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Resumen

Esta memoria se sitúa dentro del análisis numérico, que es una rama de las matemáticas y la informá-
tica que se encarga del desarrollo, análisis y aplicación de métodos numéricos para resolver problemas
matemáticos de los que no se han podido encontrar soluciones analíticas o en los que se necesita una
aproximación numérica de las soluciones.

Este campo abarca una amplia gama de técnicas, como métodos de aproximación, interpolación,
integración numérica, resolución de ecuaciones diferenciales, entre otros. En este trabajo nos centramos
en conseguir métodos numéricos con alta precisión relativa para resolver problemas de álgebra lineal
como valores propios, valores singulares, inversa de una matriz o la resolución de sistemas de ecuaciones
lineales. La alta precisión relativa es muy deseable, pero solo se ha conseguido hasta ahora en muy pocos
casos. En particular, para ciertas clases de matrices estructuradas.

En esta memoria, vamos a hacer uso de las matrices totalmente positivas (TP), que son matrices con
todos sus menores no negativos, y que presentan propiedades que han permitido obtener algoritmos con
alta precisión relativa para varias subclases de las mismas. Además, necesitamos un algoritmo alterna-
tivo a la eliminación gaussiana, como es la eliminación de Neville, que será la herramienta básica para
conseguir la factorización bidiagonal de una matriz cualquiera (veremos que es única). Esta factorización
bidiagonal nos va a proporcionar los parámetros de partida necesarios para construir algoritmos con alta
precisión relativa. Para asegurar dicha alta precisión relativa usamos una condición suficiente que con-
siste en prohibir las restas de números de signos iguales, excepto cuando se trata de datos iniciales. Es
decir, el algoritmo solo puede realizar multiplicaciones, divisiones, sumas de números reales con signos
iguales. El problema con la eliminación de Neville aplicada a matrices TP es que involucra restas. Por
tanto, puede hacer falta conseguir la factorización bidiagonal por algún procedimiento alternativo. En
esta memoria, consideramos tanto matrices de Pascal y sus generalizaciones como matrices de q-enteros.

Dada la factorización bidiagonal de una matriz TP no singular es posible llevar a cabo los cálculos
necesarios para los problemas algebraicos mencionados anteriormente de manera implícita, mediante la
transformación de las entradas de su factorización bidiagonal de tal manera que no se requieran restas.
Por lo tanto, el problema de realizar cálculos con alta precisión relativa con una matriz TP no singular se
transforma en el problema de encontrar su factorización bidiagonal con alta precisión relativa.

En el primer capítulo introducimos algunos conceptos, notaciones y resultados básicos que son ne-
cesarios en el resto de la memoria. Empezamos considerando los errores que pueden aparecer en los
cálculos computacionales y presentando la importancia de la alta precisión relativa. A continuación, in-
troducimos notaciones matriciales y la definición y propiedades de las matrices totalmente positivas, que
serán de gran utilidad en el resto del trabajo. También presentamos la eliminación de Neville que es un
procedimiento utilizado para hacer ceros en las distintas columnas bajo la diagonal principal de la matriz
de partida. Además, presentamos la factorización bidiagonal de dicha matriz, que se obtiene teóricamen-
te a través de la eliminación de Neville. Finalmente, damos algunas operaciones que se pueden realizar
con alta precisión relativa en matrices totalmente positivas.

En el segundo capítulo consideramos las matrices de Pascal que, en particular, son matrices totalmen-
te positivas y simétricas, que presentan importantes aplicaciones en probabilidad, en combinatoria y en
análisis numérico, entre otros campos. Estas matrices están mal condicionadas, siendo incluso peor con-
dicionadas que las matrices de Vandermonde. Aún así, se pueden obtener algoritmos con alta precisión
relativa para el cálculo de valores propios e inversas de matrices de Pascal, así como para resolver cier-
tos sistemas lineales cuyas matrices de coeficientes son matrices de Pascal. Comenzamos introduciendo
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las definiciones de las matrices de Pascal de orden n y de las matrices de Pascal triangulares inferiores
de orden n. Continuaremos viendo la factorización bidiagonal de estas matrices, que es extraordinaria-
mente simple. Posteriormente, definimos las matrices de Pascal generalizadas y algunas notaciones que
necesitaremos más adelante. Por último, describimos la factorización bidiagonal de este tipo de matrices.

En el último capítulo presentamos las matrices de q-enteros. Muchos cálculos algebraicos como
el cálculo de valores propios, valores singulares e inversas de estas matrices se pueden realizar con
alta precisión relativa. Comenzamos viendo qué es un q-entero y algunas de sus propiedades. También
estudiamos qué aspecto tiene la factorización bidiagonal de las matrices de q-Pascal. Observamos que
esta factorización bidiagonal (para q ̸= 0) no es tan sencilla como la de las matrices de Pascal vista en
el capítulo anterior. Finalmente, introducimos los números de q-Stirling y la factorización bidiagonal de
las matrices con números de q-Stirling.



Abstract

This work falls within the field of numerical analysis, which is a branch of mathematics and computer
science that deals with the development, analysis, and application of numerical methods. It is used to
solve mathematical problems for which analytical solutions have not been found or where numerical
approximations of solutions are needed.

This field encompasses a wide range of techniques among which are remarkable approximation
methods, interpolation, numerical integration, and solving differential equations. In this work, we fo-
cus on achieving high relative accuracy (HRA) numerical methods to solve linear algebra problems such
as eigenvalues, singular values, matrix inversion, or the solution of linear systems of equations. High
relative accuracy is desirable, but it has only been achieved in very few cases so far. In particular, for
certain classes of structured matrices.

In this work, we will use totally positive (TP) matrices, which are matrices with all their minors non-
negative and exhibit properties that have enabled the development of algorithms with HRA for several
subclasses of TP matrices. Additionally, we need an alternative algorithm to Gaussian elimination, such
as Neville elimination, which will be the basic tool for achieving the bidiagonal factorization of any
matrix (we will see that it is unique). This bidiagonal factorization will provide us with the necessary
starting parameters to construct algorithms with high relative accuracy. To ensure such HRA, we use a
sufficient condition that consists of prohibiting subtractions of numbers of the same sign, except when
dealing with initial data. That is, the algorithm can only perform multiplications, divisions, and additions
of real numbers with equal signs. The problem with Neville elimination applied to TP matrices is that
it involves subtractions. Therefore, an alternative procedure may be necessary to achieve the bidiagonal
factorization. In this work, we consider both Pascal matrices and their generalizations as well as q-
integers matrices.

Given the bidiagonal factorization of a nonsingular TP matrix, it is possible to perform the required
calculations for the algebraic problems implicitly. This is achieved by transforming the entries of its
bidiagonal factorization in a manner that avoids the need for subtractions. Therefore, the problem of
performing calculations with HRA with a nonsingular TP matrix is transformed into the problem of
finding its bidiagonal factorization with HRA.

In the first chapter, we introduce some concepts, notations, and basic results that are necessary th-
roughout the work. We start by considering the errors that may arise in computational calculations and
highlighting the importance of high relative accuracy. Next, we introduce matrix notations and the defi-
nition and properties of totally positive matrices, which will be very useful in the rest of the work. We
also present Neville elimination, which is a procedure used to create zeros in different columns below
the main diagonal of the starting matrix. Furthermore, we discuss the bidiagonal factorization of such a
matrix, which is theoretically obtained through Neville elimination. Finally, we provide some operations
that can be performed with high relative accuracy on totally positive matrices.

In the second chapter, we consider Pascal matrices, which are, in particular, totally positive and sym-
metric. They have significant applications in probability, combinatorics, and numerical analysis, among
other fields. These matrices are ill-conditioned, even worse conditioned than Vandermonde matrices. No-
netheless, algorithms with high relative accuracy can be obtained for calculating eigenvalues and inverses
of Pascal matrices, as well as for solving certain linear systems whose coefficient matrices are Pascal ma-
trices. We begin by introducing the definitions of Pascal matrices of order n and lower triangular Pascal
matrices of order n. We then proceed to discuss the bidiagonal factorization of these matrices, which is
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remarkably simple. Subsequently, we define generalized Pascal matrices and some notations that we will
need later on. Finally, we describe the bidiagonal factorization of this type of matrices.

In the last chapter, we introduce q-integers matrices. Many algebraic calculations such as eigenvalue
computation, singular values, and inverses of these matrices can be performed with HRA. We start with
the concept of q-integer and some of its properties. We also study the form of the bidiagonal factorization
of q-Pascal matrices. Observing that this bidiagonal factorization (for q ̸= 0) is not as simple as that of
Pascal matrices seen in the previous chapter. Finally, we introduce q-Stirling numbers and the bidiagonal
factorization of matrices with q-Stirling numbers.
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Capítulo 1

Conceptos y resultados básicos

1.1. Introducción

Este capítulo tiene como objetivo introducir conceptos, notaciones y resultados básicos para el resto
de la memoria.

En el álgebra lineal numérica, la búsqueda de la precisión y la exactitud en los cálculos es esencial
para garantizar la validez de los resultados obtenidos. Los errores inherentes a los métodos numéricos
pueden surgir debido a la limitada precisión de las representaciones numéricas utilizadas en los algorit-
mos, lo que puede impactar significativamente en la fiabilidad de los resultados. Es por ello que la alta
precisión relativa es una propiedad muy deseable para mitigar la propagación de errores y mejorar la
fiabilidad de los cálculos.

El segundo apartado de este capítulo presenta los conceptos relacionados con los errores y la alta
precisión relativa.

En el tercer apartado de este primer capítulo vamos a introducir notaciones matriciales y las matri-
ces totalmente positivas, ya que estas estructuras matriciales especiales presentan propiedades que son
utilizadas para mejorar la estabilidad numérica en diversos problemas.

En el cuarto apartado presentamos la eliminación de Neville y la factorización bidiagonal. Esta fac-
torización bidiagonal nos proporciona los parámetros de partida para poder construir algoritmos con alta
precisión relativa, con tal de que dichos parámetros también los obtengamos con alta precisión relativa.

Finalmente, en el último apartado introducimos algunas operaciones que se pueden realizar con alta
precisión relativa en matrices totalmente positivas.

1.2. Errores y cálculos con alta precisión relativa

En este apartado, consideraremos los errores que pueden aparecer en los cálculos computacionales y
presentaremos la importante noción de alta precisión relativa, que será muy importante en esta memoria.

Comenzaremos con definiciones y tipos de errores. Continuaremos presentando los errores backward
y forward, y después consideraremos el condicionamiento. Finalmente, trataremos de la cancelación y
de la alta precisión relativa.

1.2.1. Definiciones y tipos de errores

Comenzaremos con algunas definiciones básicas de errores.

Definición 1: Sea x̂ una aproximación del número real x. El error absoluto cometido al hallar x̂ es
Eabs(x̂) = |x− x̂|, y su error relativo Erel(x̂) =

|x−x̂|
|x| cuando x ̸= 0.

Una definición equivalente del error relativo es Erel(x̂) = |ρ| donde x̂ = x(1+ρ). Cuando el signo es
importante en el error absoluto, hablaremos simplemente del error x− x̂.
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2 Capítulo 1. Conceptos y resultados básicos

El error relativo está relacionado con la noción de dígitos significativos correctos (o cifras significa-
tivas correctas). Los k dígitos significativos en un número son el primer dígito no nulo y los k−1 dígitos
que le siguen. Es decir, una aproximación x a x̂ tiene ρ dígitos significativos correctos si x̂ y x redondean
al mismo número con ρ dígitos significativos.

Cuando x y x̂ son vectores, la definición anterior se extiende de esta forma:

Definición 2: El error relativo cometido al calcular el vector x̂, definido cuando x ̸= 0, es

Erel(x̂) =
∥x̂− x∥
∥x∥

.

Para las normas más usadas ∥x∥∞ := máxi|xi|, ∥x∥1 := ∑i|xi|, y ∥x∥2 :=
√

x⊤x, la desigualdad

∥x− x̂∥
∥x∥

≤ 1
2
·10−ρ

implica que las componentes x̂i con |x̂i| ≈ ∥x∥ tienen alrededor de ρ dígitos correctos significativos pero,
para componentes menores, la desigualdad simplemente acota el error.

Esto motiva la siguiente definición:

Definición 3: El error relativo componente a componente del vector x̂, definido cuando xi ̸= 0, es
máx |xi−x̂i|

|xi| .

Hay tres fuentes principales de errores en el cálculo numérico: de redondeo, incertidumbre en los
datos y truncamiento.

Por lo general, los efectos de los errores en los datos son más fáciles de entender que los efectos de
los errores de redondeo cometidos durante un cálculo, ya que los errores en los datos pueden analizarse
utilizando teoría de perturbaciones para el problema en cuestión, mientras que los errores de redondeo
intermedio requieren un análisis específico para el método dado.

1.2.2. Precisión, errores forward y errores backward

Cuando trabajamos computacionalmente con aritmética de precisión finita, la precisión (precision
también en inglés) es la exactitud con la que se realizan las operaciones aritméticas básicas +,−,∗,/ y
en la aritmética de punto flotante se mide mediante la unidad de redondeo u.

Pero, hay un segundo sentido de la palabra precisión (que corresponde en inglés a accuracy) y que
se refiere al error absoluto o relativo de una cantidad aproximada.

Suponemos que una aproximación ŷ de y = f (x) se calcula en una aritmética de precisión u, donde f
es una función escalar real de variable real escalar. Al error (absoluto o relativo) obtenido al calcular ŷ lo
llamamos error forward (o progresivo).

En lugar de enfocarnos en el error relativo de ŷ nos podemos preguntar: ¿para qué conjuntos de datos
hemos resuelto realmente nuestro problema?, es decir, ¿para qué ∆x se cumple ŷ= f (x+∆x)? En general,
habrá muchos ∆x, pero necesitamos encontrar el más pequeño. El valor de |∆x|, a veces dividido por |x|
(en el caso relativo), se llama error backward (o regresivo). Aunque nos interesan los errores forward,
suele ser más fácil hallar los errores backward, que se relacionan con los forward como se indica en el
apartado siguiente.

Un método para calcular y = f (x) se dice que es estable backward si, para cada x, ŷ = f (x+∆x)
para algunos ∆x pequeños. En general, un problema podrá ser resuelto a través de varios métodos de
los cuales algunos serán estables backward y otros no. De hecho, la estabilidad backward depende del
método utilizado.

1.2.3. Condicionamiento

La relación entre el error backward y forward viene dada por el condicionamiento del problema, es
decir, la sensibilidad de la solución a perturbaciones en los datos.
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Continuando con el ejemplo anterior y= f (x) cuya aproximación satisface ŷ= f (x+∆x). Asumiendo
que f es dos veces diferenciable, llegamos a la definición del número de condición

ŷ− y
y

= (
x f ′(x)
f (x)

)
∆x
x

+o((∆x)2),

donde

c(x) = |x f ′(x)
x
|

es el número de condición de f. Si x o f es un vector, el número de condición se define de manera análoga
usando normas.

En general, cuando en un problema tenemos bien definido el error forward, el error backward y el
número de condición correspondientes, se da la relación:

error forward≤ número de condición · error backward

Una forma de interpretarla es viendo que la solución calculada para un problema mal condicionado
puede tener un error forward grande. Incluso si la solución calculada tiene un error backward pequeño,
este error puede amplificarse por un factor tan grande como es el número de condición.

Como el mal condicionamiento es intrínseco al problema, si queremos evitarlo debemos reparame-
trizar el problema inicial.

1.2.4. Cancelación y alta precisión relativa

La cancelación se produce cuando se restan dos números casi iguales. A menudo, pero no siempre,
es algo perjudicial.

Para obtener una mayor comprensión de este fenómeno consideramos la resta (en aritmética exacta)
x̂ = â− b̂, donde â = a(1+∆a) y b̂ = b(1+∆b). Los términos ∆a y ∆b son los errores relativos. Tomando
x = a−b tenemos

|x− x̂
x
|= |−a∆a+b∆b

a−b
| ≤ max(|∆a|, |∆b|) |a|+ |b|

|a−b|
.

La cota del error relativo para x̂ es grande cuando |a− b|≪|a|+ |b|, es decir, cuando hay una gran
cancelación en la resta. Este análisis muestra que la cancelación sustractiva puede amplificar considera-
blemente errores anteriores. Es importante darse cuenta de que la cancelación no es siempre algo per-
judicial. En primer lugar, los números que se están restando pueden ser libres de errores, como cuando
provienen de datos iniciales que se conocen exactamente. En segundo lugar, la cancelación puede ser
un síntoma del mal condicionamiento intrínseco del problema y, por lo tanto, puede ser inevitable. Y, en
tercer lugar, el efecto de la cancelación depende del papel que juegue el resultado en el cálculo restante.

Para obtener resultados con varias cifras significativas correctas, buscamos que el error de nuestro
algoritmo satisfaga la siguiente relación:

error forward relativo≤ Ku, para alguna constante K,donde u es la unidad de redondeo.

En este contexto, afirmamos que los cálculos se han llevado a cabo con alta precisión relativa (HRA,
de high relative accuracy). Sin embargo, lamentablemente, no es posible lograr la HRA para todos los
problemas. Un ejemplo sencillo que no puede realizarse con HRA es la evaluación de la expresión
x + y + z (véase [10]). Como hemos comentado antes, las cancelaciones pueden conducir a errores
relativos grandes, aunque no siempre.

Por ejemplo, podemos realizar la resta de dos datos iniciales conocidos con precisión sin que se
produzca una cancelación perjudicial. En cualquier caso, este fenómeno es algo que debemos tener en
cuenta al diseñar un método con alta precisión relativa (HRA).

Existe una condición suficiente para asegurar la alta precisión relativa de un algoritmo (véase [11]).
Cuando las operaciones realizadas en el algoritmo incluyen sumas de números del mismo signo, mul-
tiplicaciones, divisiones y restas de datos iniciales (entendiendo la resta como la diferencia entre dos
cantidades del mismo signo). Es decir, se prohíben las restas, excepto cuando se trata de datos iniciales.
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Para tener algoritmos que cumplan la condición anterior, suele ser necesaria una reparametrización
del problema de partida. En el caso de las matrices especiales totalmente positivas que usaremos en esta
memoria (y que introducimos en el apartado siguiente) la reparametrización vendrá dada por usar una
factorización de las mismas (llamada factorización bidiagonal) en vez de las entradas de la matriz.

1.3. Notaciones matriciales y matrices totalmente positivas

Comenzamos definiendo las matrices totalmente positivas y estrictamente totalmente positivas.

Definición 4: Una matriz A = (ai j)1≤i, j≤n con todos los menores no negativos se llama matriz total-
mente positiva (TP). Si todos los menores son estrictamente positivos la matriz se llama estrictamente
totalmente positiva (STP).

Las matrices TP y STP también se llaman totalmente no negativas y totalmente positivas, respectiva-
mente.

Estas clases de matrices tienen importantes aplicaciones en diversos campos como teoría de aproxi-
mación, diseño geométrico asistido por ordenador, sistemas mecánicos, combinatoria, estadística, eco-
nomía, etc. (como se comenta en [3],[13],[14] y [21]).

Sea Qk,n el conjunto de sucesiones estrictamente crecientes de k números naturales menores o iguales
que n. Denotamos como A[α|β ] la submatriz k× k de A conteniendo las α1, ...,αk filas y las β1, ...,βk
columnas (siendo α = (α1, ...,αk),β = (β1, ...,βk) dos sucesiones de Qk,n). Si α=β denotaremos A[α]:=
A[α|α] a la correspondiente submatriz principal.

El siguiente teorema muestra una fórmula clásica para los menores del producto de dos matrices.

Teorema 1.1. Identidad de Cauchy-Binet para determinantes. Sean A, B matrices n×n. Entonces:

det(AB)[α|β ] = ∑
w∈Qk,n

detA[α|w].detB[w|β ] para α,β ∈ Qk,n. (1.1)

La demostración de este teorema se puede ver en la demostración de la fórmula (1.23) de [3].
Usando este mismo teorema, se puede deducir el siguiente resultado:

Corolario 1. Si A y B son matrices TP n×n, entonces AB es TP.

Veamos ahora cómo son las inversas de las matrices TP. Definamos para ello la matriz n×n diagonal
dada por

Jn :=



1
−1

1
−1

. . .
(−1)n−1


El siguiente resultado es consecuencia del Teorema 3.3 de [3].

Teorema 1.2. Si una matriz A n×n es TP no singular, entonces JnA−1Jn es TP.

Observemos que, si A es TP, por el teorema anterior A−1 tiene estructura de signos ajedrezada.
Otra propiedad interesante de las matrices TP no singulares es que sus menores principales son

estrictamente positivos.

Teorema 1.3. Si A es TP no singular entonces detA[α]> 0 para todo k y α ∈ Qk,n.

Una demostración del teorema anterior se puede ver en el Corolario 3.8 de [3].
El Teorema 1.3 nos garantiza que, si A es TP no singular, entonces A admite una factorización LDU

con L matriz triangular inferior con 1’s en la diagonal principal, D matriz diagonal no singular y U matriz
triangular superior con 1’s en la diagonal principal. Además, se sabe que la factorización LDU es única.
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Definición 5: Sea D = (di j)1≤i, j≤n una matriz diagonal denotada como D = diag(d1, ...,dn) donde
di := dii para i = 1, ...,n.

Usando esta notación, la matriz identidad n×n se expresa como In = diag(1, ...,1).
Denotamos por Ei(x) con i = 2, . . . ,n la matriz bidiagonal elemental inferior cuya entrada (i, i− 1)

es x:

Ei(x) =



1
. . .

1
x 1

. . .
1


. (1.2)

La matriz E⊤i (x) = (Ei(x))⊤ se llama matriz bidiagonal elemental superior. Las matrices Ek(x) cumplen
la propiedad:

Ei(x)E j(y) = E j(y)Ei(x), (1.3)

salvo |i− j|= 1 con xy ̸= 0.
También se cumple que

Ei(x)−1 = Ei(−x). (1.4)

1.4. Eliminación de Neville y factorización bidiagonal

La eliminación de Neville (EN) es un procedimiento utilizado para hacer ceros en las distintas co-
lumnas bajo la diagonal principal de la matriz A. Es considerado un procedimiento alternativo a la eli-
minación Gaussiana en el que para hacer un cero en una fila añadimos a cada una de ellas un múltiplo
de la anterior. Sin embargo, en la eliminación de Gauss se utiliza un mismo pivote para toda la columna.
Este proceso es muy útil cuando trabajamos con ciertas clases de matrices como las TP.

Dada una matriz no singular A = (ai j)1≤i, j≤n, la EN consiste en n−1 etapas llegando a la siguiente
sucesión de matrices:

A := A(1)→ Ã(1)→ A(2)→ Ã(2)→ . . .→ A(n)→ Ã(n) =U,

donde U es una matriz triangular superior.
La matriz Ã(k) = (ãi j)

(k)
1≤i, j≤n se obtiene a partir de la matriz A(k) = (ai j)

(k)
1≤i, j≤n mediante una per-

mutación de filas que traslada hacia abajo las filas con una entrada de ceros en la columna k-ésima por
debajo de la diagonal principal.

Para matrices TP, siempre se puede realizar la eliminación de Neville sin cambios de filas. En el caso
en el que no sea necesaria una permutación de filas en el paso k-ésimo, se obtiene que Ã(k) = A(k). Por
tanto, A(k+1) = (ai j)

(k+1)
1≤i, j≤n se obtiene a partir de Ã(k) = (ãi j)

(k)
1≤i, j≤n usando la fórmula:

ã(k+1)
i j :=

ã(k)i j −
ã(k)ik

ã(k)i−1,k

ã(k)i−1, j si k ≤ j < i≤ n y ã(k)i−1,k ̸= 0,

ã(k)i j , en otro caso.

∀k = 1, . . . ,n−1 .
El pivote (i, j) de la eliminación de Neville se define de la siguiente manera: pi j := ã( j)

i j 1≤ j ≤ i≤ n.
Si todos los pivotes son distintos de cero, se puede dar una expresión directa para calcularlos que usa

entradas o cocientes de menores de la matriz (véase Lema 2.6 de [15]):
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pi1 = ãi1, 1≤ i < n

pi j =
det(A[i− j+1, . . . , i|1, . . . , j])

det(A[i− j+1, . . . , i−1|1, . . . , j−1])
1≤ j ≤ i≤ n.

Si i = j se dice que pii es el pivote diagonal.
Se define también el multiplicador (i, j) de la eliminación de Neville, con 1≤ j ≤ i≤ n así:

mi j :=

{
ã( j)

i j =
pi j

pi−1, j
, si ã( j)

i−1, j ̸= 0

0, si ã( j)
i−1, j = 0

Los multiplicadores satisfacen que

mi j = 0⇒ mh j = 0 ∀h > i.

Además, entre pivotes y multiplicadores se da la relación

pi j = 0⇔ mi j = 0.

La eliminación de Neville completa de una matriz A consiste en realizar la eliminación de Neville de
A para obtener U , y a continuación proceder con la eliminación de Neville de U⊤, la traspuesta de U . El
elemento pivote (i, j) (multiplicador) de la eliminación de Neville completa de A es el de la eliminación
de Neville de A si i≥ j y el elemento pivote ( j, i) (multiplicador) de la eliminación de U⊤ si j ≥ i.

En el caso de las matrices TP no singulares, estas pueden ser expresadas como un producto de
matrices bidiagonales no negativas. El siguiente resultado corresponde al Teorema 4.2 de la página 120
de [16].

Teorema 1.4. Sea A = (ai j)1≤i, j≤n una matriz TP no singular. Entonces, A admite una factorización de
la forma

A = Fn−1Fn−2...F1DG1...Gn−2Gn−1 (1.5)

donde D es la matriz diagonal diag(p11...pnn) con elementos diagonales mayores que cero y Fi, Gi son
matrices bidiagonales no negativas dadas por

Fi =



1
0 1

. . . . . .
0 1

mi+1,1 1
. . . . . .

mn,n−i 1


, (1.6)

Gi =



1 0

1
. . .
. . . 0

1 m̃i+1,1

1
. . .
. . . m̃n,n−i

1


, (1.7)

∀i ∈ {1, . . . ,n−1}. Además, las entradas mi j y m̃i j satisfacen

mi j = 0⇒ mh j = 0 ∀h > i, (1.8)
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m̃i j = 0⇒ m̃h j = 0 ∀h > i, (1.9)

y la factorización es única.
En esta factorización, las entradas mi j y pi j son los multiplicadores y pivotes diagonales respectiva-

mente correspondientes a la eliminación de Neville de A y las entradas m̃i j son los multiplicadores de la
EN de A⊤ (que coinciden con los de la EN de U⊤).

El siguiente resultado muestra que la descomposición bidiagonal también caracteriza las matrices TP
no singulares.

Teorema 1.5. Una matrix n× n A no singular es TP si y solo si puede ser factorizada de la siguiente
forma: D una matriz diagonal con entradas positivas, Fi, Gi dadas por (1.6) y (1.7) y las entradas mi j y
m̃i j números no negativos.

Recordemos que un algoritmo puede ejecutarse con alta precisión relativa si solo incluye productos,
divisiones, sumas de números del mismo signo y restas de datos iniciales. Siendo A una matriz bidiagonal
TP no singular, Plamen Koev ([19]) diseña algoritmos eficientes para calcular, con alta precisión relativa,
los valores propios, los valores singulares y la inversa de A, así como la solución a sistemas de ecuaciones
lineales Ax = b cuando b presenta signos alternados (véase apartado 1.5). Su punto de partida es la
factorización bidiagonal (1.5) obtenida con HRA.

La notación BD(A) se introduce para referirnos a la factorización bidiagonal descrita en el Teorema
1.4

(BD(A))i j =


mi j, si i > j,
m̃i j, si i < j,
pii, si i = j.

(1.10)

Observemos que si A es una matriz TP, A⊤ también es una matriz TP. Transponiendo la fórmula
(1.5) del Teorema 1.4 obtenemos la factorización bidiagonal única de A⊤:

A⊤ = G⊤n−1...G
⊤
1 DF⊤1 ...F⊤n−1

donde Fi y Gi, i ∈ {1, . . . ,n− 1}, son las matrices bidiagonales inferiores y superiores triangulares no
negativas dadas por (1.6) y (1.7) respectivamente.

También se satisface que
BD(A⊤) = BD(A)⊤.

El siguiente resultado, que corresponde al Corolario 2 de [8], proporciona la factorización bidiagonal
de la inversa de una matriz TP triangular inferior A en términos de BD(A), siempre que los multiplica-
dores de la EN de A no sean nulos.

Teorema 1.6. Sea A = (ai j)1≤i, j≤n una matriz triangular inferior TP tal que

(BD(A))i j =


mi j > 0, si i > j,
0, si i < j,
1, si i = j.

(1.11)

Entonces la factorización bidiagonal de su inversa está dada por

(BD(A−1))i j =


−mi,i− j, si i > j,
0, si i < j,
1, si i = j.

(1.12)



8 Capítulo 1. Conceptos y resultados básicos

Demostración. Como, en la factorización única (1.5), D y Gi para i = 1, · · · ,n son iguales a la matriz
identidad n×n In, podemos usar (1.5) y (1.11) para factorizar la matriz A de esta forma:

A = Fn−1 · · ·F1 = {En(mn,1)}{En−1(mn−1,1)En(mn,2)}· · ·{E2(m2,1) · · ·En(mn,n−1)}.

Como consecuencia directa, A−1 puede ser escrita así:

A−1 ={En(−mn,n−1) · · ·E2(−m2,1)}{En(−mn,n−2) · · ·E3(−m3,1)}· · ·
{En(−mn,2)En−1(−mn−1,1)}{En(−mn,1)}. (1.13)

Usando (1.3) podemos reescribir (1.13) haciendo una permutación de las matrices Ei(x):

A−1 = {En(−mn,n−1) · · ·E3(−m3,2)}{En(−mn,n−2) · · ·E4(−m4,2)}· · ·
{En(−mn,2)}{E2(−m2,1)E3(−m3,1) · · ·En−1(−mn−1,1)En(−mn,1)}. (1.14)

La matriz E2(−m2,1) · · ·En(−mn,1) será el primer factor de BD(A−1). Continuando con esta argu-
mentación podemos seguir reordenando las matrices Ei(x) de (1.13) hasta obtener (1.12).

Un resultado análogo es cierto para matrices TP triangulares superiores.

Corolario 2. Sea A una matriz TP triangular superior tal que

(BD(A))i j =


0, si i > j,
m̃ j,i > 0, si i < j,
1, si i = j.

(1.15)

Entonces la factorización bidiagonal de su invera está dada por

(BD(A−1))i j =


0, si i > j,
−m̃i− j,i, si i < j,
1, si i = j.

(1.16)

Demostración. Aplicar el Teorema 1.6 a A⊤.

El ejemplo siguiente muestra que la positividad estricta de los multiplicadores en el Teorema 1.6 (o
análogamente en el Corolario 2) es necesaria, es decir, que si la matriz triangular tiene multiplicadores
nulos, entonces el teorema no es cierto.

Ejemplo 1. Sea A = (ai j)1≤i, j≤n la matriz triangular inferior:

A =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 3 1

 .

Aplicando la EN y usando (1.11) podemos ver que su factorización bidiagonal es:

BD(A) =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 2 1

 ,
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lo que significa que
A = E4(1)E3(1)E2(1)E4(2), (1.17)

y que hay dos multiplicadores nulos.
A partir de (1.17) se deduce que

A−1 = (E4(1)E3(1)E2(1)E4(2))−1 = E4(−2)E2(−1)E3(−1)E4(−1), (1.18)

o usando la notación (1.10),

BD(A−1) =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 −2 −1 1

 .

Por lo tanto, es necesario requerir que los multiplicadores no sean nulos, ya que si no BD(A−1) no
satisface (1.12).

1.5. Operaciones con alta precisión relativa para matrices totalmente po-
sitivas

Consideramos el problema de realizar cálculos precisos con matrices totalmente positivas no singu-
lares (n× n). Estas matrices tienen la propiedad de tener una representación única como productos de
matrices bidiagonales positivas. Dada esa representación, se puede calcular de forma precisa y eficien-
te la matriz inversa, la factorización LDU, los valores propios y la factorización de valores singulares
(SVD) de una matriz totalmente positiva con alta precisión relativa con los algoritmos de [19].

Por precisión entendemos que cada cantidad debe calcularse con alta precisión relativa, con un signo
y dígitos principales correctos. Por eficiencia nos referimos a realizar estos cálculos en un tiempo máximo
de O(n3). Presentamos así algoritmos precisos y eficientes que realizan algunos de estos cálculos.

Recordemos en primer lugar la fuente de grandes errores relativos en los algoritmos de matrices
convencionales. La precisión relativa en estos algoritmos se pierde debido a la cancelación sustractiva
en la resta de cantidades aproximadamente del mismo signo. Por el contrario, la precisión relativa se
conserva en la multiplicación, división, suma e incluso en las raíces cuadradas y, si acaso, en restas de
datos iniciales.

Veamos algunos cálculos precisos de matrices conocida BD(A). Las entradas de BD(A) nos permi-
ten calcular con precisión las entradas de la descomposición LDU, las entradas de la matriz inversa y la
resolución de algunos sistemas de ecuaciones lineales. Además, aparte de estos cálculos, dada BD(A),
se pueden realizar de manera precisa y eficiente muchas operaciones con A como matriz.

Supongamos que partimos de la factorización (1.5) descrita en el Teorema 1.4. Recordemos que los
mi j y los m̃i j son los multiplicadores de la eliminación de Neville de A y A⊤, respectivamente. Vamos a
expresar esta factorización en términos de las matrices bidiagonales elementales Ei(x) descritas en (1.2).

En [19], para expresar esta factorización (1.5), se introduce la notación ∏
k=n−1
1 , que indica que el

producto comienza en k = n− 1 y el índice se reduce gradualmente hasta llegar a 1. Utilizando esta
notación, podemos expresar el proceso de dicha factorización como sigue:

Fi =
n

∏
j=i+1

E j(m j, j−i), Gi =
j=n

∏
i+1

ET
j (m̃ j, j−i).

Sea ahora A una matriz cuadrada no singular n×n. Vamos a calcular su factorización LDU con HRA
sustituyendo en la fórmula (1.5) los factores Fi y Gi por los productos anteriores:

A =

(
i=n−1

∏
1

n

∏
j=i+1

E j(m j, j−i)

)
·D ·

(
n−1

∏
i=1

j=n

∏
i+1

ET
j (m̃ j, j−i)

)
. (1.19)
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Teniendo en cuenta que las matrices Ei(x) son triangulares inferiores y la unicidad de la descompo-
sición LDU de una matriz no singular, llegamos a

L =
i=n−1

∏
1

n

∏
j=i+1

E j(m j, j−i), U =
n−1

∏
i=1

j=n

∏
i+1

ET
j (m̃ j, j−i).

Usando que, por el Teorema 1.4, los multiplicadores mi j, m̃i j son no negativos concluimos que L y U
se pueden calcular con HRA.

También podemos calcular la matriz inversa con alta precisión relativa. Invirtiendo la fórmula (1.19)
y usando la propiedad (1.4) obtenemos:

A−1 =

(
i=n−1

∏
1

n

∏
j=i+1

ET
j (−m̃ j, j−i)

)
·D−1 ·

(
n−1

∏
i=1

j=n

∏
i+1

E j(−m j, j−i)

)
. (1.20)

Podemos obtener A−1 multiplicando su expresión en un tiempo de O(n3). Cada entrada de A−1 se
calculará con alta precisión relativa ya que las multiplicaciones de las matrices de (1.20) no conllevan
restas. Tengamos en cuenta para ello que el producto Ei(x)M (con M una matriz) da lugar a sumar a la
fila i-ésima de M la fila anterior multiplicada por x.

Veamos ahora la resolución de un sistema matricial Ax = b con A TP no singular y suponiendo que
las componentes del vector b tienen signos alternados (es decir, signbi = (−1)i o signbi = (−1)i−1), la
podemos realizar con HRA.

Podemos usar (1.20) para calcular la solución de Ax = b en un tiempo de O(n2) multiplicando la
expresión

x = A−1b =

(
i=n−1

∏
1

n

∏
j=i+1

ET
j (−m̃ j, j−i)

)
D−1

(
n−1

∏
i=1

j=n

∏
i+1

E j(−m j, j−i)

)
b (1.21)

de derecha a izquierda. Entonces (1.21) no conlleva cancelación sustractiva, y cada componente de x se
calcula con alta precisión relativa. Observemos que, por el Teorema 1.4, todos los multiplicadores mi j

y m̃i j son no negativos, y como b tiene los signos alternados, todos los vectores intermedios que vamos
obteniendo siguen teniendo los signos alternados y no se realiza ninguna resta, por lo que podemos
garantizar la HRA.

Como hemos mencionado anteriormente, con la factorización bidiagonal de una matriz también po-
demos realizar otros cálculos importantes como los valores singulares o los valores propios entre otros.
Para ello, como se ve en [19], es esencial realizar estas operaciones como una combinación de las si-
guientes transformaciones elementales EET S (elementary elimination transformations):

1. EET1: restar un múltiplo de una fila (o columna) a la siguiente con el objetivo de hacer un cero de
tal manera que la matriz transformada sigue siendo TP.

2. EET2: añadir un múltiplo de una fila (o columna) a la anterior.

3. EET3: añadir un múltiplo de una fila (o columna) a la siguiente.

4. EET4: multiplicar por una matriz diagonal positiva.

Observemos que llevar a cabo cualquiera de estas operaciones con una matriz TP resulta en otra
matriz TP ([16]). El enfoque consistirá en no realizar las operaciones directamente sobre la matriz, sino
en aplicarlas de manera implícita, transformando los parámetros de la descomposición bidiagonal y rea-
lizando los cálculos necesarios para evitar restas.
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En [19] se puede encontrar cómo se llevan a cabo las EETs. La EET 1 es la más sencilla, y realizar
esta operación equivale a sustituir la componente correspondiente de BD(A) por cero. Las EET 2 y
EET 3 requieren un cuidado especial.

A continuación, nos vamos a centrar en las operaciones EET 3 y EET 4. Sea la matriz TP C obtenida
a partir de la matriz TP A de dimensiones n× n aplicando una EET a A. Veamos cómo, dada BD(A),
se puede calcular la factorización BD(C) sin realizar restas.

La operación EET 3 consistía en añadir un múltiplo de una fila (o columna) a la siguiente: sea A una
matriz TP y C se obtiene a partir de A sumando un múltiplo de la fila i−1 de A a la fila i:

C = Ei(x)A, x > 0.

Queremos ver cómo calcular con precisión BD(C), con x y BD(A) conocidos. El siguiente lema
muestra cómo calcular la factorización bidiagonal del producto de dos matrices bidiagonales inferiores.
Es la base del teorema posterior.

Lema 1. Sean B y C matrices bidiagonales inferiores tales que sus elementos en la diagonal principal
son todos unos, los elementos de la subdiagonal son no negativos (bi ≥ 0 y ci ≥ 0 para i = 1, . . . ,n−1)
y también se cumple que bi = 0 cuando ci−1 = 0. Entonces existen matrices bidiagonales B′ y C′ con
elementos extradiagonales b′i ≥ 0 y c′i ≥ 0 con i = 1, . . . ,n−1 tales que B′C′ = BC y b′1 = 0. Además, se
pueden calcular b′i y c′i sin realizar restas en como mucho 4n operaciones elementales.

Demostración. Comparamos las entradas a ambos lados de B′C′ = BC,
1
0 1

b′2 1
. . . . . .

b′n−1 1




1
c′1 1

c′2 1
. . . . . .

c′n−1 1

=


1
b1 1

b2 1
. . . . . .

bn−1 1




1
c1 1

c2 1
. . . . . .

cn−1 1

 ,

y obtenemos que 
c′1 = b1 + c1,

b′i = bici−1
c′i−1

,

c′i = bi + ci−b′i,

(1.22)

para i = 2,3, . . . ,mı́n{ j|b j = 0}, y b′i = bi, c′i = ci, en otro caso. Para evitar la resta de (1.22) definimos
las variables auxiliares di := bi−b′i. De esta forma d1 = b1−b′1 = b1 y

di = bi−b′i = bi−
bici−1

c′i−1
=

bi

c′i−1
(c′i−1− ci−1) =

bi

c′i−1
(bi−1−b′i−1) =

bidi−1

c′i−1
, i = 2, · · · ,n−1.

La versión libre de restas (y por tanto, precisa) de (1.22) es


c′i = ci +di,

b′i = bici−1
c′i−1

,

d′i = bidi−1
c′i−1

.

(1.23)

Este cálculo evidentemente no cuesta más de 4n operaciones aritméticas. Como c′i = 0 implica que b′i+1 =
0, el producto B′C′ es BD(BC), ya que cumple la condición del Teorema 1.4.

Implementamos el procedimiento del Lema 1 en el algoritmo 1 libre de restas. Reescribimos di y
di−1, y los arrays b y c por b′ y c′, respectivamente. La cantidad e = bi+1

c′i
se calcula solo una vez y se

utiliza para actualizar ambas, ahorrando así una división.
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Algorithm 1 EET3
function DQD2(b,c)

t← c1

c1← b1 + c1

d← b1

b1← 0

i← 1
while (i < length(b)) and (bi+1 > 0) do

e← bi+1
ci

d← e ·d
bi+1← e · t
t← ci+1

ci+1← ci+1 +d

i← i+1

return b,c, i

end function

El algoritmo 1 usará el vector de parámetros b de B y el c de C.

El siguiente resultado ya prueba que la EET 3 se puede realizar eficientemente y con alta precisión
relativa.

Teorema 1.7. Sea A una matriz TP n×n no singular. Dado x> 0 y BD(A), la factorización BD(Ei(x)A)
puede ser calculada sin usar ninguna resta en como máximo 4n operaciones aritméticas.

Demostración. Sea BD(A). Por el Teorema 1.4 está dada por

A = Fn−1Fn−2 · · ·F1DG1 · · ·Gn−2Gn−1,

y sea F = Fn−1Fn−2 · · ·F1. La matriz Ei(x)F es una matriz triangular inferior unitaria (con 1’s en la
diagonal) TP (por el Corolario 1) ya que es producto de matrices TP. Por tanto, de nuevo por el Teorema
1.4, posee factorización bidiagonal BD(Ei(x) ·F) y cumplirá la expresión:

Ei(x)F = Ln−1Ln−2 · · ·L1,

donde las matrices Li son matrices bidiagonales triangulares inferiores. Entonces BD(Ei(x)A) satisfará,
por la unicidad de la factorización bidiagonal (Teorema 1.4), que:

Ei(x)A = Ln−1Ln−2 · · ·L1DG1 · · ·Gn−2Gn−1,

con lo que nos bastará hallar la factorización bidiagonal de Ei(x)F para obtener la de Ei(x)A. Usando el
Lema 1, vamos propagando Ei(x) a través de los factores Fi del modo siguiente:
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Ei(x)F = Ei(x)Fn−1Fn−2 · · ·F1

= Ln−1Ei1(x1)Fn−2 · · ·F1

= Ln−1Ln−2Ei2(x2) · · ·F1

· · ·
= Ln−1Ln−2 · · ·L1,

(denotando Ei0(x0) := Ei(x)). Empezamos con k = 1 y repetimos el siguiente proceso. Aplicamos el
algoritmo 1 a las submatrices principales restantes de Eik−1(xk−1) y de Fn−k que consisten en filas y
columnas desde ik−1− 1 hasta n. La única componente no nula de Eik−1(xk−1) desaparece y obtenemos
una nueva matriz Ln−k = Eik−1(xk−1)Ln−k. Denotemos con f (k)j al parámetro j-ésimo de la matriz Fj.

Si se cumplen algunas de estas condiciones:

1. k = n−1, o

2. no se introdujeron elementos no nulos en Ln−k que no estuvieran en Ln−k, o

3. se introdujo un elemento no nulo l
(n−k)
j en Ln−k, pero f (n−k−1)

j−1 ̸= 0,

entonces estableceremos Ln−k = Ln−k y habríamos terminado de propagar Ei(x). En otro caso (un valor
no nulo l

(n−k)
j se introduce en Ln−k, y f (n−k−1)

j−1 = 0, con k < n− 1), tenemos entonces que Ln−k =
Ln−kEik(xk), donde Ln−k tiene la misma estructura de elementos no nulos que Fn−k. Fijamos ik = j,
xk = f (k)j , aumentamos k en una unidad y repetimos el mismo proceso.

El cálculo de BD(Ei(x)A) se realiza sin utilizar restas. A lo sumo se modifican 2n− 3 entradas en
BD(A) con no más de dos operaciones aritméticas por entrada (como se ve en el algoritmo 1 o en el
Lema 1). El coste total, por lo tanto, no supera 4n.

El teorema anterior también se puede utilizar para conocer la BD(AB) a partir de BD(A) y BD(B)
sin usar restas (véase [19]).

Por último, veamos EET 4 que consistía en multiplicar por una matriz bidiagonal positiva. El pro-
ducto de una matriz diagonal F = diag( f1, . . . , fn), fi > 0, i = 1,2, . . . ,n, y una matriz TP A de n×n es
TP. Ahora mostramos cómo calcular BD(F), dado F y BD(A). Propagamos F a través de los factores
Fi en BD(A) utilizando


f1

f2
. . .

fm




1
c1 1

. . . . . .
cm−1 1

=


1
b1 1

. . . . . .
bm−1 1




f1
f2

. . .
fm

 ,

donde bi =
ci fi+1

fi
, i = 1,2, · · · ,n−1.

Dada B =BD(A) y el vector ( f1, f2, · · · , fn), el siguiente algoritmo calcula la factorización bidiago-
nal BD(diag( f1, f2, · · · , fn) ·A) usando solo multiplicaciones y divisiones en un tiempo máximo 2n2.
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Algorithm 2 EET4
function TNDIAGONALSCALE( f ,B)

b11← b11 · f1 for i = 2 to m do
i≤ n

bii← bii · fi

bi,1:mı́n(i−1,n)← bi,1:mı́n(i−1,n) · fi
fi−1

return B

end function



Capítulo 2

Matrices de Pascal, generalizaciones y alta
precisión relativa

2.1. Introducción

En este capítulo hablaremos de las matrices de Pascal, que son matrices totalmente positivas que
presentan importantes aplicaciones en el campo del diseño e imagen así como en probabilidad, combi-
natoria, análisis numérico e ingeniería eléctrica (véase [3], [14] y [21]).

Se sabe que las matrices de Pascal están mal condicionadas (véase ([2]) siendo incluso peor condi-
cionadas que las matrices de Vandermonde. A pesar de este hecho, mostraremos que se pueden obtener
algoritmos con alta precisión relativa (HRA) para el cálculo de valores propios e inversas de matrices de
Pascal, así como para resolver ciertos sistemas lineales cuyas matrices de coeficientes son matrices de
Pascal.

Para ello, por un lado necesitaremos una factorización bidiagonal exclusiva para las matrices de
Pascal (estrechamente relacionada con el procedimiento de la eliminación de Neville). Por otro lado,
algoritmos HRA para matrices TP (ya comentados en el último apartado del capítulo anterior).

En este capítulo comenzaremos viendo en el apartado 2.2 la factorización bidiagonal de las matri-
ces de Pascal, que es extraordinariamente simple y permite de manera trivial garantizar la alta precisión
relativa de los cálculos algebraicos mencionados en el capítulo anterior. Después, en el apartado 2.3, defi-
niremos algunas matrices de Pascal generalizadas y algunas notaciones que necesitaremos más adelante.
Por último, en el apartado 2.4, describiremos la factorización bidiagonal de este tipo de matrices.

2.2. Matrices de Pascal y su factorización bidiagonal

Comenzamos introduciendo las definiciones básicas de las matrices de Pascal.

Definición 6: Una matriz de Pascal de orden n es la matriz simétrica

P = (pi j)1≤i, j≤n; pi j :=
(

i+ j−2
j−1

)
. (2.1)

Definición 7: Una matriz triangular inferior de Pascal de orden n es la matriz triangular inferior

PL = (qi j)1≤i, j≤n; qi j :=
(

i−1
j−1

)
. (2.2)

Esta matriz PL es el factor de la factorización de Cholesky de la matriz de Pascal P:

P = PLP⊤L . (2.3)

15
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El siguiente Lema (que corresponde al Lema 1 de ([2])) nos proporciona una factorización bidiagonal
de la matriz triangular inferior de Pascal. Observemos que, en este caso, no obtenemos la factorización
bidiagonal mediante la eliminación de Neville.

Lema 2. La matriz triangular inferior de Pascal dada por (2.2) satisface

PL =


1
0 1

. . . . . .
0 1

1 1




1
0 1

. . . . . .
1 1

1 1

 . . .


1
1 1

. . . . . .
1 1

1 1

 (2.4)

Demostración. Sea Fi (con 1≤ i≤ n−1) la matriz n×n

Fi =



1
0 1

. . . . . .
0 1

1 1
. . . . . .

1 1


(n− i+1)- ésima fila←−−−−−−−−−−−

y sea PL
(k) = (qi j)

(k)
1≤i, j≤n la matriz PL

(k) = F1F2...Fk. Vamos a probar por inducción sobre k que

q(k)i j = q(k)i−1, j−1 +q(k)i−1, j, 1≤ i≤ n, n− k ≤ j ≤ n (2.5)

definiendo q(k)i0 = q(k)0 j = 0, con 1 ≤ i, j ≤ n y q(k)00 = 1. Como PL
(k) es una matriz triangular inferior con

1′s en la diagonal, se cumple (2.5) ∀k con i≤ j, y en particular para la última columna de PL
(k).

Por lo tanto, solo tenemos que probar que (2.5) es válido para i > j con j = n−k,n−k+1, ...,n−1.
Para k = 1 es obvio. Suponiendo que (2.5) se cumple para k−1 vamos a probar que se satiface para

todo k.
Notemos que PL

(k) se puede obtener a partir de PL
(k−1) añadiendo a cada una de las columnas n−

k,n− k+1, ...,n−1 la siguiente.
Si n− k ≤ j ≤ n−1,

q(k)i j = q(k−1)
i j +q(k)i, j+1, ∀i (2.6)

y por la hipótesis de inducción, para i < n, se tiene

q(k)i j = q(k−1)
i+1, j+1, n− k ≤ j ≤ n−1. (2.7)

Si n− k ≤ j ≤ n−1 y i≤ n, a partir de (2.6), (2.7) se llega a (2.5).
Teniendo en cuenta (2.5) para k = n−1 vamos a probar que

q(n−1)
i j = (F1F2 . . .Fn−1)i j =

(
i−1
j−1

)
, si i≥ j,

es decir qi j de (2.2).
Lo probaremos por inducción en las filas i de PL

(n−1) para i = 1, ...,n. Esta condición se satisface
claramente para la primera fila. Suponiendo que es válida para 1, ..., i−1 vamos a probar que también se
cumple para i:

Si 1 < j < i, a partir de (2.5) tenemos por hipótesis de inducción

q(n−1)
i j =

(
i−2
j−2

)
+

(
i−2
j−1

)
=

(
i−1
j−1

)
.

Si j = 1, entonces tenemos por hipótesis de inducción, q(n−1)
i1 = q(n−1)

i−1,1 =
(i−2

0

)
= 1 =

(i−1
0

)
. Por

último, si i = j, q(n−1)
ii = 1 y con esto se termina la demostración.
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Si juntamos las expresiones de las factorizaciones (2.3) y (2.4) obtenemos la factorización bidiagonal
de la matriz P que llamaremos

BD(P) =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 .

En este caso, evidentemente, la factorización bidiagonal de la matriz de Pascal se obtiene con HRA
al ser todas sus entradas 1’s. Además, todas las operaciones comentadas en el Capítulo 1 se van a poder
realizar con alta precisión relativa ya que tenemos BD(A) con HRA. En particular, los valores propios
y la inversa de P. Por otro lado, esta factorización también puede utilizarse como prueba de la total
positividad de una matriz de Pascal.

Corolario 3. Una matriz de Pascal P es TP.

Demostración. Por la fórmula (2.4) y el Corolario 1 del Capítulo 1, PL es TP ya que es producto de
matrices TP puesto que las matrices bidiagonales no negativas son claramente TP. Por la fórmula (2.3) y
de nuevo por el Corolario 1 tenemos que P también es TP por ser producto de matrices TP.

2.3. Matrices de Pascal generalizadas

Comenzamos este apartado con una primera generalización de las matrices triangulares de Pascal y
de las simétricas de Pascal ([7], [4] y [23]).

Definición 8: Para cualquier número real x, la matriz triangular de Pascal generalizada de primer
tipo, Pn[x] se define como la (n+1)× (n+1) matriz triangular inferior con 1’s en la diagonal principal y

(Pn[x])i j := xi− j
(

i−1
j−1

)
, 1≤ j ≤ i≤ n+1

y la matriz simétrica generalizada de Pascal (n+1)× (n+1) Rn[x] viene dada por

(Rn[x])i j := xi+ j−2
(

i+ j−2
j−1

)
, 1≤ i, j ≤ n+1.

La definición anterior también se puede generalizar de la siguiente manera involucrando dos variables
(véase definición 3 de [7], [4] y [23]).

Definición 9: Para x,y ∈ R se define la (n+1)× (n+1) matriz Rn[x,y]

(Rn[x,y])i j := x j−1yi−1
(

i+ j−2
j−1

)
, 1≤ i, j ≤ n+1.

Observar que Rn[x] = Rn[x,x], por lo que Pn[1] es la matriz triangular inferior de Pascal y Rn[1] es la
matriz simétrica de Pascal.

Otra posible extensión de la definición 8 es la siguiente:

Definición 10: Sean x y λ dos números reales y n un entero no negativo. Definimos la notación xn|λ

así:

xn|λ :=

{
x(x+λ ) . . .(x+(n−1)λ ), si n > 0,
1, si n = 0.

(2.8)

La matriz de Pascal triangular inferior generalizada Pn,λ viene dada por

(Pn,λ [x])i j := x(i− j)|λ
(

i−1
j−1

)
, 1≤ j ≤ i≤ n+1 (2.9)
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donde n es un número natural y λ y x son números reales.

Observamos que con el caso particular λ = 0 llegamos a la matriz de Pascal generalizada de primer
tipo Pn,0[x] = Pn[x].

La definición anterior de Pn,λ [x] se puede generalizar al caso de dos variables x e y de la siguiente
forma:

Definición 11: Sea Pn,λ [x,y] la matriz dada por

(Pn,λ [x,y])i, j := x(i−1)λ y( j−1)λ
(

i−1
j−1

)
. (2.10)

Observemos que Pn[x,y] := Pn,0[x,y].

2.4. Factorizaciones bidiagonales de las matrices de Pascal generalizadas

El resultado siguiente proporciona la factorización bidiagonal de la matriz de Pascal generalizada
Pn,λ [x].

Teorema 2.1. Sean x,λ ∈ R y n ∈ N y Pn,λ [x] la (n+ 1)× (n+ 1) matriz triangular inferior dada por
(2.9).

(I) Si x ̸= kλ para k =−n+1, ...,0, ...,n−1 se tiene que

(BD(Pn,λ [x]))i j =


1, si i = j,
x+(i−2 j)λ , si i > j,
0, si i < j.

(2.11)

(II) Si x = kλ para algunos k ∈ {0, . . . ,n−1}, se tiene que

(BD(Pn,λ [x]))i j =


1, si i = j,
x+(i−2 j)λ , si i > j, j ≤ k,
0, en otro caso .

(2.12)

(III) Si x =−kλ para algunos k ∈ {0, . . . ,n−1}, se tiene que

(BD(Pn,λ [x]))i j =


1, si i = j,
x+(i−2 j)λ , si 0≤ i− j ≤ k,
0, en otro caso .

(2.13)

Demostración. Supongamos en primer lugar que x ̸= kλ para k = −n+ 1, ...,0, ...,n− 1. Utilizamos
el primer paso de la eliminación de Neville de A = (ai j)1≤i, j≤n+1, donde ai j := (Pn,λ [x])i, j para i, j =
1, ...,n+1:

a(2)i j = ai j−
ai1

ai−1,1
ai−1, j = ai j− (x+(i−2)λ )ai−1, j, i > j ≥ 1.

Aplicando (2.8) a la fórmula anterior obtenemos

a(2)i j = x(i− j)|λ
(

i−1
j−1

)
− (x+(i−2)λ )x(i− j−1)|λ

(
i−2
j−1

)
.

Por la fórmula (2.9), tenemos que

a(2)i j = ((x+ i− j−1)λ )
(

i−1
j−1

)
− (x+(i−2)λ )

(
i−2
j−2

)
)x(i− j−1)|λ =
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x
(

i−2
j−2

)
+

(i− j−1)(i−1)!
( j−1)(i− j)!

λ − (i−2)(i−2)!
( j−1)!(i− j−1)!

λ

)
x(i− j−1)λ .

Después de varios cálculos deducimos que

a(2)i j =

(
x
(

i−2
j−2

)
−λ

(
i−2
j−2

))
x(i− j−1)λ =

(
i−2
j−2

)
(x−λ )(i− j)λ .

Observamos que a(2)i j = (Pn,λ [x])
(2)
i j = (Pn,λ [x−λ ])i−1, j−1 para i > j ≥ 2 y, por tanto, se tiene que la

matriz (Pn,λ [x])(2)[2, . . . ,n+1] = (Pn,λ [x−λ ])[1, . . . ,n].
A partir de ahí, se deduce que

(Pn,λ [x])
(k+1)
i j = (Pn,λ [x− kλ ])i−k, j−k para i > j ≥ k+1

y los multiplicadores del k-ésimo paso de la eliminación de Neville Pn,λ [x] vienen dados por la expresión
x− (k− 1)λ +(i− k− 1)λ para i = k+ 1, . . . ,n+ 1, y con esto demostramos (2.11). Asumimos ahora
que x = kλ para algún k ∈ {0, . . . ,n−1}. Siguiendo la demostración anterior vemos que (Pn,λ [x]

(k+1)
i j ) =

(Pn,λ [0])i−k, j−k y la EN acaba en el paso k+1. Por tanto, esto prueba (II).
Por último, si x = −kλ para algún k ∈ {0, . . . ,n− 1}, x(i− j)|λ = 0 para i− j > k. Entonces, las

n− k subdiagonales inferiores ya son cero y los multiplicadores asociados también lo son ya que el
procedimiento de eliminación no se realiza en esas entradas. Con esto obtenemos que se satisface (III).

Es inmediato ver que la matriz Pn,λ [x,y] puede ser expresada como el producto de Pn,λ [x] y de una
matriz diagonal:

Pn,λ [x,y] = Pn,λ [x]diag(1,y
1
λ , ...,y

n
λ ), (2.14)

con lo que también tenemos una factorización bidiagonal de Pn,λ [x,y].
Observemos por (2.11), (2.12), (2.13) y (2.14) que las factorizaciones bidiagonales de Pn,λ [x] y

Pn,λ [x,y] pueden involucrar restas y por tanto, no está garantizada de antemano la HRA. De hecho, no
todas las matrices de Pascal generalizadas son TP. El siguiente resultado, correspondiente al Corolario 7
del artículo [7], caracteriza cuándo lo son.

Corolario 4. Sea Pn,λ [x] dada por (2.9) con x,λ ∈ R y n ∈ N. Entonces, Pn,λ [x] es una matriz TP si y
solo una de las siguientes condiciones se cumplen:

(I) x≥ (n−1)|λ |.

(II) x = k|λ | para k = 0, · · · ,n−1.

Demostración. Por el Teorema 2.1 sabemos que Pn,λ [x] admite una factorización como producto de ma-
trices bidiagonales. Si (I) o (II) se cumplen, entonces todas las matrices bidiagonales serán no negativas y
TP. Por tanto, dicho producto será también TP (véase el Corolario 1 del Capítulo 1). Para el recíproco, si
Pn,λ [x] es TP, dado que también es no singular, admite una factorización bidiagonal única por el Teorema
1.4. Además, esta factorización bidiagonal estará dada por el Teorema 2.1 y los mi j’s serán no negativos.
Entonces, o bien (I) o bien (II) se cumplen.

Podemos dar una generalización de Pn,λ [x,y] en términos de la sucesión arbitraria a = (an)n≥0

(Pn,λ [x,y,a])i, j := a j−1x(i−1)|λ y( j−1)|λ
(

i−1
j−1

)
,

y así también deducimos

Pn,λ [x,y,a] = Pn,λ [x]diag(a0,a1y
1
λ , . . . ,any

n
λ ). (2.15)
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Observamos que la matriz Pn,λ [x,y] = Pn,λ [x,y,1], donde 1 es la sucesión formada por 1’s. Usan-
do (2.15) y el teorema anterior podemos deducir una expresión para la factorización bidiagonal de
Pn,λ [x,y,a], BD(Pn,λ [x,y,a]). Por ejemplo, si x ̸= kλ para k = −n+ 1, ...,0, ...,n− 1, su factorización
bidiagonal viene dada por

(BD(Pn,λ [x,y,a]))i j =


a j−1y( j−1)|λ , si i = j,
x+(i−2 j)λ , si i > j,
0, si i < j.



Capítulo 3

Alta precisión relativa para matrices de
q-enteros

3.1. Introducción

El cálculo cuántico (véase [18]) utiliza q-enteros y coeficientes q-binomiales entre otros conceptos
extinguidos. Esto propicia el uso de matrices de q-enteros. Muchos cálculos algebraicos (cálculo de
valores propios, valores singulares e inversas) de estas matrices pueden realizarse con HRA.

En este capítulo comenzaremos viendo en el apartado 3.2 qué es un q-entero y algunas de sus pro-
piedades. Posteriormente, en el apartado 3.3, daremos la factorización bidiagonal de las matrices de
q-Pascal. Observamos así que esta factorización bidiagonal (para q ̸= 0) no es tan sencilla como la de las
matrices de Pascal vista en el capítulo anterior.

Finalmente, en el apartado 3.4, introduciremos los números de q-Stirling y daremos la factorización
de las matrices con números de q-Stirling.

3.2. q-Enteros y sus propiedades

Dado un número real positivo q y un número real r, definimos el q-entero [r] como

[r] :=

{
1+q+ ...+qr−1 = 1−qr

1−q , si q ̸= 1,

r, si q = 1,

el q-factorial [r]! como

[r]! :=

{
[r][r−1]...[1], si q ̸= 1,
r!, si q = 1,

el factorial q-desplazado como

(a;q)0 := 1, (a;q)n :=
n

∏
k=1

(1−aqk−1),

con n ∈ N, a ∈ R, q ∈ (0,1), y el coeficiente q-binomial
( i

j

)
como(

i
j

)
:=

[i]!
[ j]![i− j]!

.

Los coeficientes q-binomiales cumplen las siguientes relaciones de recurrencia(
i
j

)
=

(
i−1
j−1

)
+q j

(
i−1

j

)
, (3.1)
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i
j

)
= qi− j

(
i−1
j−1

)
+

(
i−1

j

)
, (3.2)

y además satisfacen la q-análoga identidad de Vandermonde (véase (12) de [8]):(
m+n

k

)
=

k

∑
j=0

q(k− j)(m− j)
(

m
j

)(
n

k− j

)
.

Se define también la matriz triangular inferior de coeficientes q-binomiales, PL,q, cuyas entradas no
nulas vienen dadas por

(PL,q)i, j =

(
i−1
j−1

)
, 1≤ j ≤ i≤ n+1, (3.3)

y su equivalente triangular superior PU,q := P⊤L,q.
Definimos por último la matriz simétrica de q-Pascal Pq como la matriz simétrica de coeficientes

q-binomiales :

(Pq)i j =

(
i+ j−2

i−1

)
, 1≤ i, j ≤ n+1. (3.4)

3.3. Factorización bidiagonal de las matrices de q-Pascal

Este primer resultado da una factorización bidiagonal de PL,q con HRA. Además, también muestra
que es una matriz TP. En consecuencia, se pueden realizar con HRA cálculos algebraicos mencionados
en el Capítulo 1, como la obtención de valores propios o de la inversa.

Teorema 3.1. Sea PL,q la matriz (n+1)× (n+1) dada por (3.3). Entonces PL,q es TP y la factorización
bidiagonal de PL,q viene dada por

(BD(PL,q))i j =


1, si i = j,
q j−1, si i > j,
0, en otro caso ,

(3.5)

que puede ser calculada con HRA.

Demostración. Vemos que los pivotes de la factorización de la EN de PL,q vienen dados por

pi j = q(i− j)( j−1), 1≤ j ≤ i≤ n+1, (3.6)

y los multiplicadores por
mi j = q j−1, 1≤ j < i≤ n+1. (3.7)

Sea A := PL,q y sea A(k) = (ai j)
(k)
1≤i, j≤n+1 la matriz obtenida después de aplicarle los k−1 pasos de la

EN a A para k = 2, ...,n+1.
Primero probamos por inducción sobre k ∈ {2, . . . ,n+1} que

a(k)i j = q(i− j)(k−1)
(

i− k
j− k

)
, k ≤ j ≤ i≤ n+1. (3.8)

Para k = 2, usando el primer paso de la EN y (3.2), tenemos que

a(2)i j = ai j−
ai1

ai−1,1
ai−1, j = ai j−ai−1, j =

(
i−1
j−1

)
−
(

i−2
j−1

)
=

(
i−2
j−2

)
qi−1,

para 2≤ j ≤ i≤ n+1.
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Por tanto, ahora suponemos que (3.8) se cumple para algunos k ∈ {2, . . . ,n} y tomamos el k-ésimo
paso de la EN para probar que (3.8) se cumple para k+1:

a(k+1)
i j = a(k)i j −

a(k)ik
ai−1,k

a(k)i−1, j, k+1≤ j ≤ i≤ n+1.

Por hipótesis de inducción tenemos:

a(k+1)
i j = a(k)i j −

q(i−k)(k−1)
( i−k

k−k

)
q(i−1−k)(k−1)

(i−1−k
k−k

)a(k)i−1, j =

= q(i− j)(k−1)
(

i− k
j− k

)
−qk−1q(i−1− j)(k−1)

(
i−1− k

j− k

)
=

= q(i− j)(k−1)(

(
i− k
j− k

)
−
(

i−1− k
j− k

)
).

Aplicando (3.2) deducimos que

a(k+1)
i j = q(i− j)k

(
i− (k+1)

j− k

)
,

y por tanto, (3.8) se cumple para k+1.
Por último, concluimos que el pivote pi j = a( j)

i j viene dado por (3.8) para k = j y así (3.6) se cumple.
En consecuencia, como mi j =

pi j
pi−1, j

para i > j y (3.6) se cumple, tenemos que (3.7) también se
cumple.

Así, BD(PL,q) puede ser calculada mediante un algoritmo libre de restas usando (3.5) y por tanto,
se puede calcular con HRA. Además, por (3.5) PL,q se puede escribir como un producto de matrices
bidiagonales no negativas (y por tanto, TP) y entonces, por el Corolario 1 del capítulo 1, PL,q es TP.

Notemos que la matriz de Pascal (n+1)×(n+1) de coeficientes q-binominales Pq =(
(i+ j−2

j−1

)
)1≤i, j≤n+1

puede ser expresada como Pq =PL,qPU,q =PL,qP⊤L,q. Esta factorización se usa para deducir la factorización
bidiagonal de P a partir de la de PL. La HRA también está asegurada.

Finalmente, el Teorema 1.6 puede ser usado para deducir la factorización bidiagonal de P−1
L,q . Pode-

mos ver que

(BD(P−1
L,q ))i j =


1, si i = j,
−qi− j−1, si i > j,
0, en otro caso.

3.4. Matrices con números de q-Stirling

Sabemos que muchas matrices relevantes en combinatoria son matrices totalmente positivas (TP)
(véase [5] y [6]), es decir, todos sus menores son no negativos (véase [3] y [14]). Como hemos visto
anteriormente, bajo ciertas condiciones, muchos cálculos con matrices TP pueden realizarse con alta
precisión relativa.

Dentro de la combinatoria, los números de Stirling han aparecido en muchas aplicaciones (véase [1]
y [20]).

Los números de Stirling de primer tipo son los coeficientes s(n,k) de la expansión:

(x)n =
n

∑
k=0

s(n,k)xk

donde (x)n (símbolo de Pochhammer) denota el factorial descendente,
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(x)n := x(x−1)(x−2) · · ·(x−n+1)

y
s(n,k) = s(n−1,k−1)− (n−1)s(n−1,k).

Nótese que (x)0 := 1 porque es un producto vacío.
Los números de Stirling de primer tipo sin signo, c(n,k), se definen como:

c(n,k) := |s(n,k)|= (−1)n−ks(n,k).

Es decir, estos números satisfacen la siguiente fórmula de recurrencia (véase [1] y [20]):

c(n,k) = s(n−1,k−1)+(n−1)s(n−1,k).

Los números de Stirling de segundo tipo S(n,k) cuentan el número de formas de dividir un conjunto
de n elementos en k partes:

S(n,k) := card({B|card(B) = k ,B⊂ Nn})
donde el conjunto Nn = [1,n]∩N es el conjunto de los primeros n enteros.

Estos números cumplen la siguiente fórmula de recurrencia (véase [1] y [20]):

S(n,k) = S(n−1,k−1)+ kS(n−1,k).

Estas tres definiciones son casos particulares de las más generales que vamos a usar en este apartado,
en el que introduciremos números de q-Stirling. Obtendremos la factorización bidiagonal de las matrices
Sq con números de q-Stirling de primer tipo. Comenzaremos con las matrices Cq que contienen números
de q-Stirling de primer tipo sin signo. Dado que las matrices Bq con números de q-Stirling de segundo
tipo son las inversas de las matrices con números de q-Stirling de primer tipo, usaremos los resultados
de la factorización bidiagonal de la inversa de una matriz triangular TP (vistos en el apartado 1.4 del
Capítulo 1) antes de introducir la factorización bidiagonal de las matrices Bq.

Pasamos a definir los números de q-Stirling de primer y segundo tipo, junto con las matrices formadas
por ellos.

Definición 12: Los números de q-Stirling de primer tipo, Sq = (si j)1≤i, j≤n+1, satisfacen la siguiente
relación

si j = si−1, j−1− [i−1]si−1, j, (3.9)

con s00 = 1, si0 = 0 para i > 0 y s0 j = 0 para j > 0.

Definición 13: Los números de q-Stirling sin signo de primer tipo, Cq = (ci j)1≤i, j≤n+1, cumplen la
siguiente relación:

ci j = ci−1, j−1 +[i−1]ci−1, j, (3.10)

con c00 = 1, ci0 = 0 para i > 0 y c0 j = 0 para j > 0.

Las entradas de Sq son iguales en valor absoluto a las de Cq = (ci j)1≤i, j≤n+1 dadas por (3.10). La di-
ferencia radica en su patrón de signos: Sq presenta un patrón de tablero de ajedrez con signos alternantes,
mientras que Cq ≥ 0.

Definición 14: Los números de q-Stirling de segundo tipo, Bq = (ci j)1≤i, j≤n+1, satisfacen la siguiente
relación

bi j = bi−1, j−1 +[ j]bi−1, j, (3.11)

con b00 = 1, bi0 = 0 para i > 0 y b0 j = 0 para j > 0.

Haciendo q = 1 se puede comprobar que obtenemos los números de Stirling de primer y segundo
tipo definidos anteriormente, respectivamente.

Vamos a deducir ahora la factorización bidiagonal de la matriz Cq. En particular, este teorema también
sirve como prueba de que Cq es una matriz TP.
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Teorema 3.2. Sea Cq = (ci j)1≤i, j≤n+1 la matriz cuya entrada (i,j) es el número de q-Stirling de primer
tipo ci j dado por (3.10). Entonces Cq es TP y

BD(Cq) =


1, si i = j,
[i− j], si i > j,
0, en otro caso.

(3.12)

se puede calcular con HRA.

Demostración. Usando (3.10), realizamos el primer paso de la EN de Cq:

c(2)i j = ci j−
ci1

ci−1,1
ci−1, j = ci j− [i−1]ci−1, j = ci−1, j−1, 2≤ j ≤ i≤ n+1.

Observemos que p11 = 1 y mi1 = [i−1] para i > 1. Además, la matriz obtenida después de aplicar un
paso de la eliminación de Neville cumple que C(2)

q [2, · · · ,n+1] = Cq[1, · · · ,n]. Entonces, deducimos que
p j j = 1 y mi j = [i− j] para i > j ≥ 2. Observamos ahora que la factorización bidiagonal de Cq (que es
única) corresponde a (1.5) con D y todas las matrices Gi iguales a la matriz identidad y las matrices Fi

dadas por (1.6) y mi j = [i− j] para i > j ≥ 2. Por tanto, Cq es un producto de matrices bidiagonales no
negativas (y por tanto, TP) y entonces, por el Teorema 3.1 de [3], Cq es TP. Observemos que Cq se puede
calcular con HRA.

Usando (3.9) en lugar de (3.10), la misma demostración del teorema anterior nos lleva a

BD(Sq) =


1, si i = j,
−[i− j], si i > j,
0, en otro caso.

(3.13)

A pesar de que Sq no es una matriz TP, está estrechamente relacionada con esta clase de matrices, ya
que es la inversa de la matriz Bq.

El siguiente teorema muestra que las dos matrices de números de q-Stirling son inversas entre sí.

Teorema 3.3. Las dos matrices con números de q-Stirling son inversas entre sí:

∑
k

sikbk j = δi j

donde δi j := 1 si i = j y δi j := 0 si i ̸= j.

El corolario siguiente nos da la factorización bidiagonal de las matrices con números de q-Stirling
de segundo tipo.

Corolario 5. Sea Bq = (bi j)1≤i, j≤n+1 la matriz cuya entrada (i,j) es el número de q-Stirling de segundo
tipo bi j dado por (3.11). Entonces Bq es TP y

BD(Bq) =


1, si i = j,
[ j], si i > j,
0, en otro caso.

Demostración. Por el Teorema 3.3, tenemos que Sq es la inversa de Bq. Por (3.13), conocemos la fac-
torización bidiagonal de Sq. Por último, utilizando el Teorema 1.6 que nos dice cuál es la forma de la
factorización bidiagonal de la matriz inversa, deducimos la factorización bidiagonal de Bq.





Bibliografía

[1] M. ABRAMOWITZ AND I. STEGUN, Stirling Numbers of the First Kind, en: Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathematical Tables, Dover, 1972, p. 824.

[2] P. ALONSO, J. DELGADO, R. GALLEGO, AND J. M. PEÑA, Conditioning and accurate compu-
tations with Pascal matrices. J. Comput. Appl. Math., 252: 21–26, 2013.

[3] T. ANDO, Totally positive matrices. Linear Algebra Appl., 90: 165–219, 1987.

[4] M. BAYAT AND H. TEIMOORI, The linear algebra of the generalized Pascal functional matrix,
Linear Algebra Appl., 295: 81–89, 1999.

[5] F. BRENTI, Combinatorics and total positivity, J. Combin. Theory, 175–218, 1995.

[6] F. BRENTI, The applications of total positivity to combinatorics, en: Total positivity and its ap-
plications, Mathematics and Its Applications, Vol 359. Kluwer Academic Publishers, Dordrecht,
1996, pp. 451–473.

[7] J. DELGADO, H. ORERA, AND J. M. PEÑA, Accurate bidiagonal decomposition and computations
with generalized Pascal matrices J. Comput. Appl. Math., 391, 113443, 2021.

[8] J. DELGADO, H. ORERA, AND J. M. PEÑA, High relative accuracy with matrices of q-integers,
Numer Linear Algebra Appl., 28: e2383, 2021.

[9] J. DELGADO AND J. M. PEÑA, Fast and accurate algorithms for Jacobi–Stirling matrices, Applied
Mathematics and Computation, 236: 253–259, 2014.

[10] J. DEMMEL, I. DUMITRIU, O. HOLTZ, AND P. KOEV, Accurate and efficient expression evaluation
and linear algebra. Acta Numer., 17: 87–145, 2008.

[11] J. DEMMEL, M. GU, D. EISENSTAT, I. SLAPNIČAR, K. VESELIĆ, AND Z.DRMAČ, Computing
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