000153201 001__ 153201
000153201 005__ 20251017144554.0
000153201 0247_ $$2doi$$a10.1099/mic.0.048231-0
000153201 0248_ $$2sideral$$a116210
000153201 037__ $$aART-2011-116210
000153201 041__ $$aeng
000153201 100__ $$0(orcid)0000-0001-6435-3540$$aSevilla, E.
000153201 245__ $$aIdentification of three new antisense RNAs in the fur locus from unicellular cyanobacteria.
000153201 260__ $$c2011
000153201 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153201 5203_ $$aThe interplay between Fur (ferric uptake regulator) proteins and small, non-coding RNAs has been described as a key regulatory loop in several bacteria. In the filamentous cyanobacterium Anabaena sp. PCC 7120, a large dicistronic transcript encoding the putative membrane protein Alr1690 and an α-furA RNA is involved in the modulation of the global regulator FurA. In this work we report the existence of three novel antisense RNAs in cyanobacteria and show that a cis α-furA RNA is conserved in very different genomic contexts, namely in the unicellular cyanobacteria Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803. Syα-fur RNA covers only part of the coding sequence of the fur orthologue sll0567, whose flanking genes encode two hypothetical proteins. Transcriptional analysis of fur and its adjacent genes in Microcystis unravels a highly compact organization of this locus involving overlapping transcripts. Maα-fur RNA spans the whole Mafur CDS and part of the flanking dnaJ and sufE sequences. In addition, Mafur seems to be part of a dicistronic operon encoding this regulator and an α-sufE RNA. These results allow new insights into the transcriptomes of two unicellular cyanobacteria and suggest that in M. aeruginosa PCC 7806, the α-fur and α-sufE RNAs might participate in a regulatory connection between the genes of the dnaJ-fur-sufE locus.
000153201 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153201 590__ $$a3.061$$b2011
000153201 591__ $$aMICROBIOLOGY$$b42 / 113 = 0.372$$c2011$$dQ2$$eT2
000153201 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000153201 700__ $$aMartín-Luna, B.
000153201 700__ $$0(orcid)0000-0002-0531-0943$$aGonzález, A.$$uUniversidad de Zaragoza
000153201 700__ $$0(orcid)0000-0001-8841-6593$$aGonzalo-Asensio, JA.
000153201 700__ $$0(orcid)0000-0002-2742-3711$$aPeleato, ML.$$uUniversidad de Zaragoza
000153201 700__ $$0(orcid)0000-0001-8644-4574$$aFillat, MF.$$uUniversidad de Zaragoza
000153201 7102_ $$11002$$2412$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Fisiología Vegetal
000153201 7102_ $$11002$$2X$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cProy. investigación DEA
000153201 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000153201 773__ $$g157, 12 (2011), 3398-3404$$pMicrobiology (Read.)$$tMicrobiology (United Kingdom)$$x1350-0872
000153201 8564_ $$s399995$$uhttps://zaguan.unizar.es/record/153201/files/texto_completo.pdf$$yPostprint
000153201 8564_ $$s743590$$uhttps://zaguan.unizar.es/record/153201/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000153201 909CO $$ooai:zaguan.unizar.es:153201$$particulos$$pdriver
000153201 951__ $$a2025-10-17-14:12:42
000153201 980__ $$aARTICLE