existen muchos tipos de ecuaciones integrales, pero en esta seccién se discutirdn las ecuaciones
de Fredholm de segunda especie. Hay una relacion estrecha entre las ecuaciones integrales lineales,
que especifican relaciones lineales entre funciones de un espacio de funciones de dimensién infinita, y
las ecuaciones lineales, que establecen relaciones entre vectores de un espacio vectorial de dimensién
finita.

Definicion 3.4.1. Una ecuacion de Fredholm de segunda especie es una ecuacion

75)= [ KGs.0 500509 (33)

donde K, g son funciones conocidas y f es una funcion a determinar.
La funcion K : [a,b] x [a,b] — C recibe el nombre de niicleo.
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En lo sigue, se supone que K € L?([a,b] x [a,b]) y que satisface K(¢,s) = K(s,t) paratodo s, ¢ en
[a,b] (ndcleo simétrico). Con ello, el operador

T:fel’(ab]) - TfeL2(ab)),
dado por la férmula
b
Tf6) = [ Kl)f(ds, s labl,

es compacto y autoadjunto.
En términos de este operador, la ecuacién (3.3) se escribe

f=Tf+g,

0, equivalentemente,
I-T)f=¢g
Por tanto, si las funciones g, f € L*([a,b]), la ecuacién tiene solucién para una g dada si y sélo si
g €Im(I —T). En cuanto a la unicidad, hay a lo m4s una solucién para cada g de L*([a,b]) si y sélo
si I —T es inyectivo, lo que equivale a que 1 ¢ 6,(T'), es decir, a que 1 ¢ o(T') (por la compacidad de
T). Cuando 1 € 6,,(T), por ser T* = T, se tiene que Im(/ — T') = ker(/ — T)~. En resumen, se puede
enunciar:

Teorema 3.4.2 (Alternativa de Fredholm.). O bien la ecuacion de Fredholm (3.3) tiene una iinica
solucion, cualquiera que sea g € L*([a,b)), o bien la ecuacién homogénea

750 = [ KGs.)0) o

tiene solucion no nula, en cuyo caso la ecuacion completa tiene infinitas soluciones si y sélo si g es
ortogonal a todas las soluciones de la ecuacion homogénea.

También se puden obtener expresiones explicitas de la solucién. A continuacién se esboza un
método. Se introduce un pardmetro A y se considera la ecuacién

(I-AT)f =g.

Los valores de A para los que la correspondiente ecuacién homogénea tiene solucién no nula, los
valores caracteristicos de la ecuacion, que son los inversos de los valores propios no nulos de 7',
formarédn un conjunto finito o una sucesion (4,) tal que 1im,,_,e |A,,| = 0.

Para valores propios pequefos del pardmetro, la ecuacién se puede resolver por el método de

aproximaciones sucesivas: si |4 | < Tk
(I—AT) ' =+ AT+ AT+ A" T" -

(para la validez de este desarrollo, lo inico que se necesita es que 7' sea continuo). También el operador
T" es un operador integral, de nicleo

b
Ko(s,1) = / K(s,)Kp 1 (u,0)du (K = K),

y, sustituyendo, se obtiene el desarrollo de Neumann de la solucion:

b b
) =8)+4 [ Kls.)f@di+o+4" [ Kalsir) S+
(con convergencia en L*([a, b))).
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