000153101 001__ 153101
000153101 005__ 20250516123810.0
000153101 0247_ $$2doi$$a10.1016/j.biombioe.2025.107778
000153101 0248_ $$2sideral$$a143462
000153101 037__ $$aART-2025-143462
000153101 041__ $$aeng
000153101 100__ $$0(orcid)0000-0002-2591-1383$$aNavarro, África$$uUniversidad de Zaragoza
000153101 245__ $$aThe role of biogenic waste composition on pyrolysis: Part I – Char properties
000153101 260__ $$c2025
000153101 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153101 5203_ $$aThe yield and properties of char derived from the co-digested manure and its main macro-components, including organic (cellulose, lignin, and protein) components and an inorganic component (CaCO3), produced at different pyrolysis temperatures (350, 550, and 750 °C) have been studied. Experimental results obtained from a surrogate co-digested manure were compared with the theoretically calculated values to explore potential interactions between these macro-components. The char properties analyzed included elemental analysis, pH, FTIR, XPS, and specific surface area. The effect of pyrolysis temperature on many properties was similar, regardless of the precursor (macro-component). Increasing pyrolysis temperature led to higher C content (>90 wt% for cellulose char at 750 °C), pH (from (∼7 for cellulose at 350 °C to ∼13 for co-digested manure), and specific surface area, observing a marked development of ultramicroporosity and microporosity, especially at the highest pyrolysis temperature studied, 750 °C. An exception was observed for the char derived from proteins due to melting during pyrolysis. By far, the solids from the pyrolysis of cellulose and lignin exhibited the most microporosity development (SSDR ≥ 650 m2 g-1), reaching, at the highest temperature studied, values close to those of physically activated carbons. Pyrolysis of the surrogate co-digested manure revealed the occurrence of Maillard reactions and also showed an interesting interaction involving CaCO3. The CaCO3 thermal decomposition is promoted when it is embedded into the organic matrix, where the CO2 generated during decomposition favored the Boudouard reaction of C from the organic components. This results in a lower biochar yield, 32 wt% versus 37 wt% (expected value), and a higher development of microporosity in the char.
000153101 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PRE2020-093382$$9info:eu-repo/grantAgreement/ES/DGA/T22-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2022-137016OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2020-030593-I
000153101 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000153101 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153101 700__ $$0(orcid)0000-0001-7035-1955$$aFonts, Isabel$$uUniversidad de Zaragoza
000153101 700__ $$0(orcid)0000-0002-2924-3095$$aRuiz, Joaquín$$uUniversidad de Zaragoza
000153101 700__ $$0(orcid)0000-0002-4161-7088$$aCeamanos, Jesús$$uUniversidad de Zaragoza
000153101 700__ $$0(orcid)0000-0002-8704-9274$$aGil-Lalaguna, Noemí$$uUniversidad de Zaragoza
000153101 700__ $$0(orcid)0000-0002-3771-8994$$aMurillo, María Benita$$uUniversidad de Zaragoza
000153101 700__ $$0(orcid)0000-0002-4364-2535$$aGea, Gloria$$uUniversidad de Zaragoza
000153101 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000153101 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000153101 773__ $$g197 (2025), 107778 [9 pp.]$$pBiomass bioenergy$$tBIOMASS & BIOENERGY$$x0961-9534
000153101 8564_ $$s3246170$$uhttps://zaguan.unizar.es/record/153101/files/texto_completo.pdf$$yVersión publicada
000153101 8564_ $$s2451744$$uhttps://zaguan.unizar.es/record/153101/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153101 909CO $$ooai:zaguan.unizar.es:153101$$particulos$$pdriver
000153101 951__ $$a2025-05-16-12:36:51
000153101 980__ $$aARTICLE