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Resumen

Esta tesis doctoral tiene como objetivo la monitorizacién de la combustion de gas de alto horno a
partir del desarrollo de un sistema de vision, basado en el procesamiento imagenes en color con
técnicas de inteligencia artificial. Esta alternativa avanzada de diagndstico de la combustion tiene
un alto potencial para incrementar la precision y rapidez de los sensores convencionales de
temperatura y gases de combustion; una mejora de especial interés para la combustién de gas de
alto horno y su mayor sensibilidad ante perturbaciones de operacién. Con el desarrollo del
sistema de visién se busca promover el consumo de gas de alto horno, incrementando la
valorizacion de esta corriente residual generada en grandes cantidades durante la produccién del
acero, reduciendo asi el consumo de combustibles fésiles e incrementando la descarbonizaciéon y
sostenibilidad de los procesos siderurgicos.

El trabajo de investigacion incluye varias aportaciones alineadas con el objetivo de la tesis,
descritas a continuaciéon. Se ha analizado el estado del arte para la monitorizacién visual de
llamas, incluyendo la extraccién de caracteristicas de imagen y su modelado con técnicas de
aprendizaje automatico. Se han realizado tres campafias experimentales centradas en la mezcla
de combustible dptima para la valorizacién del gas de alto horno, adquiriendo imagenes de llama
con distinta composicion de combustible y relacién aire-combustible, en escala de laboratorio y
semiindustrial. Las imagenes se han procesado para extraer variables numéricas y entrenar
modelos con técnicas de aprendizaje automatico en la prediccién del exceso de aire en la
combustion.

A partir del trabajo realizado, se extraen varios resultados principales. En primer lugar, se ha
conseguido la combustion en laboratorio de mezclas de gases con diferencias significativas en su
poder calorifico, utilizando una tnica configuraciéon de quemador, al igual que en condiciones
industriales. En segundo lugar, tanto para la escala de laboratorio como para la semiindustrial, se
ha confirmado la relacién del exceso de aire de la combustiéon con al menos 51 caracteristicas
extraidas de imagenes de color. Por ultimo, con las técnicas de modelado empleadas se ha
conseguido predecir correctamente el exceso de aire para mas del 95 % de las imagenes en la
mayoria de las condiciones, obteniendo una precision del 79 % en el peor escenario. El
procesamiento definido en esta tesis ha permitido detectar pequefias variaciones en la
combustién y en las imagenes, alcanzando una precision superior a la de trabajos previos e
incluso a la del ojo humano.

Esta tesis ha propuesto, estudiado y validado un sistema de visién para la monitorizacién de la
combustién de gas de alto horno. Para completar su madurez tecnoldgica y alcanzar su
implementacién final en la industria, esta tesis propone la adaptaciéon de su procesamiento de
imagenes para la supervisién individual de varios quemadores con una inica camara.



Nomenclatura y acrénimos

Nomenclatura

[02]fs Concentracion de oxigeno en los gases de salida (%v)
Tee Temperatura de la cAmara de combustion (°C)

Acronimos

BFG Blast Furnace Gas

COG Coke Oven Gas

EA Exceso de Aire

LR Logistic Regression

MILD  Moderate or Intense Low Oxygen Dilution
MLP MultiLayer Perceptron

PCI Poder Calorifico Inferior

SE Serie de Ensayos

SVM Support Vector Machine
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1. Introduccién general

El objetivo de esta tesis doctoral es el desarrollo de un sistema de monitorizacién para la
combustidn de gas de alto horno, a partir de la adquisicién y procesamiento de imagenes en
color con técnicas de inteligencia artificial. Las actividades principales de este trabajo
incluyen la realizacidn de pruebas experimentales, el procesamiento de imagenes, el ajuste
de modelos predictivos y el andlisis de resultados.

La tesis se enmarca en el programa de doctorado de Energias Renovables y Eficiencia
Energética (Universidad de Zaragoza), en las lineas de investigacion de eficiencia energética
y procesos térmicos. El trabajo incluye un desarrollo semiindustrial en colaboracién con
ArcelorMittal, asi como la difusién de los resultados a través de articulos, por lo que se
presenta en la modalidad de doctorado industrial y mediante compendio de publicaciones.

La memoria se estructura en tres bloques principales. En primer lugar, la introduccién
general recoge la revision bibliografica, objetivos, unidad tematica y trabajos realizados.
Posteriormente se incluyen los articulos elaborados en el marco de la tesis, y, por tltimo, se
presentan las aportaciones y las conclusiones.

La tesis se fundamenta en la necesidad de incrementar la sostenibilidad de los procesos de
produccion, un problema critico para las industrias con un alto consumo de energia, como
la siderurgia. Una de las estrategias industriales para afrontar este desafio es la valorizacion
de corrientes residuales, aprovechando por ejemplo el subproducto sidertirgico del gas de
alto horno como combustible alternativo. Sin embargo, la combustion de este gas tiene una
menor estabilidad, por lo que se pueden producir desviaciones respecto a las condiciones
nominales. Estas perturbaciones reducen la eficiencia en la operacién del horno, y en el peor
escenario, extinguen o hacen retroceder la llama, incrementando también los tiempos de
parada. En este sentido, se requiere una monitorizacién precisa para detectar esos cambios,
reduciendo el tiempo de operacién en condiciones sub6ptimas, y aumentando la eficiencia
global del proceso. En el &mbito de la combustidn, los sistemas de visién son una alternativa
avanzada de supervision, con un alto potencial para el control de procesos complejos. Esta
tesis tiene como objetivo final dar respuesta a las necesidades de la planta de ArcelorMittal
en Asturias, que busca promover la valorizacion del gas de alto horno mediante una mejor
monitorizacién de su combustion.

1.1.Revision bibliografica
1.1.1. Situacidn actual

La sociedad actual necesita un modelo energético sostenible. Para conseguirlo, la Unién
Europea ha marcado unos objetivos ambiciosos de descarbonizacién, con la reduccién de
emisiones en un 55 % para 2030, y la neutralidad climatica para 2050. En este desafio, las
acerias tienen un papel clave debido a dos de sus caracteristicas. En primer lugar, la
siderurgia es una industria de alto consumo con elevadas emisiones, que globalmente
representa el 8 % de la demanda energética y el 7 % de las emisiones directas de CO; en el
sistema energético [1]. En segundo lugar, el acero es crucial para nuestra sociedad, debido
a su uso en la construccion de edificios e infraestructuras, asi como en la fabricacion de
vehiculos, la estructura de paneles fotovoltaicos, y el eje y la caja de cambios de
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aerogeneradores [2]. En niimeros, el acero es el material con la tercera mayor producciéon
global (1900 millones de toneladas anuales), siendo Europa el segundo mayor fabricante
con un 9 % de la produccion total.

Para incrementar la descarbonizaciéon de la industria se pueden estudiar distintas
alternativas, como la flexibilidad eléctrica [3] y la recuperacion de calor residual [4]. En
Europa, la mayor parte del acero se produce a través de dos rutas: el alto horno-horno de
oxigeno basico y el horno de arco eléctrico, responsables de alrededor del 60 y 40 % de la
produccion, respectivamente [5]. En el caso de laruta de alto horno-horno de oxigeno basico
(Figura 1), las emisiones también se pueden reducir haciendo modificaciones en los
procesos productivos, como por ejemplo con el uso de biochar en vez de combustibles
fésiles [7], o hidrégeno en lugar de carbén o coque para la reduccion quimica del mineral de
hierro en el alto horno [8]. No obstante, estas tecnologias tienen actualmente un coste
elevado, y su implementacién requiere de desarrollos adicionales. Otra alternativa para la
descarbonizacién es la valorizaciéon de corrientes residuales [9], que en el caso de las
siderurgias se centra en el uso de sus principales gases subproducto como combustible.
Frente al uso de biochar e hidrégeno, esta estrategia de reducciéon de emisiones tiene la
ventaja de que los gases combustibles se generan en elevadas cantidades en el propio
proceso de produccion del acero, pudiendo usarse en la misma aceria donde se generan, y
reduciendo asi el consumo de gas natural e incrementando la sostenibilidad en las acerias
europeas [10]. Por ello, la optimizaciéon de la combustién de estos gases es de vital
importancia para la descarbonizacidn siderurgica.

Process inputs Process waste materials
Cobe ovens
Coke Oven Gas
Coal £ 2 ™\ Dust, CO, H;S, tar, phenol, ammonia, SOx,
Coke  Flaxes irom ore NOx, cyanide, BOD, SS, PAH, BTX
Fluxes, ore fines, coke fines, flue dust, 7% Flue gases, dust, CO, HCI, SOx, NOx,
waste material o sulphides, fluorides, heavy metal, PAH,
—— PCCD/F, PCB
pe sinter plant
Pellets, iron ore, sinter, coke, limestone, Injectarts d Blast Furnace Gas
slag W, Flue gases, sludge, phenol dust, NOx,
Blast furnaces

sulphides, cyanides, H;,S, slag

Mg, CaC, Ca,0, carrier gas, hot metal - .« - Flue dust, fume, slag
Teansfor adle Torpedo ladle
1 Fume, slag
o
Oxygen, hot metal, scrap, lime, fluorspar, Mixer [ pe— Basic Oxygen Furnace Gas

coke = furmace Sludge, basic slag, fine dust (high iron
content), CO, Zn, fume

& x L

-h. —e

Liquid steel, alloys wle Wewo e e

CASOB Ladle Vacuum  Ladle stiring,
furmace degasser alloy injoction

Fume, H,, CO,, CO, Mn, Zn, fluorides, slag

o 4 Continuous
Liquid steel, alloys and powders 2, casting Scale, slag, scrap, oil
ingot or Scarfing
casting O
Steel and oils o S | SOx, NOx, scale, oil, fume, emulsion
Rolling mills

Figura 1. Resumen de la ruta del alto horno-horno de oxigeno bdsico [6].



En la ruta del alto horno-horno de oxigeno basico se generan tres corrientes residuales de
gas: el gas de horno de coque (Coke Oven Gas, COG), el gas de horno de oxigeno basico, y el
gas de alto horno (Blast Furnace Gas, BFG) [6]. La composicion de estas corrientes depende
de las propiedades de la materia prima utilizada y de las condiciones de operacion de los
hornos, por lo que sus valores fluctiian. Los rangos tipicos de composicién y Poder Calorifico
Inferior (PCI) de estos gases se incluyen en la Tabla 1. A modo de ejemplo, se ha estimado
que la valorizacién del gas de alto horno generado en la planta de ArcelorMittal Asturias
proporcionaria ahorros anuales en la produccién del acero de 200 GWh de energia
consumida, 50.000 toneladas de emision equivalente de CO, y 10 millones de euros de coste
econoémico [11], [12]. Considerando el volumen de acero producido a escala europea [1],
[5], 1a replicacion de esta valorizacién alcanzaria un ahorro total 30 veces mayor.

Tabla 1. Rangos tipicos de composicién volumétrica y poder calorifico del gas de horno de coque, gas de alto
horno, y gas de horno de oxigeno bdsico [6].

Corriente Gasdehornode Gas de alto Gas de horno de
residual coque (COG) Horno (BFG) oxigeno basico
[Hz] (%v.) 36-62 1-8 2-10

[CO] (%v.) 3-6 19 - 27 55-80

[CH4] (%v.) 16 - 27 - -

[CH,] (%V.) 1-2 - -

[CO2] (%vV.) 1-5 16 - 26 10-18
[Nz +Ar] (%v.) 2-6 44 - 58 8-26
PCI (MJ/m3N)  9-19 3-4 7-10

1.1.2. Combustion del gas de alto horno

El gas de alto horno posee una elevada concentracion de gases inertes, y debido a ello, un
reducido poder calorifico, diez veces menor al del gas natural. Por lo tanto, el uso del gas de
alto horno en procesos de alta temperatura requiere del uso de estrategias adicionales,
como su mezcla con combustibles con un mayor poder calorifico (gas natural o gas de horno
de coque) [6], asi como el precalentamiento del aire de combustion y el gas de alto horno a
temperaturas entre 250 - 450 °C, y mas recientemente, el empleo de quemadores de
oxicombustion y regenerativos [13]. Otra consecuencia del bajo poder calorifico del gas de
alto horno es su mayor inestabilidad en la combustiéon [14], [15]. Por lo tanto, las
perturbaciones en la operaciéon de quemadores pueden resultar en desviaciones mas graves
que para otros combustibles con una mayor densidad energética. Debido a ello, la
combustidn del gas de alto horno se beneficia de la implementacién de monitorizaciones
mas precisas, con el objetivo de detectar pequefias desviaciones en la operacion y realizar
una correccion mas rapida.



1.1.3. Sistemas de vision e inteligencia artificial para la combustion

Los hornos industriales tienen miultiples quemadores (Figura 2), y el control de su
rendimiento se centra en la medida de la temperatura y las concentraciones de oxigeno y
monoxido de carbono en los gases de combustion. Ademas, las concentraciones de 6xidos
de nitrégeno y didxido de azufre se monitorizan para controlar contaminantes. Los sensores
tradicionales permiten monitorizar la operacién del horno en distintos puntos del horno,
pero la medida en todos los quemadores no es viable econ6micamente. Por ello, los gases
de combustion se caracterizan Unicamente a la salida del horno, realizando el control a
partir de una variable promedio, lo que dificulta la deteccién de desviaciones en
quemadores individuales.

Figura 2. Horno industrial con varios quemadores [16].

En contraposicion a los sensores convencionales, una cdmara permitiria monitorizar la
operacidn del horno en distintos puntos, cuya informacién se puede registrar de manera
simultdnea con la adquisicién de imagenes. De esta manera, un Unico sistema de visiéon
podria controlar individualmente varios quemadores, con el objetivo de reducir los costes
de operaciéon y mantenimiento del horno. Los sistemas de visién capturan y procesan
imagenes de llama para estimar variables de combustién, utilizando técnicas de inteligencia
artificial. En los ultimos afios, esta tecnologia se ha postulado como una alternativa
avanzada para el diagndstico de la combustion, por lo que ostenta un gran potencial para
monitorizar la compleja operacion de los quemadores con gas de alto horno.

Para describir mas en detalle el funcionamiento de los sistemas de vision, esta tesis se basa
en la nomenclatura utilizada en [17]. El concepto de inteligencia artificial se relaciona con
dispositivos sintéticos capaces de comportarse como humamos, o incluso superarlos,
aunque los sistemas actuales se centran en tareas concretas y limitadas. Dentro de este
campo, la vision artificial se especializa en actividades con una componente visual
significativa, cuya aplicacién en la industria se conoce como visiéon de maquina. Estas
ultimas técnicas se dividen a su vez en varias tareas (Figura 3): adquisiciéon de imagenes,
preprocesamiento, segmentacién, extraccién de caracteristicas e interpretacidon. La
segmentacion agrupa los pixeles de la imagen en distintas clases, lo que permite caracterizar
la informacion en varias regiones de la imagen. En la fase de interpretacion, las propiedades
de los pixeles se asocian con variables del proceso industrial, cuya relacién se puede
modelar empiricamente utilizando otra rama de la inteligencia artificial: el aprendizaje
automatico. A continuacién, se revisa la aplicacién de la vision de maquina para la
monitorizacién de la combustién.
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Figura 3. Operaciones realizadas por las aplicaciones de vision de mdquina, siguiendo la terminologia de [17].

1.1.4. Adquisicion de imagenes de llamas en procesos de combustion

Las imagenes de llama capturadas por una camara dependen de su energia radiante, que a
su vez se relaciona con las condiciones de combustién. Por un lado, las llamas de difusién se
caracterizan por la radiacién continua de cuerpo gris emitida por las particulas de hollin
[18], [19], cuya alta emisividad proporciona un comportamiento similar al de cuerpo negro.
Por otro lado, las llamas de premezcla tienen una emisién en longitudes de onda discretas,
asociadas a especies intermedias en la combustion (quimioluminiscencia de llama). En este
caso, la energia se emite por la transiciéon de dichas especies de estados energéticos
excitados a fundamentales, resultando en una radiaciéon azulada que depende de la
composicion de los reactivos [19] y de la relacion aire-combustible [19], [20]. A modo de
ejemplo, la Figura 4 muestra espectros de combustion del metano, etileno, etano y propano.
El estudio de la quimioluminiscencia de llama se centra en el analisis de las emisiones de
especies quimicas concretas, principalmente OH*, CH* C,* y CO.*. Mientras que el OH*
emite radiacion en longitudes de onda en el rango ultravioleta (en torno a 310 nm) [21]-
[26], el CH* (430 nm) [21]-[26] y C2* (470 y 515 nm) [21], [23], [25] lo hacen en el rango
visible. A diferencia de estos radicales, el CO,* presenta una radiacion distribuida a lo largo
del rango ultravioleta-visible (350-610 nm) [21], [22], [24], [25].
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Figura 4. Espectros de la combustién de varios hidrocarburos, para un quemador de premezcla y una relacién
volumétrica aire-combustible de 8.57 [27].

Para estudiar una aplicaciéon especifica de monitorizacién de la combustién, se debe
identificar la radiaciéon emitida por las llamas, para luego escoger un sensor con la
sensibilidad espectral adecuada. Existen distintos tipos de sensores, entre los que se
encuentran los detectores de llama (para los rangos ultravioleta o infrarrojo), los
espectrometros, y mas recientemente, las cAmaras digitales. Con esta ultima tecnologia, se
pueden capturar imagenes tanto en el rango visible, como el ultravioleta e infrarrojo
(termografia). También se dispone de filtros de paso banda, para adquirir inicamente la
radiacién asociada a un radical de la combustién [28]-[32]. En los Gltimos afios ha aparecido
la tecnologia hiperespectral, que también permite obtener informacioén detallada de cada
longitud de onda sin necesidad de usar filtros adicionales, aunque a expensas de un coste
superior [33].

Las aplicaciones de monitorizacién de la combustion pueden tener distintos requisitos de
operacion. En concreto, se distingue entre el uso para campafias puntuales en laboratorio y
la monitorizaciéon continua en la industria, en la que se instalan equipos adicionales de
refrigeracion, control y extracciéon para cumplir con sus requisitos de operacién mas
exigentes [34]. Actualmente se utilizan sistemas de visién comerciales en varias industrias,
como las del vidrio y cemento (Figura 5), facilitando las labores de operacion y
mantenimiento. Estos equipos también pueden incluir el procesamiento e interpretacion de
las imagenes, aunque con métodos mas bdasicos y menos personalizados que los
considerados en el estado del arte.



(a)

(b)

Figura 5. Imdgenes postprocesadas y capturadas por (a) una cdmara termogrdfica en un horno de fusion de
vidrio [35], y (b) una cdmara de color en un horno rotatorio de cemento [36].

1.1.5. Preprocesamiento, segmentacion y extraccion de caracteristicas de
imagenes de llama

La etapa de preprocesamiento tiene un caracter de apoyo a tareas posteriores en las
aplicaciones de vision de maquina, y puede incluir operaciones como la transformacion del
espacio de color [37], [38], y el filtrado de ruido [39], [40]. Después del preprocesamiento
se puede realizar la operaciéon de segmentacion para identificar los pixeles de llama,
eliminando la influencia de factores ajenos en el diagndstico visual [37], [41]. En la practica,
las llamas pueden tener una geometria difusa y variable, por lo que la segmentacion puede
ser imprecisa y reducir la eficacia de la monitorizacién. Por ello, también existe la
alternativa de prescindir de la segmentacion y supervisar de manera general la imagen [40],
[42].

Para la caracterizacién de las imagenes de llama se dispone de un elevado numero de
propiedades visuales, por lo que la mayoria de los estudios escoge manualmente un
conjunto limitado y especifico de variables para su caso. No obstante, los parametros mas
comunes se basan en las mismas propiedades de la llama: intensidad [37], [40], [41], [43]-
[47], textura [40], [42] y geometria [37], [38], [48], [49]. Las caracteristicas de intensidad
incluyen por ejemplo la media o desviacion estandar de los valores de intensidad de los
pixeles. Las variables de textura suelen basarse en la matriz de coocurrencia de niveles de
gris, que considera tanto la intensidad como la distribucién espacial de los pixeles. Dicha
matriz cuantifica el nimero combinaciones de intensidad para parejas de pixeles segtin una
distancia y direccién definidas [42], [50]. Por ultimo, las caracteristicas de geometria
engloban pardmetros como la longitud o area de la llama, por lo que requieren una
segmentacion previa de la llama, a diferencia de las caracteristicas de intensidad y textura.



1.1.6. Interpretacion de caracteristicas de llama

La etapa final de los sistemas de vision es la transformacion de las propiedades de imagen
en variables relacionadas con la combustion. Las caracteristicas visuales de las llamas se
han utilizado para modelar velocidades de llama [51], [52] y parametros asociados a la
relacién aire-combustible, como las ratios de aire primario, secundario y terciario [40], y la
concentraciéon de oxigeno [42]. Ademads, el bloque de interpretaciéon también puede
identificar condiciones de combustién complejas, definidas por la combinacién de varios
parametros [53], [54].

Las técnicas convencionales de andlisis de datos tienen dificultades con volumenes elevados
y relaciones complejas, como es el caso del modelado de la combustién a partir de imagenes.
Una alternativa con un alto potencial para resolver este problema es el aprendizaje
automatico, que utiliza distintos algoritmos de modelado como los arboles de decision [53],
las maquinas de vectores soporte [40], [53], [54] y las redes neuronales artificiales [40],
[53], [54]. Aparte de las imagenes de llama, los modelos de aprendizaje automatico pueden
usar informacién diversa del proceso de combustidn, para por ejemplo optimizarla relacién
entre emisiones y eficiencia [55], o predecir el comportamiento dinamico [56], las
emisiones [57], la viscosidad del combustible [58] o la temperatura del horno a largo plazo
[59]. El aprendizaje automatico se ha empleado como una herramienta transversal de
modelado en campos de estudio muy diversos, como la agricultura [60], la vigilancia [61],
la ingenieria bioquimica [62], [63], la transferencia de calor [64], los sistemas energéticos
[65] y de control [66], y los motores de combustién [67]. En los métodos de aprendizaje
automatico predomina el aprendizaje supervisado, descrito a continuacién utilizando la
terminologia de un estudio previo [68]. Esta técnica dispone de multitud de algoritmos para
analizar los datos, proporcionando distintas alternativas de modelo (hipotesis) para un
mismo conjunto de datos. Ademas, el comportamiento de los algoritmos se puede ajustar
con varios parametros, incrementado el ndmero de opciones disponibles.
Independientemente del algoritmo considerado, la tarea de aprendizaje se ejecuta como un
proceso iterativo de optimizacion en el que diferentes modelos se evaltian seguin su error
de prediccion. Los métodos de aprendizaje automatico buscan incrementar la capacidad de
generalizacion de la hipédtesis seleccionada, por lo su comportamiento se analiza ante datos
no observados previamente. Para ello, el conjunto de datos previos se divide en varios
grupos, realizando la optimizacién y evaluacién del modelo con partes del conjunto
diferentes.

1.2. Objetivos

El objetivo general de esta tesis es el desarrollo de un sistema de monitorizacién para la
combustidn de gas de alto horno, basado en la adquisicién de imagenes en color y en su
procesamiento con técnicas de inteligencia artificial. Este objetivo general se desglosa en
varios objetivos especificos, definidos a continuacién junto a su publicacién asociada.



e Procesamiento y andlisis de pruebas iniciales semiindustriales con diferentes
relaciones aire-combustible (Articulo A), para realizar una evaluacién preliminar de
la viabilidad técnica de la tecnologia.

e Configuracién de una instalaciéon de laboratorio para la combustion de varias
mezclas de gas, con distinto poder calorifico y en condiciones seguras.

e Realizacion, procesamiento y andlisis de las pruebas de laboratorio con diferentes
relaciones aire-combustible (Articulo 1), con el propoésito de definir el
procedimiento base de extraccion de caracteristicas para la escala semiindustrial.

e Ajuste y andlisis de los modelos predictivos de laboratorio (Articulo II),
proporcionando un escenario de referencia sobre el que preparar y evaluar la escala
semiindustrial.

e Definicion de requisitos, evaluacion, seleccién y configuracion del sistema de visiéon
para la realizacién de las pruebas semiindustriales finales.

e Procesamiento y andlisis de las pruebas semiindustriales finales con distintas
relaciones aire-combustible (Articulo III), adaptando el desarrollo de laboratorio a
esta escala.

e Ajuste y andlisis de modelos predictivos semiindustriales (Articulo III) para su
comparacion con los resultados de laboratorio.

e Desarrollo de una aplicacion informatica para la monitorizacién en tiempo real, con
el objetivo de integrar el desarrollo en los procesos de monitorizacién y control de
ArcelorMittal.

e Validacién del desarrollo del sistema de monitorizacion (Articulo 1V), para
proporcionar una evaluacién final de su rendimiento y capacidad de adaptacién
ante distintos escenarios.

1.3.Unidad tematica

Los articulos que constituyen la tesis proceden de la misma linea de investigacidn, centrada
en la caracterizacion de la combustién de gas de alto horno mediante la captura de imagenes
en color, asi como su procesamiento utilizando métodos de inteligencia artificial. El trabajo



de investigacion incluye la realizacion de pruebas experimentales, procesamiento de datos,
ajuste de modelos predictivos y analisis de resultados. Cada articulo describe un estudio
diferente, caracterizado por unas actividades y condiciones concretas. A pesar de que el
objetivo final del desarrollo es mejorar la monitorizacidn en escala semiindustrial, también
se ha realizado trabajo a escala de laboratorio. Estos ensayos tienen un consumo de
combustible y coste asociado menor, lo que ha permitido hacer mas pruebas para estudiar
condiciones adicionales de combustion.

Los articulos estudian diferentes mezclas de combustible, definidas segun el interés de la
sustitucion del gas natural por gas de alto horno, relacionado con el incremento de la
eficiencia de la aceria. El aumento de la proporcién de gas de alto horno en la mezcla reduce
el consumo de gas natural, pero también disminuye la temperatura de la combustién, por lo
que el uso de gas de alto horno en la mezcla esta limitado para procesos de alta temperatura.
Esta tesis analiza la mezcla 6ptima de gas de alto horno (Blast Furnace Gas, BFG) con gas
natural, BFG70, con 70 y 30 %v. respectivamente. Ademas, la investigacidn considera tres
combustibles adicionales como referencia: BFGO (100 %v. gas natural), BFG80 (80 %v. gas
de alto horno y 20 %v. gas natural) y BFG100 (100 %v. gas de alto horno).

El Articulo A describe la realizacion, procesamiento y analisis de las pruebas iniciales a
escala semiindustrial. Este trabajo presenta el horno, la cAmara de color y el procesamiento
de imagenes de llama seglin sus caracteristicas de intensidad. A partir de los resultados se
estudia la relacién entre las propiedades visuales calculadas, las mezclas de combustible y
las relaciones aire-combustible, caracterizadas segun el exceso de aire y concentracion y de
oxigeno en gases de salida.

El Articulo I se centra en la realizacién, procesamiento y analisis de las pruebas de
laboratorio. La instalacion experimental se describe en detalle, incluyendo la camara de
combustidn, quemador, lineas de combustible y aire, cAmara de color, equipos de medida
adicionales y mezclas de combustible. Se definen los ensayos, combinaciones de
combustible y exceso de aire, métodos experimentales, configuracién de la cAmara de color
y procesamiento de sus imagenes. En esta tltima actividad se incluyen las transformaciones
aplicadas a las imagenes de llama, asi como la extraccién de caracteristicas visuales
relacionadas con la intensidad, textura y geometria. Los resultados del Articulo I se
engloban en el estudio de la combustion del gas de alto horno a escala de laboratorio,
analizando el efecto del exceso de aire sobre las emisiones contaminantes y las
caracteristicas de la imagen. Debido a que la instalacién de laboratorio facilita la
monitorizacion de la combustién con varios equipos épticos a la vez, y para caracterizar con
mayor profundidad las propiedades de las llamas, el Articulo I incluye el uso de un
espectrometro y una cdmara del rango ultravioleta-visible, asi como el procesamiento de
sus datos. Dicho trabajo complementa a los objetivos de la tesis, con la caracterizacion de la
combustidn de gas de alto horno mediante dos técnicas 6pticas adicionales.

La linea de investigacion continua con el Articulo II y su ajuste y analisis de modelos
predictivos a escala de laboratorio. Estos modelos se desarrollan a partir de las imagenes
de color y datos capturados en la campaiia experimental a escala de laboratorio (Articulo I).
En particular, se estudia el modelado del exceso de aire a partir de caracteristicas de imagen.
El procesamiento de imagenes del trabajo anterior se expande con la extraccién de
caracteristicas visuales adicionales. Para el desarrollo de los modelos predictivos, se define
un método de aprendizaje automatico, que define la estandarizaciéon de los datos, la
seleccién de caracteristicas de imagen, los algoritmos de aprendizaje, la optimizacién de
hiperparametros, las métricas de rendimiento y la evaluacion de los modelos. Los
resultados de este trabajo analizan la variacion estadistica de las caracteristicas de imagen
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respecto al exceso de aire, y también la precision de los modelos al variar el combustible, el
exceso de aire, el algoritmo de aprendizaje automatico y las muestras de entrenamiento y
validacion.

Tras haber estudiado en detalle la caracterizaciéon de la combustiéon en laboratorio, el
trabajo contintia con su andlisis a escala semiindustrial. En este sentido, el Articulo III
integra el procesamiento y andlisis de las pruebas semiindustriales finales, con distintas
concentraciones de oxigeno en los gases de salida, asi como el ajuste y analisis de los
modelos predictivos para esta escala. Este trabajo detalla la instalacién experimental,
describiendo el horno, el quemador, el sistema de visién, los equipos de medida
complementarios y los combustibles. Se recogen también los métodos para la operacién del
horno, las condiciones de ensayo, el procesamiento de imagenes y el método de modelado.
El Articulo III adapta el procesamiento de imagenes de los Articulo [ y II para la escala
semiindustrial, y evalda el comportamiento de los modelos predictivos del Articulo II en
esta nueva configuracion. A diferencia del Articulo A, el Articulo III utiliza un sistema de
vision industrial instalado en el interior del horno, amplia las condiciones de operacién
estudiadas, y afade la extraccién de caracteristicas de textura y el entrenamiento de
modelos predictivos. Los resultados del articulo incluyen el andlisis de las imagenes
capturadas en la escala semiindustrial y el estudio de la dependencia estadistica de las
caracteristicas de imagen con la concentracion de oxigeno en los gases de salida. También
se compara la precision de los modelos segtin las condiciones de operacion, el combustible
empleado, la concentracion de oxigeno en los gases de salida, el algoritmo de aprendizaje
automatico, y el uso de muestras no observadas previamente.

Una vez concluido el trabajo a escala de laboratorio y semiindustrial, la linea de
investigacién se completa con el Articulo IV, en el que se analiza la adaptabilidad del sistema
de monitorizacién alo largo del desarrollo. El método de estudio se basa en la identificacién
de los distintos escenarios en los que se ha desarrollado el sistema, caracterizados por el
tipo de quemador y la posicién de cAmara, por ejemplo. Los resultados recogen el efecto de
estos cambios sobre las imagenes capturadas, su procesamiento y los modelos predictivos.
De esta manera, se evalia la adaptabilidad del sistema ante los distintos escenarios del
desarrollo.

Segun lo expuesto anteriormente, los cuatro articulos que componen esta tesis siguen una
linea de investigacion con una clara unidad tematica. Por lo tanto, se cumple el requisito
para la presentacion de la tesis como compendio de publicaciones, definido en el
Reglamento sobre Tesis Doctorales de la Universidad de Zaragoza (aprobado el 25 de junio
de 2020 por el Consejo de Gobierno de la Universidad).

1.4. Trabajos realizados

1.4.1. Procedimiento experimental y métodos

En este apartado se describen los materiales y métodos empleados en el trabajo de
investigacidn, que se realiza de forma secuencial en dos escalas diferentes: laboratorio y
semiindustrial. Para cada una de las escalas se define la instalacién experimental, las
pruebas y el procesamiento de imagenes, que incluye el ajuste de modelos predictivos. En
primer lugar, se realizan unas pruebas iniciales a escala semiindustrial como punto de
partida para la investigacion, para después continuar con una campafia extensiva en
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entorno de laboratorio, y finalizar con las pruebas definitivas en escala semiindustrial. Para
facilitar su comprensidn, la descripcion de los ensayos se estructura en bloques segin su
escala (laboratorio y semiindustrial). En esta seccion de métodos también se incluye la
técnica para evaluar todo el desarrollo del sistema de monitorizacion.

Como comentario general, 1a tesis tiene como objetivo final promover la valorizacién del gas
de alto horno en la industria, donde la modificacién de los quemadores comerciales es
limitada. Por lo tanto, los métodos se han definido para reproducir esas condiciones
industriales a escala de laboratorio y semiindustrial, reduciendo las barreras para
implementar las técnicas estudiadas en escala industrial. Las implicaciones de este criterio
sobre las pruebas realizadas se describen en detalle en los siguientes apartados.

1.4.1.1. Escala de laboratorio

Parte del estudio se realiz6 en la instalacién experimental de CIRCE Centro Tecnolégico
(Zaragoza). Dicha instalacién cuenta con una camara de combustién que permite la
monitorizacion y la adquisicién de imagenes de llama. Un esquema de dicho laboratorio se
muestra en la Figura 6.

of ) I Fc g

cIpeTatye

AR W:
Fuel | (. RGB and UVAVIS

control Ux® ‘l cameras + speclioaneter

pacumatx
regulator Burme:
Flow

Switch Pilot flame I

Figura 6. Esquema de la instalacion experimental de combustién a escala de laboratorio.

La camara de combustion esta equipada con un quemador de premezcla para combustible
gaseoso de 20 kW.. El quemador posee dos entradas de un didmetro de 25 y 10 mm, por
donde se inyecta el combustible y aire, respectivamente (Figura 7). El disefio del quemador
permite el montaje de distintos cabezales para optimizar las condiciones de operacién. Los
cabezales tienen un diametro de 100 mm y una matriz de orificios por la que sale la mezcla
de combustible-aire. El didmetro de los orificios varia segtn el cabezal (1, 5y 10 mm), lo
que modifica la velocidad de la mezcla aire-combustible, la estabilidad de la llama y su
distribucién sobre el quemador (Figura 8). Para reproducir condiciones industriales, este
estudio utiliza en todas las pruebas el mismo cabezal, de 5 mm de didmetro de orificios,
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seleccionado para proporcionar la mayor estabilidad de llama y distribucién mas uniforme
para el gas de alto horno, ademas de permitir la operacién con metano.

Burner Header
@10 mm holes
\ & @5 mm holes
|
1" GAS
T ‘ @1 mm holes
Fuel inlet
I
3/8” GAS
Air inlet

Figura 7. Esquema del quemador de premezcla para combustible gaseoso.

(@ (b)

Figura 8. Tipos de llamas obtenidas con los cabezales de (a) 1, (b) 5y (c) 10 mm, para el combustible BFG100 y
una potencia de 4 kW: en condiciones subestequiométricas.

La camara de combustion esta sellada y tiene una base cuadrada de 65 cm de anchura y
profundidad, y una altura de 90 cm. Dos de sus paredes cuentan con ventanas de inspeccion
de cristal y cuarzo, que permiten la transmisiéon de energia en los rangos visible y
ultravioleta-visible, respectivamente (Figura 9). Para quemar restos de combustible de
operaciones previas e incrementar la seguridad de la instalacién, la combustion se inicia con
una llama piloto de butano de 2 kW, de potencia.
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(a)

Figura 9. Ventanas de inspeccién de cristal (a) y cuarzo (b) de la cdmara de combustién.

El quemador esta conectado a dos lineas independientes de gas, lo que permite utilizar un
combustible diferente en cada una, reduciendo asi el tiempo de preparaciéon cuando se
cambia de combustible. El laboratorio también incluye un caudalimetro volumétrico para
medir el consumo de gas, y un sistema de seguridad para interrumpir la alimentacién de
combustible ante la deteccion de fugas.

Cada linea de gas se alimenta con botellas de combustible proporcionadas por un
distribuidor de gas, cuyo consumo depende del poder calorifico del gas y de la potencia de
las pruebas. A una potencia constante, el uso de un combustible con menor poder calorifico
requiere mas botellas, pudiendo necesitar su reemplazo en mitad de los ensayos. Para
reducir el tiempo de preparacién asociado, una linea esta conectada a un grupo de ocho
botellas, mientras que la otra linea se alimenta con una unica botella, proporcionando una
configuracién mas eficiente para combustible con un mayor poder calorifico. En este
estudio, la linea de una botella se utiliza para el metano, mientras que la otra se usa con gas
de alto horno y su mezcla con metano.

El aire de combustion se inyecta en el quemador a través de otra linea, alimentada por un
compresor. La presion del aire se controla con un regulador electroneumatico SMC
ITV2000, lo que permite regular el caudal de aire, que es a su vez medido por un
caudalimetro IFM SD6000. Este sensor tiene una repetibilidad de + 1.5 % y una precisiéon
de * (3 % de lectura + 0.3 % de escala completa). La comunicacién con estos equipos se
gestiona mediante un ordenador a través de un sistema de adquisicién de datos, que
también incluye un termopar para la medida de la temperatura del gas de combustién en la
chimenea.

La composicion de los gases de combustion se mide con dos analizadores de gases situados
en dos puntos de la instalacion. La medida principal se realiza en el conducto vertical de
evacuacion de humos con el modelo MRU Vario Plus Industrial, analizando las
concentraciones de 0z, CO, CO2, NOx y CH4 (Tabla 2). El segundo analizador de gases (MRU
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Optima 7) proporciona una medida de apoyo en la cAmara de combustion, utilizada para
determinar la estabilidad de los gases de combustion.

Tabla 2. Especificaciones del analizador de gases MRU Vario Plus Industrial.

Gas Principio de Rango Precision
medida
02 Electroquimico 0 -21.0 %v. + 0.2 %v. abs.
Infrarrojo no 0
CH4 dispersivo 0-10000 ppm + 60 ppm o 5 % de lectura
Infrarrojo no 0
co dispersivo 0-10000 ppm + 40 ppm o 5 % de lectura
CO: Infrarrojo no 0-30 %v. +0.5 %v. 0 3 % de lectura

dispersivo

NO Electroquimico 0 - 1000 ppm (hasta 5000 +5ppm o5 % de lectura <
ppm) 1000 ppm

10 % de lectura > 1000 ppm

NO, Electroquimico 0 - 200 ppm (hasta 1000 +5ppm o5 % de lectura <
ppm) 200 ppm

10 % de lectura > 200 ppm

La instrumentacién de la instalacién experimental se completa con tres equipos 6pticos: un
espectrometro (Ocean Optics Flame-S Miniature, 2048 pixeles), una camara ultravioleta-
visible (Raptor Photonics Falcon Blue, 1.0 megapixel), y una cdmara de color (The Imaging
Source DFK 33GX174, 2.3 megapixeles). La cAmara ultravioleta-visible se equipa con un
filtro de paso (ASAHI) para la banda 310 + 10 nm, asociada a la emision del radical OH en
estudios de quimioluminiscencia de llama [21]-[26]. El andlisis de las imagenes ultravioleta-
visible y los espectros de emision de llama complementa el objetivo principal de la tesis,
centrado en el estudio de las imagenes de color.

A escala de laboratorio se estudiaron tres mezclas de combustible: BFG70, BFG100 y BFGO.
A diferencia de la escala semiindustrial, para las mezclas se us6 metano en lugar de gas
natural, cuyo suministro en botellas es mas econémico. La composiciéon y poder calorifico
de las mezclas empleadas en laboratorio se muestra en la Tabla 3.
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Tabla 3. Composicién y poder calorifico de las mezclas de combustible utilizadas en laboratorio.

Mezcla de BFGO BFG70 BFG100
combustible

[CH4] (%v.) 100 28 -

[Hz] (%v.) - 3 4

[CO] (%v.) - 16 22
[CO2] (%ov.) - 16 22

[N2] (%v.) - 37 52

PCI (MJ/m3N) 36 13 4

La campafia experimental se realiz6 a una potencia fija de 5.5 kW, ajustando el caudal de
combustible para cada mezcla y modificando el caudal de aire para estudiar todo el rango
de operacién del quemador. De esta manera, se estudiaron condiciones de operacién
ineficientes, cuya monitorizacién es de interés para la industria. El rango de operacién se
definié para cada mezcla de combustible segun los limites de estabilidad de su llama. El
aumento del caudal de aire incrementa la velocidad de la mezcla aire-combustible,
aumentando su inestabilidad y provocando que la llama se despegue de la base del
quemador y se extinga en condiciones extremas. A su vez, una reduccion excesiva del caudal
de aire causa el retroceso de la llama a la cAmara de mezcla del quemador.

Cada punto de operacién se caracterizé calculando su exceso de aire, definido como la
proporcion entre la relacion masica aire-combustible del punto de operaciéon y la
estequiométrica. Por lo tanto, un exceso de aire superior a 1.0 se relaciona con combustién
rica en aire y pobre en combustible.

Dado que cada mezcla de combustible tiene un poder calorifico diferente, cada una de ellas
necesita un caudal distinto para obtener la misma potencia. Al variar el caudal, también se
modifica la velocidad de la mezcla aire-combustible en el quemador, lo que a su vez
condiciona los puntos de operacion de cada combustible. La velocidad de la mezcla se puede
alterar utilizando cabezales con distinta seccién de paso, pero la modificacién de los
quemadores comerciales utilizados en la industria es limitada. Dado que este estudio busca
reproducir esta caracteristica industrial en el laboratorio, se utiliz6 el mismo cabezal y area
de paso para todos los combustibles. Como resultado, se obtuvo un rango de exceso de aire
diferente para cada mezcla de combustible, con los que se realizaron tres Series de Ensayos
(SE, Tabla 4). Los intervalos de Exceso de Aire (EA) fueron [1.41, 2.01], [1.13,1.91] y [0.91,
1.24], para las mezclas de combustible BFGO, BFG70 y BFG100, respectivamente.
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Tabla 4. Puntos de operacion de las mezclas de combustible en las pruebas de laboratorio.

Serie de SE1 SE2 SE3
ensayos

Mezcla de BFGO BFG70 BFG100
combustible

EA: 1.41 1.13 0.91
EA; 1.43 1.27 0.94
EAs3 1.51 1.37 1.09
EA4 1.64 1.41 1.11
EAs 1.76 1.57 1.24
EA¢ 1.88 1.67 -
EA; 2.01 1.78 -
EAs - 1.91 -

La campana experimental incluyé 20 pruebas, divididas en tres series de ensayos (una por
cada mezcla de combustible). En todas ellas, la camara de color se situé delante de la
ventana de cristal, y la cdmara ultravioleta-visible y el espectrometro enfrente de la de
cuarzo. De esta manera, los tres equipos Opticos obtenian datos simultdneamente. Al
comienzo de cada serie, el quemador se precalentaba durante una hora para alcanzar
temperaturas estables, y después, se ajustaban las condiciones para el primer punto de
operacidn, siguiendo el mismo procedimiento para el resto. En primer lugar, se fijaban los
caudales de combustible y aire, y luego se monitorizaba la composicion de los gases en la
camara de combustion y chimenea. Cuando la composicion era similar en ambos puntos, se
consideraba que se alcanzaban las condiciones estacionarias, y se comenzaba a capturar las
imagenes y los espectros durante 6 minutos. Finalmente, para cada punto de operacion se
promediaban los caudales de combustible y aire, asi como la composicidn de los gases de
combustién.

Para obtener medidas 6pticas comparables entre los distintos ensayos, la configuracién de
los equipos dpticos se mantuvo constante durante toda la campafia. Los parametros de estos
sensores se ajustan segun la radiacion de la escena, cuya medida incrementa con el tiempo
de exposicion de las camaras y el tiempo de integracion del espectrometro. La estrategia de
configuracién busca medir sefiales con una intensidad elevada, pero inferior al valor
maximo que puede cuantificar el sensor. Si este limite superior se alcanza, los pixeles del
sensor se saturan y se pierde informacién sobre la radiacidn. En este trabajo se realizaron
pruebas preliminares para estudiar distintas configuraciones de adquisicién y elegir aquella
que proporcionase la mayor intensidad de sefial sin llegar a saturar. Para ello, se analizaron
imagenes utilizando los mapas de calor e histogramas de sus valores promedios. A modo de
ejemplo, la Figura 10 muestra los resultados para las imagenes ultravioleta-visible.
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Figura 10. Mapas de calor e histogramas de la cdmara ultravioleta-visible para la mezcla BFGO (a, b) y BFG100

(c, d).

Por cada imagen de color, se obtuvieron tres imagenes monocromas, una por canal de color
(rojo, verde y azul), mientras que en el caso de la cAmara ultravioleta-visible sélo se captur6
una imagen monocroma por disparo. Todas las imagenes monocromas recibieron un
procesamiento similar, en el que primero se segmentaron los pixeles de llama segin un
umbral, calculado con el método de Otsu [37], [69]. Este procedimiento estudia distintos
valores de umbral para agrupar los pixeles de la imagen: los pixeles con una intensidad
inferior al umbral se asignan a una clase, y el resto a la otra. Para cada umbral, se calcula la
varianza entre las dos agrupaciones de pixeles, y se elige el valor que maximiza dicha
dispersion.

Tras segmentar la llama, se extrajeron sus caracteristicas de intensidad, textura y
geometria, obteniéndose un total de 66 caracteristicas para las imagenes de color. Por cada
canal de color, se calcularon 22 propiedades: cuatro de intensidad (media [37] - [41],
desviacion estandar [37]-[39], [41], asimetria [39], [41] y curtosis [39]), 13 de textura
(seleccionadas del trabajo de Haralick et al. [70], y utilizadas en [40]), y cinco de geometria
(area [37],[38], [71], abscisa y ordenada del centroide [71], [72], anchura [71] y altura [37],
[71]). Debido al cardcter complementario de las imagenes ultravioleta-visible en esta
investigacion, sélo se calcularon para ellas cuatro de las 22 caracteristicas previas. Estas
propiedades incluyen una de intensidad (media), otra de textura (medida de informacién
de la correlacion I) y dos de geometria (area y ordenada).
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Las caracteristicas geométricas pueden alterarse significativamente debido a pequefios
errores de clasificacion en la segmentacién. Por ejemplo, si una llama tiene una altura de 5
cm, y un pixel elevado 15 cm sobre ella se clasifica como llama, el método de calculo visual
de la altura de la llama obtendra un valor equivalente a 20 cm. Para evitar este efecto, se
descartaron los pixeles de llama cuyos pixeles adyacentes no eran de llama, utilizando una
transformacion morfoldgica de erosién con una mascara de 3x3 pixeles [73].

Para cada una de las tres mezclas de combustible, se entrenaron y evaluaron varios modelos
predictivos para identificar el exceso de aire asociado a cada imagen de color, segin sus 66
caracteristicas extraidas. Con ese objetivo, se emple6 el mismo método de aprendizaje
automatico para todas las mezclas de combustible. Primero se dividieron todas las imagenes
de una mezcla de combustible en dos grupos: entrenamiento y prueba. El grupo de
entrenamiento se us6 para (1) seleccionar el subgrupo de caracteristicas con una mayor
relacién con el exceso de aire, (2) ajustar hiperparametros de los algoritmos de aprendizaje
automatico, y (3) evaluar el rendimiento de las distintas opciones. En concreto, se
estudiaron tres algoritmos: la regresion logistica (Logistic Regression, LR) [53], [54], las
maquinas de vectores soporte (SVM) [40], [53], [54] y las redes neuronales artificiales [40],
[53], [54]. En este ultimo caso, se escogid la tipologia de perceptrén multicapa (MultiLayer
Perceptron, MLP). El comportamiento de estos algoritmos se caracteriza por el ajuste de un
modelo probabilistico a partir de funciones logisticas (LR), la definicién del hiperplano que
maximiza el margen entre las clases (SVM), o el entrenamiento de una red neuronal
prealimentada a partir de la propagacién hacia atras de errores (MLP). Tras comparar la
precision de cada algoritmo, la alternativa que proporciond los mejores resultados se evalué
una vez mas con los datos del grupo de prueba.

De las 66 caracteristicas calculadas, s6lo se utilizaron las diez con una mayor varianza
respecto a las clases de exceso de aire de cada combustible. El ajuste de hiperparametros y
la evaluacion del rendimiento en el entrenamiento se realizé a partir de validaciones
cruzadas, basadas en el entrenamiento y validacién de un modelo con distintos subgrupos
de datos para obtener una medida de evaluacién mas robusta. No obstante, la validacion
cruzada puede proporcionar resultados con un sesgo optimista si se usa a la vez para ajustar
hiperparametros y evaluar el rendimiento de los modelos [74], [75]. A pesar de ello, si los
modelos se ordenan seglin su precisién, el resultado es generalmente el mismo con
validacién cruzada sin anidar o anidada [76]. Para obtener una medida mas realista del
rendimiento de los modelos, en este trabajo se utilizé una validacién cruzada anidada con
dos bucles. El bucle exterior de la validacién anidada dividié el grupo de entrenamiento en
diez pares de subgrupos de entrenamiento y validacion, a partir de los cuales se promedid
la precisiéon de cada algoritmo de aprendizaje automatico. En el bucle interior, cada
subgrupo de entrenamiento se dividié en cinco nuevas particiones de entrenamiento y
validacién, para escoger los hiperparametros con una mayor precision promedio. El
rendimiento de los modelos predictivos se evalu6 adicionalmente a través del calculo de sus
matrices de confusidn y curvas de aprendizaje.

El lenguaje de programacion Python (versiéon 3.7) se utilizé para procesar las imagenes y
estudiar los modelos predictivos, usando las librerias de OpenCV, Scikit-learn, NumPy,
SciPy, Mahotas y Pandas.
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1.4.1.2.Escala semiindustrial

Parte de la campafa experimental se realiz6 en una instalacién experimental de la planta de
ArcelorMittal Asturias (Avilés), equipada con un horno semiindustrial (Figura 11).

(@ (b)

Figura 11. Horno utilizado en los ensayos a escala semiindustrial [77].

El horno tiene una cdAmara de combustién de 4.6 m de largo, 1.5 m de anchura y 2.8 de altura,
y su configuracion se puede modificar para probar distintos combustibles y condiciones de
operacidn. Un circuito de agua con seis lanzas semicirculares simula la transferencia de
calor de un horno industrial a una ldmina de acero: el caudal de agua se calienta en el
interior del horno, se enfria a la salida mediante un refrigerador, y se introduce de nuevo en
la caAmara de combustion. Un sistema de control y adquisicién de datos registra el caudal, la
temperatura, la presion, la concentraciéon de oxigeno ([0:z]s) y las emisiones de gases
contaminantes (CO, NO,, SOz y CO2) en los gases de salida. La temperatura de la caAmara de
combustion (Tc) se promedia a partir de las medidas de cinco termopares distribuidos en
distintos puntos del horno.

En las primeras pruebas semiindustriales se utiliz6 un quemador de difusién de 1.2 MW,y
una camara de color (The Imaging Source DFK 33GX174, 2.3 megapixeles), situada en el
exterior del horno y alineada con una ventana de inspeccion enfrente del quemador. El
quemador usado en estas pruebas se cambi6é para las pruebas finales, debido a las
necesidades de ArcelorMittal de implementar un nuevo modelo en sus procesos
productivos. Este modelo mantiene la tipologia de difusién y la potencia de 1.2 MW, y
ademas incluye una lanza central y dos laterales de combustible, asi como varias entradas
de aire (Figura 12).
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Figura 12. Quemador de difusion utilizado en las pruebas finales en escala semiindustrial.

Las pruebas experimentales utilizaron distintas mezclas de gas de alto horno, extraido y
filtrado en la misma instalacién. Debido a ello, la composicion de las mezclas es variable y
depende de la operacion del alto horno. La composicion y el poder calorifico tipicos de las
mezclas de combustible a escala semiindustrial se muestran en la Tabla 5.

Tabla 5. Composicion y poder calorifico tipicos de las mezclas de combustible utilizadas en escala semiindustrial.

Mezcla de BFGO BFG70 BFG80 BFG100
combustible

[CH4] (%v.) 92 28 18 -
[C2Hs] (%v.) 8 2 2 -
[Hz] (%v.) - 3 3 4
[CO] (%v.) - 16 18 22
[CO:] (%v.) - 15 18 22
[N2] (%v.) - 34 39 49
[H20] (%v.) - 1 1 2
[02] (%v.) - 1 1 1
PCI (MJ/m3N) 38 14 11 4
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Las primeras pruebas semiindustriales se centraron en la combustion de las mezclas de
BFGO, BFG70 y BFG100, para valores de [O]; entre 0 y 5 %v. Para reducir las emisiones de
BFGO0, se suministré oxigeno como comburente, operando parcialmente en régimen de
oxicombustién. En todos los ensayos, el aire de combustion se precalentaba a 500 °C. La
Tabla 6 recoge las condiciones de operacién para las pruebas iniciales a escala
semiindustrial.

Tabla 6. Puntos de operacion de las pruebas iniciales a escala semiindustrial.

Serie de ensayos SE1 SE2 SE3
Mezcla de BFGO BFG70 BFG100
combustible

Modo de Oxicombustion  Estandar Estandar
operacion parcial

[02]¢g1 (%V.) 0.0 0.0 0.0
[02]tg2 (%V.) 1.0 1.5 1.0
[Oz]fg,e, (%V.) 35 5.0 3.0

Para cadaimagen de color, se obtuvieron tres imadgenes monocromas, una por canal de color
(rojo, verde y azul). De cada canal de color se extrajeron cuatro caracteristicas de intensidad
(media [37] - [41], desviacidn estandar [37]-[39], [41], asimetria [39], [41] y curtosis [39]),
obteniendo 12 propiedades por imagen de color.

Después de estas primeras pruebas semiindustriales, se realizé la campaiia de laboratorio,
para luego finalizar el estudio con ensayos adicionales a escala semiindustrial. A diferencia
de los ensayos iniciales en escala semiindustrial, la segunda campafia us6 un sistema de
visién diferente. Este cambio se debe que el desarrollo continud con la ingenieria, compra e
instalacién de un sistema de vision industrial en el horno, mejorando la posiciéon de la
cadmara y permitiendo una operacién continua en un entorno industrial. En primer lugar, se
evaluaron distintas alternativas para la colocacion del sistema: montaje interior o exterior,
ventana de inspeccion superior o inferior, y alineacién con el quemador (Figura 13).
Considerando las distintas opciones, se definieron los requisitos especificos para el
didmetro de la sonda, la distancia de trabajo y el campo de visién de la lente, y se contactd
con once proveedores para estudiar un total de 20 propuestas de sistema. Aparte del
cumplimiento de los requisitos, se analizaron distintas caracteristicas de cada oferta, tales
como la resolucion y tamafio del sensor, la refrigeracién del sistema y el coste econdmico.
Ademas, la perspectiva del horno capturada por los sistemas de visién se simul6 definiendo
la escena y la cAmara con el programa SKETCHUP (Figura 14).
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Figura 13. Posiciones de la cdmara para un montaje (a) interiory (b) exterior, ilustradas con el programa
SKETCHUP.
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Figura 14. Ejemplos de simulaciones de perspectiva para los siguientes casos: montaje interior en (a) ventana
superiory (b) ventana inferior con orientacion hacia quemador, y (c) montaje exterior en ventana superior.

Finalmente, el sistema de vision seleccionado como mejor alternativa incluia una cdmara de
color (BASLER BIP2-1920c, 2.1 megapixeles), protegida por una carcasa metalica
refrigerada con agua y un dispositivo retractil (SOBOTTA). La cdmara y su carcasa se
introducen en el interior del horno, y en caso de temperaturas peligrosas o fallo del sistema,
el equipo se extrae mediante el dispositivo retractil. Este sistema se escogié porque
proporcionaba la mejor combinacién de campo de visién y proteccion ante llamas.

En los ensayos semiindustriales finales se utiliz6 una potencia constante de 920 kW.. Para
cada mezcla, el caudal de combustible se mantuvo constante, y el de aire se modific6é para
obtener los distintos valores de exceso de aire. El aire de combustiéon se introducia
precalentado a una temperatura de 485 °C, con una concentracion de oxigeno de 21 %v. La
combustidn de las mezclas se estudi6 para los valores de concentracion de oxigeno en gases
de salida de 0, 1y 5 %v. El combustible se introdujo por la lanza central del quemador para
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las mezclas de BFGO y BFG70, mientras que para mejorar la operacién con BFG80, el
combustible se inyectd por las lanzas centrales y laterales. De esta manera, los reactivos se
diluyen con los productos de la combustién, operando en modo sin llama, también conocido
como dilucién moderada o intensa con bajo contenido en oxigeno (Moderate or Intense Low
Oxygen Dilution, MILD) [78], [79]. En estas condiciones, la zona de reaccion se distribuye a
lo largo de todo el horno, favoreciendo la reduccion de temperaturas de llama pico y las
emisiones de NOyx [78], [80]. A pesar de referirse a estas condiciones como sin llama, el ojo
humano puede observar la llama en algunos casos [80]-[82], aunque con una visibilidad
inferior a la de la llama de otros combustibles convencionales.

El procedimiento utilizado para la realizacion de las pruebas se describe a continuacién. En
primer lugar, el horno se precalentd para alcanzar condiciones estables de emisiones y
temperatura. Debido a las dimensiones del horno, la concentracién de los gases de
combustidn se estabiliza a la media hora, y la temperatura a las 8 horas. Tras alcanzar el
régimen estacionario, se adquirieron imagenes de llama durante 10 minutos, para cada una
de las mezclas de combustible. Ademas, también se estudiaron las condiciones transitorias
para la mezcla de BFG70 a partir de la grabacién de las imagenes después de la
estabilizacién de las emisiones, aunque la temperatura no hubiese alcanzado su valor
estacionario. De esta manera se analizaron las imagenes obtenidas para concentraciones de
0:en gases desalidade1,2,3,4y5 %v. La Tabla 7 resume las caracteristicas de los ensayos
en la campana.

Tabla 7. Puntos de operacion de las mezclas de combustible para escala semiindustrial.

Serie de SE1 SE2 SE3 SE4
ensayos

Régimen Estacionario Estacionario Estacionario Transitorio
Mezcla de BFGO BFG70 BFG80 BFG70
combustible

Modo de Estandar Estandar Sin llama Estandar
operacion

[Oz]fg,1 (%V.) 0 0 0 1

[Oz]fg,z (%V.) 1 1 1 2

[Oz]fg,g (%V.) 5 5 5 3

[O2]rga (%V) - - - 4

[02]fgs (%V.) - - - 5

De manera analoga a los ensayos de laboratorio, los parametros de adquisicién de la cAmara
se definieron seglin unos ensayos previos, y se mantuvieron constantes en toda la campafia.
Los métodos de procesamiento de imagenes de llama en escala semiindustrial se basaron
parcialmente en los de las imagenes de color para laboratorio, como se describe a
continuacion.
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Mediante una inspeccion preliminar de la operacidn del horno, se observé que las imagenes
de llamas eran significativamente diferentes a las de laboratorio. Las imagenes
semiindustriales incluian elementos adicionales a la llama, como el quemador y las paredes
del horno, que ademas tenian un color muy similar a las llamas. En contraposicion, las
llamas de laboratorio se mostraban sobre un fondo negro, lo que facilitaba su segmentacién.
En este sentido, incluso el ojo humano tenia problemas para identificar las llamas
semiindustriales en las imagenes, por lo que la evaluacién manual de la precisién de una
segmentacion automatica presentaba dificultades. Ante el riesgo de hacer una clasificacién
imprecisa de los pixeles de llama, la etapa de procesamiento de imagenes no incluyé la
operacion de segmentacion.

Esta decision de disefio afecta a la fase posterior de extraccion de caracteristicas. En primer
lugar, el calculo de las propiedades de geometria requiere de la segmentacion de la llama,
ya que, por ejemplo, no se puede obtener la anchura de la llama si no se identifican los
pixeles de llama. Por lo tanto, las caracteristicas de geometria no se extrajeron en escala
semiindustrial, y s6lo se utilizaron las 51 propiedades de intensidad y textura. En segundo
lugar, debido a que no se identifican pixeles de llama, las caracteristicas de imagen se
extraen de todos los pixeles en la imagen.

Los modelos predictivos para llamas semiindustriales se ajustan para estimar la
concentracion de oxigeno en gases de combustién, una variable diferente al exceso de aire
estudiado en laboratorio. Aparte de entrenar los modelos para tres mezclas de combustible
distintas, se analiza el comportamiento de una de ellas (BFG70) en condiciones transitorias.
Para el entrenamiento y evaluacién de cada uno de los cuatro modelos predictivos, se utilizd
el procedimiento de laboratorio.

Por ultimo, a diferencia de la escala de laboratorio, se desarroll6 un programa informatico
para permitir el uso de los modelos predictivos en tiempo real por operarios de la aceria.
Esta aplicacion utiliza los modelos entrenados para analizar las imagenes de una carpeta,
mostrando los resultados en pantalla con una interfaz, en la que se observa la dltima imagen
analizada y la grafica con las predicciones de las 100 imagenes previas.

1.4.1.3. Validacion del desarrollo del sistema de monitorizacion

Como ultimo paso, el sistema de monitorizacién se validé analizando los resultados
obtenidos en las distintas fases de desarrollo de forma conjunta. Este estudio se centr6 en
la identificacidon de los cambios en condiciones de operacion durante el desarrollo, y en
evaluar su efecto sobre el sistema de monitorizacién. Para ello, se analizaron las imagenes
de llama, la correlacion entre las caracteristicas de imagen y las condiciones de combustion,
y la precision de los modelos predictivos.

1.4.2. Andlisis de resultados

En esta seccidon se presentan y analizan los resultados obtenidos. De forma similar al
apartado del procedimiento experimental y métodos, se describe primero la escala de
laboratorio (Articulos 1y II) y luego la semiindustrial (Articulos A y III). En cada una de las
escalas se analizan las imagenes de llama y la relacién de las caracteristicas extraidas con
las condiciones de combustion, asi como la precisién de los modelos predictivos ajustados.
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En los resultados de escala de laboratorio, se incluye tanto el estudio de las emisiones del
quemador experimental de las pruebas como el andlisis de los espectros de
quimioluminiscencia y las imagenes ultravioleta-visible. Dichos trabajos son
complementarios a la linea de investigacidon de la tesis, centrada en el procesamiento de
imagenes de color para la monitorizacién de la combustidn. Por ultimo, tras los resultados
de la escala semiindustrial se incluyen los de la validacién general del desarrollo (Articulo
V).

1.4.2.1. Escala de laboratorio

En primer lugar, se analizan las emisiones medidas en las pruebas de laboratorio (Figura
15) con el objetivo de evaluar el comportamiento del quemador experimental en las
distintas condiciones de combustién consideradas.
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Figura 15. Concentracion en los gases de combustién de (a) CHs, (b) COz, (c), COy (d) NOx, para las mezclas BFGO,
BFG70y BFG100.

Para los puntos de operacidn con un exceso de aire por encima de 1.7 se detecta CHs4 en los
gases, lo que es una prueba indirecta de combustion incompleta. El incremento del exceso
de aire aumenta la velocidad de l1a mezcla de combustible y aire e inestabiliza la combustion,
extinguiendo la llama en los puntos con un exceso de aire superior a 1.9.
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Debido a la operacidn con una potencia térmica fija, las emisiones de CO, son constantes
respecto al exceso de aire para un mismo combustible. La concentraciéon de CO; aumenta al
incrementar la proporcidn de gas de alto horno en la mezcla, ya que el CO; del combustible
y el producido por el CO superan al generado por la combustién del CHa.

Las emisiones de CO se incrementan al alejarse de las condiciones estequiométricas (exceso
de aire de 1.0) debido a la combustién incompleta por falta de oxigeno o por inestabilidades
de combustién. Ademas, el aumento de la proporcién de gas de alto horno en la mezcla
incrementa su contenido en CO.

La formacion de NOyx estd condicionada por la temperatura de llama y la disponibilidad de
N; para su oxidacion [83]. Al elevar la proporcion de gas de alto horno en la mezcla, la
temperatura adiabatica de llama desciende [84], por lo que las emisiones de NOx pueden
reducirse, como ha ocurrido en los ensayos. Para el BFGO, la concentracién de NOx
disminuye al aumentar el exceso de aire debido a su mayor caudal de aire y dilucién
asociadas [85]. En el caso del BFG70 y BFG100, el efecto de la dilucién del aire no es tan
significativo porque las mezclas ya incluyen unas altas concentraciones de diluyentes (CO>
y N2) [13].

Como conclusidn, se observé la dependencia de las emisiones con la composicion del
combustible y el exceso de aire para el quemador experimental utilizado. Las tendencias
son las esperadas para los excesos de aire inferiores a 1.7, aunque por encima de dicho valor
se obtiene combustiéon incompleta. Este comportamiento se debe al uso del mismo
quemador para las distintas mezclas de combustible, a pesar de sus elevadas diferencias en
poder calorifico. De esta manera, cada mezcla se quema en condiciones suboptimas, pero se
cumple el objetivo de replicar condiciones industriales al mantener fija la configuracion del
quemador.

Tras analizar las emisiones de los ensayos, se estudian los espectros de
quimioluminiscencia para describir el comportamiento de los diferentes radicales. La
Figura 16 muestra los espectros promedio para las mezclas de combustible y diferentes
excesos de aire.
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Figura 16. Espectro medio de las mezclas de combustible (a) BFGO, (b) BEG70y (c) BFG100, para distintos excesos
de aire.

Tal y como se puede observar en la Figura 16, los espectros de BFGO (100% CH4) y BFG100
tienen una forma caracteristica muy diferenciada, mientras que el espectro de BFG70
comparte rasgos de ambos. En todos los casos, se observa cémo la intensidad en todo el
ancho de banda se reduce al alejarse de las condiciones estequiométricas. La aparicion de
estos maximos de intensidad cerca de las condiciones estequiométricas ha sido
previamente documentada para el OH* y CO,* [21], [86], [87].

Para el BFGO se observan las emisiones esperadas del OH*, CH* y C>*, a 310, 430y 470-515
nm. El espectro también muestra un maximo de intensidad a 589 nm, asociado al Na*
originado en la combustiéon de impurezas provenientes de trazas [23], [88], [89]. Las
emisiones para longitudes de onda entre 700 y 800 nm son similares a las registradas por
Parameswaran et al. para la combustién de hidrocarburos con un quemador de premezcla
[27]. Laintensidad medida entre 630 y 900 nm se puede relacionar con distintas fuentes de
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radiacién, como el HNO* (630 - 872 nm) [88]. Entre 813 y 847 nm también se encuentra la
emision de las transiciones vibracionales-rotacionales de moléculas diatémicas con
hidrégeno, como el CH (813 - 847 nm), NH (829 - 844 nm) u OH (835 - 845 nm) [88]. Por
ultimo, la superficie del quemador también puede emitir radiacién en este rango infrarrojo
[21]. El espectro de BFG100 no tiene los maximos de CH* y C,* porque no incluye CH4 en su
composicién, aunque si aparece el de OH*, debido a su contenido en H,. Ademas, el BFG tiene
CO2, que modifica el espectro con la emision de banda ancha del CO2*.

Las variaciones de OH* se pueden relacionar con las emisiones de CO y CO; segun la
ecuacién CO + OH = CO; + H [90], por lo que el defecto de OH impide la reaccién completa
del CO, y su concentraciéon incrementa a la vez que se reduce la del CO,. Este
comportamiento se confirma con los resultados experimentales, en los que la concentracién
minima de CO (Figura 15.c) se relaciona con la intensidad maxima de OH* (Figura 16),
asociada a la mayor concentracién de OH.

A modo de resumen, los espectros medidos para la mezcla BFGO coinciden con los
resultados de referencias previas para la combustion de llamas. Ademas, las pruebas con
BFG100 han permitido identificar su espectro, caracterizado por la emisién continua del
CO2*.

Tras estudiar la espectroscopia de quimioluminiscencia, se analizan las imagenes de llama
adquiridas por las camaras ultravioleta-visible y de color en la instalacién de laboratorio.
Enla Figura 17 y Figura 18 se muestran varios ejemplos de imagenes, obtenidas con distinto
exceso de aire.

Figura 17. Imdgenes de llama con exceso de aire de 1.3 + 0.1, adquiridas por la cdmara ultravioleta-visible con el

filtro de 310 nm para las mezclas de combustible (a) BFGO, (b) BEG70y (c) BEFG100, y por la cdmara de color para
las mezclas (d) BFGO, (e) BEG70y (f) BEG100.




(@ (b)
(d) (e
(8 (h)

Figura 18, Imdgenes de llama adquiridas con la cdmara de color para la mezcla de combustible BFG70 y los
excesos de aire de (a) 1.13, (b) 1.27, (c) 1.37, (d) 1.41, (e) 1.57, (f) 1.67, (g) 1.78y (h) 1.91.

Las imagenes de llama se caracterizaron cuantitativamente mediante su procesamiento y la
extraccion de caracteristicas. En un primer estudio se analizé la relacion entre la mezcla de
combustible y exceso de aire con varias propiedades de las imdgenes ultravioleta-visible y
color, mostradas en la Figura 19 y Figura 20, respectivamente.
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310 nm en laboratorio.
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Figura 20. Caracteristicas de media y drea para el canal rojo (a, b), verde (c, d) y azul (e, f) frente al exceso de
aire, para las imdgenes adquiridas por la cdmara de color en laboratorio.

Segun los resultados obtenidos, se confirma la dependencia de las caracteristicas de imagen
con la mezcla del combustible y el exceso de aire, paralos dos tipos de cAmara (ultravioleta-
visible y color). Ademas, dicha relacién se puede definir a partir de caracteristicas de
intensidad, geometria o textura. En el caso de la cdmara de color, las condiciones de
combustidn afectan a las propiedades extraidas de los tres canales de color.
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La relacion del exceso de aire con cada una de las 66 caracteristicas de las imagenes de color
se estudia en mayor detalle mediante un andlisis de varianza. Para cada una de las 66
variables se calcula su estadistico F, definido como la proporcién entre la varianza de los
valores medios de una caracteristica de imagen para cada una de las clases de exceso de
aire, y la varianza de los valores de dicha caracteristica a través de todas las clases de exceso
de aire. A partir de este calculo se confirmé que todas las propiedades visuales extraidas
dependen del exceso de aire, y se eligieron las diez variables con un mayor estadistico F
para alimentar los modelos predictivos. Las precisiones de validacion de dichos modelos se
muestran en la Figura 21.

= 1.00
2

2 0.95 -

S

= 0.90 -

>

< 0.85 -

3 0.80 -

2z

S 0.75 - w
£

& 0.70 : :

BFGO BFG70 BFG100
mLR =SVM =MLP

Figura 21. Precisiones de los modelos predictivos durante su validacién para escala de laboratorio.

Los modelos predictivos alcanzaron precisiones de validaciéon de 0.88 + 0.09, que se
incrementaron hasta 0.96 + 0.01 para las mezclas BFGO y BFG70. Estos modelos consiguen
predecir variaciones del exceso de aire mas pequenas que las monitorizadas en trabajos
anteriores, consiguiendo una precision similar en la identificacidn de las clases [54], [91].
En esta tarea de clasificacion, los distintos tipos de algoritmo considerados no afectan
significativamente a la precisiéon de los modelos, teniendo una desviaciéon maxima del 3 %.
Para estudiar mas en detalle la precisién de los modelos segtin la clase del exceso de aire, se
calcularon sus matrices de confusion (Figura 22).
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Figura 22. Matrices de confusién de los modelos predictivos basados en el algoritmo de SVM, durante su
validacion en laboratorio para las mezclas de combustible (a) BFGO, (b) BFG70y (c) BFG100.

Los modelos para las mezclas BFGO y BFG70 alcanzaron una precisién similar,
independientemente de la clase del exceso de aire considerada. En el caso de BFG100, se
observa que los errores se incrementan al predecir clases del exceso de aire con diferencias
inferiores a 0.04. No obstante, para la mezcla BFGO se consiguié una mayor precision en la
deteccion de estados con pequenas diferencias (1.41 y 1.43). Este comportamiento podria
ser debido a la menor estabilidad (menor poder calorifico) de la mezcla BFG100. Para esta
mezcla también se observo que la precision aumenté con el incremento del exceso de aire,
que también puede relacionarse con el aumento de estabilidad [84].
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1.4.2.2. Escala semiindustrial

Los resultados obtenidos en laboratorio proporcionan una base sobre la que continuar la
investigacion a escala semiindustrial, que se analiza a continuacion.

En la primera campafia experimental a escala semiindustrial se adquirieron imagenes de
llama, de las que la Figura 23 incluye unas muestras para la mezcla BFG70 y distintos valores
de [Oz]fg.

@ NCCAEE © BN [02]5 (%v.) = 4

Figura 23. Imdgenes de llama para la mezcla BFG70 en las pruebas iniciales semiindustriales.

De las caracteristicas de imagen extraidas, la asimetria en el canal azul (Figura 24) tenia una
mayor dependencia con la concentracién de oxigeno en gases de combustion para las tres
mezclas de combustible. La deteccidn de esta relacion sirve de confirmacion preliminar de
la viabilidad de los métodos utilizados para la monitorizacién en escala semiindustrial.
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Figura 24. Caracteristica de imagen de la asimetria azul frente a [02]s.

La segunda campafia experimental en escala semiindustrial permitié6 profundizar en el
estudio de la combustiéon con la adquisicién de un mayor volumen de imagenes. También se
utilizé un sistema de vision introducido dentro del horno, que increment6 el campo de
vision de la cAmara y la informacién capturada. De esta manera se facilité la monitorizacién
visual de la combustion.
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La Figura 25 muestra las imagenes de llama adquiridas en condiciones estacionarias para
las mezclas de combustible BFGO, BFG70 y BFG80, con distintas concentraciones de oxigeno
en los gases de combustion. En el caso de la mezcla BFG70, el régimen transitorio también
se analiz6 (Figura 26).

(@ (b) ‘
[OZ]fg (O/OV.) =0 [OZ]fg (%V-) = [OZ]fg (O/OV-) =I5
(d) (e)
[02]¢z (%V.) =0 [0z]f: (%V.) =1 [0z]fz (%V.) =5
(8) (h)

[02]5 (%V.) =0

[02]r (%V.) =1 [02]5 (%V.) =5

Figura 25. Imdgenes de llama capturadas para la escala semiindustrial, en condiciones estacionariasy con las
mezclas de combustibles (a, b, c) BFGO, (d, e, f) BFG70y (g, h, i) BEG8O0.

(a) (b)

[02]5 (%v) = 1 [02]5 (%v.) = 2 [02]5 (%v.) = 3

(d) (e)

[0z]¢ (%V.) = 4 [0z]¢ (%V.) =5

Figura 26. Imdgenes de llama capturadas para la escala semiindustrial, en condiciones transitorias, con la mezcla
de combustible BFG70y [0z de (a) 1, (b) 2, (c) 3, (d) 4y (e) 5 %v.

En las imagenes predominan las tonalidades anaranjadas, propias de las llamas de difusion
y las emisiones del hollin [92]. Las particulas de hollin emiten radiacién similar a la de
cuerpo negro [18], cuya intensidad incrementa con la temperatura segun la ley de Planck
[93]. Esto permite, por ejemplo, la estimacién de la temperatura del hollin a través de
imagenes de llama [94]. En las imagenes de llama se observa un incremento de la
luminosidad al reducir la proporcién de gas de alto horno en la mezcla, y al acercarse a
condiciones estequiométricas. Estas variaciones de operacion se relacionan con un aumento
de la temperatura de la cAmara de combustion (Figura 27), confirmando el comportamiento
descrito por la ley de Planck.
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Figura 27. Tcc en los ensayos semiindustriales.

La composicion del combustible y el exceso de aire afectan mas al color de las llamas de
premezcla respecto a las de difusién [19]. No obstante, las imagenes capturadas permiten
detectar estas variaciones incluso para las llamas de difusion. La menor visibilidad de las
llamas para las mezclas BFG70 y BFG80 se debe a la elevada proporcién de gases inertes en
el combustible, con aproximadamente 35 %v de Nz y 15 %v de CO;. En un trabajo previo
[18] se observ6 un comportamiento similar al incrementar la dilucién con N; de llamas de
difusién y metano, lo que redujo el pico de quimioluminiscencia de OH*.

Mediante el andlisis de varianza, se concluye que todas las propiedades visuales calculadas
dependian de las clases de la concentracién de oxigeno en gases de salida. A modo de
ejemplo, la Figura 28 muestra la media de los valores pixel del canal rojo, cuyo
comportamiento sigue las tendencias observadas previamente para la luminosidad de las
imagenes y la temperatura de la cAmara de combustién (Figura 27).
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Figura 28. Media de la intensidad para el canal rojo frente a [0z] en los ensayos semiindustriales.

El conjunto de las diez caracteristicas de imagen con un mayor estadistico F se utilizé como
entrada para los modelos predictivos, que alcanzaron una precisién de validacién en torno
a0.995, reducida a 0.960 para la mezcla BFG70 en condiciones estacionarias (Tabla 8).

Tabla 8. Precisiones de validacion de los modelos predictivos en la estimacion de [0z]r en escala semiindustrial.

Serie de ensayos SE1 SE2 SE3 SE4
Régimen Estacionario Estacionario Estacionario Transitorio
Mezcla de combustible BFGO BFG70 BFG80 BFG70

LR (precision) 0.9920 0.9666 0.9970 0.9998
SVM (precision) 0.9936 0.9671 0.9980 0.9999
MLP (precision) 0.9866 0.9640 0.9962 0.9998

Los tres algoritmos de aprendizaje automadtico proporcionaron resultados similares,
aunque la SVM alcanz6 la mayor precision en todos los casos, superando a las redes
neuronales. Este comportamiento también se observo en la escala de laboratorio y en un

trabajo previo [91].

Los modelos predictivos se integraron en un programa informatico para monitorizar el
proceso de combustién en tiempo real y facilitar su uso en la industria (Figura 29). La
aplicacion analiza imagenes de llama y genera sus ventanas de visualizaciéon cada 0.35
segundos. Este periodo de muestreo proporciona una monitorizacién continua y detallada
del proceso de combustién, cuyas emisiones tienen una dindmica cuatro 6rdenes de
magnitud mas lenta que el programa (tiempo de estabilizacién de media hora).
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Figura 29. Ventana del programa informdtico para la monitorizacion en tiempo real de [0z]yg.

1.4.2.3.Validacion del desarrollo

Las diferencias entre las fases de desarrollo del sistema de monitorizacién se pueden
agrupar en tres clases: escala (laboratorio o semiindustrial), quemador (premezcla o
difusién) y posicién del sistema respecto a la cAmara de combustidn (exterior o interior).

La Figura 30 muestra imagenes de llama obtenidas en distintas fases de desarrollo para la
mezcla de combustible BFG70 y valores similares de concentracidn de oxigeno en gases de
combustién. Las llamas de laboratorio tenian un contorno definido, mientras que su
geometria era difusa en escala semiindustrial. No obstante, la variacién de la concentracién
de oxigeno en los gases de salida afectaba a las imagenes en ambos casos. Por lo tanto, la
camara de color se validé como un sensor de imagen adecuado para la monitorizaciéon de la
combustidon con BFG para quemadores de premezcla y difusion.
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Figura 30. Imdgenes de llama para la mezcla de combustible BFG70 y distintos valores de [Oz]s y fases de
desarrollo: escala semiindustrial con (a, b, c) ubicacién exterior e (g, h, i) interior, y (d, e, f) escala de laboratorio
con ubicacién exterior.

Las caracteristicas extraidas de las imagenes se relacionaron con las condiciones de
combustidn en todas las fases del desarrollo. A modo de ejemplo, la Figura 31.a recoge el
comportamiento de la media de la intensidad para el canal rojo y la mezcla BFG70, cuya
tendencia es similar en todos los escenarios. Los modelos predictivos alcanzaron una alta
precision, tanto para escala de laboratorio como semiindustrial (Figura 31.b), obteniéndose
valores superiores a 0.95 excepto para las pruebas de BFG100 en laboratorio, con una
precision de 0.80. Segun estos resultados, las caracteristicas de imagen calculadas y los
modelos predictivos entrenados se validaron para la monitorizacién de llamas de alta y baja
visibilidad en escala de laboratorio y semiindustrial.
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ABSTRACT: The use of blast furnace gas (BFG) as a fuel provides RGB
an alternative for waste stream valorization in the steel industry,

enhancing the sustainability and decarbonization of its processes. GEG < N
Nevertheless, the implementation of this solution on an industrial COMBUSTION
scale requires a continuous control of the combustion due to the low
calorific value of BFG. This work analyzes the combustion behavior
and monitoring of BFG/CH, blends in a laboratory premixed fuel
burner. We evaluate several stable combustion conditions by

FEATURE

v —
EXTRACTION | 7...]

AND | & i

—> MONITORING | £ +\ wsiue

burning different BFG/CH, mixtures at a constant power rate \CHEMILUMINESCENCE ‘,’

over a wide range of air/fuel equivalence ratios. In addition, relevant R |

image features and chemiluminescence emission spectra have been v ol
extracted from flames, using advanced optical devices. BEG

combustion causes an increase in CO, and CO emissions, since

those fuels are the main fuel components of the mixture. On the other hand, NO, emissions decreased because of the low
temperature of combustion of the BFG and its mixtures. Chemiluminescence shows that, in the case of CH, combustion, peaks
associated with hydrocarbons are present, while during the substitution of CH, by BFG those peaks are attenuated. Image flame
features extracted from both ultraviolet and visible bandwidths show a correlation with the fuel blend and air/fuel equivalence ratio.
In the end, methodologies developed in this work have been proven to be valuable alternatives with a high potential for the
monitoring and control of BFG cofiring for the steel industry.

1. INTRODUCTION 0il® Furthermore, the low calorific value of the BFG also
results in more unstable combustion,”” which may move the
operation toward suboptimal conditions and even produce
flame extinction. Therefore, BFG combustion needs to be

urren energy-intensive industries are directin eir
C tly, t dust direct th

processes toward more sustainable models. Thus, industrial
processes can increase their efficiency and reduce pollutant

emissions. In order to meet these objectives, several strategies monitored and controlled to correct suboptimal conditions.
are being promoted, such as waste heat recovery,' waste stream Traditional sensors can be used to monitor the fuel and airflow
valorization,” and electrical ﬂexibility.3 In the case of the steel of each furnace burner. However, the high number of burners
industry, multiple waste gas streams with calorific value are in industrial furnaces increases the cost of this alternative and
produced. One of these streams is blast furnace gas (BFG), a limits its application. Therefore, the steel industry has searched
byproduct of the chemical reduction of iron ore developed in for novel combustion monitoring systems based on optical
blast furnaces. BFG can be valorized through combustion for techniques, which have been scarcely reported in the open
different processes, such as gas turbines, steelmaking— literature on industrial-level applications.” Implementing such
annealing lines, or reheating of furnaces.””® Among all these monitoring systems on such a large scale requires a complex
applications, the steel industry is highly interested in BFG development with extensive studies at laboratory, semi-

valorization within the same facility where it is produced.
Nevertheless, the combustion of BFG in steelmaking processes
faces several drawbacks. Due to the large concentration of inert
gases in its composition, blast furnace gas does not provide
enough thermal energy to meet the temperature requirements
of steelmaking processes.” Several strategies have been used to
overcome this, such as preheated combustion air and a higher
calorific gas as a support fuel. In Europe, BFG is usually mixed
with natural gas (NG), while in other regions, such as Brazil,
India, and China, BFG is blended with other fuels, such as fuel

industrial, and industrial scales. In this aspect, studies of the
different scales have not been previously considered.
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Figure 2. (a) Scheme of the premixed gas fuel burner and (b) example of a flame generated in the test combustion chamber.

Several advanced optical techniques have been used to
monitor and control the combustion process. They involve
analyzing energy radiated by the flames, which depends on
various combustion factors. For diffusion flames, energy
emission is dominated by continuous radiation (black-body
emission) related to soot production.'”'' In contrast, the
emission of premixed flames is mainly characterized by
multiple emissions in discrete wavelengths, related to the
transition of intermediate combustion radicals from excited to
ground states, known as chemiluminescence,'® which is
affected by the reactant composition and equivalence ratio.">"*

In order to study the chemiluminescence phenomenon,
optical instruments, such as spectrometers and cameras, have
been extensively employed to capture spectra and flame
images, respectively. In most cases, a huge amount of collected
information needs to be processed to extract specific features
to characterize flames for different fuel blends,'® air or fuel
flows,">'* air swirls,"> and temperatures.w

First, spectrometers capture chemiluminescence emissions
from the ultraviolet (UV) to the infrared (IR) ranges,
associating specific wavelengths with the reaction of chemical

24499

species. Combustion studies are typically focused on detecting
combustion radicals such as OH*, CH*, C,*, and CO,*. On
one hand, OH*, CH¥, and C,* provide narrow-band
emissions at around 310 nm (OH”‘),17_23 430 nm
(CH*),"7* 470 nm (C,*),"”'”*' and 515 nm (also
C,*)."77*1% On the other hand, CO,* is related to broad-
band emissions from approximately 350 to 610 nm."”'®*%*!

Second, research on combustion chemiluminescence can
also be developed with imaging techniques. For that purpose,
cameras for UV, visible (vis), and IR ranges are set up with
narrow-band filters to only measure light emissions related to
the relevant radicals.”>**™*° For example, the measurement of
OH* emissions with imaging techniques enables the character-
ization of premixed flame fronts.””***” In addition, hyper-
spectral cameras can also be used to measure light emissions of
several radicals simultaneously.”®

Finally, cameras without narrow-band filters can also be used
to characterize flame radiation, usually measuring the VIS
range. Most studies use statistical characteristics of the image
pixel values,"*™'**73% which are related to the intensity of
light emissions. Additionally, other methods can also compute
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14,33
37,3

. . . 15,31,34—36
texture and geometrical characteristics and flame

speeds.’”*" Before the characteristics are extracted from the
image, several preprocessing techniques are used. These
preprocessin% techniques include the averaging of image
sequences,””*** flame segmentation with thresholding,'>"*'°
noise filters,'* color space conversions to grayscale,” and
finally hue, saturation, and intensity (HSI).*"*°

The present research aims to characterize the combustion of
BFG for the partial replacement of CH, in a premixed
laboratory-scale burner. For that purpose, three optical devices
are simultaneously employed to provide a more complete and
robust insight into the combustion process. Flame emissions
are measured by a spectrometer, a UV—vis camera with a
narrow-band filter, and a vis camera. Spectra and image
features are analyzed for different fuel blends, air/fuel
equivalence ratios, and flue gas compositions. Furthermore,
this research constitutes the first step toward the development
of a novel combustion monitoring system based on optical
techniques to enable BFG cofiring with NG in steelmaking
furnaces.

2. MATERIALS AND METHODS

The present section describes the methodology used in the
research. The final aim of the work is the the diagnosis of
combustion on the basis of flame optical parameters, and it is
mainly intended for industrial furnaces. The experimental
procedures have been defined similarly to those of an industrial
environment, where the level of tunability and configuration of
the commercial burners is limited. This way, by defining a
similar procedure for laboratory and industrial scales, the
methodology developed in the laboratory can be implemented
in industry with lower barriers.

2.1. Experimental Setup. Tests were carried out in a
customized combustion chamber equipped with a 20 kWth
premixed gas fuel burner, designed to enable extensive visual
characterization and flue gas measurements. Figure 1 shows the
overall scheme of the facility. The fuel and air enter the
premixed gas fuel burner through two separate inlets (25 and
10 mm diameters, respectively) (Figure 2a). The fuel/air
mixture leaves the burner via a 100 mm diameter header and a
pattern of holes of 5 mm, as shown in Figure 2a. Although
different headers can be used for each fuel in order to optimize
the working conditions in this research, the same header has
been used. This way, standard procedures are simulated on an
industrial scale. The flame generated is enclosed in a sealed
combustion chamber with a width and depth of 65 cm and a
height of 90 cm (see Figure 2b). The chamber is equipped
with both quartz and glass inspection windows in order to
enable energy transmission in the UV and VIS ranges,
respectively. A pilot flame is used to start the combustion,
which increases the facility’s safety by burning the remaining
fuel from previous operations.

The burner is fed with bottles of gaseous fuels whose
mixtures are blended by a gas supplier. The gaseous fuels feed
the burner via two independent gas lines designed to admit
gaseous fuels of highly different heating values. For CH,, one
line with a batch of one bottle is used. For the BFG and
mixtures, a line connected to a batch of eight bottles is
employed, which allows carrying out the tests continuously,
despite the high consumption of fuel. The amount of gas fed to
the burner is measured by a volumetric flow meter. The facility
also has a safety system to stop the fuel supply when leakages
are detected.

The combustion air is supplied by a compressor, whose
pressure (and thus flow rate) is controlled by an SMC
ITV2000 electropneumatic regulator. Before burner connec-
tion, the airflow rate is measured by an IFM SD6000 flow
switch, with a repeatability of +1.5% and an accuracy of +(3%
reading + 0.3% full scale). The electropneumatic regulator and
flow switch communicate with a computer through a data
acquisition system, which also collects the flue gas temperature
measured by a thermocouple. Since flue gas temperatures were
measured at the exhaust duct of the test rig, they are only
qualitative measurements. Thus, these flue gas temperatures
are not representative of the combustion and product behavior.

Furthermore, exhaust gas emissions were measured with an
MRU Vario Plus Industrial gas analyzer. Concentrations of O,,
CO, CO, NO,, and CH, in the combustion gases were
measured with the a analyzer, whose measurement principles,
ranges of measurement, and accuracies are summarized in
Table 1.

Table 1. Specifications of the Gas Analyzer

measurement
gas principle range accuracy
0O, electrochemical 0-21.0 %v +0.2 %v abs
CH, nondispersive 0—10000 ppm +60 ppm or 5%
infrared (NDIR) reading
CO NDIR 0—10000 ppm +40 ppm or 5%
reading
CO, NDIR 0—30 %v +0.5% or 3% reading
NO electrochemical 0—1000 ppm (up to =S ppm or 5% reading
5000 ppm) <1000 ppm
10% reading
>1000 ppm
NO, electrochemical 0—200 ppm (up to £S5 ppm or 5% reading
1000 ppm) <200 ppm
10% reading
>200 ppm

Three optical devices were employed to characterize the
combustion: a spectrometer (Ocean Optics Flame-S Mini-
ature), an electron multiplying charge-coupled device
(EMCCD) camera for the UV-—visible (UV—vis) range
(Raptor Photonics Falcon Blue), and a red/green/blue
(RGB) camera (The Imaging Source DFK 33GX174). The
spectrometer and UV—vis and RGB cameras included a Sony
ILXS11B sensor with 2048 pixels of resolution, a Texas
Instruments TC285SPD sensor (1.0 megapixels), and a Sony
IMX174LQ]J sensor (2.3 megapixels), respectively. The UV—
vis camera was set with a narrow-band optical filter (310 + 10
nm, ASAHI). In the case of the RGB camera, the sensitivity of
its color channels is maximized for the approximate ranges of
580—800 nm (red channel), 475—600 nm (green channel) and
400—500 nm (blue channel).

Experimental tests were carried out for three different fuel
gases, defined according to the industrial interest in the
substitution of NG by BFG, to increase the efliciency of the
processes. Higher percentages of BFG help to reduce NG
consumption and, consequently, fossil fuel emissions. How-
ever, blends with a high percentage of BFG, which has a low
heating value, limit the maximum temperature inside the
combustion chamber and result in some operational problems
associated with the high gas flow needed to satisfy the furnaces’
demand.* Consequently, the amount of BEG in the mixture is
limited and some NG is needed to reach the temperatures
needed for the steel production processes.6 For example, in a
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study by Zheng et al,’ the adiabatic flame temperature is
increased between 10% and 20% by increasing the CH,, share
in the BFG blend from 0 to 15 %v.

In the present research, a 70 %v BFG gaseous mixture
(BFG70) was chosen, since it contains the minimum amount
of CH, required to reach the steel processing temperatures
(1100—1300 °C) in industrial reheating furnaces.” On the
other hand, pure BFG (BFG100) and G20 CH, (BFGO) have
been defined as baseline fuels for the tests.

The compositions of the fuel blends and their lower heating
values (LHV) are collected in Table 2. BEGO, BFG70, and
BFG100 were fed at manometric pressures of 10, 86, and 82
mbar, respectively.

Table 2. Fuel Blend Composition

fuel blend
BFGO BEFG70 BFG100

[CH,] (%v) 100 28

[H,] (%v) 3 4
[CO] (%v) 16 22
[CO,] (%v) 16 22
[N,] (%v) 37 52
LHV (MJ/kg) 50.0 10.8 2.8

2.2. Methods. In order to analyze the combustion behavior
of the premixed flames when the fuel blend and air/fuel ratio
were varied, we carried out an extensive experimental
campaign where several operation points were obtained at
different airflow rates. Combustion regimes for each operation
point were characterized by calculating their air/fuel
equivalence ratio (ER), computed as the fraction between
the actual and stoichiometric air/fuel ratios. Consequently, an
ER higher (or lower) than 1 implies fuel-lean and air-rich (or
fuel-rich and air-lean) combustion. The limits of the airflow
rates were defined according to the flame stability of each fuel
blend. On one side, a reduced airflow caused the flashback of
the flame inside the burner mixture chamber, because of the
low mixture velocities. On the other side, the highest air flows
produced instability and extinction of the flame when the
combustion approached its lean operation limits. Since the
configuration of the burner was kept for the different blends,
similarly to the industrial case, the velocities of the air/fuel
mixtures are different. Thus, the ERs are limited by the burner
geometry and the amount of BFG of the blend. In this way, the
burner is forced to operate near its extinction and flashback
working points, acquiring samples of inefficient operation
conditions, whose analysis is relevant for their detection at a
larger scale. With the current burner, the studied ERs vary
from 1.4 to 2.0, from 1.1 to 1.9, and from 0.9 to 1.2 for BFGO,
BFG70, and BFG100 fuel mixtures, respectively (see Table 3).

The burner power was fixed at 5.5 kWth for each test,
independently of the fuel blend and airflow rate. Before each
test set, the burner was started up for 1 h to reach a steady
temperature. These temperatures were controlled on the
surface of the combustion chamber with a thermocouple. Once

Table 3. Main Characteristics of the Test Campaign

test set BFGO BFG70 BFG100
ER 1.4-2.0 1.1-1.9 0.9-12
no. of tests 7 8 S

the warming up was finished, the same procedure was followed
for each combustion test. First, the fuel and air flows were
adjusted. Second, chamber gases near the flame were measured
and compared with the flue gases reported. Steady conditions
were reached when the chamber gases and the flue gas
measurements presented similar values. At this point, the
spectra and images were acquired for 6 min.

According to previous works, the experiment duration can
significantly vary between S5 and 180 s.'”'® Thus, a
conservative approach was followed to select the test period,
defining it to be higher than previous references, with a value
of 6 min (360 s). This way, a higher number of measurements
were acquired, reducing the effect of abnormal and spurious
data.

The fuel flow rate, air flow rate, and exhaust gas analyzer
measurements were averaged per test. Furthermore, exhaust
gas concentrations detected by the gas analyzer were corrected
to 3 %v O,. The CH, concentration in flue gases was measured
in order to detect operation points in which unburned fuel
fractions could arise from incomplete combustion.

The spectrometer and the UV—vis camera were both set in
front of the quartz glass of the combustion chamber, allowing
the acquisition of the flame radiation in the UV bandwidth. On
the other hand, the RGB camera was installed in front of the
ceramic glass to measure only the visible range. This way, the
three optical devices collected spectra and images simulta-
neously under ambient conditions of dark lighting.

The integration time of the spectrometer and the exposure
times of the cameras were selected by preliminary tests
according to optimum criteria. At first, longer times are
desirable to increase the signal provided by the optical devices.
Nevertheless, higher exposure times may saturate sensor pixels
and provide inadequate measurements. Thus, the optimum
criteria were the maximizations of the integration and exposure
times up to their saturation limits. Since the saturation limits of
each optical device are originally unknown for an analysis of
the flames, preliminary trials were performed to define them by
burning BFGO and BFG100. Furthermore, to compare
measures of the same optical device between different tests
and fuel blends, fixed integration and exposure times were used
for all the tests. In that aspect, the integration and exposure
times were defined by the tests that provide higher flame
radiation, related to lower airflow rates. Consequently, the tests
with lower airflow rates for BFGO and BFG100 were carried
out. Therefore, the integration and exposure times were set to
1000, 540, and 30 ms for the spectrometer and UV—vis and
RGB cameras, respectively. Their values appear in Table 4,

Table 4. Acquisition Parameters of the Optical Devices

optical device

spectrometer ~ UV—vis camera ~ RGB camera
exposure time (ms) 1000 540 30
sampling rate (Hz) 1 14 12
samples per test 360 504 4320

together with sampling rates, the number of samples (spectra
or images) per test, and the optical device. Finally, the
configuration of the spectrometer was completed by selecting a
slit width of 200 ym.

As in previous works, combustion diagnosis was performed
on the basis of flame characteristics obtained by processing
spectra and images of the flame. For each optical device,

https://doi.org/10.1021/acsomega.2c02103
ACS Omega 2022, 7, 24498—-24510


http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02103?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

different processing operations were defined. Previously, the
signals and images were submitted to an operation based on
the subtraction of the dark signals from the captured spectra
and images to remove sensor electrical noise.””***

In the case of the spectrometer, measured spectra were
averaged for each test to easily characterize them through a
visual representation. Nevertheless, a high amount of
information is lost with this operation, since the number of
spectra per test is reduced from 360 to 1. Thus, each measured
spectrum was also computed individually to provide a more
detailed analysis. For that purpose, a wavelength segmentation
was applied, with a range of 20 nm centered at each radical
wavelength being selected. Within this study, OH*, CH*, and
C,* were studied by considering their wavelengths of 310, 430,
and 515 nm,'" ™" respectively, and an additional wavelength of
470 nm for C,*.'”'"*' CO,* was also characterized using a
wavelength of 410 nm,"® which was contained within the CO,*
broad-band emission and was unrelated to those of other
radical species. After the wavelength segmentation, 278
wavelength intensities were obtained. Finally, wavelength
intensities were downsampled from 278 to 56 to reduce
redundant information. The whole series of 278 wavelength
intensities were split into groups of 5 wavelength intensities.
Therefore, S5 groups of S wavelength intensities were
obtained, together with a group of 3 wavelength intensities.
For each one of these groups, only the first wavelength
intensity was used. In this way, the wavelength resolution of
the intensities was reduced from approximately 0.4 to 2 nm.

For the UV—vis and RGB images, the processing method-
ology was similar. On one hand, Otsu’s thresholding
segmentation was applied to detect flame pixels in each
image channel. Otsu’s method selects the threshold that
maximizes the variance between the two-pixel classes, the
variance being computed from the image histogram.ls’m’39
After Otsu’s thresholding segmentation, the features of statistic
mean?~'%**7*> and Haralick’s texture information measure of
the correlation I (IMC1)"****' were computed from flame
pixels. The mean is the averaged intensity value of the flame
pixels, which is related to the combustion characteristics of
flame brightness. On the other hand, texture features such as
IMC1 are more complex to interpret in comparison to the
other image features. Thus, their theoretical relationships with
combustion characteristics may be unknown beforehand.
Nevertheless, IMC1 has been used together with other color
and texture features to characterize primary air flow and
secondary air to territory air split." Furthermore, other
Haralick features have been used to characterize O, and
NO, content in flue gases.”” In this way, dependences between
the combustion characteristics and IMC1 (or other related
texture features) have been empirically reported. When Otsu’s
thresholding segmentation is applied, a small number of flame
pixels could be separated from the main contour of the flame
and distort the values of the geometrical features. In order to
discard these pixels, the morphological transformation of
erosion was applied using a kernel of 3 X 3 pixels.*”

Next to morphological erosion, the features of the
geometrical area and centroid vertical coordinate were
extracted from the binary images.'”*"*>* The area is the
number of flame pixels related to the flame area. The centroid
vertical coordinate is the vertical coordinate of the flame mass
center. This feature is related to the distance between the
burner and the flame and the flame length.

After the image features were computed, a total of 4
characteristics were obtained per image channel, resulting in 4
and 12 characteristics for the UV—vis and RGB cameras. Table
S gathers the 4 channel characteristics and their mathematical

Table 5. Image Features Per Channel Considered

feature
no. type feature equation ref
P
1 16,
1 statistic mean (u) EZ x(p) 29,
p=1 30
inf "
" measure of HXY = HXYL 45
_— )
2 texture correlation I max(HX, HY) 41
(fiy IMC1)
R C
3 geometrical  area (a) Z Z b(c, r) 153’1
r=1 c=1 N
R
4 geometrical centroid vertical ch Z;l be,r) 35,

coordinate (c,) a 43

expressions, referenced to a grayscale image of P pixels, with
x(p) denoting the grayscale value of the pixel p. For the texture
IMC1, the element located in row i and column j of a
normalized gray-level co-occurrence matrix (GLCM) is
referred to as p(ij). The GLCM has N rows and N columns,
where N is the number of distinct gray values in the grayscale
image. Additional variables are used to compute the texture
features, which appear in Table 6. In the case of the

Table 6. Additional Variables and Their Equations to
Compute the Texture Image Features of IMC1

variable equation ref
N
p.(0) > Gy j) 40, 41
j=1
N
HX =Y p,() logp (i)
i=1
N
HY —Z p,(0) log p, (i)
N
HXY - p(i, j) log p(i, j)
i=1
N N
HXYI =2 2 (i, j) loglp, ()p, ()]

i=1

geometrical features, the binary image also has P pixels (with
R rows and C columns), and the binary value (0 or 1) of a pixel
p located in column ¢ and row r is denoted b(c,r).

In order to compute the processing operations for the
spectra and images of the tests, a specific code was developed
using the programming language of Python (version 3.7).
Furthermore, the developed code also used the libraries of
OpenCV, NumPy, SciPy, Mahotas, and Pandas. An additional
code was written to automatically read the spectra and images
acquired during the experimental campaign, which filtered

them according to the characteristics of the tests.
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Figure 3. Concentration in the flue gases of (a) CH,, (b) CO,, (c) CO, and (d) NO,, for the fuel blends BFG0, BFG70, and BFG100.
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Figure 4. Average spectra for the fuel blends (a) BFGO, (b) BFG70, and (c) BFG100, with different ERs.

3. RESULTS AND DISCUSSION

3.1. Analysis of Pollutant Emissions. The first analysis
of the test data is focused on the pollutant emissions of CH,,
CO,, CO, and NO,, whose trends are shown in Figure 3.

Complete combustion is achieved for most BFGO and
BFG70 operation points, since no CH, is measured in flue

24503

gases (Figure 3a). However, a non-negligible CH, concen-
tration is detected at higher ERs (over 1.7) for these fuel
blends, most probably caused by unburned CH,, a constituent
of BFGO and BFG70. Additionally, CH, emissions are higher
for BEG70 than for pure CH,. In these cases, the test burner

presents some combustion instability due to the higher velocity
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Figure S. Intensities of (a) OH*, (b) CO,*, and (c) CH* and of C,* at (d) 470 nm and (e) 515 nm versus ER, for the fuel blends BEGO, BFG70,

and BFG100.

of the air/fuel mixture, which prevents the proper burning of
the fuel.

Figure 3b shows CO, emissions for the different operation
points. These emissions have different sources depending on
the fuel blend. In the case of BFGO, CO, emissions correspond
to the completely oxidated CH,. For BFG100, CO, emissions
have two sources: the combustion of CO and the original CO,
included in the fuel blend. Finally, the mixture BEG70 presents
CO, emissions originating from the three previous sources
(combustion of CH, and CO and CO, from fuel).

In this way, the effect of each source is modified with
different BFG shares in the fuel blend. With an increase in
BFG share in the fuel blend, higher CO, emissions are
generated from CO combustion and the CO, composition of
the fuel. At the same time, lower CO, emissions originate from
CH, combustion. According to BFG measurements, total CO,
emissions are higher when the share rises from 0 to 70 %v.
Consequently, CO combustion and CO, composition of the
fuel exceed the effect of CH, combustion in CO, emissions. As
expected, a constant trend is observed when CO, emissions of
the same fuel blend are compared for different ERs, due to the
operation with a fixed thermal power for all of the tests.

The CO concentration in the exhaust gases is included in
Figure 3c. In general, CO emissions are increased when the
BFG share of the fuel blend is raised. This effect is due to a
higher CO content in the fuel blend, higher air/fuel velocities,
and lower calorific value (higher inert content). For each fuel
blend, lower CO emissions are obtained at points closer to the
stoichiometric point. The conditions of fuel excess (ER < 1)

24504

led to an increase in CO emissions because part of the fuel is
not burned due to the absence of O,. In the same way, high ER
conditions generate combustion instability because of the air
dilution. Part of the CH, of BFGO is unburned and part of the
CO of BFG100 and BFG70 is unburned, causing an increase in
CO emissions.

Trends of NO, emissions are included in Figure 3d. NO,
emissions are highly dependent on the flame temperature and
the availability of N, to be oxidized."* Higher shares of CH, in
the fuel blend increase the adiabatic flame temperature over
1800 K, for which the Zeldovich mechanism dominates NO,
emissions, where the flame temperature and residence time are
important factors.

On the other hand, a fuel blend of BFG without CH, (such
as BFGO) does not reach 1800 K, and NO, emissions are
recéluced. This behavior is also reported in the work of Zheng et
al.

In addition to previous effects, NO, emissions are decreased
in the combustion of BFGO for higher ERs, since the air acts as
a diluent. The effect of the dilution is significant in the case of
pure CH,, which implies a significant reduction in NO, at high
equivalence ratios.” However, the mixtures BFG70 and
BFG100 have high concentrations of diluents such as CO,
and N,, which receive part of the energy of the combustion.
This effect causes lower combustion temperatures, and
therefore, the concentration of NO, in the flue gases is
significantly lower and the effect of the increase of air is not
significant.”
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3.2. Analysis of Chemiluminescence Spectroscopy.
An analysis with chemiluminescence spectroscopy was
performed to compare intensities and wavelengths of the
energy radiated by the premixed flame radicals. The
spectrometer captured the radiant energies emitted by the
flame, which were averaged for each test. Figure 4 presents the
averaged spectra of BFGO, BFG70, and BFG100 for different
ERs.

The BFGO spectra, measured as a reference, show their
signature shape, with the intensity peaks of OH*, CH*, and
C,* at 310, 430, and 470—515 nm, respectively. Nevertheless,
other patterns of high intensities appear in the mean spectrum.
The peak at around 589 nm is the typical emission band of
Na*, which in previous works has been linked to the
combustion of impurities from traces.'”***’ Also, several
peaks above 700 nm (visible and infrared range) could be
related to the emission of the burner surface,’” HNO*
(between 650 and 900 nm),***® and vibrational—rotational
transitions of diatomic molecules with hydrogen, as CH (from
813 to 847 nm), OH (from 834 to 845 nm), or H,O (from
892 to 967 nm).** Additionally, the peaks measured between
700 and 800 nm are similar to the results of Parameswaran et
al. for hydrocarbon flames with a premixed burner.**

On the other hand, flame spectra obtained with BFG100
have a higher and dominant contribution from the broad-band
CO,* emission due to the CO, content of the BFG. Since the
BEG composition does not include CH,, CH* (430 nm) and
C,* (470 and 515 nm) peaks are not detected. Nonetheless,
the peak of OH* (310 nm) is still detected due to the H,
content in the BFG, but its intensity is lower than that for
BFGO. This trend is also reported in the work of Zheng et al,’
in which the OH concentration is increased when CH, is
added to BFG.

The spectra of BFG70 contains characteristics of the other
two fuel blends. The BFG in the fuel blend provides a broad-
band CO,* emission of intensity lower than that in the case of
BFG100 due to the higher concentration of BFG. CH* and
C,* peaks are detected due to the CH, of BFG70, and the
measured peak of OH* is related to both CH, and H,. These
narrow-band emissions show intensities lower than those in
the case of BEGO due to the lower concentration of CH, in the
fuel blend.

For each fuel type, the intensity throughout the whole
bandwidth depends on the air/fuel ratio (ER). For BFGO and
BFG?70, whose conditions are fuel-lean (air-rich), the emission
intensity increases as the combustion air decreases. For
BFG100, higher intensities are measured at medium air/fuel
ratios. Nevertheless, these trends of the emission intensities
with the air/fuel ratio for the three fuel blends can be described
together using the ER values. For the three fuel blends, the
maximum emission intensity could be measured at an ER
around 1.0 (stoichiometric conditions), as in the case of
BFG100, which has a maximum intensity for the ER of 1.1.
Consequently, the emission intensity is reduced with an
increase in the difference between the actual ER and the ER of
1.1 for BFG100. This relationship is also repeated for BFGO
and BFG70, where the emission intensity increases as the
difference between the actual ER and the ER of 1.1 is reduced.

The intensities of OH*, CO,*, CH*, and C,* are shown in
Figure S for BFGO, BFG70, and BFG100. The general trend
detected in the average spectra is repeated by the radical
emissions, which increase when the ER approaches 1.1. In
particular, these behaviors of the OH* and CO,* intensities

around an ER of 1.0 have also been reported in previous
studies. In the work of Ahmadi et al,” the OH* emission
intensity had a maximum at an ER of 0.8 for NG flames in a
premixed burner of domestic heating boilers. Related to the
work of Ahmadi et al,*’ the Soltanian et al.'” detected a peak
of the intensities of OH* and CO,* at an ER of 0.8 for NG
flames and a premixed gas boiler burner. Additionally, Ding et
al.>” detected a maximum of OH* intensity at an ER of 1.0 for
flames of different fuel blends (pure CH, and mixtures of CH,
with N,, CO,, H,, and C;Hy) in a burner similar to those in
the studies referenced above.

All of the radical intensities of BFGO are slightly higher than
those of BFG70 at similar ERs. The addition of CO, in BFG70
increases the broad-band CO,* emission with respect to the
BFGO case due to the increase in the BFG share. However, the
reduction of the CH, concentration decreases the emission
intensity of OH*, CH*, and C,* (at both 470 and 51S nm).
When the concentration of BFG in the fuel blend is increased
to 100%, the broad-band CO,* emission also increases,
increasing the intensities radiated in its range (between 350
and 600 nm). This behavior matches with the trends shown for
the intensities of CO,*, CH*, and C,*, which are higher for
BFG100 than for BFG70, at similar ERs. The emission
intensity of OH* is not affected by the increase of broad-band
CO,* emission, since 310 nm is not in the range between 350
and 600 nm. In particular, the emission intensity of OH* was
reduced for BFG100 with regard to BFG70 at similar ERs,
showing a trend in contrast with the rest of the radicals due to
the different compositions of the fuel blends. In this study, the
intensity of OH* is related to the reaction of CH, and H,
(included in the composition of the BFG). While BFG70
includes both CH, and H,, BEG100 has a higher concentration
of H, but no CH,. This higher concentration of H, does not
balance the lack of CH,, providing a lower emission at 310 nm
in comparison to that for BEG70.

OH* measurements are also related to CO and CO,
emissions through the reaction CO + OH = CO, + H,
fundamental for CO oxidation.>' With this reaction, if the OH
concentration is decreased, CO emissions are expected to
increase. This behavior is shown by comparing parts a and ¢ of
Figure S, in which OH* radiation and CO emissions are
inversely proportional.

3.3. Analysis of the Flame Images. After the spectral
features were studied, images acquired with the cameras were
analyzed. Figure 6 shows different flames captured for the three
fuels with the UV—vis and RGB cameras under similar
conditions.

Features extracted from the 310 nm images show depend-
ences on the fuel blend and ER, independent of the feature
type (statistical, texture, or geometrical), which can be seen in
Figure 7. Among the 310 nm image features, the statistical
mean has a stronger dependence on the combustion regimes
for BFGO and BFG70.

The mean is reduced with an increase in the BFG (reduction
of CH,) share in the fuel blend. In the tests, there are two
sources for OH*: CH, hydrocarbons and BFG hydrogen.
Since the substitution of CH, with BFG reduces the average
combustion radiation, CH, hydrocarbons may make a greater
contribution than BFG hydrogen. Furthermore, the mean
increases for the same fuel blend when the ER approaches 1.1.
Similar behavior has also been shown in previous works.'”**’

Despite the different natures between the mean (statistical)
and IMC1 (texture), the overall trends highlighted for the
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Figure 6. Sample images captured by the UV—vis camera with the
310 nm filter for (a) BFGO, (b) BFG70 and (c) BFG100 and by the
RGB camera for (d) BFGO, (e) BFG70, and (f) BEG100, with ERs of
1.2 and 1.4 (fuel-lean and air-rich).

mean are shared for the IMC1. Thus, the flame texture is also
related to the BFG share in the fuel blend and the ER.

Finally, the centroid vertical coordinate is increased by
raising the BFG share in the fuel blend. The increase in BFG
share increases the length of the flame front, and thus, higher
centroid vertical coordinates are measured. The increase in the
flame front length may be caused by the higher fuel flows used
when the BEG share is increased. Within the same fuel, similar
behavior is found when the ER is increased. This effect could
be related to the air flow increase, which extends the flame
front. In addition, the geometrical vertical coordinate of the
centroid (c,) has a higher relevance for the classification of the
fuel blends, since most values of the feature are only related to
one specific fuel blend, independently of the ER. For example,
a flame image with an unknown ER could be related to BFGO
(if ¢, is higher than or equal to 835-pixel rows), BFG70 (c,
between 835- and 790-pixel rows) or BEG 100 (if ¢, is equal to
or lower than 790-pixel rows).

A similar study was carried out for the RGB images. For the
310 nm images, the statistical mean and geometrical area show
trends with the fuel blend and ER. In addition, these
dependences can be observed independently of the color
channel, and some features such as the statistical mean share its
behavior for the three channels (Figure 8).

The mean values are higher for the blue channel and lower
for the red channel, while the green channel presents
intermediate values. This trend is due to the radiation
differences in the spectral sensitivity of each color channel.
Nevertheless, the mean shows the same behavior with respect
to fuel blend and ER, independently of the color channel.
BFGO and BFG70 have similar values, and therefore, the flame
intensity does not differ significantly. For BFG100, the mean
(and thus, the flame intensity) is higher due to the significant
contribution of the broad-band CO,* emission. With regard to
the behavior of the mean with the ER, the mean increases
when the ER approaches 1.1, as for the 310 nm images.

The areas are similar for the green and blue channels, but it
differs for the red channel. As with the mean, these variations
between channels are related to the different spectral
sensitivities of the color channels. The area for the red channel
shows almost no dependence on the fuel blend and ER; only
extreme ERs of the BFGO show significant differences. With
those ERs, the length of the red flame is increased, and thus,
the area as well. For the green and blue channels, an increase in
the BFG share increases the flame length, due to a higher fuel
flow. For each fuel, higher ERs result in higher areas since the
fuel flow is constant and the airflow is increased. Notable
exceptions are lower ERs of BFGO, for which the flame length
is slightly increased. Among all image features, the geometrical
area of the blue channel is of greater interest due to its stronger
relationship with the fuel blends and combustion regimes, as
seen in Figure 8f.

3.4. Coupled Analysis of the Optical Devices.
Chemiluminescence spectra, UV filtered images, and color
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images were processed to extract different features. The
relationships of these features with the combustion character-
istics were analyzed in previous sections. Now, features
measured with different optical devices are compared together
to study their correlations.

First, chemiluminescence spectra and UV filtered images
were studied. The OH* spectral intensity (Figure Sa) and
image mean (Figure 7a) share similar trends with regard to the
fuel composition and ER. In the captured trends, the feature
values decrease when the ER is increased for BFGO and
BFG70, and higher values are measured at equal ERs for lower
shares of BFG in the fuel blend. This behavior is expected for
the OH* spectral intensity and image mean, since they are
related to the same combustion characteristic (magnitude of
the flame radiated energy). On the other hand, the image
IMCI1 (Figure 7b) and centroid vertical coordinate (Figure 7c)
characterize the spatial texture and geometry of the flame
radiated energy, instead of its magnitude. In this way, these
features could have different trends with the combustion
characteristics. Nevertheless, the image IMC1 also shows a
similar trend with the fuel composition and ER. In addition,
the image centroid vertical coordinate (Figure 7c) has an
inverse relationship with the fuel composition and ER with
respect to previous optical features.

Color images capture flame radiated energy in broad-band
ranges instead of the narrow-band range used by the UV
filtered images. These broad-band ranges are 580—800 nm
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(red channel), 475—600 nm (green) and 400—500 nm (blue).
Spectral intensities (Figure 4) and image means (Figure 8a,c,e)
characterize the magnitude of the flame radiated energy.
Trends of these features with combustion characteristics differ
from previous trends. While the feature values still decrease
with an ER increase, similar values are measured at equal ERs
for BFGO and BFG70.

Moreover, the values for BFG100 are higher than those for
BFGO and BFG70. This behavior is due to the measurement of
the radiation in broad-band instead of narrow-band ranges.
The three color channels capture broad-band CO,* radiation,
emitted between 350 and 610 nm. This radiation is increased
with an increase in the BFG share in the fuel blend, which
increases the CO, fraction. Consequently, feature values for
BFG70 and BFG100 are increased. On the other hand, image
areas show inverse trends with respect to the previous features.
These relationships with combustion characteristics are shared
with the image area of the UV filtered images.

4. CONCLUSIONS

In this work, BFG, CH,, and a mixture with 70% of BFG and
30% of CH, have been tested in a laboratory burner at
different air/fuel equivalence ratios, at a fixed thermal power of
5.5 kW. An analysis of chemiluminescence spectra, filtered UV
images, and color images enables the extraction of relevant
features from the flames. These parameters can be used to
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characterize aspects of the combustion in terms of fuel mixture,
ER, and flue gas composition.

The main conclusions from the results of this work are as
follows.

e Together with the mixture and air/fuel equivalence ratio,
the test burner used during the tests strongly influenced
the pollutant emissions. The use of fuels with significant
differences in their calorific value and the same ducts
and burner header produced different velocities of the
air/fuel mixture and thus affected the quality of the
mixture. This caused in some cases, with high velocities,
the mixture left the combustion chamber without being
burned. As a result, the CO concentration in flue gases
increased at high air equivalence ratios for all of the fuel
blends and the CH, concentration also increased for
BFGO and BFG70. When the combustion conditions
were more favorable, pollutant concentrations exhibited
the expected trends with ER.

e Chemiluminescence spectroscopy revealed that BFG100
shows a signature spectrum with the primary broad-band
emission of CO,* due to the higher CO, concentration
of the fuel, whereas BFGO spectra agree with the classical
spectra reported in the literature. The partial sub-
stitution of CH, with BFG provides a hybrid spectrum
between BFG100 and BFGO. For all of the fuel blends,
spectrumal intensities increased with ERs of closer to
1.1. The dilution caused by the excess air for BFGO and
BFG70 caused a decrease in the spectral intensity, and
the different peaks associated with the combustion
radicals were attenuated.

e The extracted image features show trends with fuel
blends and ERs that coincide with the spectroscopy
results for the same range of wavelengths. All types of
image features considered (statistical, geometrical, and
texture) show relationships with the combustion
conditions, and some of them share a stronger
dependence, such as statistical mean, texture IMCI,
and geometrical vertical coordinate of the centroid.

e The images captured with the RGB camera also showed
trends similar to those of spectroscopy and UV filtered
images. As with the UV filtered images, color image
features of statistical, texture, and geometrical types
show dependences on the BFG concentration and ER.
Furthermore, these relationships are provided by all the
color channels, highlighting the strong dependences of
the statistical mean and geometrical area.

The current study has addressed uncertainties and
challenges related to the innovation of the considered BFG
valorization. The results have shown strong dependences of the
computed spectra and image features related to intensity,
texture, and geometry on the BFG concentration and ER.
Thus, promising alternatives have been provided for the
monitoring and control of BFG cofiring, allowing further
research in applications, with the adaptation and optimization
of artificial intelligence techniques to develop predictive
combustion models.
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2.2. Articulo II

Detection of slight variations in combustion conditions with machine learning and
computer vision. P. Compais, ]. Arroyo, M. A. Castan-Lascorz, ]. Barrio, A. Gil. Engineering
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ARTICLE INFO ABSTRACT

Keywords: When monitoring combustion conditions, detecting minor variations, which may be complex even for the
Combustion monitoring human eye, is critical for providing a fast response and correcting deviations. The aim of this study is to
Slight variation detect slight variations in combustion conditions by developing a flame monitoring system using machine

Machine learning
Computer vision
Color image

learning and computer vision techniques applied to color images. Predictive models are developed for fuel
blends with different heating values. The predictive models classify the combustion equivalence ratio based
on multiple conditions, using a mean step size of 0.10 between states, a lower value than previously reported
in related studies. Three machine learning algorithms are used for each fuel blend: logistic regression, support
vector machine, and artificial neural network (multilayer perceptron). These models are fed the statistical,
geometrical, and textural features extracted from the color images of the flames. The classification achieves
accuracies from 0.78 to 0.97 in the detection of slight variations in the combustion conditions for all heating
values. Thus, the monitoring system developed in this study is a promising alternative for implementation on
an industrial scale and quick detection of changes in combustion conditions.

1. Introduction to optimize the trade-off between emissions and efficiency (Cheng
et al., 2018) and to predict multiple characteristics, such as dynamic

Combustion disturbances may shift controlled combustion condi- and steady behavior (Jung et al., 2023), emissions (Gonzalez-Espinosa
tions towards abnormal operation regimes, leading to flashback or et al., 2020; Park et al., 2022), fuel oil viscosity (Ibargiiengoytia et al.,
extinction of the flame in the worst-case scenario. Measuring minor de- 2013), and long-term furnace temperature (Quesada et al., 2021).
viations in combustion conditions from standard combustion operations Flame images have been used to predict the operating conditions
can enable an early detection of abnormal operation regimes. This early related to the air—fuel equivalence ratio (ER), such as the air ratio (Bai
detection is necessary to quickly adjust the process, thereby reducing et al, 2017), O, concentration (Yang et al., 2022), and combustion

the operating time under suboptimal conditions and other efficiency regimes (Abdurakipov et al., 2018; Han et al., 2020, 2021). Combustion
problems. Machine learning (ML) techniques can be used to enable

advanced combustion monitoring.

Currently, ML techniques are employed in many fields, such as agri-
culture (Lawal, 2021), surveillance (Matkvoic et al., 2022), biochemical
engineering (Mowbray et al., 2021; Roy, 2022), heat pipes (Wang et al.,
2021), power systems (Vaish et al., 2021), control systems (Singer
and Cohen, 2021), and combustion engines (Aliramezani et al., 2022).
ML techniques are employed to analyze data for obtaining insights
and achieving higher levels of automation in data analysis. Thus, ML
provides powerful tools for analyzing large datasets and addressing
problems that are extremely complex or unviable with traditional data et al., 2021), decision trees (Han et al,, 2021; Hanuschkin et al.,
analytics. Within the field of combustion, ML has been recently used 2021), k-nearest neighbor (Bai et al., 2017; Abdurakipov et al., 2018),

conditions were examined in discrete ranges at different values (steps).
Mean step widths (step size) of 0.20 (Han et al.,, 2020) and 0.35
(Abdurakipov et al., 2018) were used to evaluate the influence of the
ER on combustion performance. However, the ER can be measured with
a higher level of detail by increasing the number of steps (i.e., reducing
the step size).

Several ML algorithms have been used to predict combustion con-
ditions, such as logistic regression (LR) (Abdurakipov et al., 2018;
Han et al., 2021; Hanuschkin et al., 2021), Gaussian processes (Han

Abbreviations: ANN, artificial neural network; ANOVA, analysis of variance; BFG, blast furnace gas; CV, cross-validation; DL, deep learning; ER, equivalence
ratio; GLCM, grey level co-occurrence matrix; IF, image feature; LHV, low heating value; LR, logistic regression; ML, machine learning; MLP, multilayer
perceptron; PCA, principal component analysis; SVM, support vector machine
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linear discriminant analysis (Gonzalez-Espinosa et al., 2020), support
vector machines (SVMs) (Bai et al., 2017; Abdurakipov et al., 2018;
Han et al., 2020, 2021), and artificial neural networks (ANNs) (Bai
et al., 2017; Abdurakipov et al., 2018; Gonzalez-Espinosa et al., 2020;
Han et al., 2020, 2021; Hanuschkin et al., 2021; Yang et al., 2022).
Predictive models are typically fed with relevant features obtained from
flame images, which correlate with the combustion variables. Many
of these features are extracted from flame images by using computer
vision techniques. Features are typically based on statistical (Gonzalez-
Cencerrado et al., 2012, 2013; Sun et al., 2013; Gonzalez-Cencerrado
et al., 2015; Sun et al., 2015; Mathew et al., 2016; Bai et al., 2017;
Katzer et al., 2017; Gonzélez-Espinosa et al., 2020; Compais et al.,
2022a,b; Zhu et al., 2023), geometrical (Sun et al., 2013, 2015; Katzer
et al., 2017; Hanuschkin et al., 2021; Liu et al., 2021; Compais et al.,
2022a), and textural measures (Bai et al., 2017; Compais et al., 2022a;
Yang et al., 2022).

Owing to the many available features, most applications choose
a limited data subset tailored to the case study. To compress and
visualize feature information, some researchers have employed prin-
cipal component analysis (PCA) (Bai et al., 2017; Abdurakipov et al.,
2018; Hanuschkin et al., 2021; Yang et al., 2022). However, PCA does
not consider the relevance of features for predicting a target. Thus,
other techniques are preferred because PCA is not recommended for
addressing overfitting (Hanuschkin et al., 2021; Yang et al., 2022).
After the predictive models are developed, their performance is usually
evaluated using accuracy, Fl-score or R? metrics, and training-test
split and cross-validation (CV) methods. However, predictive models
may suffer from overfitting and provide overly optimistic performance
results. Several alternatives, such as feature selection, regularization
term, and CV, can be used to address overfitting and obtain more robust
measures (Bai et al., 2017; Abdurakipov et al., 2018; Han et al., 2020,
2021; Hanuschkin et al., 2021; Quesada et al., 2021). Features can
be manually or automatically selected by using other techniques, such
as Pearson’s correlation coefficient or analysis of variance (ANOVA).
CV can be employed for model evaluation and hyperparameter tuning.
However, using a unique CV for both tasks may result in overfitting
(Cawley and Talbot, 2010). Two different CVs can address this risk: one
for hyperparameter tuning and the other for performance evaluation
(Cawley and Talbot, 2010; Hanuschkin et al., 2021). Thus, the CV
for hyperparameter tuning (inner CV) is nested under the CV for
performance evaluation (outer CV), resulting in a nested CV. Owing to
model overfitting, using a non-nested CV instead of a nested CV may
provide overly optimistic results for model performance. For example,
a 13% accuracy reduction was reported in classification models using
nested CV instead of non-nested CV (Abdulaal et al., 2018). Thus,
the validation procedures used should be considered when comparing
quantitative results from other studies. However, nested and non-nested
CVs generally result in the selection of the same model for prediction
applications (Wainer and Cawley, 2018).

This study presents an advanced monitoring system based on ML
and computer vision to detect minor variations in the combustion con-
ditions. Several ML models are developed and tested on a laboratory-
scale burner using different proportions of pure methane (CH,), a
baseline fuel, and blast furnace gas (BFG), a lean fuel. BFG, which is a
by-product of the integrated steelmaking sector and decreases the low
heating value (LHV) of the gas mixture, thereby leading to different
burner behaviors under premixed combustion conditions. Using BFG
as fuel in the steel sector is encouraged to improve energy efficiency
and reduce fossil fuel consumption and global CO, emissions (Cuervo-
Pinera et al., 2018). Thus, advanced combustion monitoring systems
based on image sensors are helpful tools for this purpose.

This work presents the development of predictive models for ER
classification with a significantly high level of detail, using a mean step
size of 0.10 between consecutive combustion conditions. This accuracy
exceeds the human eye’s sensibility and implies accurate control of
combustion processes (Bai et al., 2017). The methodology includes
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three characteristics that had not been implemented together before
and whose separate use is scarcely reported in the field of combustion
monitoring. First, whereas most combustion studies only include one
or two image features (IFs), in this work, statistical, geometrical, and
textural IF are extracted to achieve a complete combustion characteri-
zation. Second, ANOVA F-tests are performed to automatically select
IFs for training predictive models. This approach is implemented to
overcome the potential issue of overfitting, which is a significant
obstacle to minor ER changes.

Finally, while other studies involved the use of less robust methods,
such as a unique CV for model evaluation and hyperparameter turning
or no CV at all, we use nested CV for model evaluation and hyper-
parameter tuning. Here, the hyperparameters for predictive models
are automatically defined with the nested CV. The model accuracy is
measured for each hyperparameter combination in the inner CV, and
the combination with the highest accuracy is selected for the outer
CV. The objective of implementing a nested CV is the same as that of
the ANOVA F-tests: the reduction of overfitting in detecting slight ER
variations. Predictive models are developed using three different ML
algorithms: LR, SVM, and ANNs with multilayer perceptron (MLP). The
performance of the predictive models is evaluated to study their behav-
ior and compare the differences between the models, ML algorithms, ER
classes, and fuel blends.

2. Material and methods
2.1. Experimental setup

Experimental tests were performed in a combustion chamber
equipped with a premixed gas fuel burner with a maximum power of
20 kW,,. Fig. 1 shows a schematic of the experimental setup. The burner
comprised two separate fuel and air inlets with diameters of 25 mm and
10 mm. Air and fuel were premixed in a plenum inside the burner, and
the mixture left through a 100-mm-diameter header and a pattern of
5-mm-diameter holes.

The burner was fed from bottles of gaseous fuel through two in-
dependent lines. Each line was designed to feed gaseous fuel with
different heating values. The fuel mixtures were prepared by using a
gas supplier based on the composition and quality requirements. A
compressor supplied the combustion air, and an ITV2000 electropneu-
matic regulator (SMC Espafia S.A., Spain) controlled the pressure (and
thus the airflow rate). The airflow rate was measured before burner
connection using an SD6000 airflow switch (IFM Electronic GmbH,
Germany). The pressure control and airflow rate were digitized using
a data acquisition system and computer. Flame color images were
acquired by using a DFK 33GX174 color camera (The Imaging Source
Europe GmbH, Germany) with a IMX174LQJ sensor (Sony Europe,
Netherlands) of 2.3 MP.

Three fuel blends with different LHV values (Table 1) were tested
during the experiment. Fuels were selected based on interest in using
BFG, a low-calorific power gas, in the steel sector. Blends with a high
percentage of BFG led to increased combustion instability owing to the
composition of the inert gases. Pure CH, was employed as the baseline
for combustion with the highest LHV (MIX1). In contrast, the pure BFG
exhibited the lowest LHV (MIX3). Finally, a fuel blend composed of
30% vol. CH4 and 70% vol. BFG was studied as an intermediate LHV
scenario (MIX2). The latter is relevant in the steel industry for the
valorization of BFG in reheating furnaces (Caillat, 2017; Cuervo-Pinera
et al.,, 2017). For each fuel blend, the combustion conditions were
modified by changing the airflow rate and operating with different ERs
at a fixed power of 5.5 kW;,. Further details regarding the experimental
procedure can be found in Compais et al. (2022a).

2.2. Methods

Here, predictive models focused on the innovative detection of
minor ER variations, providing greater detail in estimating the ER than
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Fig. 1. Scheme of the combustion laboratory. DAQ: data acquisition.
Table 1 Table 3
Composition of fuel blends (Compais et al., 2022a). Statistical IF extracted from flame pixels of each color channel.
Fuel blend MIX1 MIX2 MIX3 Feature magnitude Equation
[CH,] (%vol.) 100 28 - Mean (y) L3r x(p)
[H,] (%vol.) - 3 o —
[CO] (%vol.) _ 16 22 Standard deviation (o) V3 szl(x(p) —u)?
[CO,] (%vol.) - 16 22 13 -
IN,] (%vol.) - 37 52 Skewness (s) -
LS eyt
LHV (MJ/kg) 50.0 10.8 2.8 Kurtosis (k) L G0
Table 2
Summary of the experimental tests. L. . . .
e L4 (statistical, geometrical, and textural) were not included in most com-
Test MIX1 MIX2 MIX3 R ) . . . .
bustion studies, they were integrated for comparison in this study. Four
Eil 1'2; 1;? g'gi statistical features (mean, standard deviation, skewness, and kurtosis),
ERz 151 1.57 1.09 13 textural features (selected from Haralick et al., 1973), and five
ER, 1.64 1.41 1.11 geometrical features (area, centroid horizontal coordinate, centroid
ERg 1.76 1.57 1.24 vertical coordinate, width, and height) were computed. Processing was
EEé ;g? 1'% - applied to each color channel to obtain 22 IF per color channel, for 66
ER7 ' 1'91 B IF per color image. Tables 3, 4, and 5 list the selected IFs with their
8 - . -

in previous studies. Combustion measurements from the experiment
conducted by Compais et al. (2022a) were used as input to develop
the predictive models. The ER was computed as the ratio between the
actual and stoichiometric air-fuel ratios. The mean ER step sizes were
0.10. The ER range was defined for each fuel blend based on its specific
flame stability. For example, an ER of 2.01 was achieved for MIX1 but
not for MIX2 or MIX3, owing to the extinction of the flame. Table 2
presents the ERs tested for each fuel blend. ERs range from 1.41 to
2.01 (MIX1), 1.13 to 1.91 (MIX2), and 0.91 to 1.24 (MIX3).

The camera acquired the flame images for 6 min after reaching
steady conditions for each test (ER class). The camera achieved a frame
rate of 12 fps, capturing 4320 images per test. Figs. 2, 3 and 4 show
sample images of the combustion regimes for MIX1, MIX2, and MIX3.
The ER variations in the flames were so small that they were not visible
to the naked human eye. This effect was attributed to using a mean step
size of 0.10 ER. Although slight image variations might seem irrelevant
at a lab scale, they might result in high volumes of natural gas that were
not burned on an industrial scale. In this respect, fine detection of these
slight variations could provide energy savings to the steel industry.

Flame images captured during the tests were processed to extract
their features. Although all the main feature types for flame images

formulations. The equations of the statistical features were referred to
as monochrome images of P pixels, where x(p) was the value of pixel
p- In textural features, p(ij) referred to elements in row i and column j
of a normalized GLCM. The GLCM had N rows and N columns, where
N was defined as the number of gray values in the monochrome image.
Geometrical features were computed for binary images of P pixels (with
R rows and C columns), with b(c,r) as the binary value (zero or one) of
pixel p located in column ¢ and row r. Moreover, C,; and R, were the
horizontal and vertical coordinates of the pixels with binary values of
one, respectively.

Before the IF was extracted, the flame images were preprocessed.
First, to remove sensor electrical noise, the dark camera signal was
subtracted from the flame images (Gonzalez-Cencerrado et al., 2012,
2013; Huang et al., 2015). The flame pixels were then segmented using
thresholding (Mathew et al., 2016; Katzer et al., 2017). The threshold
was automatically selected by applying Otsu’s method to maximize the
variance between the two-pixel classes (Otsu, 1979). The statistical
and textural features were extracted. Using Otsu’s thresholding, a re-
duced number of image pixels that were distant from the main flame
body were erroneously classified as flame pixels. Although they barely
affected the statistical and textural characteristics, these pixels signifi-
cantly influenced the calculation method for the geometrical features.
Therefore, the morphological transformation of erosion (Sreedhar and
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Fig. 2. Sample images of flames for MIX1 and ERs of (a) 1.41, (b) 1.43, (¢) 1.51, (d) 1.64, (e) 1.76, (f) 1.88, and (g) 2.01.
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(@
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Fig. 3. Sample images of flames for MIX2 and ERs of (a) 1.13, (b) 1.27, (¢) 1.37, (d) 1.41, (e) 1.57, (f) 1.67, (g) 1.78, and (h) 1.91.

Panlal, 2012) was used to discard them. Erosion was applied using a
3 x 3-pixel kernel. Finally, geometrical features were extracted.

Based on the same methodology, different predictive models were
developed to detect slight ER variations in three fuel blends (MIX1,
MIX2, and MIX3). Each image was labeled with its corresponding fuel
blend and ER. Flame color images, fuel blends, and ER labels were used
as the datasets. Each fuel blend was tested for a discrete group of ERs
and predictive models were developed to classify each ER label. These
predictive models estimated the ERs related to the images based on the
extracted IF. The behavior of several ML algorithms was analyzed for
the ER classification of fuel blends. Predictive models were developed

using ML algorithms with different characteristics, namely LR, SVM,
and ANN. An MLP with a unique hidden layer of 100 neurons was used
for the latter. The ML methodology in this study for each fuel blend is
shown in Fig. 5.

The overall ML process for the dataset of a fuel blend is summarized
as follows, and specific steps of the method are described in more
detail. The dataset of each fuel blend was randomly shuffled and
split into training and test sets with 70% and 30% of the samples,
respectively. These sets were stratified to include a similar proportion
of the ER classes. Each IF’s mean and standard deviation in the training
set were computed to standardize the dataset. Based on those values,
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Fig. 4. Sample images of flames for MIX3 and ERs of (a) 0.91, (b) 0.94, (c) 1.09, (d) 1.11, and (e) 1.24.

Table 4
Textural IF extracted from flame pixels of each color channel.

Feature magnitude Equation

NN bGP
Y BN = ) el )

Angular second moment (f,, energy)

Contrast (f,)

Correlation (f3) Z,Zl Z:\I:] tu)p(;/%
i N N (; 2

Sum of squares (f,, variance) 21:1 Z]:I (, _ l‘x) Y

Inverse difference moment (f) E,}i . Zfl: . HT;L -

S, ks, ()

i (k= /‘x+y)z Pary(K)
= 2%, rny (O 10g Py (K)
=X, T, pli. ) log pli, )
T (k= 1ey) oy ()

= I Pesy () J0g py_y ()
HXY-HXY1
max(HX.HY)

Sum average (fy)

Sum variance (f;)

Sum entropy (f3)
Entropy (fy)

Difference variance (f,)
Difference entropy (f};)

Information measure of correlation I (f,,, IMC1)

Information measure of correlation II (f;, IMC2) \/l —exp[-2(HXY2 - HXY)]

Table 5
Geometrical IF extracted from flame pixels of each color channel.

Feature magnitude Equation
Area (a) SRLTC ble.r)
kg
Centroid horizontal coordinate (c,) M
Zh 3E rben)

Centroid vertical coordinate (cy)
Width (w)
Height (h)

max (C,) —min (C;)
max (R,) — min (R;)

training and test sets were standardized. To tackle the overfitting of
the predictive models, the training set was analyzed by ANOVA F-tests.
The ten IFs with the best variance results were selected and employed
as input for predictive models for both training and test sets. Three
nested CVs (one per ML algorithm) tuned the hyperparameters and
evaluated the performance of each ML algorithm, selecting the best
alternative in the end. The chosen ML algorithm was trained with the
selected hyperparameters and the training set, and its performance was
analyzed, computing its accuracy for the test set. Accuracy was defined
as the ratio of the number of correct predictions to the total number of
predictions. PCA was not used in the ML method because training time
and storage limitations were not critical in this study.

Regarding the ANOVA F-tests, the selected IFs were the ten vari-
ables with the highest variance for the ER classes of each fuel blend in
the training set. F-tests use a Fisher-Snedecor distribution, and in the

case of the ANOVA F-tests, the hypothesis was the dependence of an
image feature on the ER class for a specific fuel blend. A confidence
level of 0.05 was selected to evaluate this hypothesis, and the F-
values, critical F-values, and p-values of the 66 IFs were computed and
compared. In the ANOVA F-test of an IF, the hypothesis was supported
if its F-value was higher than the critical F-value for the specific fuel
blend and the p-value was lower than the confidence level.

Nested CVs were applied with stratification to the training set, with
an outer and inner CV of ten and five folds, respectively. The outer
CV split the training set into ten training- and validation-subset pairs.
Fig. 6 summarizes the ML method for a split i of an outer CV.

For a training subset, an inner CV was applied to define the hyper-
parameters of the predictive model. Next, the model was trained with
the training subset, and its performance was evaluated by calculating
its training and validation accuracies, learning curve, and validation
confusion matrix. Training and validation accuracies were measured
for different subset sizes to compute the learning curves. These sizes
were defined as 1%, 25%, 50%, 75%, and 100% of the samples in the
outer CV fold. After the ten splits were evaluated, their metrics were
averaged, and the mean accuracy was used to select the ML algorithm.
The inner CV split each training subset into another five pairs of
training and validation subsets. For each pair, every combination of
hyperparameters was evaluated. The procedure for the split j and the
combination of hyperparameters k is shown in Fig. 7.

For an inner CV split j and a combination of hyperparameters k, the
predictive model was trained with the training subset j, and its accuracy
was computed for the validation subset j. Values for the five splits
were averaged to define the combination of hyperparameters with the
highest accuracy. Three values of the regularization term (0.1, 1, and
10) were tested for the three ML algorithms to address the overfitting
problem. Moreover, for the SVM, three different kernels were tested
(linear, polynomial, and radial basis functions).

The specific code to extract the IF and develop predictive models
was developed using Python as the programming language (version
3.7). Several libraries were used for the code: OpenCV, Scikit-learn,
NumPy, SciPy, Mahotas, and Pandas.

3. Results and discussion

Several comparative analyses were performed to evaluate the detec-
tion of slight ER variations using predictive models. First, the variance
of IF with the ER classes was analyzed using the ANOVA F-tests. This
assessment compared the subsets of the IF automatically selected for
each fuel blend. Apart from the specific IF that formed each subset,
the relevance of each subset’s color channels, and feature types was
checked. Next, the validation accuracy achieved by the predictive mod-
els and the effects of the ML algorithm were tested against other related
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Fig. 5. ML method for each fuel blend.

studies. Also, confusion matrices were computed to evaluate the effect
of ER class on the prediction models. Finally, the fit of the predictive
models was analyzed using learning curves and by comparing the
training, validation, and test accuracies.

3.1. Variance of the IF with the ER classes

The first analysis measured the variance of IF with the ER classes
using the ANOVA F-test. The critical F-value was computed for each
fuel blend, with a confidence level of 0.05. Fuel blends had critical
F-values of 2.10 (MIX1), 2.01 (MIX2), and 2.37 (MIX3). All IF had
F-values that were at least two orders of magnitude higher than the
critical F-value of the fuel blend. Also, all p-values were lower than the
confidence level. Thus, the mean values of each IF were affected by the
ER class regardless of the fuel heating value. IF were ordered based on
their F-values, and the subset of the 10 IF with the highest F-values was
selected to develop the predictive models. The chosen IF are indicated
with checkmarks (Tables 6, 7, and 8).

Three subsets of 10 IF were selected, with one subset for each fuel
blend. Some visual characteristics were repeated between subsets. In
particular, the IF group formed by the three subsets included only 24
different IF from a total computed of 66. The subsets for MIX1 and
MIX2 shared four IF: the standard deviation of the green and blue
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Fig. 7. ML method for the split j of an inner CV and the combination of
hyperparameters k.

channels, difference entropy of the green channel, and centroid vertical
coordinate of the blue channel, which was a feature shared for all
fuel blends. The number of IF was computed for each color channel
(Fig. 8[al]) and feature types (Fig. 8[b]). The subsets of IF depended on
the fuel blend.

For MIX1, only the IF from the green and blue channels were
selected. However, in the cases of MIX2 and MIX3, the IFs from the
three-color channels were included. Moreover, three feature types were
included in selecting IF for MIX1 and MIX2. Nevertheless, only the
textural and geometrical features were chosen for MIX3.

3.2. Prediction of slight variations in the ER

After analyzing the variance of the IF with the ER, for each fuel
blend, a subset of ten features was selected, which were used for the
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Table 6
IF selected from the red color channel for each fuel blend.
Feature type Feature magnitude MIX1 MIX2 MIX3
Statistical Standard deviation (o) v
Textural Contrast (f,) v
Geometrical Area (a) v
Geometrical Centroid vertical coordinate (c,) v
Table 7
IF selected from the green color channel for each fuel blend.
Feature type Feature magnitude MIX1 MIX2 MIX3
Statistical Standard deviation (¢) v v
Textural Contrast (f,) v
Textural Correlation (f3) v
Textural Sum of squares (f,, variance) v
Textural Inverse difference moment (f5) v
Textural Difference entropy (f,) v v
Textural Information Measure of Correlation II (f,5, IMC2) v
Geometrical Area (a) v
Geometrical Centroid vertical coordinate (c,) v v
Table 8
IF selected from the blue color channel for each fuel blend.
Feature type Feature magnitude MIX1 MIX2 MIX3
Statistical Standard deviation (o) v v
Statistical Skewness (s) v
Textural Contrast (f,) v
Textural Correlation (f3) v
Textural Sum of squares (f,, variance) v
Textural Inverse difference moment (f5) v
Textural Difference entropy (/) v
Textural Information Measure of Correlation I (f;,, IMC1) v
Textural Information Measure of Correlation II (f,;, IMC2) v
Geometrical Area (a) v
Geometrical Centroid vertical coordinate (c,) v v v
@ 10 QBT
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Fig. 8. Number of IF selected for fuel blend, based on (a) their color channel and (b) their feature type.

input and development of predictive models. Three predictive models
were developed for each fuel blend using different ML algorithms (LR,
SVM, and MLP), and were trained and validated using nested CV. The
hyperparameters of the ML algorithms were tuned in this nested CV.
The validation accuracies of the predictive models were averaged over
the nested CV, and Fig. 9 shows the results.

The predictive models showed similar results for MIX1 and MIX2
expression. ER was estimated using classes with a mean step size of
0.10 (MIX1) and 0.11 (MIX2), achieving validation accuracies between
0.95 and 0.97. In contrast, the ER steps for MIX3 had a lower mean
step size (0.08), and validation accuracies of approximately 0.78 were
achieved. In summary, the validation accuracies ranged between 0.78
and 0.97, which are typical values for classification models related
to ER conditions. For example, Bai et al. (2017) measured accuracies
between 0.75 and 0.93 to predict air ratios. However, Han et al.
(2021) achieved accuracies of between 0.96 and 1.00 and 0.65 and
0.99 (Han et al., 2020) for the classification of combustion states. Also,
Abdurakipov et al. (2018) reported accuracies of 0.89 and 0.98.

1.00
)

< -
£ 0.95
2 0.90 -
<

0.85
0.80
0.75

0.70 T T
MIX1 MIX2 MIX3

mLR =SVM © MLP

idation a

Val

Fig. 9. Validation accuracy of the predictive models developed with different
algorithms.

The results were compared in more detail with those of works
on similar classification tasks based on combustion conditions with
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different ER. Han et al. (2020) and Abdurakipov et al. (2018) used
mean step sizes of 0.20 and 0.35, respectively, whereas the present
work predicted ER conditions using a mean step size of 0.10, which
is at least two times lower. The use of larger mean step sizes facilitates
the image classification task because image flames present significant
differences that could be perceived by the human eye, as shown when
analyzing figures in their works. However, the classification task in this
work is more difficult because of the smaller mean step size, which
provided image differences hardly perceived by the human eye. To
address this challenge, we proposed a novel methodology for previous
combustion studies. In summary, using smaller ER steps and a nested
CV, the current study predicted ER conditions with a considerably high
level of detail, with accuracies like previous studies.

3.3. Effect of the ML algorithm

Results (Fig. 9) show that using a different ML algorithm barely
affected the validation accuracy of the predictive models regardless
of the fuel blend. LR, SVM, and MLP models achieved validation
accuracies with a maximum deviation of 3%. SVM provided the highest
accuracies for the three fuel blends (0.967, 0.973, and 0.795). Previous
studies measured variations in accuracy below 2% between SVM and
ANN (Bai et al., 2017) and LR and SVM (Abdurakipov et al., 2018).
In the work of Han et al. (2020), the highest accuracy was achieved
by SVM compared with ANN. Nevertheless, high deviations (< 19%)
between LR, SVM, and ANN have been reported in some cases (Bai
et al.,, 2017; Abdurakipov et al., 2018; Han et al., 2020). Moreover,
ANN achieved better results than SVM in the studies by Bai et al. (2017)
and Abdurakipov et al. (2018). Therefore, the behavior of the ML
algorithms may be dependent on the case conditions, and the current
research achieved similar results to those of previous studies.

3.4. Effect of the ER class

As Fig. 9 shows, the validation accuracy decreased significantly for
MIX3. To analyze this behavior in detail, the confusion matrixes of the
predictive models were analyzed. Results are shown (Fig. 10) for the
SVM model, which provided the highest validation accuracy.

For MIX1 and MIX2, confusion matrixes showed similar results.
Regardless of the ER class, the predictive models correctly estimated the
ER value for most samples (95% at minimum). Incorrect classifications
occurred only for a few samples with consecutive ER classes, such as
1.43 and 1.51 in the case of MIX1 (Fig. 10[a]). However, the behavior
of the predictive model was different for MIX3, where the ER estimation
exhibited lower accuracies when distinguishing between class pairs
of 0.91-0.94 and 1.09-1.11 (Fig. 10[c]). These conditions had the
smallest ER variations (0.03 and 0.02), together with 1.41-1.43 for
MIX1. However, the latter case was more accurate despite its low ER
variation. Due to the lower combustion stability caused by its lower
heating value, the classification could be more complex for MIX3 than
for MIX1. Also, it is observed that when the ER increased between 0.91
and 1.24, the validation accuracy for MIX3 was higher. These variations
could be related to combustion stability changes, as reported by Zheng
et al. (2021).

3.5. Fit of the predictive models

To evaluate the predictive models in more detail, learning curves
were computed. Fig. 11 shows the learning curves for the predic-
tive models developed using the SVM, which provided the highest
accuracies.

For each fuel blend, the validation accuracy increased with increas-
ing subset size, approaching the same value as the training accuracy.
This behavior is considered a good fit for the predictive models, which
did not suffer from underfitting or overfitting. Furthermore, as the
predictive models were stable at a subset size of 25%, similar results
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Fig. 10. Confusion matrixes of the predictive models developed with the SVM
algorithm for (a) MIX1, (b) MIX2, and (c) MIX3.

could be achieved by acquiring only 1080 images per class, reducing
the test duration from 360 s (Compais et al., 2022a) to 90 s, or the
frame rate from 12 (Compais et al., 2022a) to 3 fps.

To provide a final test for the ER classification, predictive models
with the best results were trained with the entire training set and
evaluated with the test set, which had not been used to develop the
predictive models. Only the SVM models were evaluated in this step,
as they achieved the highest accuracy. The hyperparameters of the
SVM models were defined based on the best results obtained in the
hyperparameter tuning: a regularization term of 10 for the three fuel
blends, radial basis function kernel for MIX1 and MIX3, and linear
kernel for MIX 2. Their accuracies were computed to evaluate the SVM
models using the test set. Fig. 12 shows the accuracies for the SVM
model, including the previous training and validation accuracies and
the new test accuracies.

The accuracies achieved using the test set were like those of the
training and validation sets. Therefore, the SVM models exhibited
acceptable behavior for previously unseen flame images.

4. Conclusions

This paper presented a novel methodology for detecting slight vari-
ations in combustion conditions. The fuel blends used here are pure
CH,4, 30% vol. CH,/70% vol. BFG, and pure BFG. The combustion
was analyzed using a laboratory-premixed burner at a fixed thermal
power of 5.5 kW. The developed methodology was based on extracting
statistical, geometrical, and textural features from flame images, their
automatic selection with ANOVA F-tests, the automatic selection of
hyperparameters, and the robust performance evaluation for predictive
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Fig. 12. Training, validation, and test accuracies of the SVM model for MIX1, MIX2,
and MIX3.

models using nested CV. This methodology aimed to reduce overfitting,
which was critical for the current application. Predictive models were
developed for the ER classification of each fuel blend using three
ML algorithms (LR, SVM, and ANN [MLP]). The performance of the
predictive models was evaluated using a training—test split and nested
CV within the training set by computing their accuracy, confusion
matrices, and learning curves.

The model developed in this work allowed the prediction of the ER
using a mean step size of 0.10, which in the case of the selected fuel
mixtures, implied differences that would be difficult to be perceived
by the human eye. The detection of slight changes in the combustion
conditions allowed for the correction of deviated parameters, helping to
optimize the processes and avoid the appearance of critical instabilities.

It was confirmed that the computed IFs used were affected by the
ER class regardless of the fuel heating value. However, the subset of
IFs with the highest variances depended on the fuel heating value. The
subsets for the first and second mixtures shared three IFs: the standard

value (MIX1), the predictive models obtained a higher accuracy when
predicting consecutive ER classes with a step size of 0.03.

The SVM models showed a satisfactory fit to the data without
underfitting or overfitting. The models achieved stability with only 25%
of the flame images. Therefore, the test duration or frame rate could be
reduced. Finally, the accuracy of the SVM models was measured again
using a test set with previously unused flame images. The SVM models
showed similar values to previous accuracies; thus, they performed well
with unseen flame images.

The decreased accuracy reported for the fuel blend with the lower
heating value could be used to propose future studies focused on
monitoring fuel blends with low heating values to increase prediction
accuracy. The current research sets the stage for automated monitoring
of minor variations in the combustion of gaseous fuels.

Finally, the current research results, carried out at a laboratory
level, would enable the development of these systems for their final
implementation in industrial furnaces of the steel sector, where the mix-
tures used in this work present an alternative for fossil fuel substitution
and, thus, for their decarbonization.
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ABSTRACT

The steel industry is searching for novel image systems to monitor multiple burners
individually. Such a development is highly complex and requires studies on several scales. This
work analyses the robustness of an imaging system in different scenarios, from the laboratory
(design and development) and semi-industrial (implementation) stages, using 20 kW and 1.2
MW burners, respectively. The monitoring system predicts oxygen concentration in flue gases
on both scales, achieving accuracies higher than 0.95 in most cases and 0.79 as a minimum.
The vision system detects slight variations in combustion conditions and addresses differences
among development phases, including burner typologies and system placements. This study
leads flame monitoring systems based on images toward their final development on an
industrial scale.

KEYWORDS

Flame monitoring, system validation, computer vision, machine learning, steel reheating
furnace, blast furnace gas

INTRODUCTION

Energy-intensive industries continue searching for alternatives to increase their efficiency and
sustainability. The steel industry demands high-temperature processes, mainly by the
combustion of solid, liquid, or gaseous fuels. Monitoring systems can enhance the control and
performance of such combustion processes, reducing fuel consumption, emissions, and costs,
to reach European targets for carbon emissions by 2030.

Industrial furnaces are usually equipped with several groups of burners, and the furnace
operation is evaluated by analysing global combustion parameters. Monitoring air-fuel flows
and flue gas emissions for each burner could detect individual malfunctions to raise the
efficiency of the process. Still, this alternative is not feasible by the high cost of individual
monitoring with traditional sensors. Thus, novel systems are searched to monitor multiple
burners individually. In this context, image systems equipped with computer vision and
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Machine Learning (ML) systems have a high potential, enabling the supervision of several
burners by a single camera.

Cameras can be employed to evaluate the combustion [1] and compute quantitative
characteristics such as the flame area [2]. These systems can be developed to predict the
equivalence ratio [3] or different combustion conditions [4]. Computer vision algorithms
usually use flame segmentation to compute image features from only flame pixels. However,
flame segmentation could be complex or inaccurate for images without a clear flame body.
Another alternative is the analysis of flame images without performing flame segmentation,
extracting features for the whole image [5, 6]. Typical image features can be split into statistical,
textural, and geometrical. Statistical and textural features can be extracted from images with
and without flame segmentation. Nevertheless, geometrical features need flame segmentation
to define the flame body and compute characteristics such as the flame length.

Developing advanced image systems for industrial scale is challenging and needs studies at
several scales. However, most research works in the open literature focus on a single scale,
usually the laboratory scale. This work presents the validation or joint assessment for laboratory
and semi-industrial scales of an advanced image system that automatically predicts oxygen (O)
concentration in flue gases using an image sensor. The two-scale validation is a novelty
concerning previous works focused on a single scale, enhancing the insight into sensitivity to
changes and robustness of image systems for combustion monitoring. In this aspect, the
system’s image sensor, image processing, and predictive model were evaluated in different
scenarios by comparing design, simulation, and implementation results. A combustion chamber
with a 20-kW burner was used for the laboratory scale, while a 1.2 MW burner was employed
for the semi-industrial scale furnace. The rated power of the large burner is higher than those
used in previous industrial works [7]. Nevertheless, our case was defined as a semi-industrial
scale because the furnace has only one burner, whereas, at the industrial scale, the furnace is
equipped with multiple burners.

This work is focused on a specific case of the iron and steel industry. This industry is searching
for novel systems [8] to individually monitor the multiple burners inside reheating furnaces [9].
Natural Gas (NG) and Blast Furnace Gas (BFG) are usually mixed to provide different fuel
blends for these furnaces. The steel industry produces BFG as waste gas that can be valorised
as fuel within the same facility [10-12]. Nevertheless, BFG has a low heating value and is prone
to combustion instabilities [ 12, 13]. The temperature in the steel-making processes can be raised
by increasing the NG share in the fuel blend with BFG. This strategy is used to meet temperature
requirements when needed. In this work, the image system validation was focused on the fuel
blends 100 %vol. NG, 30 %vol. NG and 70 %vol. BFG, 20 %vol. NG and 80 %vol. BFG and
100 %vol. BFG.

METHODS

The development stages of the monitoring system were discussed to identify changes in
combustion conditions, mainly scales, burners, and camera set-up. Next, monitoring system
fundaments (image sensor, image processing, and predictive models) were assessed in the
different development stages, considering condition changes among them. The evaluation
procedure is explained as follows.
e Image sensors were assessed by comparing flame images for different combustion
conditions. In addition, the simulated and actual views of the furnace were analysed.
e Image processing effectiveness was assessed by analysing relationships between
combustion conditions and extracted image features.
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e Finally, the performance of predictive models was validated by comparing their
accuracy values. Accuracy was defined as the number of correct predictions divided by
the total number of predictions.

RESULTS AND DISCUSSION

Review of the development

The imaging system was evaluated in different scenarios during its development in order to
assess its viability and robustness. Therefore, different scales, burner types, and camera
locations were tested, while the imaging system shared several properties during the
development stages. This approach differs from the usual validation of a burner, in which the
burner typology and characteristics are constant.

A colour camera was employed as the image sensor. The processing algorithm extracted
statistical features from the three colour channels of the flame images. In some cases, additional
textural and geometrical characteristics were computed. A predictive model was tested to
predict O2 concentration in flue gases for each fuel blend, choosing between three different ML
algorithms. A subset of image features was automatically selected to feed the predictive model
of each fuel blend. The image sensor, image processing, and predictive model are described in
more detail in the next sections. The development stages of the flame monitoring system are
summarised in Table 1.

Table 1. Development stages of the flame monitoring system

Stage Scale Burner Camera placement
Design Semi-industrial Diffusion Outside
Development Laboratory Premixed Outside
Implementation Semi-industrial Diffusion Inside

The first stage included the design requirements for the monitoring system. With that purpose,
an experimental campaign was performed at a semi-industrial scale with a diffusion burner of
1.2 MW. This type of burner is characterised by the production of soot and its continuous
radiation (black-body emission) [14, 15]. The camera was set outside the furnace, aligned with
a viewing port to acquire flame images. The experimental campaign and its results are presented
in a previous work [16].

The second phase focused on developing the predictive model with an experimental campaign
at the laboratory scale. A combustion chamber with a premixed burner of 20 kW was used in
this stage. Premixed burners provide flames that mainly emit several discrete radiations due to
chemiluminescence [15, 17]. The camera was placed outside the combustion chamber before
an inspection window. The analysis of these image features is included in another work [18].

Lastly, in the implementation stage, a predictive model was developed for the semi-industrial
scale performing another experimental campaign. As in the design phase, a diffusion burner of
1.2 MW was employed. However, the camera was set inside the furnace in this case.

Image sensor

Examples of flame images acquired during all the development stages are shown in
Figure 1.
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Figure 1. Examples of flame images for different O> concentrations in flue gases for semi-
industrial and laboratory scales, with the fuel blend 70 %vol. BFG and 30 %vol. NG. For the
semi-industrial scale, the ((a), (b), and (c)) outside and ((g), (h), and (1)) inside placements of

the camera were used, while for laboratory scale, an ((d), (e) and (f)) outside set-up was
employed

For the semi-industrial scale, flames had low visibility, but overall image characteristics were
affected. For example, the brightness of the images was decreased by raising the O:
concentration in flue gases with the outside and inside camera locations. At the laboratory scale,
images captured a flame body and clear flame front for all combustion conditions. For both
diffusion and premixed burners, the images differed depending on the combustion conditions.
Therefore, the colour camera was validated as an image sensor for monitoring BFG combustion
for diffusion and premixed burners.

At the semi-industrial scale, the burner typology (diffusion) was fixed, but the camera port used
to visualize the flame differed. In the design stage, the small size of the viewing port and the
outside location affected the camera view, and only part of the furnace inside was captured. For
the implementation phase, the captured area of the furnace was maximised by placing the
camera inside the furnace. This location was also simulated based on the camera placement and



furnace geometry to check the field of view before the physical setup of the system, as seen in
Figure 2. The simulation provided an accurate estimation of the captured area of the furnace.

(a) (b)

©

Figure 2. (a) Simulated and (b) actual views of the inside of the furnace at the semi-industrial
scale for the image sensor set-up

Image processing

The same statistical features were extracted from the three colour channels of flame images for
all the development stages. Textural and geometrical features were also computed from the
three colour channels in some cases (Table 2).

Table 2. Summary of computed image characteristics

Stage High flame Statistical Textural Geometrical Total image
visibility features  features features features
Design - Yes - - 12
Development Yes Yes Yes Yes 66
Implementation - Yes Yes - 51

First, flame segmentation was only applied to the laboratory scale due to the high visibility of
the flame. Therefore, features were computed at the laboratory scale using only flame pixels,
while at the semi-industrial scale, all the image pixels were processed. The same statistical
features (mean, standard deviation, skewness, and kurtosis) were extracted for all the
development stages. The textural features computed for laboratory and semi-industrial scales
were based on thirteen selected characteristics [19]. The application of flame segmentation at
the laboratory scale enabled the use of geometrical features from which flame area, centroid
coordinates, width, and height were extracted. All the image features were computed for each
colour channel, with 12, 66, and 51 features for each development phase. Figure 3 shows, as an
example, the relationship between Oz concentration in flue gases and the image feature of the
red mean for the 70 %vol. BFG/30 %vol. NG fuel blend. This characteristic was selected as an
illustrative example since it is extracted in all the development stages.
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Figure 3. O; concentration in flue gases vs. red mean for semi-industrial and laboratory
scales, during the combustion of the fuel blend 70 %vol. BFG and 30 %vol. NG. For the
semi-industrial scale, the outside and inside placements of the camera are shown

In all the development stages, image features were affected by the combustion conditions.
Statistical and textural features were validated as descriptors of combustion conditions for
flames with high and low visibility, respectively.

Predictive model

Predictive models were trained to predict O, concentration in flue gases for the laboratory and
semi-industrial scales. At the semi-industrial scale, the predictive model was developed only
for the inside location of the camera (implementation stage) due to the lower amount of flame
images captured for the outside set-up (design phase). Five, seven, and eight O, classes were
studied at a laboratory scale for each fuel blend, while only three classes were considered at a
semi-industrial scale. The same methodology was followed for laboratory and semi-industrial
scales, explained next.

Three ML algorithms with different characteristics were analysed: Logistic Regression (LR),
Support Vector Machines (SVM), and a MultiLayer Perceptron (MLP) with a single hidden
layer of a hundred neurons as an artificial neural network. The predictive models were trained,
validated, and tested with the datasets of image features. The dataset of each fuel blend was
randomly shuffled and split into training and test sets.

In the training set, a subset of image features was automatically selected as input. Each subset
of image characteristics comprises the ten variables with the highest variance for the
combustion conditions. The training set was also used to tune model hyperparameters and
evaluate the performance employing nested Cross-Validation (CV). The nested CV included an
outer CV of 10 folds and an inner CV of 5 folds. The training set was split again into 10 pairs
of training and validation subsets for the outer CV. For each training subset, the inner CV was
used to define the best hyperparameter combination. Next, the selected hyperparameters were
employed to train the predictive model with the training subset and measure its accuracy in
predicting the O» concentration for the validation subset. The accuracy was averaged for every



validation subset, providing a single value for each ML algorithm and scale, as shown in Table
3.

Table 3. Nested CV accuracies of the predictive models for different BFG shares (%vol.) in
the fuel blend at laboratory and semi-industrial scales

BFG share Laboratory predictive model Semi-industrial (inside)
(%vol.) predictive model
LR SVM MLP LR SVM MLP
0 0.9485 0.9667 0.9600 0.9920 0.9936 0.9866
70 0.9679 0.9734 0.9693 0.9666 0.9671 0.9640
80 0.9970 0.9980 0.9962

100 0.7749 0.7949 0.7904 - - -

The nested CV accuracy of the predictive models was higher than 0.77 for all the cases and
development stages, showing values higher than 0.94 for BFG shares in the fuel blend lower
than 90 % vol. at both laboratory and semi-industrial scales. This accuracy was achieved even
for flames with low visibility and slight combustion variations that the human eye did not
perceive. The increase in accuracy for the semi-industrial scale could be explained by the
complexity reduction in the classification task concerning the laboratory scale. In this work, the
classification task for the semi-industrial scale may be easier due to the lower number of classes
to predict, the more significant image differences between classes, or the lower maximum
concentration of BFG in the fuel blend (80 instead of 100 %vol.).

The three ML algorithms achieved similar accuracies in the nested CV, with differences lower
than 5%. Nevertheless, SVM reached the highest accuracy for every fuel blend. The
performance of this particular ML algorithm was assessed again. Predictive models were
trained with the whole training set, and their accuracy was evaluated in predicting O>
concentration for the test set (Figure 4).
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Figure 4. Test accuracies of the predictive models vs. BFG share (%vol.) in the fuel blend for
laboratory and semi-industrial scales

To conclude, the defined methodology and the ML algorithms were tested for laboratory and
semi-industrial scales. In addition, using ML algorithms with lower complexity (LR and SVM)
did not provide significant changes in performance with respect to the MLP.

CONCLUSIONS

An advanced image system for combustion monitoring in the steel industry has been validated
at laboratory and semi-industrial scales. The system’s robustness has been assessed by
analysing results along the design, development, and implementation stages, identifying
condition changes between them. The relationships between combustion conditions, flame
images, image features, and performance of predictive models were analysed.

Colour cameras were proven as reliable sensors for monitoring BFG combustion on laboratory
and semi-industrial scales, and the simulation of the furnace view was also accurate. For both
scales, extracted image features were affected by combustion conditions, and the statistical and
textural features provided adequate descriptors of the combustion for images with high and low
flame visibility. The predictive models generally achieved accuracy higher than 0.95, with 0.79
as the minimum. The defined methodology was adequate for the two scales, and using ML
algorithms with lower and higher capacities did not achieve relevant performance differences.
The image processing and predictive models enabled the monitoring of flames with low
visibility and slight combustion variations that the human eye did not perceive in the images.
In summary, the imaging system was robust and overcame condition changes along the
development stages, including scale (lab and semi-industrial), burner type (diffusion and
premixed), and camera placement (outside and inside).

With this work, several research lines have been opened for future studies. The monitoring
system could be enhanced by simultaneously supervising several burners within the same



image. In addition, experimental campaigns at an industrial scale could be performed to
increase the technological readiness of the system for the industry.
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The sustainability and decarbonization of processes in the steel industry are enhanced with the valorization of
the gas generated during the chemical reactions produced in blast furnaces. However, the combustion of blast
furnace gas (BFG) faces the drawback of lower flame stability, which increases the chance of operation shifts
towards abnormal conditions and even the flashback or extinction of the flame. Thus, early detection and
correction of regime deviations are needed to increase combustion efficiency, for which image-based systems
have a high potential. This work focuses on monitoring an industrial furnace for steelmaking processes based on
estimating Oy concentration in flue gases using color images captured inside the combustion chamber. An
experimental campaign was performed in a 1.2-MW burner to develop the supervision system, using three fuel
blends of BFG and natural gas. Images were processed to extract intensity and textural features, which were used
to train predictive models based on machine learning algorithms: logistic regression, support vector machines,
and artificial neural networks (multilayer perceptron). O concentration in flue gases was correctly estimated for
at least 97 % of all the test samples and fuel blends. This study shows the potential of image-based systems for the
automated control of BFG combustion at the industrial scale.

1. Introduction

Steel is crucial in modern societies as the third most manufactured
bulk material, with 1.9 billion tons of world yearly production [1].
Steelmaking is also an energy-intensive industry, accounting for 8 % of
global energy demand and 7 % of CO. direct emissions from the
worldwide energy system. Reducing these quantities is urgent for the
European Union, the second-largest steel producer. Consequently,
Europe has ambitious targets for steel decarbonization, cutting emis-
sions by 55 % by 2030 and reaching climate neutrality by 2050. Several
strategies can help achieve these objectives, such as valorizing gaseous
waste streams from the steel production processes. Blast furnaces, used
in the basic oxygen steelmaking process to reduce iron ore, are a sig-
nificant source of waste streams. Chemical reactions inside blast fur-
naces generate a by-product, the blast furnace gas (BFG), which can be
used as fuel in other steelmaking furnaces, reducing natural gas (NG)
consumption.

BFG differs from traditional fuels in its large concentration of inert
gases and low calorific value. With a typical composition of 1-7 %vol.
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H,, 18-25 %vol. CO,, and 20-28 %vol. CO, balanced with N, [2], BFG
has a lower heating value (LHV) around 3.3 MJ/Nrn?’, one-tenth the
calorific value of NG. Even though BFG reduces the thermal energy
released during combustion, it can be used in high-temperature pro-
cesses (such as steel reheating furnaces) by adopting multiple strategies.
These solutions include its mixture with NG or coke oven gas (COG) [3],
preheating of the combustion air [4], flameless combustion [5,6], and
the use of several burner technologies (oxy-fuel, double regenerative
and regenerative flat flame) [7].

The combustion of BFG and low-calorific fuels has been analyzed in
the past by several numerical and experimental approaches. Regarding
the steel industry, BFG and other by-product combustion gases were
analyzed by Caillat [3] for their use in reheating furnaces and annealing
lines. The study discussed the constraints due to the by-products’ vari-
able composition and physical properties. Cuervo-Pinera et al. [7] tested
three burner technologies (oxy-fuel, double regenerative, and regener-
ative flat flame) for the combustion of BFG in steel reheating furnaces.
The trials successfully proved the operation of these furnaces with only
BFG, supplying oxygen or meeting other specific conditions. However,
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the economic viability of these alternatives should be checked for each
facility, considering fuel saving, oxygen consumption, burner replace-
ment, and retrofitting investment. The combustion of BFG/NG fuel
blends was also simulated and validated for a semi-industrial furnace in
the steel sector [8]. The authors analyzed velocity, temperature, OH and
O, concentrations, and NOy rate generation. The significant differences
in the LHV of the fuel blend modified combustion fluid dynamics,
affecting flow pattern, heat transfer, and temperature gradients in the
furnace and, thus, process quality. Other works also analyzed the BFG
combustion more broadly outside the steel industry. For instance,
laminar flame characteristics were studied for several initial conditions
and fuel compositions [2]. Moreover, composition, temperature, and
fuel-switching effects were evaluated for the combustion stability of hot
air heaters [4]. A critical ambient temperature was maintained to ach-
ieve stable combustion, which can be reduced by increasing the Hj
proportion in the blend from 1 to 5 %vol. Furthermore, mixtures of BFG
and COG required a large concentration of BFG, higher than 80 %vol., to
inhibit temperature oscillations.

Indeed, another consequence of the low LHV of BFG is the appear-
ance of combustion instabilities [2,4]. Thus, disturbances under regular
furnace operation may cause more severe deviations than other higher
volumetric-energy density fuels. Early detection of these changes is
essential to adjust the process quickly and reduce the period under
suboptimal conditions, optimizing the overall operation. Thus, moni-
toring fuel blends with BFG is particularly interesting due to its lower
combustion stability. In this aspect, image-based systems are a prom-
ising alternative to detect early deviations when burning fuels blended
with BFG.

Image-based systems are essential in the state-of-the-art of combus-
tion monitoring. This technology relies upon acquiring flame images and
their correlation with combustion conditions. For example, images have
been employed to estimate variables related to the air-fuel equivalence
ratio, such as the air ratio [9], combustion regimes [10,11], and Oy
concentration in flue gases ([O2]¢g) [12]. In contrast to conventional
sensors, a single camera could simultaneously monitor several burners
captured in the same picture. To monitor the combustion, image-based
systems perform several activities employing computer vision and ma-
chine learning (ML). Like other industrial problems, these tasks can be
categorized into image acquisition, pre-processing, segmentation,
feature extraction, and interpretation [13]. ML techniques lead the
interpretation step, in which image features are transformed (modeled)
into variables related to the combustion process. Nowadays, ML pro-
vides a set of horizontal techniques for data analysis and modeling. For
example, in the field of combustion, ML has been used to predict oper-
ation parameters [14], exhaust gas temperature [15], emissions [16,17]
and performance [16-18]. Unlike most literature research, the appli-
cation of computer vision and ML techniques is limited for commercial
camera systems installed in the industry. For example, market tools do
not include the interpretation step, which depends on a human worker
to analyze the information. Moreover, software suppliers generally do
not include segmentation and feature extraction tools.

Image-based systems have also been used to monitor BFG combus-
tion. Zheng et al. [2] employed a high-speed camera to compute the
laminar burning velocity of BFG fuel blends. Earlier work by the authors
[19-21] focused on image monitoring for steel industry applications. In
this aspect, a preliminary study assessed the feasibility of combustion
monitoring with a color camera in an industrial furnace [19]. At the
laboratory scale, emission spectra, color, and radical images were
captured and deeply analyzed for optical supervision of BFG combus-
tion, showing strong dependencies with BFG concentration and equiv-
alence ratio [20]. Furthermore, slight combustion variations were
detected with accuracies from 0.78 to 0.97, processing flame images and
training predictive models [21].

Nevertheless, monitoring BFG combustion at the industrial scale has
not been studied in detail in the open literature. Therefore, image pro-
cessing requires further analyses to tackle differences between lab and
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industrial levels. This work focuses on that research gap and proposes an
image-based system to predict BFG combustion states to increase
steelmaking process efficiency and address industry particularities.
Trials are performed to analyze the new image processing with an
experimental industrial furnace and a 1.2 MW burner used in steel
production. A commercial vision system with a transfer device, cooling,
and control unit acquired color images of flames, which are processed to
predict [O2]l¢; by ML algorithms. In addition, image processing is
analyzed for the optimum fuel blend under controlled emissions and
transient temperature states. The monitoring system is evaluated for
three fuel blends under steady emissions and temperature conditions.

In this work, natural gas was used as a baseline, and two blends (70
and 80 BFG %vol.) were studied. These blends are extracted from the
blast furnace line of the Asturias plant and are used by ArcelorMittal in
their industrial processes to reduce natural gas consumption. The study
will aid in promoting higher valorization of BFG and lower NG con-
sumption in steelmaking industries. This contributes to reducing the
pollutant emissions from fossil fuels, while a subproduct of the steel
production process is valorized within the same plant where it is pro-
duced. From a global perspective, large amounts of process gas (BFG),
which can be used as fuel in steel production processes, are available at
steel production plants [22]. For the case of the ArcelorMittal Asturias
plant, it has been estimated that the use of the whole amount of BFG in
the steel production processes would involve a reduction of 52.8 kWh
per ton of steel produced, with savings of 2.6 € per ton of steel and a
decrease of 13.2 kg of CO; equivalent per ton of steel.

2. Material and methods
2.1. Experimental setup

The results presented in this work were obtained during a test
campaign performed in an industrial testing furnace installed in the
facilities of the ArcelorMittal Asturias plant in Spain (Fig. 1). The com-
bustion chamber has the following dimensions: 4.6 m in length, 1.5m in
width, and 2.8 m in height. The furnace accepts different burners up to
1.2 MW of thermal input power and maximum working temperatures of
around 1350 °C. These burners can be fueled with NG and with the off-
process gases produced in the plant (COG and BFG). Using the same fuels
as in the large plant ensures realistic results and avoids issues related to
changes in gas composition at different scales. This way, the solution can
be scaled up to other plant furnaces without this problem [8].

In the experimental trials, a diffusion burner is employed (Fig. 2). It
allows the use of various gaseous fuel blends utilizing different fuel and
air injection configurations. In particular, the burner has one central
lance, two side lances for fuel, and multiple air inlets.

A water circuit with six semi-circular lances simulates the heat
transferred from an industrial furnace to a steel strip. The water enters
the circuit through the nearest lance to the burner and increases in
temperature as it flows through the other conducts. At the end of the
circuit, a fluid cooler reduces the water temperature before being rein-
troduced to the lances. The furnace has a control and data acquisition
system for registering flow, temperatures, pressure, oxygen concentra-
tion in flue gases ([O2]¢g), and pollutant emissions (CO, NOy, SO2, and
CO»). Five thermocouples measure combustion chamber temperature
(T.c) at different locations. The furnace can be configured to work with
different gaseous blends and allows testing different configurations,
such as preheated combustion air and O injection.

Fuels with different compositions are tested in the experimental
furnace. They are identified as 100 %vol. NG (BFGO0), 30 %vol. NG and
70 %vol. BFG (BFG70), and 20 %vol. NG and 80 %vol. BFG (BFG80).
BFGO and BFG70 were also studied in a previous work [8]. BFG is
extracted, filtered, and fed to the furnace directly from the plant’s blast
furnaces. Its composition is subjected to variability, influenced by the
chemical processes inside the blast furnace [7]. A typical composition
and LHV of the fuel blends are shown in Table 1.
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Fig. 1. The ArcelorMittal experimental furnace used for the tests [23].
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Fig. 2. View of the diffusion burner installed in the furnace.

Table 1

Fuel blends typical composition.
Fuel blend BFGO BFG70 BFG80
[CH4] (%vol.) 92 28 18
[C2He] (%vol.) 8 2 2
[N2] (%vol.) - 34 39
[CO] (%vol.) 16 18
[CO3] (%vol.) - 15 18
[H,] (%vol.) - 3 3
[H,0] (%vol.) 1 1
[02] (%vol.) - 1 1
LHV (MJ/Nm®) 38 14 10

The increase of BFG share in the fuel blend reduces NG consumption,
leading to savings in fossil fuel consumption. However, higher concen-
trations of BFG raise difficulties in reaching the high temperatures
needed during the steel production process. Additionally, the lower
calorific value of BFG requires higher gas flow rates to meet the thermal
energy demands, which could potentially result in operational issues in
larger furnaces. Therefore, the use of BFG in the fuel blend is limited,
and a certain NG share is required to ensure a stable operation.

Considering this, BFG70 was defined as the optimum fuel blend. BFG80
was studied as an operative but suboptimal fuel, while BFGO was
analyzed as a baseline.

A commercial camera system was deployed inside the furnace
through a viewing port in front of the burner. The devices included a
BASLER BIP2-1920c color camera. The camera has a CMOS sensor,
which provides a resolution of 2 MP at 30 frames per second. The camera
is protected by a water-cooled metallic case installed on a SOBOTTA
automatic transfer device which allows the introduction and extraction
of the system inside the furnace. This device protects the optical system
by retracting the camera from the furnace when detecting harmful
temperatures or system malfunctions.

The image acquisition parameters of the camera were fixed during all
the trials to obtain equivalent and comparable images. As a first step, the
configuration of the exposure time was optimized by analyzing images
and histograms under different conditions, avoiding under- or over-
exposed images under any condition.

A data acquisition software recorded the images synchronously to
measured variables (process information such as furnace temperatures,
gas/air flow rates, pollutants or oxygen concentrations).

2.2. Methods

This section includes the methodology used in the research for
furnace operation and flame processing.

2.2.1. Furnace operation

The furnace was pre-heated before the tests to reach steady condi-
tions for emissions and temperature. Temperature was evaluated by
averaging the measures of T, on five different points. Flue gas emissions
stabilized thirty minutes after the start, but the temperature remained
transient. When the heating reached 8 h, both emissions and tempera-
ture were constant. These two working conditions were labeled steady
emissions and transient temperature (SETT) and steady emissions and
steady temperature (SEST). The fuel flow rate (and, consequently, the
calorific power rate introduced) was constant for each fuel blend. In
contrast, the air-flow rate was slightly modified to reach different
operation conditions. This resulted in different amounts of excess oxy-
gen in flue gases ([O2]¢;), depending on the blend composition and the
combustion stoichiometry. Table 2 lists the tests’ working conditions,
fuel blends, combustion modes, and [O2]¢; concentrations in flue gases.

Each fuel blend under SEST conditions was tested for 0, 1, and 5 %
vol. [O2lgg (sub-stoichiometric, near-stoichiometric and over-
stoichiometric conditions). Moreover, BFG70 was studied under SETT
state for 1, 2, 3, 4, and 5 %vol. [O2lg.

Fuel was injected through the central lance for all tests except for
BFG80. Main and side burner lances were employed to improve the
burner operation with that fuel blend, which implies different
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Table 2

Summary of the experimental tests.
Campaign EXP1 EXP2 EXP3 EXP4
Working condition SEST SEST SEST SETT
Fuel blend BFGO BFG70 BFG80 BFG70
Combustion mode Regular Regular Flameless Regular
[O2]¢g,1 (%vol.) 0 0 0 1
[O2]fg,2 (%vol.) 1 1 1 2
[O2]¢g,3 (%vol.) 5 5 5 3
[02]tg,4 (%vol.) - - - 4
[02] fg,5 (%vol.) - - - 5

combustion modes. In this configuration, the reactants were strongly
diluted with combustion products, and the burner operated in a flame-
less mode [5]. Flameless combustion is also known as moderate or
intense low oxygen dilution (MILD), and it has a more significant re-
action zone throughout the combustor volume. This distribution pro-
motes a reduction in peak flame temperature and NOy emissions [5,24].
The term “flameless” indicates that flames have a lower visibility than
conventional flames, but the human eye may still detect them in some
cases [24]. For instance, Reddy et al. [25] and Yetter et al. [26] recog-
nized flames under flameless conditions.

Air was preheated at 485 + 35 °C (21 %vol. O, concentration), fuel
thermal power varied around 920 + 15 kW, and T, around 1285 +
75 °C. The tests for the three fuel blends provided the same thermal
power by modifying the fuel flow rate three to four times higher for
BFG70 and BFG80, respectively, compared to BFGO. A 10-minute video
was captured during each test, and 1875 flame images were analyzed
with an approximate frame rate of 3 images per second. For example,
fourteen video fragments (one per test) of 1 s each are available as
supplementary material. All the fragments are enclosed in a single
video, which includes text in each frame to define the associated
working condition, fuel blend, and [O2]¢g.

2.2.2. Flame processing

Methods for processing flame images are partially based on the
feature extraction and interpretation methodology detailed in previous
work [21]. However, a significant modification is introduced to adapt
the system to the industrial scale by removing the flame-segmentation
step.

For the visual monitoring of combustion, flame segmentation is an
alternative that can be applied before the feature extraction step.
However, its use is not extended to all cases. Flame segmentation clas-
sifies image pixels into flame and non-flame groups, enabling the
extraction of characteristics from only flame pixels. For instance,
Mathew et al. [27] and Katzer et al. [28] employed thresholding to
segment flames. Without flame segmentation, features are extracted
from the whole image [9,12]. Other works based on deep learning did
not perform an explicit flame segmentation, although it could be
implicitly included to some extent in the layer operations [10,11]. Bai
et al. [9] remarked on the complexity of defining flame boundaries,
which can be inaccurate and lead to low performance in monitoring.
Identifying the flame body could be easier for flames with more stability
and simpler geometry. This is the case of previous authors’ work [20], in
which flames had a simpler and similar geometry for different com-
bustion conditions. However, image flames processed by Bai et al. [9],
Abdurakipov et al. [10], Han et al. [11], and Yang et al. [12] were more
diffuse and variable. Therefore, their segmentation could be more
complex. Furthermore, the difficulty of flame segmentation also de-
pends on the image background and the appearance of other non-flame
elements. For instance, in the studies of Bai et al. [9], Abdurakipov et al.
[10], and Han et al. [11], the background was empty, and thus, the
classification of pixels into flame and non-flame groups could be more
straightforward. Nevertheless, in [19], flames appeared over the furnace
background.

To sum up, the complexity of flame segmentation depends on the use
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case considered in each study. The present research focuses on the same
industrial furnace and similar flue blends from the work of Compais
et al. [19]. Therefore, segmentation would have the challenge of iden-
tifying flames from the furnace background. Moreover, a preliminary
inspection of the furnace operation ensured the diffuse and variable
geometry of the flames, which would increase the segmentation
complexity even more. Thus, due to the high risk of inaccurately iden-
tifying flames and lowering the monitoring performance, the present
research modifies the procedure of Compais et al. [21] by removing the
flame-segmentation step. This more straightforward method could be
more suitable for future implementation of the monitoring system at the
industrial level, in which unseen flame images and combustion condi-
tions may appear over time.

The flame processing used in this research is summarized in Fig. 3. It
consists of extracting 51 features and their interpretation to predict
[O2]g;. Flame segmentation is not applied, and image variables are
computed from the whole image.

Regarding the feature extraction step, a wide range of image char-
acteristics can be considered for combustion analysis. Standard features
are based either on intensity [9,27-29], geometry [28], or texture
measures [9,12]. Intensity and texture characteristics can be extracted
from the entire image or specific flame pixels. Geometry features
generally calculate properties of the flame body, such as length and area
[28], and therefore, they require the application of flame segmentation.
Usually, each study manually selects a limited group of features tailored
to its use case. This work computes a subset of the characteristics from
the work of Compais et al. [21], including only those of intensity and
textural type. Geometrical features are not analyzed because the present
work does not apply flame segmentation. The feature subset comprises
51 variables per color image, and the extraction method is shown in
Fig. 4.

The three-color channels of the image (red, green, and blue) are
considered separately, analyzing their corresponding monochrome im-
ages. Each color channel is processed to extract four intensity features
(mean, standard deviation, skewness, and kurtosis of the pixel in-
tensities [21,29]) and compute its gray level co-occurrence matrix
(GLCM). This matrix is employed to define thirteen textural features
selected from the work of Haralick et al. [30] and also used in other
studies [9,21].

Predictive models estimate combustion conditions based on image
properties in the final interpretation processing step. With that purpose,
the present work uses the same ML method described in [21] to train and
test models based on the experimental campaign performed at an in-
dustrial scale. The procedure comprises analysis of variance (ANOVA) F-
tests for feature selection and nested cross-validation (CV) for hyper-
parameter tuning and performance evaluation. The same ML algorithms
analyzed in [21] are tested at an industrial scale in the current work.

Three ML algorithms are studied: logistic regression (LR) [10,11],
support vector machines (SVM) [9-11], and artificial neural networks
(ANN) [9-11]. A multilayer perceptron (MLP) is defined for the latter
with a single hidden layer of 100 neurons. Flame images are labeled
according to their associated [O2]g, and the models classify them into
three or five discrete [O2]¢; values. The whole set of images of each
experimental campaign is split into training and test sets. The training
set is used to automatically select a subset of image characteristics as
input, tune hyperparameters, and evaluate the performance of the ML
algorithms. Finally, the best algorithm is assessed again, employing the
test set. The input subsets of image features include the ten variables
with the highest variance for the [O2]¢; classes. These characteristics are
selected using ANOVA F-tests. The hyperparameter tuning and perfor-
mance evaluation of the training set are implemented in a nested CV
procedure. An outer CV of ten folds splits the training set into ten pairs of
training and validation subsets. The accuracy of each training and
validation subset is computed and averaged for each ML algorithm. For
each training subset, model hyperparameters are selected with an inner
CV of five folds. The training subset is split into five pairs of training and
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Fig. 3. Method for the processing of flame images.
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Fig. 4. Method for feature extraction of flame images.

validation subsets, for which several combinations of hyperparameters
were evaluated with the model’s accuracy. After the nested CV, the ML
algorithm with the best performance is analyzed in more detail by
computing its confusion matrixes for the validation subsets of the four
experimental campaigns. Next, the chosen ML algorithm is re-evaluated
with the test set, measuring its test accuracy and comparing it with the
achieved for training and validation.

Python is used as a programming language (version 3.7) to develop
the code for image processing and predictive models. The following li-
braries are also employed: OpenCV, Scikit-learn, NumPy, SciPy, Maho-
tas, and Pandas.

(a)

[02]5 (Y%ovol.) = 0

(d)

[O1]s (Y%ovol.) = 0

e

[02]¢ (Yovol.) =0

Fig. 5. Flame images for SEST and (a) BFGO, (b) BFG70, and (c) BFG80.

[02]5 (Yovol.) = 1

[O2]¢ (Yovol) =1

[0a]¢, (%vol.) = 1

3. Results and discussion
3.1. Flame images for the working conditions, fuel blends, and [O2]y

Fig. 5 shows flame images captured for SEST conditions and the fuel
blends of BFGO, BFG70, and BFG80 at different [O2]¢. In the case of
BFG70, images captured for SETT were also studied (Fig. 6). For each
working condition (SEST or SETT), fuel blend and [O.]¢, Fig. 5 and
Fig. 6 include a single image, which corresponds to the first frame
captured in its associated test. Therefore, the images shown were
captured at least 8 h or 30 min apart from each other, which are the
required time intervals to achieve SEST or SETT conditions,
respectively.

&

[0:]5 (Yovol.) =5

[O:]¢, (%vol) =5

[O:]¢e (%vol) =5
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Fuel 362 (2024) 130770

(c)

[Oz]fg (%VOI.) =3

[02]¢ (Yovol) =5

Fig. 6. Flame images for SETT and BFG70 with [O2]g of (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5 %vol.

The red color channel predominates over blue and green in diffusion
flame images. While premixed flames are bluish and dominated by
chemiluminescence, diffusion flames are orangish and characterized by
their soot emission [31]. Soot particles emit blackbody radiation [32],
ideally described by Planck’s law [33]. According to this law, an object
at a higher temperature emits higher radiation. Indeed, soot tempera-
ture and volume fraction can be retrieved from flame images [34]. The
longer period of furnace preheating under SEST conditions caused
higher T, (Fig. 7) and generated brighter images (Fig. 5.e and Fig. 5.f)
than SETT ones (Fig. 6.a and Fig. 6.e). In contrast to premixed flames,
the color of diffusion flames has a lower dependence on the reactant
composition and equivalence ratio [35]. Still, this work detected dif-
ferences under SEST conditions.

Flames had significantly lower visibility for the fuel blend of BFG70
and BFG80 concerning BFGO. In particular, BFG70 flames in static im-
ages were hardly visible to the human eye. In contrast, its capture on
video helped their recognition due to the detection of variations in the
flame geometry and location in the furnace. The lower visibility of
flames for BFG70 and BFG8O0 is caused by the large volume fraction of
inert gases in the fuel, with around 35 %vol. and 15 %vol. of Ny and CO,
concentrations, respectively. A similar behavior was detected in [32],
where the OH* chemiluminescence peak was reduced when the Ny
dilution for CH4 diffusion flames was increased. BFG80 images (Fig. 5.8,
Fig. 5.h, and Fig. 5.i) also captured the widespread distribution of
flames, which is characteristic of flameless combustion.

[0zl was related to Tec, as shown in Fig. 7. In this work, [O2]g of 1
%vol. corresponds to near-stoichiometric conditions (where air and fuel

flow rates were fixed to produce stoichiometric combustion). Therefore,
concentrations below or above that value are related to sub-
stoichiometric or over-stoichiometric conditions, respectively. Consid-
ering this, temperature trends in Fig. 7 follow the expected behavior of
adiabatic flame temperature concerning air-fuel equivalence ratio,
reaching maximum temperature for near-stoichiometric conditions.
The brightness of the image increased when the operation moved
toward stoichiometric conditions. Both significant and slight image
changes were reported based on the temperature variations. For SEST
conditions and the same fuel blend, images differed significantly be-
tween 1 and 5 %vol [O2]g,. This behavior was slighter for SETT condi-
tions, which reached lower T, than the SEST regime. Furthermore, in all
the tests, images were similar for variations of [O,]¢; around 1 %vol.

3.2. Selection of image characteristics for the estimation of [O2]z,

As described in the methods for flame processing, the initial set of 51
features was manually selected based on the state of the art. To sum-
marize, previous works have monitored combustion with intensity
[21,29] and texture features [9,21] considered in this work. The image
properties used in this work have been validated for the flame charac-
terization of similar fuel blends at lab scale [21].

From the total of 51 image properties, a subset of ten features was
selected using ANOVA F-tests. This analysis measured the variance of
image features with [Oz]g. Critical F-values were computed for each
experimental campaign with a 0.05 confidence level, resulting in 3.00
(SEST) and 2.37 (SETT). The critical F-value was the same for the tests

1400
1350 { _ ~® < _
:‘—'-‘\\ T~ i
g 1300 ~ ‘~‘\\\ T~ @ - SEST,BFGO
= AT TS =4 -SEST, BFG70
1250 “.A_ L Ssq
Seeal . ~ —8 - SEST, BFG80
~——.o, .
1200 4 As_ - A= SETT, BFG70
1150 - : ' '
0 1 2 3 4 5
[O2]¢y (Yovol.)

Fig. 7. T.. during the experimental tests.
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with SEST conditions because they included the same population
(classes of Oz concentration in flue gases) and number of samples (flame
images per experimental campaign). All the F-values of image features
were at least an order of magnitude higher than the critical F-value of
their experimental campaign. Therefore, the classes of [0zl affected
the mean values of every extracted image feature for regular and
flameless combustion. This result proves that the application of flame
segmentation was not necessary for these use cases since characteristics
from the whole image are effective descriptors of the [O2]g,.

The subset of ten image features with higher F-values was used for
each experimental campaign to feed predictive models. All the subsets
comprise characteristics from the two types of features (intensity and
textural) and three-color channels (red, green, and blue), except for
SETT. For the latter tests, properties were not computed from the blue
channel. In particular, the mean intensity of the pixel values for the red
channel had a significant role in all the subsets (Fig. 8). The general
behavior of this image feature matched the brightness and temperature
changes previously discussed (Fig. 5, Fig. 6 and Fig. 7).

3.3. Evaluation of predictive models for the estimation of [O2]f,

Predictive models were adjusted to estimate [O]¢; based on the
subsets of ten image features. Three different ML algorithms (LR, SVM,
and MLP) were studied for each fuel blend. A nested CV was employed to
train and validate the predictive models and tune hyperparameters,
achieving significant accuracies (Table 3).

Predictive models reached validation accuracies around 0.995,
which were lowered to 0.960 for the fuel blend of BFG70 and SEST
conditions. Similar results were obtained for the three ML algorithms.
However, SVM provided the highest accuracy in all the cases, out-
performing ANN, as in [21] and [36]. The higher performance of a
specific algorithm could be promoted by its particular characteristics.
While LR fits a probability model based on logistic functions, SVM ad-
justs a hyperplane between classes, maximizing the margin between
them. By contrast, MLP is a feed-forward artificial neural network,
whose neurons are trained by back-propagation. However, the reduced
difference in accuracy between the algorithms (below 1 %) limits the
extrapolation of SVM as the best choice. Generalizability, and inter-
pretability (black-box nature) are advanced research lines for ML tech-
niques applied to combustion [37].

Fig. 9 shows the confusion matrixes of the predictive models based
on that algorithm, for the validation subsets of all the experimental

Fuel 362 (2024) 130770

Table 3

Validation accuracies of the predictive models for estimating [O2]¢.
Campaign EXP1 EXP2 EXP3 EXP4
Working condition SEST SEST SEST SETT
Fuel blend BFGO BFG70 BFG80 BFG70
LR (accuracy) 0.9920 0.9666 0.9970 0.9998
SVM (accuracy) 0.9936 0.9671 0.9980 0.9999
MLP (accuracy) 0.9866 0.9640 0.9962 0.9998

campaigns. According to the confusion matrixes, the predictive models
achieved a balanced behavior, reaching high accuracies (0.9489 as a
minimum) for all the [O2]¢ classes, fuel blends, and working conditions.

As a final evaluation, predictive models were adjusted employing the
whole training set and the SVM algorithm. Hyperparameters were
defined according to the best results of the nested CV, which were a
linear kernel, a regularization term of 10 for the three experimental
campaigns for SEST, and a regularization term of 0.1 for the tests of
SETT. Finally, the accuracy of the models was measured for the test set.
The training, validation, and test accuracy of the predictive models
based on SVM are compared in Fig. 10.

The accuracy of the predictive models had a similar behavior for
training, validation, and test sets without a significant influence of
overfitting or underfitting. The predictive models achieved a high ac-
curacy in estimating [O2]¢; based on flame images, although images may
have slight variations that the human eye cannot perceive between
different conditions. Furthermore, predictions were accurate even for
low-visibility flames during regular or flameless combustion and tran-
sient conditions. Thus, automation methods can enhance the visual
monitoring of the combustion supervised by humans.

4. Conclusions

In this study, the combustion monitoring in the steel sector was
analyzed by acquiring color images from the flames of an experimental
industrial furnace with a diffusion burner. Predictive models were
adjusted to estimate the [O2]¢ based on intensity and textural charac-
teristics extracted from the images. This monitoring was developed for
tests with a fixed thermal power of 925 kW, two stability conditions
(steady and transient temperature), and three fuel blends (BFGO, BFG70,
and BFG80) obtained by mixing NG with BFG. Predictive models were
fed by subsets of the computed image features, defined by ANOVA F-
tests, and comprised the characteristics of a higher variance with [O2]g.

250
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3
=4
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0 1 2 3 4 5
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Fig. 8. Image feature of red mean versus [O2]¢. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)



P. Compais et al.

[O;]sg (%o vol., predicted)

(a) =
2
9
<
%o [0BE 0.0107 0.0000
S 1 |o.0083 0.0000|
€ 5 ]0.0000 0.0001
o% 0 1 5
= [O2]¢g (Yovol., predicted)
© -
=1
g
@
= o [0I99% 0.0053 0.0000
S 1 |0.0001 0.0001|
& 5 ]0.0000 0.0001
& 0 1 5
=
=)

(b)

(d)

Fuel 362 (2024) 130770

0 05523 0.0478 0.0000
1 |0.0511 [09488! 0.0000]

5 10.0000 0.0001
0 1 5
[O2]gg (Yovol., predicted)

[O2]fg (%vol., actual)

1028998 0.0001 0.0000 0.0000 0.0000]
|0.0008 108893 0.0000 0.0000 0.0000]
|0.0000 0.0001 JOIB988 0.0001 0.0000]
0.0000 0.0000 0.0001 NG9S 0.0001|
0.0000 0.0000 0.0000 0.0001
1 2 3 4 5
[O1]tg (%ovol., predicted)

[ NV I S

[O2]g (%vol., actual)

Fig. 9. Confusion matrixes of the predictive models based on SVM for the validation subsets of (a) SEST BFGO, (b) SEST BFG70, (c) SEST BFG80 and (d) SETT BFG70.
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Fig. 10. Training, validation, and test accuracies of the predictive models based on SVM.

Three ML algorithms (LR, SVM, and ANN-MLP) were studied for the
predictive models. The accuracy of the algorithms was evaluated by
employing training-test split and nested CV.

The main conclusions of this research are as follows.

e Color images were affected by the combustion conditions analyzed.
Image brightness increased for higher T, related to lower BFG share
in the fuel and [O2]¢; closer to 1 %vol. Moreover, adding BFG to NG
reduced flame visibility.

Intensity and textural characteristics from the three-color channels of
the images were highlighted as descriptors of [O2]f without
requiring the application of flame segmentation.

Predictive models fed by the image characteristics reached high ac-
curacies during training, validation, and testing, with adequate
behavior without overfitting or underfitting and a minimum value of
0.96. The use of different ML algorithms (LR, SVM, or ANN) did not
significantly affect the results, which were slightly better for SVM.

e Predictive models accurately estimated variations in [O]f; during
regular and flameless combustion, even when images had minor
variations between them. This way, the visual monitoring of com-
bustion performed by humans can be improved.

The current research sets the stage for automated flame monitoring
at an industrial scale. The detection of changes in the combustion con-
ditions allows for the correction of deviated parameters, helping to
optimize the processes and avoid the appearance of critical instabilities.
The results obtained in this study demonstrate high precision for the
case analyzed in an industrial test facility incorporating an industrial
burner commonly used in steel manufacturing processes. This facility’s
process conditions and image quality were optimal for model training
and development. However, using raw material inside the furnace
instead of simulated load could affect the accuracy of the models. The
irradiance from the steel load could interfere with the image or create
fumes or particles inside the furnace, which may require additional
preprocessing.
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Further developments should focus on applying the models to in-
dustrial furnaces, such as reheating or annealing furnaces, where mul-
tiple burners can be captured in a single image. Overall air and fuel flow
rates are typically measured in these furnaces, making it challenging to
detect imbalances if there are several burners. Applying the models
developed in this work to the different burners could provide a valuable
monitoring tool, potentially reducing maintenance costs when residual
streams are used as fuel. For this application, other challenging aspects
of image processing are expected, like the separate segmentation of each
burner or interferences of the combustion of the different burners in the
same field of view. Nevertheless, industrial furnaces offer interesting
possibilities for camera installation and image acquisition, as external
viewing ports, which can reduce investment costs, or the installation in
optimal locations to monitor the areas of interest.
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3. Aportaciones y conclusiones

3.1. Aportaciones del doctorando

El trabajo realizado en esta tesis doctoral busca contribuir al desarrollo de sistemas de
vision para la monitorizacién de la combustidn del gas de alto horno, con el objetivo final de
incrementar su eficiencia en operacion, promoviendo su valorizacién e incrementando la
sostenibilidad en los procesos productivos del acero. Para ello se ha realizado un extenso
andlisis experimental del efecto de la composiciéon del combustible y la relacién aire-
combustible sobre imagenes de color, a escala de laboratorio y semiindustrial con
quemadores de 20 kW, y 1.2 MW, respectivamente. Este estudio ha demostrado la
viabilidad del procesamiento de imagenes de llama para el control de la combustién del gas
de alto horno, cuya mayor inestabilidad requiere de una deteccién temprana de pequefias
variaciones.

Las principales aportaciones del trabajo de investigacion estan alineadas con los objetivos
la tesis, y se describen a continuacién.

e Analisis del estado del arte. Para la elaboracion de la tesis se ha realizado un estudio
detallado sobre la caracterizacidn dptica de la combustién. Se ha investigado la
caracterizacion de la radiacion de llamas de premezcla y difusion a partir de sus
espectros e imagenes, asi como el procesamiento de dichas imagenes para la
extraccion de descriptores de la combustién y su modelado con técnicas de
aprendizaje automatico. Este estudio ha servido de base para el resto de la
investigacién, y proporciona un marco de referencia para futuros trabajos de la
monitorizacion de la combustién a partir de técnicas de imagen.

e Estudio de las imagenes de llama con distintos combustibles. El trabajo de
investigacién ha analizado el efecto la mezcla de combustible y la relacién aire-
combustible sobre las imagenes de llama, capturadas en distintos escenarios. Se han
estudiado imagenes obtenidas en escala de laboratorio y semiindustrial, con
quemadores de premezcla y difusion, en condiciones estacionarias y transitorias, y
con sistemas de vision desplegados dentro y fuera del horno. Aparte del analisis
cualitativo de las imagenes, se han calculado 66 variables numéricas, cuya relaciéon
individual con el exceso de aire ha sido también cuantificada.

e Prediccion de las condiciones de combustion a partir de las imagenes de llama. Las
caracteristicas de imagen extraidas se han utilizado para modelar el exceso de aire
en la combustién con técnicas de aprendizaje automatico, optimizando y evaluando
distintos modelos mediante una estructura de validacién cruzada anidada, y
estudiando su rendimiento con distintos excesos de aire, algoritmos de aprendizaje
y grupos de muestras. En general, los modelos han detectado correctamente el
exceso de aire en mas del 95 % de las ocasiones, reduciéndose a un 79 % en el peor
escenario, permitiendo monitorizar variaciones mas pequefias que en trabajos
previos, imperceptibles para el ojo humano.

La investigacién ha tenido como resultado la generacién de articulos en tres revistas
indexadas y un congreso, incluidos en la siguiente numeracion.
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I1.

II.

V.

Optical analysis of blast furnace gas combustion in a laboratory premixed burner. P.
Compais, ]. Arroyo, A. Gonzalez-Espinosa, M. A. Castan-Lascorz, A. Gil. ACS Omega
(2022); Vol. 7, pp. 24498-24510.

Detection of slight variations in combustion conditions with machine learning and
computer vision. P. Compais, ]. Arroyo, M. A. Castan-Lascorz, ]J. Barrio, A. Gil.
Engineering Applications of Artificial Intelligence (2023); Vol. 126, 106772.

Flame monitoring system based on images for steel reheating furnaces: a case study
of validation from laboratory to semi-industrial scales. P. Compais, ]. Arroyo, V.
Cuervo-Pifiera, A. Gil. Proceedings of the 18t Conference on Sustainable Development
of Energy, Water and Environment Systems (2023), Dubrovnik (Croatia).

Promoting the valorization of blast furnace gas in the steel industry with the visual
monitoring of combustion and artificial intelligence. P. Compais, ]. Arroyo, F. Tovar,
V. Cuervo-Pifiera, A. Gil. Fuel (2024); Vol. 362, 130770.

Aparte de los articulos que constituyen la tesis, se ha participado en un congreso adicional,
cuya referencia se incluye a continuacién.

A. Experimental analysis of blast furnace gas co-firing in a semi-industrial furnace

using colour images. P. Compais, J. Arroyo, A. Gonzalez-Espinosa, C. Gonzalo-Tirado,
M. A. Castan-Lascorz, ]J. Barrio, V. Cuervo-Pifiera. Proceedings of the 7t World
Congress on Momentum, Heat and Mass Transfer (2022), Virtual Conference.

3.2.Conclusiones finales y trabajo futuro

Esta tesis confirma la viabilidad técnica de la monitorizacidn visual de la combustion de gas
de alto horno con imagenes de color. Las llamas se han caracterizado segun la intensidad de
la radiacion, la textura espacial capturada en la imagen, y la geometria de las llamas. A partir
de estas propiedades visuales se ha conseguido modelar la relacidn aire-combustible en
distintos escenarios de operacion, obteniéndose una elevada precisién en todos ellos.

Este estudio incluye como novedad la adaptaciéon de la monitorizaciéon visual de la
combustién al caso particular del gas de alto horno. Para ello, se ha definido un
procedimiento a medida que integra caracteristicas de imagen utilizadas en multiples
trabajos previos, seleccionadas automaticamente segin un criterio cuantitativo. A
continuacion, se resumen las conclusiones obtenidas en este trabajo.

Los procesos industriales limitan el tiempo de adaptacién y ajuste de los
quemadores para distintas mezclas de combustible, por lo que se utilizan
configuraciones de quemador robustas que permiten la combustiéon en varias
condiciones de operacion, aunque no alcancen el 6ptimo de eficiencia para cada una
de ellas. Este estudio ha replicado esta metodologia a escala de laboratorio mediante
el uso de un mismo quemador para mezclas de combustible con diferencias
significativas en su poder calorifico. A pesar de esta limitacidn, se ha conseguido la
combustidon de cada mezcla, aunque en condiciones ineficientes y con diferentes
excesos de aire, obteniéndose combustién incompleta en parte del rango de
operacion.
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La combustion de gas de alto horno con un quemador de premezcla se ha estudiado
a escala de laboratorio con un espectrémetro, una cAmara ultravioleta-visible y otra
de color. La viabilidad de cada una de estas tecnologias se ha confirmado para la
caracterizacion de la radiacién de la llama, definida por la emisién continua del
radical CO;, y afectada por la composicion de la mezcla de combustible y el exceso
de aire. Las imagenes de color se han procesado para identificar automaticamente
los pixeles de llama y extraer caracteristicas de intensidad, geometria y textura, con
las que se ha conseguido modelar el exceso de aire con una elevada precision.

A escala semiindustrial se han utilizado camaras de color para analizar la
combustidn con quemadores de difusion. Se han detectado diferencias significativas
entre las imagenes de laboratorio y semiindustriales, caracterizadas por una mayor
iluminacién de las paredes del horno y una llama mas difusa. En este caso, la
identificacion de pixeles como llama o fondo ha tenido una mayor incertidumbre,
por lo que, en lugar de utilizar la segmentacién de laboratorio, las caracteristicas de
intensidad y textura se han extraido de todos los pixeles de la imagen. A pesar de las
diferencias visuales, la viabilidad de las cAmaras de color se ha confirmado de nuevo,
permitiendo medir el efecto de la composiciéon del combustible y la concentracién
de oxigeno en los gases de combustidn en las imagenes, al igual que en laboratorio.
Ademas, esta ultima variable se ha modelado manteniendo el alto rendimiento
conseguido en las pruebas de laboratorio para el exceso de aire. Por udltimo, el
procesamiento de imagenes y modelado se ha implementado en un programa
informatico para su uso en tiempo real a escala semiindustrial.

A modo de resumen, se ha validado un sistema de monitorizacion de la combustion
de gas de alto horno con técnicas de visualizaciéon de imagen en color e inteligencia
artificial. Dicho sistema utiliza caracteristicas visuales de intensidad y textura, asi
como modelos ajustados con técnicas de aprendizaje automatico, evaluados en
distintos escenarios y alcanzando un elevado rendimiento en la prediccion de la
relacién aire-combustible asociada a las imagenes de llama.

A partir de esta tesis doctoral, se plantean dos lineas principales de trabajo futuro, descritas
en los parrafos siguientes.

La madurez tecnolégica del desarrollo se ha incrementado con los ensayos en escala
semiindustrial, que, no obstante, presentan diferencias respecto a los procesos
industriales. Por ello, resulta crucial estudiar en detalle estas variaciones para
completar el desarrollo del sistema de monitorizacién visual, y asi conseguir su
implementacién industrial. En primer lugar, en esta tesis se ha utilizado un circuito
de agua para simular la transferencia de calor a una carga dentro del horno, en vez
de introducir laminas de acero para su tratamiento térmico. En este proceso, el
material emite radiacién que podria afectar a la imagen, y, ademas, se podrian
generar vapores o particulas adicionales cuyas emisiones no se han analizado en
este trabajo. En segundo lugar, para reducir los costes de operacion y
mantenimiento respecto a otros sensores convencionales, los sistemas de
monitorizacion visual deben supervisar individualmente varios quemadores
capturados en la misma imagen. Para lograr este objetivo, la segmentacion de los
pixeles de llama no es suficiente, ya que esta técnica solo clasificaria cada pixel como
llama o fondo, y se necesitaria la identificacion adicional de quemador
correspondiente a cada pixel. Esta tarea tiene una alta complejidad, ya que las llamas
de distintos quemadores se pueden ocultar entre si, dependiendo de la posicion de
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la cdmara, o irradiar luz sobre areas del horno asociadas a otro quemador, por lo
que la intensidad medida para un pixel podria depender de varios quemadores. Por
ello, es de vital importancia estudiar el rendimiento de distintas alternativas parala
segmentacion de llamas de distintos quemadores.

e Aparte del propio desarrollo del sistema de monitorizaciéon visual, también es
indispensable el estudio de su integracion en los sistemas de control de la industria,
con el objetivo de habilitar su uso y aprovechar al maximo sus ventajas.
Normalmente, las camaras se utilizan a escala industrial para facilitar la inspeccién
del interior de hornos por parte de un operario, asi como para ayudar en la toma de
decisiones y el ajuste de la operacidn. Algunos sistemas de visién, como el
desarrollado en la tesis, transforman la informacion de las imagenes en variables
asociadas al proceso de combustion, lo que facilita su integracién en sistemas
automatizados de control. Para lograr esta implementacion, se requiere analizar el
comportamiento dindmico de la combustién del gas de alto horno y el tiempo de
procesamiento del sistema de monitorizaciéon visual, ademas de la optimizacién del
codigo y la realizacion de pruebas con hardware de distintas prestaciones.

En estos momentos, se ha comenzado el desarrollo de ambas lineas de trabajo futuro,
buscando la transferencia industrial del sistema de monitorizacion, asf como su integraciéon
con controladores automaticos. De esta manera, se continta incrementando la madurez
tecnolégica del sistema para su despliegue final en la industria, cuyo objetivo es la
caracterizacion rapida y precisa de la combustion para reducir el tiempo de operacion en
condiciones ineficientes. Este trabajo se ha centrado en el estudio de la combustion del gas
de alto horno para promover su valorizacidén, una alternativa que incrementa la
sostenibilidad de la produccién de acero reduciendo la energia consumida y las emisiones
de CO; equivalentes, ademas de proporcionar un ahorro econémico. Por ello, este estudio
es de crucial importancia tanto para la planta de ArcelorMittal Asturias, como para la ruta
alto horno-horno de oxigeno basico de la produccién de acero.

El desarrollo del sistema de monitorizacidn ha afrontado y resuelto el desafio de detectar
pequefias variaciones visuales en las llamas de gas de alto horno, imperceptibles para el ojo
humano, mediante el uso de unas técnicas de vision artificial. Este trabajo pone de relieve
que los sistemas de vision artificial pueden superar las capacidades humanas incluso en el
rango visible, por lo que su uso puede habilitar la realizacién de tareas inviables para las
personas, como la supervision de condiciones tradicionalmente conocidos como sin llama.
Actualmente, la monitorizacioén de estos escenarios tiene una alta relevancia debido a su
relacién con la combustién del hidrégeno y su uso como vector energético. En este estudio
también se ha conseguido incrementar la precisién de la monitorizacién visual de la
combustidn respecto a la de estudios previos, configurando un nuevo estado del arte con un
alto potencial de aplicacion en diferentes procesos industriales.
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4. Factor de impacto, area tematica y justificacion de la
contribucién de las publicaciones

[.  Optical analysis of blast furnace gas combustion in a laboratory premixed burner. P.
Compais, ]. Arroyo, A. Gonzalez-Espinosa, M. A. Castan-Lascorz, A. Gil. ACS Omega
(2022); Vol. 7, pp. 24498-24510.

a. Factor de impacto 2023: 3.7
b. Factor de impacto de los ultimos 5 afios: 4.0
c. Areatematica: quimica, multidisciplinar

d. Justificacion de la contribucién: conceptualizacion, metodologia,
software, validacion, analisis formal, investigacién, conservacion de
datos, escritura - borrador original, escritura - revision y edicidn,
visualizacion

II.  Detection of slight variations in combustion conditions with machine learning and
computer vision. P. Compais, J. Arroyo, M. A. Castan-Lascorz, ]J. Barrio, A. Gil.
Engineering Applications of Artificial Intelligence (2023); Vol. 126, 106772.

a. Factor de impacto 2023: 7.5
b. Factor de impacto de los ultimos 5 afios: 7.4

c. Area tematica: automatica y sistemas de control, ciencias de la
informatica, inteligencia artificial, ingenieria eléctrica, electrénica y
multidisciplinar

d. Justificacion de la contribucién: conceptualizacion, metodologia,
software, validacién, analisis formal, investigacion, conservacion de
datos, escritura - borrador original, escritura - revision y edicion,
visualizacion

[II.  Flame monitoring system based on images for steel reheating furnaces: a case study
of validation from laboratory to semi-industrial scales. P. Compais, ]J. Arroyo, V.
Cuervo-Pifiera, A. Gil. Proceedings of the 18t Conference on Sustainable Development
of Energy, Water and Environment Systems (2023), Dubrovnik (Croatia).

a. Areatematica: desarrollo sostenible

b. Justificacion de la contribucién: conceptualizacion, metodologia,
software, validacién, analisis formal, investigacion, conservacion de
datos, escritura - borrador original, escritura - revision y edicion,
visualizacion

IV.  Promoting the valorization of blast furnace gas in the steel industry with the visual
monitoring of combustion and artificial intelligence. P. Compais, ]. Arroyo, F. Tovar,
V. Cuervo-Pifiera, A. Gil. Fuel (2024); Vol. 362, 130770.

a. Factor de impacto 2023: 6.7

b. Factor de impacto de los ultimos 5 afios: 6.5
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c. Areatematica: energia y combustibles, ingenieria quimica

d. Justificacion de la contribucién: conceptualizacion, metodologia,
software, validacion, analisis formal, investigacion, conservacion de
datos, escritura - borrador original, escritura - revision y edicidn,
visualizacion
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