000153688 001__ 153688
000153688 005__ 20251017144627.0
000153688 0247_ $$2doi$$a10.1016/j.cattod.2025.115289
000153688 0248_ $$2sideral$$a143765
000153688 037__ $$aART-2025-143765
000153688 041__ $$aeng
000153688 100__ $$aChaos-Hernández, D.$$uUniversidad de Zaragoza
000153688 245__ $$aInfluence of operating conditions on the kinetics of Iron-catalysed gasification of biocarbons with CO2
000153688 260__ $$c2025
000153688 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153688 5203_ $$aIn this study, we investigated the catalytic gasification of cellulose-derived biocarbons (CDC) with CO₂ using Fe as the catalyst. Fe(%wt)/CDC samples were synthesized through controlled pyrolysis of cellulose impregnated with iron precursors and evaluated under varying reaction temperatures and CO₂ concentrations. Characterization by XRD, TGA, Raman, TEM, and N₂ adsorption revealed that the initial Fe loading in cellulose not only determines the final carbon content in each Fe(%wt)/CDC sample but also plays a crucial role in regulating the textural and structural properties of the resulting carbonaceous materials, as well as the Fe nanoparticle size distribution. Specifically, higher Fe loading led to a decrease in surface area, reduction of microporosity, an increase of pore diameter, and to larger average Fe nanoparticle sizes. During gasification, Fe nanoparticles were oxidized by CO₂, resulting in a decline in catalytic activity and ultimately limiting the complete gasification of the carbonaceous material by the end of the reaction. These opposing effects explain the varying behaviour observed in the Fe(%wt)/CDC samples studied. Analysis of the initial gasification rates indicated that both, the apparent reaction order with respect to CO₂ and the activation energy, increased with reaction temperature and CO₂ partial pressure (pCO₂), respectively. These results were successfully interpreted using a Langmuir-Hinshelwood model, which accounts for the influence of CO₂ adsorption on the observed reaction rate. These findings underscore the potential of Fe(%wt)/CDC materials for CO₂ utilization and biomass valorisation, providing valuable insights for the development of efficient catalytic gasification processes.
000153688 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T22-23R
000153688 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153688 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153688 700__ $$0(orcid)0000-0001-6360-4475$$aLatorre, N.$$uUniversidad de Zaragoza
000153688 700__ $$aTarifa, P.$$uUniversidad de Zaragoza
000153688 700__ $$0(orcid)0000-0002-2363-2735$$aRomeo, E.$$uUniversidad de Zaragoza
000153688 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, A.$$uUniversidad de Zaragoza
000153688 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000153688 773__ $$g454 (2025), 115289 [11 pp.]$$pCatal. today$$tCatalysis Today$$x0920-5861
000153688 8564_ $$s4954279$$uhttps://zaguan.unizar.es/record/153688/files/texto_completo.pdf$$yVersión publicada
000153688 8564_ $$s2415860$$uhttps://zaguan.unizar.es/record/153688/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153688 909CO $$ooai:zaguan.unizar.es:153688$$particulos$$pdriver
000153688 951__ $$a2025-10-17-14:24:32
000153688 980__ $$aARTICLE