000153112 001__ 153112
000153112 005__ 20251017144623.0
000153112 0247_ $$2doi$$a10.1371/journal.pone.0320205
000153112 0248_ $$2sideral$$a143572
000153112 037__ $$aART-2025-143572
000153112 041__ $$aeng
000153112 100__ $$aDahaghin, Ali
000153112 245__ $$aEffect of intraocular pressure on crystalline lens oscillations: a computational study using porcine eye model
000153112 260__ $$c2025
000153112 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153112 5203_ $$aThis study addresses a crucial knowledge gap by investigating the impact of intraocular pressure (IOP) on the wobbling characteristics of the crystalline lens in an ex vivo setting. It utilizes previous validated computational porcine eye models, which offer anatomical and physiological similarities to the human eye. These models incorporate fluid-structure interaction (FSI) to simulate the mechanical interaction between the fluids of the eye and the solid structures. Simulations were conducted under constant mechanical properties and boundary conditions, allowing for precise quantification of lens wobbling behavior with varying IOP levels. Various trends in lens displacement were observed at various IOP levels, revealing significant variations in both magnitude and duration. The results demonstrate the central role of intraocular pressure in influencing lens overshooting during rotational motion, with potential clinical implications. The observed lens displacement patterns, particularly in conditions like glaucoma, underscore the importance of considering IOP as a critical factor in understanding ocular biomechanics. Beyond immediate biomechanical relevance, the study’s findings suggest the potential use of the Purkinje imaging system as a non-invasive method for IOP estimation based on lens overshoot as an “inverse solution” strategy. This non-invasive imaging technique offers a promising alternative to traditional methods, minimizing patient discomfort and potentially enhancing measurement precision.
000153112 536__ $$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON
000153112 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153112 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153112 700__ $$aSalimibani, Milad
000153112 700__ $$aBoszczyk, Agnieszka
000153112 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa, Jorge$$uUniversidad de Zaragoza
000153112 700__ $$aSiedlecki, Damian
000153112 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000153112 773__ $$g20, 3 (2025), e0320205 [11 pp.]$$pPLoS One$$tPLoS ONE$$x1932-6203
000153112 8564_ $$s895824$$uhttps://zaguan.unizar.es/record/153112/files/texto_completo.pdf$$yVersión publicada
000153112 8564_ $$s2451508$$uhttps://zaguan.unizar.es/record/153112/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153112 909CO $$ooai:zaguan.unizar.es:153112$$particulos$$pdriver
000153112 951__ $$a2025-10-17-14:22:35
000153112 980__ $$aARTICLE