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Resumen 
 

Esta tesis doctoral tiene como objetivo la monitorización de la combustión de gas de alto horno a 
partir del desarrollo de un sistema de visión, basado en el procesamiento imágenes en color con 
técnicas de inteligencia artificial. Esta alternativa avanzada de diagnóstico de la combustión tiene 
un alto potencial para incrementar la precisión y rapidez de los sensores convencionales de 
temperatura y gases de combustión; una mejora de especial interés para la combustión de gas de 
alto horno y su mayor sensibilidad ante perturbaciones de operación. Con el desarrollo del 
sistema de visión se busca promover el consumo de gas de alto horno, incrementando la 
valorización de esta corriente residual generada en grandes cantidades durante la producción del 
acero, reduciendo así el consumo de combustibles fósiles e incrementando la descarbonización y 
sostenibilidad de los procesos siderúrgicos. 

El trabajo de investigación incluye varias aportaciones alineadas con el objetivo de la tesis, 
descritas a continuación. Se ha analizado el estado del arte para la monitorización visual de 
llamas, incluyendo la extracción de características de imagen y su modelado con técnicas de 
aprendizaje automático. Se han realizado tres campañas experimentales centradas en la mezcla 
de combustible óptima para la valorización del gas de alto horno, adquiriendo imágenes de llama 
con distinta composición de combustible y relación aire-combustible, en escala de laboratorio y 
semiindustrial. Las imágenes se han procesado para extraer variables numéricas y entrenar 
modelos con técnicas de aprendizaje automático en la predicción del exceso de aire en la 
combustión. 

A partir del trabajo realizado, se extraen varios resultados principales. En primer lugar, se ha 
conseguido la combustión en laboratorio de mezclas de gases con diferencias significativas en su 
poder calorífico, utilizando una única configuración de quemador, al igual que en condiciones 
industriales. En segundo lugar, tanto para la escala de laboratorio como para la semiindustrial, se 
ha confirmado la relación del exceso de aire de la combustión con al menos 51 características 
extraídas de imágenes de color. Por último, con las técnicas de modelado empleadas se ha 
conseguido predecir correctamente el exceso de aire para más del 95 % de las imágenes en la 
mayoría de las condiciones, obteniendo una precisión del 79 % en el peor escenario. El 
procesamiento definido en esta tesis ha permitido detectar pequeñas variaciones en la 
combustión y en las imágenes, alcanzando una precisión superior a la de trabajos previos e 
incluso a la del ojo humano. 

Esta tesis ha propuesto, estudiado y validado un sistema de visión para la monitorización de la 
combustión de gas de alto horno. Para completar su madurez tecnológica y alcanzar su 
implementación final en la industria, esta tesis propone la adaptación de su procesamiento de 
imágenes para la supervisión individual de varios quemadores con una única cámara.  

  



Nomenclatura y acrónimos 
 

Nomenclatura 
 

[O2]fg Concentración de oxígeno en los gases de salida (%v) 
Tcc Temperatura de la cámara de combustión (°C) 

 

Acrónimos 
 

BFG Blast Furnace Gas 
COG Coke Oven Gas 
EA Exceso de Aire 
LR Logistic Regression 
MILD Moderate or Intense Low Oxygen Dilution 
MLP MultiLayer Perceptron 
PCI Poder Calorífico Inferior  
SE Serie de Ensayos 
SVM Support Vector Machine 
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1. Introducción general 
 
El objetivo de esta tesis doctoral es el desarrollo de un sistema de monitorización para la 
combustión de gas de alto horno, a partir de la adquisición y procesamiento de imágenes en 
color con técnicas de inteligencia artificial. Las actividades principales de este trabajo 
incluyen la realización de pruebas experimentales, el procesamiento de imágenes, el ajuste 
de modelos predictivos y el análisis de resultados. 

La tesis se enmarca en el programa de doctorado de Energías Renovables y Eficiencia 
Energética (Universidad de Zaragoza), en las líneas de investigación de eficiencia energética 
y procesos térmicos. El trabajo incluye un desarrollo semiindustrial en colaboración con 
ArcelorMittal, así como la difusión de los resultados a través de artículos, por lo que se 
presenta en la modalidad de doctorado industrial y mediante compendio de publicaciones. 

La memoria se estructura en tres bloques principales. En primer lugar, la introducción 
general recoge la revisión bibliográfica, objetivos, unidad temática y trabajos realizados. 
Posteriormente se incluyen los artículos elaborados en el marco de la tesis, y, por último, se 
presentan las aportaciones y las conclusiones. 

La tesis se fundamenta en la necesidad de incrementar la sostenibilidad de los procesos de 
producción, un problema crítico para las industrias con un alto consumo de energía, como 
la siderurgia. Una de las estrategias industriales para afrontar este desafío es la valorización 
de corrientes residuales, aprovechando por ejemplo el subproducto siderúrgico del gas de 
alto horno como combustible alternativo. Sin embargo, la combustión de este gas tiene una 
menor estabilidad, por lo que se pueden producir desviaciones respecto a las condiciones 
nominales. Estas perturbaciones reducen la eficiencia en la operación del horno, y en el peor 
escenario, extinguen o hacen retroceder la llama, incrementando también los tiempos de 
parada. En este sentido, se requiere una monitorización precisa para detectar esos cambios, 
reduciendo el tiempo de operación en condiciones subóptimas, y aumentando la eficiencia 
global del proceso. En el ámbito de la combustión, los sistemas de visión son una alternativa 
avanzada de supervisión, con un alto potencial para el control de procesos complejos. Esta 
tesis tiene como objetivo final dar respuesta a las necesidades de la planta de ArcelorMittal 
en Asturias, que busca promover la valorización del gas de alto horno mediante una mejor 
monitorización de su combustión. 

 

1.1. Revisión bibliográfica 
 

1.1.1. Situación actual 
 

La sociedad actual necesita un modelo energético sostenible. Para conseguirlo, la Unión 
Europea ha marcado unos objetivos ambiciosos de descarbonización, con la reducción de 
emisiones en un 55 % para 2030, y la neutralidad climática para 2050. En este desafío, las 
acerías tienen un papel clave debido a dos de sus características. En primer lugar, la 
siderurgia es una industria de alto consumo con elevadas emisiones, que globalmente 
representa el 8 % de la demanda energética y el 7 % de las emisiones directas de CO2 en el 
sistema energético [1]. En segundo lugar, el acero es crucial para nuestra sociedad, debido 
a su uso en la construcción de edificios e infraestructuras, así como en la fabricación de 
vehículos, la estructura de paneles fotovoltaicos, y el eje y la caja de cambios de 
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aerogeneradores [2]. En números, el acero es el material con la tercera mayor producción 
global (1900 millones de toneladas anuales), siendo Europa el segundo mayor fabricante 
con un 9 % de la producción total. 

Para incrementar la descarbonización de la industria se pueden estudiar distintas 
alternativas, como la flexibilidad eléctrica [3] y la recuperación de calor residual [4]. En 
Europa, la mayor parte del acero se produce a través de dos rutas: el alto horno-horno de 
oxígeno básico y el horno de arco eléctrico, responsables de alrededor del 60 y 40 % de la 
producción, respectivamente [5]. En el caso de la ruta de alto horno-horno de oxígeno básico 
(Figura 1), las emisiones también se pueden reducir haciendo modificaciones en los 
procesos productivos, como por ejemplo con el uso de biochar en vez de combustibles 
fósiles [7], o hidrógeno en lugar de carbón o coque para la reducción química del mineral de 
hierro en el alto horno [8]. No obstante, estas tecnologías tienen actualmente un coste 
elevado, y su implementación requiere de desarrollos adicionales. Otra alternativa para la 
descarbonización es la valorización de corrientes residuales [9], que en el caso de las 
siderurgias se centra en el uso de sus principales gases subproducto como combustible. 
Frente al uso de biochar e hidrógeno, esta estrategia de reducción de emisiones tiene la 
ventaja de que los gases combustibles se generan en elevadas cantidades en el propio 
proceso de producción del acero, pudiendo usarse en la misma acería donde se generan, y 
reduciendo así el consumo de gas natural e incrementando la sostenibilidad en las acerías 
europeas [10]. Por ello, la optimización de la combustión de estos gases es de vital 
importancia para la descarbonización siderúrgica. 

 

 

Figura 1. Resumen de la ruta del alto horno-horno de oxígeno básico [6]. 
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En la ruta del alto horno-horno de oxígeno básico se generan tres corrientes residuales de 
gas: el gas de horno de coque (Coke Oven Gas, COG), el gas de horno de oxígeno básico, y el 
gas de alto horno (Blast Furnace Gas, BFG) [6]. La composición de estas corrientes depende 
de las propiedades de la materia prima utilizada y de las condiciones de operación de los 
hornos, por lo que sus valores fluctúan. Los rangos típicos de composición y Poder Calorífico 
Inferior (PCI) de estos gases se incluyen en la Tabla 1. A modo de ejemplo, se ha estimado 
que la valorización del gas de alto horno generado en la planta de ArcelorMittal Asturias 
proporcionaría ahorros anuales en la producción del acero de 200 GWh de energía 
consumida, 50.000 toneladas de emisión equivalente de CO2 y 10 millones de euros de coste 
económico [11], [12]. Considerando el volumen de acero producido a escala europea [1], 
[5], la replicación de esta valorización alcanzaría un ahorro total 30 veces mayor. 

 

Tabla 1. Rangos típicos de composición volumétrica y poder calorífico del gas de horno de coque, gas de alto 
horno, y gas de horno de oxígeno básico [6]. 

Corriente 
residual 

Gas de horno de 
coque (COG) 

Gas de alto 
Horno (BFG) 

Gas de horno de 
oxígeno básico 

[H2] (%v.) 36 – 62 1 – 8 2 – 10 

[CO] (%v.) 3 – 6 19 – 27 55 – 80 

[CH4] (%v.) 16 – 27 - - 

[CxHy] (%v.) 1 – 2 - - 

[CO2] (%v.) 1 – 5 16 – 26 10 – 18 

[N2 + Ar] (%v.) 2 – 6 44 – 58 8 – 26 

PCI (MJ/m3N) 9 – 19 3 – 4 7 – 10 

 

1.1.2. Combustión del gas de alto horno 
 

El gas de alto horno posee una elevada concentración de gases inertes, y debido a ello, un 
reducido poder calorífico, diez veces menor al del gas natural. Por lo tanto, el uso del gas de 
alto horno en procesos de alta temperatura requiere del uso de estrategias adicionales, 
como su mezcla con combustibles con un mayor poder calorífico (gas natural o gas de horno 
de coque) [6], así como el precalentamiento del aire de combustión y el gas de alto horno a 
temperaturas entre 250 – 450 °C, y más recientemente, el empleo de quemadores de 
oxicombustión y regenerativos [13]. Otra consecuencia del bajo poder calorífico del gas de 
alto horno es su mayor inestabilidad en la combustión [14], [15]. Por lo tanto, las 
perturbaciones en la operación de quemadores pueden resultar en desviaciones más graves 
que para otros combustibles con una mayor densidad energética. Debido a ello, la 
combustión del gas de alto horno se beneficia de la implementación de monitorizaciones 
más precisas, con el objetivo de detectar pequeñas desviaciones en la operación y realizar 
una corrección más rápida. 

 



4 
 

1.1.3. Sistemas de visión e inteligencia artificial para la combustión 
 

Los hornos industriales tienen múltiples quemadores (Figura 2), y el control de su 
rendimiento se centra en la medida de la temperatura y las concentraciones de oxígeno y 
monóxido de carbono en los gases de combustión. Además, las concentraciones de óxidos 
de nitrógeno y dióxido de azufre se monitorizan para controlar contaminantes. Los sensores 
tradicionales permiten monitorizar la operación del horno en distintos puntos del horno, 
pero la medida en todos los quemadores no es viable económicamente. Por ello, los gases 
de combustión se caracterizan únicamente a la salida del horno, realizando el control a 
partir de una variable promedio, lo que dificulta la detección de desviaciones en 
quemadores individuales.  

 

 

Figura 2. Horno industrial con varios quemadores [16]. 

 

En contraposición a los sensores convencionales, una cámara permitiría monitorizar la 
operación del horno en distintos puntos, cuya información se puede registrar de manera 
simultánea con la adquisición de imágenes. De esta manera, un único sistema de visión 
podría controlar individualmente varios quemadores, con el objetivo de reducir los costes 
de operación y mantenimiento del horno. Los sistemas de visión capturan y procesan 
imágenes de llama para estimar variables de combustión, utilizando técnicas de inteligencia 
artificial. En los últimos años, esta tecnología se ha postulado como una alternativa 
avanzada para el diagnóstico de la combustión, por lo que ostenta un gran potencial para 
monitorizar la compleja operación de los quemadores con gas de alto horno.  

Para describir más en detalle el funcionamiento de los sistemas de visión, esta tesis se basa 
en la nomenclatura utilizada en [17]. El concepto de inteligencia artificial se relaciona con 
dispositivos sintéticos capaces de comportarse como humamos, o incluso superarlos, 
aunque los sistemas actuales se centran en tareas concretas y limitadas. Dentro de este 
campo, la visión artificial se especializa en actividades con una componente visual 
significativa, cuya aplicación en la industria se conoce como visión de máquina. Estas 
últimas técnicas se dividen a su vez en varias tareas (Figura 3): adquisición de imágenes, 
preprocesamiento, segmentación, extracción de características e interpretación. La 
segmentación agrupa los píxeles de la imagen en distintas clases, lo que permite caracterizar 
la información en varias regiones de la imagen. En la fase de interpretación, las propiedades 
de los píxeles se asocian con variables del proceso industrial, cuya relación se puede 
modelar empíricamente utilizando otra rama de la inteligencia artificial: el aprendizaje 
automático. A continuación, se revisa la aplicación de la visión de máquina para la 
monitorización de la combustión. 
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Figura 3. Operaciones realizadas por las aplicaciones de visión de máquina, siguiendo la terminología de [17]. 

 

1.1.4. Adquisición de imágenes de llamas en procesos de combustión  
 

Las imágenes de llama capturadas por una cámara dependen de su energía radiante, que a 
su vez se relaciona con las condiciones de combustión. Por un lado, las llamas de difusión se 
caracterizan por la radiación continua de cuerpo gris emitida por las partículas de hollín 
[18], [19], cuya alta emisividad proporciona un comportamiento similar al de cuerpo negro. 
Por otro lado, las llamas de premezcla tienen una emisión en longitudes de onda discretas, 
asociadas a especies intermedias en la combustión (quimioluminiscencia de llama). En este 
caso, la energía se emite por la transición de dichas especies de estados energéticos 
excitados a fundamentales, resultando en una radiación azulada que depende de la 
composición de los reactivos [19] y de la relación aire-combustible [19], [20]. A modo de 
ejemplo, la Figura 4 muestra espectros de combustión del metano, etileno, etano y propano. 
El estudio de la quimioluminiscencia de llama se centra en el análisis de las emisiones de 
especies químicas concretas, principalmente OH*, CH*, C2* y CO2*. Mientras que el OH* 
emite radiación en longitudes de onda en el rango ultravioleta (en torno a 310 nm) [21]-
[26], el CH* (430 nm) [21]-[26] y C2* (470 y 515 nm) [21], [23], [25] lo hacen en el rango 
visible. A diferencia de estos radicales, el CO2* presenta una radiación distribuida a lo largo 
del rango ultravioleta-visible (350-610 nm) [21], [22], [24], [25]. 
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Figura 4. Espectros de la combustión de varios hidrocarburos, para un quemador de premezcla y una relación 
volumétrica aire-combustible de 8.57 [27]. 

 

Para estudiar una aplicación específica de monitorización de la combustión, se debe 
identificar la radiación emitida por las llamas, para luego escoger un sensor con la 
sensibilidad espectral adecuada. Existen distintos tipos de sensores, entre los que se 
encuentran los detectores de llama (para los rangos ultravioleta o infrarrojo), los 
espectrómetros, y más recientemente, las cámaras digitales. Con esta última tecnología, se 
pueden capturar imágenes tanto en el rango visible, como el ultravioleta e infrarrojo 
(termografía). También se dispone de filtros de paso banda, para adquirir únicamente la 
radiación asociada a un radical de la combustión [28]-[32]. En los últimos años ha aparecido 
la tecnología hiperespectral, que también permite obtener información detallada de cada 
longitud de onda sin necesidad de usar filtros adicionales, aunque a expensas de un coste 
superior [33].  

Las aplicaciones de monitorización de la combustión pueden tener distintos requisitos de 
operación. En concreto, se distingue entre el uso para campañas puntuales en laboratorio y 
la monitorización continua en la industria, en la que se instalan equipos adicionales de 
refrigeración, control y extracción para cumplir con sus requisitos de operación más 
exigentes [34]. Actualmente se utilizan sistemas de visión comerciales en varias industrias, 
como las del vidrio y cemento (Figura 5), facilitando las labores de operación y 
mantenimiento. Estos equipos también pueden incluir el procesamiento e interpretación de 
las imágenes, aunque con métodos más básicos y menos personalizados que los 
considerados en el estado del arte.  



7 
 

(a) 

 
  
(b) 

 
 

Figura 5. Imágenes postprocesadas y capturadas por (a) una cámara termográfica en un horno de fusión de 
vidrio [35], y (b) una cámara de color en un horno rotatorio de cemento [36]. 

 

1.1.5. Preprocesamiento, segmentación y extracción de características de 
imágenes de llama 

 

La etapa de preprocesamiento tiene un carácter de apoyo a tareas posteriores en las 
aplicaciones de visión de máquina, y puede incluir operaciones como la transformación del 
espacio de color [37], [38], y el filtrado de ruido [39], [40]. Después del preprocesamiento 
se puede realizar la operación de segmentación para identificar los píxeles de llama, 
eliminando la influencia de factores ajenos en el diagnóstico visual [37], [41]. En la práctica, 
las llamas pueden tener una geometría difusa y variable, por lo que la segmentación puede 
ser imprecisa y reducir la eficacia de la monitorización. Por ello, también existe la 
alternativa de prescindir de la segmentación y supervisar de manera general la imagen [40], 
[42].  

Para la caracterización de las imágenes de llama se dispone de un elevado número de 
propiedades visuales, por lo que la mayoría de los estudios escoge manualmente un 
conjunto limitado y específico de variables para su caso. No obstante, los parámetros más 
comunes se basan en las mismas propiedades de la llama: intensidad [37], [40], [41], [43]-
[47], textura [40], [42] y geometría [37], [38], [48], [49]. Las características de intensidad 
incluyen por ejemplo la media o desviación estándar de los valores de intensidad de los 
píxeles. Las variables de textura suelen basarse en la matriz de coocurrencia de niveles de 
gris, que considera tanto la intensidad como la distribución espacial de los píxeles. Dicha 
matriz cuantifica el número combinaciones de intensidad para parejas de píxeles según una 
distancia y dirección definidas [42], [50]. Por último, las características de geometría 
engloban parámetros como la longitud o área de la llama, por lo que requieren una 
segmentación previa de la llama, a diferencia de las características de intensidad y textura. 
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1.1.6. Interpretación de características de llama 
 

La etapa final de los sistemas de visión es la transformación de las propiedades de imagen 
en variables relacionadas con la combustión. Las características visuales de las llamas se 
han utilizado para modelar velocidades de llama [51], [52] y parámetros asociados a la 
relación aire-combustible, como las ratios de aire primario, secundario y terciario [40], y la 
concentración de oxígeno [42]. Además, el bloque de interpretación también puede 
identificar condiciones de combustión complejas, definidas por la combinación de varios 
parámetros [53], [54]. 

Las técnicas convencionales de análisis de datos tienen dificultades con volúmenes elevados 
y relaciones complejas, como es el caso del modelado de la combustión a partir de imágenes. 
Una alternativa con un alto potencial para resolver este problema es el aprendizaje 
automático, que utiliza distintos algoritmos de modelado como los árboles de decisión [53], 
las máquinas de vectores soporte [40], [53], [54] y las redes neuronales artificiales [40], 
[53], [54]. Aparte de las imágenes de llama, los modelos de aprendizaje automático pueden 
usar información diversa del proceso de combustión, para por ejemplo optimizar la relación 
entre emisiones y eficiencia [55], o predecir el comportamiento dinámico [56], las 
emisiones [57], la viscosidad del combustible [58] o la temperatura del horno a largo plazo 
[59]. El aprendizaje automático se ha empleado como una herramienta transversal de 
modelado en campos de estudio muy diversos, como la agricultura [60], la vigilancia [61], 
la ingeniería bioquímica [62], [63], la transferencia de calor [64], los sistemas energéticos 
[65] y de control [66], y los motores de combustión [67]. En los métodos de aprendizaje 
automático predomina el aprendizaje supervisado, descrito a continuación utilizando la 
terminología de un estudio previo [68]. Esta técnica dispone de multitud de algoritmos para 
analizar los datos, proporcionando distintas alternativas de modelo (hipótesis) para un 
mismo conjunto de datos. Además, el comportamiento de los algoritmos se puede ajustar 
con varios parámetros, incrementado el número de opciones disponibles. 
Independientemente del algoritmo considerado, la tarea de aprendizaje se ejecuta como un 
proceso iterativo de optimización en el que diferentes modelos se evalúan según su error 
de predicción. Los métodos de aprendizaje automático buscan incrementar la capacidad de 
generalización de la hipótesis seleccionada, por lo su comportamiento se analiza ante datos 
no observados previamente. Para ello, el conjunto de datos previos se divide en varios 
grupos, realizando la optimización y evaluación del modelo con partes del conjunto 
diferentes.  

 

1.2. Objetivos  
 

El objetivo general de esta tesis es el desarrollo de un sistema de monitorización para la 
combustión de gas de alto horno, basado en la adquisición de imágenes en color y en su 
procesamiento con técnicas de inteligencia artificial. Este objetivo general se desglosa en 
varios objetivos específicos, definidos a continuación junto a su publicación asociada.  
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 Procesamiento y análisis de pruebas iniciales semiindustriales con diferentes 
relaciones aire-combustible (Artículo A), para realizar una evaluación preliminar de 
la viabilidad técnica de la tecnología. 

 

 Configuración de una instalación de laboratorio para la combustión de varias 
mezclas de gas, con distinto poder calorífico y en condiciones seguras. 

 

 Realización, procesamiento y análisis de las pruebas de laboratorio con diferentes 
relaciones aire-combustible (Artículo I), con el propósito de definir el 
procedimiento base de extracción de características para la escala semiindustrial. 

 

 Ajuste y análisis de los modelos predictivos de laboratorio (Artículo II), 
proporcionando un escenario de referencia sobre el que preparar y evaluar la escala 
semiindustrial.   

 

 Definición de requisitos, evaluación, selección y configuración del sistema de visión 
para la realización de las pruebas semiindustriales finales. 

 

 Procesamiento y análisis de las pruebas semiindustriales finales con distintas 
relaciones aire-combustible (Artículo III), adaptando el desarrollo de laboratorio a 
esta escala. 

 

 Ajuste y análisis de modelos predictivos semiindustriales (Artículo III) para su 
comparación con los resultados de laboratorio. 

 

 Desarrollo de una aplicación informática para la monitorización en tiempo real, con 
el objetivo de integrar el desarrollo en los procesos de monitorización y control de 
ArcelorMittal. 

 

 Validación del desarrollo del sistema de monitorización (Artículo IV), para 
proporcionar una evaluación final de su rendimiento y capacidad de adaptación 
ante distintos escenarios. 

 

1.3. Unidad temática 
 

Los artículos que constituyen la tesis proceden de la misma línea de investigación, centrada 
en la caracterización de la combustión de gas de alto horno mediante la captura de imágenes 
en color, así como su procesamiento utilizando métodos de inteligencia artificial. El trabajo 
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de investigación incluye la realización de pruebas experimentales, procesamiento de datos, 
ajuste de modelos predictivos y análisis de resultados. Cada artículo describe un estudio 
diferente, caracterizado por unas actividades y condiciones concretas. A pesar de que el 
objetivo final del desarrollo es mejorar la monitorización en escala semiindustrial, también 
se ha realizado trabajo a escala de laboratorio. Estos ensayos tienen un consumo de 
combustible y coste asociado menor, lo que ha permitido hacer más pruebas para estudiar 
condiciones adicionales de combustión. 

Los artículos estudian diferentes mezclas de combustible, definidas según el interés de la 
sustitución del gas natural por gas de alto horno, relacionado con el incremento de la 
eficiencia de la acería. El aumento de la proporción de gas de alto horno en la mezcla reduce 
el consumo de gas natural, pero también disminuye la temperatura de la combustión, por lo 
que el uso de gas de alto horno en la mezcla está limitado para procesos de alta temperatura. 
Esta tesis analiza la mezcla óptima de gas de alto horno (Blast Furnace Gas, BFG) con gas 
natural, BFG70, con 70 y 30 %v. respectivamente. Además, la investigación considera tres 
combustibles adicionales como referencia: BFG0 (100 %v. gas natural), BFG80 (80 %v. gas 
de alto horno y 20 %v. gas natural) y BFG100 (100 %v. gas de alto horno).  

El Artículo A describe la realización, procesamiento y análisis de las pruebas iniciales a 
escala semiindustrial. Este trabajo presenta el horno, la cámara de color y el procesamiento 
de imágenes de llama según sus características de intensidad. A partir de los resultados se 
estudia la relación entre las propiedades visuales calculadas, las mezclas de combustible y 
las relaciones aire-combustible, caracterizadas según el exceso de aire y concentración y de 
oxígeno en gases de salida. 

El Artículo I se centra en la realización, procesamiento y análisis de las pruebas de 
laboratorio. La instalación experimental se describe en detalle, incluyendo la cámara de 
combustión, quemador, líneas de combustible y aire, cámara de color, equipos de medida 
adicionales y mezclas de combustible. Se definen los ensayos, combinaciones de 
combustible y exceso de aire, métodos experimentales, configuración de la cámara de color 
y procesamiento de sus imágenes. En esta última actividad se incluyen las transformaciones 
aplicadas a las imágenes de llama, así como la extracción de características visuales 
relacionadas con la intensidad, textura y geometría. Los resultados del Artículo I se 
engloban en el estudio de la combustión del gas de alto horno a escala de laboratorio, 
analizando el efecto del exceso de aire sobre las emisiones contaminantes y las 
características de la imagen. Debido a que la instalación de laboratorio facilita la 
monitorización de la combustión con varios equipos ópticos a la vez, y para caracterizar con 
mayor profundidad las propiedades de las llamas, el Artículo I incluye el uso de un 
espectrómetro y una cámara del rango ultravioleta-visible, así como el procesamiento de 
sus datos. Dicho trabajo complementa a los objetivos de la tesis, con la caracterización de la 
combustión de gas de alto horno mediante dos técnicas ópticas adicionales. 

La línea de investigación continua con el Artículo II y su ajuste y análisis de modelos 
predictivos a escala de laboratorio. Estos modelos se desarrollan a partir de las imágenes 
de color y datos capturados en la campaña experimental a escala de laboratorio (Artículo I). 
En particular, se estudia el modelado del exceso de aire a partir de características de imagen. 
El procesamiento de imágenes del trabajo anterior se expande con la extracción de 
características visuales adicionales. Para el desarrollo de los modelos predictivos, se define 
un método de aprendizaje automático, que define la estandarización de los datos, la 
selección de características de imagen, los algoritmos de aprendizaje, la optimización de 
hiperparámetros, las métricas de rendimiento y la evaluación de los modelos. Los 
resultados de este trabajo analizan la variación estadística de las características de imagen 
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respecto al exceso de aire, y también la precisión de los modelos al variar el combustible, el 
exceso de aire, el algoritmo de aprendizaje automático y las muestras de entrenamiento y 
validación. 

Tras haber estudiado en detalle la caracterización de la combustión en laboratorio, el 
trabajo continúa con su análisis a escala semiindustrial. En este sentido, el Artículo III 
integra el procesamiento y análisis de las pruebas semiindustriales finales, con distintas 
concentraciones de oxígeno en los gases de salida, así como el ajuste y análisis de los 
modelos predictivos para esta escala. Este trabajo detalla la instalación experimental, 
describiendo el horno, el quemador, el sistema de visión, los equipos de medida 
complementarios y los combustibles. Se recogen también los métodos para la operación del 
horno, las condiciones de ensayo, el procesamiento de imágenes y el método de modelado. 
El Artículo III adapta el procesamiento de imágenes de los Artículo I y II para la escala 
semiindustrial, y evalúa el comportamiento de los modelos predictivos del Artículo II en 
esta nueva configuración. A diferencia del Artículo A, el Artículo III utiliza un sistema de 
visión industrial instalado en el interior del horno, amplía las condiciones de operación 
estudiadas, y añade la extracción de características de textura y el entrenamiento de 
modelos predictivos. Los resultados del artículo incluyen el análisis de las imágenes 
capturadas en la escala semiindustrial y el estudio de la dependencia estadística de las 
características de imagen con la concentración de oxígeno en los gases de salida. También 
se compara la precisión de los modelos según las condiciones de operación, el combustible 
empleado, la concentración de oxígeno en los gases de salida, el algoritmo de aprendizaje 
automático, y el uso de muestras no observadas previamente. 

Una vez concluido el trabajo a escala de laboratorio y semiindustrial, la línea de 
investigación se completa con el Artículo IV, en el que se analiza la adaptabilidad del sistema 
de monitorización a lo largo del desarrollo. El método de estudio se basa en la identificación 
de los distintos escenarios en los que se ha desarrollado el sistema, caracterizados por el 
tipo de quemador y la posición de cámara, por ejemplo. Los resultados recogen el efecto de 
estos cambios sobre las imágenes capturadas, su procesamiento y los modelos predictivos. 
De esta manera, se evalúa la adaptabilidad del sistema ante los distintos escenarios del 
desarrollo. 

Según lo expuesto anteriormente, los cuatro artículos que componen esta tesis siguen una 
línea de investigación con una clara unidad temática. Por lo tanto, se cumple el requisito 
para la presentación de la tesis como compendio de publicaciones, definido en el 
Reglamento sobre Tesis Doctorales de la Universidad de Zaragoza (aprobado el 25 de junio 
de 2020 por el Consejo de Gobierno de la Universidad). 

 

1.4. Trabajos realizados 
 

1.4.1. Procedimiento experimental y métodos 
 

En este apartado se describen los materiales y métodos empleados en el trabajo de 
investigación, que se realiza de forma secuencial en dos escalas diferentes: laboratorio y 
semiindustrial. Para cada una de las escalas se define la instalación experimental, las 
pruebas y el procesamiento de imágenes, que incluye el ajuste de modelos predictivos. En 
primer lugar, se realizan unas pruebas iniciales a escala semiindustrial como punto de 
partida para la investigación, para después continuar con una campaña extensiva en 
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entorno de laboratorio, y finalizar con las pruebas definitivas en escala semiindustrial. Para 
facilitar su comprensión, la descripción de los ensayos se estructura en bloques según su 
escala (laboratorio y semiindustrial). En esta sección de métodos también se incluye la 
técnica para evaluar todo el desarrollo del sistema de monitorización. 

Como comentario general, la tesis tiene como objetivo final promover la valorización del gas 
de alto horno en la industria, donde la modificación de los quemadores comerciales es 
limitada. Por lo tanto, los métodos se han definido para reproducir esas condiciones 
industriales a escala de laboratorio y semiindustrial, reduciendo las barreras para 
implementar las técnicas estudiadas en escala industrial. Las implicaciones de este criterio 
sobre las pruebas realizadas se describen en detalle en los siguientes apartados. 

 

1.4.1.1.  Escala de laboratorio 
 

Parte del estudio se realizó en la instalación experimental de CIRCE Centro Tecnológico 
(Zaragoza). Dicha instalación cuenta con una cámara de combustión que permite la 
monitorización y la adquisición de imágenes de llama. Un esquema de dicho laboratorio se 
muestra en la Figura 6.  

 

 

Figura 6. Esquema de la instalación experimental de combustión a escala de laboratorio. 

 

La cámara de combustión está equipada con un quemador de premezcla para combustible 
gaseoso de 20 kWt. El quemador posee dos entradas de un diámetro de 25 y 10 mm, por 
donde se inyecta el combustible y aire, respectivamente (Figura 7). El diseño del quemador 
permite el montaje de distintos cabezales para optimizar las condiciones de operación. Los 
cabezales tienen un diámetro de 100 mm y una matriz de orificios por la que sale la mezcla 
de combustible-aire. El diámetro de los orificios varía según el cabezal (1, 5 y 10 mm), lo 
que modifica la velocidad de la mezcla aire-combustible, la estabilidad de la llama y su 
distribución sobre el quemador (Figura 8). Para reproducir condiciones industriales, este 
estudio utiliza en todas las pruebas el mismo cabezal, de 5 mm de diámetro de orificios, 
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seleccionado para proporcionar la mayor estabilidad de llama y distribución más uniforme 
para el gas de alto horno, además de permitir la operación con metano. 

 

 

Figura 7. Esquema del quemador de premezcla para combustible gaseoso. 

 

(a) 

 

(b) 

 

(c) 

 
 

Figura 8. Tipos de llamas obtenidas con los cabezales de (a) 1, (b) 5 y (c) 10 mm, para el combustible BFG100 y 
una potencia de 4 kWt en condiciones subestequiométricas. 

 

La cámara de combustión está sellada y tiene una base cuadrada de 65 cm de anchura y 
profundidad, y una altura de 90 cm. Dos de sus paredes cuentan con ventanas de inspección 
de cristal y cuarzo, que permiten la transmisión de energía en los rangos visible y 
ultravioleta-visible, respectivamente (Figura 9). Para quemar restos de combustible de 
operaciones previas e incrementar la seguridad de la instalación, la combustión se inicia con 
una llama piloto de butano de 2 kWt de potencia. 
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(a) 

 

(b) 

 
 

Figura 9. Ventanas de inspección de cristal (a) y cuarzo (b) de la cámara de combustión. 

 

El quemador está conectado a dos líneas independientes de gas, lo que permite utilizar un 
combustible diferente en cada una, reduciendo así el tiempo de preparación cuando se 
cambia de combustible. El laboratorio también incluye un caudalímetro volumétrico para 
medir el consumo de gas, y un sistema de seguridad para interrumpir la alimentación de 
combustible ante la detección de fugas. 

Cada línea de gas se alimenta con botellas de combustible proporcionadas por un 
distribuidor de gas, cuyo consumo depende del poder calorífico del gas y de la potencia de 
las pruebas. A una potencia constante, el uso de un combustible con menor poder calorífico 
requiere más botellas, pudiendo necesitar su reemplazo en mitad de los ensayos. Para 
reducir el tiempo de preparación asociado, una línea está conectada a un grupo de ocho 
botellas, mientras que la otra línea se alimenta con una única botella, proporcionando una 
configuración más eficiente para combustible con un mayor poder calorífico. En este 
estudio, la línea de una botella se utiliza para el metano, mientras que la otra se usa con gas 
de alto horno y su mezcla con metano. 

El aire de combustión se inyecta en el quemador a través de otra línea, alimentada por un 
compresor. La presión del aire se controla con un regulador electroneumático SMC 
ITV2000, lo que permite regular el caudal de aire, que es a su vez medido por un 
caudalímetro IFM SD6000. Este sensor tiene una repetibilidad de ± 1.5 % y una precisión 
de ± (3 % de lectura + 0.3 % de escala completa). La comunicación con estos equipos se 
gestiona mediante un ordenador a través de un sistema de adquisición de datos, que 
también incluye un termopar para la medida de la temperatura del gas de combustión en la 
chimenea. 

La composición de los gases de combustión se mide con dos analizadores de gases situados 
en dos puntos de la instalación. La medida principal se realiza en el conducto vertical de 
evacuación de humos con el modelo MRU Vario Plus Industrial, analizando las 
concentraciones de O2, CO, CO2, NOx y CH4 (Tabla 2). El segundo analizador de gases (MRU 
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Optima 7) proporciona una medida de apoyo en la cámara de combustión, utilizada para 
determinar la estabilidad de los gases de combustión. 

 

Tabla 2. Especificaciones del analizador de gases MRU Vario Plus Industrial. 

Gas Principio de 
medida 

Rango Precisión 

O2 Electroquímico 0 – 21.0 %v. ± 0.2 %v. abs. 

CH4 
Infrarrojo no 
dispersivo 

0 – 10000 ppm ± 60 ppm o 5 % de lectura 

CO 
Infrarrojo no 
dispersivo 

0 – 10000 ppm ± 40 ppm o 5 % de lectura 

CO2 
Infrarrojo no 
dispersivo 

0 – 30 %v. ± 0.5 %v. o 3 % de lectura 

NO Electroquímico 0 – 1000 ppm (hasta 5000 
ppm) 

± 5 ppm o 5 % de lectura ≤ 
1000 ppm 

10 % de lectura > 1000 ppm 

NO2 Electroquímico 0 – 200 ppm (hasta 1000 
ppm) 

± 5 ppm o 5 % de lectura ≤ 
200 ppm 

10 % de lectura > 200 ppm 

 

La instrumentación de la instalación experimental se completa con tres equipos ópticos: un 
espectrómetro (Ocean Optics Flame-S Miniature, 2048 píxeles), una cámara ultravioleta-
visible (Raptor Photonics Falcon Blue, 1.0 megapíxel), y una cámara de color (The Imaging 
Source DFK 33GX174, 2.3 megapíxeles). La cámara ultravioleta-visible se equipa con un 
filtro de paso (ASAHI) para la banda 310 ± 10 nm, asociada a la emisión del radical OH en 
estudios de quimioluminiscencia de llama [21]-[26]. El análisis de las imágenes ultravioleta-
visible y los espectros de emisión de llama complementa el objetivo principal de la tesis, 
centrado en el estudio de las imágenes de color. 

A escala de laboratorio se estudiaron tres mezclas de combustible: BFG70, BFG100 y BFG0. 
A diferencia de la escala semiindustrial, para las mezclas se usó metano en lugar de gas 
natural, cuyo suministro en botellas es más económico. La composición y poder calorífico 
de las mezclas empleadas en laboratorio se muestra en la Tabla 3. 
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Tabla 3. Composición y poder calorífico de las mezclas de combustible utilizadas en laboratorio. 

Mezcla de 
combustible 

BFG0 BFG70 BFG100 

[CH4] (%v.) 100 28 - 

[H2] (%v.) - 3 4 

[CO] (%v.) - 16 22 

[CO2] (%v.) - 16 22 

[N2] (%v.) - 37 52 

PCI (MJ/m3N) 36 13 4 

 

La campaña experimental se realizó a una potencia fija de 5.5 kWt, ajustando el caudal de 
combustible para cada mezcla y modificando el caudal de aire para estudiar todo el rango 
de operación del quemador. De esta manera, se estudiaron condiciones de operación 
ineficientes, cuya monitorización es de interés para la industria. El rango de operación se 
definió para cada mezcla de combustible según los límites de estabilidad de su llama. El 
aumento del caudal de aire incrementa la velocidad de la mezcla aire-combustible, 
aumentando su inestabilidad y provocando que la llama se despegue de la base del 
quemador y se extinga en condiciones extremas. A su vez, una reducción excesiva del caudal 
de aire causa el retroceso de la llama a la cámara de mezcla del quemador.  

Cada punto de operación se caracterizó calculando su exceso de aire, definido como la 
proporción entre la relación másica aire-combustible del punto de operación y la 
estequiométrica. Por lo tanto, un exceso de aire superior a 1.0 se relaciona con combustión 
rica en aire y pobre en combustible.  

Dado que cada mezcla de combustible tiene un poder calorífico diferente, cada una de ellas 
necesita un caudal distinto para obtener la misma potencia. Al variar el caudal, también se 
modifica la velocidad de la mezcla aire-combustible en el quemador, lo que a su vez 
condiciona los puntos de operación de cada combustible. La velocidad de la mezcla se puede 
alterar utilizando cabezales con distinta sección de paso, pero la modificación de los 
quemadores comerciales utilizados en la industria es limitada. Dado que este estudio busca 
reproducir esta característica industrial en el laboratorio, se utilizó el mismo cabezal y área 
de paso para todos los combustibles. Como resultado, se obtuvo un rango de exceso de aire 
diferente para cada mezcla de combustible, con los que se realizaron tres Series de Ensayos 
(SE, Tabla 4). Los intervalos de Exceso de Aire (EA) fueron [1.41, 2.01], [1.13, 1.91] y [0.91, 
1.24], para las mezclas de combustible BFG0, BFG70 y BFG100, respectivamente. 
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Tabla 4. Puntos de operación de las mezclas de combustible en las pruebas de laboratorio. 

Serie de 
ensayos 

SE1 SE2 SE3 

Mezcla de 
combustible 

BFG0 BFG70 BFG100 

EA1 1.41 1.13 0.91 

EA2 1.43 1.27 0.94 

EA3 1.51 1.37 1.09 

EA4 1.64 1.41 1.11 

EA5 1.76 1.57 1.24 

EA6 1.88 1.67 - 

EA7 2.01 1.78 - 

EA8 - 1.91 - 

 

La campaña experimental incluyó 20 pruebas, divididas en tres series de ensayos (una por 
cada mezcla de combustible). En todas ellas, la cámara de color se situó delante de la 
ventana de cristal, y la cámara ultravioleta-visible y el espectrómetro enfrente de la de 
cuarzo. De esta manera, los tres equipos ópticos obtenían datos simultáneamente. Al 
comienzo de cada serie, el quemador se precalentaba durante una hora para alcanzar 
temperaturas estables, y después, se ajustaban las condiciones para el primer punto de 
operación, siguiendo el mismo procedimiento para el resto. En primer lugar, se fijaban los 
caudales de combustible y aire, y luego se monitorizaba la composición de los gases en la 
cámara de combustión y chimenea. Cuando la composición era similar en ambos puntos, se 
consideraba que se alcanzaban las condiciones estacionarias, y se comenzaba a capturar las 
imágenes y los espectros durante 6 minutos. Finalmente, para cada punto de operación se 
promediaban los caudales de combustible y aire, así como la composición de los gases de 
combustión.  

Para obtener medidas ópticas comparables entre los distintos ensayos, la configuración de 
los equipos ópticos se mantuvo constante durante toda la campaña. Los parámetros de estos 
sensores se ajustan según la radiación de la escena, cuya medida incrementa con el tiempo 
de exposición de las cámaras y el tiempo de integración del espectrómetro. La estrategia de 
configuración busca medir señales con una intensidad elevada, pero inferior al valor 
máximo que puede cuantificar el sensor. Si este límite superior se alcanza, los píxeles del 
sensor se saturan y se pierde información sobre la radiación. En este trabajo se realizaron 
pruebas preliminares para estudiar distintas configuraciones de adquisición y elegir aquella 
que proporcionase la mayor intensidad de señal sin llegar a saturar. Para ello, se analizaron 
imágenes utilizando los mapas de calor e histogramas de sus valores promedios. A modo de 
ejemplo, la Figura 10 muestra los resultados para las imágenes ultravioleta-visible. 
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(a) 

 
 

(b) 

 
 

(c) 

 

(d) 

 
 

Figura 10. Mapas de calor e histogramas de la cámara ultravioleta-visible para la mezcla BFG0 (a, b) y BFG100 
(c, d). 

 

Por cada imagen de color, se obtuvieron tres imágenes monocromas, una por canal de color 
(rojo, verde y azul), mientras que en el caso de la cámara ultravioleta-visible sólo se capturó 
una imagen monocroma por disparo. Todas las imágenes monocromas recibieron un 
procesamiento similar, en el que primero se segmentaron los píxeles de llama según un 
umbral, calculado con el método de Otsu [37], [69]. Este procedimiento estudia distintos 
valores de umbral para agrupar los píxeles de la imagen: los píxeles con una intensidad 
inferior al umbral se asignan a una clase, y el resto a la otra. Para cada umbral, se calcula la 
varianza entre las dos agrupaciones de píxeles, y se elige el valor que maximiza dicha 
dispersión.  

Tras segmentar la llama, se extrajeron sus características de intensidad, textura y 
geometría, obteniéndose un total de 66 características para las imágenes de color. Por cada 
canal de color, se calcularon 22 propiedades: cuatro de intensidad (media [37] - [41], 
desviación estándar [37]-[39], [41], asimetría [39], [41] y curtosis [39]), 13 de textura 
(seleccionadas del trabajo de Haralick et al. [70], y utilizadas en [40]), y cinco de geometría 
(área [37], [38], [71], abscisa y ordenada del centroide [71], [72], anchura [71] y altura [37], 
[71]). Debido al carácter complementario de las imágenes ultravioleta-visible en esta 
investigación, sólo se calcularon para ellas cuatro de las 22 características previas. Estas 
propiedades incluyen una de intensidad (media), otra de textura (medida de información 
de la correlación I) y dos de geometría (área y ordenada).  
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Las características geométricas pueden alterarse significativamente debido a pequeños 
errores de clasificación en la segmentación. Por ejemplo, si una llama tiene una altura de 5 
cm, y un píxel elevado 15 cm sobre ella se clasifica como llama, el método de cálculo visual 
de la altura de la llama obtendrá un valor equivalente a 20 cm. Para evitar este efecto, se 
descartaron los píxeles de llama cuyos píxeles adyacentes no eran de llama, utilizando una 
transformación morfológica de erosión con una máscara de 3x3 píxeles [73].  

Para cada una de las tres mezclas de combustible, se entrenaron y evaluaron varios modelos 
predictivos para identificar el exceso de aire asociado a cada imagen de color, según sus 66 
características extraídas. Con ese objetivo, se empleó el mismo método de aprendizaje 
automático para todas las mezclas de combustible. Primero se dividieron todas las imágenes 
de una mezcla de combustible en dos grupos: entrenamiento y prueba. El grupo de 
entrenamiento se usó para (1) seleccionar el subgrupo de características con una mayor 
relación con el exceso de aire, (2) ajustar hiperparámetros de los algoritmos de aprendizaje 
automático, y (3) evaluar el rendimiento de las distintas opciones. En concreto, se 
estudiaron tres algoritmos: la regresión logística (Logistic Regression, LR) [53], [54], las 
máquinas de vectores soporte (SVM) [40], [53], [54] y las redes neuronales artificiales [40], 
[53], [54]. En este último caso, se escogió la tipología de perceptrón multicapa (MultiLayer 
Perceptron, MLP). El comportamiento de estos algoritmos se caracteriza por el ajuste de un 
modelo probabilístico a partir de funciones logísticas (LR), la definición del hiperplano que 
maximiza el margen entre las clases (SVM), o el entrenamiento de una red neuronal 
prealimentada a partir de la propagación hacia atrás de errores (MLP). Tras comparar la 
precisión de cada algoritmo, la alternativa que proporcionó los mejores resultados se evaluó 
una vez más con los datos del grupo de prueba.  

De las 66 características calculadas, sólo se utilizaron las diez con una mayor varianza 
respecto a las clases de exceso de aire de cada combustible. El ajuste de hiperparámetros y 
la evaluación del rendimiento en el entrenamiento se realizó a partir de validaciones 
cruzadas, basadas en el entrenamiento y validación de un modelo con distintos subgrupos 
de datos para obtener una medida de evaluación más robusta. No obstante, la validación 
cruzada puede proporcionar resultados con un sesgo optimista si se usa a la vez para ajustar 
hiperparámetros y evaluar el rendimiento de los modelos [74], [75]. A pesar de ello, si los 
modelos se ordenan según su precisión, el resultado es generalmente el mismo con 
validación cruzada sin anidar o anidada [76]. Para obtener una medida más realista del 
rendimiento de los modelos, en este trabajo se utilizó una validación cruzada anidada con 
dos bucles. El bucle exterior de la validación anidada dividió el grupo de entrenamiento en 
diez pares de subgrupos de entrenamiento y validación, a partir de los cuales se promedió 
la precisión de cada algoritmo de aprendizaje automático. En el bucle interior, cada 
subgrupo de entrenamiento se dividió en cinco nuevas particiones de entrenamiento y 
validación, para escoger los hiperparámetros con una mayor precisión promedio. El 
rendimiento de los modelos predictivos se evaluó adicionalmente a través del cálculo de sus 
matrices de confusión y curvas de aprendizaje. 

El lenguaje de programación Python (versión 3.7) se utilizó para procesar las imágenes y 
estudiar los modelos predictivos, usando las librerías de OpenCV, Scikit-learn, NumPy, 
SciPy, Mahotas y Pandas. 
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1.4.1.2. Escala semiindustrial 
 

Parte de la campaña experimental se realizó en una instalación experimental de la planta de 
ArcelorMittal Asturias (Avilés), equipada con un horno semiindustrial (Figura 11). 

 

(a) 

 

(b) 

 
 

Figura 11. Horno utilizado en los ensayos a escala semiindustrial [77]. 

 

El horno tiene una cámara de combustión de 4.6 m de largo, 1.5 m de anchura y 2.8 de altura, 
y su configuración se puede modificar para probar distintos combustibles y condiciones de 
operación. Un circuito de agua con seis lanzas semicirculares simula la transferencia de 
calor de un horno industrial a una lámina de acero: el caudal de agua se calienta en el 
interior del horno, se enfría a la salida mediante un refrigerador, y se introduce de nuevo en 
la cámara de combustión. Un sistema de control y adquisición de datos registra el caudal, la 
temperatura, la presión, la concentración de oxígeno ([O2]fg) y las emisiones de gases 
contaminantes (CO, NOx, SO2 y CO2) en los gases de salida. La temperatura de la cámara de 
combustión (Tcc) se promedia a partir de las medidas de cinco termopares distribuidos en 
distintos puntos del horno. 

En las primeras pruebas semiindustriales se utilizó un quemador de difusión de 1.2 MWt y 
una cámara de color (The Imaging Source DFK 33GX174, 2.3 megapíxeles), situada en el 
exterior del horno y alineada con una ventana de inspección enfrente del quemador. El 
quemador usado en estas pruebas se cambió para las pruebas finales, debido a las 
necesidades de ArcelorMittal de implementar un nuevo modelo en sus procesos 
productivos. Este modelo mantiene la tipología de difusión y la potencia de 1.2 MWt, y 
además incluye una lanza central y dos laterales de combustible, así como varias entradas 
de aire (Figura 12).  
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Figura 12. Quemador de difusión utilizado en las pruebas finales en escala semiindustrial. 

 

Las pruebas experimentales utilizaron distintas mezclas de gas de alto horno, extraído y 
filtrado en la misma instalación. Debido a ello, la composición de las mezclas es variable y 
depende de la operación del alto horno. La composición y el poder calorífico típicos de las 
mezclas de combustible a escala semiindustrial se muestran en la Tabla 5. 

 

Tabla 5. Composición y poder calorífico típicos de las mezclas de combustible utilizadas en escala semiindustrial. 

Mezcla de 
combustible 

BFG0 BFG70 BFG80 BFG100 

[CH4] (%v.) 92 28 18 - 

[C2H6] (%v.) 8 2 2 - 

[H2] (%v.) - 3 3 4 

[CO] (%v.) - 16 18 22 

[CO2] (%v.) - 15 18 22 

[N2] (%v.) - 34 39 49 

[H2O] (%v.) - 1 1 2 

[O2] (%v.) - 1 1 1 

PCI (MJ/m3N) 38 14 11 4 
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Las primeras pruebas semiindustriales se centraron en la combustión de las mezclas de 
BFG0, BFG70 y BFG100, para valores de [O2]fg entre 0 y 5 %v. Para reducir las emisiones de 
BFG0, se suministró oxígeno como comburente, operando parcialmente en régimen de 
oxicombustión. En todos los ensayos, el aire de combustión se precalentaba a 500 °C. La 
Tabla 6 recoge las condiciones de operación para las pruebas iniciales a escala 
semiindustrial. 

 

Tabla 6. Puntos de operación de las pruebas iniciales a escala semiindustrial. 

Serie de ensayos SE1 SE2 SE3 

Mezcla de 
combustible 

BFG0 BFG70 BFG100 

Modo de 
operación 

Oxicombustión 
parcial 

Estándar Estándar 

[O2]fg,1 (%v.) 0.0 0.0 0.0 

[O2]fg,2 (%v.) 1.0 1.5 1.0 

[O2]fg,3 (%v.) 3.5 5.0 3.0 

 

Para cada imagen de color, se obtuvieron tres imágenes monocromas, una por canal de color 
(rojo, verde y azul). De cada canal de color se extrajeron cuatro características de intensidad 
(media [37] - [41], desviación estándar [37]-[39], [41], asimetría [39], [41] y curtosis [39]), 
obteniendo 12 propiedades por imagen de color.  

Después de estas primeras pruebas semiindustriales, se realizó la campaña de laboratorio, 
para luego finalizar el estudio con ensayos adicionales a escala semiindustrial. A diferencia 
de los ensayos iniciales en escala semiindustrial, la segunda campaña usó un sistema de 
visión diferente. Este cambio se debe que el desarrollo continuó con la ingeniería, compra e 
instalación de un sistema de visión industrial en el horno, mejorando la posición de la 
cámara y permitiendo una operación continua en un entorno industrial. En primer lugar, se 
evaluaron distintas alternativas para la colocación del sistema: montaje interior o exterior, 
ventana de inspección superior o inferior, y alineación con el quemador (Figura 13). 
Considerando las distintas opciones, se definieron los requisitos específicos para el 
diámetro de la sonda, la distancia de trabajo y el campo de visión de la lente, y se contactó 
con once proveedores para estudiar un total de 20 propuestas de sistema. Aparte del 
cumplimiento de los requisitos, se analizaron distintas características de cada oferta, tales 
como la resolución y tamaño del sensor, la refrigeración del sistema y el coste económico. 
Además, la perspectiva del horno capturada por los sistemas de visión se simuló definiendo 
la escena y la cámara con el programa SKETCHUP (Figura 14). 
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(a) 

 
(b) 

 
 

Figura 13. Posiciones de la cámara para un montaje (a) interior y (b) exterior, ilustradas con el programa 
SKETCHUP. 
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(a) 

 
(b) 

 
(c) 

 
 

Figura 14. Ejemplos de simulaciones de perspectiva para los siguientes casos: montaje interior en (a) ventana 
superior y (b) ventana inferior con orientación hacia quemador, y (c) montaje exterior en ventana superior. 

 

Finalmente, el sistema de visión seleccionado como mejor alternativa incluía una cámara de 
color (BASLER BIP2-1920c, 2.1 megapíxeles), protegida por una carcasa metálica 
refrigerada con agua y un dispositivo retráctil (SOBOTTA). La cámara y su carcasa se 
introducen en el interior del horno, y en caso de temperaturas peligrosas o fallo del sistema, 
el equipo se extrae mediante el dispositivo retráctil. Este sistema se escogió porque 
proporcionaba la mejor combinación de campo de visión y protección ante llamas. 

En los ensayos semiindustriales finales se utilizó una potencia constante de 920 kWt. Para 
cada mezcla, el caudal de combustible se mantuvo constante, y el de aire se modificó para 
obtener los distintos valores de exceso de aire. El aire de combustión se introducía 
precalentado a una temperatura de 485 °C, con una concentración de oxígeno de 21 %v. La 
combustión de las mezclas se estudió para los valores de concentración de oxígeno en gases 
de salida de 0, 1 y 5 %v. El combustible se introdujo por la lanza central del quemador para 
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las mezclas de BFG0 y BFG70, mientras que para mejorar la operación con BFG80, el 
combustible se inyectó por las lanzas centrales y laterales. De esta manera, los reactivos se 
diluyen con los productos de la combustión, operando en modo sin llama, también conocido 
como dilución moderada o intensa con bajo contenido en oxígeno (Moderate or Intense Low 
Oxygen Dilution, MILD) [78], [79]. En estas condiciones, la zona de reacción se distribuye a 
lo largo de todo el horno, favoreciendo la reducción de temperaturas de llama pico y las 
emisiones de NOx [78], [80]. A pesar de referirse a estas condiciones como sin llama, el ojo 
humano puede observar la llama en algunos casos [80]-[82], aunque con una visibilidad 
inferior a la de la llama de otros combustibles convencionales. 

El procedimiento utilizado para la realización de las pruebas se describe a continuación. En 
primer lugar, el horno se precalentó para alcanzar condiciones estables de emisiones y 
temperatura. Debido a las dimensiones del horno, la concentración de los gases de 
combustión se estabiliza a la media hora, y la temperatura a las 8 horas. Tras alcanzar el 
régimen estacionario, se adquirieron imágenes de llama durante 10 minutos, para cada una 
de las mezclas de combustible. Además, también se estudiaron las condiciones transitorias 
para la mezcla de BFG70 a partir de la grabación de las imágenes después de la 
estabilización de las emisiones, aunque la temperatura no hubiese alcanzado su valor 
estacionario. De esta manera se analizaron las imágenes obtenidas para concentraciones de 
O2 en gases de salida de 1, 2, 3, 4 y 5 %v. La Tabla 7 resume las características de los ensayos 
en la campaña. 

  

Tabla 7. Puntos de operación de las mezclas de combustible para escala semiindustrial. 

Serie de 
ensayos 

SE1 SE2 SE3 SE4 

Régimen Estacionario Estacionario Estacionario Transitorio 

Mezcla de 
combustible 

BFG0 BFG70 BFG80 BFG70 

Modo de 
operación 

Estándar Estándar Sin llama Estándar 

[O2]fg,1 (%v.) 0 0 0 1 

[O2]fg,2 (%v.) 1 1 1 2 

[O2]fg,3 (%v.) 5 5 5 3 

[O2]fg,4 (%v.) - - - 4 

[O2]fg,5 (%v.) - - - 5 

 

De manera análoga a los ensayos de laboratorio, los parámetros de adquisición de la cámara 
se definieron según unos ensayos previos, y se mantuvieron constantes en toda la campaña. 
Los métodos de procesamiento de imágenes de llama en escala semiindustrial se basaron 
parcialmente en los de las imágenes de color para laboratorio, como se describe a 
continuación. 
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Mediante una inspección preliminar de la operación del horno, se observó que las imágenes 
de llamas eran significativamente diferentes a las de laboratorio. Las imágenes 
semiindustriales incluían elementos adicionales a la llama, como el quemador y las paredes 
del horno, que además tenían un color muy similar a las llamas. En contraposición, las 
llamas de laboratorio se mostraban sobre un fondo negro, lo que facilitaba su segmentación. 
En este sentido, incluso el ojo humano tenía problemas para identificar las llamas 
semiindustriales en las imágenes, por lo que la evaluación manual de la precisión de una 
segmentación automática presentaba dificultades. Ante el riesgo de hacer una clasificación 
imprecisa de los píxeles de llama, la etapa de procesamiento de imágenes no incluyó la 
operación de segmentación.  

Esta decisión de diseño afecta a la fase posterior de extracción de características. En primer 
lugar, el cálculo de las propiedades de geometría requiere de la segmentación de la llama, 
ya que, por ejemplo, no se puede obtener la anchura de la llama si no se identifican los 
píxeles de llama. Por lo tanto, las características de geometría no se extrajeron en escala 
semiindustrial, y sólo se utilizaron las 51 propiedades de intensidad y textura. En segundo 
lugar, debido a que no se identifican píxeles de llama, las características de imagen se 
extraen de todos los píxeles en la imagen.  

Los modelos predictivos para llamas semiindustriales se ajustan para estimar la 
concentración de oxígeno en gases de combustión, una variable diferente al exceso de aire 
estudiado en laboratorio. Aparte de entrenar los modelos para tres mezclas de combustible 
distintas, se analiza el comportamiento de una de ellas (BFG70) en condiciones transitorias. 
Para el entrenamiento y evaluación de cada uno de los cuatro modelos predictivos, se utilizó 
el procedimiento de laboratorio. 

Por último, a diferencia de la escala de laboratorio, se desarrolló un programa informático 
para permitir el uso de los modelos predictivos en tiempo real por operarios de la acería. 
Esta aplicación utiliza los modelos entrenados para analizar las imágenes de una carpeta, 
mostrando los resultados en pantalla con una interfaz, en la que se observa la última imagen 
analizada y la gráfica con las predicciones de las 100 imágenes previas. 

 

1.4.1.3.  Validación del desarrollo del sistema de monitorización 
 

Cómo último paso, el sistema de monitorización se validó analizando los resultados 
obtenidos en las distintas fases de desarrollo de forma conjunta. Este estudio se centró en 
la identificación de los cambios en condiciones de operación durante el desarrollo, y en 
evaluar su efecto sobre el sistema de monitorización. Para ello, se analizaron las imágenes 
de llama, la correlación entre las características de imagen y las condiciones de combustión, 
y la precisión de los modelos predictivos. 

 

1.4.2. Análisis de resultados 
 

En esta sección se presentan y analizan los resultados obtenidos. De forma similar al 
apartado del procedimiento experimental y métodos, se describe primero la escala de 
laboratorio (Artículos I y II) y luego la semiindustrial (Artículos A y III). En cada una de las 
escalas se analizan las imágenes de llama y la relación de las características extraídas con 
las condiciones de combustión, así como la precisión de los modelos predictivos ajustados. 
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En los resultados de escala de laboratorio, se incluye tanto el estudio de las emisiones del 
quemador experimental de las pruebas como el análisis de los espectros de 
quimioluminiscencia y las imágenes ultravioleta-visible. Dichos trabajos son 
complementarios a la línea de investigación de la tesis, centrada en el procesamiento de 
imágenes de color para la monitorización de la combustión. Por último, tras los resultados 
de la escala semiindustrial se incluyen los de la validación general del desarrollo (Artículo 
IV). 

 

1.4.2.1.  Escala de laboratorio 
 

En primer lugar, se analizan las emisiones medidas en las pruebas de laboratorio (Figura 
15) con el objetivo de evaluar el comportamiento del quemador experimental en las 
distintas condiciones de combustión consideradas. 

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Figura 15. Concentración en los gases de combustión de (a) CH4, (b) CO2, (c), CO y (d) NOx, para las mezclas BFG0, 
BFG70 y BFG100. 

 

Para los puntos de operación con un exceso de aire por encima de 1.7 se detecta CH4 en los 
gases, lo que es una prueba indirecta de combustión incompleta. El incremento del exceso 
de aire aumenta la velocidad de la mezcla de combustible y aire e inestabiliza la combustión, 
extinguiendo la llama en los puntos con un exceso de aire superior a 1.9.  
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Debido a la operación con una potencia térmica fija, las emisiones de CO2 son constantes 
respecto al exceso de aire para un mismo combustible. La concentración de CO2 aumenta al 
incrementar la proporción de gas de alto horno en la mezcla, ya que el CO2 del combustible 
y el producido por el CO superan al generado por la combustión del CH4. 

Las emisiones de CO se incrementan al alejarse de las condiciones estequiométricas (exceso 
de aire de 1.0) debido a la combustión incompleta por falta de oxígeno o por inestabilidades 
de combustión. Además, el aumento de la proporción de gas de alto horno en la mezcla 
incrementa su contenido en CO. 

La formación de NOx está condicionada por la temperatura de llama y la disponibilidad de 
N2 para su oxidación [83]. Al elevar la proporción de gas de alto horno en la mezcla, la 
temperatura adiabática de llama desciende [84], por lo que las emisiones de NOx pueden 
reducirse, como ha ocurrido en los ensayos. Para el BFG0, la concentración de NOx 
disminuye al aumentar el exceso de aire debido a su mayor caudal de aire y dilución 
asociadas [85]. En el caso del BFG70 y BFG100, el efecto de la dilución del aire no es tan 
significativo porque las mezclas ya incluyen unas altas concentraciones de diluyentes (CO2 
y N2) [13]. 

Como conclusión, se observó la dependencia de las emisiones con la composición del 
combustible y el exceso de aire para el quemador experimental utilizado. Las tendencias 
son las esperadas para los excesos de aire inferiores a 1.7, aunque por encima de dicho valor 
se obtiene combustión incompleta. Este comportamiento se debe al uso del mismo 
quemador para las distintas mezclas de combustible, a pesar de sus elevadas diferencias en 
poder calorífico. De esta manera, cada mezcla se quema en condiciones subóptimas, pero se 
cumple el objetivo de replicar condiciones industriales al mantener fija la configuración del 
quemador. 

Tras analizar las emisiones de los ensayos, se estudian los espectros de 
quimioluminiscencia para describir el comportamiento de los diferentes radicales. La 
Figura 16 muestra los espectros promedio para las mezclas de combustible y diferentes 
excesos de aire. 

  



29 
 

(a) 

 
  
(b) 

 
 

(c) 

 
 

Figura 16. Espectro medio de las mezclas de combustible (a) BFG0, (b) BFG70 y (c) BFG100, para distintos excesos 
de aire. 

 

Tal y como se puede observar en la Figura 16, los espectros de BFG0 (100% CH4) y BFG100 
tienen una forma característica muy diferenciada, mientras que el espectro de BFG70 
comparte rasgos de ambos. En todos los casos, se observa cómo la intensidad en todo el 
ancho de banda se reduce al alejarse de las condiciones estequiométricas. La aparición de 
estos máximos de intensidad cerca de las condiciones estequiométricas ha sido 
previamente documentada para el OH* y CO2* [21], [86], [87]. 

Para el BFG0 se observan las emisiones esperadas del OH*, CH* y C2*, a 310, 430 y 470-515 
nm. El espectro también muestra un máximo de intensidad a 589 nm, asociado al Na* 
originado en la combustión de impurezas provenientes de trazas [23], [88], [89]. Las 
emisiones para longitudes de onda entre 700 y 800 nm son similares a las registradas por 
Parameswaran et al. para la combustión de hidrocarburos con un quemador de premezcla 
[27]. La intensidad medida entre 630 y 900 nm se puede relacionar con distintas fuentes de 
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radiación, como el HNO* (630 – 872 nm) [88]. Entre 813 y 847 nm también se encuentra la 
emisión de las transiciones vibracionales-rotacionales de moléculas diatómicas con 
hidrógeno, como el CH (813 – 847 nm), NH (829 – 844 nm) u OH (835 – 845 nm) [88]. Por 
último, la superficie del quemador también puede emitir radiación en este rango infrarrojo 
[21]. El espectro de BFG100 no tiene los máximos de CH* y C2* porque no incluye CH4 en su 
composición, aunque si aparece el de OH*, debido a su contenido en H2. Además, el BFG tiene 
CO2, que modifica el espectro con la emisión de banda ancha del CO2*. 

Las variaciones de OH* se pueden relacionar con las emisiones de CO y CO2 según la 
ecuación CO + OH = CO2 + H [90], por lo que el defecto de OH impide la reacción completa 
del CO, y su concentración incrementa a la vez que se reduce la del CO2. Este 
comportamiento se confirma con los resultados experimentales, en los que la concentración 
mínima de CO (Figura 15.c) se relaciona con la intensidad máxima de OH* (Figura 16), 
asociada a la mayor concentración de OH. 

A modo de resumen, los espectros medidos para la mezcla BFG0 coinciden con los 
resultados de referencias previas para la combustión de llamas. Además, las pruebas con 
BFG100 han permitido identificar su espectro, caracterizado por la emisión continua del 
CO2*.  

Tras estudiar la espectroscopía de quimioluminiscencia, se analizan las imágenes de llama 
adquiridas por las cámaras ultravioleta-visible y de color en la instalación de laboratorio. 
En la Figura 17 y Figura 18 se muestran varios ejemplos de imágenes, obtenidas con distinto 
exceso de aire. 

 

(a) 

 

(b) 

 

(c) 

 
      
(d) 

 

(e) 

 

(f) 

 
 

Figura 17. Imágenes de llama con exceso de aire de 1.3 ± 0.1, adquiridas por la cámara ultravioleta-visible con el 
filtro de 310 nm para las mezclas de combustible (a) BFG0, (b) BFG70 y (c) BFG100, y por la cámara de color para 

las mezclas (d) BFG0, (e) BFG70 y (f) BFG100. 
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(a) EA = 1.13 (b) EA = 1.27 (c) EA = 1.37 
  

 
 
 
 
 
 
 

    

(d) EA = 1.41 (e) EA = 1.57 (f) EA = 1.67 
    

 
 
 
 
 
 
 

  

(g) EA = 1.78 (h) EA = 1.91   
 
 
 
 
 
 
 
 
 
 

Figura 18, Imágenes de llama adquiridas con la cámara de color para la mezcla de combustible BFG70 y los 
excesos de aire de (a) 1.13, (b) 1.27, (c) 1.37, (d) 1.41, (e) 1.57, (f) 1.67, (g) 1.78 y (h) 1.91. 

 

Las imágenes de llama se caracterizaron cuantitativamente mediante su procesamiento y la 
extracción de características. En un primer estudio se analizó la relación entre la mezcla de 
combustible y exceso de aire con varias propiedades de las imágenes ultravioleta-visible y 
color, mostradas en la Figura 19 y Figura 20, respectivamente. 
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(a) 

 

(b) 

 
(c) 

 
 

  

Figura 19. Características de (a) media, (b) medida de la información para la correlación I y (c) ordenada del 
centroide frente al exceso de aire, para las imágenes adquiridas por la cámara ultravioleta-visible con el filtro de 

310 nm en laboratorio. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
 

Figura 20. Características de media y área para el canal rojo (a, b), verde (c, d) y azul (e, f) frente al exceso de 
aire, para las imágenes adquiridas por la cámara de color en laboratorio. 

 

Según los resultados obtenidos, se confirma la dependencia de las características de imagen 
con la mezcla del combustible y el exceso de aire, para los dos tipos de cámara (ultravioleta-
visible y color). Además, dicha relación se puede definir a partir de características de 
intensidad, geometría o textura. En el caso de la cámara de color, las condiciones de 
combustión afectan a las propiedades extraídas de los tres canales de color. 
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La relación del exceso de aire con cada una de las 66 características de las imágenes de color 
se estudia en mayor detalle mediante un análisis de varianza. Para cada una de las 66 
variables se calcula su estadístico F, definido como la proporción entre la varianza de los 
valores medios de una característica de imagen para cada una de las clases de exceso de 
aire, y la varianza de los valores de dicha característica a través de todas las clases de exceso 
de aire. A partir de este cálculo se confirmó que todas las propiedades visuales extraídas 
dependen del exceso de aire, y se eligieron las diez variables con un mayor estadístico F 
para alimentar los modelos predictivos. Las precisiones de validación de dichos modelos se 
muestran en la Figura 21.  

 

 

Figura 21. Precisiones de los modelos predictivos durante su validación para escala de laboratorio. 

 

Los modelos predictivos alcanzaron precisiones de validación de 0.88 ± 0.09, que se 
incrementaron hasta 0.96 ± 0.01 para las mezclas BFG0 y BFG70. Estos modelos consiguen 
predecir variaciones del exceso de aire más pequeñas que las monitorizadas en trabajos 
anteriores, consiguiendo una precisión similar en la identificación de las clases [54], [91]. 
En esta tarea de clasificación, los distintos tipos de algoritmo considerados no afectan 
significativamente a la precisión de los modelos, teniendo una desviación máxima del 3 %. 
Para estudiar más en detalle la precisión de los modelos según la clase del exceso de aire, se 
calcularon sus matrices de confusión (Figura 22).  
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(a) 

 
 

(b) 

 
  

(c) 

 
 

Figura 22. Matrices de confusión de los modelos predictivos basados en el algoritmo de SVM, durante su 
validación en laboratorio para las mezclas de combustible (a) BFG0, (b) BFG70 y (c) BFG100. 

 

Los modelos para las mezclas BFG0 y BFG70 alcanzaron una precisión similar, 
independientemente de la clase del exceso de aire considerada. En el caso de BFG100, se 
observa que los errores se incrementan al predecir clases del exceso de aire con diferencias 
inferiores a 0.04. No obstante, para la mezcla BFG0 se consiguió una mayor precisión en la 
detección de estados con pequeñas diferencias (1.41 y 1.43). Este comportamiento podría 
ser debido a la menor estabilidad (menor poder calorífico) de la mezcla BFG100. Para esta 
mezcla también se observó que la precisión aumentó con el incremento del exceso de aire, 
que también puede relacionarse con el aumento de estabilidad [84]. 
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1.4.2.2.  Escala semiindustrial 
 

Los resultados obtenidos en laboratorio proporcionan una base sobre la que continuar la 
investigación a escala semiindustrial, que se analiza a continuación.  

En la primera campaña experimental a escala semiindustrial se adquirieron imágenes de 
llama, de las que la Figura 23 incluye unas muestras para la mezcla BFG70 y distintos valores 
de[O2]fg.  

 

(a) [O2]fg (%v.) = 0 (b) [O2]fg (%v.) = 1 (c) [O2]fg (%v.) = 4 
 

 

Figura 23. Imágenes de llama para la mezcla BFG70 en las pruebas iniciales semiindustriales. 

 

De las características de imagen extraídas, la asimetría en el canal azul (Figura 24) tenía una 
mayor dependencia con la concentración de oxígeno en gases de combustión para las tres 
mezclas de combustible. La detección de esta relación sirve de confirmación preliminar de 
la viabilidad de los métodos utilizados para la monitorización en escala semiindustrial. 

 

 

Figura 24. Característica de imagen de la asimetría azul frente a [O2]fg. 

 

La segunda campaña experimental en escala semiindustrial permitió profundizar en el 
estudio de la combustión con la adquisición de un mayor volumen de imágenes. También se 
utilizó un sistema de visión introducido dentro del horno, que incrementó el campo de 
visión de la cámara y la información capturada. De esta manera se facilitó la monitorización 
visual de la combustión.  
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La Figura 25 muestra las imágenes de llama adquiridas en condiciones estacionarias para 
las mezclas de combustible BFG0, BFG70 y BFG80, con distintas concentraciones de oxígeno 
en los gases de combustión. En el caso de la mezcla BFG70, el régimen transitorio también 
se analizó (Figura 26). 

 

(a)  
 
 

[O2]fg (%v.) = 0 

(b)  
 
 

[O2]fg (%v.) = 1 

(c)  
 
 

[O2]fg (%v.) = 5 

(d)  
 
 

[O2]fg (%v.) = 0 

(e)  
 
 

[O2]fg (%v.) = 1 

(f)  
 
 

[O2]fg (%v.) = 5 

(g)  
 
 

[O2]fg (%v.) = 0 

(h)  
 
 

[O2]fg (%v.) = 1 

(i)  
 
 

[O2]fg (%v.) = 5 

Figura 25. Imágenes de llama capturadas para la escala semiindustrial, en condiciones estacionarias y con las 
mezclas de combustibles (a, b, c) BFG0, (d, e, f) BFG70 y (g, h, i) BFG80. 

 

(a)  
 
 

[O2]fg (%v.) = 1 

(b)  
 
 

[O2]fg (%v.) = 2 

(c)  
 
 

[O2]fg (%v.) = 3 

(d)  
 
 

[O2]fg (%v.) = 4 

(e)  
 
 

[O2]fg (%v.) = 5 

  

Figura 26. Imágenes de llama capturadas para la escala semiindustrial, en condiciones transitorias, con la mezcla 
de combustible BFG70 y [O2]fg de (a) 1, (b) 2, (c) 3, (d) 4 y (e) 5 %v. 

 

En las imágenes predominan las tonalidades anaranjadas, propias de las llamas de difusión 
y las emisiones del hollín [92]. Las partículas de hollín emiten radiación similar a la de 
cuerpo negro [18], cuya intensidad incrementa con la temperatura según la ley de Planck 
[93]. Esto permite, por ejemplo, la estimación de la temperatura del hollín a través de 
imágenes de llama [94]. En las imágenes de llama se observa un incremento de la 
luminosidad al reducir la proporción de gas de alto horno en la mezcla, y al acercarse a 
condiciones estequiométricas. Estas variaciones de operación se relacionan con un aumento 
de la temperatura de la cámara de combustión (Figura 27), confirmando el comportamiento 
descrito por la ley de Planck. 
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Figura 27. Tcc en los ensayos semiindustriales. 

 

La composición del combustible y el exceso de aire afectan más al color de las llamas de 
premezcla respecto a las de difusión [19]. No obstante, las imágenes capturadas permiten 
detectar estas variaciones incluso para las llamas de difusión. La menor visibilidad de las 
llamas para las mezclas BFG70 y BFG80 se debe a la elevada proporción de gases inertes en 
el combustible, con aproximadamente 35 %v de N2 y 15 %v de CO2. En un trabajo previo 
[18] se observó un comportamiento similar al incrementar la dilución con N2 de llamas de 
difusión y metano, lo que redujo el pico de quimioluminiscencia de OH*. 

Mediante el análisis de varianza, se concluye que todas las propiedades visuales calculadas 
dependían de las clases de la concentración de oxígeno en gases de salida. A modo de 
ejemplo, la Figura 28 muestra la media de los valores píxel del canal rojo, cuyo 
comportamiento sigue las tendencias observadas previamente para la luminosidad de las 
imágenes y la temperatura de la cámara de combustión (Figura 27). 
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Figura 28. Media de la intensidad para el canal rojo frente a [O2]fg en los ensayos semiindustriales. 

 

El conjunto de las diez características de imagen con un mayor estadístico F se utilizó como 
entrada para los modelos predictivos, que alcanzaron una precisión de validación en torno 
a 0.995, reducida a 0.960 para la mezcla BFG70 en condiciones estacionarias (Tabla 8). 

 

Tabla 8. Precisiones de validación de los modelos predictivos en la estimación de [O2]fg en escala semiindustrial. 

Serie de ensayos SE1 SE2 SE3 SE4 

Régimen Estacionario Estacionario Estacionario Transitorio 

Mezcla de combustible BFG0 BFG70 BFG80 BFG70 

LR (precisión) 0.9920 0.9666 0.9970 0.9998 

SVM (precisión) 0.9936 0.9671 0.9980 0.9999 

MLP (precisión) 0.9866 0.9640 0.9962 0.9998 

 

Los tres algoritmos de aprendizaje automático proporcionaron resultados similares, 
aunque la SVM alcanzó la mayor precisión en todos los casos, superando a las redes 
neuronales. Este comportamiento también se observó en la escala de laboratorio y en un 
trabajo previo [91]. 

Los modelos predictivos se integraron en un programa informático para monitorizar el 
proceso de combustión en tiempo real y facilitar su uso en la industria (Figura 29). La 
aplicación analiza imágenes de llama y genera sus ventanas de visualización cada 0.35 
segundos. Este periodo de muestreo proporciona una monitorización continua y detallada 
del proceso de combustión, cuyas emisiones tienen una dinámica cuatro órdenes de 
magnitud más lenta que el programa (tiempo de estabilización de media hora).   



40 
 

 

 

Figura 29. Ventana del programa informático para la monitorización en tiempo real de [O2]fg. 

 

1.4.2.3. Validación del desarrollo  
 

Las diferencias entre las fases de desarrollo del sistema de monitorización se pueden 
agrupar en tres clases: escala (laboratorio o semiindustrial), quemador (premezcla o 
difusión) y posición del sistema respecto a la cámara de combustión (exterior o interior).  

La Figura 30 muestra imágenes de llama obtenidas en distintas fases de desarrollo para la 
mezcla de combustible BFG70 y valores similares de concentración de oxígeno en gases de 
combustión. Las llamas de laboratorio tenían un contorno definido, mientras que su 
geometría era difusa en escala semiindustrial. No obstante, la variación de la concentración 
de oxígeno en los gases de salida afectaba a las imágenes en ambos casos. Por lo tanto, la 
cámara de color se validó como un sensor de imagen adecuado para la monitorización de la 
combustión con BFG para quemadores de premezcla y difusión. 
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(a) [O2]fg (%v.) = 0 (b) [O2]fg (%v.) = 1 (c) [O2]fg (%v.) = 4 
 

(d) [O2]fg (%v.) = 2  (e) [O2]fg (%v.) = 5  (f) [O2]fg (%v.) = 6 

(g) [O2]fg (%v.) = 0  

  

(h) [O2]fg (%v.) = 1 

  

(i) [O2]fg (%v.) = 5 

  

Figura 30. Imágenes de llama para la mezcla de combustible BFG70 y distintos valores de [O2]fg y fases de 
desarrollo: escala semiindustrial con (a, b, c) ubicación exterior e (g, h, i) interior, y (d, e, f) escala de laboratorio 

con ubicación exterior. 

 

Las características extraídas de las imágenes se relacionaron con las condiciones de 
combustión en todas las fases del desarrollo. A modo de ejemplo, la Figura 31.a recoge el 
comportamiento de la media de la intensidad para el canal rojo y la mezcla BFG70, cuya 
tendencia es similar en todos los escenarios. Los modelos predictivos alcanzaron una alta 
precisión, tanto para escala de laboratorio como semiindustrial (Figura 31.b), obteniéndose 
valores superiores a 0.95 excepto para las pruebas de BFG100 en laboratorio, con una 
precisión de 0.80. Según estos resultados, las características de imagen calculadas y los 
modelos predictivos entrenados se validaron para la monitorización de llamas de alta y baja 
visibilidad en escala de laboratorio y semiindustrial. 
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(a) 

 

(b) 

 
 

Figura 31. (a) Media de la intensidad para el canal rojo frente a [O2]fg para la mezcla BFG70, durante distintas 
fases de desarrollo, y (b) precisiones de los modelos predictivos para los grupos de prueba de distintas mezclas de 

combustible y fases de desarrollo. 
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2.1. Artículo I 
 

Optical analysis of blast furnace gas combustion in a laboratory premixed burner. P. 
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ABSTRACT: The use of blast furnace gas (BFG) as a fuel provides
an alternative for waste stream valorization in the steel industry,
enhancing the sustainability and decarbonization of its processes.
Nevertheless, the implementation of this solution on an industrial
scale requires a continuous control of the combustion due to the low
calorific value of BFG. This work analyzes the combustion behavior
and monitoring of BFG/CH4 blends in a laboratory premixed fuel
burner. We evaluate several stable combustion conditions by
burning different BFG/CH4 mixtures at a constant power rate
over a wide range of air/fuel equivalence ratios. In addition, relevant
image features and chemiluminescence emission spectra have been
extracted from flames, using advanced optical devices. BFG
combustion causes an increase in CO2 and CO emissions, since
those fuels are the main fuel components of the mixture. On the other hand, NOx emissions decreased because of the low
temperature of combustion of the BFG and its mixtures. Chemiluminescence shows that, in the case of CH4 combustion, peaks
associated with hydrocarbons are present, while during the substitution of CH4 by BFG those peaks are attenuated. Image flame
features extracted from both ultraviolet and visible bandwidths show a correlation with the fuel blend and air/fuel equivalence ratio.
In the end, methodologies developed in this work have been proven to be valuable alternatives with a high potential for the
monitoring and control of BFG cofiring for the steel industry.

1. INTRODUCTION
Currently, energy-intensive industries are directing their
processes toward more sustainable models. Thus, industrial
processes can increase their efficiency and reduce pollutant
emissions. In order to meet these objectives, several strategies
are being promoted, such as waste heat recovery,1 waste stream
valorization,2 and electrical flexibility.3 In the case of the steel
industry, multiple waste gas streams with calorific value are
produced. One of these streams is blast furnace gas (BFG), a
byproduct of the chemical reduction of iron ore developed in
blast furnaces. BFG can be valorized through combustion for
different processes, such as gas turbines, steelmaking−
annealing lines, or reheating of furnaces.4−6 Among all these
applications, the steel industry is highly interested in BFG
valorization within the same facility where it is produced.
Nevertheless, the combustion of BFG in steelmaking processes
faces several drawbacks. Due to the large concentration of inert
gases in its composition, blast furnace gas does not provide
enough thermal energy to meet the temperature requirements
of steelmaking processes.7 Several strategies have been used to
overcome this, such as preheated combustion air and a higher
calorific gas as a support fuel. In Europe, BFG is usually mixed
with natural gas (NG), while in other regions, such as Brazil,
India, and China, BFG is blended with other fuels, such as fuel

oil.8 Furthermore, the low calorific value of the BFG also
results in more unstable combustion,6,7 which may move the
operation toward suboptimal conditions and even produce
flame extinction. Therefore, BFG combustion needs to be
monitored and controlled to correct suboptimal conditions.
Traditional sensors can be used to monitor the fuel and airflow
of each furnace burner. However, the high number of burners
in industrial furnaces increases the cost of this alternative and
limits its application. Therefore, the steel industry has searched
for novel combustion monitoring systems based on optical
techniques, which have been scarcely reported in the open
literature on industrial-level applications.9 Implementing such
monitoring systems on such a large scale requires a complex
development with extensive studies at laboratory, semi-
industrial, and industrial scales. In this aspect, studies of the
different scales have not been previously considered.
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Several advanced optical techniques have been used to
monitor and control the combustion process. They involve
analyzing energy radiated by the flames, which depends on
various combustion factors. For diffusion flames, energy
emission is dominated by continuous radiation (black-body
emission) related to soot production.10,11 In contrast, the
emission of premixed flames is mainly characterized by
multiple emissions in discrete wavelengths, related to the
transition of intermediate combustion radicals from excited to
ground states, known as chemiluminescence,10 which is
affected by the reactant composition and equivalence ratio.10,12

In order to study the chemiluminescence phenomenon,
optical instruments, such as spectrometers and cameras, have
been extensively employed to capture spectra and flame
images, respectively. In most cases, a huge amount of collected
information needs to be processed to extract specific features
to characterize flames for different fuel blends,13 air or fuel
flows,13,14 air swirls,15 and temperatures.16

First, spectrometers capture chemiluminescence emissions
from the ultraviolet (UV) to the infrared (IR) ranges,
associating specific wavelengths with the reaction of chemical

species. Combustion studies are typically focused on detecting
combustion radicals such as OH*, CH*, C2*, and CO2*. On
one hand, OH*, CH*, and C2* provide narrow-band
emissions at around 310 nm (OH*),17−23 430 nm
(CH*),17−23 470 nm (C2*),17,19,21 and 515 nm (also
C2*).17−21,23 On the other hand, CO2* is related to broad-
band emissions from approximately 350 to 610 nm.17,18,20,21

Second, research on combustion chemiluminescence can
also be developed with imaging techniques. For that purpose,
cameras for UV, visible (vis), and IR ranges are set up with
narrow-band filters to only measure light emissions related to
the relevant radicals.22,24−26 For example, the measurement of
OH* emissions with imaging techniques enables the character-
ization of premixed flame fronts.22,26,27 In addition, hyper-
spectral cameras can also be used to measure light emissions of
several radicals simultaneously.28

Finally, cameras without narrow-band filters can also be used
to characterize flame radiation, usually measuring the VIS
range. Most studies use statistical characteristics of the image
pixel values,13−16,29−32 which are related to the intensity of
light emissions. Additionally, other methods can also compute

Figure 1. Scheme of the experimental facility.

Figure 2. (a) Scheme of the premixed gas fuel burner and (b) example of a flame generated in the test combustion chamber.
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texture14,33 and geometrical characteristics15,31,34−36 and flame
speeds.37,38 Before the characteristics are extracted from the
image, several preprocessing techniques are used. These
preprocessing techniques include the averaging of image
sequences,29,30,32 flame segmentation with thresholding,13,15,16

noise filters,14 color space conversions to grayscale,15 and
finally hue, saturation, and intensity (HSI).31,36

The present research aims to characterize the combustion of
BFG for the partial replacement of CH4 in a premixed
laboratory-scale burner. For that purpose, three optical devices
are simultaneously employed to provide a more complete and
robust insight into the combustion process. Flame emissions
are measured by a spectrometer, a UV−vis camera with a
narrow-band filter, and a vis camera. Spectra and image
features are analyzed for different fuel blends, air/fuel
equivalence ratios, and flue gas compositions. Furthermore,
this research constitutes the first step toward the development
of a novel combustion monitoring system based on optical
techniques to enable BFG cofiring with NG in steelmaking
furnaces.

2. MATERIALS AND METHODS
The present section describes the methodology used in the
research. The final aim of the work is the the diagnosis of
combustion on the basis of flame optical parameters, and it is
mainly intended for industrial furnaces. The experimental
procedures have been defined similarly to those of an industrial
environment, where the level of tunability and configuration of
the commercial burners is limited. This way, by defining a
similar procedure for laboratory and industrial scales, the
methodology developed in the laboratory can be implemented
in industry with lower barriers.

2.1. Experimental Setup. Tests were carried out in a
customized combustion chamber equipped with a 20 kWth
premixed gas fuel burner, designed to enable extensive visual
characterization and flue gas measurements. Figure 1 shows the
overall scheme of the facility. The fuel and air enter the
premixed gas fuel burner through two separate inlets (25 and
10 mm diameters, respectively) (Figure 2a). The fuel/air
mixture leaves the burner via a 100 mm diameter header and a
pattern of holes of 5 mm, as shown in Figure 2a. Although
different headers can be used for each fuel in order to optimize
the working conditions in this research, the same header has
been used. This way, standard procedures are simulated on an
industrial scale. The flame generated is enclosed in a sealed
combustion chamber with a width and depth of 65 cm and a
height of 90 cm (see Figure 2b). The chamber is equipped
with both quartz and glass inspection windows in order to
enable energy transmission in the UV and VIS ranges,
respectively. A pilot flame is used to start the combustion,
which increases the facility’s safety by burning the remaining
fuel from previous operations.
The burner is fed with bottles of gaseous fuels whose

mixtures are blended by a gas supplier. The gaseous fuels feed
the burner via two independent gas lines designed to admit
gaseous fuels of highly different heating values. For CH4, one
line with a batch of one bottle is used. For the BFG and
mixtures, a line connected to a batch of eight bottles is
employed, which allows carrying out the tests continuously,
despite the high consumption of fuel. The amount of gas fed to
the burner is measured by a volumetric flow meter. The facility
also has a safety system to stop the fuel supply when leakages
are detected.

The combustion air is supplied by a compressor, whose
pressure (and thus flow rate) is controlled by an SMC
ITV2000 electropneumatic regulator. Before burner connec-
tion, the airflow rate is measured by an IFM SD6000 flow
switch, with a repeatability of ±1.5% and an accuracy of ±(3%
reading + 0.3% full scale). The electropneumatic regulator and
flow switch communicate with a computer through a data
acquisition system, which also collects the flue gas temperature
measured by a thermocouple. Since flue gas temperatures were
measured at the exhaust duct of the test rig, they are only
qualitative measurements. Thus, these flue gas temperatures
are not representative of the combustion and product behavior.
Furthermore, exhaust gas emissions were measured with an

MRU Vario Plus Industrial gas analyzer. Concentrations of O2,
CO, CO2, NOx, and CH4 in the combustion gases were
measured with the a analyzer, whose measurement principles,
ranges of measurement, and accuracies are summarized in
Table 1.

Three optical devices were employed to characterize the
combustion: a spectrometer (Ocean Optics Flame-S Mini-
ature), an electron multiplying charge-coupled device
(EMCCD) camera for the UV−visible (UV−vis) range
(Raptor Photonics Falcon Blue), and a red/green/blue
(RGB) camera (The Imaging Source DFK 33GX174). The
spectrometer and UV−vis and RGB cameras included a Sony
ILX511B sensor with 2048 pixels of resolution, a Texas
Instruments TC285SPD sensor (1.0 megapixels), and a Sony
IMX174LQJ sensor (2.3 megapixels), respectively. The UV−
vis camera was set with a narrow-band optical filter (310 ± 10
nm, ASAHI). In the case of the RGB camera, the sensitivity of
its color channels is maximized for the approximate ranges of
580−800 nm (red channel), 475−600 nm (green channel) and
400−500 nm (blue channel).
Experimental tests were carried out for three different fuel

gases, defined according to the industrial interest in the
substitution of NG by BFG, to increase the efficiency of the
processes. Higher percentages of BFG help to reduce NG
consumption and, consequently, fossil fuel emissions. How-
ever, blends with a high percentage of BFG, which has a low
heating value, limit the maximum temperature inside the
combustion chamber and result in some operational problems
associated with the high gas flow needed to satisfy the furnaces’
demand.4 Consequently, the amount of BFG in the mixture is
limited and some NG is needed to reach the temperatures
needed for the steel production processes.6 For example, in a

Table 1. Specifications of the Gas Analyzer

gas
measurement
principle range accuracy

O2 electrochemical 0−21.0 %v ±0.2 %v abs
CH4 nondispersive

infrared (NDIR)
0−10000 ppm ±60 ppm or 5%

reading
CO NDIR 0−10000 ppm ±40 ppm or 5%

reading
CO2 NDIR 0−30 %v ±0.5% or 3% reading
NO electrochemical 0−1000 ppm (up to

5000 ppm)
±5 ppm or 5% reading

≤1000 ppm
10% reading
>1000 ppm

NO2 electrochemical 0−200 ppm (up to
1000 ppm)

±5 ppm or 5% reading
≤200 ppm
10% reading
>200 ppm
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study by Zheng et al.,6 the adiabatic flame temperature is
increased between 10% and 20% by increasing the CH4 share
in the BFG blend from 0 to 15 %v.
In the present research, a 70 %v BFG gaseous mixture

(BFG70) was chosen, since it contains the minimum amount
of CH4 required to reach the steel processing temperatures
(1100−1300 °C) in industrial reheating furnaces.4 On the
other hand, pure BFG (BFG100) and G20 CH4 (BFG0) have
been defined as baseline fuels for the tests.
The compositions of the fuel blends and their lower heating

values (LHV) are collected in Table 2. BFG0, BFG70, and
BFG100 were fed at manometric pressures of 10, 86, and 82
mbar, respectively.

2.2. Methods. In order to analyze the combustion behavior
of the premixed flames when the fuel blend and air/fuel ratio
were varied, we carried out an extensive experimental
campaign where several operation points were obtained at
different airflow rates. Combustion regimes for each operation
point were characterized by calculating their air/fuel
equivalence ratio (ER), computed as the fraction between
the actual and stoichiometric air/fuel ratios. Consequently, an
ER higher (or lower) than 1 implies fuel-lean and air-rich (or
fuel-rich and air-lean) combustion. The limits of the airflow
rates were defined according to the flame stability of each fuel
blend. On one side, a reduced airflow caused the flashback of
the flame inside the burner mixture chamber, because of the
low mixture velocities. On the other side, the highest air flows
produced instability and extinction of the flame when the
combustion approached its lean operation limits. Since the
configuration of the burner was kept for the different blends,
similarly to the industrial case, the velocities of the air/fuel
mixtures are different. Thus, the ERs are limited by the burner
geometry and the amount of BFG of the blend. In this way, the
burner is forced to operate near its extinction and flashback
working points, acquiring samples of inefficient operation
conditions, whose analysis is relevant for their detection at a
larger scale. With the current burner, the studied ERs vary
from 1.4 to 2.0, from 1.1 to 1.9, and from 0.9 to 1.2 for BFG0,
BFG70, and BFG100 fuel mixtures, respectively (see Table 3).
The burner power was fixed at 5.5 kWth for each test,

independently of the fuel blend and airflow rate. Before each
test set, the burner was started up for 1 h to reach a steady
temperature. These temperatures were controlled on the
surface of the combustion chamber with a thermocouple. Once

the warming up was finished, the same procedure was followed
for each combustion test. First, the fuel and air flows were
adjusted. Second, chamber gases near the flame were measured
and compared with the flue gases reported. Steady conditions
were reached when the chamber gases and the flue gas
measurements presented similar values. At this point, the
spectra and images were acquired for 6 min.
According to previous works, the experiment duration can

significantly vary between 5 and 180 s.15,16 Thus, a
conservative approach was followed to select the test period,
defining it to be higher than previous references, with a value
of 6 min (360 s). This way, a higher number of measurements
were acquired, reducing the effect of abnormal and spurious
data.
The fuel flow rate, air flow rate, and exhaust gas analyzer

measurements were averaged per test. Furthermore, exhaust
gas concentrations detected by the gas analyzer were corrected
to 3 %v O2. The CH4 concentration in flue gases was measured
in order to detect operation points in which unburned fuel
fractions could arise from incomplete combustion.
The spectrometer and the UV−vis camera were both set in

front of the quartz glass of the combustion chamber, allowing
the acquisition of the flame radiation in the UV bandwidth. On
the other hand, the RGB camera was installed in front of the
ceramic glass to measure only the visible range. This way, the
three optical devices collected spectra and images simulta-
neously under ambient conditions of dark lighting.
The integration time of the spectrometer and the exposure

times of the cameras were selected by preliminary tests
according to optimum criteria. At first, longer times are
desirable to increase the signal provided by the optical devices.
Nevertheless, higher exposure times may saturate sensor pixels
and provide inadequate measurements. Thus, the optimum
criteria were the maximizations of the integration and exposure
times up to their saturation limits. Since the saturation limits of
each optical device are originally unknown for an analysis of
the flames, preliminary trials were performed to define them by
burning BFG0 and BFG100. Furthermore, to compare
measures of the same optical device between different tests
and fuel blends, fixed integration and exposure times were used
for all the tests. In that aspect, the integration and exposure
times were defined by the tests that provide higher flame
radiation, related to lower airflow rates. Consequently, the tests
with lower airflow rates for BFG0 and BFG100 were carried
out. Therefore, the integration and exposure times were set to
1000, 540, and 30 ms for the spectrometer and UV−vis and
RGB cameras, respectively. Their values appear in Table 4,

together with sampling rates, the number of samples (spectra
or images) per test, and the optical device. Finally, the
configuration of the spectrometer was completed by selecting a
slit width of 200 μm.
As in previous works, combustion diagnosis was performed

on the basis of flame characteristics obtained by processing
spectra and images of the flame. For each optical device,

Table 2. Fuel Blend Composition

fuel blend

BFG0 BFG70 BFG100

[CH4] (%v) 100 28
[H2] (%v) 3 4
[CO] (%v) 16 22
[CO2] (%v) 16 22
[N2] (%v) 37 52
LHV (MJ/kg) 50.0 10.8 2.8

Table 3. Main Characteristics of the Test Campaign

test set BFG0 BFG70 BFG100

ER 1.4−2.0 1.1−1.9 0.9−1.2
no. of tests 7 8 5

Table 4. Acquisition Parameters of the Optical Devices

optical device

spectrometer UV−vis camera RGB camera

exposure time (ms) 1000 540 30
sampling rate (Hz) 1 1.4 12
samples per test 360 504 4320
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different processing operations were defined. Previously, the
signals and images were submitted to an operation based on
the subtraction of the dark signals from the captured spectra
and images to remove sensor electrical noise.27,30,32

In the case of the spectrometer, measured spectra were
averaged for each test to easily characterize them through a
visual representation. Nevertheless, a high amount of
information is lost with this operation, since the number of
spectra per test is reduced from 360 to 1. Thus, each measured
spectrum was also computed individually to provide a more
detailed analysis. For that purpose, a wavelength segmentation
was applied, with a range of 20 nm centered at each radical
wavelength being selected. Within this study, OH*, CH*, and
C2* were studied by considering their wavelengths of 310, 430,
and 515 nm,17−21 respectively, and an additional wavelength of
470 nm for C2*.17,19,21 CO2* was also characterized using a
wavelength of 410 nm,18 which was contained within the CO2*
broad-band emission and was unrelated to those of other
radical species. After the wavelength segmentation, 278
wavelength intensities were obtained. Finally, wavelength
intensities were downsampled from 278 to 56 to reduce
redundant information. The whole series of 278 wavelength
intensities were split into groups of 5 wavelength intensities.
Therefore, 55 groups of 5 wavelength intensities were
obtained, together with a group of 3 wavelength intensities.
For each one of these groups, only the first wavelength
intensity was used. In this way, the wavelength resolution of
the intensities was reduced from approximately 0.4 to 2 nm.
For the UV−vis and RGB images, the processing method-

ology was similar. On one hand, Otsu’s thresholding
segmentation was applied to detect flame pixels in each
image channel. Otsu’s method selects the threshold that
maximizes the variance between the two-pixel classes, the
variance being computed from the image histogram.15,16,39

After Otsu’s thresholding segmentation, the features of statistic
mean13−16,29−32 and Haralick’s texture information measure of
the correlation I (IMC1)14,40,41 were computed from flame
pixels. The mean is the averaged intensity value of the flame
pixels, which is related to the combustion characteristics of
flame brightness. On the other hand, texture features such as
IMC1 are more complex to interpret in comparison to the
other image features. Thus, their theoretical relationships with
combustion characteristics may be unknown beforehand.
Nevertheless, IMC1 has been used together with other color
and texture features to characterize primary air flow and
secondary air to territory air split.14 Furthermore, other
Haralick features have been used to characterize O2 and
NOx content in flue gases.

33 In this way, dependences between
the combustion characteristics and IMC1 (or other related
texture features) have been empirically reported. When Otsu’s
thresholding segmentation is applied, a small number of flame
pixels could be separated from the main contour of the flame
and distort the values of the geometrical features. In order to
discard these pixels, the morphological transformation of
erosion was applied using a kernel of 3 × 3 pixels.42
Next to morphological erosion, the features of the

geometrical area and centroid vertical coordinate were
extracted from the binary images.15,31,35,43 The area is the
number of flame pixels related to the flame area. The centroid
vertical coordinate is the vertical coordinate of the flame mass
center. This feature is related to the distance between the
burner and the flame and the flame length.

After the image features were computed, a total of 4
characteristics were obtained per image channel, resulting in 4
and 12 characteristics for the UV−vis and RGB cameras. Table
5 gathers the 4 channel characteristics and their mathematical

expressions, referenced to a grayscale image of P pixels, with
x(p) denoting the grayscale value of the pixel p. For the texture
IMC1, the element located in row i and column j of a
normalized gray-level co-occurrence matrix (GLCM) is
referred to as p(i,j). The GLCM has N rows and N columns,
where N is the number of distinct gray values in the grayscale
image. Additional variables are used to compute the texture
features, which appear in Table 6. In the case of the

geometrical features, the binary image also has P pixels (with
R rows and C columns), and the binary value (0 or 1) of a pixel
p located in column c and row r is denoted b(c,r).
In order to compute the processing operations for the

spectra and images of the tests, a specific code was developed
using the programming language of Python (version 3.7).
Furthermore, the developed code also used the libraries of
OpenCV, NumPy, SciPy, Mahotas, and Pandas. An additional
code was written to automatically read the spectra and images
acquired during the experimental campaign, which filtered
them according to the characteristics of the tests.

Table 5. Image Features Per Channel Considered

feature
no. type feature equation ref

1 statistic mean (μ) P
x p1 ( )

p

P

1=

16,
29,
30

2 texture
information
measure of
correlation I
( f12, IMC1)

HXY HXY1
HX HYmax( , )

40,
41

3 geometrical area (a) b c r( , )
r

R

c

C

1 1= =

15,
31

4 geometrical centroid vertical
coordinate (cy)

b c r

a
( , )r

R
c
c

1 1= = 35,
43

Table 6. Additional Variables and Their Equations to
Compute the Texture Image Features of IMC1

variable equation ref

px(i) p i j( , )
j

N

1=
40, 41

HX p i p i( ) log ( )
i

N

x x
1=

HY p i p i( ) log ( )
i

N

y y
1=

HXY p i j p i j( , ) log ( , )
i

N

1=

HXY1 p i j p i p j( , ) log ( ) ( )
i

N

j

N

x y
1 1

[ ]
= =
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3. RESULTS AND DISCUSSION

3.1. Analysis of Pollutant Emissions. The first analysis
of the test data is focused on the pollutant emissions of CH4,
CO2, CO, and NOx, whose trends are shown in Figure 3.
Complete combustion is achieved for most BFG0 and

BFG70 operation points, since no CH4 is measured in flue

gases (Figure 3a). However, a non-negligible CH4 concen-
tration is detected at higher ERs (over 1.7) for these fuel
blends, most probably caused by unburned CH4, a constituent
of BFG0 and BFG70. Additionally, CH4 emissions are higher
for BFG70 than for pure CH4. In these cases, the test burner
presents some combustion instability due to the higher velocity

Figure 3. Concentration in the flue gases of (a) CH4, (b) CO2, (c) CO, and (d) NOx, for the fuel blends BFG0, BFG70, and BFG100.

Figure 4. Average spectra for the fuel blends (a) BFG0, (b) BFG70, and (c) BFG100, with different ERs.
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of the air/fuel mixture, which prevents the proper burning of
the fuel.
Figure 3b shows CO2 emissions for the different operation

points. These emissions have different sources depending on
the fuel blend. In the case of BFG0, CO2 emissions correspond
to the completely oxidated CH4. For BFG100, CO2 emissions
have two sources: the combustion of CO and the original CO2
included in the fuel blend. Finally, the mixture BFG70 presents
CO2 emissions originating from the three previous sources
(combustion of CH4 and CO and CO2 from fuel).
In this way, the effect of each source is modified with

different BFG shares in the fuel blend. With an increase in
BFG share in the fuel blend, higher CO2 emissions are
generated from CO combustion and the CO2 composition of
the fuel. At the same time, lower CO2 emissions originate from
CH4 combustion. According to BFG measurements, total CO2
emissions are higher when the share rises from 0 to 70 %v.
Consequently, CO combustion and CO2 composition of the
fuel exceed the effect of CH4 combustion in CO2 emissions. As
expected, a constant trend is observed when CO2 emissions of
the same fuel blend are compared for different ERs, due to the
operation with a fixed thermal power for all of the tests.
The CO concentration in the exhaust gases is included in

Figure 3c. In general, CO emissions are increased when the
BFG share of the fuel blend is raised. This effect is due to a
higher CO content in the fuel blend, higher air/fuel velocities,
and lower calorific value (higher inert content). For each fuel
blend, lower CO emissions are obtained at points closer to the
stoichiometric point. The conditions of fuel excess (ER < 1)

led to an increase in CO emissions because part of the fuel is
not burned due to the absence of O2. In the same way, high ER
conditions generate combustion instability because of the air
dilution. Part of the CH4 of BFG0 is unburned and part of the
CO of BFG100 and BFG70 is unburned, causing an increase in
CO emissions.
Trends of NOx emissions are included in Figure 3d. NOx

emissions are highly dependent on the flame temperature and
the availability of N2 to be oxidized.

44 Higher shares of CH4 in
the fuel blend increase the adiabatic flame temperature over
1800 K, for which the Zeldovich mechanism dominates NOx
emissions, where the flame temperature and residence time are
important factors.
On the other hand, a fuel blend of BFG without CH4 (such

as BFG0) does not reach 1800 K, and NOx emissions are
reduced. This behavior is also reported in the work of Zheng et
al.6

In addition to previous effects, NOx emissions are decreased
in the combustion of BFG0 for higher ERs, since the air acts as
a diluent. The effect of the dilution is significant in the case of
pure CH4, which implies a significant reduction in NOx at high
equivalence ratios.45 However, the mixtures BFG70 and
BFG100 have high concentrations of diluents such as CO2
and N2, which receive part of the energy of the combustion.
This effect causes lower combustion temperatures, and
therefore, the concentration of NOx in the flue gases is
significantly lower and the effect of the increase of air is not
significant.4

Figure 5. Intensities of (a) OH*, (b) CO2*, and (c) CH* and of C2* at (d) 470 nm and (e) 515 nm versus ER, for the fuel blends BFG0, BFG70,
and BFG100.
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3.2. Analysis of Chemiluminescence Spectroscopy.
An analysis with chemiluminescence spectroscopy was
performed to compare intensities and wavelengths of the
energy radiated by the premixed flame radicals. The
spectrometer captured the radiant energies emitted by the
flame, which were averaged for each test. Figure 4 presents the
averaged spectra of BFG0, BFG70, and BFG100 for different
ERs.
The BFG0 spectra, measured as a reference, show their

signature shape, with the intensity peaks of OH*, CH*, and
C2* at 310, 430, and 470−515 nm, respectively. Nevertheless,
other patterns of high intensities appear in the mean spectrum.
The peak at around 589 nm is the typical emission band of
Na*, which in previous works has been linked to the
combustion of impurities from traces.19,46,47 Also, several
peaks above 700 nm (visible and infrared range) could be
related to the emission of the burner surface,17 HNO*
(between 650 and 900 nm),45,46 and vibrational−rotational
transitions of diatomic molecules with hydrogen, as CH (from
813 to 847 nm), OH (from 834 to 845 nm), or H2O (from
892 to 967 nm).46 Additionally, the peaks measured between
700 and 800 nm are similar to the results of Parameswaran et
al. for hydrocarbon flames with a premixed burner.48

On the other hand, flame spectra obtained with BFG100
have a higher and dominant contribution from the broad-band
CO2* emission due to the CO2 content of the BFG. Since the
BFG composition does not include CH4, CH* (430 nm) and
C2* (470 and 515 nm) peaks are not detected. Nonetheless,
the peak of OH* (310 nm) is still detected due to the H2
content in the BFG, but its intensity is lower than that for
BFG0. This trend is also reported in the work of Zheng et al.,6

in which the OH concentration is increased when CH4 is
added to BFG.
The spectra of BFG70 contains characteristics of the other

two fuel blends. The BFG in the fuel blend provides a broad-
band CO2* emission of intensity lower than that in the case of
BFG100 due to the higher concentration of BFG. CH* and
C2* peaks are detected due to the CH4 of BFG70, and the
measured peak of OH* is related to both CH4 and H2. These
narrow-band emissions show intensities lower than those in
the case of BFG0 due to the lower concentration of CH4 in the
fuel blend.
For each fuel type, the intensity throughout the whole

bandwidth depends on the air/fuel ratio (ER). For BFG0 and
BFG70, whose conditions are fuel-lean (air-rich), the emission
intensity increases as the combustion air decreases. For
BFG100, higher intensities are measured at medium air/fuel
ratios. Nevertheless, these trends of the emission intensities
with the air/fuel ratio for the three fuel blends can be described
together using the ER values. For the three fuel blends, the
maximum emission intensity could be measured at an ER
around 1.0 (stoichiometric conditions), as in the case of
BFG100, which has a maximum intensity for the ER of 1.1.
Consequently, the emission intensity is reduced with an
increase in the difference between the actual ER and the ER of
1.1 for BFG100. This relationship is also repeated for BFG0
and BFG70, where the emission intensity increases as the
difference between the actual ER and the ER of 1.1 is reduced.
The intensities of OH*, CO2*, CH*, and C2* are shown in

Figure 5 for BFG0, BFG70, and BFG100. The general trend
detected in the average spectra is repeated by the radical
emissions, which increase when the ER approaches 1.1. In
particular, these behaviors of the OH* and CO2* intensities

around an ER of 1.0 have also been reported in previous
studies. In the work of Ahmadi et al.,49 the OH* emission
intensity had a maximum at an ER of 0.8 for NG flames in a
premixed burner of domestic heating boilers. Related to the
work of Ahmadi et al.,49 the Soltanian et al.17 detected a peak
of the intensities of OH* and CO2* at an ER of 0.8 for NG
flames and a premixed gas boiler burner. Additionally, Ding et
al.50 detected a maximum of OH* intensity at an ER of 1.0 for
flames of different fuel blends (pure CH4 and mixtures of CH4
with N2, CO2, H2, and C3H8) in a burner similar to those in
the studies referenced above.
All of the radical intensities of BFG0 are slightly higher than

those of BFG70 at similar ERs. The addition of CO2 in BFG70
increases the broad-band CO2* emission with respect to the
BFG0 case due to the increase in the BFG share. However, the
reduction of the CH4 concentration decreases the emission
intensity of OH*, CH*, and C2* (at both 470 and 515 nm).
When the concentration of BFG in the fuel blend is increased
to 100%, the broad-band CO2* emission also increases,
increasing the intensities radiated in its range (between 350
and 600 nm). This behavior matches with the trends shown for
the intensities of CO2*, CH*, and C2*, which are higher for
BFG100 than for BFG70, at similar ERs. The emission
intensity of OH* is not affected by the increase of broad-band
CO2* emission, since 310 nm is not in the range between 350
and 600 nm. In particular, the emission intensity of OH* was
reduced for BFG100 with regard to BFG70 at similar ERs,
showing a trend in contrast with the rest of the radicals due to
the different compositions of the fuel blends. In this study, the
intensity of OH* is related to the reaction of CH4 and H2
(included in the composition of the BFG). While BFG70
includes both CH4 and H2, BFG100 has a higher concentration
of H2 but no CH4. This higher concentration of H2 does not
balance the lack of CH4, providing a lower emission at 310 nm
in comparison to that for BFG70.
OH* measurements are also related to CO and CO2

emissions through the reaction CO + OH = CO2 + H,
fundamental for CO oxidation.51 With this reaction, if the OH
concentration is decreased, CO emissions are expected to
increase. This behavior is shown by comparing parts a and c of
Figure 5, in which OH* radiation and CO emissions are
inversely proportional.

3.3. Analysis of the Flame Images. After the spectral
features were studied, images acquired with the cameras were
analyzed. Figure 6 shows different flames captured for the three
fuels with the UV−vis and RGB cameras under similar
conditions.
Features extracted from the 310 nm images show depend-

ences on the fuel blend and ER, independent of the feature
type (statistical, texture, or geometrical), which can be seen in
Figure 7. Among the 310 nm image features, the statistical
mean has a stronger dependence on the combustion regimes
for BFG0 and BFG70.
The mean is reduced with an increase in the BFG (reduction

of CH4) share in the fuel blend. In the tests, there are two
sources for OH*: CH4 hydrocarbons and BFG hydrogen.
Since the substitution of CH4 with BFG reduces the average
combustion radiation, CH4 hydrocarbons may make a greater
contribution than BFG hydrogen. Furthermore, the mean
increases for the same fuel blend when the ER approaches 1.1.
Similar behavior has also been shown in previous works.17,48,49

Despite the different natures between the mean (statistical)
and IMC1 (texture), the overall trends highlighted for the

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c02103
ACS Omega 2022, 7, 24498−24510

24505

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c02103?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


mean are shared for the IMC1. Thus, the flame texture is also
related to the BFG share in the fuel blend and the ER.
Finally, the centroid vertical coordinate is increased by

raising the BFG share in the fuel blend. The increase in BFG
share increases the length of the flame front, and thus, higher
centroid vertical coordinates are measured. The increase in the
flame front length may be caused by the higher fuel flows used
when the BFG share is increased. Within the same fuel, similar
behavior is found when the ER is increased. This effect could
be related to the air flow increase, which extends the flame
front. In addition, the geometrical vertical coordinate of the
centroid (cy) has a higher relevance for the classification of the
fuel blends, since most values of the feature are only related to
one specific fuel blend, independently of the ER. For example,
a flame image with an unknown ER could be related to BFG0
(if cy is higher than or equal to 835-pixel rows), BFG70 (cy
between 835- and 790-pixel rows) or BFG 100 (if cy is equal to
or lower than 790-pixel rows).

A similar study was carried out for the RGB images. For the
310 nm images, the statistical mean and geometrical area show
trends with the fuel blend and ER. In addition, these
dependences can be observed independently of the color
channel, and some features such as the statistical mean share its
behavior for the three channels (Figure 8).
The mean values are higher for the blue channel and lower

for the red channel, while the green channel presents
intermediate values. This trend is due to the radiation
differences in the spectral sensitivity of each color channel.
Nevertheless, the mean shows the same behavior with respect
to fuel blend and ER, independently of the color channel.
BFG0 and BFG70 have similar values, and therefore, the flame
intensity does not differ significantly. For BFG100, the mean
(and thus, the flame intensity) is higher due to the significant
contribution of the broad-band CO2* emission. With regard to
the behavior of the mean with the ER, the mean increases
when the ER approaches 1.1, as for the 310 nm images.
The areas are similar for the green and blue channels, but it

differs for the red channel. As with the mean, these variations
between channels are related to the different spectral
sensitivities of the color channels. The area for the red channel
shows almost no dependence on the fuel blend and ER; only
extreme ERs of the BFG0 show significant differences. With
those ERs, the length of the red flame is increased, and thus,
the area as well. For the green and blue channels, an increase in
the BFG share increases the flame length, due to a higher fuel
flow. For each fuel, higher ERs result in higher areas since the
fuel flow is constant and the airflow is increased. Notable
exceptions are lower ERs of BFG0, for which the flame length
is slightly increased. Among all image features, the geometrical
area of the blue channel is of greater interest due to its stronger
relationship with the fuel blends and combustion regimes, as
seen in Figure 8f.

3.4. Coupled Analysis of the Optical Devices.
Chemiluminescence spectra, UV filtered images, and color

Figure 6. Sample images captured by the UV−vis camera with the
310 nm filter for (a) BFG0, (b) BFG70 and (c) BFG100 and by the
RGB camera for (d) BFG0, (e) BFG70, and (f) BFG100, with ERs of
1.2 and 1.4 (fuel-lean and air-rich).

Figure 7. Image features of (a) statistical mean, (b) texture IMC1, and (c) geometrical centroid vertical coordinate versus ER, for the 310 nm
(OH*) images of BFG0, BFG70, and BFG100.
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images were processed to extract different features. The
relationships of these features with the combustion character-
istics were analyzed in previous sections. Now, features
measured with different optical devices are compared together
to study their correlations.
First, chemiluminescence spectra and UV filtered images

were studied. The OH* spectral intensity (Figure 5a) and
image mean (Figure 7a) share similar trends with regard to the
fuel composition and ER. In the captured trends, the feature
values decrease when the ER is increased for BFG0 and
BFG70, and higher values are measured at equal ERs for lower
shares of BFG in the fuel blend. This behavior is expected for
the OH* spectral intensity and image mean, since they are
related to the same combustion characteristic (magnitude of
the flame radiated energy). On the other hand, the image
IMC1 (Figure 7b) and centroid vertical coordinate (Figure 7c)
characterize the spatial texture and geometry of the flame
radiated energy, instead of its magnitude. In this way, these
features could have different trends with the combustion
characteristics. Nevertheless, the image IMC1 also shows a
similar trend with the fuel composition and ER. In addition,
the image centroid vertical coordinate (Figure 7c) has an
inverse relationship with the fuel composition and ER with
respect to previous optical features.
Color images capture flame radiated energy in broad-band

ranges instead of the narrow-band range used by the UV
filtered images. These broad-band ranges are 580−800 nm

(red channel), 475−600 nm (green) and 400−500 nm (blue).
Spectral intensities (Figure 4) and image means (Figure 8a,c,e)
characterize the magnitude of the flame radiated energy.
Trends of these features with combustion characteristics differ
from previous trends. While the feature values still decrease
with an ER increase, similar values are measured at equal ERs
for BFG0 and BFG70.
Moreover, the values for BFG100 are higher than those for

BFG0 and BFG70. This behavior is due to the measurement of
the radiation in broad-band instead of narrow-band ranges.
The three color channels capture broad-band CO2* radiation,
emitted between 350 and 610 nm. This radiation is increased
with an increase in the BFG share in the fuel blend, which
increases the CO2 fraction. Consequently, feature values for
BFG70 and BFG100 are increased. On the other hand, image
areas show inverse trends with respect to the previous features.
These relationships with combustion characteristics are shared
with the image area of the UV filtered images.

4. CONCLUSIONS
In this work, BFG, CH4, and a mixture with 70% of BFG and
30% of CH4 have been tested in a laboratory burner at
different air/fuel equivalence ratios, at a fixed thermal power of
5.5 kW. An analysis of chemiluminescence spectra, filtered UV
images, and color images enables the extraction of relevant
features from the flames. These parameters can be used to

Figure 8. Image features of (a) red statistical mean, (b) red geometrical area, (c) green statistical mean, (d) green geometrical area, (e) blue
statistical mean, and (f) blue geometrical area versus ER, for the RGB images of BFG0, BFG70, and BFG100.
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characterize aspects of the combustion in terms of fuel mixture,
ER, and flue gas composition.
The main conclusions from the results of this work are as

follows.
• Together with the mixture and air/fuel equivalence ratio,
the test burner used during the tests strongly influenced
the pollutant emissions. The use of fuels with significant
differences in their calorific value and the same ducts
and burner header produced different velocities of the
air/fuel mixture and thus affected the quality of the
mixture. This caused in some cases, with high velocities,
the mixture left the combustion chamber without being
burned. As a result, the CO concentration in flue gases
increased at high air equivalence ratios for all of the fuel
blends and the CH4 concentration also increased for
BFG0 and BFG70. When the combustion conditions
were more favorable, pollutant concentrations exhibited
the expected trends with ER.

• Chemiluminescence spectroscopy revealed that BFG100
shows a signature spectrum with the primary broad-band
emission of CO2* due to the higher CO2 concentration
of the fuel, whereas BFG0 spectra agree with the classical
spectra reported in the literature. The partial sub-
stitution of CH4 with BFG provides a hybrid spectrum
between BFG100 and BFG0. For all of the fuel blends,
spectrumal intensities increased with ERs of closer to
1.1. The dilution caused by the excess air for BFG0 and
BFG70 caused a decrease in the spectral intensity, and
the different peaks associated with the combustion
radicals were attenuated.

• The extracted image features show trends with fuel
blends and ERs that coincide with the spectroscopy
results for the same range of wavelengths. All types of
image features considered (statistical, geometrical, and
texture) show relationships with the combustion
conditions, and some of them share a stronger
dependence, such as statistical mean, texture IMC1,
and geometrical vertical coordinate of the centroid.

• The images captured with the RGB camera also showed
trends similar to those of spectroscopy and UV filtered
images. As with the UV filtered images, color image
features of statistical, texture, and geometrical types
show dependences on the BFG concentration and ER.
Furthermore, these relationships are provided by all the
color channels, highlighting the strong dependences of
the statistical mean and geometrical area.

The current study has addressed uncertainties and
challenges related to the innovation of the considered BFG
valorization. The results have shown strong dependences of the
computed spectra and image features related to intensity,
texture, and geometry on the BFG concentration and ER.
Thus, promising alternatives have been provided for the
monitoring and control of BFG cofiring, allowing further
research in applications, with the adaptation and optimization
of artificial intelligence techniques to develop predictive
combustion models.
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2.2. Artículo II 
 

Detection of slight variations in combustion conditions with machine learning and 
computer vision. P. Compais, J. Arroyo, M. A. Castán-Lascorz, J. Barrio, A. Gil. Engineering 
Applications of Artificial Intelligence (2023); Vol. 126, 106772. 
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A B S T R A C T

When monitoring combustion conditions, detecting minor variations, which may be complex even for the
human eye, is critical for providing a fast response and correcting deviations. The aim of this study is to
detect slight variations in combustion conditions by developing a flame monitoring system using machine
learning and computer vision techniques applied to color images. Predictive models are developed for fuel
blends with different heating values. The predictive models classify the combustion equivalence ratio based
on multiple conditions, using a mean step size of 0.10 between states, a lower value than previously reported
in related studies. Three machine learning algorithms are used for each fuel blend: logistic regression, support
vector machine, and artificial neural network (multilayer perceptron). These models are fed the statistical,
geometrical, and textural features extracted from the color images of the flames. The classification achieves
accuracies from 0.78 to 0.97 in the detection of slight variations in the combustion conditions for all heating
values. Thus, the monitoring system developed in this study is a promising alternative for implementation on
an industrial scale and quick detection of changes in combustion conditions.

1. Introduction

Combustion disturbances may shift controlled combustion condi-
tions towards abnormal operation regimes, leading to flashback or
extinction of the flame in the worst-case scenario. Measuring minor de-
viations in combustion conditions from standard combustion operations
can enable an early detection of abnormal operation regimes. This early
detection is necessary to quickly adjust the process, thereby reducing
the operating time under suboptimal conditions and other efficiency
problems. Machine learning (ML) techniques can be used to enable
advanced combustion monitoring.

Currently, ML techniques are employed in many fields, such as agri-
culture (Lawal, 2021), surveillance (Matkvoic et al., 2022), biochemical
engineering (Mowbray et al., 2021; Roy, 2022), heat pipes (Wang et al.,
2021), power systems (Vaish et al., 2021), control systems (Singer
and Cohen, 2021), and combustion engines (Aliramezani et al., 2022).
ML techniques are employed to analyze data for obtaining insights
and achieving higher levels of automation in data analysis. Thus, ML
provides powerful tools for analyzing large datasets and addressing
problems that are extremely complex or unviable with traditional data
analytics. Within the field of combustion, ML has been recently used

Abbreviations: ANN, artificial neural network; ANOVA, analysis of variance; BFG, blast furnace gas; CV, cross-validation; DL, deep learning; ER, equivalence
ratio; GLCM, grey level co-occurrence matrix; IF, image feature; LHV, low heating value; LR, logistic regression; ML, machine learning; MLP, multilayer
perceptron; PCA, principal component analysis; SVM, support vector machine
∗ Corresponding author.
E-mail address: jarroyo@fcirce.es (J. Arroyo).

to optimize the trade-off between emissions and efficiency (Cheng
et al., 2018) and to predict multiple characteristics, such as dynamic
and steady behavior (Jung et al., 2023), emissions (González-Espinosa
et al., 2020; Park et al., 2022), fuel oil viscosity (Ibargüengoytia et al.,
2013), and long-term furnace temperature (Quesada et al., 2021).
Flame images have been used to predict the operating conditions
related to the air–fuel equivalence ratio (ER), such as the air ratio (Bai
et al., 2017), O2 concentration (Yang et al., 2022), and combustion
regimes (Abdurakipov et al., 2018; Han et al., 2020, 2021). Combustion
conditions were examined in discrete ranges at different values (steps).
Mean step widths (step size) of 0.20 (Han et al., 2020) and 0.35
(Abdurakipov et al., 2018) were used to evaluate the influence of the
ER on combustion performance. However, the ER can be measured with
a higher level of detail by increasing the number of steps (i.e., reducing
the step size).

Several ML algorithms have been used to predict combustion con-
ditions, such as logistic regression (LR) (Abdurakipov et al., 2018;
Han et al., 2021; Hanuschkin et al., 2021), Gaussian processes (Han
et al., 2021), decision trees (Han et al., 2021; Hanuschkin et al.,
2021), k-nearest neighbor (Bai et al., 2017; Abdurakipov et al., 2018),
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linear discriminant analysis (González-Espinosa et al., 2020), support
vector machines (SVMs) (Bai et al., 2017; Abdurakipov et al., 2018;
Han et al., 2020, 2021), and artificial neural networks (ANNs) (Bai
et al., 2017; Abdurakipov et al., 2018; González-Espinosa et al., 2020;
Han et al., 2020, 2021; Hanuschkin et al., 2021; Yang et al., 2022).
Predictive models are typically fed with relevant features obtained from
flame images, which correlate with the combustion variables. Many
of these features are extracted from flame images by using computer
vision techniques. Features are typically based on statistical (González-
Cencerrado et al., 2012, 2013; Sun et al., 2013; González-Cencerrado
et al., 2015; Sun et al., 2015; Mathew et al., 2016; Bai et al., 2017;
Katzer et al., 2017; González-Espinosa et al., 2020; Compais et al.,
2022a,b; Zhu et al., 2023), geometrical (Sun et al., 2013, 2015; Katzer
et al., 2017; Hanuschkin et al., 2021; Liu et al., 2021; Compais et al.,
2022a), and textural measures (Bai et al., 2017; Compais et al., 2022a;
Yang et al., 2022).

Owing to the many available features, most applications choose
a limited data subset tailored to the case study. To compress and
visualize feature information, some researchers have employed prin-
cipal component analysis (PCA) (Bai et al., 2017; Abdurakipov et al.,
2018; Hanuschkin et al., 2021; Yang et al., 2022). However, PCA does
not consider the relevance of features for predicting a target. Thus,
other techniques are preferred because PCA is not recommended for
addressing overfitting (Hanuschkin et al., 2021; Yang et al., 2022).
After the predictive models are developed, their performance is usually
evaluated using accuracy, F1-score or R2 metrics, and training-test
split and cross-validation (CV) methods. However, predictive models
may suffer from overfitting and provide overly optimistic performance
results. Several alternatives, such as feature selection, regularization
term, and CV, can be used to address overfitting and obtain more robust
measures (Bai et al., 2017; Abdurakipov et al., 2018; Han et al., 2020,
2021; Hanuschkin et al., 2021; Quesada et al., 2021). Features can
be manually or automatically selected by using other techniques, such
as Pearson’s correlation coefficient or analysis of variance (ANOVA).
CV can be employed for model evaluation and hyperparameter tuning.
However, using a unique CV for both tasks may result in overfitting
(Cawley and Talbot, 2010). Two different CVs can address this risk: one
for hyperparameter tuning and the other for performance evaluation
(Cawley and Talbot, 2010; Hanuschkin et al., 2021). Thus, the CV
for hyperparameter tuning (inner CV) is nested under the CV for
performance evaluation (outer CV), resulting in a nested CV. Owing to
model overfitting, using a non-nested CV instead of a nested CV may
provide overly optimistic results for model performance. For example,
a 13% accuracy reduction was reported in classification models using
nested CV instead of non-nested CV (Abdulaal et al., 2018). Thus,
the validation procedures used should be considered when comparing
quantitative results from other studies. However, nested and non-nested
CVs generally result in the selection of the same model for prediction
applications (Wainer and Cawley, 2018).

This study presents an advanced monitoring system based on ML
and computer vision to detect minor variations in the combustion con-
ditions. Several ML models are developed and tested on a laboratory-
scale burner using different proportions of pure methane (CH4), a
baseline fuel, and blast furnace gas (BFG), a lean fuel. BFG, which is a
by-product of the integrated steelmaking sector and decreases the low
heating value (LHV) of the gas mixture, thereby leading to different
burner behaviors under premixed combustion conditions. Using BFG
as fuel in the steel sector is encouraged to improve energy efficiency
and reduce fossil fuel consumption and global CO2 emissions (Cuervo-
Piñera et al., 2018). Thus, advanced combustion monitoring systems
based on image sensors are helpful tools for this purpose.

This work presents the development of predictive models for ER
classification with a significantly high level of detail, using a mean step
size of 0.10 between consecutive combustion conditions. This accuracy
exceeds the human eye’s sensibility and implies accurate control of
combustion processes (Bai et al., 2017). The methodology includes

three characteristics that had not been implemented together before
and whose separate use is scarcely reported in the field of combustion
monitoring. First, whereas most combustion studies only include one
or two image features (IFs), in this work, statistical, geometrical, and
textural IF are extracted to achieve a complete combustion characteri-
zation. Second, ANOVA F-tests are performed to automatically select
IFs for training predictive models. This approach is implemented to
overcome the potential issue of overfitting, which is a significant
obstacle to minor ER changes.

Finally, while other studies involved the use of less robust methods,
such as a unique CV for model evaluation and hyperparameter turning
or no CV at all, we use nested CV for model evaluation and hyper-
parameter tuning. Here, the hyperparameters for predictive models
are automatically defined with the nested CV. The model accuracy is
measured for each hyperparameter combination in the inner CV, and
the combination with the highest accuracy is selected for the outer
CV. The objective of implementing a nested CV is the same as that of
the ANOVA F -tests: the reduction of overfitting in detecting slight ER
variations. Predictive models are developed using three different ML
algorithms: LR, SVM, and ANNs with multilayer perceptron (MLP). The
performance of the predictive models is evaluated to study their behav-
ior and compare the differences between the models, ML algorithms, ER
classes, and fuel blends.

2. Material and methods

2.1. Experimental setup

Experimental tests were performed in a combustion chamber
equipped with a premixed gas fuel burner with a maximum power of
20 kWth. Fig. 1 shows a schematic of the experimental setup. The burner
comprised two separate fuel and air inlets with diameters of 25 mm and
10 mm. Air and fuel were premixed in a plenum inside the burner, and
the mixture left through a 100-mm-diameter header and a pattern of
5-mm-diameter holes.

The burner was fed from bottles of gaseous fuel through two in-
dependent lines. Each line was designed to feed gaseous fuel with
different heating values. The fuel mixtures were prepared by using a
gas supplier based on the composition and quality requirements. A
compressor supplied the combustion air, and an ITV2000 electropneu-
matic regulator (SMC España S.A., Spain) controlled the pressure (and
thus the airflow rate). The airflow rate was measured before burner
connection using an SD6000 airflow switch (IFM Electronic GmbH,
Germany). The pressure control and airflow rate were digitized using
a data acquisition system and computer. Flame color images were
acquired by using a DFK 33GX174 color camera (The Imaging Source
Europe GmbH, Germany) with a IMX174LQJ sensor (Sony Europe,
Netherlands) of 2.3 MP.

Three fuel blends with different LHV values (Table 1) were tested
during the experiment. Fuels were selected based on interest in using
BFG, a low-calorific power gas, in the steel sector. Blends with a high
percentage of BFG led to increased combustion instability owing to the
composition of the inert gases. Pure CH4 was employed as the baseline
for combustion with the highest LHV (MIX1). In contrast, the pure BFG
exhibited the lowest LHV (MIX3). Finally, a fuel blend composed of
30% vol. CH4 and 70% vol. BFG was studied as an intermediate LHV
scenario (MIX2). The latter is relevant in the steel industry for the
valorization of BFG in reheating furnaces (Caillat, 2017; Cuervo-Piñera
et al., 2017). For each fuel blend, the combustion conditions were
modified by changing the airflow rate and operating with different ERs
at a fixed power of 5.5 kWth. Further details regarding the experimental
procedure can be found in Compais et al. (2022a).

2.2. Methods

Here, predictive models focused on the innovative detection of
minor ER variations, providing greater detail in estimating the ER than
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Fig. 1. Scheme of the combustion laboratory. DAQ: data acquisition.

Table 1
Composition of fuel blends (Compais et al., 2022a).

Fuel blend MIX1 MIX2 MIX3

[CH4] (%vol.) 100 28 –
[H2] (%vol.) – 3 4
[CO] (%vol.) – 16 22
[CO2] (%vol.) – 16 22
[N2] (%vol.) – 37 52
LHV (MJ/kg) 50.0 10.8 2.8

Table 2
Summary of the experimental tests.

Test MIX1 MIX2 MIX3

ER1 1.41 1.13 0.91
ER2 1.43 1.27 0.94
ER3 1.51 1.37 1.09
ER4 1.64 1.41 1.11
ER5 1.76 1.57 1.24
ER6 1.88 1.67 –
ER7 2.01 1.78 –
ER8 – 1.91 –

in previous studies. Combustion measurements from the experiment
conducted by Compais et al. (2022a) were used as input to develop
the predictive models. The ER was computed as the ratio between the
actual and stoichiometric air–fuel ratios. The mean ER step sizes were
0.10. The ER range was defined for each fuel blend based on its specific
flame stability. For example, an ER of 2.01 was achieved for MIX1 but
not for MIX2 or MIX3, owing to the extinction of the flame. Table 2
presents the ERs tested for each fuel blend. ERs range from 1.41 to
2.01 (MIX1), 1.13 to 1.91 (MIX2), and 0.91 to 1.24 (MIX3).

The camera acquired the flame images for 6 min after reaching
steady conditions for each test (ER class). The camera achieved a frame
rate of 12 fps, capturing 4320 images per test. Figs. 2, 3 and 4 show
sample images of the combustion regimes for MIX1, MIX2, and MIX3.
The ER variations in the flames were so small that they were not visible
to the naked human eye. This effect was attributed to using a mean step
size of 0.10 ER. Although slight image variations might seem irrelevant
at a lab scale, they might result in high volumes of natural gas that were
not burned on an industrial scale. In this respect, fine detection of these
slight variations could provide energy savings to the steel industry.

Flame images captured during the tests were processed to extract
their features. Although all the main feature types for flame images

Table 3
Statistical IF extracted from flame pixels of each color channel.

Feature magnitude Equation

Mean (𝜇) 1
𝑃

∑𝑃
𝑝=1 𝑥(𝑝)

Standard deviation (𝜎)
√

1
𝑃

∑𝑃
𝑝=1(𝑥(𝑝) − 𝜇)2

Skewness (s)
1
𝑃

∑𝑃
𝑝=1 (𝑥(𝑝)−𝜇)

3

𝜎3

Kurtosis (k)
1
𝑃

∑𝑃
𝑝=1 (𝑥(𝑝)−𝜇)

4

𝜎4

(statistical, geometrical, and textural) were not included in most com-
bustion studies, they were integrated for comparison in this study. Four
statistical features (mean, standard deviation, skewness, and kurtosis),
13 textural features (selected from Haralick et al., 1973), and five
geometrical features (area, centroid horizontal coordinate, centroid
vertical coordinate, width, and height) were computed. Processing was
applied to each color channel to obtain 22 IF per color channel, for 66
IF per color image. Tables 3, 4, and 5 list the selected IFs with their
formulations. The equations of the statistical features were referred to
as monochrome images of P pixels, where x(p) was the value of pixel
p. In textural features, p(i,j) referred to elements in row i and column j
of a normalized GLCM. The GLCM had N rows and N columns, where
N was defined as the number of gray values in the monochrome image.
Geometrical features were computed for binary images of P pixels (with
R rows and C columns), with b(c,r) as the binary value (zero or one) of
pixel p located in column c and row r. Moreover, 𝐶𝑠 and 𝑅𝑠 were the
horizontal and vertical coordinates of the pixels with binary values of
one, respectively.

Before the IF was extracted, the flame images were preprocessed.
First, to remove sensor electrical noise, the dark camera signal was
subtracted from the flame images (González-Cencerrado et al., 2012,
2013; Huang et al., 2015). The flame pixels were then segmented using
thresholding (Mathew et al., 2016; Katzer et al., 2017). The threshold
was automatically selected by applying Otsu’s method to maximize the
variance between the two-pixel classes (Otsu, 1979). The statistical
and textural features were extracted. Using Otsu’s thresholding, a re-
duced number of image pixels that were distant from the main flame
body were erroneously classified as flame pixels. Although they barely
affected the statistical and textural characteristics, these pixels signifi-
cantly influenced the calculation method for the geometrical features.
Therefore, the morphological transformation of erosion (Sreedhar and
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Fig. 2. Sample images of flames for MIX1 and ERs of (a) 1.41, (b) 1.43, (c) 1.51, (d) 1.64, (e) 1.76, (f) 1.88, and (g) 2.01.

Fig. 3. Sample images of flames for MIX2 and ERs of (a) 1.13, (b) 1.27, (c) 1.37, (d) 1.41, (e) 1.57, (f) 1.67, (g) 1.78, and (h) 1.91.

Panlal, 2012) was used to discard them. Erosion was applied using a
3 × 3-pixel kernel. Finally, geometrical features were extracted.

Based on the same methodology, different predictive models were
developed to detect slight ER variations in three fuel blends (MIX1,
MIX2, and MIX3). Each image was labeled with its corresponding fuel
blend and ER. Flame color images, fuel blends, and ER labels were used
as the datasets. Each fuel blend was tested for a discrete group of ERs
and predictive models were developed to classify each ER label. These
predictive models estimated the ERs related to the images based on the
extracted IF. The behavior of several ML algorithms was analyzed for
the ER classification of fuel blends. Predictive models were developed

using ML algorithms with different characteristics, namely LR, SVM,
and ANN. An MLP with a unique hidden layer of 100 neurons was used
for the latter. The ML methodology in this study for each fuel blend is
shown in Fig. 5.

The overall ML process for the dataset of a fuel blend is summarized
as follows, and specific steps of the method are described in more
detail. The dataset of each fuel blend was randomly shuffled and
split into training and test sets with 70% and 30% of the samples,
respectively. These sets were stratified to include a similar proportion
of the ER classes. Each IF’s mean and standard deviation in the training
set were computed to standardize the dataset. Based on those values,
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Fig. 4. Sample images of flames for MIX3 and ERs of (a) 0.91, (b) 0.94, (c) 1.09, (d) 1.11, and (e) 1.24.

Table 4
Textural IF extracted from flame pixels of each color channel.

Feature magnitude Equation

Angular second moment (𝑓1, energy) ∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑝(𝑖, 𝑗)

2

Contrast (𝑓2)
∑𝑁

𝑖=1
∑𝑁

𝑗=1 (𝑖 − 𝑗)2 𝑝(𝑖, 𝑗)

Correlation (𝑓3)
∑𝑁

𝑖=1
∑𝑁

𝑗=1
(𝑖𝑗)𝑝(𝑖,𝑗)−𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

Sum of squares (𝑓4, variance) ∑𝑁
𝑖=1

∑𝑁
𝑗=1

(

𝑖 − 𝜇𝑥
)2 𝑝𝑖𝑗

Inverse difference moment (𝑓5)
∑𝑁

𝑖=1
∑𝑁

𝑗=1
𝑝𝑖𝑗

1+|𝑖−𝑗|

Sum average (𝑓6)
∑2𝑁

𝑘=2 𝑘𝑝𝑥+𝑦(𝑘)

Sum variance (𝑓7)
∑2𝑁

𝑘=2
(

𝑘 − 𝜇𝑥+𝑦
)2 𝑝𝑥+𝑦(𝑘)

Sum entropy (𝑓8) −
∑2𝑁

𝑘=2 𝑝𝑥+𝑦 (𝑘) log 𝑝𝑥+𝑦(𝑘)

Entropy (𝑓9) −
∑𝑁

𝑖=1
∑𝑁

𝑗=1 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)

Difference variance (𝑓10)
∑𝑁−1

𝑘=0
(

𝑘 − 𝜇𝑥−𝑦
)2 𝑝𝑥−𝑦 (𝑘)

Difference entropy (𝑓11) −
∑𝑁−1

𝑘=0 𝑝𝑥−𝑦 (𝑘) log 𝑝𝑥−𝑦(𝑘)

Information measure of correlation I (𝑓12, IMC1) 𝐻𝑋𝑌−𝐻𝑋𝑌 1
𝑚𝑎𝑥(𝐻𝑋,𝐻𝑌 )

Information measure of correlation II (𝑓13, IMC2)
√

1 − exp [−2(𝐻𝑋𝑌 2 −𝐻𝑋𝑌 )]

Table 5
Geometrical IF extracted from flame pixels of each color channel.

Feature magnitude Equation

Area (a) ∑𝑅
𝑟=1

∑𝐶
𝑐=1 𝑏(𝑐, 𝑟)

Centroid horizontal coordinate (𝑐𝑥)
∑𝑅

𝑟=1
∑𝐶

𝑐=1 𝑐𝑏(𝑐,𝑟)
𝑎

Centroid vertical coordinate (𝑐𝑦)
∑𝑅

𝑟=1
∑𝐶

𝑐=1 𝑟𝑏(𝑐,𝑟)
𝑎

Width (w) max
(

𝐶𝑠
)

− min
(

𝐶𝑠
)

Height (h) max
(

𝑅𝑠
)

− min
(

𝑅𝑠
)

training and test sets were standardized. To tackle the overfitting of
the predictive models, the training set was analyzed by ANOVA F -tests.
The ten IFs with the best variance results were selected and employed
as input for predictive models for both training and test sets. Three
nested CVs (one per ML algorithm) tuned the hyperparameters and
evaluated the performance of each ML algorithm, selecting the best
alternative in the end. The chosen ML algorithm was trained with the
selected hyperparameters and the training set, and its performance was
analyzed, computing its accuracy for the test set. Accuracy was defined
as the ratio of the number of correct predictions to the total number of
predictions. PCA was not used in the ML method because training time
and storage limitations were not critical in this study.

Regarding the ANOVA F -tests, the selected IFs were the ten vari-
ables with the highest variance for the ER classes of each fuel blend in
the training set. F -tests use a Fisher–Snedecor distribution, and in the

case of the ANOVA F -tests, the hypothesis was the dependence of an
image feature on the ER class for a specific fuel blend. A confidence
level of 0.05 was selected to evaluate this hypothesis, and the F -
values, critical F -values, and p-values of the 66 IFs were computed and
compared. In the ANOVA F -test of an IF, the hypothesis was supported
if its F -value was higher than the critical F -value for the specific fuel
blend and the p-value was lower than the confidence level.

Nested CVs were applied with stratification to the training set, with
an outer and inner CV of ten and five folds, respectively. The outer
CV split the training set into ten training- and validation-subset pairs.
Fig. 6 summarizes the ML method for a split i of an outer CV.

For a training subset, an inner CV was applied to define the hyper-
parameters of the predictive model. Next, the model was trained with
the training subset, and its performance was evaluated by calculating
its training and validation accuracies, learning curve, and validation
confusion matrix. Training and validation accuracies were measured
for different subset sizes to compute the learning curves. These sizes
were defined as 1%, 25%, 50%, 75%, and 100% of the samples in the
outer CV fold. After the ten splits were evaluated, their metrics were
averaged, and the mean accuracy was used to select the ML algorithm.
The inner CV split each training subset into another five pairs of
training and validation subsets. For each pair, every combination of
hyperparameters was evaluated. The procedure for the split j and the
combination of hyperparameters k is shown in Fig. 7.

For an inner CV split j and a combination of hyperparameters k, the
predictive model was trained with the training subset j, and its accuracy
was computed for the validation subset j. Values for the five splits
were averaged to define the combination of hyperparameters with the
highest accuracy. Three values of the regularization term (0.1, 1, and
10) were tested for the three ML algorithms to address the overfitting
problem. Moreover, for the SVM, three different kernels were tested
(linear, polynomial, and radial basis functions).

The specific code to extract the IF and develop predictive models
was developed using Python as the programming language (version
3.7). Several libraries were used for the code: OpenCV, Scikit-learn,
NumPy, SciPy, Mahotas, and Pandas.

3. Results and discussion

Several comparative analyses were performed to evaluate the detec-
tion of slight ER variations using predictive models. First, the variance
of IF with the ER classes was analyzed using the ANOVA F -tests. This
assessment compared the subsets of the IF automatically selected for
each fuel blend. Apart from the specific IF that formed each subset,
the relevance of each subset’s color channels, and feature types was
checked. Next, the validation accuracy achieved by the predictive mod-
els and the effects of the ML algorithm were tested against other related
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Fig. 5. ML method for each fuel blend.

studies. Also, confusion matrices were computed to evaluate the effect
of ER class on the prediction models. Finally, the fit of the predictive
models was analyzed using learning curves and by comparing the
training, validation, and test accuracies.

3.1. Variance of the IF with the ER classes

The first analysis measured the variance of IF with the ER classes
using the ANOVA F -test. The critical F -value was computed for each
fuel blend, with a confidence level of 0.05. Fuel blends had critical
F -values of 2.10 (MIX1), 2.01 (MIX2), and 2.37 (MIX3). All IF had
F -values that were at least two orders of magnitude higher than the
critical F -value of the fuel blend. Also, all p-values were lower than the
confidence level. Thus, the mean values of each IF were affected by the
ER class regardless of the fuel heating value. IF were ordered based on
their F -values, and the subset of the 10 IF with the highest F -values was
selected to develop the predictive models. The chosen IF are indicated
with checkmarks (Tables 6, 7, and 8).

Three subsets of 10 IF were selected, with one subset for each fuel
blend. Some visual characteristics were repeated between subsets. In
particular, the IF group formed by the three subsets included only 24
different IF from a total computed of 66. The subsets for MIX1 and
MIX2 shared four IF: the standard deviation of the green and blue

Fig. 6. ML method for the split i of an outer CV.

Fig. 7. ML method for the split j of an inner CV and the combination of
hyperparameters k.

channels, difference entropy of the green channel, and centroid vertical
coordinate of the blue channel, which was a feature shared for all
fuel blends. The number of IF was computed for each color channel
(Fig. 8[a]) and feature types (Fig. 8[b]). The subsets of IF depended on
the fuel blend.

For MIX1, only the IF from the green and blue channels were
selected. However, in the cases of MIX2 and MIX3, the IFs from the
three-color channels were included. Moreover, three feature types were
included in selecting IF for MIX1 and MIX2. Nevertheless, only the
textural and geometrical features were chosen for MIX3.

3.2. Prediction of slight variations in the ER

After analyzing the variance of the IF with the ER, for each fuel
blend, a subset of ten features was selected, which were used for the
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Table 6
IF selected from the red color channel for each fuel blend.

Feature type Feature magnitude MIX1 MIX2 MIX3

Statistical Standard deviation (𝜎) ✓

Textural Contrast (𝑓2) ✓

Geometrical Area (a) ✓

Geometrical Centroid vertical coordinate (𝑐𝑦) ✓

Table 7
IF selected from the green color channel for each fuel blend.

Feature type Feature magnitude MIX1 MIX2 MIX3

Statistical Standard deviation (𝜎) ✓ ✓

Textural Contrast (𝑓2) ✓

Textural Correlation (𝑓3) ✓

Textural Sum of squares (𝑓4, variance) ✓

Textural Inverse difference moment (𝑓5) ✓

Textural Difference entropy (𝑓11) ✓ ✓

Textural Information Measure of Correlation II (𝑓13, IMC2) ✓

Geometrical Area (a) ✓

Geometrical Centroid vertical coordinate (𝑐𝑦) ✓ ✓

Table 8
IF selected from the blue color channel for each fuel blend.

Feature type Feature magnitude MIX1 MIX2 MIX3

Statistical Standard deviation (𝜎) ✓ ✓

Statistical Skewness (s) ✓

Textural Contrast (𝑓2) ✓

Textural Correlation (𝑓3) ✓

Textural Sum of squares (𝑓4, variance) ✓

Textural Inverse difference moment (𝑓5) ✓

Textural Difference entropy (𝑓11) ✓

Textural Information Measure of Correlation I (𝑓12, IMC1) ✓

Textural Information Measure of Correlation II (𝑓13, IMC2) ✓

Geometrical Area (a) ✓

Geometrical Centroid vertical coordinate (𝑐𝑦) ✓ ✓ ✓

Fig. 8. Number of IF selected for fuel blend, based on (a) their color channel and (b) their feature type.

input and development of predictive models. Three predictive models
were developed for each fuel blend using different ML algorithms (LR,
SVM, and MLP), and were trained and validated using nested CV. The
hyperparameters of the ML algorithms were tuned in this nested CV.
The validation accuracies of the predictive models were averaged over
the nested CV, and Fig. 9 shows the results.

The predictive models showed similar results for MIX1 and MIX2
expression. ER was estimated using classes with a mean step size of
0.10 (MIX1) and 0.11 (MIX2), achieving validation accuracies between
0.95 and 0.97. In contrast, the ER steps for MIX3 had a lower mean
step size (0.08), and validation accuracies of approximately 0.78 were
achieved. In summary, the validation accuracies ranged between 0.78
and 0.97, which are typical values for classification models related
to ER conditions. For example, Bai et al. (2017) measured accuracies
between 0.75 and 0.93 to predict air ratios. However, Han et al.
(2021) achieved accuracies of between 0.96 and 1.00 and 0.65 and
0.99 (Han et al., 2020) for the classification of combustion states. Also,
Abdurakipov et al. (2018) reported accuracies of 0.89 and 0.98.

Fig. 9. Validation accuracy of the predictive models developed with different
algorithms.

The results were compared in more detail with those of works
on similar classification tasks based on combustion conditions with
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different ER. Han et al. (2020) and Abdurakipov et al. (2018) used
mean step sizes of 0.20 and 0.35, respectively, whereas the present
work predicted ER conditions using a mean step size of 0.10, which
is at least two times lower. The use of larger mean step sizes facilitates
the image classification task because image flames present significant
differences that could be perceived by the human eye, as shown when
analyzing figures in their works. However, the classification task in this
work is more difficult because of the smaller mean step size, which
provided image differences hardly perceived by the human eye. To
address this challenge, we proposed a novel methodology for previous
combustion studies. In summary, using smaller ER steps and a nested
CV, the current study predicted ER conditions with a considerably high
level of detail, with accuracies like previous studies.

3.3. Effect of the ML algorithm

Results (Fig. 9) show that using a different ML algorithm barely
affected the validation accuracy of the predictive models regardless
of the fuel blend. LR, SVM, and MLP models achieved validation
accuracies with a maximum deviation of 3%. SVM provided the highest
accuracies for the three fuel blends (0.967, 0.973, and 0.795). Previous
studies measured variations in accuracy below 2% between SVM and
ANN (Bai et al., 2017) and LR and SVM (Abdurakipov et al., 2018).
In the work of Han et al. (2020), the highest accuracy was achieved
by SVM compared with ANN. Nevertheless, high deviations (< 19%)
between LR, SVM, and ANN have been reported in some cases (Bai
et al., 2017; Abdurakipov et al., 2018; Han et al., 2020). Moreover,
ANN achieved better results than SVM in the studies by Bai et al. (2017)
and Abdurakipov et al. (2018). Therefore, the behavior of the ML
algorithms may be dependent on the case conditions, and the current
research achieved similar results to those of previous studies.

3.4. Effect of the ER class

As Fig. 9 shows, the validation accuracy decreased significantly for
MIX3. To analyze this behavior in detail, the confusion matrixes of the
predictive models were analyzed. Results are shown (Fig. 10) for the
SVM model, which provided the highest validation accuracy.

For MIX1 and MIX2, confusion matrixes showed similar results.
Regardless of the ER class, the predictive models correctly estimated the
ER value for most samples (95% at minimum). Incorrect classifications
occurred only for a few samples with consecutive ER classes, such as
1.43 and 1.51 in the case of MIX1 (Fig. 10[a]). However, the behavior
of the predictive model was different for MIX3, where the ER estimation
exhibited lower accuracies when distinguishing between class pairs
of 0.91–0.94 and 1.09–1.11 (Fig. 10[c]). These conditions had the
smallest ER variations (0.03 and 0.02), together with 1.41–1.43 for
MIX1. However, the latter case was more accurate despite its low ER
variation. Due to the lower combustion stability caused by its lower
heating value, the classification could be more complex for MIX3 than
for MIX1. Also, it is observed that when the ER increased between 0.91
and 1.24, the validation accuracy for MIX3 was higher. These variations
could be related to combustion stability changes, as reported by Zheng
et al. (2021).

3.5. Fit of the predictive models

To evaluate the predictive models in more detail, learning curves
were computed. Fig. 11 shows the learning curves for the predic-
tive models developed using the SVM, which provided the highest
accuracies.

For each fuel blend, the validation accuracy increased with increas-
ing subset size, approaching the same value as the training accuracy.
This behavior is considered a good fit for the predictive models, which
did not suffer from underfitting or overfitting. Furthermore, as the
predictive models were stable at a subset size of 25%, similar results

Fig. 10. Confusion matrixes of the predictive models developed with the SVM
algorithm for (a) MIX1, (b) MIX2, and (c) MIX3.

could be achieved by acquiring only 1080 images per class, reducing
the test duration from 360 s (Compais et al., 2022a) to 90 s, or the
frame rate from 12 (Compais et al., 2022a) to 3 fps.

To provide a final test for the ER classification, predictive models
with the best results were trained with the entire training set and
evaluated with the test set, which had not been used to develop the
predictive models. Only the SVM models were evaluated in this step,
as they achieved the highest accuracy. The hyperparameters of the
SVM models were defined based on the best results obtained in the
hyperparameter tuning: a regularization term of 10 for the three fuel
blends, radial basis function kernel for MIX1 and MIX3, and linear
kernel for MIX 2. Their accuracies were computed to evaluate the SVM
models using the test set. Fig. 12 shows the accuracies for the SVM
model, including the previous training and validation accuracies and
the new test accuracies.

The accuracies achieved using the test set were like those of the
training and validation sets. Therefore, the SVM models exhibited
acceptable behavior for previously unseen flame images.

4. Conclusions

This paper presented a novel methodology for detecting slight vari-
ations in combustion conditions. The fuel blends used here are pure
CH4, 30% vol. CH4∕70% vol. BFG, and pure BFG. The combustion
was analyzed using a laboratory-premixed burner at a fixed thermal
power of 5.5 kW. The developed methodology was based on extracting
statistical, geometrical, and textural features from flame images, their
automatic selection with ANOVA F -tests, the automatic selection of
hyperparameters, and the robust performance evaluation for predictive
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Fig. 11. Learning curves of the SVM model for (a) MIX1, (b) MIX2, and (c) MIX3.

Fig. 12. Training, validation, and test accuracies of the SVM model for MIX1, MIX2,
and MIX3.

models using nested CV. This methodology aimed to reduce overfitting,
which was critical for the current application. Predictive models were
developed for the ER classification of each fuel blend using three
ML algorithms (LR, SVM, and ANN [MLP]). The performance of the
predictive models was evaluated using a training–test split and nested
CV within the training set by computing their accuracy, confusion
matrices, and learning curves.

The model developed in this work allowed the prediction of the ER
using a mean step size of 0.10, which in the case of the selected fuel
mixtures, implied differences that would be difficult to be perceived
by the human eye. The detection of slight changes in the combustion
conditions allowed for the correction of deviated parameters, helping to
optimize the processes and avoid the appearance of critical instabilities.

It was confirmed that the computed IFs used were affected by the
ER class regardless of the fuel heating value. However, the subset of
IFs with the highest variances depended on the fuel heating value. The
subsets for the first and second mixtures shared three IFs: the standard

deviation of the green and blue channels and the difference entropy of
the green channel. The subsets of the three fuel blends shared only one
IF, the centroid vertical coordinate of the blue channel. Moreover, the
subsets of IF for all heating values included textural and geometrical
features from the green and blue channels.

For the different fuel heating values, using different ML algorithms
(LR, SVM, and ANN [MLP]) had no significant effect on accuracy. Nev-
ertheless, the SVM models always provided the best results. Predictive
models showed a relevant decrease in accuracy for the conditions with
the lower fuel heating value (MIX3), reducing its value from 0.95–
0.97 to 0.78. Considering SVM models, significant misclassifications for
MIX3 occurred for consecutive ER classes with the smallest step sizes
(0.02–0.03). However, for the conditions with a higher fuel heating
value (MIX1), the predictive models obtained a higher accuracy when
predicting consecutive ER classes with a step size of 0.03.

The SVM models showed a satisfactory fit to the data without
underfitting or overfitting. The models achieved stability with only 25%
of the flame images. Therefore, the test duration or frame rate could be
reduced. Finally, the accuracy of the SVM models was measured again
using a test set with previously unused flame images. The SVM models
showed similar values to previous accuracies; thus, they performed well
with unseen flame images.

The decreased accuracy reported for the fuel blend with the lower
heating value could be used to propose future studies focused on
monitoring fuel blends with low heating values to increase prediction
accuracy. The current research sets the stage for automated monitoring
of minor variations in the combustion of gaseous fuels.

Finally, the current research results, carried out at a laboratory
level, would enable the development of these systems for their final
implementation in industrial furnaces of the steel sector, where the mix-
tures used in this work present an alternative for fossil fuel substitution
and, thus, for their decarbonization.
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ABSTRACT 

The steel industry is searching for novel image systems to monitor multiple burners 
individually. Such a development is highly complex and requires studies on several scales. This 
work analyses the robustness of an imaging system in different scenarios, from the laboratory 
(design and development) and semi-industrial (implementation) stages, using 20 kW and 1.2 
MW burners, respectively. The monitoring system predicts oxygen concentration in flue gases 
on both scales, achieving accuracies higher than 0.95 in most cases and 0.79 as a minimum. 
The vision system detects slight variations in combustion conditions and addresses differences 
among development phases, including burner typologies and system placements. This study 
leads flame monitoring systems based on images toward their final development on an 
industrial scale.   

KEYWORDS 

Flame monitoring, system validation, computer vision, machine learning, steel reheating 
furnace, blast furnace gas 

INTRODUCTION 

Energy-intensive industries continue searching for alternatives to increase their efficiency and 
sustainability. The steel industry demands high-temperature processes, mainly by the 
combustion of solid, liquid, or gaseous fuels. Monitoring systems can enhance the control and 
performance of such combustion processes, reducing fuel consumption, emissions, and costs, 
to reach European targets for carbon emissions by 2030.  
 
Industrial furnaces are usually equipped with several groups of burners, and the furnace 
operation is evaluated by analysing global combustion parameters. Monitoring air-fuel flows 
and flue gas emissions for each burner could detect individual malfunctions to raise the 
efficiency of the process. Still, this alternative is not feasible by the high cost of individual 
monitoring with traditional sensors. Thus, novel systems are searched to monitor multiple 
burners individually. In this context, image systems equipped with computer vision and 
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Machine Learning (ML) systems have a high potential, enabling the supervision of several 
burners by a single camera. 
 
Cameras can be employed to evaluate the combustion [1] and compute quantitative 
characteristics such as the flame area [2]. These systems can be developed to predict the 
equivalence ratio [3] or different combustion conditions [4]. Computer vision algorithms 
usually use flame segmentation to compute image features from only flame pixels. However, 
flame segmentation could be complex or inaccurate for images without a clear flame body. 
Another alternative is the analysis of flame images without performing flame segmentation, 
extracting features for the whole image [5, 6]. Typical image features can be split into statistical, 
textural, and geometrical. Statistical and textural features can be extracted from images with 
and without flame segmentation. Nevertheless, geometrical features need flame segmentation 
to define the flame body and compute characteristics such as the flame length.  
 
Developing advanced image systems for industrial scale is challenging and needs studies at 
several scales. However, most research works in the open literature focus on a single scale, 
usually the laboratory scale. This work presents the validation or joint assessment for laboratory 
and semi-industrial scales of an advanced image system that automatically predicts oxygen (O2) 
concentration in flue gases using an image sensor. The two-scale validation is a novelty 
concerning previous works focused on a single scale, enhancing the insight into sensitivity to 
changes and robustness of image systems for combustion monitoring. In this aspect, the 
system’s image sensor, image processing, and predictive model were evaluated in different 
scenarios by comparing design, simulation, and implementation results. A combustion chamber 
with a 20-kW burner was used for the laboratory scale, while a 1.2 MW burner was employed 
for the semi-industrial scale furnace. The rated power of the large burner is higher than those 
used in previous industrial works [7]. Nevertheless, our case was defined as a semi-industrial 
scale because the furnace has only one burner, whereas, at the industrial scale, the furnace is 
equipped with multiple burners.  
 
This work is focused on a specific case of the iron and steel industry. This industry is searching 
for novel systems [8] to individually monitor the multiple burners inside reheating furnaces [9]. 
Natural Gas (NG) and Blast Furnace Gas (BFG) are usually mixed to provide different fuel 
blends for these furnaces. The steel industry produces BFG as waste gas that can be valorised 
as fuel within the same facility [10-12]. Nevertheless, BFG has a low heating value and is prone 
to combustion instabilities [12, 13]. The temperature in the steel-making processes can be raised 
by increasing the NG share in the fuel blend with BFG. This strategy is used to meet temperature 
requirements when needed. In this work, the image system validation was focused on the fuel 
blends 100 %vol. NG, 30 %vol. NG and 70 %vol. BFG, 20 %vol. NG and 80 %vol. BFG and 
100 %vol. BFG. 

METHODS 

The development stages of the monitoring system were discussed to identify changes in 
combustion conditions, mainly scales, burners, and camera set-up. Next, monitoring system 
fundaments (image sensor, image processing, and predictive models) were assessed in the 
different development stages, considering condition changes among them. The evaluation 
procedure is explained as follows. 

 Image sensors were assessed by comparing flame images for different combustion 
conditions. In addition, the simulated and actual views of the furnace were analysed. 

 Image processing effectiveness was assessed by analysing relationships between 
combustion conditions and extracted image features. 
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 Finally, the performance of predictive models was validated by comparing their 
accuracy values. Accuracy was defined as the number of correct predictions divided by 
the total number of predictions. 

RESULTS AND DISCUSSION 

Review of the development 

The imaging system was evaluated in different scenarios during its development in order to 
assess its viability and robustness. Therefore, different scales, burner types, and camera 
locations were tested, while the imaging system shared several properties during the 
development stages. This approach differs from the usual validation of a burner, in which the 
burner typology and characteristics are constant.  
 
A colour camera was employed as the image sensor. The processing algorithm extracted 
statistical features from the three colour channels of the flame images. In some cases, additional 
textural and geometrical characteristics were computed. A predictive model was tested to 
predict O2 concentration in flue gases for each fuel blend, choosing between three different ML 
algorithms. A subset of image features was automatically selected to feed the predictive model 
of each fuel blend. The image sensor, image processing, and predictive model are described in 
more detail in the next sections. The development stages of the flame monitoring system are 
summarised in Table 1. 
 

Table 1. Development stages of the flame monitoring system 
 

Stage Scale Burner Camera placement 
Design Semi-industrial Diffusion  Outside 

Development  Laboratory Premixed Outside 
Implementation Semi-industrial Diffusion Inside 

 
 
The first stage included the design requirements for the monitoring system. With that purpose, 
an experimental campaign was performed at a semi-industrial scale with a diffusion burner of 
1.2 MW. This type of burner is characterised by the production of soot and its continuous 
radiation (black-body emission) [14, 15]. The camera was set outside the furnace, aligned with 
a viewing port to acquire flame images. The experimental campaign and its results are presented 
in a previous work [16]. 
 
The second phase focused on developing the predictive model with an experimental campaign 
at the laboratory scale. A combustion chamber with a premixed burner of 20 kW was used in 
this stage. Premixed burners provide flames that mainly emit several discrete radiations due to 
chemiluminescence [15, 17]. The camera was placed outside the combustion chamber before 
an inspection window. The analysis of these image features is included in another work [18].  
 
Lastly, in the implementation stage, a predictive model was developed for the semi-industrial 
scale performing another experimental campaign. As in the design phase, a diffusion burner of 
1.2 MW was employed. However, the camera was set inside the furnace in this case.  

Image sensor 

Examples of flame images acquired during all the development stages are shown in  
Figure 1. 
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(a) [O2] (%vol.) = 0 (b) [O2] (%vol.) = 1 (c) [O2] (%vol.) = 4  

(d) [O2] (%vol.) = 2  (e) [O2] (%vol.) = 5  (f) [O2] (%vol.) = 6 

(g) [O2] (%vol.) = 0  
  

(h) [O2] (%vol.) = 1 
  

(i) [O2] (%vol.) = 5 
  

 
Figure 1. Examples of flame images for different O2 concentrations in flue gases for semi-

industrial and laboratory scales, with the fuel blend 70 %vol. BFG and 30 %vol. NG. For the 
semi-industrial scale, the ((a), (b), and (c)) outside and ((g), (h), and (i)) inside placements of 

the camera were used, while for laboratory scale, an ((d), (e) and (f)) outside set-up was 
employed 

 
For the semi-industrial scale, flames had low visibility, but overall image characteristics were 
affected. For example, the brightness of the images was decreased by raising the O2 
concentration in flue gases with the outside and inside camera locations. At the laboratory scale, 
images captured a flame body and clear flame front for all combustion conditions. For both 
diffusion and premixed burners, the images differed depending on the combustion conditions. 
Therefore, the colour camera was validated as an image sensor for monitoring BFG combustion 
for diffusion and premixed burners. 
 
At the semi-industrial scale, the burner typology (diffusion) was fixed, but the camera port used 
to visualize the flame differed. In the design stage, the small size of the viewing port and the 
outside location affected the camera view, and only part of the furnace inside was captured. For 
the implementation phase, the captured area of the furnace was maximised by placing the 
camera inside the furnace. This location was also simulated based on the camera placement and 
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furnace geometry to check the field of view before the physical setup of the system, as seen in 
Figure 2. The simulation provided an accurate estimation of the captured area of the furnace. 
 
(a) 

 

(b) 

 
 

Figure 2. (a) Simulated and (b) actual views of the inside of the furnace at the semi-industrial 
scale for the image sensor set-up 

 

Image processing 

The same statistical features were extracted from the three colour channels of flame images for 
all the development stages. Textural and geometrical features were also computed from the 
three colour channels in some cases (Table 2). 
 

Table 2. Summary of computed image characteristics 
 

Stage High flame 
visibility 

Statistical 
features 

Textural 
features 

Geometrical 
features 

Total image 
features 

Design - Yes - - 12 
Development Yes Yes Yes  Yes 66 

Implementation - Yes Yes  - 51 
 
 
First, flame segmentation was only applied to the laboratory scale due to the high visibility of 
the flame. Therefore, features were computed at the laboratory scale using only flame pixels, 
while at the semi-industrial scale, all the image pixels were processed. The same statistical 
features (mean, standard deviation, skewness, and kurtosis) were extracted for all the 
development stages. The textural features computed for laboratory and semi-industrial scales 
were based on thirteen selected characteristics [19]. The application of flame segmentation at 
the laboratory scale enabled the use of geometrical features from which flame area, centroid 
coordinates, width, and height were extracted. All the image features were computed for each 
colour channel, with 12, 66, and 51 features for each development phase. Figure 3 shows, as an 
example, the relationship between O2 concentration in flue gases and the image feature of the 
red mean for the 70 %vol. BFG/30 %vol. NG fuel blend. This characteristic was selected as an 
illustrative example since it is extracted in all the development stages. 
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Figure 3. O2 concentration in flue gases vs. red mean for semi-industrial and laboratory 
scales, during the combustion of the fuel blend 70 %vol. BFG and 30 %vol. NG. For the 

semi-industrial scale, the outside and inside placements of the camera are shown 
 
In all the development stages, image features were affected by the combustion conditions. 
Statistical and textural features were validated as descriptors of combustion conditions for 
flames with high and low visibility, respectively.  

Predictive model 

Predictive models were trained to predict O2 concentration in flue gases for the laboratory and 
semi-industrial scales. At the semi-industrial scale, the predictive model was developed only 
for the inside location of the camera (implementation stage) due to the lower amount of flame 
images captured for the outside set-up (design phase). Five, seven, and eight O2 classes were 
studied at a laboratory scale for each fuel blend, while only three classes were considered at a 
semi-industrial scale. The same methodology was followed for laboratory and semi-industrial 
scales, explained next.  
 
Three ML algorithms with different characteristics were analysed: Logistic Regression (LR), 
Support Vector Machines (SVM), and a MultiLayer Perceptron (MLP) with a single hidden 
layer of a hundred neurons as an artificial neural network. The predictive models were trained, 
validated, and tested with the datasets of image features. The dataset of each fuel blend was 
randomly shuffled and split into training and test sets.  
 
In the training set, a subset of image features was automatically selected as input. Each subset 
of image characteristics comprises the ten variables with the highest variance for the 
combustion conditions. The training set was also used to tune model hyperparameters and 
evaluate the performance employing nested Cross-Validation (CV). The nested CV included an 
outer CV of 10 folds and an inner CV of 5 folds. The training set was split again into 10 pairs 
of training and validation subsets for the outer CV. For each training subset, the inner CV was 
used to define the best hyperparameter combination. Next, the selected hyperparameters were 
employed to train the predictive model with the training subset and measure its accuracy in 
predicting the O2 concentration for the validation subset. The accuracy was averaged for every 
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validation subset, providing a single value for each ML algorithm and scale, as shown in Table 
3. 
 

Table 3. Nested CV accuracies of the predictive models for different BFG shares (%vol.) in 
the fuel blend at laboratory and semi-industrial scales 

 
BFG share 

(%vol.) 
Laboratory predictive model Semi-industrial (inside) 

predictive model 
 LR SVM MLP LR SVM MLP 
0 0.9485 0.9667 0.9600 0.9920 0.9936 0.9866 
70 0.9679 0.9734 0.9693  0.9666 0.9671 0.9640 
80 - - - 0.9970 0.9980 0.9962 
100 0.7749 0.7949 0.7904 - - - 

 
 
The nested CV accuracy of the predictive models was higher than 0.77 for all the cases and 
development stages, showing values higher than 0.94 for BFG shares in the fuel blend lower 
than 90 % vol. at both laboratory and semi-industrial scales. This accuracy was achieved even 
for flames with low visibility and slight combustion variations that the human eye did not 
perceive. The increase in accuracy for the semi-industrial scale could be explained by the 
complexity reduction in the classification task concerning the laboratory scale. In this work, the 
classification task for the semi-industrial scale may be easier due to the lower number of classes 
to predict, the more significant image differences between classes, or the lower maximum 
concentration of BFG in the fuel blend (80 instead of 100 %vol.). 
 
The three ML algorithms achieved similar accuracies in the nested CV, with differences lower 
than 5%. Nevertheless, SVM reached the highest accuracy for every fuel blend. The 
performance of this particular ML algorithm was assessed again. Predictive models were 
trained with the whole training set, and their accuracy was evaluated in predicting O2 

concentration for the test set (Figure 4). 
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Figure 4. Test accuracies of the predictive models vs. BFG share (%vol.) in the fuel blend for 

laboratory and semi-industrial scales  
 
 
To conclude, the defined methodology and the ML algorithms were tested for laboratory and 
semi-industrial scales. In addition, using ML algorithms with lower complexity (LR and SVM) 
did not provide significant changes in performance with respect to the MLP. 

CONCLUSIONS 

An advanced image system for combustion monitoring in the steel industry has been validated 
at laboratory and semi-industrial scales. The system´s robustness has been assessed by 
analysing results along the design, development, and implementation stages, identifying 
condition changes between them. The relationships between combustion conditions, flame 
images, image features, and performance of predictive models were analysed.  
 
Colour cameras were proven as reliable sensors for monitoring BFG combustion on laboratory 
and semi-industrial scales, and the simulation of the furnace view was also accurate. For both 
scales, extracted image features were affected by combustion conditions, and the statistical and 
textural features provided adequate descriptors of the combustion for images with high and low 
flame visibility. The predictive models generally achieved accuracy higher than 0.95, with 0.79 
as the minimum. The defined methodology was adequate for the two scales, and using ML 
algorithms with lower and higher capacities did not achieve relevant performance differences. 
The image processing and predictive models enabled the monitoring of flames with low 
visibility and slight combustion variations that the human eye did not perceive in the images. 
In summary, the imaging system was robust and overcame condition changes along the 
development stages, including scale (lab and semi-industrial), burner type (diffusion and 
premixed), and camera placement (outside and inside). 
 
With this work, several research lines have been opened for future studies. The monitoring 
system could be enhanced by simultaneously supervising several burners within the same 
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image. In addition, experimental campaigns at an industrial scale could be performed to 
increase the technological readiness of the system for the industry. 
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A B S T R A C T   

The sustainability and decarbonization of processes in the steel industry are enhanced with the valorization of 
the gas generated during the chemical reactions produced in blast furnaces. However, the combustion of blast 
furnace gas (BFG) faces the drawback of lower flame stability, which increases the chance of operation shifts 
towards abnormal conditions and even the flashback or extinction of the flame. Thus, early detection and 
correction of regime deviations are needed to increase combustion efficiency, for which image-based systems 
have a high potential. This work focuses on monitoring an industrial furnace for steelmaking processes based on 
estimating O2 concentration in flue gases using color images captured inside the combustion chamber. An 
experimental campaign was performed in a 1.2-MW burner to develop the supervision system, using three fuel 
blends of BFG and natural gas. Images were processed to extract intensity and textural features, which were used 
to train predictive models based on machine learning algorithms: logistic regression, support vector machines, 
and artificial neural networks (multilayer perceptron). O2 concentration in flue gases was correctly estimated for 
at least 97 % of all the test samples and fuel blends. This study shows the potential of image-based systems for the 
automated control of BFG combustion at the industrial scale.   

1. Introduction 

Steel is crucial in modern societies as the third most manufactured 
bulk material, with 1.9 billion tons of world yearly production [1]. 
Steelmaking is also an energy-intensive industry, accounting for 8 % of 
global energy demand and 7 % of CO2 direct emissions from the 
worldwide energy system. Reducing these quantities is urgent for the 
European Union, the second-largest steel producer. Consequently, 
Europe has ambitious targets for steel decarbonization, cutting emis
sions by 55 % by 2030 and reaching climate neutrality by 2050. Several 
strategies can help achieve these objectives, such as valorizing gaseous 
waste streams from the steel production processes. Blast furnaces, used 
in the basic oxygen steelmaking process to reduce iron ore, are a sig
nificant source of waste streams. Chemical reactions inside blast fur
naces generate a by-product, the blast furnace gas (BFG), which can be 
used as fuel in other steelmaking furnaces, reducing natural gas (NG) 
consumption. 

BFG differs from traditional fuels in its large concentration of inert 
gases and low calorific value. With a typical composition of 1–7 %vol. 

H2, 18–25 %vol. CO2, and 20–28 %vol. CO, balanced with N2 [2], BFG 
has a lower heating value (LHV) around 3.3 MJ/Nm3, one-tenth the 
calorific value of NG. Even though BFG reduces the thermal energy 
released during combustion, it can be used in high-temperature pro
cesses (such as steel reheating furnaces) by adopting multiple strategies. 
These solutions include its mixture with NG or coke oven gas (COG) [3], 
preheating of the combustion air [4], flameless combustion [5,6], and 
the use of several burner technologies (oxy-fuel, double regenerative 
and regenerative flat flame) [7]. 

The combustion of BFG and low-calorific fuels has been analyzed in 
the past by several numerical and experimental approaches. Regarding 
the steel industry, BFG and other by-product combustion gases were 
analyzed by Caillat [3] for their use in reheating furnaces and annealing 
lines. The study discussed the constraints due to the by-products’ vari
able composition and physical properties. Cuervo-Piñera et al. [7] tested 
three burner technologies (oxy-fuel, double regenerative, and regener
ative flat flame) for the combustion of BFG in steel reheating furnaces. 
The trials successfully proved the operation of these furnaces with only 
BFG, supplying oxygen or meeting other specific conditions. However, 
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the economic viability of these alternatives should be checked for each 
facility, considering fuel saving, oxygen consumption, burner replace
ment, and retrofitting investment. The combustion of BFG/NG fuel 
blends was also simulated and validated for a semi-industrial furnace in 
the steel sector [8]. The authors analyzed velocity, temperature, OH and 
O2 concentrations, and NOx rate generation. The significant differences 
in the LHV of the fuel blend modified combustion fluid dynamics, 
affecting flow pattern, heat transfer, and temperature gradients in the 
furnace and, thus, process quality. Other works also analyzed the BFG 
combustion more broadly outside the steel industry. For instance, 
laminar flame characteristics were studied for several initial conditions 
and fuel compositions [2]. Moreover, composition, temperature, and 
fuel-switching effects were evaluated for the combustion stability of hot 
air heaters [4]. A critical ambient temperature was maintained to ach
ieve stable combustion, which can be reduced by increasing the H2 
proportion in the blend from 1 to 5 %vol. Furthermore, mixtures of BFG 
and COG required a large concentration of BFG, higher than 80 %vol., to 
inhibit temperature oscillations. 

Indeed, another consequence of the low LHV of BFG is the appear
ance of combustion instabilities [2,4]. Thus, disturbances under regular 
furnace operation may cause more severe deviations than other higher 
volumetric-energy density fuels. Early detection of these changes is 
essential to adjust the process quickly and reduce the period under 
suboptimal conditions, optimizing the overall operation. Thus, moni
toring fuel blends with BFG is particularly interesting due to its lower 
combustion stability. In this aspect, image-based systems are a prom
ising alternative to detect early deviations when burning fuels blended 
with BFG. 

Image-based systems are essential in the state-of-the-art of combus
tion monitoring. This technology relies upon acquiring flame images and 
their correlation with combustion conditions. For example, images have 
been employed to estimate variables related to the air–fuel equivalence 
ratio, such as the air ratio [9], combustion regimes [10,11], and O2 
concentration in flue gases ([O2]fg) [12]. In contrast to conventional 
sensors, a single camera could simultaneously monitor several burners 
captured in the same picture. To monitor the combustion, image-based 
systems perform several activities employing computer vision and ma
chine learning (ML). Like other industrial problems, these tasks can be 
categorized into image acquisition, pre-processing, segmentation, 
feature extraction, and interpretation [13]. ML techniques lead the 
interpretation step, in which image features are transformed (modeled) 
into variables related to the combustion process. Nowadays, ML pro
vides a set of horizontal techniques for data analysis and modeling. For 
example, in the field of combustion, ML has been used to predict oper
ation parameters [14], exhaust gas temperature [15], emissions [16,17] 
and performance [16–18]. Unlike most literature research, the appli
cation of computer vision and ML techniques is limited for commercial 
camera systems installed in the industry. For example, market tools do 
not include the interpretation step, which depends on a human worker 
to analyze the information. Moreover, software suppliers generally do 
not include segmentation and feature extraction tools. 

Image-based systems have also been used to monitor BFG combus
tion. Zheng et al. [2] employed a high-speed camera to compute the 
laminar burning velocity of BFG fuel blends. Earlier work by the authors 
[19–21] focused on image monitoring for steel industry applications. In 
this aspect, a preliminary study assessed the feasibility of combustion 
monitoring with a color camera in an industrial furnace [19]. At the 
laboratory scale, emission spectra, color, and radical images were 
captured and deeply analyzed for optical supervision of BFG combus
tion, showing strong dependencies with BFG concentration and equiv
alence ratio [20]. Furthermore, slight combustion variations were 
detected with accuracies from 0.78 to 0.97, processing flame images and 
training predictive models [21]. 

Nevertheless, monitoring BFG combustion at the industrial scale has 
not been studied in detail in the open literature. Therefore, image pro
cessing requires further analyses to tackle differences between lab and 

industrial levels. This work focuses on that research gap and proposes an 
image-based system to predict BFG combustion states to increase 
steelmaking process efficiency and address industry particularities. 
Trials are performed to analyze the new image processing with an 
experimental industrial furnace and a 1.2 MW burner used in steel 
production. A commercial vision system with a transfer device, cooling, 
and control unit acquired color images of flames, which are processed to 
predict [O2]fg by ML algorithms. In addition, image processing is 
analyzed for the optimum fuel blend under controlled emissions and 
transient temperature states. The monitoring system is evaluated for 
three fuel blends under steady emissions and temperature conditions. 

In this work, natural gas was used as a baseline, and two blends (70 
and 80 BFG %vol.) were studied. These blends are extracted from the 
blast furnace line of the Asturias plant and are used by ArcelorMittal in 
their industrial processes to reduce natural gas consumption. The study 
will aid in promoting higher valorization of BFG and lower NG con
sumption in steelmaking industries. This contributes to reducing the 
pollutant emissions from fossil fuels, while a subproduct of the steel 
production process is valorized within the same plant where it is pro
duced. From a global perspective, large amounts of process gas (BFG), 
which can be used as fuel in steel production processes, are available at 
steel production plants [22]. For the case of the ArcelorMittal Asturias 
plant, it has been estimated that the use of the whole amount of BFG in 
the steel production processes would involve a reduction of 52.8 kWh 
per ton of steel produced, with savings of 2.6 € per ton of steel and a 
decrease of 13.2 kg of CO2 equivalent per ton of steel. 

2. Material and methods 

2.1. Experimental setup 

The results presented in this work were obtained during a test 
campaign performed in an industrial testing furnace installed in the 
facilities of the ArcelorMittal Asturias plant in Spain (Fig. 1). The com
bustion chamber has the following dimensions: 4.6 m in length, 1.5 m in 
width, and 2.8 m in height. The furnace accepts different burners up to 
1.2 MW of thermal input power and maximum working temperatures of 
around 1350 ◦C. These burners can be fueled with NG and with the off- 
process gases produced in the plant (COG and BFG). Using the same fuels 
as in the large plant ensures realistic results and avoids issues related to 
changes in gas composition at different scales. This way, the solution can 
be scaled up to other plant furnaces without this problem [8]. 

In the experimental trials, a diffusion burner is employed (Fig. 2). It 
allows the use of various gaseous fuel blends utilizing different fuel and 
air injection configurations. In particular, the burner has one central 
lance, two side lances for fuel, and multiple air inlets. 

A water circuit with six semi-circular lances simulates the heat 
transferred from an industrial furnace to a steel strip. The water enters 
the circuit through the nearest lance to the burner and increases in 
temperature as it flows through the other conducts. At the end of the 
circuit, a fluid cooler reduces the water temperature before being rein
troduced to the lances. The furnace has a control and data acquisition 
system for registering flow, temperatures, pressure, oxygen concentra
tion in flue gases ([O2]fg), and pollutant emissions (CO, NOx, SO2, and 
CO2). Five thermocouples measure combustion chamber temperature 
(Tcc) at different locations. The furnace can be configured to work with 
different gaseous blends and allows testing different configurations, 
such as preheated combustion air and O2 injection. 

Fuels with different compositions are tested in the experimental 
furnace. They are identified as 100 %vol. NG (BFG0), 30 %vol. NG and 
70 %vol. BFG (BFG70), and 20 %vol. NG and 80 %vol. BFG (BFG80). 
BFG0 and BFG70 were also studied in a previous work [8]. BFG is 
extracted, filtered, and fed to the furnace directly from the plant’s blast 
furnaces. Its composition is subjected to variability, influenced by the 
chemical processes inside the blast furnace [7]. A typical composition 
and LHV of the fuel blends are shown in Table 1. 
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The increase of BFG share in the fuel blend reduces NG consumption, 
leading to savings in fossil fuel consumption. However, higher concen
trations of BFG raise difficulties in reaching the high temperatures 
needed during the steel production process. Additionally, the lower 
calorific value of BFG requires higher gas flow rates to meet the thermal 
energy demands, which could potentially result in operational issues in 
larger furnaces. Therefore, the use of BFG in the fuel blend is limited, 
and a certain NG share is required to ensure a stable operation. 

Considering this, BFG70 was defined as the optimum fuel blend. BFG80 
was studied as an operative but suboptimal fuel, while BFG0 was 
analyzed as a baseline. 

A commercial camera system was deployed inside the furnace 
through a viewing port in front of the burner. The devices included a 
BASLER BIP2-1920c color camera. The camera has a CMOS sensor, 
which provides a resolution of 2 MP at 30 frames per second. The camera 
is protected by a water-cooled metallic case installed on a SOBOTTA 
automatic transfer device which allows the introduction and extraction 
of the system inside the furnace. This device protects the optical system 
by retracting the camera from the furnace when detecting harmful 
temperatures or system malfunctions. 

The image acquisition parameters of the camera were fixed during all 
the trials to obtain equivalent and comparable images. As a first step, the 
configuration of the exposure time was optimized by analyzing images 
and histograms under different conditions, avoiding under- or over- 
exposed images under any condition. 

A data acquisition software recorded the images synchronously to 
measured variables (process information such as furnace temperatures, 
gas/air flow rates, pollutants or oxygen concentrations). 

2.2. Methods 

This section includes the methodology used in the research for 
furnace operation and flame processing. 

2.2.1. Furnace operation 
The furnace was pre-heated before the tests to reach steady condi

tions for emissions and temperature. Temperature was evaluated by 
averaging the measures of Tcc on five different points. Flue gas emissions 
stabilized thirty minutes after the start, but the temperature remained 
transient. When the heating reached 8 h, both emissions and tempera
ture were constant. These two working conditions were labeled steady 
emissions and transient temperature (SETT) and steady emissions and 
steady temperature (SEST). The fuel flow rate (and, consequently, the 
calorific power rate introduced) was constant for each fuel blend. In 
contrast, the air-flow rate was slightly modified to reach different 
operation conditions. This resulted in different amounts of excess oxy
gen in flue gases ([O2]fg), depending on the blend composition and the 
combustion stoichiometry. Table 2 lists the tests’ working conditions, 
fuel blends, combustion modes, and [O2]fg concentrations in flue gases. 

Each fuel blend under SEST conditions was tested for 0, 1, and 5 % 
vol. [O2]fg (sub-stoichiometric, near-stoichiometric and over- 
stoichiometric conditions). Moreover, BFG70 was studied under SETT 
state for 1, 2, 3, 4, and 5 %vol. [O2]fg. 

Fuel was injected through the central lance for all tests except for 
BFG80. Main and side burner lances were employed to improve the 
burner operation with that fuel blend, which implies different 

Fig. 1. The ArcelorMittal experimental furnace used for the tests [23].  

Fig. 2. View of the diffusion burner installed in the furnace.  

Table 1 
Fuel blends typical composition.  

Fuel blend BFG0 BFG70 BFG80 

[CH4] (%vol.) 92 28 18 
[C2H6] (%vol.) 8 2 2 
[N2] (%vol.) – 34 39 
[CO] (%vol.) – 16 18 
[CO2] (%vol.) – 15 18 
[H2] (%vol.) – 3 3 
[H2O] (%vol.) – 1 1 
[O2] (%vol.) – 1 1 
LHV (MJ/Nm3) 38 14 10  
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combustion modes. In this configuration, the reactants were strongly 
diluted with combustion products, and the burner operated in a flame
less mode [5]. Flameless combustion is also known as moderate or 
intense low oxygen dilution (MILD), and it has a more significant re
action zone throughout the combustor volume. This distribution pro
motes a reduction in peak flame temperature and NOx emissions [5,24]. 
The term “flameless” indicates that flames have a lower visibility than 
conventional flames, but the human eye may still detect them in some 
cases [24]. For instance, Reddy et al. [25] and Yetter et al. [26] recog
nized flames under flameless conditions. 

Air was preheated at 485 ± 35 ◦C (21 %vol. O2 concentration), fuel 
thermal power varied around 920 ± 15 kW, and Tcc around 1285 ±
75 ◦C. The tests for the three fuel blends provided the same thermal 
power by modifying the fuel flow rate three to four times higher for 
BFG70 and BFG80, respectively, compared to BFG0. A 10-minute video 
was captured during each test, and 1875 flame images were analyzed 
with an approximate frame rate of 3 images per second. For example, 
fourteen video fragments (one per test) of 1 s each are available as 
supplementary material. All the fragments are enclosed in a single 
video, which includes text in each frame to define the associated 
working condition, fuel blend, and [O2]fg. 

2.2.2. Flame processing 
Methods for processing flame images are partially based on the 

feature extraction and interpretation methodology detailed in previous 
work [21]. However, a significant modification is introduced to adapt 
the system to the industrial scale by removing the flame-segmentation 
step. 

For the visual monitoring of combustion, flame segmentation is an 
alternative that can be applied before the feature extraction step. 
However, its use is not extended to all cases. Flame segmentation clas
sifies image pixels into flame and non-flame groups, enabling the 
extraction of characteristics from only flame pixels. For instance, 
Mathew et al. [27] and Katzer et al. [28] employed thresholding to 
segment flames. Without flame segmentation, features are extracted 
from the whole image [9,12]. Other works based on deep learning did 
not perform an explicit flame segmentation, although it could be 
implicitly included to some extent in the layer operations [10,11]. Bai 
et al. [9] remarked on the complexity of defining flame boundaries, 
which can be inaccurate and lead to low performance in monitoring. 
Identifying the flame body could be easier for flames with more stability 
and simpler geometry. This is the case of previous authors’ work [20], in 
which flames had a simpler and similar geometry for different com
bustion conditions. However, image flames processed by Bai et al. [9], 
Abdurakipov et al. [10], Han et al. [11], and Yang et al. [12] were more 
diffuse and variable. Therefore, their segmentation could be more 
complex. Furthermore, the difficulty of flame segmentation also de
pends on the image background and the appearance of other non-flame 
elements. For instance, in the studies of Bai et al. [9], Abdurakipov et al. 
[10], and Han et al. [11], the background was empty, and thus, the 
classification of pixels into flame and non-flame groups could be more 
straightforward. Nevertheless, in [19], flames appeared over the furnace 
background. 

To sum up, the complexity of flame segmentation depends on the use 

case considered in each study. The present research focuses on the same 
industrial furnace and similar flue blends from the work of Compais 
et al. [19]. Therefore, segmentation would have the challenge of iden
tifying flames from the furnace background. Moreover, a preliminary 
inspection of the furnace operation ensured the diffuse and variable 
geometry of the flames, which would increase the segmentation 
complexity even more. Thus, due to the high risk of inaccurately iden
tifying flames and lowering the monitoring performance, the present 
research modifies the procedure of Compais et al. [21] by removing the 
flame-segmentation step. This more straightforward method could be 
more suitable for future implementation of the monitoring system at the 
industrial level, in which unseen flame images and combustion condi
tions may appear over time. 

The flame processing used in this research is summarized in Fig. 3. It 
consists of extracting 51 features and their interpretation to predict 
[O2]fg. Flame segmentation is not applied, and image variables are 
computed from the whole image. 

Regarding the feature extraction step, a wide range of image char
acteristics can be considered for combustion analysis. Standard features 
are based either on intensity [9,27–29], geometry [28], or texture 
measures [9,12]. Intensity and texture characteristics can be extracted 
from the entire image or specific flame pixels. Geometry features 
generally calculate properties of the flame body, such as length and area 
[28], and therefore, they require the application of flame segmentation. 
Usually, each study manually selects a limited group of features tailored 
to its use case. This work computes a subset of the characteristics from 
the work of Compais et al. [21], including only those of intensity and 
textural type. Geometrical features are not analyzed because the present 
work does not apply flame segmentation. The feature subset comprises 
51 variables per color image, and the extraction method is shown in 
Fig. 4. 

The three-color channels of the image (red, green, and blue) are 
considered separately, analyzing their corresponding monochrome im
ages. Each color channel is processed to extract four intensity features 
(mean, standard deviation, skewness, and kurtosis of the pixel in
tensities [21,29]) and compute its gray level co-occurrence matrix 
(GLCM). This matrix is employed to define thirteen textural features 
selected from the work of Haralick et al. [30] and also used in other 
studies [9,21]. 

Predictive models estimate combustion conditions based on image 
properties in the final interpretation processing step. With that purpose, 
the present work uses the same ML method described in [21] to train and 
test models based on the experimental campaign performed at an in
dustrial scale. The procedure comprises analysis of variance (ANOVA) F- 
tests for feature selection and nested cross-validation (CV) for hyper
parameter tuning and performance evaluation. The same ML algorithms 
analyzed in [21] are tested at an industrial scale in the current work. 

Three ML algorithms are studied: logistic regression (LR) [10,11], 
support vector machines (SVM) [9–11], and artificial neural networks 
(ANN) [9–11]. A multilayer perceptron (MLP) is defined for the latter 
with a single hidden layer of 100 neurons. Flame images are labeled 
according to their associated [O2]fg, and the models classify them into 
three or five discrete [O2]fg values. The whole set of images of each 
experimental campaign is split into training and test sets. The training 
set is used to automatically select a subset of image characteristics as 
input, tune hyperparameters, and evaluate the performance of the ML 
algorithms. Finally, the best algorithm is assessed again, employing the 
test set. The input subsets of image features include the ten variables 
with the highest variance for the [O2]fg classes. These characteristics are 
selected using ANOVA F-tests. The hyperparameter tuning and perfor
mance evaluation of the training set are implemented in a nested CV 
procedure. An outer CV of ten folds splits the training set into ten pairs of 
training and validation subsets. The accuracy of each training and 
validation subset is computed and averaged for each ML algorithm. For 
each training subset, model hyperparameters are selected with an inner 
CV of five folds. The training subset is split into five pairs of training and 

Table 2 
Summary of the experimental tests.  

Campaign EXP1 EXP2 EXP3 EXP4 

Working condition SEST SEST SEST SETT 
Fuel blend BFG0 BFG70 BFG80 BFG70 
Combustion mode Regular Regular Flameless Regular 
[O2]fg,1 (%vol.) 0 0 0 1 
[O2]fg,2 (%vol.) 1 1 1 2 
[O2]fg,3 (%vol.) 5 5 5 3 
[O2]fg,4 (%vol.) – – – 4 
[O2]fg,5 (%vol.) – – – 5  
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validation subsets, for which several combinations of hyperparameters 
were evaluated with the model’s accuracy. After the nested CV, the ML 
algorithm with the best performance is analyzed in more detail by 
computing its confusion matrixes for the validation subsets of the four 
experimental campaigns. Next, the chosen ML algorithm is re-evaluated 
with the test set, measuring its test accuracy and comparing it with the 
achieved for training and validation. 

Python is used as a programming language (version 3.7) to develop 
the code for image processing and predictive models. The following li
braries are also employed: OpenCV, Scikit-learn, NumPy, SciPy, Maho
tas, and Pandas. 

3. Results and discussion 

3.1. Flame images for the working conditions, fuel blends, and [O2]fg 

Fig. 5 shows flame images captured for SEST conditions and the fuel 
blends of BFG0, BFG70, and BFG80 at different [O2]fg. In the case of 
BFG70, images captured for SETT were also studied (Fig. 6). For each 
working condition (SEST or SETT), fuel blend and [O2]fg, Fig. 5 and 
Fig. 6 include a single image, which corresponds to the first frame 
captured in its associated test. Therefore, the images shown were 
captured at least 8 h or 30 min apart from each other, which are the 
required time intervals to achieve SEST or SETT conditions, 
respectively. 

Fig. 3. Method for the processing of flame images.  

Fig. 4. Method for feature extraction of flame images.  

Fig. 5. Flame images for SEST and (a) BFG0, (b) BFG70, and (c) BFG80.  
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The red color channel predominates over blue and green in diffusion 
flame images. While premixed flames are bluish and dominated by 
chemiluminescence, diffusion flames are orangish and characterized by 
their soot emission [31]. Soot particles emit blackbody radiation [32], 
ideally described by Planck’s law [33]. According to this law, an object 
at a higher temperature emits higher radiation. Indeed, soot tempera
ture and volume fraction can be retrieved from flame images [34]. The 
longer period of furnace preheating under SEST conditions caused 
higher Tcc (Fig. 7) and generated brighter images (Fig. 5.e and Fig. 5.f) 
than SETT ones (Fig. 6.a and Fig. 6.e). In contrast to premixed flames, 
the color of diffusion flames has a lower dependence on the reactant 
composition and equivalence ratio [35]. Still, this work detected dif
ferences under SEST conditions. 

Flames had significantly lower visibility for the fuel blend of BFG70 
and BFG80 concerning BFG0. In particular, BFG70 flames in static im
ages were hardly visible to the human eye. In contrast, its capture on 
video helped their recognition due to the detection of variations in the 
flame geometry and location in the furnace. The lower visibility of 
flames for BFG70 and BFG80 is caused by the large volume fraction of 
inert gases in the fuel, with around 35 %vol. and 15 %vol. of N2 and CO2 
concentrations, respectively. A similar behavior was detected in [32], 
where the OH* chemiluminescence peak was reduced when the N2 
dilution for CH4 diffusion flames was increased. BFG80 images (Fig. 5.g, 
Fig. 5.h, and Fig. 5.i) also captured the widespread distribution of 
flames, which is characteristic of flameless combustion. 

[O2]fg was related to Tcc, as shown in Fig. 7. In this work, [O2]fg of 1 
%vol. corresponds to near-stoichiometric conditions (where air and fuel 

flow rates were fixed to produce stoichiometric combustion). Therefore, 
concentrations below or above that value are related to sub- 
stoichiometric or over-stoichiometric conditions, respectively. Consid
ering this, temperature trends in Fig. 7 follow the expected behavior of 
adiabatic flame temperature concerning air–fuel equivalence ratio, 
reaching maximum temperature for near-stoichiometric conditions. 

The brightness of the image increased when the operation moved 
toward stoichiometric conditions. Both significant and slight image 
changes were reported based on the temperature variations. For SEST 
conditions and the same fuel blend, images differed significantly be
tween 1 and 5 %vol [O2]fg. This behavior was slighter for SETT condi
tions, which reached lower Tcc than the SEST regime. Furthermore, in all 
the tests, images were similar for variations of [O2]fg around 1 %vol. 

3.2. Selection of image characteristics for the estimation of [O2]fg 

As described in the methods for flame processing, the initial set of 51 
features was manually selected based on the state of the art. To sum
marize, previous works have monitored combustion with intensity 
[21,29] and texture features [9,21] considered in this work. The image 
properties used in this work have been validated for the flame charac
terization of similar fuel blends at lab scale [21]. 

From the total of 51 image properties, a subset of ten features was 
selected using ANOVA F-tests. This analysis measured the variance of 
image features with [O2]fg. Critical F-values were computed for each 
experimental campaign with a 0.05 confidence level, resulting in 3.00 
(SEST) and 2.37 (SETT). The critical F-value was the same for the tests 

Fig. 6. Flame images for SETT and BFG70 with [O2]fg of (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5 %vol.  

Fig. 7. Tcc during the experimental tests.  
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with SEST conditions because they included the same population 
(classes of O2 concentration in flue gases) and number of samples (flame 
images per experimental campaign). All the F-values of image features 
were at least an order of magnitude higher than the critical F-value of 
their experimental campaign. Therefore, the classes of [O2]fg affected 
the mean values of every extracted image feature for regular and 
flameless combustion. This result proves that the application of flame 
segmentation was not necessary for these use cases since characteristics 
from the whole image are effective descriptors of the [O2]fg. 

The subset of ten image features with higher F-values was used for 
each experimental campaign to feed predictive models. All the subsets 
comprise characteristics from the two types of features (intensity and 
textural) and three-color channels (red, green, and blue), except for 
SETT. For the latter tests, properties were not computed from the blue 
channel. In particular, the mean intensity of the pixel values for the red 
channel had a significant role in all the subsets (Fig. 8). The general 
behavior of this image feature matched the brightness and temperature 
changes previously discussed (Fig. 5, Fig. 6 and Fig. 7). 

3.3. Evaluation of predictive models for the estimation of [O2]fg 

Predictive models were adjusted to estimate [O2]fg based on the 
subsets of ten image features. Three different ML algorithms (LR, SVM, 
and MLP) were studied for each fuel blend. A nested CV was employed to 
train and validate the predictive models and tune hyperparameters, 
achieving significant accuracies (Table 3). 

Predictive models reached validation accuracies around 0.995, 
which were lowered to 0.960 for the fuel blend of BFG70 and SEST 
conditions. Similar results were obtained for the three ML algorithms. 
However, SVM provided the highest accuracy in all the cases, out
performing ANN, as in [21] and [36]. The higher performance of a 
specific algorithm could be promoted by its particular characteristics. 
While LR fits a probability model based on logistic functions, SVM ad
justs a hyperplane between classes, maximizing the margin between 
them. By contrast, MLP is a feed-forward artificial neural network, 
whose neurons are trained by back-propagation. However, the reduced 
difference in accuracy between the algorithms (below 1 %) limits the 
extrapolation of SVM as the best choice. Generalizability, and inter
pretability (black-box nature) are advanced research lines for ML tech
niques applied to combustion [37]. 

Fig. 9 shows the confusion matrixes of the predictive models based 
on that algorithm, for the validation subsets of all the experimental 

campaigns. According to the confusion matrixes, the predictive models 
achieved a balanced behavior, reaching high accuracies (0.9489 as a 
minimum) for all the [O2]fg classes, fuel blends, and working conditions. 

As a final evaluation, predictive models were adjusted employing the 
whole training set and the SVM algorithm. Hyperparameters were 
defined according to the best results of the nested CV, which were a 
linear kernel, a regularization term of 10 for the three experimental 
campaigns for SEST, and a regularization term of 0.1 for the tests of 
SETT. Finally, the accuracy of the models was measured for the test set. 
The training, validation, and test accuracy of the predictive models 
based on SVM are compared in Fig. 10. 

The accuracy of the predictive models had a similar behavior for 
training, validation, and test sets without a significant influence of 
overfitting or underfitting. The predictive models achieved a high ac
curacy in estimating [O2]fg based on flame images, although images may 
have slight variations that the human eye cannot perceive between 
different conditions. Furthermore, predictions were accurate even for 
low-visibility flames during regular or flameless combustion and tran
sient conditions. Thus, automation methods can enhance the visual 
monitoring of the combustion supervised by humans. 

4. Conclusions 

In this study, the combustion monitoring in the steel sector was 
analyzed by acquiring color images from the flames of an experimental 
industrial furnace with a diffusion burner. Predictive models were 
adjusted to estimate the [O2]fg based on intensity and textural charac
teristics extracted from the images. This monitoring was developed for 
tests with a fixed thermal power of 925 kW, two stability conditions 
(steady and transient temperature), and three fuel blends (BFG0, BFG70, 
and BFG80) obtained by mixing NG with BFG. Predictive models were 
fed by subsets of the computed image features, defined by ANOVA F- 
tests, and comprised the characteristics of a higher variance with [O2]fg. 

Fig. 8. Image feature of red mean versus [O2]fg. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 3 
Validation accuracies of the predictive models for estimating [O2]fg.  

Campaign EXP1 EXP2 EXP3 EXP4 

Working condition  SEST  SEST  SEST  SETT 
Fuel blend  BFG0  BFG70  BFG80  BFG70 
LR (accuracy)  0.9920  0.9666  0.9970  0.9998 
SVM (accuracy)  0.9936  0.9671  0.9980  0.9999 
MLP (accuracy)  0.9866  0.9640  0.9962  0.9998  
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Three ML algorithms (LR, SVM, and ANN-MLP) were studied for the 
predictive models. The accuracy of the algorithms was evaluated by 
employing training-test split and nested CV. 

The main conclusions of this research are as follows.  

• Color images were affected by the combustion conditions analyzed. 
Image brightness increased for higher Tcc, related to lower BFG share 
in the fuel and [O2]fg closer to 1 %vol. Moreover, adding BFG to NG 
reduced flame visibility.  

• Intensity and textural characteristics from the three-color channels of 
the images were highlighted as descriptors of [O2]fg without 
requiring the application of flame segmentation. 

• Predictive models fed by the image characteristics reached high ac
curacies during training, validation, and testing, with adequate 
behavior without overfitting or underfitting and a minimum value of 
0.96. The use of different ML algorithms (LR, SVM, or ANN) did not 
significantly affect the results, which were slightly better for SVM.  

• Predictive models accurately estimated variations in [O2]fg during 
regular and flameless combustion, even when images had minor 
variations between them. This way, the visual monitoring of com
bustion performed by humans can be improved. 

The current research sets the stage for automated flame monitoring 
at an industrial scale. The detection of changes in the combustion con
ditions allows for the correction of deviated parameters, helping to 
optimize the processes and avoid the appearance of critical instabilities. 
The results obtained in this study demonstrate high precision for the 
case analyzed in an industrial test facility incorporating an industrial 
burner commonly used in steel manufacturing processes. This facility’s 
process conditions and image quality were optimal for model training 
and development. However, using raw material inside the furnace 
instead of simulated load could affect the accuracy of the models. The 
irradiance from the steel load could interfere with the image or create 
fumes or particles inside the furnace, which may require additional 
preprocessing. 

Fig. 9. Confusion matrixes of the predictive models based on SVM for the validation subsets of (a) SEST BFG0, (b) SEST BFG70, (c) SEST BFG80 and (d) SETT BFG70.  

Fig. 10. Training, validation, and test accuracies of the predictive models based on SVM.  
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Further developments should focus on applying the models to in
dustrial furnaces, such as reheating or annealing furnaces, where mul
tiple burners can be captured in a single image. Overall air and fuel flow 
rates are typically measured in these furnaces, making it challenging to 
detect imbalances if there are several burners. Applying the models 
developed in this work to the different burners could provide a valuable 
monitoring tool, potentially reducing maintenance costs when residual 
streams are used as fuel. For this application, other challenging aspects 
of image processing are expected, like the separate segmentation of each 
burner or interferences of the combustion of the different burners in the 
same field of view. Nevertheless, industrial furnaces offer interesting 
possibilities for camera installation and image acquisition, as external 
viewing ports, which can reduce investment costs, or the installation in 
optimal locations to monitor the areas of interest. 
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3. Aportaciones y conclusiones 
 

3.1. Aportaciones del doctorando 
 

El trabajo realizado en esta tesis doctoral busca contribuir al desarrollo de sistemas de 
visión para la monitorización de la combustión del gas de alto horno, con el objetivo final de 
incrementar su eficiencia en operación, promoviendo su valorización e incrementando la 
sostenibilidad en los procesos productivos del acero. Para ello se ha realizado un extenso 
análisis experimental del efecto de la composición del combustible y la relación aire-
combustible sobre imágenes de color, a escala de laboratorio y semiindustrial con 
quemadores de 20 kWt y 1.2 MWt, respectivamente. Este estudio ha demostrado la 
viabilidad del procesamiento de imágenes de llama para el control de la combustión del gas 
de alto horno, cuya mayor inestabilidad requiere de una detección temprana de pequeñas 
variaciones. 

Las principales aportaciones del trabajo de investigación están alineadas con los objetivos 
la tesis, y se describen a continuación.  

 Análisis del estado del arte. Para la elaboración de la tesis se ha realizado un estudio 
detallado sobre la caracterización óptica de la combustión. Se ha investigado la 
caracterización de la radiación de llamas de premezcla y difusión a partir de sus 
espectros e imágenes, así como el procesamiento de dichas imágenes para la 
extracción de descriptores de la combustión y su modelado con técnicas de 
aprendizaje automático. Este estudio ha servido de base para el resto de la 
investigación, y proporciona un marco de referencia para futuros trabajos de la 
monitorización de la combustión a partir de técnicas de imagen. 

 Estudio de las imágenes de llama con distintos combustibles. El trabajo de 
investigación ha analizado el efecto la mezcla de combustible y la relación aire-
combustible sobre las imágenes de llama, capturadas en distintos escenarios. Se han 
estudiado imágenes obtenidas en escala de laboratorio y semiindustrial, con 
quemadores de premezcla y difusión, en condiciones estacionarias y transitorias, y 
con sistemas de visión desplegados dentro y fuera del horno. Aparte del análisis 
cualitativo de las imágenes, se han calculado 66 variables numéricas, cuya relación 
individual con el exceso de aire ha sido también cuantificada. 

 Predicción de las condiciones de combustión a partir de las imágenes de llama. Las 
características de imagen extraídas se han utilizado para modelar el exceso de aire 
en la combustión con técnicas de aprendizaje automático, optimizando y evaluando 
distintos modelos mediante una estructura de validación cruzada anidada, y 
estudiando su rendimiento con distintos excesos de aire, algoritmos de aprendizaje 
y grupos de muestras. En general, los modelos han detectado correctamente el 
exceso de aire en más del 95 % de las ocasiones, reduciéndose a un 79 % en el peor 
escenario, permitiendo monitorizar variaciones más pequeñas que en trabajos 
previos, imperceptibles para el ojo humano. 

La investigación ha tenido como resultado la generación de artículos en tres revistas 
indexadas y un congreso, incluidos en la siguiente numeración. 
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monitoring of combustion and artificial intelligence. P. Compais, J. Arroyo, F. Tovar, 
V. Cuervo-Piñera, A. Gil. Fuel (2024); Vol. 362, 130770. 

Aparte de los artículos que constituyen la tesis, se ha participado en un congreso adicional, 
cuya referencia se incluye a continuación. 

A. Experimental analysis of blast furnace gas co-firing in a semi-industrial furnace 
using colour images. P. Compais, J. Arroyo, A. González-Espinosa, C. Gonzalo-Tirado, 
M. A. Castán-Lascorz, J. Barrio, V. Cuervo-Piñera. Proceedings of the 7th World 
Congress on Momentum, Heat and Mass Transfer (2022), Virtual Conference. 

 

3.2. Conclusiones finales y trabajo futuro 
 

Esta tesis confirma la viabilidad técnica de la monitorización visual de la combustión de gas 
de alto horno con imágenes de color. Las llamas se han caracterizado según la intensidad de 
la radiación, la textura espacial capturada en la imagen, y la geometría de las llamas. A partir 
de estas propiedades visuales se ha conseguido modelar la relación aire-combustible en 
distintos escenarios de operación, obteniéndose una elevada precisión en todos ellos. 

Este estudio incluye como novedad la adaptación de la monitorización visual de la 
combustión al caso particular del gas de alto horno. Para ello, se ha definido un 
procedimiento a medida que integra características de imagen utilizadas en múltiples 
trabajos previos, seleccionadas automáticamente según un criterio cuantitativo. A 
continuación, se resumen las conclusiones obtenidas en este trabajo. 

 Los procesos industriales limitan el tiempo de adaptación y ajuste de los 
quemadores para distintas mezclas de combustible, por lo que se utilizan 
configuraciones de quemador robustas que permiten la combustión en varias 
condiciones de operación, aunque no alcancen el óptimo de eficiencia para cada una 
de ellas. Este estudio ha replicado esta metodología a escala de laboratorio mediante 
el uso de un mismo quemador para mezclas de combustible con diferencias 
significativas en su poder calorífico. A pesar de esta limitación, se ha conseguido la 
combustión de cada mezcla, aunque en condiciones ineficientes y con diferentes 
excesos de aire, obteniéndose combustión incompleta en parte del rango de 
operación. 
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 La combustión de gas de alto horno con un quemador de premezcla se ha estudiado 
a escala de laboratorio con un espectrómetro, una cámara ultravioleta-visible y otra 
de color. La viabilidad de cada una de estas tecnologías se ha confirmado para la 
caracterización de la radiación de la llama, definida por la emisión continua del 
radical CO2, y afectada por la composición de la mezcla de combustible y el exceso 
de aire. Las imágenes de color se han procesado para identificar automáticamente 
los píxeles de llama y extraer características de intensidad, geometría y textura, con 
las que se ha conseguido modelar el exceso de aire con una elevada precisión. 

 A escala semiindustrial se han utilizado cámaras de color para analizar la 
combustión con quemadores de difusión. Se han detectado diferencias significativas 
entre las imágenes de laboratorio y semiindustriales, caracterizadas por una mayor 
iluminación de las paredes del horno y una llama más difusa. En este caso, la 
identificación de píxeles como llama o fondo ha tenido una mayor incertidumbre, 
por lo que, en lugar de utilizar la segmentación de laboratorio, las características de 
intensidad y textura se han extraído de todos los píxeles de la imagen. A pesar de las 
diferencias visuales, la viabilidad de las cámaras de color se ha confirmado de nuevo, 
permitiendo medir el efecto de la composición del combustible y la concentración 
de oxígeno en los gases de combustión en las imágenes, al igual que en laboratorio. 
Además, esta última variable se ha modelado manteniendo el alto rendimiento 
conseguido en las pruebas de laboratorio para el exceso de aire. Por último, el 
procesamiento de imágenes y modelado se ha implementado en un programa 
informático para su uso en tiempo real a escala semiindustrial. 

 A modo de resumen, se ha validado un sistema de monitorización de la combustión 
de gas de alto horno con técnicas de visualización de imagen en color e inteligencia 
artificial. Dicho sistema utiliza características visuales de intensidad y textura, así 
como modelos ajustados con técnicas de aprendizaje automático, evaluados en 
distintos escenarios y alcanzando un elevado rendimiento en la predicción de la 
relación aire-combustible asociada a las imágenes de llama.  

A partir de esta tesis doctoral, se plantean dos líneas principales de trabajo futuro, descritas 
en los párrafos siguientes. 

 La madurez tecnológica del desarrollo se ha incrementado con los ensayos en escala 
semiindustrial, que, no obstante, presentan diferencias respecto a los procesos 
industriales. Por ello, resulta crucial estudiar en detalle estas variaciones para 
completar el desarrollo del sistema de monitorización visual, y así conseguir su 
implementación industrial. En primer lugar, en esta tesis se ha utilizado un circuito 
de agua para simular la transferencia de calor a una carga dentro del horno, en vez 
de introducir láminas de acero para su tratamiento térmico. En este proceso, el 
material emite radiación que podría afectar a la imagen, y, además, se podrían 
generar vapores o partículas adicionales cuyas emisiones no se han analizado en 
este trabajo. En segundo lugar, para reducir los costes de operación y 
mantenimiento respecto a otros sensores convencionales, los sistemas de 
monitorización visual deben supervisar individualmente varios quemadores 
capturados en la misma imagen. Para lograr este objetivo, la segmentación de los 
píxeles de llama no es suficiente, ya que esta técnica sólo clasificaría cada píxel como 
llama o fondo, y se necesitaría la identificación adicional de quemador 
correspondiente a cada píxel. Esta tarea tiene una alta complejidad, ya que las llamas 
de distintos quemadores se pueden ocultar entre sí, dependiendo de la posición de 
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la cámara, o irradiar luz sobre áreas del horno asociadas a otro quemador, por lo 
que la intensidad medida para un píxel podría depender de varios quemadores. Por 
ello, es de vital importancia estudiar el rendimiento de distintas alternativas para la 
segmentación de llamas de distintos quemadores. 

 Aparte del propio desarrollo del sistema de monitorización visual, también es 
indispensable el estudio de su integración en los sistemas de control de la industria, 
con el objetivo de habilitar su uso y aprovechar al máximo sus ventajas. 
Normalmente, las cámaras se utilizan a escala industrial para facilitar la inspección 
del interior de hornos por parte de un operario, así como para ayudar en la toma de 
decisiones y el ajuste de la operación. Algunos sistemas de visión, como el 
desarrollado en la tesis, transforman la información de las imágenes en variables 
asociadas al proceso de combustión, lo que facilita su integración en sistemas 
automatizados de control. Para lograr esta implementación, se requiere analizar el 
comportamiento dinámico de la combustión del gas de alto horno y el tiempo de 
procesamiento del sistema de monitorización visual, además de la optimización del 
código y la realización de pruebas con hardware de distintas prestaciones.  

En estos momentos, se ha comenzado el desarrollo de ambas líneas de trabajo futuro, 
buscando la transferencia industrial del sistema de monitorización, así como su integración 
con controladores automáticos. De esta manera, se continúa incrementando la madurez 
tecnológica del sistema para su despliegue final en la industria, cuyo objetivo es la 
caracterización rápida y precisa de la combustión para reducir el tiempo de operación en 
condiciones ineficientes. Este trabajo se ha centrado en el estudio de la combustión del gas 
de alto horno para promover su valorización, una alternativa que incrementa la 
sostenibilidad de la producción de acero reduciendo la energía consumida y las emisiones 
de CO2 equivalentes, además de proporcionar un ahorro económico. Por ello, este estudio 
es de crucial importancia tanto para la planta de ArcelorMittal Asturias, como para la ruta 
alto horno-horno de oxígeno básico de la producción de acero.  

El desarrollo del sistema de monitorización ha afrontado y resuelto el desafío de detectar 
pequeñas variaciones visuales en las llamas de gas de alto horno, imperceptibles para el ojo 
humano, mediante el uso de unas técnicas de visión artificial. Este trabajo pone de relieve 
que los sistemas de visión artificial pueden superar las capacidades humanas incluso en el 
rango visible, por lo que su uso puede habilitar la realización de tareas inviables para las 
personas, como la supervisión de condiciones tradicionalmente conocidos como sin llama. 
Actualmente, la monitorización de estos escenarios tiene una alta relevancia debido a su 
relación con la combustión del hidrógeno y su uso como vector energético. En este estudio 
también se ha conseguido incrementar la precisión de la monitorización visual de la 
combustión respecto a la de estudios previos, configurando un nuevo estado del arte con un 
alto potencial de aplicación en diferentes procesos industriales.  
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4. Factor de impacto, área temática y justificación de la 
contribución de las publicaciones 

 

I. Optical analysis of blast furnace gas combustion in a laboratory premixed burner. P. 
Compais, J. Arroyo, A. González-Espinosa, M. A. Castán-Lascorz, A. Gil. ACS Omega 
(2022); Vol. 7, pp. 24498-24510. 

a. Factor de impacto 2023: 3.7 

b. Factor de impacto de los últimos 5 años: 4.0 

c. Área temática: química, multidisciplinar 

d. Justificación de la contribución: conceptualización, metodología, 
software, validación, análisis formal, investigación, conservación de 
datos, escritura – borrador original, escritura – revisión y edición, 
visualización 

II. Detection of slight variations in combustion conditions with machine learning and 
computer vision. P. Compais, J. Arroyo, M. A. Castán-Lascorz, J. Barrio, A. Gil. 
Engineering Applications of Artificial Intelligence (2023); Vol. 126, 106772. 

a. Factor de impacto 2023: 7.5 

b. Factor de impacto de los últimos 5 años: 7.4 

c. Área temática: automática y sistemas de control, ciencias de la 
informática, inteligencia artificial, ingeniería eléctrica, electrónica y 
multidisciplinar 

d. Justificación de la contribución: conceptualización, metodología, 
software, validación, análisis formal, investigación, conservación de 
datos, escritura – borrador original, escritura – revisión y edición, 
visualización 

III. Flame monitoring system based on images for steel reheating furnaces: a case study 
of validation from laboratory to semi-industrial scales. P. Compais, J. Arroyo, V. 
Cuervo-Piñera, A. Gil. Proceedings of the 18th Conference on Sustainable Development 
of Energy, Water and Environment Systems (2023), Dubrovnik (Croatia). 

a. Área temática: desarrollo sostenible 

b. Justificación de la contribución: conceptualización, metodología, 
software, validación, análisis formal, investigación, conservación de 
datos, escritura – borrador original, escritura – revisión y edición, 
visualización 

IV. Promoting the valorization of blast furnace gas in the steel industry with the visual 
monitoring of combustion and artificial intelligence. P. Compais, J. Arroyo, F. Tovar, 
V. Cuervo-Piñera, A. Gil. Fuel (2024); Vol. 362, 130770. 

a. Factor de impacto 2023: 6.7 

b. Factor de impacto de los últimos 5 años: 6.5 
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c. Área temática: energía y combustibles, ingeniería química 

d. Justificación de la contribución: conceptualización, metodología, 
software, validación, análisis formal, investigación, conservación de 
datos, escritura – borrador original, escritura – revisión y edición, 
visualización 
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