000153073 001__ 153073
000153073 005__ 20251017144554.0
000153073 0247_ $$2doi$$a10.3390/axioms14030214
000153073 0248_ $$2sideral$$a143615
000153073 037__ $$aART-2025-143615
000153073 041__ $$aeng
000153073 100__ $$0(orcid)0000-0003-4847-0493$$aNavascués, María A.
000153073 245__ $$aHammerstein Nonlinear Integral Equations and Iterative Methods for the Computation of Common Fixed Points
000153073 260__ $$c2025
000153073 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153073 5203_ $$aIn the first part of this article, a special type of Hammerstein nonlinear integral equation is studied. A theorem of the existence of solutions is given in the framework of L2-spaces. Afterwards, an iterative method for the resolution of this kind of equations is considered, and the convergence of this algorithm towards a solution of the equation is proved. The rest of the paper considers two modifications of the algorithm. The first one is devoted to the sought of common fixed points of a family of nearly asymptotically nonexpansive mappings. The second variant focuses on the search of common fixed points of a finite number of nonexpansive operators. The characteristics of convergence of these methods are studied in the context of uniformly convex Banach spaces. The iterative scheme is applied to approach the common solution of three nonlinear integral equations of Hammerstein type.
000153073 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153073 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153073 773__ $$g14, 3 (2025), 214 [17 pp.]$$pAxioms$$tAxioms$$x2075-1680
000153073 8564_ $$s314122$$uhttps://zaguan.unizar.es/record/153073/files/texto_completo.pdf$$yVersión publicada
000153073 8564_ $$s2069894$$uhttps://zaguan.unizar.es/record/153073/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153073 909CO $$ooai:zaguan.unizar.es:153073$$particulos$$pdriver
000153073 951__ $$a2025-10-17-14:12:31
000153073 980__ $$aARTICLE