RoePINNs: An integration of advanced CFD solvers with Physics-Informed Neural Networks and application in arterial flow modeling
Resumen: The characterization of forward and inverse problems describing blood flow dynamics plays a decisive role in numerous biomedical applications. These systems can be modeled using one-dimensional (1D) approaches leading to a hyperbolic system of equations with source terms. Their numerical discretization, associated to the spatial variation of mechanical and geometrical properties, requires advanced numerical solvers that ensure both stability and an accurate description of the dynamics of the system. In this work, we present RoePINNs, a hybrid framework for the embedding of advanced Computational Fluid Dynamics (CFD) solvers into Physics-Informed Neural Networks (PINNs), and give examples of application to Burgers’ equation as well as the propagation of nonlinear waves in elastic arteries, both under the presence of geometric-type source terms, for forward and inverse problems. We demonstrate that Augmented Riemann solvers can be incorporated into the PINN framework with straightforward adjustments to the hyperparameters, providing a promising alternative to automatic differentiation (AD), especially in cases where the solution exhibits strong nonlinearities and physical constraints are required. Benefits of the proposed RoePINN compared with the vanilla PINN based in AD are twofold: on the one hand, this hybrid approach employs numerical differentiation by means of support points in the surroundings of the collocation points, hence the robustness, generalization capacity and tunability of the PINNs are, in most cases, largely enhanced. On the other hand, the RoePINN incorporates the numerical solver, hence it is also capable of capturing sharp discontinuities with an order-of-magnitude improvement in accuracy compared with the vanilla version.
Idioma: Inglés
DOI: 10.1016/j.cma.2025.117933
Año: 2025
Publicado en: Computer Methods in Applied Mechanics and Engineering 440 (2025), 117933 [32 pp.]
ISSN: 0045-7825

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-128972OA-I00
Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2023-148975OB-I00
Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2023-150074NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/CNS2023-143599
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031413-I
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)


Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2025-10-17-14:12:08)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Teoría de la Señal y Comunicaciones
Artículos > Artículos por área > Mecánica de Fluidos



 Registro creado el 2025-04-11, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)