000153704 001__ 153704
000153704 005__ 20251017144650.0
000153704 0247_ $$2doi$$a10.1002/cptc.202400356
000153704 0248_ $$2sideral$$a143759
000153704 037__ $$aART-2025-143759
000153704 041__ $$aeng
000153704 100__ $$aMajumder, Sumit
000153704 245__ $$aSuppressed nonradiative recombination in 2D reduced‐ Graphene‐ Oxide (rGO)‐wrapped 3D MoS<sub>2</sub> microflower
000153704 260__ $$c2025
000153704 5060_ $$aAccess copy available to the general public$$fUnrestricted
000153704 5203_ $$aWe present a comprehensive study on the synthesis and characterization of 2D reduced graphene oxide (rGO) encapsulated 3D Molybdenum disulfide (MoS2) nanocomposites, a promising semiconductor material with applications spanning electronic and optoelectronic domains. Through a facile two‐step chemical synthesis, we successfully fabricated both pristine MoS2 (denoted as S1) and MoS2‐rGO composites (termed S2), yielding distinctive flower‐like microspheres comprised of folded nanosheets. Our temperature‐dependent PL investigations unveiled pronounced mid‐gap emission peaks within the UV (380–468 nm) and visible (490–550 nm) regions, indicative of excitonic behavior. Notably, the S2 composite exhibited enhanced PL intensity and extended carrier lifetimes across all studied temperatures, attributed to effective suppression of surface states via d‐electron hopping. Complementary high‐resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X‐ray photoelectron spectroscopy (XPS) analyses further corroborated the presence of surface defects and d‐electron hopping mechanisms, elucidating their pivotal roles in enhancing PL emission characteristics. This study offers valuable insights into the fundamental properties of MoS2‐rGO nanocomposites, paving the way for tailored device design and applications.
000153704 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000153704 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000153704 700__ $$aNandi, Pronoy
000153704 700__ $$aRoy, Abhijit$$uUniversidad de Zaragoza
000153704 700__ $$aTopwal, Dinesh
000153704 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000153704 773__ $$g(2025), e202400356 [12 pp.]$$pChemPhotoChem$$tChemPhotoChem$$x2367-0932
000153704 8564_ $$s3046504$$uhttps://zaguan.unizar.es/record/153704/files/texto_completo.pdf$$yVersión publicada
000153704 8564_ $$s2820055$$uhttps://zaguan.unizar.es/record/153704/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000153704 909CO $$ooai:zaguan.unizar.es:153704$$particulos$$pdriver
000153704 951__ $$a2025-10-17-14:36:05
000153704 980__ $$aARTICLE