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Resumen

Esta memoria se sitia dentro del andlisis numérico, que es una rama de las matematicas y la informéa-
tica que se encarga del desarrollo, andlisis y aplicacién de métodos numéricos para resolver problemas
matematicos de los que no se han podido encontrar soluciones analiticas o en los que se necesita una
aproximacioén numérica de las soluciones.

Este campo abarca una amplia gama de técnicas, como métodos de aproximacidn, interpolacion,
integracién numérica, resolucién de ecuaciones diferenciales, entre otros. En este trabajo nos centramos
en conseguir métodos numéricos con alta precision relativa para resolver problemas de dlgebra lineal
como valores propios, valores singulares, inversa de una matriz o la resolucion de sistemas de ecuaciones
lineales. La alta precision relativa es muy deseable, pero solo se ha conseguido hasta ahora en muy pocos
casos. En particular, para ciertas clases de matrices estructuradas.

En esta memoria, vamos a hacer uso de las matrices totalmente positivas (TP), que son matrices con
todos sus menores no negativos, y que presentan propiedades que han permitido obtener algoritmos con
alta precision relativa para varias subclases de las mismas. Ademads, necesitamos un algoritmo alterna-
tivo a la eliminacién gaussiana, como es la eliminacién de Neville, que serd la herramienta bésica para
conseguir la factorizacion bidiagonal de una matriz cualquiera (veremos que es tnica). Esta factorizacién
bidiagonal nos va a proporcionar los pardmetros de partida necesarios para construir algoritmos con alta
precision relativa. Para asegurar dicha alta precision relativa usamos una condicién suficiente que con-
siste en prohibir las restas de nimeros de signos iguales, excepto cuando se trata de datos iniciales. Es
decir, el algoritmo solo puede realizar multiplicaciones, divisiones, sumas de nimeros reales con signos
iguales. El problema con la eliminacién de Neville aplicada a matrices TP es que involucra restas. Por
tanto, puede hacer falta conseguir la factorizacién bidiagonal por algtin procedimiento alternativo. En
esta memoria, consideramos tanto matrices de Pascal y sus generalizaciones como matrices de g-enteros.

Dada la factorizacion bidiagonal de una matriz TP no singular es posible llevar a cabo los célculos
necesarios para los problemas algebraicos mencionados anteriormente de manera implicita, mediante la
transformacién de las entradas de su factorizacién bidiagonal de tal manera que no se requieran restas.
Por lo tanto, el problema de realizar cdlculos con alta precisidn relativa con una matriz TP no singular se
transforma en el problema de encontrar su factorizacién bidiagonal con alta precision relativa.

En el primer capitulo introducimos algunos conceptos, notaciones y resultados bdsicos que son ne-
cesarios en el resto de la memoria. Empezamos considerando los errores que pueden aparecer en los
célculos computacionales y presentando la importancia de la alta precision relativa. A continuacion, in-
troducimos notaciones matriciales y la definicién y propiedades de las matrices totalmente positivas, que
serdn de gran utilidad en el resto del trabajo. También presentamos la eliminacién de Neville que es un
procedimiento utilizado para hacer ceros en las distintas columnas bajo la diagonal principal de la matriz
de partida. Ademads, presentamos la factorizacién bidiagonal de dicha matriz, que se obtiene tedricamen-
te a través de la eliminacion de Neville. Finalmente, damos algunas operaciones que se pueden realizar
con alta precision relativa en matrices totalmente positivas.

En el segundo capitulo consideramos las matrices de Pascal que, en particular, son matrices totalmen-
te positivas y simétricas, que presentan importantes aplicaciones en probabilidad, en combinatoria y en
andlisis numérico, entre otros campos. Estas matrices estdn mal condicionadas, siendo incluso peor con-
dicionadas que las matrices de Vandermonde. Aun asi, se pueden obtener algoritmos con alta precisién
relativa para el cdlculo de valores propios e inversas de matrices de Pascal, asi como para resolver cier-
tos sistemas lineales cuyas matrices de coeficientes son matrices de Pascal. Comenzamos introduciendo
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1AY Resumen

las definiciones de las matrices de Pascal de orden n y de las matrices de Pascal triangulares inferiores
de orden n. Continuaremos viendo la factorizacién bidiagonal de estas matrices, que es extraordinaria-
mente simple. Posteriormente, definimos las matrices de Pascal generalizadas y algunas notaciones que
necesitaremos mas adelante. Por dltimo, describimos la factorizacion bidiagonal de este tipo de matrices.

En el dltimo capitulo presentamos las matrices de g-enteros. Muchos célculos algebraicos como
el céalculo de valores propios, valores singulares e inversas de estas matrices se pueden realizar con
alta precision relativa. Comenzamos viendo qué es un g-entero y algunas de sus propiedades. También
estudiamos qué aspecto tiene la factorizacién bidiagonal de las matrices de g-Pascal. Observamos que
esta factorizacion bidiagonal (para ¢ # 0) no es tan sencilla como la de las matrices de Pascal vista en
el capitulo anterior. Finalmente, introducimos los nimeros de g-Stirling y la factorizacién bidiagonal de
las matrices con nimeros de g-Stirling.



Abstract

This work falls within the field of numerical analysis, which is a branch of mathematics and computer
science that deals with the development, analysis, and application of numerical methods. It is used to
solve mathematical problems for which analytical solutions have not been found or where numerical
approximations of solutions are needed.

This field encompasses a wide range of techniques among which are remarkable approximation
methods, interpolation, numerical integration, and solving differential equations. In this work, we fo-
cus on achieving high relative accuracy (HRA) numerical methods to solve linear algebra problems such
as eigenvalues, singular values, matrix inversion, or the solution of linear systems of equations. High
relative accuracy is desirable, but it has only been achieved in very few cases so far. In particular, for
certain classes of structured matrices.

In this work, we will use totally positive (TP) matrices, which are matrices with all their minors non-
negative and exhibit properties that have enabled the development of algorithms with HRA for several
subclasses of TP matrices. Additionally, we need an alternative algorithm to Gaussian elimination, such
as Neville elimination, which will be the basic tool for achieving the bidiagonal factorization of any
matrix (we will see that it is unique). This bidiagonal factorization will provide us with the necessary
starting parameters to construct algorithms with high relative accuracy. To ensure such HRA, we use a
sufficient condition that consists of prohibiting subtractions of numbers of the same sign, except when
dealing with initial data. That is, the algorithm can only perform multiplications, divisions, and additions
of real numbers with equal signs. The problem with Neville elimination applied to TP matrices is that
it involves subtractions. Therefore, an alternative procedure may be necessary to achieve the bidiagonal
factorization. In this work, we consider both Pascal matrices and their generalizations as well as g-
integers matrices.

Given the bidiagonal factorization of a nonsingular TP matrix, it is possible to perform the required
calculations for the algebraic problems implicitly. This is achieved by transforming the entries of its
bidiagonal factorization in a manner that avoids the need for subtractions. Therefore, the problem of
performing calculations with HRA with a nonsingular TP matrix is transformed into the problem of
finding its bidiagonal factorization with HRA.

In the first chapter, we introduce some concepts, notations, and basic results that are necessary th-
roughout the work. We start by considering the errors that may arise in computational calculations and
highlighting the importance of high relative accuracy. Next, we introduce matrix notations and the defi-
nition and properties of totally positive matrices, which will be very useful in the rest of the work. We
also present Neville elimination, which is a procedure used to create zeros in different columns below
the main diagonal of the starting matrix. Furthermore, we discuss the bidiagonal factorization of such a
matrix, which is theoretically obtained through Neville elimination. Finally, we provide some operations
that can be performed with high relative accuracy on totally positive matrices.

In the second chapter, we consider Pascal matrices, which are, in particular, totally positive and sym-
metric. They have significant applications in probability, combinatorics, and numerical analysis, among
other fields. These matrices are ill-conditioned, even worse conditioned than Vandermonde matrices. No-
netheless, algorithms with high relative accuracy can be obtained for calculating eigenvalues and inverses
of Pascal matrices, as well as for solving certain linear systems whose coefficient matrices are Pascal ma-
trices. We begin by introducing the definitions of Pascal matrices of order n and lower triangular Pascal
matrices of order n. We then proceed to discuss the bidiagonal factorization of these matrices, which is
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VI Abstract

remarkably simple. Subsequently, we define generalized Pascal matrices and some notations that we will
need later on. Finally, we describe the bidiagonal factorization of this type of matrices.

In the last chapter, we introduce g-integers matrices. Many algebraic calculations such as eigenvalue
computation, singular values, and inverses of these matrices can be performed with HRA. We start with
the concept of g-integer and some of its properties. We also study the form of the bidiagonal factorization
of g-Pascal matrices. Observing that this bidiagonal factorization (for g # 0) is not as simple as that of
Pascal matrices seen in the previous chapter. Finally, we introduce g-Stirling numbers and the bidiagonal
factorization of matrices with g-Stirling numbers.
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Capitulo 1

Conceptos y resultados basicos

1.1. Introduccion

Este capitulo tiene como objetivo introducir conceptos, notaciones y resultados basicos para el resto
de la memoria.

En el élgebra lineal numérica, la bisqueda de la precision y la exactitud en los cdlculos es esencial
para garantizar la validez de los resultados obtenidos. Los errores inherentes a los métodos numéricos
pueden surgir debido a la limitada precision de las representaciones numéricas utilizadas en los algorit-
mos, lo que puede impactar significativamente en la fiabilidad de los resultados. Es por ello que la alta
precision relativa es una propiedad muy deseable para mitigar la propagacién de errores y mejorar la
fiabilidad de los célculos.

El segundo apartado de este capitulo presenta los conceptos relacionados con los errores y la alta
precision relativa.

En el tercer apartado de este primer capitulo vamos a introducir notaciones matriciales y las matri-
ces totalmente positivas, ya que estas estructuras matriciales especiales presentan propiedades que son
utilizadas para mejorar la estabilidad numérica en diversos problemas.

En el cuarto apartado presentamos la eliminacién de Neville y la factorizacién bidiagonal. Esta fac-
torizacién bidiagonal nos proporciona los pardmetros de partida para poder construir algoritmos con alta
precision relativa, con tal de que dichos pardmetros también los obtengamos con alta precision relativa.

Finalmente, en el dltimo apartado introducimos algunas operaciones que se pueden realizar con alta
precision relativa en matrices totalmente positivas.

1.2. Erroresy calculos con alta precision relativa

En este apartado, consideraremos los errores que pueden aparecer en los cdlculos computacionales y
presentaremos la importante nocién de alta precision relativa, que serd muy importante en esta memoria.

Comenzaremos con definiciones y tipos de errores. Continuaremos presentando los errores backward
y forward, y después consideraremos el condicionamiento. Finalmente, trataremos de la cancelacién y
de la alta precision relativa.

1.2.1. Definiciones y tipos de errores
Comenzaremos con algunas definiciones basicas de errores.

Definicion 1:  Sea £ una aproximacién del nimero real x. El error absoluto cometido al hallar £ es

Eqps(X) = [x—R|, y su error relativo Ey (%) = % cuando x # 0.

Una definicién equivalente del error relativo es E(£) = |p| donde £ = x(1+ p). Cuando el signo es
importante en el error absoluto, hablaremos simplemente del error x — %.
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El error relativo estd relacionado con la nocién de digitos significativos correctos (o cifras significa-
tivas correctas). Los k digitos significativos en un nimero son el primer digito no nulo y los £ — 1 digitos
que le siguen. Es decir, una aproximacion x a X tiene p digitos significativos correctos si X y x redondean
al mismo ndmero con p digitos significativos.

Cuando x y X son vectores, la definicién anterior se extiende de esta forma:

Definicion 2:  El error relativo cometido al calcular el vector £, definido cuando x # 0, es

o _ [E—=x]]
Ew(X) =
* [l
Para las normas mds usadas ||x||« := max;|x;|, ||x]|1 := Xilxl], y [|x]|]2 := VxTx, la desigualdad
lx—x|| 1 _ _
<< —.107P
Il 2

implica que las componentes £; con |£;| = ||x|| tienen alrededor de p digitos correctos significativos pero,
para componentes menores, la desigualdad simplemente acota el error.

Esto motiva la siguiente definicién:
Definicion 3:  El error relativo componente a componente del vector £, definido cuando x; # 0, es
max %

Hay tres fuentes principales de errores en el cdlculo numérico: de redondeo, incertidumbre en los
datos y truncamiento.

Por lo general, los efectos de los errores en los datos son mas ficiles de entender que los efectos de
los errores de redondeo cometidos durante un célculo, ya que los errores en los datos pueden analizarse
utilizando teoria de perturbaciones para el problema en cuestién, mientras que los errores de redondeo

intermedio requieren un andlisis especifico para el método dado.

1.2.2. Precision, errores forward y errores backward

Cuando trabajamos computacionalmente con aritmética de precision finita, la precision (precision
también en inglés) es la exactitud con la que se realizan las operaciones aritméticas bdsicas +,—,*,/ y
en la aritmética de punto flotante se mide mediante la unidad de redondeo u.

Pero, hay un segundo sentido de la palabra precisién (que corresponde en inglés a accuracy) y que
se refiere al error absoluto o relativo de una cantidad aproximada.

Suponemos que una aproximacién j de y = f(x) se calcula en una aritmética de precisién u, donde f
es una funcidn escalar real de variable real escalar. Al error (absoluto o relativo) obtenido al calcular y lo
llamamos error forward (o progresivo).

En lugar de enfocarnos en el error relativo de y nos podemos preguntar: ;para qué conjuntos de datos
hemos resuelto realmente nuestro problema?, es decir, ;para qué Ax se cumple § = f(x+ Ax)? En general,
habra muchos Ax, pero necesitamos encontrar el mas pequefio. El valor de |Ax|, a veces dividido por |x|
(en el caso relativo), se llama error backward (o regresivo). Aunque nos interesan los errores forward,
suele ser mds facil hallar los errores backward, que se relacionan con los forward como se indica en el
apartado siguiente.

Un método para calcular y = f(x) se dice que es estable backward si, para cada x, § = f(x+ Ax)
para algunos Ax pequefios. En general, un problema podra ser resuelto a través de varios métodos de
los cuales algunos serdn estables backward y otros no. De hecho, la estabilidad backward depende del
método utilizado.

1.2.3. Condicionamiento

La relacién entre el error backward y forward viene dada por el condicionamiento del problema, es
decir, la sensibilidad de la solucién a perturbaciones en los datos.
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Continuando con el ejemplo anterior y = f(x) cuya aproximacion satisface y = f(x+Ax). Asumiendo
que f es dos veces diferenciable, llegamos a la definicién del nimero de condicién

Sy _ 30\ A
donde
xf'(x)

C\X)=|—

=12
es el nimero de condicién de f. Si x o f es un vector, el nimero de condicién se define de manera andloga
usando normas.

En general, cuando en un problema tenemos bien definido el error forward, el error backward y el
nimero de condicién correspondientes, se da la relacion:

error forward < nimero de condicion - error backward

Una forma de interpretarla es viendo que la solucidn calculada para un problema mal condicionado
puede tener un error forward grande. Incluso si la solucién calculada tiene un error backward pequeio,
este error puede amplificarse por un factor tan grande como es el nimero de condicién.

Como el mal condicionamiento es intrinseco al problema, si queremos evitarlo debemos reparame-
trizar el problema inicial.

1.2.4. Cancelacion y alta precision relativa

La cancelacién se produce cuando se restan dos nimeros casi iguales. A menudo, pero no siempre,
es algo perjudicial.

Para obtener una mayor comprension de este fenémeno consideramos la resta (en aritmética exacta)
£=a—b,donde @=a(1+Aa)yb=b(1+Ab). Los términos Aa y Ab son los errores relativos. Tomando
X = a— b tenemos .

R 2 TR < ([ al el [
X a—Db la —b|

La cota del error relativo para £ es grande cuando |a — b|<|a|+ |b|, es decir, cuando hay una gran
cancelacion en la resta. Este andlisis muestra que la cancelacidn sustractiva puede amplificar considera-
blemente errores anteriores. Es importante darse cuenta de que la cancelacion no es siempre algo per-
judicial. En primer lugar, los nimeros que se estdn restando pueden ser libres de errores, como cuando
provienen de datos iniciales que se conocen exactamente. En segundo lugar, la cancelacién puede ser
un sintoma del mal condicionamiento intrinseco del problema y, por lo tanto, puede ser inevitable. Y, en
tercer lugar, el efecto de la cancelacién depende del papel que juegue el resultado en el cédlculo restante.

Para obtener resultados con varias cifras significativas correctas, buscamos que el error de nuestro
algoritmo satisfaga la siguiente relacion:

error forward relativo < Ku, para alguna constante K,donde u es la unidad de redondeo.

En este contexto, afirmamos que los cdlculos se han llevado a cabo con alta precision relativa (HRA,
de high relative accuracy). Sin embargo, lamentablemente, no es posible lograr la HRA para todos los
problemas. Un ejemplo sencillo que no puede realizarse con HRA es la evaluacién de la expresion
x+y+z (véase [10]). Como hemos comentado antes, las cancelaciones pueden conducir a errores
relativos grandes, aunque no siempre.

Por ejemplo, podemos realizar la resta de dos datos iniciales conocidos con precisién sin que se
produzca una cancelacién perjudicial. En cualquier caso, este fendmeno es algo que debemos tener en
cuenta al disefiar un método con alta precisién relativa (HRA).

Existe una condicidn suficiente para asegurar la alta precision relativa de un algoritmo (véase [11]).
Cuando las operaciones realizadas en el algoritmo incluyen sumas de nimeros del mismo signo, mul-
tiplicaciones, divisiones y restas de datos iniciales (entendiendo la resta como la diferencia entre dos
cantidades del mismo signo). Es decir, se prohiben las restas, excepto cuando se trata de datos iniciales.
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Para tener algoritmos que cumplan la condicién anterior, suele ser necesaria una reparametrizacion
del problema de partida. En el caso de las matrices especiales totalmente positivas que usaremos en esta
memoria (y que introducimos en el apartado siguiente) la reparametrizacién vendrd dada por usar una
factorizacion de las mismas (llamada factorizacién bidiagonal) en vez de las entradas de la matriz.

1.3. Notaciones matriciales y matrices totalmente positivas

Comenzamos definiendo las matrices totalmente positivas y estrictamente totalmente positivas.

Definicion 4:  Una matriz A = (a;;)1<; j<n con todos los menores no negativos se llama matriz total-
mente positiva (TP). Si todos los menores son estrictamente positivos la matriz se llama estrictamente
totalmente positiva (STP).

Las matrices TP y STP también se llaman totalmente no negativas y totalmente positivas, respectiva-
mente.

Estas clases de matrices tienen importantes aplicaciones en diversos campos como teoria de aproxi-
macioén, disefio geométrico asistido por ordenador, sistemas mecdnicos, combinatoria, estadistica, eco-
nomia, etc. (como se comenta en [3],[13],[14] y [21]).

Sea Qy , el conjunto de sucesiones estrictamente crecientes de k nimeros naturales menores o iguales
que n. Denotamos como A[a|f] la submatriz k x k de A conteniendo las a,..., 04 filas y las Bi,..., B
columnas (siendo & = (¢, ..., %), B = (P4, ..., Bx) dos sucesiones de Qx ,,). Si o= denotaremos A[]:=
Ala|a] ala correspondiente submatriz principal.

El siguiente teorema muestra una férmula cldsica para los menores del producto de dos matrices.

Teorema 1.1. Identidad de Cauchy-Binet para determinantes. Sean A, B matrices n x n. Entonces:

det(AB)[a|B] = ) detAla|w].detB[w|B] para o,B € Ok (1.1)

WEQkﬁ

La demostracién de este teorema se puede ver en la demostracién de la férmula (1.23) de [3].
Usando este mismo teorema, se puede deducir el siguiente resultado:

Corolario 1. Si A y B son matrices TP n X n, entonces AB es TP.

Veamos ahora como son las inversas de las matrices TP. Definamos para ello la matriz n x n diagonal
dada por

(-1

El siguiente resultado es consecuencia del Teorema 3.3 de [3].
Teorema 1.2. Si una matriz A n X n es TP no singular, entonces J, A"V, es TP

Observemos que, si A es TP, por el teorema anterior A~! tiene estructura de signos ajedrezada.
Otra propiedad interesante de las matrices TP no singulares es que sus menores principales son
estrictamente positivos.

Teorema 1.3. Si A es TP no singular entonces detA[o] > 0 para todo k'y o € Oy .

Una demostracion del teorema anterior se puede ver en el Corolario 3.8 de [3].

El Teorema 1.3 nos garantiza que, si A es TP no singular, entonces A admite una factorizacién LDU
con L matriz triangular inferior con 1’s en la diagonal principal, D matriz diagonal no singular y U matriz
triangular superior con 1’s en la diagonal principal. Ademads, se sabe que la factorizacion LDU es unica.
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Definicién 5:  Sea D = (d;;)i<i j<, una matriz diagonal denotada como D = diag(d,,...,d,) donde
di:=djparai=1,...,n.

Usando esta notacion, la matriz identidad n x n se expresa como I,, = diag(1,...,1).
Denotamos por E;(x) con i = 2,...,n la matriz bidiagonal elemental inferior cuya entrada (i,i — 1)
es X:

Ei(x) = . (1.2)

1

La matriz E,' (x) = (E;(x))" se llama matriz bidiagonal elemental superior. Las matrices Ey(x) cumplen
la propiedad:
Ei(x)Ej(y) = Ej(y)Ei(%), (1.3)

salvo |i — j| = 1 con xy # 0.
También se cumple que
Ei(x)"" = Ei(—x). (1.4)

1.4. Eliminacion de Neville y factorizacion bidiagonal

La eliminacion de Neville (EN) es un procedimiento utilizado para hacer ceros en las distintas co-
lumnas bajo la diagonal principal de la matriz A. Es considerado un procedimiento alternativo a la eli-
minacién Gaussiana en el que para hacer un cero en una fila afiadimos a cada una de ellas un multiplo
de la anterior. Sin embargo, en la eliminacién de Gauss se utiliza un mismo pivote para toda la columna.
Este proceso es muy util cuando trabajamos con ciertas clases de matrices como las TP.

Dada una matriz no singular A = (a;;)1<; j<n, la EN consiste en n — 1 etapas llegando a la siguiente
sucesion de matrices:

A=AD 5 A0 540 5 4@ 5 5 A 5 A0~y

donde U es una matriz triangular superior.

La matriz A® = (g j)gkg)l j<n S€ obtiene a partir de la matriz AK) = (g j)gkg)l j<n mediante una per-
mutacién de filas que traslada hacia abajo las filas con una entrada de ceros en la columna k-ésima por
debajo de la diagonal principal.

Para matrices TP, siempre se puede realizar la eliminacién de Neville sin cambios de filas. En el caso

en el que no sea necesaria una permutacién de filas en el paso k-ésimo, se obtiene que A% = A®)_ Por

tanto, A+ = (g j)gk;?lj)gn se obtiene a partir de A%¥) = (g; J)gkg)l j<n usando la férmula:
(k) ay (k) k< ici<nya® 0
k1) )i T o iy SRS SIS RYd g #0,
S = i~k
Y ~(K)
a en otro caso.

Vk=1,....n—1

El pivote (i, j) de la eliminacion de Neville se define de la siguiente manera: p;; := dfj) 1<j<i<n.

Si todos los pivotes son distintos de cero, se puede dar una expresion directa para calcularlos que usa
entradas o cocientes de menores de la matriz (véase Lema 2.6 de [15]):



pil = di,
det(Ali—j+1,...,il1,....]])

Capitulo 1. Conceptos y resultados basicos

1<i<n

Pij

Sii= jse dice que p;; es el pivote diagonal.
Se define también el multiplicador (i, j) de la eliminacién de Neville, con 1 < j <i <n asf:

~(J)

a _ _Pij

T det(Ali—j+ 1, i1, j—1])

si

1<j<i<n.

ij T picy?

a’\ #0

si

™

()

mijj = {

0,

i—1,j

=0

Los multiplicadores satisfacen que
mij=0=my; =0 Vh>Ii
Ademds, entre pivotes y multiplicadores se da la relacién
pij =0 m; =0.

La eliminacién de Neville completa de una matriz A consiste en realizar la eliminacién de Neville de
A para obtener U, y a continuacién proceder con la eliminacién de Neville de U ', la traspuesta de U. El
elemento pivote (i, j) (multiplicador) de la eliminacién de Neville completa de A es el de la eliminacién
de Neville de A si i > j y el elemento pivote (j,i) (multiplicador) de la eliminacién de U " si j > i.

En el caso de las matrices TP no singulares, estas pueden ser expresadas como un producto de
matrices bidiagonales no negativas. El siguiente resultado corresponde al Teorema 4.2 de la pagina 120
de [16].

Teorema 1.4. Sea A = (a;j)1<i, j<n una matriz TP no singular. Entonces, A admite una factorizacion de
la forma

A=F,_1F,_7..F1DG...G,_2G,—1 (1.5)

donde D es la matriz diagonal diag(p1...pun) con elementos diagonales mayores que cero y F;, G; son
matrices bidiagonales no negativas dadas por

1
0 1
F= 0o 1 : (1.6)
mirry 1
My p—i 1
1 0
1
0
Gi= L i ; (1.7)
1
ﬁ'ln,nft
1
Vie {l,...,n—1}. Ademds, las entradas m;; y i;; satisfacen
m,j:0:>mhj:O Vh > i, (1.8)
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;= 0=y =0 Yh>i, (1.9)

v la factorizacion es tinica.

En esta factorizacion, las entradas m;; y p;; son los multiplicadores y pivotes diagonales respectiva-
mente correspondientes a la eliminacion de Neville de A 'y las entradas m;; son los multiplicadores de la
ENde AT ( que coinciden con los de la EN de U 7.

El siguiente resultado muestra que la descomposicién bidiagonal también caracteriza las matrices TP
no singulares.

Teorema 1.5. Una matrix n X n A no singular es TP si y solo si puede ser factorizada de la siguiente
forma: D una matriz diagonal con entradas positivas, F;, G; dadas por (1.6) y (1.7) y las entradas m;; y
m;j niimeros no negativos.

Recordemos que un algoritmo puede ejecutarse con alta precision relativa si solo incluye productos,
divisiones, sumas de nimeros del mismo signo y restas de datos iniciales. Siendo A una matriz bidiagonal
TP no singular, Plamen Koev ([19]) disefia algoritmos eficientes para calcular, con alta precision relativa,
los valores propios, los valores singulares y la inversa de A, asi como la solucién a sistemas de ecuaciones
lineales Ax = b cuando b presenta signos alternados (véase apartado 1.5). Su punto de partida es la
factorizacion bidiagonal (1.5) obtenida con HRA.

La notacién #%(A) se introduce para referirnos a la factorizacion bidiagonal descrita en el Teorema
1.4

mij, sii> j,
(:@.@(A))ij = ﬁ’l,‘j, sii< j, (1.10)
pii,  Sii=j.

Observemos que si A es una matriz TP, A" también es una matriz TP. Transponiendo la férmula
(1.5) del Teorema 1.4 obtenemos la factorizacién bidiagonal tinica de AT

A" =G} ,..G|DF..F,

donde F; y G;, i € {1,...,n— 1}, son las matrices bidiagonales inferiores y superiores triangulares no
negativas dadas por (1.6) y (1.7) respectivamente.
También se satisface que
BIAY)=B2(A)".

El siguiente resultado, que corresponde al Corolario 2 de [8], proporciona la factorizacion bidiagonal
de la inversa de una matriz TP triangular inferior A en términos de % (A), siempre que los multiplica-
dores de la EN de A no sean nulos.

Teorema 1.6. Sea A = (a;j)1<i,j<n una matriz triangular inferior TP tal que

mij>0, Sii> j,
(BD(A))i; =10, sii< j, (1.11)

1, sii=j.
Entonces la factorizacion bidiagonal de su inversa estd dada por
—Mmji—j, sii> j,

(B2(A 1)) =10, sii< j, (1.12)

1, sii=j.
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Demostracion. Como, en la factorizacién tnica (1.5), Dy G; para i = 1,--- ,n son iguales a la matriz
identidad n x n I, podemos usar (1.5) y (1.11) para factorizar la matriz A de esta forma:

A=F--F ={E,(my 1) HEp—1(mp_11)En(mp2) }---{E2(ma 1) - - Ey(myn—1)}-

Como consecuencia directa, A~ puede ser escrita asf:

AT ={Ey(—myp1) - Ex(—ma ) HEn(—mpp—2) -+ E3(=m3 1)} -+
{E7(—=mp2)En—1(—my—1,1) HEW(—mp1) }. (1.13)

Usando (1.3) podemos reescribir (1.13) haciendo una permutacion de las matrices E;(x):

A_l = {En(_mn,nfo . 'E3(_m3,2)}{En(_mn,n72) e 'E4(_m4,2)} tee
{En(_mn,Z)}{E2(_m2,l)E3(_m3,l) By (_mnfl,l)En(_mn,l)}- (114)

La matriz Ey(—ma,1) -+ E,(—m, 1) serd el primer factor de Z%(A~'). Continuando con esta argu-
mentacién podemos seguir reordenando las matrices E;(x) de (1.13) hasta obtener (1.12).

O
Un resultado andlogo es cierto para matrices TP triangulares superiores.
Corolario 2. Sea A una matriz TP triangular superior tal que
0, sii> j,
(%.@(A)),‘j: ﬁ1j7i>0, sii< j, (1.15)
1, sii=j.
Entonces la factorizacion bidiagonal de su invera estd dada por
0, sii>j,
(BD(A))ij = —iji, sii<], (1.16)
1, sii=j.
Demostracion. Aplicar el Teorema 1.6a A",
O

El ejemplo siguiente muestra que la positividad estricta de los multiplicadores en el Teorema 1.6 (o
andlogamente en el Corolario 2) es necesaria, es decir, que si la matriz triangular tiene multiplicadores
nulos, entonces el teorema no es cierto.

Ejemplo 1. Sea A = (a;j)1<i j<n la matriz triangular inferior:

0
1
A= 1
1

w = O O
- o O O

1
1
1
1
Aplicando la EN y usando (1.11) podemos ver que su factorizacion bidiagonal es:

BD(A) =

oS O = O
N - O O
- o O O

1
1
1
1
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lo que significa que

A= E4(1)E3(1)Ex(1)E4(2), (1.17)
y que hay dos multiplicadores nulos.
A partir de (1.17) se deduce que
Al = (E4(1)E3<1)E2(1)E4(2))71 :E4<—2)E2(—])E3(—1)E4(—1>, (1.18)
o usando la notacion (1.10),
1 0 0 O
n_|-1 1 0 0
BIA) = 0O -1 1 0
0 -2 -1 1

Por lo tanto, es necesario requerir que los multiplicadores no sean nulos, ya que si no 9 (A~1) no
satisface (1.12).

1.5. Operaciones con alta precision relativa para matrices totalmente po-
sitivas

Consideramos el problema de realizar cdlculos precisos con matrices totalmente positivas no singu-
lares (n x n). Estas matrices tienen la propiedad de tener una representacién tnica como productos de
matrices bidiagonales positivas. Dada esa representacion, se puede calcular de forma precisa y eficien-
te la matriz inversa, la factorizacion LDU, los valores propios y la factorizaciéon de valores singulares
(SVD) de una matriz totalmente positiva con alta precision relativa con los algoritmos de [19].

Por precision entendemos que cada cantidad debe calcularse con alta precision relativa, con un signo
y digitos principales correctos. Por eficiencia nos referimos a realizar estos cdlculos en un tiempo maximo
de O(n?). Presentamos asf algoritmos precisos y eficientes que realizan algunos de estos cdlculos.

Recordemos en primer lugar la fuente de grandes errores relativos en los algoritmos de matrices
convencionales. La precision relativa en estos algoritmos se pierde debido a la cancelacién sustractiva
en la resta de cantidades aproximadamente del mismo signo. Por el contrario, la precision relativa se
conserva en la multiplicacién, divisién, suma e incluso en las raices cuadradas y, si acaso, en restas de
datos iniciales.

Veamos algunos cdlculos precisos de matrices conocida ZZ(A). Las entradas de Z%(A) nos permi-
ten calcular con precisién las entradas de la descomposicion LDU, las entradas de la matriz inversa y la
resolucion de algunos sistemas de ecuaciones lineales. Ademds, aparte de estos célculos, dada B (A),
se pueden realizar de manera precisa y eficiente muchas operaciones con A como matriz.

Supongamos que partimos de la factorizacion (1.5) descrita en el Teorema 1.4. Recordemos que los
m;; y los m;; son los multiplicadores de la eliminacion de Neville de A y AT, respectivamente. Vamos a
expresar esta factorizacion en términos de las matrices bidiagonales elementales E;(x) descritas en (1.2).

En [19], para expresar esta factorizacién (1.5), se introduce la notacién Hll‘:”_l, que indica que el
producto comienza en k =n — 1 y el indice se reduce gradualmente hasta llegar a 1. Utilizando esta
notacién, podemos expresar el proceso de dicha factorizacién como sigue:

n j=n
F=[] Ej(mj;—), Gi=]]E] (-
=it i+l

Sea ahora A una matriz cuadrada no singular n X n. Vamos a calcular su factorizacién LDU con HRA
sustituyendo en la férmula (1.5) los factores F; y G; por los productos anteriores:

i=n—1 n n—1j=n
A= ( H H Ej(mj-,j—i)> -D- <H HEJT(’/hj,j—i)> . (1.19)

j=itl i=1 i+1
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Teniendo en cuenta que las matrices E;(x) son triangulares inferiores y la unicidad de la descompo-
sicion LDU de una matriz no singular, llegamos a

i=n—1 n n—1j=n T
H HE mj,j— i), U= HE mjjl
Jj=i+l1 i=1i+1

Usando que, por el Teorema 1.4, los multiplicadores m;;, 71;; son no negativos concluimos que Ly U
se pueden calcular con HRA.

También podemos calcular la matriz inversa con alta precision relativa. Invirtiendo la férmula (1.19)
y usando la propiedad (1.4) obtenemos:

: i=n—1 n r n—1j=n
A= H I_LE]- (=1j i) HUIE —mj ;) |- (1.20)
J=l i i

Podemos obtener A~! multiplicando su expresién en un tiempo de O(n?). Cada entrada de A~!
calculard con alta precision relativa ya que las multiplicaciones de las matrices de (1.20) no conllevan
restas. Tengamos en cuenta para ello que el producto E;(x)M (con M una matriz) da lugar a sumar a la
fila i-ésima de M la fila anterior multiplicada por x.

Veamos ahora la resolucién de un sistema matricial Ax = b con A TP no singular y suponiendo que
las componentes del vector b tienen signos alternados (es decir, signb; = (—1) o signb; = (—1)""1), 1a
podemos realizar con HRA.

Podemos usar (1.20) para calcular la solucién de Ax = b en un tiempo de O(n?) multiplicando la
expresion

i=n—1 n—1j=n

=A""b= H HE —mjj—i) | D" TTTTEi(=mjj—i) | ® (1.21)

Jj=i+1 i=1i+1

de derecha a izquierda. Entonces (1.21) no conlleva cancelacién sustractiva, y cada componente de x se
calcula con alta precision relativa. Observemos que, por el Teorema 1.4, todos los multiplicadores m;;
y #;j son no negativos, y como b tiene los signos alternados, todos los vectores intermedios que vamos
obteniendo siguen teniendo los signos alternados y no se realiza ninguna resta, por lo que podemos
garantizar la HRA.

Como hemos mencionado anteriormente, con la factorizacién bidiagonal de una matriz también po-
demos realizar otros célculos importantes como los valores singulares o los valores propios entre otros.
Para ello, como se ve en [19], es esencial realizar estas operaciones como una combinacién de las si-
guientes transformaciones elementales EET S (elementary elimination transformations):

1. EET1: restar un miltiplo de una fila (o columna) a la siguiente con el objetivo de hacer un cero de
tal manera que la matriz transformada sigue siendo TP.

2. EET2: afiadir un miltiplo de una fila (o columna) a la anterior.
3. EETS3: afiadir un multiplo de una fila (o columna) a la siguiente.
4. EET4: multiplicar por una matriz diagonal positiva.

Observemos que llevar a cabo cualquiera de estas operaciones con una matriz TP resulta en otra
matriz TP ([16]). El enfoque consistird en no realizar las operaciones directamente sobre la matriz, sino
en aplicarlas de manera implicita, transformando los pardmetros de la descomposicién bidiagonal y rea-
lizando los cédlculos necesarios para evitar restas.
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En [19] se puede encontrar cémo se llevan a cabo las EETs. La EET1 es la més sencilla, y realizar
esta operacion equivale a sustituir la componente correspondiente de 8% (A) por cero. Las EET2 y
EET3 requieren un cuidado especial.

A continuacion, nos vamos a centrar en las operaciones EET3 y EET4. Sea la matriz TP C obtenida
a partir de la matriz TP A de dimensiones n x n aplicando una EET a A. Veamos cémo, dada ZZ(A),
se puede calcular la factorizacion B2 (C) sin realizar restas.

La operacién EET 3 consistia en afadir un multiplo de una fila (o columna) a la siguiente: sea A una
matriz TP y C se obtiene a partir de A sumando un miltiplode lafilai—1 de A alafilai:

C= Ei(x)A, x> 0.

Queremos ver cémo calcular con precision ZZ(C), con x y BZ(A) conocidos. El siguiente lema
muestra cémo calcular la factorizacién bidiagonal del producto de dos matrices bidiagonales inferiores.
Es la base del teorema posterior.

Lema 1. Sean B y C matrices bidiagonales inferiores tales que sus elementos en la diagonal principal
son todos unos, los elementos de la subdiagonal son no negativos (b; >0y c; >0parai=1,....n—1)
y también se cumple que b; = 0 cuando c;_| = 0. Entonces existen matrices bidiagonales B' y C' con
elementos extradiagonales b, >0y ¢, >0coni=1,...,n— 1 tales que B'C' = BC y b, = 0. Ademds, se
pueden calcular b y ¢! sin realizar restas en como mucho 4n operaciones elementales.

Demostracion. Comparamos las entradas a ambos lados de B'C' = BC,

1 1 1 1
0 1 |
b1 c

o~ =
—_
|
S
=~
S -
—_
S
A
S =
—

:’l—l 1 et 1 bp—y 1 Cn—1

y obtenemos que

i =bi+c,
b,‘ —
b, =L (1.22)

Ci-1

VA /
C; —b,'—l-Ci—bi,

parai=23,...,min{j|b; =0}, y b, = b;, ¢; = c;, en otro caso. Para evitar la resta de (1.22) definimos
las variables auxiliares d; := b; — b.. De esta forma dy = by — b, = by y

bici_q b; b; bid;_1
di=bj—b=b——""—=-"1Ac_—ci.))=—(bji_1—b,_)=""—, i=2,---,n—1.
i i i Cg_l c;_] (Cz—l ¢ 1) C;_] ( 1 z—]) C;_] l n
La version libre de restas (y por tanto, precisa) de (1.22) es
C; =c;+d;,
b = (123)
d = bifii—l

Ciz1

Este cdlculo evidentemente no cuesta més de 4n operaciones aritméticas. Como c; = 0 implica que b}, | =

0, el producto B'C’' es 2% (BC), ya que cumple la condicién del Teorema 1.4. O

Implementamos el procedimiento del Lema 1 en el algoritmo 1 libre de restas. Reescribimos d; y
di_1,y los arrays b y ¢ por b’ y ¢/, respectivamente. La cantidad e = % se calcula solo una vez y se

1

utiliza para actualizar ambas, ahorrando asi una division.
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Algorithm 1 EET3
function DQD2(b,¢)

t ¢y
c1 b1+
d <+ b
b1+ 0
i+ 1

while (i < length(b)) and (b1, > 0) do
L

o b
d+—e-d
bir1 et
I < cCit1
Cit1 ¢ Ciy1+d

i< i+1

return b, c,i

end function

El algoritmo 1 usard el vector de parametros b de By el c de C.

El siguiente resultado ya prueba que la EET3 se puede realizar eficientemente y con alta precision
relativa.

Teorema 1.7. Sea A una matriz TP n X n no singular. Dado x >0y BZ2(A), la factorizacion BY (Ei(x)A)
puede ser calculada sin usar ninguna resta en como mdximo 4n operaciones aritméticas.

Demostracion. Sea Y (A). Por el Teorema 1.4 estd dada por
A=F, 1F, 2 -FIDGy -G, 2G,1,
y sea F = F,_1F,_»---F). La matriz E;(x)F es una matriz triangular inferior unitaria (con 1’s en la

diagonal) TP (por el Corolario 1) ya que es producto de matrices TP. Por tanto, de nuevo por el Teorema
1.4, posee factorizacion bidiagonal ZZ(E;(x) - F) y cumpliré la expresion:

Ei(x)F =L, 1L,—»---Ly,

donde las matrices L; son matrices bidiagonales triangulares inferiores. Entonces 8% (E;(x)A) satisfara,
por la unicidad de la factorizacion bidiagonal (Teorema 1.4), que:

Ei(x)A=L,_1L,—>---LiDGy---G,_2Gy_1,

con lo que nos bastara hallar la factorizacién bidiagonal de E;(x)F para obtener la de E;(x)A. Usando el
Lema 1, vamos propagando E;(x) a través de los factores F; del modo siguiente:
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Ei(x)F = Ei(x)anan,Z cee Fl
=L, 1Ej(x1)F—2---Fy
=L, 1Ly 2E,(x2)---F

=L, 1L, >---Ly,

(denotando E;,(xo) := E;(x)). Empezamos con k = 1 y repetimos el siguiente proceso. Aplicamos el
algoritmo 1 a las submatrices principales restantes de E;,_,(xx—;) y de F,_; que consisten en filas y
columnas desde i — 1 hasta n. La Gnica componente no nula de E;_, (x,_;) desaparece y obtenemos

N k . o, . .
una nueva matriz L,y = E;,_, (x¢—1)L,—_¢. Denotemos con f ]( ) al pardmetro j-ésimo de la matriz F;.

Si se cumplen algunas de estas condiciones:

1. k=n—1,0
2. no se introdujeron elementos no nulos en L, _; que no estuvieran en L,_j, 0
3. se introdujo un elemento no nulo Zgnik) en L, i, pero f ;ﬁkil) #£0,

entonces estableceremos L, = L, y habriamos terminado de propagar E;(x). En otro caso (un valor
—(n—k . _ L —
no nulo l§'1 ) se introduce en L, 4, y f](f lk D= 0, con k < n— 1), tenemos entonces que L, ; =

L, _E; (xx), donde L, tiene la misma estructura de elementos no nulos que F,_. Fijamos i, = j,
k . . .
Xy = f} ), aumentamos k en una unidad y repetimos el mismo proceso.

El célculo de B2 (Ei(x)A) se realiza sin utilizar restas. A lo sumo se modifican 2n — 3 entradas en
PBP(A) con no mds de dos operaciones aritméticas por entrada (como se ve en el algoritmo 1 o en el
Lema 1). El coste total, por lo tanto, no supera 4n.

O]

El teorema anterior también se puede utilizar para conocer la ZZ%(AB) a partir de ZY(A) y BY (B)
sin usar restas (véase [19]).

Por ultimo, veamos EET4 que consistia en multiplicar por una matriz bidiagonal positiva. El pro-
ducto de una matriz diagonal F = diag(fi,...,fn), /i >0,i=1,2,...,n, y una matriz TP A de n x n es
TP. Ahora mostramos cémo calcular ZZ(F ), dado F y % (A). Propagamos F a través de los factores
F;en Z%(A) utilizando

Si 1 1 S
f2 cr 1 by 1 g
fm Cm—1 1 bmfl 1 fm

dondebizc”;%,izl,Z,-~-,n—l.

Dada B=Z%(A) y el vector (f1, f2,--- , fu), €l siguiente algoritmo calcula la factorizacion bidiago-
nal 2% (diag(fi, f2, -+, fu) -A) usando solo multiplicaciones y divisiones en un tiempo maximo 2n?.
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Algorithm 2 EET4

function TNDIAGONALSCALE(f, B)
7b11 <~ by 'f1 fori=2tomdo
i<n
bij < bii- fi

f.
bi,l:ml’n(ifl,n) — bi71:m1’n(i717n) : fi_ll

return B

end function




Capitulo 2

Matrices de Pascal, generalizaciones y alta
precision relativa

2.1. Introduccion

En este capitulo hablaremos de las matrices de Pascal, que son matrices totalmente positivas que
presentan importantes aplicaciones en el campo del disefio e imagen asi como en probabilidad, combi-
natoria, anélisis numérico e ingenieria eléctrica (véase [3], [14] y [21]).

Se sabe que las matrices de Pascal estdn mal condicionadas (véase ([2]) siendo incluso peor condi-
cionadas que las matrices de Vandermonde. A pesar de este hecho, mostraremos que se pueden obtener
algoritmos con alta precision relativa (HRA) para el cdlculo de valores propios e inversas de matrices de
Pascal, asi como para resolver ciertos sistemas lineales cuyas matrices de coeficientes son matrices de
Pascal.

Para ello, por un lado necesitaremos una factorizacién bidiagonal exclusiva para las matrices de
Pascal (estrechamente relacionada con el procedimiento de la eliminacién de Neville). Por otro lado,
algoritmos HRA para matrices TP (ya comentados en el tltimo apartado del capitulo anterior).

En este capitulo comenzaremos viendo en el apartado 2.2 la factorizacion bidiagonal de las matri-
ces de Pascal, que es extraordinariamente simple y permite de manera trivial garantizar la alta precisién
relativa de los célculos algebraicos mencionados en el capitulo anterior. Después, en el apartado 2.3, defi-
niremos algunas matrices de Pascal generalizadas y algunas notaciones que necesitaremos mds adelante.
Por dltimo, en el apartado 2.4, describiremos la factorizacién bidiagonal de este tipo de matrices.

2.2. Matrices de Pascal y su factorizacion bidiagonal

Comenzamos introduciendo las definiciones basicas de las matrices de Pascal.

Definicion 6: Una matriz de Pascal de orden n es la matriz simétrica

i+j—2
P = (pij)i<ij<n; DPij i=< jj—l > 2.1

Definicion 7:  Una matriz triangular inferior de Pascal de orden n es la matriz triangular inferior

i—1
PL=(gij)i<ij<ns  qij = <j— 1>- 2.2

Esta matriz P, es el factor de la factorizacién de Cholesky de la matriz de Pascal P:
P=PP . (2.3)

15
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El siguiente Lema (que corresponde al Lema 1 de ([2])) nos proporciona una factorizacién bidiagonal
de la matriz triangular inferior de Pascal. Observemos que, en este caso, no obtenemos la factorizacién
bidiagonal mediante la eliminacién de Neville.

Lema 2. La matriz triangular inferior de Pascal dada por (2.2) satisface

1 1 1
0 1 0 1 1 1

L= 24)
0 1 11 11
11 11 11

Demostracion. Sea F; (con1 <i<n—1)lamatrizn xXn

1

(n—i+1)- ésima fila

1 1
(k)

y sea P = (gi j)lgi. j<n la matriz P = R F...F. Vamos a probar por induccién sobre k que

ql(f):ql(f)l_’j_1+qlgﬁ)1_’ja 1<i<n, n—k<j<n (2.5)

definiendo ‘15(])() = qg}) =0,conl1<i,j<ny qgg) = 1. Como P;® es una matriz triangular inferior con

1’s en la diagonal, se cumple (2.5) Yk con i < j, y en particular para la dltima columna de P, (*).

Por lo tanto, solo tenemos que probar que (2.5) es vélido parai > jcon j=n—k,n—k+1,...,n—1.

Para k = 1 es obvio. Suponiendo que (2.5) se cumple para k — 1 vamos a probar que se satiface para
todo k.

Notemos que P, %) se puede obtener a partir de P,*~1) afiadiendo a cada una de las columnas n —
k,n—k+1,...,n—1 la siguiente.

Sin—k<j<n—1,

0 =g Vg, i 2.6)

y por la hipétesis de induccidn, para i < n, se tiene

k k-1 .
‘lz(j) - qz(+1,j)+1a n—k<j<n—1 2.7)

Sin—k<j<n—1yi<n,apartir de (2.6), (2.7) se llega a (2.5).
Teniendo en cuenta (2.5) para k = n — 1 vamos a probar que

ql(;l_l):(Fle...Fn_l)ij: (;_11>, SIZZ]7
es decir g;; de (2.2).

Lo probaremos por induccién en las filas i de P,("~!) para i = 1,...,n. Esta condicién se satisface
claramente para la primera fila. Suponiendo que es valida para 1,...,i — 1 vamos a probar que también se
cumple para i:

Si 1 < j < i, apartir de (2.5) tenemos por hip6tesis de induccién

(n-1)  [i—2 n i—=2\ [i—1
G =\j—2)"\i=1) T =1)

Si j = 1, entonces tenemos por hipétesis de induccién, ql(?_]) = qgﬁ_ll) = () =1= (") Por
(n—1) '

ultimo, sii= j, g;; =1y con esto se termina la demostracion. O
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Si juntamos las expresiones de las factorizaciones (2.3) y (2.4) obtenemos la factorizacién bidiagonal

de la matriz P que llamaremos
1 ... 1

BD(P) =
11 ... 1
En este caso, evidentemente, la factorizacion bidiagonal de la matriz de Pascal se obtiene con HRA
al ser todas sus entradas 1’s. Ademds, todas las operaciones comentadas en el Capitulo 1 se van a poder
realizar con alta precision relativa ya que tenemos % (A) con HRA. En particular, los valores propios

y la inversa de P. Por otro lado, esta factorizacién también puede utilizarse como prueba de la total
positividad de una matriz de Pascal.

Corolario 3. Una matriz de Pascal P es TP,

Demostracion. Por la formula (2.4) y el Corolario 1 del Capitulo 1, P, es TP ya que es producto de
matrices TP puesto que las matrices bidiagonales no negativas son claramente TP. Por la férmula (2.3) y
de nuevo por el Corolario 1 tenemos que P también es TP por ser producto de matrices TP. O

2.3. Matrices de Pascal generalizadas

Comenzamos este apartado con una primera generalizacion de las matrices triangulares de Pascal y
de las simétricas de Pascal ([7], [4] y [23]).

Definicion 8:  Para cualquier niimero real x, la matriz triangular de Pascal generalizada de primer
tipo, P,[x] se define como la (n+ 1) x (n+ 1) matriz triangular inferior con 1’s en la diagonal principal y

o (i—1
(&th=#’<f J, 1<j<i<n+1
i

y la matriz simétrica generalizada de Pascal (n+ 1) x (n+ 1) R,[x] viene dada por

il
(Rn[x])iﬁ:xlﬂ_zcﬂl ) 1<ij<n+l.
]_

La definicién anterior también se puede generalizar de la siguiente manera involucrando dos variables
(véase definicion 3 de [7], [4] y [23]).
Definicion 9:  Parax,y € R se define la (n+ 1) x (n+ 1) matriz R, [x,y]

i+j—2

(Rn[x»)’])ijizleyil( j—1 )7 1<ij<n+1.

Observar que R,[x] = R,[x,x], por lo que P,[1] es la matriz triangular inferior de Pascal y R,[1] es la
matriz simétrica de Pascal.
Otra posible extension de la definicion 8 es la siguiente:

Definicién 10:  Sean x y A dos ntimeros reales y n un entero no negativo. Definimos la notacién x/*
asi:

ﬂlh_{ﬂx+kynﬁﬁﬂn—nl% sin >0, 08

1, sin=0.

La matriz de Pascal triangular inferior generalizada P, 5 viene dada por

(&jhmf—x“ﬁl<fﬁ), 1<j<i<n+1 (2.9)
, I
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donde n es un nimero natural y A y X son nimeros reales.

Observamos que con el caso particular A = 0 llegamos a la matriz de Pascal generalizada de primer
tipo P, o[x] = P, [x].

La definicion anterior de P, j [x] se puede generalizar al caso de dos variables x e y de la siguiente
forma:

Definicién 11:  Sea P, ; [x,y] la matriz dada por
i i i—1
(Poalx.y])ij = xlimDAyl=DA ( : ) : (2.10)

Observemos que P, [x,y] := P, o[x,].

2.4. Factorizaciones bidiagonales de las matrices de Pascal generalizadas

El resultado siguiente proporciona la factorizacién bidiagonal de la matriz de Pascal generalizada
P, n,A [X] .

Teorema 2.1. Sean x,A € R yn € Ny P, [x] la (n+ 1) x (n+ 1) matriz triangular inferior dada por
2.9).

(1) Six#kAparak=—n+1,...,0,....n— 1 se tiene que

1, sii=j,
(BD(Pplx])ij= S x+(i—2j)A, sii> ], (2.11)
0, sii< j.

(1) Six = kA para algunos k € {0,...,n— 1}, se tiene que

1, Sii=j,
(BD(Poplx])ij=x+(i—2j)A, sii>j,j<k, (2.12)
0, en otro caso .

(111) Six = —kA para algunos k € {0,...,n— 1}, se tiene que

1, Sii=j,
(«%@(Pml[x]))l‘j: x+({—=2))A, si0<i—j<k, (2.13)
0, en otro caso .
Demostracion. Supongamos en primer lugar que x # kA para k = —n+1,...,0,...,n — 1. Utilizamos

el primer paso de la eliminacion de Neville de A = (a;;)1<i j<n+1, donde a;; := (P, 2 [x]);; para i,j =
1,...,n+1:

2 ajl . S
al(j) =dajj— f“ai,u =ajj— (x—l—(l—2)7t)a,~,17j, i>j>1.

Aplicando (2.8) a la férmula anterior obtenemos

o — 1 s [ —2
ag) — =D& <’. > ~ (ot (= 2)A )R <’_ 1>.
] —_—
Por la férmula (2.9), tenemos que

al(f) =((x+i—j— 1)A)<i_ 1) —(x+(i—2)4) (;:2) Jali=i=DI2 =

j—1
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<x<i—2> L—i=NE-1  (-2)(i-2)! )!k>x(i_j_1)’l.

j=2 (=DlE=))! (=D i—j—1
Después de varios cdlculos deducimos que

@ _ (72N (72N mena _ (T2 -
o <x<j—2> l(j—Z))x VST

Observamos que ag) = (P2 [x])sz) = (Palx—Al])i—1,j—1 parai > j > 2y, por tanto, se tiene que la
matriz (P, 3 [x])P[2,....,n+1] = (P2 [x— A])[1,...,n).

A partir de ahi, se deduce que

(Pl = (Pug e —kADicgjx parai>j > k1
y los multiplicadores del k-ésimo paso de la eliminacién de Neville P, ; [x] vienen dados por la expresién
x—(k=1DA+(i—k—1)A parai=k+1,...,n+1, y con esto demostramos (2.11). Asumimos ahora
que x = kA para algtin k € {0,...,n—1}. Siguiendo la demostracién anterior vemos que (P, 3 [x] g{H))
(P4 [0])i—x,j—k y la EN acaba en el paso k + 1. Por tanto, esto prueba (II).
Por dltimo, si x = —kA para algin k € {0,...,n— 1}, x(=)1* = 0 para i — j > k. Entonces, las
n — k subdiagonales inferiores ya son cero y los multiplicadores asociados también lo son ya que el
procedimiento de eliminacién no se realiza en esas entradas. Con esto obtenemos que se satisface (III).
O

Es inmediato ver que la matriz P, ; [x,y] puede ser expresada como el producto de P, 3 [x] y de una
matriz diagonal:

. 1 n
P, a[x,y] = P, 5 [x]diag(1,y%,...,y%), (2.14)

con lo que también tenemos una factorizacion bidiagonal de P, ; [x,y].

Observemos por (2.11), (2.12), (2.13) y (2.14) que las factorizaciones bidiagonales de P, [x] y
P, 2 [x,y] pueden involucrar restas y por tanto, no estd garantizada de antemano la HRA. De hecho, no
todas las matrices de Pascal generalizadas son TP. El siguiente resultado, correspondiente al Corolario 7
del articulo [7], caracteriza cudndo lo son.

Corolario 4. Sea P,  [x] dada por (2.9) con x,A € Ry n € N. Entonces, P, ; [x] es una matriz TP si y
solo una de las siguientes condiciones se cumplen:

(D x> (n—1)A|.
(1) x=k|A|parak=0,---,n—1.

Demostracion. Por el Teorema 2.1 sabemos que P, 3 [x] admite una factorizacion como producto de ma-
trices bidiagonales. Si (I) o (II) se cumplen, entonces todas las matrices bidiagonales serdn no negativas y
TP. Por tanto, dicho producto serd también TP (véase el Corolario 1 del Capitulo 1). Para el reciproco, si
P, 2 [x] es TP, dado que también es no singular, admite una factorizacién bidiagonal tinica por el Teorema
1.4. Ademas, esta factorizacion bidiagonal estard dada por el Teorema 2.1 y los m;;’s serdn no negativos.
Entonces, o bien (I) o bien (II) se cumplen. ]

Podemos dar una generalizacion de P, j [x,y] en términos de la sucesion arbitraria a = (a,)n>0

. . i1
(P [x.y.a))ij o= aj_qx A4 <l' 1),
, i

y asi también deducimos

. 1 n
P, a[x,y,a] = P, ; [x]diag(ag,a1y*,...,a,y*). (2.15)
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Observamos que la matriz P, ; [x,y] = P, 3 [x,y,1], donde 1 es la sucesion formada por 1’s. Usan-
do (2.15) y el teorema anterior podemos deducir una expresién para la factorizaciéon bidiagonal de
P, lx,y,a], BY (P, ,[x,y,a]). Por ejemplo, si x # kA para k = —n+1,...,0,...,n — 1, su factorizacién
bidiagonal viene dada por

ai VR sii= g,
(BD(P,alx,y.a)ij = x+ (i —2/)A, sii>j,
0, sii<j.



Capitulo 3

Alta precision relativa para matrices de
g-enteros

3.1. Introduccion

El cdlculo cudntico (véase [18]) utiliza g-enteros y coeficientes g-binomiales entre otros conceptos
extinguidos. Esto propicia el uso de matrices de g-enteros. Muchos calculos algebraicos (cdlculo de
valores propios, valores singulares e inversas) de estas matrices pueden realizarse con HRA.

En este capitulo comenzaremos viendo en el apartado 3.2 qué es un g-entero y algunas de sus pro-
piedades. Posteriormente, en el apartado 3.3, daremos la factorizacién bidiagonal de las matrices de
g-Pascal. Observamos asi que esta factorizacion bidiagonal (para g # 0) no es tan sencilla como la de las
matrices de Pascal vista en el capitulo anterior.

Finalmente, en el apartado 3.4, introduciremos los nimeros de g-Stirling y daremos la factorizacién
de las matrices con nimeros de g-Stirling.

3.2. q-Enteros y sus propiedades

Dado un ndmero real positivo q y un nimero real r, definimos el g-entero [r] como

=

l4+q+..+q7 ' =L, sig#1,
r, sig=1,

el g-factorial [r]! como
]! = [rr—=1]..[1], sig#1,
o, sig=1,

el factorial g-desplazado como

n

(@q)o:=1, (a:q)a:=]](1~ad"),

Los coeficientes g-binomiales cumplen las siguientes relaciones de recurrencia

()-(=) () o

21
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(i.) =q"—f'<i._ 1) + (i_. 1>, (3.2)
J J—1 J

y ademds satisfacen la g-andloga identidad de Vandermonde (véase (12) de [8]):

mEn\ NS ) (m)< n >
( k > ,goq i) \k=j)

Se define también la matriz triangular inferior de coeficientes q-binomiales, Py 4, cuyas entradas no
nulas vienen dadas por
i—1
(PL.q)i.j:(. 1>, 1<j<i<n+]1, (3.3)
q )1, i
y su equivalente triangular superior Py 4 := PLT 7
Definimos por ultimo la matriz simétrica de g-Pascal P, como la matriz simétrica de coeficientes
g-binomiales :
i+j—2
(Pq>z-j—< . ) 1<ij<n+l. (3.4)
i

3.3. Factorizacion bidiagonal de las matrices de q-Pascal

Este primer resultado da una factorizacion bidiagonal de P, , con HRA. Ademds, también muestra
que es una matriz TP. En consecuencia, se pueden realizar con HRA cdlculos algebraicos mencionados
en el Capitulo 1, como la obtencién de valores propios o de la inversa.

Teorema 3.1. Sea Py 4 la matriz (n+ 1) x (n+1) dada por (3.3). Entonces P 4 es TP y la factorizacion
bidiagonal de Py , viene dada por

1, sii=j,
(%Q(PL,Q))U: qj_l, Sii>j, (3.5)

0, enotro caso
que puede ser calculada con HRA.

Demostracion. Vemos que los pivotes de la factorizacion de la EN de P, vienen dados por

pij=q" VN 1< j<i<n+l (3.6)
y los multiplicadores por
mij=q¢ ', 1<j<i<n+l. (3.7
SeaA:=P_,ysea AW = (a;j)gkg)i j<nt la matriz obtenida después de aplicarle los k — 1 pasos de la
ENaAparak=2,...n+1.
Primero probamos por induccién sobre k € {2,...,n+ 1} que
. ik
alt :q(lj)(kl)<l. k), k<j<i<n+l1. (3.8)
] —_—

Para k = 2, usando el primer paso de la EN y (3.2), tenemos que

- a - (i1 =2\ [i=2\ ;4
oy = (0 )= (o) = (o)

pura2 < j<i<n+1.
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Por tanto, ahora suponemos que (3.8) se cumple para algunos k € {2,...,n} y tomamos el k-ésimo
paso de la EN para probar que (3.8) se cumple para k+ 1:

(k)
(k+1) (k) Qi (k) ..
a; = a; _ﬁai—w’ k+1<j<i<n+l.

Por hipétesis de induccidn tenemos:

i— —1)(i—k
gD = g0 _ a6 a('k)l i =
i i i—1— —1) (i—1—k\ "i—=1,
’ T g RN () !

_ et (RN e iy (T =R
I (j—k> T4 < j—k

_ i (iR i1k
! ((J—k> (j—k )

Aplicando (3.2) deducimos que

ag.(-‘rl) _ q(i_j)k <l— (k+ 1)) ’
j—k

y por tanto, (3.8) se cumple para k+ 1.
Por udltimo, concluimos que el pivote p;; = al(; )
Dij .
Pi-1,j

viene dado por (3.8) para k = j y asi (3.6) se cumple.
para i > j y (3.6) se cumple, tenemos que (3.7) también se

En consecuencia, como m;; =
cumple.

Asi, Z9(P.4) puede ser calculada mediante un algoritmo libre de restas usando (3.5) y por tanto,
se puede calcular con HRA. Ademads, por (3.5) P, se puede escribir como un producto de matrices
bidiagonales no negativas (y por tanto, TP) y entonces, por el Corolario 1 del capitulo 1, P, , es TP. [

Notemos que la matriz de Pascal (n+ 1) x (n+ 1) de coeficientes g-binominales P, = ( (’JJF{ 712) i<i,j<n+1

puede ser expresada como P, = P ,Py , = PLﬂPLT, o- Esta factorizacion se usa para deducir la factorizacion
bidiagonal de P a partir de la de P;. La HRA también estd asegurada.

Finalmente, el Teorema 1.6 puede ser usado para deducir la factorizacion bidiagonal de P ql. Pode-
mos ver que

1, sii=j,
(BD(PL)ij=1 —q¢ 7", sii> ],
0, en otro caso.

3.4. Matrices con nimeros de q-Stirling

Sabemos que muchas matrices relevantes en combinatoria son matrices totalmente positivas (TP)
(véase [5] y [6]), es decir, todos sus menores son no negativos (véase [3] y [14]). Como hemos visto
anteriormente, bajo ciertas condiciones, muchos cdlculos con matrices TP pueden realizarse con alta
precision relativa.

Dentro de la combinatoria, los nimeros de Stirling han aparecido en muchas aplicaciones (véase [l]
y [20]).

Los niimeros de Stirling de primer tipo son los coeficientes s(n,k) de la expansion:

n

(xX)n = Z s(n, k)x*

k=0

donde (x), (simbolo de Pochhammer) denota el factorial descendente,
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(X i=x(x—1)(x—=2)---(x—n+1)

s(nyk)=s(n—1,k—1)— (n—1)s(n— 1,k).

Noétese que (x)o := 1 porque es un producto vacio.
Los niimeros de Stirling de primer tipo sin signo, c(n,k), se definen como:

c(n,k) == |s(n,k)| = (=1)"*s(n, k).
Es decir, estos nimeros satisfacen la siguiente férmula de recurrencia (véase [1] y [20]):
c(nk)=s(n—1,k—1)+ (n—1)s(n—1,k).

Los niimeros de Stirling de segundo tipo S(n,k) cuentan el nimero de formas de dividir un conjunto
de n elementos en k partes:

S(n,k) := card ({B|card(B) =k ,B C N, })

donde el conjunto N,, = [1,n] NN es el conjunto de los primeros n enteros.
Estos nimeros cumplen la siguiente férmula de recurrencia (véase [1] y [20]):

S(n,k)=8S(n—1,k—1)+kS(n—1,k).

Estas tres definiciones son casos particulares de las mas generales que vamos a usar en este apartado,
en el que introduciremos nimeros de g-Stirling. Obtendremos la factorizacién bidiagonal de las matrices
S, con numeros de g-Stirling de primer tipo. Comenzaremos con las matrices C, que contienen nimeros
de g-Stirling de primer tipo sin signo. Dado que las matrices B, con nimeros de g-Stirling de segundo
tipo son las inversas de las matrices con niimeros de g-Stirling de primer tipo, usaremos los resultados
de la factorizacién bidiagonal de la inversa de una matriz triangular TP (vistos en el apartado 1.4 del
Capitulo 1) antes de introducir la factorizacion bidiagonal de las matrices B,,.

Pasamos a definir los nimeros de g-Stirling de primer y segundo tipo, junto con las matrices formadas
por ellos.

Definicion 12:  Los niimeros de q-Stirling de primer tipo, Sq = (sij)1<i, j<n+1. satisfacen la siguiente
relacién

Sij = Si—1,j—1 — [i —1]si—1j, (3.9)

consgo =1, sip=0parai>0ysg;=0para j>0.

Definicion 13:  Los niimeros de g-Stirling sin signo de primer tipo, Cy = (cij)1<i j<nt+1, cumplen la
siguiente relacién:

Cij:Ci—l,j—l+[i_1]ci—1,ja (3.10)
concoo=1,cip=0parai>0yco;=0para j>0.

Las entradas de S, son iguales en valor absoluto a las de C, = (¢;j)1<i j<n+1 dadas por (3.10). La di-
ferencia radica en su patron de signos: S, presenta un patron de tablero de ajedrez con signos alternantes,
mientras que C, > 0.

Definicion 14:  Los miimeros de g-Stirling de segundo tipo, B, = (cij)1<i j<n+1, satisfacen la siguiente
relacion

bij = bi-1,j-1+[jlbi-1j, (3.11)
conbog=1,bjp=0parai >0y by; =0 para j > 0.

Haciendo g = 1 se puede comprobar que obtenemos los ndimeros de Stirling de primer y segundo
tipo definidos anteriormente, respectivamente.

Vamos a deducir ahora la factorizacion bidiagonal de la matriz C,,. En particular, este teorema también
sirve como prueba de que C, es una matriz TP.
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Teorema 3.2. Sea C; = (cij)1<i,j<n+1 la matriz cuya entrada (i,j) es el niimero de q-Stirling de primer
tipo c¢;j dado por (3.10). Entonces Cy es TP y

1, sii=j,
BD(Cy) = li—jl, sii>], (3.12)
0, en otro caso.

se puede calcular con HRA.
Demostracion. Usando (3.10), realizamos el primer paso de la EN de C:

2 Cil . . .
ng) =Cjj— ﬁciflaj =Cjj— [l— I]C[,Lj =Ci—1,j—1, 2<j<i<n+1.
i

)

Observemos que p1; =1y m;; = [i — 1] parai > 1. Ademds, la matriz obtenida después de aplicar un
paso de la eliminacién de Neville cumple que C,gZ) [2,---,n+1] =C4[1,--- ,n]. Entonces, deducimos que
pjj =1y mj=[i— j] parai> j > 2. Observamos ahora que la factorizacién bidiagonal de C, (que es
unica) corresponde a (1.5) con D y todas las matrices G; iguales a la matriz identidad y las matrices F;
dadas por (1.6) y m;; = [i — j] para i > j > 2. Por tanto, C, es un producto de matrices bidiagonales no
negativas (y por tanto, TP) y entonces, por el Teorema 3.1 de 3], C, es TP. Observemos que C, se puede
calcular con HRA. 0

Usando (3.9) en lugar de (3.10), la misma demostracién del teorema anterior nos lleva a

1, sii=j,
BD(Sq) =< —i—jl, sii>}], (3.13)
0, en otro caso.

A pesar de que S, no es una matriz TP, estd estrechamente relacionada con esta clase de matrices, ya
que es la inversa de la matriz B,,.
El siguiente teorema muestra que las dos matrices de nimeros de g-Stirling son inversas entre si.

Teorema 3.3. Las dos matrices con niimeros de g-Stirling son inversas entre si:
Y sichij = &;
k

donde &;j :=1sii=jy0jj:=0sii#].

El corolario siguiente nos da la factorizacién bidiagonal de las matrices con niimeros de g-Stirling
de segundo tipo.

Corolario 5. Sea B, = (bij)1<i,j<n+1 la matriz cuya entrada (i,j) es el niimero de g-Stirling de segundo
tipo b;; dado por (3.11). Entonces B, es TP y

1, sii=j,
BYD(By) =< [j], sii> ],

0, enotro caso.

Demostracion. Por el Teorema 3.3, tenemos que S, es la inversa de B,. Por (3.13), conocemos la fac-
torizacion bidiagonal de S,. Por tltimo, utilizando el Teorema 1.6 que nos dice cudl es la forma de la
factorizacion bidiagonal de la matriz inversa, deducimos la factorizacién bidiagonal de B,,.

O
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