000153105 001__ 153105
000153105 005__ 20250508095725.0
000153105 0247_ $$2doi$$a10.1016/j.biombioe.2025.107775
000153105 0248_ $$2sideral$$a143551
000153105 037__ $$aART-2025-143551
000153105 041__ $$aeng
000153105 100__ $$0(orcid)0000-0002-2591-1383$$aNavarro, África$$uUniversidad de Zaragoza
000153105 245__ $$aThe role of biogenic waste composition on pyrolysis: Part II – Char CO2 adsorption capacity
000153105 260__ $$c2025
000153105 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153105 5203_ $$aThe CO2 adsorption capacities (AC) of biochars obtained at 350, 550, and 750 °C from the main organic (cellulose, lignin, and protein) and inorganic (CaCO3) macro-components of biogenic waste, as well as from co-digested manure (CDM), have been determined for different CO2 concentrations (2–83 vol%) at 25 °C and atmospheric pressure. CO2 adsorption isotherms have been determined using two different experimental methodologies: thermogravimetric and fixed-bed dynamic adsorption tests, yielding similar results. The composition effect has been analyzed by comparing the adsorption performance of the chars derived from individual macro-components and the potential interactions occurring during their co-pyrolysis. Lignin and cellulose-derived chars showed higher CO2 retention (≈77 mg gbiochar−1) than those produced from protein (≈40 mg gbiochar−1). Pyrolyzed CaCO3 exhibited negligible CO2 adsorption. For surrogate_CDM chars, prepared at pyrolysis temperatures high enough to decompose CaCO3 in the organic matrix, experimental results showed a synergistic effect, with AC between 14 % and 47 % higher than theoretical predictions. This decomposition promoted the reverse Boudouard reaction and enhanced char microporosity. However, the improvement was insufficient to offset the dilution effect caused by the high CaCO3 content. AC results have been discussed based on the biochar textural and chemical properties, with ultramicroporosity being the key factor determining adsorption capacity. The AC of CDM-derived sorbents is similar to that of cellulose-derived, expressed per gram of waste (7–13 mg gwaste−1). Furthermore, the biochars retained at least 80 % of their initial AC after 3 adsorption-desorption cycles, indicating their potential for stable CO2 capture.
000153105 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PRE2020-093382$$9info:eu-repo/grantAgreement/ES/DGA/T22-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2022-137016OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2020-030593-I
000153105 540__ $$9info:eu-repo/semantics/embargoedAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000153105 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000153105 700__ $$0(orcid)0000-0001-7035-1955$$aFonts, Isabel$$uUniversidad de Zaragoza
000153105 700__ $$0(orcid)0000-0002-2924-3095$$aRuiz, Joaquín$$uUniversidad de Zaragoza
000153105 700__ $$0(orcid)0000-0002-4161-7088$$aCeamanos, Jesús$$uUniversidad de Zaragoza
000153105 700__ $$0(orcid)0000-0002-8704-9274$$aGil-Lalaguna, Noemí$$uUniversidad de Zaragoza
000153105 700__ $$0(orcid)0000-0003-4493-6540$$aÁbrego, Javier$$uUniversidad de Zaragoza
000153105 700__ $$0(orcid)0000-0002-4364-2535$$aGea, Gloria$$uUniversidad de Zaragoza
000153105 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000153105 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000153105 773__ $$g197 (2025), 107775 [12 pp.]$$pBiomass bioenergy$$tBIOMASS & BIOENERGY$$x0961-9534
000153105 8564_ $$s697183$$uhttps://zaguan.unizar.es/record/153105/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-04-23
000153105 8564_ $$s2263412$$uhttps://zaguan.unizar.es/record/153105/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2027-04-23
000153105 909CO $$ooai:zaguan.unizar.es:153105$$particulos$$pdriver
000153105 951__ $$a2025-05-08-09:55:14
000153105 980__ $$aARTICLE