000153169 001__ 153169
000153169 005__ 20251017144649.0
000153169 0247_ $$2doi$$a10.1016/j.cattod.2025.115262
000153169 0248_ $$2sideral$$a143633
000153169 037__ $$aART-2025-143633
000153169 041__ $$aeng
000153169 100__ $$0(orcid)0000-0003-0395-0143$$aMercader, V.D.$$uUniversidad de Zaragoza
000153169 245__ $$aOptimizing Sorption Enhanced Methanation (SEM) of CO2 with Ni3Fe + LTA 5 A mixtures
000153169 260__ $$c2025
000153169 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153169 5203_ $$aThis study investigates the integration of catalytic CO2 methanation and water adsorption using a Ni-Fe-based catalyst and LTA 5 A zeolite to enhance methane production via the Sabatier reaction. By mitigating thermodynamic limitations through in situ water removal, the research explores key operational parameters, including temperature, space velocity, and H₂:CO₂ feed ratios, to optimize process performance. The findings highlight that a temperature of 300 °C, a WHSV of 1.50 × 104 (STP) mL·gcat−1·h−1 (4.86 gCO2·gcat⁻¹·h⁻¹), and a H₂:CO₂ molar ratio equal to 5:1, result in enhanced methane yields, shifting thermodynamic equilibrium due to water sorption during initial stages. The presence of methane in the feed, representative of a biogas, demonstrated negligible effects on methane yields under optimal conditions, underscoring the method’s feasibility for direct biogas upgrading. While the process achieved significant intensification, challenges such as loss of activity of the bed of solids (catalyst plus water adsorbent) were identified, necessitating further advancements in both catalyst and adsorbent stability, as well as a deeper study on their interaction. The study provides a pathway for scaling up adsorption-enhanced methanation technologies to achieve renewable methane production, addressing the dual goals of carbon management and energy storage.
000153169 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-136947OB-I00$$9info:eu-repo/grantAgreement/ES/DGA/T43-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PRE2020-095679
000153169 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153169 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153169 700__ $$0(orcid)0000-0001-6452-4258$$aAragüés-Aldea, P.$$uUniversidad de Zaragoza
000153169 700__ $$0(orcid)0000-0003-2898-1085$$aDurán, P.$$uUniversidad de Zaragoza
000153169 700__ $$0(orcid)0000-0003-3181-195X$$aFrancés, E.$$uUniversidad de Zaragoza
000153169 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000153169 700__ $$0(orcid)0000-0002-8383-4996$$aPeña, J.A.$$uUniversidad de Zaragoza
000153169 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000153169 7102_ $$15005$$2X$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cProy. investigación HKA
000153169 773__ $$g453 (2025), 115262 [8 pp.]$$pCatal. today$$tCatalysis Today$$x0920-5861
000153169 8564_ $$s1053696$$uhttps://zaguan.unizar.es/record/153169/files/texto_completo.pdf$$yVersión publicada
000153169 8564_ $$s2467354$$uhttps://zaguan.unizar.es/record/153169/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153169 909CO $$ooai:zaguan.unizar.es:153169$$particulos$$pdriver
000153169 951__ $$a2025-10-17-14:35:42
000153169 980__ $$aARTICLE