000153207 001__ 153207
000153207 005__ 20251017144624.0
000153207 0247_ $$2doi$$a10.1016/j.est.2025.115799
000153207 0248_ $$2sideral$$a143011
000153207 037__ $$aART-2025-143011
000153207 041__ $$aeng
000153207 100__ $$aTajik Jamalabad, Milad$$uUniversidad de Zaragoza
000153207 245__ $$aNumerical analysis of solidification of paraffin-type PCMs by using customary fixed-grid methods
000153207 260__ $$c2025
000153207 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153207 5203_ $$aA numerical study is conducted to predict temperature measurements during the solidification of a commercial paraffin-type PCM in a vertical cylinder under T-history conditions. Two fixed-grid techniques are implemented: the enthalpy-porosity formulation and the Apparent Heat Capacity (AHC) method. As it is known, the first, originally devised for metals and alloys, raises questions about its applicability to other materials. Additionally, there may be uncertainties surrounding the assignment of internal parameters when representing the transitional “mushy” region. On the other side, there are limited publications that utilize the AHC method, and even fewer have addressed and compared both methods. Phase-change properties of the paraffin material are determined through the use of differential scanning calorimetry (DSC): phase change temperature range, latent heat, and specific heat capacity vs. temperature curve (). Results show that there is significant disagreement between measurements and simulation results for both methods. The enthalpy-porosity technique may not be entirely suitable for accurately modeling phase changes in paraffin-type PCM. Furthermore, while the AHC method can effectively predict the initial and final stages of solidification, it tends to struggle with accurately simulating the mushy zone. An interesting observation is that in the AHC method, the cooling rate is a critical factor influencing the accuracy of solidification simulations and results depend very much on the DSC curve introduced, determined under a constant cooling rate, which is indeed variable during the experiment
000153207 536__ $$9info:eu-repo/grantAgreement/EUR/AEI/MCINN/TED2021-131397B-I00
000153207 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000153207 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153207 700__ $$aMartínez, Arnold
000153207 700__ $$aCarmona, Mauricio
000153207 700__ $$0(orcid)0000-0001-6665-5331$$aCortés, Cristóbal$$uUniversidad de Zaragoza
000153207 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000153207 773__ $$g114 (2025), 115799$$pJ. energy storage$$tJournal of Energy Storage$$x2352-152X
000153207 8564_ $$s2496416$$uhttps://zaguan.unizar.es/record/153207/files/texto_completo.pdf$$yVersión publicada
000153207 8564_ $$s2683170$$uhttps://zaguan.unizar.es/record/153207/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153207 909CO $$ooai:zaguan.unizar.es:153207$$particulos$$pdriver
000153207 951__ $$a2025-10-17-14:23:13
000153207 980__ $$aARTICLE