000153041 001__ 153041
000153041 005__ 20251017144651.0
000153041 0247_ $$2doi$$a10.3389/fbioe.2025.1504769
000153041 0248_ $$2sideral$$a143453
000153041 037__ $$aART-2025-143453
000153041 041__ $$aeng
000153041 100__ $$aDahaghin, Ali
000153041 245__ $$aBiomechanical simulations of crystalline lens oscillations resulting from the changes in the gaze in an accommodated eye
000153041 260__ $$c2025
000153041 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153041 5203_ $$aPurpose: The goal of the study is to introduce a generic, versatile biomechanical model that aims to reproduce the dynamic wobbling phenomenon.
Methods: A systematic strategy is used, which includes a) capturing the in vivo data on a group of healthy volunteers, b) analyzing the changes in Purkinje images over time, and c) performing the combined biomechanical and optical simulations to develop the model that might be useful for understanding the mechanical behavior of the lens during wobbling and its influence on ocular dynamics.
Results: Examples of lens wobbling patterns for six measured eyes were presented, and parameters characterizing the oscillatory motion were determined, including frequency of oscillations, Q-factor, damping factor and time constant. The average values of these parameters are the following: frequency: 20.0 ± 2.4 Hz; Q-factor: 1.86 ± 0.44; damping factor: 0.27 ± 0.06; time constant: 0.11 ± 0.06 s. The data reproduced by means of simulations: frequency: 19.3 Hz; Q-factor: 2.17; damping factor: 0.23; time constant: 0.15 s. This comparison reveals a good agreement between the measured and reconstructed data with the values being within the standard deviation limits.
Conclusion: The developed generic model together with the presented methodology is able to reconstruct the typical crystalline lens wobbling dynamics with a satisfying accuracy. However, the observed intersubject variability highlights the need for personalized biomechanical models. The introduced model may constitute the basis for future individualization of the data, bringing broad perspectives for prospective investigations aimed to explain the biomechanical mechanisms within the eye.
000153041 536__ $$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON
000153041 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153041 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153041 700__ $$aSalimibani, Milad
000153041 700__ $$aBoszczyk, Agnieszka
000153041 700__ $$aJózwik, Agnieszka
000153041 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa, Jorge$$uUniversidad de Zaragoza
000153041 700__ $$aPrzezdziecka-Dolyk, Joanna
000153041 700__ $$aSiedlecki, Damian
000153041 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000153041 773__ $$g13 (2025), 1504769 [11 pp.]$$pFront. Bioeng. Biotechnol.$$tFrontiers in Bioengineering and Biotechnology$$x2296-4185
000153041 8564_ $$s2185936$$uhttps://zaguan.unizar.es/record/153041/files/texto_completo.pdf$$yVersión publicada
000153041 8564_ $$s2037966$$uhttps://zaguan.unizar.es/record/153041/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153041 909CO $$ooai:zaguan.unizar.es:153041$$particulos$$pdriver
000153041 951__ $$a2025-10-17-14:36:38
000153041 980__ $$aARTICLE