000153609 001__ 153609
000153609 005__ 20251017144551.0
000153609 0247_ $$2doi$$a10.1016/j.jpowsour.2025.236837
000153609 0248_ $$2sideral$$a143770
000153609 037__ $$aART-2025-143770
000153609 041__ $$aeng
000153609 100__ $$aThangaian, Kesavan
000153609 245__ $$aPerformance-optimized diatom- [fórmula] anodes for Li-ion batteries by preserving the nanostructured SiO2 shells of diatom microalgae and tailoring oxygen content
000153609 260__ $$c2025
000153609 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153609 5203_ $$aNanostructured silicon oxides (SiOx) are close-to-market anode materials for increasing the energy density of next-generation lithium-ion batteries (LIBs), offering a balance between high capacity and enhanced cycling stability. However, achieving precise control over SiOx composition while maintaining structural integrity remains a challenge. In this study, we pioneer the use of nanostructured diatom-SiO2 frustules from industrially cultured Nitzschia sp. microalgae as a sustainable and tunable precursor for high-performance SiOx anodes via scalable magnesiothermic reduction reaction (MgTR). By optimizing the Mg-to-diatom-SiO2 molar ratio, we demonstrate controlled partial reduction of SiO2, yielding Si nanocrystals embedded within an SiO2 matrix. Notably, we reveal that the preservation of diatom-SiOx nanoporosity is highly sensitive to reaction exothermic conditions and is effectively stabilized by introducing NaCl as a heat scavenger. Tailoring the reactant composition (SiO2:Mg:NaCl = 1:1:2.5) resulted in anodes with superior electrochemical performance, delivering high capacity retention over 200 cycles. Through a comprehensive suite of characterization techniques, we establish the structure–property-performance relationships governing SiOx anode behavior. These findings mark a major advancement in sustainable SiOx anode design, providing a scalable strategy for integrating biologically templated nanostructures into high-performance LIBs.
000153609 536__ $$9info:eu-repo/grantAgreement/ES/DGA/M4$$9info:eu-repo/grantAgreement/ES/MICINN/PCI2022-132993
000153609 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153609 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153609 700__ $$aEricson, Tove
000153609 700__ $$aVullum, Per Erik
000153609 700__ $$aAlonso-Sánchez, Pedro
000153609 700__ $$aSvarverud, Annlinn Chen
000153609 700__ $$aSvensson, Ann Mari
000153609 700__ $$aVullum-Bruer, Fride
000153609 700__ $$aHahlin, Maria
000153609 700__ $$aBlanco, Maria Valeria
000153609 773__ $$g641 (2025), 236837 [9 pp.]$$pJ. power sources$$tJOURNAL OF POWER SOURCES$$x0378-7753
000153609 8564_ $$s3592853$$uhttps://zaguan.unizar.es/record/153609/files/texto_completo.pdf$$yVersión publicada
000153609 8564_ $$s2033548$$uhttps://zaguan.unizar.es/record/153609/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153609 909CO $$ooai:zaguan.unizar.es:153609$$particulos$$pdriver
000153609 951__ $$a2025-10-17-14:11:49
000153609 980__ $$aARTICLE