000153048 001__ 153048
000153048 005__ 20251017144623.0
000153048 0247_ $$2doi$$a10.1016/j.bioelechem.2025.108971
000153048 0248_ $$2sideral$$a143521
000153048 037__ $$aART-2025-143521
000153048 041__ $$aeng
000153048 100__ $$0(orcid)0000-0003-2848-170X$$aLópez-Alonso, Borja$$uUniversidad de Zaragoza
000153048 245__ $$aStudy on effect of electroporation combining high- and low-frequency harmonics
000153048 260__ $$c2025
000153048 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153048 5203_ $$aThe effects of electroporation are highly influenced by the shape of the applied waveform. This waveform shape can modify the transmitted energy and current flow patterns, impacting the electric field distribution, temperature rise among others. These interactions, along with their synergies with electroporation, are being explored across various industrial and research domains. For instance, in the biomedical field, high-frequency waveforms such as nanosecond pulses offer distinct advantages, while in the food industry, controlled temperature increases combined with electroporation are beneficial. However, in the medical field, the effects of combining high-frequency waveforms (in the MHz range) with low-frequency waveforms (in the kHz range commonly used in clinical electroporation) have not been thoroughly studied, though hypotheses have been proposed regarding their potential effects.
In this paper, proof of concept of the effect of the combination of two harmonics is presented using three different strategies to investigate new electroporation protocols. To support this study, a specialized electrical and thermal test bench was developed to control and evaluate the feasibility and potential of possible synergy between high- and low-frequency waveforms to electroporation using an in vitro model.
000153048 536__ $$9info:eu-repo/grantAgreement/ES/ISCIII/PI21-00440$$9info:eu-repo/grantAgreement/ES/MICIU/PDC2023-145837-I00$$9info:eu-repo/grantAgreement/ES/MICIU/PID2022-136621OB-I00
000153048 540__ $$9info:eu-repo/semantics/embargoedAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000153048 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000153048 700__ $$aPolajžer, Tamara
000153048 700__ $$aReberšek, Matej
000153048 700__ $$0(orcid)0000-0001-8399-4650$$aSarnago, Héctor$$uUniversidad de Zaragoza
000153048 700__ $$0(orcid)0000-0002-1284-9007$$aLucía, Óscar$$uUniversidad de Zaragoza
000153048 700__ $$aMiklavcic, Damijan
000153048 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000153048 773__ $$g165 (2025), 108971 [13 pp.]$$pBIOELECTROCHEMISTRY$$tBioelectrochemistry$$x1567-5394
000153048 8564_ $$s1913161$$uhttps://zaguan.unizar.es/record/153048/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-03-17
000153048 8564_ $$s2491575$$uhttps://zaguan.unizar.es/record/153048/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-03-17
000153048 909CO $$ooai:zaguan.unizar.es:153048$$particulos$$pdriver
000153048 951__ $$a2025-10-17-14:22:34
000153048 980__ $$aARTICLE