000153676 001__ 153676
000153676 005__ 20251017144613.0
000153676 0247_ $$2doi$$a10.3389/fbioe.2025.1494793
000153676 0248_ $$2sideral$$a143737
000153676 037__ $$aART-2025-143737
000153676 041__ $$aeng
000153676 100__ $$aAparici-Gil, Alejandro
000153676 245__ $$aUniaxial, biaxial, and planar tension properties of deep fascia and a constitutive model to simultaneously reproduce these strain states
000153676 260__ $$c2025
000153676 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153676 5203_ $$aThis study aims to provide an in-depth analysis of the mechanical behavior of deep fascia through a comprehensive multidimensional characterization, including uniaxial, biaxial, and planar tension tests. To determine material parameters via test fitting, both a newly developed coupled exponential energy function and a previously proposed uncoupled exponential model—both considering two perpendicular fiber directions—are evaluated. For the uniaxial response, the mean stress measured was 3.96 MPa in the longitudinal direction and 0.6 MPa in the transverse direction at a stretch (λ) of 1.055. In planar tension tests, stress values of 0.43 MPa and 0.11 MPa were recorded for the longitudinal and transverse directions, respectively, at λ = 1.72. Under equibiaxial loading conditions, the mean stresses were 3.16 MPa and 1.2 MPa for the longitudinal and transverse directions when λ reached 1.037, respectively. The fitting results indicate that while the uncoupled exponential model effectively captures the uniaxial and equibiaxial experimental data, it fails to predict other mechanical responses accurately. In contrast, the coupled exponential strain energy function (SEF) demonstrates robust performance in both fitting and prediction. Additionally, an analysis was conducted to assess how the number and combination of tests influence the determination of material parameters. Findings suggest that a single biaxial test incorporating three loading ratios is sufficient to accurately capture and predict uniaxial, planar tension, and other biaxial strain states.
000153676 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-140219OB-I00
000153676 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153676 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153676 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefanía$$uUniversidad de Zaragoza
000153676 700__ $$0(orcid)0000-0002-8133-2124$$aPérez, Marta M.$$uUniversidad de Zaragoza
000153676 7102_ $$11001$$2025$$aUniversidad de Zaragoza$$bDpto. Anatom.,Embri.Genét.Ani.$$cÁrea Anatom.Anatom.Patológ.Com
000153676 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000153676 773__ $$g13 (2025), 1494793 [17 pp.]$$pFront. Bioeng. Biotechnol.$$tFrontiers in Bioengineering and Biotechnology$$x2296-4185
000153676 8564_ $$s4050711$$uhttps://zaguan.unizar.es/record/153676/files/texto_completo.pdf$$yVersión publicada
000153676 8564_ $$s2062130$$uhttps://zaguan.unizar.es/record/153676/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153676 909CO $$ooai:zaguan.unizar.es:153676$$particulos$$pdriver
000153676 951__ $$a2025-10-17-14:18:14
000153676 980__ $$aARTICLE