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Sistemas de alteracion de la voz para falsear la identidad
en sistemas de verificacion de locutor.

Resumen:

En este trabajo se exploran diferentes técnicas para modificar la
informacién sobre la identidad del locutor de sefales grabadas de voz.
Aplicando el modelo excitacion-filtro para el proceso de produccién del
habla, el objetivo es modificar la informacion de la sefal de excitacion y
del tracto vocal por separado.

Para valorar las trasformaciones realizadas se ha usado un sistema de
verificacion de locutor del estado del arte. Usando las trasformaciones
propuestas se simulard un ataque al verificador donde se tratara de
modificar u ocultar la identidad de un locutor.
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1-Introduccion

La sefal de voz captada por un micréfono contiene mucha informacion. En primer lugar contiene
sonidos que forman las palabras de un mensaje que un locutor quiere transmitir. Pero también incluye
informacion acerca del entorno acustico, el idioma, el estado emocional o la identidad el locutor. Este

TFG se centra en este ultimo tipo de informacion.

Por diversas circunstancias, una persona puede querer modificar su voz. Por ejemplo un cantante puede
querer subirla o bajarla un tono o un delincuente puede querer modificarla para no ser reconocido, etc.
En este TFG vamos a desarrollar un sistema de transformacion de la sefial de voz que permita

modificar las caracteristicas de dicha sefial relacionadas con la identidad del locutor.

La sefial de voz puede descomponerse en una excitacion y un filtro que modela la forma del tracto
vocal. La mayoria que de las aplicaciones para la modificacion de la sefial de voz que pueden obtenerse
en Internet transforman la informacion de excitacion y del tracto vocal al mismo tiempo. En este TFG
vamos a explorar diversas técnicas para modificar la informacion de la excitacion y del tracto vocal por
separado. La primera transformacion consistird en un desplazamiento frecuencial sobre la sefial de
excitacion para modificar el pitch. La segunda consistird en un mapeo entre las caracteristicas del tracto
vocal de dos locutores. Después, para valorar las transformaciones realizadas, usaremos un sistema de

verificacion de locutor.

Los sistemas de verificacion de locutor explotan la informacion sobre la identidad del locutor de la
sefial de voz para tratar de identificar a personas de manera automatica. Otros sistemas de verificacion
tradicionales basan la identificacion de una persona en un objeto o en un conocimiento que solo esa
persona puede tener, como por ejemplo una llave o una contrasefia. Por el contrario los sistemas de
verificacion de locutor basan la identificacion en la voz, una caracteristica propia de cada persona y que
no se puede perder u olvidar. Esta caracteristica hace interesante el uso de estos sistemas en

aplicaciones de seguridad tales como el control de acceso o el andlisis forense.

El modelo digital de produccion del habla permite parametrizar el proceso de generacion de la sefial de

voz. Modificando los pardmetros relacionados con la identidad del locutor podemos hacer



transformaciones que puedan ocultar la identidad o suplantar la de otra persona. En los sistemas de

verificacion de locutor, esto supone dos problemas bien diferenciados:

-Tampering: Una persona intenta ocultar su identidad para no ser detectada.

-Spoofing: Una persona intenta suplantar la identidad de otra para, por ejemplo, tener acceso a

sus privilegios en un sistema de seguridad.

En [1] se puede encontrar una clasificacion de las diferentes técnicas de spoofing y tampering
existentes. En este TFG se proponen varios sistemas para la transformacion de pardmetros que
contienen informacion del locutor. El objetivo principal es estudiar el comportamiento de estas

transformaciones y sus implicaciones en un sistema de verificacion de locutor.

La memoria de este trabajo esta dividida en 6 secciones:

1. En esta seccion se realiza una introduccion a la tematica y al trabajo realizado.

2. En esta seccion se expone el modelo digital de produccion del habla basado en filtro y

excitacion y se hace una breve introduccion a los sistemas de verificacion de locutor.

3. En esta seccién se proponen varios sistemas para modificar la informacion de locutor de

grabaciones de voz.

4. En esta seccion se exponen un serie de experimentos realizados para medir el rendimiento de
los sistemas propuestos. También se exponen los resultados de utilizar los sistemas propuestos

para realizar un ataque de spoofing y tampering a un sistema de verificacion de locutor.

5. En esta seccion se realizan conclusiones generales del trabajo realizado y se proponen posibles

lineas futuras.

6. En esta seccion aparecen todas las referencias que se han aparecido durante la memoria.



2-Modelo digital de la senal de voz

2.1-Sistema de produccion del habla

La produccion del habla humana es un proceso complejo donde, desde los pulmones hasta los orificios
nasales y labios, intervienen un extenso conjunto de organos. Una manera sencilla de explicar el

proceso de produccion consiste en dividir el sistema en excitacion y tracto vocal.

Hard Palate Nasal Cavi

Soft Palate
(Velum)
Pharyngeal
Cavity
Larynx
Esophagus

Trachea

Lung
Diaphragm
Muscle
, force
Figura 2.1.1: Organos que intervienen en el Figura 2.1.2: Simplificacion del sistema de
sistema de produccion del habla produccion del habla.

-Excitacion:

Los pulmones generan un flujo de aire que atraviesa las cuerdas vocales. Si estas oscilan pueden
modular el flujo de aire dandole cierta periodicidad. Los sonidos producidos mediante este fenomeno
se llaman sonidos sonoros. Las cuerdas vocales también pueden permanecer relajadas mientras les

atraviesa el flujo de aire produciendo asi sonidos sordos.

La frecuencia de oscilacion se llama frecuencia fundamental o pitch. El valor de pitch depende de la
longitud y tension de las cuerdas vocales y por lo tanto es caracteristico de cada persona. Para hombres
el valor de pitch suele estar entre 50 Hz y 250 Hz y para mujeres y nifios entre 120 Hz y 500 Hz. El ser
humano también puede aumentar y disminuir el valor de pitch con el objetivo de cambiar la entonacion

del habla.



-Tracto vocal:

El tracto vocal esta formado por todos los 6rganos entre las cuerdas vocales y la nariz y boca. Cuando
la onda acustica atraviesa el tracto vocal, este actia como un filtro actustico modificando la distribucion
espectral de la onda original. Se puede demostrar[2] que el filtro actstico se compota como un filtro
todo-polos, por lo tanto su respuesta frecuencial estd caracterizada por una serie de frecuencias de
resonancia. Estas frecuencias de resonancia se llaman formantes y su valor depende de la forma del
tracto vocal. Puesto que la forma del tracto vocal de cada persona es diferente, el espectro de la senal
de voz contiene informacion del locutor. La mayoria de los sistemas de verificacion de locutor usan

unicamente caracteristicas derivadas de la forma del tracto vocal.

2.2- Modelo del tracto vocal: prediccion lineal

El tracto vocal puede modelarse como un tubo donde el area de cada seccion A(x) varia con la longitud.
Discretizando la longitud en p intervalos equidistantes podemos representar la forma del tracto vocal

con el valor del area de la secciones en cada intervalo 4;.

.\h_/

Figura 2.2.1: Modelado de la forma del tracto vocal por 5 tubos de igual longitud y distinto radio.

De acuerdo con este modelo de p tubos, en cada union un parte de la onda acustica es reflejada y otra
transmitida. Se define el coeficiente de reflexion & como el cociente entre la onda reflejada e incidente

en la i-ésima unién. Considerando tubos sin pérdidas se cumple:

i+1 Ai
ki:— A,’>O => |k, | < 1
A+ 4,

Si consideramos que la velocidad de propagacion es constante, el tiempo requerido por la onda



acustica para atravesar cada seccion es constante. Este hecho permite una transformacion inmediata de
las ondas acusticas de entrada y de salida al dominio digital. Se puede demostrar [3] que la
transformada-z de una concatenacién de p tubos sin pérdidas se corresponde con un sistema auto-
regresivo de p polos. De este modo podemos descomponer la sefal de voz s[n] en un excitacion e[n]

filtrada por un filtro todo polos H(z) que modela la forma del tracto vocal:

S(z) 1 1

- P
2) l—z apz "
k=1

En la practica dispondremos de la sefnal de voz s[n] y nos interesard estimar los coeficientes a; para
obtener informacion de la forma del tracto vocal del locutor. Una forma muy comun de hacerlo es
calcular los coeficientes a; que minimizan el error cuadratico medio de la sefial de error. De este modo
A(z) actuard como un filtro de prediccion lineal. Sus coeficientes a; seran los coeficientes LP(Linear
predictive) y e/n/ el residuo de la prediccion. La solucién [4] a las ecuaciones del predictor lineal son

las ecuaciones de Yule-Walker:

R,[0] RJ[1] - RI[p—1]|[a| [R][1]
Rs.l RS.[O] RS[R—Z] C{z _ RS.[2]
RIp-1] Rlp-2] - RJ[0] |la,| \R[p]

Donde R[k] es la funcion de autocorrelacion de la senal s[#]. La matriz anterior es de tipo Toeplitz ya
que es simétrica y los elementos de todas sus diagonales son iguales. El algoritmo Levinson-Durbin[5]

permite hallar el inverso este tipo de matrices de forma eficiente.



-Consideraciones prdcticas del analisis LP localizado

La sefial de voz puede considerarse localmente estacionaria para ventanas temporales de
aproximadamente 40 ms. Definimos s,,[7n] como un segmento de N muestras de la sefal de voz s[n] en

torno a la muestra m-ésima.

s, [nl=s[n]wln—m]
Donde w[n] es la funcion de enventanado y cumple:

wln]=0 si |n|>N/2

En la practica elegiremos un valor N de tal forma que la duracion del segmento sea de
aproximadamente 20 ms y supondremos que las variables estadisticas de la sefial se mantienen
constantes en ese segmento. Estimaremos la autocorrelacion de la sefal en aquellos instantes m que

sean multiplo de un determinado ntimero de muestras #op como:

R, [k]= Sulnls,[n—k]
i-hop i=123..

m

Después, utilizando el algoritmo Levinson-Durbin, podremos calcular los coeficientes a; del filtro de
prediccion lineal A(z) que modelaran la forma del tracto vocal de un locutor en cada instante m.
Siguiendo [6] se pueden calcular los coeficientes de reflexion a partir de los coeficientes LP. La sefial

de excitacion e,[n] se podra calcular directamente filtrando s,,[n] con A(z).

s[n] Suln] R, [k] -
— w[n—m] autocorrelacion ——p» ReD%urLs;::)n p > {a,}f:l
{aib’:l y

Figura 2.2.2: Esquema del andlisis LP localizado



2.3- Cepstrum real

Mediante prediccion lineal, la forma del tracto vocal queda representada por los coeficientes de un
filtro IIR. Seria interesante encontrar otra representacion del tracto vocal cuya manipulacion resultara
mas sencilla y versatil. El cepstrum real es una transformacion homomorfica que permite convertir las
convoluciones en sumas en el dominio transformado. El cepstrum real c[n] de una senal x[n] puede

calcularse como:
c[n)=TDF " log|TDF |x[n]|
Si x[n]=x,[n]®x,[n] es facil comprobar que se cumple:
c[n)=TDF '|log|TDF |x,[n]® x,[n]|||=TDF '[log|X [k ] X,[k]||=c\[n]+c,[n]

Siendo ¢i[n] y c2[n] las transformadas cepstrum de x;[n] y x,[n] respectivamente. Si consideramos el

modelo excitacion vy filtro de la sefal de voz:
s[n]=e[n]|®h[n]

Donde 4[n] es la respuesta impulsional del filtro que modela el tracto vocal. La excitacion e[n] puede
aproximarse como ruido blanco para sonidos sordos o como un tren de deltas separadas N, muestras
para sonidos sonoros, donde N, es el periodo de pitch en muestras. Si se calcula la transformada

cepstrum c¢,[n] de la senal de voz:
¢.[n]=c,[n]+e,[n]

Donde c.[n] y ci[n] son las transformadas cepstrum de e[n] y h[n] respectivamente. En [7] se puede

encontrar una demostracion de que para sonidos sordos se cumple:

c,[n]~0



mientras que para sonidos sonoros:

Por lo que tomando los primeros N coeficientes de c,[n], con N¢ < N,, se pueden separar excitacion y

tracto vocal.

0.6
04t 1
0.2 . o
1 =
0 1 il
0.2 i
04 ! ! ! ! L ! !
0 0.02 0.04 0.06 0.08 0.1 0 2000 4000 6000 8000
t(s) f(Hz)
(c) (d)
15 . . . . :
10 1
5 4
o 0
5 J
-10 4
-15 L L L L L L L L
0 50 100 150 200 250 0 2000 4000 6000 8000
n f({Hz)

Figura 2.3.1: (a) Grabacion de la vocal a. (b) Espectro de la sefial. (c) Tranformada cepstrum de la sefial. (d) Espectro recuperado con distinto niimero de
coeficeintes cepstrum

En la figura 2.3.1.c se representa la transformada cepstrum con 256 coeficientes de una grabacion a 16
kHz de la vocal a. En torno a n = 126 se puede observar el pico debido a la periodicidad de la sefial de

excitacion, para este caso Ny= 126.

La figura 2.3.1.d muestra el espectro reconstruido a partir de los primeros N¢ coeficientes cepstrum. Se
observa que al aumentar el valor de Nc de 16 a 64 se obtiene una representacion con mas detalles de la
forma del espectro de la sefial. En el caso Nc = 130 se cumple Nc > N, y por lo tanto se estan

extrayendo detalles del espectro propios de la senal de excitacion.
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Figura 2.3.2: (a) Espectro obtenido con 32 coeficientes cepstrum y con 32 coeficientes LP (b) Espectro de las seiiales de excitacion

La transformada cepstrum consigue una separacion mejor entre el tracto vocal y excitacion [8] que las

técnicas de prediccion lineal. Ademads los coeficientes cepstrum son una representacion mas compacta

de la informacién del tracto vocal. En la figura 2.3.2.a puede apreciarse como para un mismo nimero

de coeficientes la transformada cepstrum consigue extraer mas detalles.

-Consideraciones prdcticas del analisis cepstrum localizado

Al igual que en caso de andlisis LP localizado se calculard la transformada cepstrum c,[n] de los

sucesivos fragmentos s,[n] de la sefnal s[n] en los instantes de tiempo m, donde m serda un multiplo de

hop muestras.

sqln]

—» wln—m]

[y

FFT

log(|x]]

>

iFFT

Figura 2.3.3: Esquema del andlisis cepstrum localizado
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2.4- Sistemas de verificacion de locutor

Los sistemas de verificacion de locutor pueden dividirse en tres procesos: entrenamiento, registro y
test. Durante el entrenamiento y el registro el sistema genera modelos de locutores que después seran

usados en la fase de test para tratar de identificar a locutores desconocidos.

La fase de entrenamiento consiste en extraer pardmetros de varias sefales de voz de diferentes
locutores para obtener un modelo estadistico general de locutor UBM (universal background model).
Durante la fase de registro el sistema genera modelos para cada locutor en particular. La forma maés
comun de hacerlo es partir del UBM y adaptarlo a cada locutor usando la informacion de los
parametros extraidos de una grabacion de voz. El UBM trata de representar a todos los locutores en

general y sirve como un modelo estadistico para los posibles impostores.

Empiricamente se ha demostrado el buen funcionamiento de los modelos de locutor basados en
mezclas de gaussianas (GMM). Sea A el modelo estadistico de un locutor representado por la mezcla de
M distribuciones gaussianas. Se define la funcion de verosimilitud entre A y un vector de pardmetros

V¥ de dimensioén Dx1 como:
M
p(v1A)=2 w,p,(7)
i=1

La expresion anterior es una combinacion lineal de M distribuciones de densidad gaussianas
unimodales. Cada distribucion unimodal esta definida por una vector de medias ; de dimension Dx1

y por una matriz de covarianza X, de dimension DxD

- 1 | R N A
Pi(V)ZWeXP _E(V—Au,‘)TZAI(v—Mi)

1

Donde para que se cumpla la condicion de funcion de densidad:

Zwl:l

i=1

11



Por lo tanto el modelo A del locutor estara definido por:

Dado un conjunto de vectores de entrenamiento los parametros del modelo pueden estimarse usando el
algoritmo iterativo EM (expectation-maximization) [9]. Para adaptar el modelo general UBM a cada
locutor se utiliza la adaptacion MAP (maximo a posteriori) [10]. En el siguiente esquema se muestra un

resumen del proceso de entrenamiento:

UBM

- — m M
¥ o A= B i

Sefial de voz Extraccionde ~ Adaptacion al ’ Modelo

del locutor a parametros modelo de locutor » de Iocutor

registrar

Figura 2.4.1: Esquema del proceso de entrenamiento de un sistema de verificacion de locutor.

Durante la fase de test se extraen los pardmetros de la sefial de voz de test del locutor desconocido y se
comparan con el modelo del locutor objetivo y con el modelo UBM. Los resultados con cada modelo se
comparan y se genera un estadistico A, de modo que cuanto mas alto sea el valor de este estadistico,
mas se parece el locutor desconocido al locutor objetivo. La idea principal de este procedimiento es
que si el locutor desconocido es quien dice ser, sus vectores de pardmetros se ajustaran bien al modelo

del locutor. Si es un impostor, sus parametros se ajustaran mejor al modelo UBM.

De la grabacion de voz del locutor desconocido se extrae un conjunto de vectores V= {Vt " . Puede

t=1

calcularse la log-verosimilitud entre A y el conjunto de vectores de test J' como:
1 T
log p(V]4)== 2. log p(¥,|)
t=1

Sea Ausy el conjunto de pardmetros estadisticos del modelo general UBM. El valor del estadistico A
puede calcularse comparando la log-verosimilitud de 7 con los modelos del locutor objetivo y con el

modelo UBM:

12



A(V)zlogp(V |/1)—10gp(V MUBM)
Para reducir la varianza del estadistico resultante se suele realizar una normalizacion[11]

A(V)_MA

K(V): 0,

Donde w;y o; son los pardmetros de normalizaciéon del modelo de locutor A. Finalmente se fija un
umbral y se compara con el estadistico normalizado. Si este es mayor que el umbral el sistema decide
que el locutor desconocido es quien dice ser. En el siguiente esquema se muestra un resumen del

proceso de test:

Cem

l A'UMB
_ (=27 -
Sefal de voz Extracciénde | ¥ =V },:1 Calculo del A(V) Normalizacion AV) -0 % Aceptar
del locutor > parametros estadistico — O Rechazar
desconocido
s
Identidad J Modelo 1 W, 0,
solicitada o de locutor |

Figura 2.4.2: Esquema del proceso de test de un sistema de verificacion de locutor.

Los sistemas de verificacion de locutor pueden encontrarse con dos situaciones. La primera es que el
locutor desconocido sea quien diga ser y la segunda que sea un impostor. La probabilidad de pérdida
Puss se define como la probabilidad de que el sistema rechace a un locutor que sea quien dice ser. Por
otro lado la probabilidad de falsa alarma Pg, se define como la probabilidad de que el sistema acepte a

un impostor.

La figura 2.4.3 muestra las distribuciones de los estadisticos obtenidas por un sistema de verificacion
de locutor real. Se observa que las distribuciones de los impostores y de los no impostores no estan
completamente separadas. La eleccion del umbral por lo tanto generara un compromiso entre los
valores de Ppy Pus En la figura 2.4.4 muestra el compromiso entre Pr y Py a la hora de elegir el

umbral.

13
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Figura 2.4.3: Distribucién de los estadisticos obtenidos por un glgl”m 2.4.4: Ppy, Pioss vs umbral en un sistema de verificacion
e locutor.

sistema de verificacion de locutor.

La curva DET(detection error tradeoff) es una visualizacion de las prestaciones del sistema. Consiste en

representa P, en funcion de Pgy.

Figura 2.4.4: Curva DET de un sistema de verificacion de locutor

Se denomina EER (equal-error-rate) al punto de operacion en el que se cumple Pg= P El valor del

EER es una representacion simplificada de las prestaciones de un sistema de verificacion de locutor.

-Sistemas de verificacion de locutor basados en i-vectors

Uno de los principales problemas de los sistemas de verificacion es la influencia del canal por el que se
transmite la sefal de voz. Para resolver este problema se ha propuesto una solucion basada en el
analisis de factores[12], que conforma lo que hoy en dia es el estado del arte en los sistemas de

verificacion de locutor.

14



Recientemente los modelos de locutor de total variabilidad basados en i-vectors[13] han ganado

importancia debido a su buenos resultados y a su bajo coste computacional. Sea S el supervector de

medias del modelo GMM de un locutor. S sera un vector formado por la concatenacion de {[i,. }Zl y

de dimension DMx1, segin el modelo de total variablidad:

S=Sym+Tw,

1

Donde Susi es el supervector de medias del modelo UBM. T es la matriz de total variabilidad de
dimension DMxL con L << DM. w, es un vector aleatorio de distribucion normal estandar y

dimension Lx1 denominado vector intermedio o i-vector. La reduccion dimensional hace que los i-
vectors sean una representacion mas eficiente de la informacion cada locutor. En [12, 13] se pueden

encontrar diversos métodos para entrenar la matriz 7.

La mayoria de los sistemas de verificacion de locutor basados en i-vectors calculan su estadistico

mediante la distancia coseno:

(W, W,)

A0y 0,)=15 e

Donde w, es el i-vector obtenido del locutor desconocidoy w, es el i-vector obtenido del locutor

objetivo.
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3- Modificacion de la senal de voz

En la seccion anterior se han visto algunas técnicas para separar la informacion del tracto vocal y la
informacion sobre la excitacion de la sefial de voz. En esta seccion se hacen uso de esas técnicas y se

proponen sistemas para transformar tracto vocal y la sefal de excitacion por separado.

3.1- Modificacion de la seiial de excitacion

El phase vocoder es una técnica de procesado digital de la sefial que permite realizar escalados
temporales y desplazamientos del pitch de gran calidad. Su funcionamiento fue descrito por primera
vez[14] en 1966 y debido a su bajo coste computacional y a su buen funcionamiento hoy en dia su uso

es muy frecuente en aplicaciones musicales.

El phase vocoder usa la informacion de fase obtenida en el andlisis STFT (short-time Fourier tranform)
para modificar la amplitud o fase de las componentes frecuenciales de una sefial. Después, sobre la
senal modificada en el dominio frecuencial, realiza la STFT inversa para obtener su representacion en

el dominio temporal.

La mayoria de aplicaciones existentes para la modificacion del pitch usan técnicas basadas en phase
vocoder para realizar un desplazamiento frecuencial sobre la sefial de voz. Al no separar las
componentes de excitacion y de tracto vocal estas aplicaciones también desplazan la posicion de los
formantes modificando asi la informacion de la forma del tracto vocal. En esta subseccion se propone
un sistema para la modificacion del pitch que actua solo sobre la sefial de excitacion con el objetivo de

preservar la informacion del tracto vocal.
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3.1.1- Desplazamiento frecuencial del pitch

A continuacion se propone un sistema para modificar el valor de pitch de una sefial de voz grabada. El
objetivo es realizar un desplazamiento frecuencial sobre la sefial de excitacion tratando de no alterar los

parametros del tracto vocal. El sistema se resume en el siguiente esquema:

Coeficientes LP (ai)
A
analisis LP Time stretching A "
» localizado (a) > a > z
s[n] e[n] e'[n] e"[n] s'[n]
(fo=1) (fo=1) (fo="1) (fg = /1) (£ = /o)
(No =Ny (No=Ny) (Ny = Ni/a) Ny =Ny (N =N

Figura 3.1.1: Esuquema del proceso de modificacion del pitch

La sefial grabada se divide en segmentos de N muestras con un avance temporal entre segmentos de
hop muestras. Para cada segmento se realiza analisis de prediccion lineal obteniendo un segmento de

sefal de excitacion y unos coeficientes LP.

El efecto de desplazamiento frecuencial lo conseguiremos interpolando o diezmando en tiempo la sefial
de excitacion en un factor a. De este modo al interpolar (o >1), se producira un desplazamiento
frecuencial negativo y el valor de pitch se reducird a veces. Al diezmar (a <I), se producirda un

desplazamiento frecuencial positivo y el valor de pitch aumentara a veces. El proceso de diezmado
involucra un problema de alisasing, por lo que en esos casos cada fragmento se pasara antes por un
filtro antialiasing. Por otro lado, durante el proceso de interpolacion, el espectro original se ve reducido

y replicado, efecto que debido a la periodicidad de la sefal de excitacion resulta interesante conservar.

El proceso de interpolacion y diezmado a su vez modifica la duracion de la sefial en un factor a. Puesto
que nos interesa conservar la duracion original previamente modificaremos la duracion de esta en un
factor 1/a sin alterar su distribucion espectral. Esta técnica se conoce como time stretching y es
ampliamente utilizada en los procesos de modificacion de la escala temporal en los sistemas phase

vocoder.

Una vez hecho el desplazamiento frecuencial sin haber modificado la duraciéon temporal, cada
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segmento de la sefial de excitacion recuperado es filtrado por sus correspondientes coeficientes LP.
En el sistema anterior quedan ciertos parametros por definir como:

-Parametros de los segmentos de sefial (duracion, tipo de ventana, factor de overlap)

-Orden del analisis LP.

-Técnica de interpolacion.

La eleccion de estos parametros y su influencia en la sefial sintetizada se discuten en la seccion de

resultados.

3.1.2- Time stretching

Conseguiremos el efecto time stretching sintetizando con un nimero de muestras de avance temporal

entre segmentos diferente del de la fase de analisis. El factor de dilatacion temporal «a sera por lo tanto:
a=h,lh,

Donde 4; y h, son el nimero de muestras de avance temporal u overlap entre segmentos en la fase de
analisis y sintesis respectivamente. El objetivo es calcular el nuevo incremento de fase asociado a 4.
Dividimos la senal x[n] en segmentos de N muestras con /; muestras de overlap. Denotamos x,[#n]

como el m-ésimo fragmento. Definimos:

X ,[k|=DFT \(x,[n]}
9, lk]=2 X ,[k]

El incremento de fase entre los instantes m y m-1 puede expresarse en términos de la frecuencia

instantanea w,, de s, como:

o lkl=0, [k]=ho,lk]
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El incremento total de fase puede dividirse en un incremento de fase nominal debido al salto temporal

entre los instantes m y m-1 de 4; muestras y un incremento de fase adicional:

2k

gom[k]_(pmfl[k]:hi(’om[k]:hi N +A¢m[k]
En términos de frecuencia instantanea:
Ao |k
o, [k]=2ZK 9.kl _2mk fAo (K]

N h;

1

N

Puesto que en la practica calcularemos la DFT mediante el algoritmo FFT, los valores de fase

instantdnea estaran comprendidos entre -m y m. Por lo tanto no podemos calcular el incremento

instantaneo de fase directamente. Una solucion es calcular el incremento de fase adicional como:

Ao, lkl=arg, gom[k]—gom_l—hi% donde arg,|x|=x— floor(x/m)n

Podemos calcular el incremento de frecuencia instantanea adicional como:

Finalmente el incremento de fase entre los instantes m y m-1de la sefial a sintetizar puede expresarse

como.

go;n[k]—go;nl[k]zho(%jLAmm[k]) normalmente C.I:  ¢,[k |=g,[k]

El espectro del segmento de sefial a sintetizar podra calcularse como:

X, [kl=|x, [k]|e™
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3.2- Modificacion del tracto vocal

En esta seccion se propone un sistema para modificar los parametros del tracto vocal de un locutor A 'y
transformarlos en los de un segundo locutor B. Partimos de un conjunto de grabaciones de la misma
frase de Ay B. En la fase de entrenamiento se procesaran estos pares de grabaciones y se establecera un
codigo de mapeo entre los parametros del tracto vocal del locutor A y los del locutor B. La fase de
sintesis modificard una nueva grabacion del locutor A no vista en la fase de entrenamiento usando este

codigo de mapeo.

3.2.1- Entrenamiento

A continuacién se muestra un esquema de la fase de entrenamiento del sistema propuesto:

Na A K
s*n]l Na [CA ].:
4 mt A m=1 [VA} 70 Ji=1
§ [I’l] Extraccion de mim=1 —
— - windowing i v @_» Modelo cle(Ct
Y locutor A P
4 B . el
dtw Vi<V, YI<i<N, contador » Modelode
W mapeo LP
B )
B (Sm[n]szl / — A B
§ [l’l] Extraccion de Modelo
indowin . K-means |
% Windowing B parametros [,,B]N > locutor B
Vm Bk
=1 K
o 2l

Figura 3.2.1: Esuquema del proceso de entrenamiento para la modificacion de los parametros del tracto vocal

1) Las grabaciones de A y de B se enventanan y se extraen los parametros del tracto vocal

de cada fragmento.

2) Cada vector de parametros de A se empareja con un vector de B mediante DTW/[15]
(dynamic time warping) usando una determinada métrica de distancias. El algoritmo DTW

permite alinear secuencias de vectores con distinta velocidad de produccion.

3) Después se aplica un cuantificador vectorial basado en k-means[16] sobre todos los

vectores de Ay de B por separado. El resultado de esta operacion es una division de todo el
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conjunto de vectores de pardmetros en diferentes grupos denominados clusters. El vector
mas representativo de cada cluster se denomina centroide y el conjunto de centroides

representara un modelo del tracto vocal de cada locutor.

4) Usando los modelos obtenidos se transforma cada emparejamiento obtenido en el paso 2

en un emparejamiento entre centroides.

5) Se contabilizan todos los emparejamientos. El codigo de mapeo se establece asignando a

cada centroide de A el centroide de B con el que mas veces se ha emparejado.

Aplicando el algoritmo k-means conseguimos una representacion eficiente de todos los vectores de
parametros obtenidos en la fase de entrenamiento. El objetivo de usar este algoritmo es resumir todas

las formas del tracto vocal estimadas durante el entrenamiento.

El algoritmo DTW trata de emparejar vectores de pardmetros de A y de B que se corresponden con el
mismo sonido de cada frase de entrenamiento. Puesto que tras el algoritmo k-means todos los vectores
ya han sido clasificados en un determinado cluster, este emparejamiento puede traducirse
inmediatamente en un emparejamiento entre clusters. Si los centroides son una representacion eficiente
de las posibles formas del tracto vocal, un emparejamiento entre centroides de A y de B serd una
representacion eficiente de todos los emparejamientos obtenidos mediante DTW. La hipdtesis es que si
el numero de muestras de entrenamiento es lo suficientemente grande estos emparejamientos de

centroides seran un buen modelo para mapear el tracto vocal del locutor B en el locutor A.

3.2.2- Sintesis

A continuacidn se muestra un esquema de la fase de sintesis del sistema propuesto:

-

4 A 4 CA —
S [n] sm[n] Ao Vm S i S
— Windowing EX;rraaCrT(]::)'[?oie;» Modelo »’ Modelo
P locutor A mapeo CB_ 73
R e iV m
A
Suln
m[ ]; Modificacion de » 3B [n]

parametros Sm

Figura 3.2.2: Esuquema del proceso de sintesis para la modificacion de los parametros del tracto vocal
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1) La grabacion a modificar del locutor A se enventana y se extraen los parametros del

tracto vocal para cada fragmento.

2) Cada vector de se clasifica usando el modelo obtenido para el locutor A en la fase de
entrenamiento y es substituido por el centroide del cluster al que pertenece. Haciendo uso

del modelo de mapeo se vuelve a substituir por un centroide del modelo del locutor B.

3) Finalmente cada segmento de sefal es modificado por su correspondiente estimacion del

vector de parametros del tracto vocal del locutor B.

Se han implementado dos versiones del sistema propuesto usando diferentes parametros del tracto
vocal. Uno utiliza coeficientes LP y otro un determinado niimero de coeficientes Cespstrum.. A
continuacion se explican algunos detalles sobre la extraccion, clasificacion y modificacion de estos

parametros para cada version.

3.2.3- Modificacion mediante prediccion lineal

Como ya se ha explicado en la primera seccion los coeficientes LP serdn estimados mediante

prediccion lineal. El orden de prediccion es un parametro que queda por determinar.

Para poder clasificar cada vector como perteneciente a un cluster se debe decidir una métrica de
distancias, en este caso se utiliza la distancia Itakura[17]. En cada iteracion del alogritmo k-menas se
calculan nuevos centroides haciendo la media aritmética de un conjunto de vectores. La media
aritmética de un conjunto de vectores de coeficientes LP no tiene sentido desde un punto de vista de
distancia espectral y ademds la combinacion lineal de coeficientes LP puede dar como resultado unos
coeficientes inestables. Esta es la razén por lo que los centroides se calculan mediante una
modificacion del algoritmo k-means[18] que estd explicada en el anexo. La idea basica es recalcular los

centroides en el dominio de coeficientes de reflexion para poder aplicar la media artimética.

En al fase de sintesis al realizar andlisis de prediccion lineal también se estimard la sefial de excitacion

de cada fragmento. La modificacion consistira en filtrar cada fragmento de sefial de excitacion por su
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correspondiente estimacion de coeficientes LP del locutor B.

y 4 R P R
so\n Az ~Cr
s [n—]bwindowing k] andlisis LP o Modelo g Modelo
locutor A ~
ocutor mapeo 1 Ccl=4,(z)
enln] |

> 1/Az) —> 5,[n]

Figura 3.2.3: Esuquema del proceso de sintesis para la modificacion del tracto vocal mediante coeficeintes LP

3.2.4- Modificacion mediante cepstrum.

Tras el enventanado se obtendra para cada fragmento de sefial s.[n] su STFT (short-time Fourier

tranform) S:[k] aplicando el algoritmo FFT con el mismo niimero de muestras que el fragmento.

Para el enventanado se elegird un nimero de muestras que sea potencia de dos para que la
implementacion del algoritmo FFT sea mas eficiente. Se calcularé el cepstrum real de cada fragmento
aplicando la transformada coseno al logaritmo del valor absoluto de las muestras no redundantes de

cada STFT :
ciln]=DCT |log|S2 k]|

El vector de parametros del tracto vocal estara formado por N¢ coeficientes cepstrum:
VAilkl=cllk], 1<k<N,

Donde Nc¢ es el nimero de coeficientes cepstrum que seran utilizados durante la clasificacion y la

modificacion.

Para la clasificacion se utilizard la version original del algoritmo k-means, distancia euclidea como

métrica y la media aritmética para calcular los centroides en cada iteracion.
. .y . , . r ~B :
La modificacion se realizara mediante el calculo de un nuevo cepstrum ¢,[n] sustituyendo en el
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cepstrum original de cada fragmento del locutor A c¢/[n] el vector de parametros estimado del

locutor B 72 [k]

72 [n], ISnSNC]

c,‘i[n], resto

El modulo de la STFT del fragmento modificado SZ[k] puede calcularse invirtiendo el calculo del

cepstrum como:

|

S0k |:eDCT"{Ef,[nh

m

Como fase de S”[k] tomaremos la fase de la STFT del fragmento original:

_ S’B[k]‘-e-’”:“‘]

m

Finalmente haciendo la FFT inversa podemos obtener el fragmento de sefial modificado:
58 (n)=FFT™ 3% (k]|

El siguiente esquema resume el proceso de sintesis para la modificacion del tracto vocal mediante

coeficientes cepstrum:

exdraccion__ \ogelo |, ModemF
muestras | " locutor A .4 mapeo

A Ve cmeR icffzifi
suln] S, [] - . _5,[n]
p FFT p»- 109 [{x}| L./ DCT A[ ] p substitucion g lexp (iDCT{x}) | iFFT >
Culn ~B ~
i " Culn] S21k]| 4
£ Sylk]
Z{

Figura 3.2.4: Esuquema del proceso de sintesis para la modificacion del tracto vocal mediante coeficeintes cepstrum
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4-Resultados

Los sistemas propuestos en la seccion 3 han sido implementados con la herramienta software Matlab.

En esta seccion se exponen y se analizan las prestaciones de cada sistema por separado.

4.1-Desplazamiento frecuencial del pitch

Se ha implementado el sistema propuesto para modificar el valor de pitch en Matlab. Las primeras
versiones utilizaban un interpolador lineal con el que se conseguian resultados de muy baja calidad.
Finalmente se decidid usar la funcion resample de Matlab donde se usan filtros polifase para realizar la

interpolacion.

A continuacion se muestran los espectrogramas de una sefial de voz y de su excitacion antes y después
de modificar su valor de pitch. Se ha realizado un aumento en un factor 1.5 sobre una grabacion a 16
kHz donde se pronuncia la palabra “Francia” :

excitacidn original

excitacion modificada

—
=2
adl
s

L
=

Frequency (Hz)

0.2 04 0B 02 04 06

time(s) tima(s}. time(s) time(s)

Figura 4.1.1: Espectrogramas de la palabra "Francia" antes y despues de modificaciar el pitch en un factor 1.5

La forma de los espectrogramas reflejan la transformacion deseada. En los intervalos de tiempo
correspondientes a sonidos sonoros ( 0.1-0.3s y 0.4-0.6s ) se puede ver un aumento en la distancia entre

armoénicos mientras que la envolvente del espectro de la sefial no se ve modificada.
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4.1.1- Analisis cualitativo

Se ha realizado un analisis sobre como influyen los parametros de la funcion de transformacion sobre la

calidad de la senal recuperada.

-N (nimero de muestras del fragmento de sefial)

Para ventanas pequefias (<< 20 ms) no hay suficientes muestras para estimar adecuadamente los
parametros del tracto vocal y se nota una gran distorsion en los fonemas sintetizados. A medida que nos
acercamos a 20 ms la calidad aumenta. Por encima de los 40 ms no se aprecian errores de fase pero los

sonidos se escuchan distorsionados.

-hop (nimero de muestras de avance temporal entre fragmentos consecutivos)

Con valores por encima de N/2 la sefial recuperada contiene muchos artefactos debido a la pérdida de
coherencia de la fase. Conforme disminuimos el valor hasta N/4 el salto de fase a estimar disminuye y

se aprecia una clara mejora en al calidad de la sefial recuperada. A partir de N/8 no se aprecia mejora.

-p (orden del analisis de prediccion)

Valores pequefios de orden de prediccion (< 8) generan una estimacion de la sefial de excitacion con
mucha informacién del tracto vocal. En estos casos se esta desplazando frecuencialmente parte de la
energia espectral de los formantes, generando sonidos mas agudos o mas graves de lo deseado. Para
valores muy grandes de orden de prediccion (> 64) la estimacion de los parametros del tracto vocal
contiene informacion de la sefal de excitacion original. En estos casos al escuchar la sefial sintetizada

se puede apreciar componentes de la sefial original y no se produce el cambio de pitch deseado.

-H (Precision de la interpolacion)

A medida que aumentamos el valor de H aumenta la calidad de la sefial sintetizada puesto que se
realiza una interpolacion mas precisa. A partir de 100 no se nota ninguna mejora por lo que por defecto

se fija ese valor.
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-r (Factor de escalado del valor de pitch)

Para valores inferiores a 1 se aprecia como la entonacion de la sefal recuperada es mas grave y mas
aguda para valores superiores a 1. Se ha modificado una grabacion con distintos valores de r y se ha
estimado el pitch de la sefial sintetizada usando la funcion fxrapt del toolbox para Matlab voicebox. En

el siguiente grafico se puede observar como se consigue el efecto deseado:

r=1

-

180

160 F f

140

1

100

—_—

pitch (Hz)

time(s) -
Figura 4.1.2: Estimacion del valor de pitch de sefiales
tranformadas

4.1.2- Medida de la distorsion espectral

Se ha realizado un experimento para cuantificar la distorsion que la transformacion de pitch introduce
sobre los parametros del tracto vocal. Sobre varias grabaciones se han realizado modificaciones de
pitch y se ha calculado una distancia entre la envolvente espectral de la sefal original y de la

modificada.

Se ha usado la distancia Itakura[18] que permite medir distancias espectrales independientes de la
ganancia a partir de los coeficientes LP. A continuacion se muestra un esquema del sistema que se ha

usado para realizar la medida:

' Slm[n] Am(Z) !
s[n] | pitchShifter | > ‘sl windowing |- »| andlisis LP A (Sn:S'm)
—L> distancia Lz
ltakura >.d,>D
s [n] i ™ "
» windowing | analisis LP —
A'(2)

Figura 4.1.3: Esquema del sistema de medida de la distorsion espectral
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La sefial original y modificada se dividen en fragmentos de 20 ms. Sobre cada segmento se realiza
analisis LP de orden 16 para obtener los coeficientes de prediccion de los filtros 4,,(z) y 4'.(z). Después
para cada par de coeficientes de la sefial original y modificada se calcula la distancia Itakura y se
guarda en memoria. Finalmente se calcula la media de todas las distancias obtenidas para cada

fragmento.

Para tener una distancia de referencia se ha realizado la misma medida comparando pares de
grabaciones de la misma frase de un mismo locutor. El problema de alineado debido a la diferencia de
velocidad del habla entre grabaciones de la misma frase se ha solucionado utilizado DTW[15]. En total
se ha medido la diferencia espectral de trece pares de grabaciones de 13 locutores diferentes obteniendo

una distancia media de 0.865.

En el experimento se han utilizado 100 grabaciones del corpus Albayzin[19] de las cuales 50 son de
hombres y 50 de mujeres. Las grabaciones tienen una frecuencia de muestreo de 16 kHz y las muestras
estan linealmente cuantificadas con 16 bits. Se han realizado dos conjuntos de medidas para comprobar
la influencia del factor de escalado y del orden de prediccion en la distorsion espectral. A continuacion

se muestran los parametros con los que se han realizado las medidas y los resultados:

r N hop p H
1 variable | 512 (*20ms) N/4 12 100
2 1.3 512 (=20ms) N/4 variable 100

Tabla 4.1.1: Parametros para la medida de la distorsion espectral.r(factor de escalado), N(tamario de la ventana),

hop(avance temporal entre fragmentos), p(orden de prediccion), H(precision de la interpolacion,).
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Figura 4.1.4: Distorsion espectral en duncion del factor de escalado del Figura 4.1.5: Distorsién espectral en duncion del factor del orden de
pitch. prediccion

Observamos que la distorsion espectral obtenida en todo el rango de valores de test estd por debajo de
la referencia. Esto significa que la modificacion que introduce el sistema sobre los parametros del

tracto vocal es inferior a la variabilidad temporal intralocutor de los parametros del tracto vocal.

En la figura 4.1.4 llama la atencion que para » = 1 la distorsion no es nula. Puesto que en este caso la
fase tedrica con la que sintetiza es la misma que la fase original, la distorsion puede deberse a errores

durante la interpolacion.

En la figura 4.1.5 puede observarse que para valores de p pequeiios la distorsion es mayor. Esto se debe
a que si el orden de prediccion no es lo suficientemente grande, la forma del espectro de la seial de
excitacion estimada contiene componentes del tracto vocal. En esos casos al desplazar en frecuencia la

excitacion estamos modificando el tracto vocal también.

También se puede observar como la distorsion es superior para mujeres que para hombres cuando el
factor de conversion es mayor que uno. Puede deberse a que el valor de pitch de las voces femeninas es
superior y por lo tanto su espectro contiene armoOnicos lo suficientemente separados para que la

prediccion lineal contenga detalles de la sefia de excitacion para 6rdenes bajos de prediccion.
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4.2-Modificacion del tracto vocal

Los sistemas propuestos para la modificacion del tracto vocal han sido implementados en Matlab
orientados a la transformacion de sefiales con una frecuencia de muestreo de 16 kHz. Se ha usado una
ventana Hamming de 512 muestras y un factor de solapamiento del 50%. El resto de parametros como
el nimero de coeficientes o el nimero de clusters no han sido fijados y su influencia sobre el resultado

se discute en los siguientes apartados.

-Sistema de referencia

Para tener una cota del maximo rendimiento del sistema se ha tomado una medida de referencia.
Consiste en comparar la frase a transformar del locutor de A con la misma frase pronunciada por B,
alinearlas con DTW[15] y hacer la transformacién de parametros del tracto vocal. A continuacion se

muestra un esquema del sistema de medida de referencia.

Na

Ll

Extraccion de
parametros Lt

s2 [n ] —» windowing Modificacion de [NB [n”Na

parametros

dtw
o Extraccion de > A

- .
parametros A B
Vi<V,

(sl Vo ’

m m=1

SB[n] —m windowing

Figura 4.2.1: Esquema del sistema de medida de referencia.

De esta manera no necesitamos generar un modelo de mapeo para estimar los pardmetros del tracto
vocal del locutor B y el resultado solo depende del método de modificacién. Esta medida sera por lo
tanto una referencia del rendimiento maximo que se puede esperar de los sistemas propuestos para

modificar el tracto vocal.
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4.2.1- Analisis cualitativo

Se ha realizado un andlisis cualitativo sobre coémo influyen los pardmetros de la funcién de
transformacion sobre la sefial recuperada. Se ha prestado atencion a la calidad y al parecido entre la voz

de la sefal sintetizada y del locutor objetivo.

En general, para todas las sefales sintetizadas, los sonidos de la grabacion original se conservan y se
puede entender la frase pronunciada, por lo que parece que el modelo de mapeo funciona
correctamente. No obstante se aprecian algunos artefactos en las sefiales recuperadas debidos a la
pérdida de coherencia en la fase. Tanto para el caso de transformacion mediante coeficientes LP como

en el caso de coeficientes cepstrum, no se ha tenido en cuenta la fase a la hora de sintetizar.

-Tranformacion LP

En las sefiales modificadas mediante LP ademas se escuchan cambios bruscos durante la pronunciacién
de un sonido de larga duracion. Al disminuir el nimero de clusters este efecto se ve reducido. Este
hecho puede deberse a una mala clasificacion, formas del tracto vocal propias de un mismo sonido han

sido asignadas a diferentes clusters.

También se observa que a medida que incrementamos el orden de prediccion hasta 64 aumenta la
sensacion de que la sefial sintetizada ha sido pronunciada por el locutor objetivo. Para 6rdenes altos
superiores a 128 comienza a distorsionarse mucho la sefal sintetizada. Esto se debe a que con un orden

de prediccion tan alto se estan extrayendo detalles del espectro propios de la informacion de pitch.

-Transformacion cepstrum

En el caso de sefales modificadas mediante coeficientes cepstrum no se aprecian diferencias
significativas al cambiar el numero de clusters. Parece que el proceso de clasificacion mediante el
algoritmo k-means funciona mejor con vectores de coeficientes cepstrum que con vectores de

coeficientes LP.

A medida que aumentamos el niimero de coeficientes cepstrum aumenta la sensacion de que la senal

sintetizada ha sido pronunciada por el locutor B y disminuye la calidad de la sefal. Este hecho se debe
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a que al emplear més coeficientes estamos modelando mejor el tracto vocal pero a la hora de sintetizar

estamos aumentando la porcion del espectro cuya fase estamos estimando.

A partir de un cierto nimero de coeficientes, aproximadamente 130 para hombres y 80 para mujeres, la
sefal recuperada se ve muy distorsionada. A partir de ese punto se pierde por completo la sensacion de
transformacion hacia el locutor objetivo y se escucha una voz “metalica”. Este fenomeno se debe a que
a partir de cierto numero de coeficientes estamos mapeando informacion de pitch. Como se ha visto en
la primera seccion, la informacion sobre el pitch en el dominio transformado cepstrum aparece en torno
a la muestra que se corresponde con el periodo de pitch. El hecho de que las mujeres tengan una
frecuencia de pitch mas alta explica que este efecto aparezca antes en mujeres que en hombres.
Podemos calcular un tedrico valor de pitch a partir de los resultados teniendo en cuenta que en nuestro

caso la frecuencia de muestreo F; es de 16 kHz:

FU=F /130=123Hz
F¥=F /80=200Hz

Los valores obtenidos encajan entre los valores tipicos de pitch para hombres y para mujeres.

4.2.2-Analisis cuantitativo

Una vez hecho un andlisis cualitativo del funcionamiento de los sistemas, queremos cuantificar el
parecido entre el tracto vocal de la sefial sintetizada y el tracto vocal del locutor B. Como medida del
parecido del tracto vocal usaremos el estadistico resultante de un sistema de verificacion de locutor

basado en i-vectors.

Para este experimento se ha utilizado la particion de pruebas del subcorpus fonético de Albayzin[19].
En esta particion hay un total de 2000 grabaciones de 40 locutores diferentes (50 grabaciones por cada
locutor). Cada grabacion tiene una duracion aproximada de 3 s, una frecuencia de muestreo de 16 kHz
y muestras linealmente cuantificadas con precision de 16 bits. En total hay 500 frases diferentes
divididas en 10 particiones de tal forma que hay 10 grupos de 4 locutores (2 hombres y dos mujeres)

que pronuncian las mismas frases.
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Primero se ha entrenado el sistema de verificacion de locutor con las 20 primeras frases de cada uno de
los 40 locutores. Las 20 frases siguientes se han utilizado para entrenar al sistema de modificacion del
tracto vocal. Sean {h;, h, m; m,} los locutores de un grupo donde 4; y A, son hombres y m; y m>

mujeres. Para cada grupo se han generado los siguientes seis modelos de mapeo:

hy—h, hy—h,_ mem, my—m,
hy—=m, m,—h,

Las ultimas 10 frases de cada locutor han sido tranformadas con los modelos de mapeo anteriores.
Finalmente se han recogido todos los estadisticos que el sistema de verificacion de locutor ha obtenido

con cada una de las frases modificadas y con las 10 ultimas frases de cada locutor sin modificar.

-Analisis del sistema de verificacion de locutor

Denotamos S como el estadistico resultante de un locutor tratando de verificar su verdadera identidad
y Sy como el estadistico resultante de un locutor tratando de verificar una identidad falsa. A

continuacion se muestran las distribuciones de S; y Sy obtenidas a partir de sefiales sin modificar:

0.045

004+ |
|:|S1 distribution
0.035F -sEI distribution f\ |

0.03f |——"5, gaussian distribution /

—— 5, gaussian distribution -
0.025

pdf

0.02r B
0.015F b

0.01F 1

IS

0
-100  -80 50 40 20 0 20 40 60 80 100
estadistico

0.005

Figura 4.2.2: Sistema de verificacion de locutor en ausencia de spoofing

La distribucion de los estadisticos se ajusta muy bien a una distribucion gaussiana. Para hacer mas facil
la interpretacion de las graficas de aqui en adelante se mostrara la curva gaussiana como resumen de la

distribucion de los estadisticos obtenidos.
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Una vez realizada una transformacion del locutor origen A al locutor objetivo B, nos interesa obtener el
resultado de comparar la sefial modificada con el modelo del locutor origen y con el modelo del locutor
objetivo. Sea S, el estadistico resultante de una sefial modificada tratando de verificar la identidad del

locutor origen y S, el estadistico resultante de una sefial modificada tratando de verificar la identidad

del locutor destino. Una transformacién perfecta daria como resultados S,= So y Sp= Si .

-Transformacion LP

Se ha usado el sistema de referencia con diferentes 6rdenes de prediccion M con el objetivo de obtener
la influencia del nimero de coeficientes en el resultado. También se han realizado transformaciones con

diferente nimero de clusters K con p = 64. A continuacion se muestran los resultados:
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Figura 4.2.5: Referencia spoofing LP para varios ordenes de prediccion Figura 4.2.6: Spoofing LP con diferente numero de clusters

En la figura 4.2.5 se observa que a medida que aumenta p la distribucién de S, se aproxima a la de Siy
la distribucion de S, se aproxima a la de Sy. Resultado que concuerda con la teoria puesto que un orden
superior permite a la prediccion lineal extraer mas detalles del tracto vocal del locutor origen y destino.
La notable diferencia en media entre las distribuciones de S; y S, indica que no se estdn mapendo todos

los parametros del tracto vocal que usa el verificador de locutor

En la figura 4.2.6 puede apreciarse el correcto funcionamiento de los modelos de mapeo puesto que los
resultados obtenidos para diferentes valores de K se parecen mucho a los resultados del sistema de
referencia. También se observa que al doblar el valor de K la distribucion de S, se aproxima un poco a

la de referencia mientras que la de S, no cambia.
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A la vista de las dos graficas se saca como conclusion que el orden de prediccion tiene mas influencia
sobre el resultado que el numero de clusters. El coste computacional asociado a doblar el tamafo del

cluster no compensa la mejora en los resultados.

-Transformacion cepstrum

Al igual que en el caso anterior se ha usado el sistema de referencia con diferente niimero de
coeficientes cepstrum Nc. Después se ha fijado Nc = 80 y se han realizado transformaciones con

distintos valores de K. A continuacion se muestran los resultados:

0.035 T T T T T T T . 0.035 T T T T T T T T
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_— Sb (Mc=100) — Sb (K=256)
0.02 a (Ne=120) i 0.02+H — — Sa(K=512) J
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001}
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Figura 4.2.7: Referencia spoofing cepstrum para distintos Nc Figura 4.2.8: Spoofing cepstrum para distinto numero clusters

En la figura 4.2.7 se observa, al igual que en el caso anterior, que aumentando N¢ se consigue que S, y
S, se separen y se acerquen a S, y S respectivamente. Al incrementar N se estan utilizando
coeficientes cepstrum con cada vez menos informacion del tracto vocal. En la figura 4.2.7 se puede

apreciar como la mejora al pasar de 100 a 120 coeficientes es menor que al pasar de 80 a 100.

La figura 4.2.8 muestra que el modelo de mapeo funciona correctamente y que K tiene poca influencia
en los resultados. Un tamafio K=128 parece ofrecer las mismas prestaciones que el sistema de
referencia. Comparando lo resultados del grafico 4.2.8 con los de 4.2.6 podemos sacar como
conclusion que la clasificacion y la generacion del modelo de mapeo funciona mejor con coeficientes

cepstrum que con coeficientes LP.
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A continuacién se muestran los resultados de transformaciones LP y cepstrum separando

transformaciones entre locutores del mismo sexo y de distinto sexo.
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Figura 4.2.9: spoofing entre locutores de igual y distinto sexo

Se puede observar que, tanto para la transformacién mediante LP como mediante cepstrum, se obtienen

mejores resultados en transformaciones entre locutores del mismo sexo. Una explicacion sencilla es

que estos casos el tracto vocal del locutor origen es mas similar al del locutor objetivo que en los casos

contrarios.

Si nos fijamos en las transformaciones entre locutores del mismo sexo se puede observar que la

transfomacion mediante cepstrum genera mejores resultados que la transformacion LP con un menor

numero de coeficientes. Este resultado pone de manifiesto que los coeficientes cepstrum son una

representacion mas compacta del tracto vocal que los coeficientes LP.

No obstane también se puede apreciar que la transformacion LP genera mejores resultados que la

transformacion cepstrum en transformaciones entre locutores de diferente sexo.
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4.2.3- Spoofing

En esta subseccion se expone un estudio sobre las implicaciones que tendrian los sistemas de

transformacion del tracto vocal propuestos a la hora de intentar falsear una identidad. En este escenario

el locutor origen de la transformacion es un intruso que trata de identificarse como el locutor destino.

La probabilidad de enganar al sistema por lo tanto sera la probabilidad de falsa alarma obtenida en

presencia de spoofing.

-Sistema de verificacion de locutor en ausencia de spoofing

Con los resultados del grafico 4.2.2 para distintos umbrales de decision se obtienen las siguientes

probabilidades de falsa alarma P, y probabilidades de pérdida Pj,:
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Figura 4.2.10: Ppy, Pio vs umbral en ausencia de spoofing
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Figura 4.2.11: Pr, P vs umbral en ausencia de spoofing

Tomamos el punto EER como punto de operacion del sistema es ausencia de spoofing:

umbral

PFA

P loss

40.87

0.02

0.02

Tabla 4.2.1: Punto de operacion del verificador de locutor sin spoofing

-Sistema de verificacion de locutor en presencia de spoofing

Sustituyendo ahora Sy por S, puede obtenerse el comportamiento del sistema ante un ataque de spoofing

usando los sistemas de transformacidon propuestos. En este caso el locutor origen de la transformacion
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es un intruso que trata de suplantar la identidad del locutor objetivo. Puesto que la finalidad es engafiar
al verificador solo se han considerado los valores de S, que se corresponden a transformaciones entre
locutores del mismo sexo. Fijando K=256 a continuacion se muestra la degradacion del sistema para

transformaciones con distintos parametros:
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Figura 4.2.12: Pg, Py, vs umbral con spoofing (K=256) Figura 4.2.13: Py vs Py, con spoofing (K=256)

En ambos graficos se observa que el aumento del nimero de coeficientes tiene mas influencia en
transformaciones mediante coeficientes LP que mediante cepstrum. Ademas se puede apreciar que la
degradacion de las prestaciones del verificador con 40 coeficientes cepstrum es mayor que con 64
coeficientes LP. Este hecho pone de manifiesto que los coeficientes cepstrum son una representacion

mas compacta de la forma de tracto vocal.

En la figura 4.2.13 se puede apreciar que asintoticamente se consigue aumentar la probabilidad de falsa

alarma mas de 10 veces en los casos mas favorables.

Para medir la probabilidad de enganar al verificador de locutor antes es necesario elegir un punto de

operacion. Se han considerado dos:
() Umbral =40.87 y P, = 0.02 (EER sin spoofing ).

(IT) EER en presencia de spoofing.
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El primer caso responderia a una situacion en el que el sistema de verificacion desconoce la presencia
de senales modificadas y es mas susceptible al spoofing. El segundo caso responderia a una situacion
en el que el sistema de verificacion conoce la presencia de spoofing y ha reajustado su umbral de

manera Optima.
-Punto de operacion (1)

En las siguientes tablas se muestran las probabilidades de falsa alarma P, obtenidas en el punto de

operacion (1) :

p 16|16 | 16 | 32 | 32 | 32 | 64 | 64 | 64 | 64 | 128 | 128
K ref | 128 | 256 | ref | 128 | 256 | ref | 128 | 256 | 512 | ref | 256

PQA ).20{0.1910.20|0.3910.210.26 | 0.4/ | 0.21 | 0.23 ] 0.29 | 0.49 | 0.39

Tabla 4.2.2: Probabilidades de falsa alarma con spoofing LP en el punto de operacion EER sin spoofing

Nc 32 32 | 64 | 64 | 80 80 | 80 80 | 100 | 100 | 120 | 120 | 120 | 256 | 256 | 256
K ref | 256 | ref | 256 | ref | 128 | 256 | 512 | ref | 128 | ref | 128 | 256 | ref | 128 | 256

PIIVA 0.3510.38|0.49 1048 | 0.52 1 0.53 ] 0.51 | 0.50 | 0.60 | 0.52 | 0.64 | 0.54 | 0.56 | 0.50 | 0.64 | 0.64

Tabla 4.2.3: Probabilidades de falsa alarma con spoofing cepstrum en el punto de operacion EER sin spoofing

Comparando las dos tablas se observa que para un mismo numero de coeficientes se consiguen

probabilidades de falsa alarma mas altas mediante cepstrum que mediante prediccion lineal.

En la tabla 4.2.2 se puede ver que la transformacién mediante LP no llega a generar una probabilidad
de falsa alarma por encima del 50%. Para todos los 6rdenes de prediccion las probabilidades obtenidas
mediante modelo de mapeo estan significativamente por debajo de las obtenidas por el sistema de
referencia. Este hecho parece indicar que el modelo de mapeo mediante LP no funciona de manera

correcta.

En la tabla 4.2.3 se puede ver que con la transformacion mediante mas de 80 coeficientes cepstrum si
que se supera el 50% de probabilidad de falsa alarma. Para valores pequefios de N, los resultados
obtenidos se parecen mucho a los resultados del sistema de referencia. Sin embargo a medida que N,
aumenta, los resultados cada vez se alejan mas de la referencia. Parece que los modelos de mapeo

funcionan mejor con un niimero limitado de coeficientes cepstrum (Nc<80).
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-Punto de operacion (1)

En las siguientes tablas se muestran las probabilidades de falsa alarma P%, obtenidas en el punto de

operacion (II) :

N 16 16 16 32 32 32 64 64 64 64 128 128
K ref 128 256 ref 128 256 ref 128 256 512 ref 256

PZAEEER 0.08 | 0.07 | 0.07 | 0.4 | 0.08 | 0.09 | 0./5 | 0.09 | 0.09 | 0.11 | 0./6 | 0.11

Tabla 4.2.4: EER obtenido mediante spoofing LP.

Nc 32 | 32 | 64 | 64 | 80 | 80 | 80 | 80 | 100 | 100 | 120 | 120 | 120 | 256 | 256 | 256
K ref | 256 | ref | 256 | ref | 128 | 256 | 512 | ref | 128 | ref | 128 | 256 | ref | 128 | 256

Pi{AEEER 0.12101110.7910.18|0.20|0.21|0.20 | 0.17 | 0.19 1 0.20 | 0.19 1 0.20 | 0.19 | 0.25 | 0.21 | 0.20

Tabla 4.2.5: EER obtenido mediante spoofing cepstrum.

Comparando los EER obtenidos con spoofing con los de la tabla 4.2.1 en ausencia de spoofing, se
puede apreciar que las transformacion LP consigue aumentar el EER 5 veces para p > 32 mientras que

la transformacion cepstrum consigue aumentar el EER 10 veces para N> 64.

En la tabla 4.2.5 se puede ver un comportamiento similar al de la tabla 4.2.3, a medida que N¢ aumenta

los resultados cada vez se alejan mas de la referencia.

-Sistema cepstrum modificado

A la vista de los resultados se ha realizado una modificacion en la funcion de transformacion mediante
cepstrum. En esta nueva version se clasifica y se genera el modelo de mapeo con 80 coeficientes y se

realiza la transformacion con 256 coeficientes. En la siguiente tabla se pueden ver los resultados:

K P, P! =EER
128 0.67 0.21
255 0.72 0.21

Tabla 4.2.6: Resultados del sistema modificado.

Esta modificacion permite obtener la probabilidad de falsa alarma y el EER mas altos.
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4.2.4- Tampering

En esta subseccion se expone un estudio sobre las implicaciones que tendrian los sistemas de

transformacion del tracto vocal propuestos a la hora de intentar ocultar una identidad. En este escenario

el locutor origen de la transformacion esta registrado en el sistema de verificacion de locutor y tratara

de no ser identificado. La probabilidad de engafiar al sistema por lo tanto sera la probabilidad de

pérdida obtenida en presencia de tampering.

-Sistema de verificacion de locutor en ausencia de tampering

Las prestaciones del sistema en ausencia de sefiales transformadas son las mismas que en la subseccion

anterior:
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Figura 4.2.14: Ppi, Py vs umbral en ausencia de tampering
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Figura 4.2.15: Pg, Pioss vs umbral en ausencia de tampering

Tomamos el punto EER como punto de operacion del sistema es ausencia de tampering:

umbral

PFA

P loss

40.87

0.02

0.02

Tabla 4.2.7: Punto de operacion del verificador de locutor sin tampering

-Sistema de verificacion de locutor en presencia de tampering

Sustituyendo ahora S; por S, puede obtenerse el comportamiento del sistema ante un ataque de

tampering usando los sistemas de transformacion propuestos. En este caso el locutor origen de la

41



transformacion esté registrado en el sistema y tratard de no ser identificado. Para este escenario se han
considerado los valores de S, que se corresponden tanto a transformaciones entre locutores del mismo
sexo como del sexo opuesto . Fijando K=256 a continuacion se muestra la degradacion del sistema para

transformaciones con distintos parametros:
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Figura 4.2.16: Pg, Pi,ssvs umbral con tampering (K=256) Figura 4.2.17: Py vs P, con tampering (K=256)

En los dos graficos se observa que el aumento del nimero de coeficientes supone un aumento en la
probabilidad de pérdida para ambas transformaciones. En la figura 4.2.17 se puede apreciar que para
probabilidades de falsa alarma inferiores a 0.02 se consiguen probabilidades de pérdida muy cercanas a

la unidad.

Para medir la probabilidad de ocultar la identidad al verificador de locutor se han elegido dos puntos de

operacion:
(I) Umbral = 40.87 y Pg = 0.02 (EER sin tampering ).
(IT) EER en presencia de tampering.

El primer caso responderia a una situacion en el que el sistema de verificacion desconoce la presencia
de tampering. El segundo caso responderia a una situacion en el que el sistema de verificacion conoce

la presencia de tampering y ha reajustado su umbral de manera 6ptima.
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-Punto de operacion (1)

En las siguientes tablas se muestran las probabilidades de pérdida P, obtenidas en el punto de

operacion (1) :

p 16 16 16 32 32 32 64 64 64 64 128 128
K ref 128 | 256 ref 128 | 256 ref 128 | 256 | 512 ref 256
Pfgss 0.85 1 077 | 078 | 0.95 | 0.93 | 092 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.97

Tabla 4.2.8: Probabilidades de falsa alarma con tampering LP en el punto de operacion EER sin tampering.

Nc 32 32 64 64 80 80 80 80 | 100 | 100 | 120 | 120 | 120 | 256 | 256 | 256
K ref | 256 | ref | 256 | ref | 128 | 256 | 512 | ref | 128 | ref | 128 | 256 | ref | 128 | 256
me 0.83 107410951091 095|097 |0.96|0.98|0.95]0.99|0.99]098 099|095 |0.99 | 0.99

Tabla 4.2.9: Probabilidades de falsa alarma con tampering cepstrum en el punto de operacion EER sin tampering.

En las dos tablas se observa que se consiguen probabilidades de pérdida muy cercanas a la unidad con

transformaciones LP con p > 32 y con transformaciones cepstrum con N¢ > 80. Comparando las dos

tablas se observa que para un mismo numero de coeficientes se consiguen probabilidades de pérdida

mas altas mediante prediccion lineal que mediante cepstrum.

-Punto de operacion (1)

En las siguientes tablas se muestran las probabilidades de falsa alarma P

operacion (II) :

17

loss

obtenidas en el punto de

N 16 16 16 32 32 32 64 64 64 64 | 128 | 128
K ref | 128 | 256 | ref | 128 | 256 | ref | 128 | 256 | 512 | ref | 256
PZSSEEER 0.26 1 023|023 | 0.33 | 030|029 | 040 | 039 | 0.38 | 0.39 | 0.40 | 0.39
Tabla 4.2.10: EER obtenido mediante tampering LP.
N 32 | 32 | 64 | 64 | 80 | 80 | 80 | 80 | 100 | 100 | 120 | 120 | 120 | 256 | 256 | 256
K ref | 256 | ref | 256 | ref | 128 | 256 | 512 | ref | 128 | ref | 128 | 256 | ref | 128 | 256
PZSSEEER 0.2710.22]0.3510.30{0.39{0.34|0.340.34 | 0.4/ | 038 0.471 1 0.39|0.38 | 0.4/ | 0.39 | 0.38

Tabla 4.2.11: EER obtenido mediante tampering cepstrum.

Comparando los resultados obtenidos con y sin tampering se puede apreciar que ambas

transformaciones consiguen aumentar el EER 20 veces a partir de un cierto numero de coeficientes.
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5-Conclusiones y lineas futuras

En este trabajo, a partir de un modelo digital del proceso de produccion el habla, se han propuesto e

implementado sistemas para modificar la sefial de voz.

El sistema para la modificacion del pitch consigue sefiales de buena calidad con determinados
parametros y con factores de escalado cercanos a uno. También se ha visto que el sistema no modifica
significativamente los parametros del tracto vocal. Una posible mejora consistiria en poder cambiar el
factor de escalado del pitch a lo largo del tiempo. De este modo se podria elegir un valor de pitch en

cada instante de tiempo y poder cambiar la entonacion de la frase sintetizada.

A la vista de los resultados obtenidos en la transformacion del tracto vocal se puede concluir que hay
un compromiso entre la calidad de la sefial recuperada y la cantidad de informacion del tracto vocal que
se mapea de un locutor a otro. Las transformaciones con 80 coeficientes cepstrum permiten sintetizar
sefales con bastante calidad y que generan distribuciones cercanas a las del locutor objetivo. Las
distribuciones mas cercanas a las del locutor objetivo se han obtenido modificando con 256
coeficientes cepstrum. En modificaciones con tantos coeficientes la sefal recuperada no parece natural

y cualquier ser humano que la escuchara detectaria la transformacion.

Con el sistema para la modificacién del tracto vocal se ha simulado un ataque de spoofing y de
tampering a un sistema de verificacion de locutor del estado del arte y se ha conseguido reducir sus
prestaciones en un orden de magnitud. Suponiendo que el verificador opera en el punto de EER en
ausencia de sefiales modificadas, el sistema de transformacion propuesto conseguiria suplantar una
identidad en el 72% de los casos y ocultar una identidad en el 99% de los casos, resultados que ponen
de manifiesto la problematica del uso de los sistemas de verificacion de locutor en aplicaciones de

seguridad.

Siguiendo el esquema basico del sistema, generacion del modelo de mapeo y modificacion de los
parametros del tracto vocal, una posible continuacion del trabajo pasaria por mejorar cada uno de estos

dos procesos por separado:

-Mejorar el modelo de mapeo entre locutores:
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-Usar modelos ocultos de Markov para tener en cuenta la evolucion temporal.

-Incluir derivadas de los parametros en el proceso de clasificacion.

-Usar modelos perceptibles como la escala Mel en el proceso de clasificacion.

-Mejorar la modificacion de parametros

-Tener en cuenta la fase a la hora de sintetizar para recuperar sefiales con mas calidad.

-Investigar otras técnicas mas sofisticadas del estado del arte.

En este trabajo se ha puesto de manifiesto la problematica del spoofing y del tampering en los sistemas
de verificacion de locutor. Los artefactos generados con los sistemas de transformacioén podrian ser

estudiados para después ser utilizados en la deteccion de spoofing y tampering.
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1- Principio de ortogonalidad y solucion del analisis L.P

Queremos predecir el valor de la sefial s[n] a partir de sus p valores anteriores:
p
3[n)=> a,s[n—k] (1)
k=1
el error de prediccion por lo tanto sera:
p
e[n)=s[n]=Y. a,s[n—k] (2)
k=1
Si J es el error cuadratico medio de la sefial error:
L 2
J=E[e[n]|=E((s[n]- 2 a,sln—k]]'} (3)
k=1

Derivando respecto a un coeficiente arbitrario a; e igualando a cero:

Oe[n]

|=2E{e[n]s[n—i]}=0 JI<i<p (4)

i

De la ecuacion anterior se deduce que los coeficientes de prediccidon que minimizan el error cuadratico
medio son aquellos que generan un residuo cuyo producto escalar con las p muestras anteriores de s[#]
es cero. Esto se conoce como el principio de ortogonalidad.

Substituyendo e[#] por la ecuacion (2) en el principio de ortogonalidad obtenemos:
P

E{S[n—i]s[n]}zz a,E|s[n—ils[n—k]| L1<i<p (5)
k=1

Si R, [k] es la funcion de autocorrelacion de s[n] obtenemos las siguientes ecuaciones lineales:
P
R[i]=2 a;R[i=k]  ,1<i<p (6)

k=1

En formato matricial:

R,[0] R,[1] Rp=1]\la,| |R,]1]
Rs[l] RS[O Rs[p—2] a,|= RS[Z] (7)
R[p-1] R[p-2] - R [0] |\a,/ \R/[pP]
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2- Recursion de Durbin

Dado un sistema de ecuaciones cuyos coeficientes dependientes forman una matriz tipo Toepliz como
por ejemplo las ecuaciones del analisis LP:

R[0]  R[1] Rlp-\[a,| [R[1]
R R[0] R[p=2]| a, || R[2]
R[p-1] R[p-2] - R]0] [\a,| \R[p]

Los coeficientes a; pueden calcularse siguiendo la siguiente recursion:
Inicializacion:
0
E’=R,0]

Iterar para i=1,...,p :

a=k,
a,=a, ' —k,al, JA<k<i
F=(1-K)E"
Final:
a,=ay ,1<k<p

Los coeficientes intermedios %; son los coeficientes de reflexion.
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3- Distancia Itakura

Sean 4y y A, los coeficientes de prediccion lineal obtendos de los segmentos de sefial de voz x,y x;
respectivamente. La distancia Itakura permite medir la separacion entre la represetnacion espectral de
Ao yAl.

Sean Eyy Eo las energias de los errores de prediccion obtenidos al filtrar x, con los coeficientes Ao y
A, respectivamente:

Eq=E|| 45 x)f' |=45 Ry 4,
Eq=E(j4] x )} |= 41 Ry 4,

Donde R, es la matriz de autocorrelacion de xo. La distancia Itakura entre Ao y A, se calcula como el
cociente entre Eoy Eoi:

A’ R A
D(A4,A4,)=—F——
Al ROAI

Puesto que D(AO’A]);&D(ALAO) normalemnte se calcula la version simétrica de la distancia Itakura
como:

D, (4, 4,)=log

Ay Ry 4, A{R A,
- +log -
1 RO Al AORIAO
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4- Recursion para calcular los coeficientes LP a partir de los coeficientes
de reflexion

Iterar para i=1, ..., p
i
a;=k;
i i—1 i—1 .
a,=a, —k;a,_, <k<i
Finalmente:
a=a/ A<i<p

5- Recursion para calcular los coeficientes de reflexion a partir de los
coeficientes LP

Inicializacion:

Iterar para i=p, ..., 1

6- Algoritmo k-means

Dado un conjunto de vectores de observacion [X ,}IN , el algoritmo iterativo k-menas contruye una
K
S

]

VlJn:l

particion de las observaviones en K conjuntos [ tratando de minimizar:

k

2 2 lIx=c,If
X €S,

n=1

K . . .
donde los vectores Cn}nzl se conocen como centroides y son la media de vectores asignados a cada

conjunto.

Sea S’ el conjunto de observaciones de vecotores pertenecientes al n-esimo cluster en la iteracion
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, LS . . .
numero ¢y {C los K centroides en la iteracion numero ¢.

njn=1
El comportamiento del algoritmo se describe a continuacion:

-Inicializacion:

Se toman K vectores al hazar del conjunto {X [}ll

Iteraracion:
Asignacion:
si={x|lx~c |<llx,~c' |vi=j=k]
Actualizacién:
== ¥ X,
card (S,) ¥ <s'

El algoritmo ha convergido cuando las asiganciones no cambian.

como centroides.
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7- Algoritmo k-means modificado

Se define {Ai}i]\il como el conjunto de observaciones de vectores de coeficientes LP a clasificar y

N . . . ., .
{rl}i:l el conjuntio de coeficientes de reflexion asociados.

K . . . K o .
Sean [C '] los K centroides en la iteraciéon numero ¢ y {R;}nz] su conjuntio de coeficientes de

njn=1

reflexion asociados.

Sea S' el conjunto de vecotores de coeficientes LP pertenecientes al n-esimo cluster en la iteracion
numero ¢.

Se define d (A , B) como la distancia Itakura entre los vectores A y B.
El comportamiento del algoritmo consiste en:
-Inicializacion:

Se calcula r[}f\;l a partir de {A[}il usando el algoritmo [5] y

se toman K vectores al hazar del conjunto {A i}il como centroides.

-Iteraracion:

Se calculan las distancias entre cada observacion y cada centroide:

d(A Ct)VISiSN
oM 1<n<K

Asignacion
Si=|r:d|4,Ct)<d(4,.C" V1< j<K]
Actualizacion de los centroides mediante la media artimética de los

coeficeintes de reflexion:

1

R;H _ ,
card (S,) <,

i

Ct+1 ./ Rt+l
Ip

no L5

El algoritmo ha convergido cuando las asiganciones no cambian.
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