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RESUMEN INICIAL 

En el contexto actual, la transición hacia fuentes de energía más sostenibles y respetuosas 

con el medio ambiente es un objetivo primordial, respaldado por la urgencia de enfrentar 

los desafíos climáticos globales. Desde una perspectiva financiera, conviene garantizar 

que apoyar la transición energética, además de cumplir con los objetivos 

medioambientales, también se traducen en incentivos efectivos económicos. En los 

mercados financieros, resulta crucial verificar hasta qué punto se potencia e incentiva la 

inversión en energías verdes, ofreciendo oportunidades significativas para inversores y 

empresas que buscan alinear sus estrategias financieras con criterios de impacto positivo.  

En este trabajo se han considerado dos índices bursátiles energéticos como componentes 

fundamentales para la construcción de una cartera óptima. Para ello, es necesario tener 

un conocimiento preciso de las volatilidades de cada serie individual y las correlaciones 

entre ellas. Dado que dichos índices muestran comportamientos heterocedásticos para 

abordar esta tarea se recurre a modelos de la familia GARCH multivariantes. En concreto, 

se emplearán modelos VAR-DCC (vector autorregresivo con correlación condicional 

dinámica) que permiten una adaptación dinámica a las cambiantes condiciones del 

mercado. En un entorno financiero dinámico y volátil, la disponibilidad de pesos diarios 

otorga a los gestores de carteras una herramienta necesaria para tomar decisiones 

informadas y mantener una alineación estratégica con los objetivos financieros a medida 

que evolucionan las condiciones del mercado.  

Los resultados revelan una asignación de pesos significativamente elevada al índice de 

energías limpias, en comparación con la asignación más modesta al índice de Oil-Gas. 

Este patrón sugiere un fuerte respaldo a las iniciativas sostenibles y destaca el 

alineamiento estratégico con la transición energética. Esta distribución de pesos no solo 

refleja un compromiso con la responsabilidad ambiental, sino que también sugiere un 

respaldo hacia prácticas más sostenibles y resilientes. 

 

Palabras clave: Cartera óptima, Cambio Climático, Modelos VAR-DCC, Series 

financieras 

 

 



 
 

 

ABSTRACT 

In the current context, the transition towards more sustainable and environmentally 

friendly energy sources is a primary objective, supported by the urgency of facing global 

climate challenges. From a financial perspective, it is important to ensure that supporting 

the energy transition, in addition to meeting environmental objectives, also translates into 

effective economic incentives. In financial markets, it is crucial to verify to what extent 

investment in green energy is promoted and incentivized, offering significant 

opportunities for investors and companies seeking to align their financial strategies with 

positive impact criteria. 

In this work, two energy stock indices have been considered as fundamental components 

for the construction of an optimal portfolio. To do this, it is necessary to have precise 

knowledge of the volatilities of each individual series and the correlations between them. 

Given that these indices show heteroscedastic behavior, multivariate GARCH family 

models are used to address this task. Specifically, VAR-DCC (vector autoregressive with 

dynamic conditional correlation) models will be used that allow dynamic adaptation to 

changing market conditions. In a dynamic and volatile financial environment, the 

availability of daily pesos provides portfolio managers with a necessary tool to make 

informed decisions and maintain strategic alignment with financial objectives as market 

conditions evolve. 

The results reveal a significantly high allocation of weights to the clean energy index, 

compared to the more modest allocation to the Oil-Gas index. This pattern suggests strong 

support for sustainable initiatives and highlights strategic alignment with the energy 

transition. This distribution of weights not only reflects a commitment to environmental 

responsibility, but also suggests support for more sustainable and resilient practices. 

Keywords: Optimal portfolio, Climate Change, VAR-DCC Models, Financial series 
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1. INTRODUCCION  
El cambio climático, resultante de las emisiones de gases de efecto invernadero originadas 

de actividades humanas, representa una amenaza urgente. La relación entre el cambio 

climático y la huella de carbono, que cuantifica las emisiones de gases como el dióxido 

de carbono, se revela de manera patente. A medida que esta huella experimenta un 

aumento, se intensifican los impactos negativos en el clima, como el aumento de 

temperaturas, eventos climáticos extremos y cambios en los patrones meteorológicos. En 

este contexto, el sector energético adquiere un papel de suma relevancia, al ser tanto factor 

contribuyente al problema como protagonista en su resolución. La reducción de la huella 

de carbono se torna esencial para mitigar el cambio climático, demandando la adopción 

de prácticas más sostenibles y la transición hacia fuentes de energía renovable y 

tecnologías más limpias en el ámbito energético. 

La adopción de tecnologías y prácticas más eficientes en términos energéticos no solo 

reduce las emisiones de GEI, sino que también puede conducir a ahorros significativos 

en costes operativos para las empresas. Esto incluye ahorros en energía, materias primas 

y gestión de residuos, además de permitir a las empresas comerciar con las asignaciones 

de emisiones, consecuentemente esto crea un incentivo económico para reducir las 

emisiones, ya que las empresas que logran reducir sus emisiones por debajo de sus 

asignaciones pueden vender los excedentes a otras empresas lo cual reduce los costes 

operativos de manera significativa. Además, adoptar prácticas sostenibles y reducir su 

huella de carbono a menudo experimentan una mejora en su reputación corporativa. Los 

consumidores valoran cada vez más a las empresas comprometidas con la protección del 

medio ambiente, lo que puede traducirse en lealtad a la marca y ventajas competitivas. 

Dentro de las prácticas sostenibles adoptadas por las empresas, cobra un protagonismo 

crucial la transición de fuentes de energía sucias o fósiles, como el carbón, petróleo y gas 

natural, hacia alternativas limpias como la solar, eólica, hidroeléctrica y geotérmica. Esta 

transición desempeña un papel fundamental en la reducción efectiva de la huella de 

carbono. La inversión en energías limpias no solo reporta beneficios económicos a los 

inversores, sino que también genera impactos positivos en la sociedad. Estas fuentes de 

energía contribuyen significativamente a la mitigación del cambio climático al reducir las 

emisiones de gases de efecto invernadero. Además, posibilitan la diversificación de la 
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matriz energética, crean empleo en el sector de energías renovables y reducen la 

dependencia de los combustibles fósiles. 

Es importante destacar que las energías limpias son renovables y sostenibles a largo plazo, 

ofreciendo una opción viable y segura para el futuro. Este enfoque no solo proporciona 

beneficios ambientales, sino que también se traduce en estabilidad y seguridad energética. 

Vale la pena mencionar que la reducción de la dependencia de combustibles fósiles puede 

contribuir a prevenir conflictos relacionados con recursos energéticos, añadiendo un 

componente adicional de paz y estabilidad a la ecuación. En este sentido, la inversión en 

energías limpias no solo se presenta como una opción ambientalmente responsable, sino 

también como un paso estratégico hacia un futuro más sostenible y pacífico. 

Como resumen la inversión en energías limpias radica en varios aspectos clave, que se 

enumeran a continuación:  

Reducción de la huella de carbono: Las energías limpias, como la solar, eólica, 

hidroeléctrica y geotérmica, emiten menos gases de efecto invernadero en comparación 

con las fuentes de energía sucia, como los combustibles fósiles. Al invertir en energías 

limpias, se contribuye a la reducción de la huella de carbono y se mitiga el cambio 

climático. 

Sostenibilidad y disponibilidad a largo plazo: Las fuentes de energía renovable son 

inagotables y se renuevan naturalmente, lo que las hace más sostenibles a largo plazo. A 

diferencia de los combustibles fósiles, que son finitos y se agotarán en algún momento, 

las energías limpias ofrecen una fuente de energía continua y confiable. 

Beneficios ambientales: Las energías limpias tienen un impacto ambiental mucho menor 

en comparación con las fuentes de energía sucia. No solo reduce las emisiones de gases 

de efecto invernadero, sino que también disminuyen la contaminación del aire y del agua, 

protegiendo así la salud humana y el medio ambiente en general. 

Innovación y crecimiento económico: La transición hacia las energías limpias impulsa la 

innovación tecnológica y crea oportunidades económicas. El sector de las energías 

renovables está experimentando un crecimiento exponencial a nivel mundial, lo que 

genera inversiones significativas y oportunidades de empleo en este campo. 

Acceso a la energía: Invertir en energías limpias también es importante para garantizar el 

acceso a la energía en todo el mundo. Actualmente, millones de personas carecen de 
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acceso a la electricidad, y las energías limpias pueden desempeñar un papel crucial en la 

electrificación de áreas rurales y remotas, proporcionando energía asequible y sostenible. 

En resumen, invertir en energías limpias es esencial para reducir la huella de carbono, 

promover la sostenibilidad, proteger el medio ambiente, impulsar la innovación y el 

crecimiento económico, y garantizar el acceso a la energía para todos. Es una forma clave 

de abordar los desafíos del cambio climático y construir un futuro más sostenible y 

habitable para las generaciones futuras. 

Todos estos aspectos están impulsando avances sustanciales en la eficiencia y rentabilidad 

de las energías limpias. Este progreso continuo posiciona a estas fuentes de energía como 

opciones cada vez más atractivas también desde una perspectiva económica. La 

innovación tecnológica y la optimización de procesos están contribuyendo a que las 

energías renovables se vuelvan competitivas en el mercado, lo que refuerza aún más la 

viabilidad y sostenibilidad económica de estas soluciones. Este aumento en la eficiencia 

y rentabilidad no solo fortalece el argumento para la inversión en energías limpias, sino 

que también subraya la importancia de la participación activa del sector financiero en 

respaldar esta transición hacia un modelo energético más sostenible. 

En definitiva, el sector financiero tiene una responsabilidad clave en impulsar esta 

transición hacia prácticas más sostenibles. La transición energética requiere un flujo 

continuo de capital hacia tecnologías limpias, y los mercados financieros emergen como 

actores fundamentales en este proceso, delineando así una ruta hacia un futuro más 

respetuoso con el medio ambiente. 

En cuanto a la importancia de detectar si los mercados apoyan o incentivan a los 

inversores para apostar por energías limpias es fundamental analizar si los mercados 

actuales apoyan o incentivan a los inversores a apostar por energías limpias. Si los 

mercados ofrecen incentivos y oportunidades favorables para invertir en energías limpias, 

esto puede promover un cambio significativo hacia una economía más sostenible y 

respetuosa con el medio ambiente. Por otro lado, si los mercados no brindan suficiente 

apoyo a las energías limpias, es posible que los inversores se inclinen hacia opciones más 

contaminantes y menos sostenibles. En este sentido, es necesario promover políticas y 

regulaciones que fomenten la inversión en energías limpias y desincentiven el uso de 

energías sucias. 
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En conclusión, la inversión en energías limpias frente a energías sucias juega un papel 

fundamental en la lucha contra el cambio climático, por tanto, es necesario evaluar si los 

mercados financieros apoyan o incentivan a los inversores a apostar por energías limpias. 

Dentro de este contexto, el objetivo fundamental de este trabajo consistirá en construir 

una cartera óptima dinámica enfrentando un índice de energías limpias y otro de energías 

sucias. Este enfoque permitirá determinar los pesos óptimos en cada uno de ellos, 

considerando la evolución dinámica de los mercados y promoviendo así la toma de 

decisiones financieras alineadas con los acontecimientos actuales. 

Para conseguir este objetivo, se comenzará realizando un estudio univariante de los dos 

índices. Posteriormente, para recoger las relaciones entre ambos se planteará un modelo 

bivariante que capture las volatilidades y correlaciones dinámicas entre ambos índices. 

Esta estimación se empleará para aproximar el riesgo de la cartera y así se podrá construir 

la cartera minimizando dicho riesgo para una rentabilidad dada a priori por el inversor.  

En definitiva, la organización de este trabajo es la siguiente. En la Sección 2 se presentan 

el marco teórico de los modelos empleados, tanto univariantes como bivariantes. En la 

Sección 3 se realiza el estudio empírico de ambos índices y se presenta la construcción 

de la cartera de mínimo riesgo, proporcionando los pesos óptimos en cada instante de 

tiempo analizado. Por último, la Sección 4 contiene las conclusiones más relevantes del 

trabajo. 

 

2. MARCO TEÓRICO 

Desde la perspectiva de que una serie financiera de rentabilidades {rt;t=1,⋯,n} es un 

proceso estocástico, por lo tanto, se entiende como un conjunto de variables aleatorias 

relacionadas entre sí y cuya estructura nos permitirá construir adecuadamente las 

predicciones futuras. En concreto, los modelos autorregresivos de medias móviles, 

denotados por ARMA(p,q), describen el comportamiento de la rentabilidad media 

teniendo en cuenta la relación entre las rentabilidades y las noticias no esperadas (errores) 

ocurridas en el pasado. Su expresión matemática viene dada por: 

Φp(B)rt = μ + Θq(B)εt          con     εt~N(0, σ) 

siendo Φp(B) = 1 − ϕ1B − ϕ2B2 − ⋯ − ϕpBp un polinomio de orden p, Θq(B) = 1 −

θ1B − θ2B2 − ⋯ − θqBq un polinomio de orden q y B es el operador retardo  
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(BjRt = Rt−j). Por lo tanto, la rentabilidad actual rt dependerá linealmente de las últimas 

p rentabilidades ocurridas y de las q últimas noticias no esperadas o errores aleatorios 

producidos. Estos errores representan un ruido blanco homocedástico (media cero y 

varianza constante en el tiempo).  

Para que el modelo sea estacionario y podamos estimarlo correctamente, tendremos que 

exigir que las raíces del polinomio Φp(B) de la parte autorregresiva tengan módulo mayor 

que 1 y, además, que sea invertible, para lo que es necesario que las raíces Θq(B)  del 

polinomio de la parte móvil tengan también un módulo mayor que 1. 

La identificación de los posibles modelos ARMA se basa en la construcción de las 

funciones de autocorrelación (ACF) y de autocorrelación parcial (PACF) de los datos 

observados, es decir, de las rentabilidades diarias rt. A continuación, se estimarían dichos 

modelos analizando la significatividad de los coeficientes o parámetros del modelo, 

validando los residuos con el objetivo de comprobar que han desaparecido las relaciones 

lineales y, finalmente, se utilizan criterios de optimización como el criterio de 

información de Akaike (AIC) y el criterio de información bayesiano (BIC) para 

seleccionar el modelo óptimo. 

En series financieras, como el caso que nos ocupa, un problema fundamental es que la 

varianza no es constante en el tiempo, por lo tanto, será necesario desarrollar un modelo 

que explique o intente captar los movimientos temporales en la volatilidad de la serie. En 

concreto, Engle (1982) fue el pionero en este campo y propuso un proceso autorregresivo 

para los cuadrados de las series de rentabilidades, llamados modelos ARCH. Sin embargo, 

se observó que era necesario un gran número de parámetros para una correcta 

especificación de dicho proceso, dada la persistencia de las noticias no esperadas. 

Bollerslev (1986) propuso una generalización de los procesos ARCH, llamados modelos 

GARCH, que permitían introducir un polinomio de los retardos de la varianza condicional 

similar a la parte de medias móviles de la rentabilidad. Por lo tanto, un modelo 

GARCH(r,s) para una serie financiera de rentabilidades rt viene expresado por la 

ecuación: 

rt = μ + εt        con εt~N(0, σt
2) 

σt
2 = ω + ∑ αiεt−i

2

r

i=1

+ ∑ βjσt−j
2

s

j=1
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donde N(0, σt
2) denota una distribución normal de media cero y varianza σt

2. Para que el 

proceso esté bien definido se debe cumplir que los coeficientes ω, αi y βj sean todos 

mayores o iguales que cero. Denotando It−1 al conjunto de información disponible hasta 

el instante t-1, es evidente que: 

E[rt|It−1] = μ 

V[rt|It−1] = σt
2 

La rentabilidad media condicional es constante en el tiempo, pero la varianza condicional 

o volatilidad del mercado es variable, dependiendo del instante temporal, y cuyo valor 

depende el estado anterior de las volatilidades y de las noticias o errores no esperados en 

el pasado.  

Estos modelos se utilizan comúnmente para estimar y pronosticar la volatilidad de los 

activos financieros, lo cual es crucial para la gestión de riesgos, la fijación de precios de 

opciones y la optimización de carteras. Así han proliferado una gran cantidad de trabajos 

científicos ampliando estos modelos, modificando las distribuciones que se emplean para 

ajustar los errores y las aplicaciones a múltiples series financieras de diferentes mercados. 

Puede consultarse los artículos de Bollerslev, Chou y Kroner (1992) y Bollerslev, Engle 

y Nelson (1994) para comprender el auge y la importancia que adquirieron estos modelos. 

El modelo GARCH(r,s) anterior se puede formular como un proceso ARMA de los 

residuos cuadráticos de la serie: 

εt
2 = ω + ∑(αi + βi)

m

i=1

εt−i
2 − ∑ βj

s

j=1

vt−j + vt      con vt = εt
2 − σt

2 

y denotando m=max{r,s}. Por lo tanto, podemos emplear los métodos de identificación, 

estimación y predicción tradicionales de los modelos ARMA, que han sido ampliamente 

estudiados, para estudiar la varianza condicional de los mercados financieros. Además, 

podemos combinar la modelización en media de los modelos ARMA con la explicación 

de la volatilidad porque ambos procesos son asintóticamente independientes. Esta nueva 

herramienta permite explicar las características principales de una serie financiera, 

rentabilidad media y volatilidad, mediante un modelo global llamado ARMA(p,q)-

GARCH(r,s) cuya expresión vendría dada por: 

Φp(B)rt = μ + Θq(B)εt          con     𝜀𝑡~𝑁(0, 𝜎𝑡
2) 
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σt
2 = ω + ∑ αiεt−i

2

r

i=1

+ ∑ βjσt−j
2

s

j=1

 

La identificación del modelo ARMA y del modelo GARCH se puede realizar de forma 

independiente para determinar los órdenes más recomendables para cada una de las partes 

con el fin de recoger las dependencias lineales que existan tanto en la media como en la 

varianza condicional. La estimación se realizará por máxima verosimilitud, estimando 

puntualmente todos los parámetros necesarios con sus correspondientes errores para 

contrastar su significatividad. Asimismo, se pueden conseguir criterios de selección de 

modelos, como el AIC y el BIC, y realizar un análisis residual para validar el modelo 

propuesto. 

El objetivo central de este trabajo es la construcción de una cartera óptima a partir de dos 

índices de mercado. En este sentido, es necesario conocer no solo las volatilidades 

asociadas a estos índices, sino también las relaciones de correlación que existen entre 

ambas, las cuales no son independientes. La evaluación detallada de estas correlaciones 

resulta esencial, ya que impactan significativamente en la diversificación y, por ende, en 

el riesgo global de la cartera. La consideración de ambos aspectos, volatilidades y 

correlaciones, es fundamental para la formulación de una cartera que no solo maximice 

rendimientos, sino que también minimice de manera eficiente los riesgos derivados de la 

interacción dinámica entre los índices de mercado. Por todo ello, será necesario plantear 

un modelo bivariante de series temporales que recoja las fluctuaciones mutuas entre ellas. 

En particular, se plantea un modelo VAR para ajustar las rentabilidades de forma conjunta 

de ambos índices y un modelo de correlación dinámica condicional con modelos GARCH 

univariantes en cada índice. El modelo en media (para relacionar las rentabilidades de 

cada índice) que se formula es el VAR(1) (Vector autorregresivo de orden 1): 

(
r1,t

r2,t
) = (

ϕ11 ϕ12

ϕ21 ϕ22
) (

r1,t−1

r2,t−1
) + ε𝑡 

Los errores 𝜀𝑡 = (
ε1,t

ε2,t
) tienen media 0 (E[𝜀𝑡] = (

0
0

), pero la matriz de varianzas y 

covarianzas de los errores no puede ser constante porque ambos índices son series 

heterocedásticas, por lo tanto, dicha matriz Ht es dinámica en el tiempo y emplearemos 

modelos de correlación dinámica condicional. Para esta parte, se pueden formular varias 

alternativas que son los modelos CCC (Correlación Condicional Constante), los modelos 

DCCS (Correlación Condicional Dinámica donde el efecto de los errores es Simétrico) y 
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los modelos DCCA (Correlación Condicional Dinámica que incorpora asimetrías en la 

respuesta a los shocks o errores no esperados negativos y positivos). 

La formulación de dichos modelos de correlación dinámica es la siguiente: 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 

siendo: 

• 𝐷𝑡 = (
𝜎1,𝑡 0

0 𝜎2,𝑡
) donde cada elemento es la desviación típica condicional 

proporcionada por un modelo GARCH(1,1). Por lo tanto, las expresiones son: 

o 𝜎1,𝑡
2 = 𝜔1 + 𝛼1𝜀1𝑡

2 + 𝛽1𝜎1,𝑡−1
2    

o 𝜎2,𝑡
2 = 𝜔2 + 𝛼2𝜀2𝑡

2 + 𝛽2𝜎2,𝑡−1
2    

 

• Rt = Qt
∗−1QtQt

∗−1
 con Qt

∗−1 = diag(Qt) es la matriz de correlación dinámica en 

el tiempo y se expresa como: 

Rt = (
1 qt

qt 1
) 

o Si el modelo es de correlación constante (CCC) entonces simplemente 

tenemos un parámetro: qt = constante = q 

o Si el modelo es de correlación dinámica (DCC) entonces, la matriz tiene 

la siguiente expresión:  

Qt = Q̅ + a(zt−1zt−1
′ − Q̅) + b(Qt−1 − Q̅) + gzt

−zt
−′ 

siendo zt los residuos estandarizados: zt = Dt
−1εt  y con zt

− solo se 

consideran los valores negativos. El DCCS impone que g=0, es decir, no 

hay comportamientos diferentes para errores o shocks negativos 

(pérdidas inesperadas en el mercado) y errores positivos (ganancias 

inesperadas en el mercado). El DCCA estima el parámetro g y permite 

que las pérdidas y las ganancias influyan de forma diferente en la 

volatilidad y correlación condicional. 

3. ESTUDIO EMPÍRICO 
Las series de datos temporales que se van a analizar para los dos tipos de energías, 

vulgarmente conocidas como limpias y sucias, son dos índices relacionados con las 
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energías renovables y con las energías fósiles. Concretamente, dichos índices son S&P 

Global Clean Energy Index y STOXX Europe 600 Oil & Gas.  El periodo analizado va 

desde el 1 de octubre de 2013 hasta el 30 de octubre de 20123 que suponen 2589 

observaciones de la rentabilidad diaria. En el periodo analizado se recogen varios sucesos 

que posteriormente nombraremos y que afectan directamente a los datos y resultados de 

ambas series durante dicho periodo. 

Las series de precios se han recogido en las siguientes páginas web: 

https://www.spglobal.com/spdji/es/indices/esg/sp-global-clean-energy-index/#overview  

https://es.investing.com/indices/stoxx-europe-600-oil---gas-historical-data  

Dado que los precios, como se pueden observar en los siguientes gráficos, no son series 

estacionarias tendremos que trabajar con las rentabilidades diarias.  

Ilustración 1. Índices diarios de las series analizadas 

  

En estos gráficos podemos ver como al principio del periodo las energías limpias se 

encontraban muy bajas mientras que las sucias están bastante elevadas y se mantiene así 

hasta principios del año 2020 donde hay un pequeño máximo que coincidiría con la 

pandemia de la COVID-19 y lo contrario ocurre con las energías sucias que tienen una 

pequeña caída. 

No obstante, lo más destacado de estos gráficos sucede sobre mediados de febrero del 

2022, en la que sucedió el último gran problema mundial de las últimas décadas como es 

la Guerra de Ucrania, concretando con los datos vemos el gran pico que tienen las energías 

limpias frente a la gran caída de las energías sucias, esto fue provocado porque dentro de 

la terrible guerra militar hubo grandes guerras con el tema de las energías. 

https://www.spglobal.com/spdji/es/indices/esg/sp-global-clean-energy-index/#overview
https://es.investing.com/indices/stoxx-europe-600-oil---gas-historical-data


10 
 

De hecho, los países de la UE actuaron de manera coordinada para garantizar el 

suministro de energía y unos precios asequibles, ya que dicha guerra generó preocupación 

en relación con la seguridad del suministro energético debido a la decisión de Rusia de 

suspender el suministro de gas a varios Estados miembros de la UE y que contribuyó a 

crear una alarma social y económica sobre el uso de energías fósiles. 

Para hacer frente a los elevados precios de las energías, los ministros de la UE acordaron 

unas nuevas normas para establecer un mecanismo de corrección del mercado destinado 

a proteger a los ciudadanos y a la economía frente a precios excesivamente elevados. El 

Reglamento tiene por objeto limitar los episodios de precios excesivos del gas en la UE 

que no reflejan los precios del mercado mundial, garantizando al mismo tiempo la 

seguridad del suministro de energía y la estabilidad de los mercados financieros. 

Centrándonos en las energías sucias el Consejo decidió fijar un tope al precio del petróleo 

para el petróleo crudo, los aceites de petróleo y los aceites de minerales bituminosos 

originarios o exportados de Rusia, en 60 dólares estadounidenses por barril. 

El tope al precio del petróleo ruso tiene por objeto limitar las subidas bruscas de precios 

provocadas por las condiciones de mercado extraordinarias, y reducir drásticamente los 

ingresos que Rusia obtiene del petróleo tras desencadenar su guerra ilegal de agresión 

contra Ucrania. También servirá para estabilizar los precios mundiales de la energía y al 

mismo tiempo atenuar las consecuencias negativas en el suministro energético de terceros 

países. 

Además, los impactos en la energía causados por la crisis de la COVID-19 se han 

intensificado en los últimos meses por la invasión rusa a Ucrania, lo que ha generado 

incertidumbre en los mercados mundiales de petróleo y gas y ha disparado los precios de 

la energía. 

Por otro lado, aumentaron el uso de energías renovables como consecuencia de esta guerra 

con un aumento de más del 20% del uso de las energías eólica y solar en la Unión Europea 

(UE), que sustituyó casi el 75% de las importaciones rusas de gas fósil, mientras que el 

mundo está listo para agregar tanta energía renovable en los próximos años. 

A continuación, se calcula la rentabilidad diaria, en tanto por cien, empleando la siguiente 

expresión:  
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𝑅𝑒𝑛𝑡𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑 = 100 ×
(𝑃𝑡 − 𝑃𝑡−1)

𝑃𝑡−1
 

Las series de rentabilidades van a ser estacionarias y se podrá aplicar los modelos 

estadísticos de series temporales, tanto univariantes como bivariantes. En los siguientes 

gráficos se muestran las series de rentabilidades para ambas series. 

En estos gráficos se observan las características empíricas de agrupamiento de 

rentabilidades grandes (positivas o negativas) y de rentabilidades pequeñas (positivas y 

negativas). Además, se observan valores muy elevados en algunos momentos que 

coinciden con los sucesos comentados anteriormente y que provocan que ambas series 

presenten una alta curtosis (con colas pesadas tanto a derecha como a izquierda). Todo 

ello indica que tendremos que emplear modelos ARCH para su ajuste puesto que la 

varianza o volatilidad del mercado se observa que es variable en el tiempo.  

Ilustración 2. Rentabilidades diarias, en tanto por cien, de las series analizadas 

  

 

3.1 ANÁLISIS UNIVARIANTE 
Para ambas series vamos a estimar modelos ARMA-GARCH con el objetivo de ajustar 

tanto la rentabilidad como la volatilidad. El estudio empírico se ha realizado con el 

software R empleando las librerías correspondientes para cada uno de los modelos. 

En las Tablas 1 y 2 se presentan las estimaciones para los dos índices de energías 

estudiadas “CLEAN” y “OIL_GAS”, respectivamente. 

El ajuste del modelo ARMA se realizó empleando los gráficos de las funciones de 

autocorrelación y autocorrelación parcial de las propias rentabilidades y se obtuvieron los 

mejores modelos según el criterio de selección BIC. En el índice CLEAN se seleccionó 
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un modelo MA (2), mientras que para el índice OIL_GAS se determinó una ARMA (1,1). 

Además, en el índice OIL_GAS se han introducido dos intervenciones en las fechas 9 y 

24 de marzo de 2020 porque son dos datos atípicos coincidiendo con la crisis de la 

COVID-19 provocando una rentabilidad negativa del 16,83% y otra positiva del 15,78%, 

respectivamente. Para recoger mejor el comportamiento de la volatilidad se han empleado 

modelos GARCH (1,1) ya que las funciones de autocorrelación y autocorrelación parcial 

de los residuos cuadráticos mostraban valores significativos para bastantes retardos. El 

test ARCH indicaba que eran significativos hasta 10 valores retardados, con p-valores 

prácticamente cero. Hay que señalar que la rentabilidad media de ambas series es cero y, 

por tanto, en ninguna serie se ha introducido la constante como parámetro del modelo. 

Por último, se modelizaron los errores de ambos modelos con una distribución t de 

Student para recoger el exceso de curtosis que presentaban las series. 

Tabla 1. estimación del modelo MA(2)-GARCH(1,1) para el índice CLEAN 

 
Estimate Std. Error t value Pr(>|t|) 

ma1 0,1478 0,0199 7,4456 0,0000 

ma2 0,0364 0,0206 1,7645 0,0776 

omega 0,0218 0,0072 3,0309 0,0024 

alpha1 0,0842 0,0138 6,1020 0,0000 

beta1 0,9077 0,0144 63,1506 0,0000 

shape 6,3974 0,8063 7,9339 0,0000 

 

Tabla 2. Estimación del modelo ARMA(1,1)-GARCH(1,1) para el índice OIL_GAS 

 
Estimate Std. Error t value Pr(>|t|) 

ar1 -0,8793 0,1003 -8,7668 0,0000 

ma1 0,9018 0,0910 9,9114 0,0000 

mxreg1 -16,7535 2,0024 -8,3668 0,0000 

mxreg2 15,2448 3,5855 4,2518 0,0000 

omega 0,0224 0,0081 2,7542 0,0059 

alpha1 0,0676 0,0125 5,4009 0,0000 

beta1 0,9239 0,0137 67,2754 0,0000 

shape 6,3260 0,7689 8,2270 0,0000 
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En ambas estimaciones se observa que todos los p-valores son prácticamente cero, 

indicando que los coeficientes estimados son significativamente diferentes de cero. Por 

lo tanto, no hay ningún coeficiente que podamos eliminar. Los valores de los coeficientes 

de la parte MA o ARMA indica la relación lineal que existe entre la rentabilidad de hoy 

con respecto a las noticias inesperadas pasadas en la parte MA (errores del modelo) y la 

rentabilidad del día anterior en la parte AR. En la parte de la volatilidad se observa que 

las noticias inesperadas cuadráticas tienen un coeficiente de 0,0842 y 0,0676, 

respectivamente. Sin embargo, la volatilidad del día previo afecta con un valor estimado 

del 0,9077 y 0,9239, respectivamente, señalando que permanecerá una noticia inesperada 

durante bastante tiempo influyendo en la volatilidad del mercado. 

En la Tabla 3 se presenta un análisis descriptivo de las dos series de errores para cada 

índice. Como se ha dicho anteriormente, la rentabilidad media de ambos índices es cero 

como podemos observar con sus p-valores elevados del 0,3352 y 0,4231, 

respectivamente. Si observamos los coeficientes de asimetría y de curtosis es evidente 

que no siguen una distribución normal ninguna de las dos series de errores estandarizados, 

aunque evidentemente ambas tienen varianza 1. Hemos aplicado el test de bondad de 

ajuste de Kolmogorov-Smirnov para corroborar la hipótesis planteada de que dicha 

distribución es una t de Student y el resultado se muestra en la Tabla 4. Para ambas series 

el p-valor es elevado, por tanto, es evidente que la hipótesis planteada de una distribución 

t de Student es sostenida por lo datos. 

Seguidamente podemos ver un estudio gráfico de ambas series de residuos estandarizados 

en las Figuras 3 y 4. Para cada residuo estandarizado se representa el histograma junto a 

la densidad teórica planteada, el Q-Q plot y el diagrama de caja. El histograma parece 

simétrico y apuntado ajustándose correctamente a la distribución t de Student. El gráfico 

Q-Q plot (cuantiles teóricos frente a los observados) se ajustan muy bien al modelo con 

todos sus valores dentro de las bandas de confianza y, por último, el diagrama de cajas 

podemos observar que es simétrico con una caja estrecha, mientras que los bigotes son 

más extensos y con muchos valores por fuera lo que confirma que es una t de Student. 
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Tabla 3. Análisis descriptivo de las series de errores para ambos modelos 

 

Tabla 4. Test de Kolmogorov-Smirnov para los residuos estandarizados 

 

El estudio de las funciones de autocorrelación y autocorrelación parcial de los residuos 

estandarizados y de sus cuadrados muestran que no hay valores significativos para los 

primeros retardos. El contraste de Ljung-Box (ver Tabla 5) en ambos casos no muestra la 

existencia de ninguna relación lineal, con p-valores por encima del 10% y el contraste 

ARCH (véase Tabla 6) tampoco detecta dicho efecto para los primeros retardos con p-

valores superiores al 30%. 

Ilustración 3. Estudio gráfico de los residuos estandarizados para el índice CLEAN 

 

Estadistico
Error 

estandar
p-valor Estadistico

Error 

estandar
p-valor

Media 0,0083 0,0195 0,3352 -0,0038 0,0196 0,4231

Extremo inferior -0,0299 -0,0422

Extremo superior 0,0466 0,0346

Media recortada al 5% 0,0129 0,0140

Mediana 0,0192 0,0432

Varianza 0,9853 0,9914

Desviacion estandar 0,9926 0,9957

Minimo -4,8239 -6,6166

Maximo 4,6834 5,9121

Rango 9,5073 12,5287

Rango intercuartil 1,1652 1,1809

Asimetria -0,1041 0,0481 0,0152 -0,3710 0,0481 0,0000

Curtosis 1,3908 0,0963 0,0000 2,3064 0,0963 0,0000

Índice CLEAN Índice OIL-GAS

Estadistico p-valor Estadistico p-valor

Test de Kolmogorov-Smirnov 0,0139 0,7037 0,0204 0,2317

Índice CLEAN Índice OIL-GAS
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Ilustración 4. Estudio gráfico de los residuos estandarizados para el índice OIL_GAS 

 

Tabla 5. Test de Ljung-Box para los residuos estandarizados y sus cuadrados 

 

Tabla 6. Test ARCH para los residuos estandarizados 

 

 

Finalmente, en la Figura 5 se presentan las estimaciones de la desviación típica 

(volatilidad) de cada índice analizado. Se observa claramente que no es constante en el 

tiempo, indicando que intervalos temporales hay mayor variabilidad en el mercado y en 

cuales menos. En general, podemos ver que hay mayor volatilidad en el índice OIL_GAS, 

pero se observan claramente algunos picos que coindicen en ambas volatilidades. En 

primer lugar, alrededor de marzo del año 2020 que coincide con la terrible pandemia a 

nivel mundial causada por la COVID-19, con sus respectivos repuntes durante los dos 

Estadistico p-valor Estadistico p-valor

Retardo 1 1,959 0,1616 2,256 0,1090

Retardo 5 3,347 0,2748 3,097 0,4124

Retardo 9 5,320 0,3838 3,826 0,7311

Retardo 1 0,092 0,7615 2,644 0,1039

Retardo 5 1,350 0,7768 4,281 0,2211

Retardo 9 2,277 0,8695 6,487 0,2461

Índice CLEAN Índice OIL-GAS

Residuos 

estandarizados

Residuos 

estandarizados 

cuadráticos

Estadistico p-valor Estadistico p-valor

Retardo 3 0,413 0,5204 0,536 0,4650

Retardo 5 0,539 0,8721 2,810 0,3185

Retardo 7 0,870 0,9338 3,901 0,3611

Índice CLEAN Índice OIL-GAS

Residuos 

estandarizados
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años siguientes. Posteriormente, en segundo lugar, observamos otro pico no tan elevado, 

pero no menos importante, a mediados de febrero del 2022 como es la guerra de Ucrania 

la cual afecto a todo el mundo, ya que aparte de los ataques militares hubo una crisis de 

ciertas energías como podemos ver de nuevo en el gráfico. 

Ilustración 5. Volatilidad estimada de cada índice 

  

 

3.2 ANÁLISIS BIVARIANTE 

En esta subsección vamos a estudiar de forma conjunta ambos índices para poder explicar 

las relaciones mutuas entre ambas. El modelo que plantearemos será VAR-DCC-

GARCH, es decir, para la rentabilidad aplicaremos un modelo vectorial autorregresivo 

(extensión de los modelos ARMA univariantes) y para explicar la volatilidad 

emplearemos modelos de correlación dinámica condicional cuyas varianzas 

condicionales univariantes serán los modelos GARCH (1,1) vistos en la subsección 

anterior (véase Gargallo y otros (2021)). 

En primer lugar, representamos gráficamente las funciones de autocorrelación parcial de 

cada serie de forma univariante y la función de correlación cruzada entre ambas para 

detectar las relaciones entre las rentabilidades en la Figura 6. 
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Ilustración 6. Funciones de autocorrelación y de correlación cruzada de ambas series 

 

Se observa, como ya habíamos visto en la subsección anterior, que hay relaciones entre 

la rentabilidad actual y los retardos anteriores en los dos gráficos de la diagonal que son 

las funciones de autocorrelación parcial univariante. El gráfico fuera de la diagonal 

muestra que hay correlación significativa fuerte simultánea, es decir, en el mismo instante 

de tiempo y menor con el día anterior y posterior, aunque también es significativa. Este 

estudio permite justificar el uso de un modelo VAR (vector autorregresivo) para explicar 

de forma conjunta las rentabilidades de ambos índices. 

En concreto, el modelo VAR (1) que se plantea es el siguiente: 

(
Xt

Yt
) = (

ϕ11 ϕ12

ϕ21 ϕ22
) (

Xt−1

Yt−1
) + (

β1

𝛽2
) 𝕀t=1650 + (

β3

𝛽4
) 𝕀t=1661 + ε𝑡 

donde Xt es la rentabilidad del índice CLEAN e Yt es la rentabilidad del índice OIL_GAS. 

Además, se han introducido dos intervenciones en los instantes 1650 y 1661 que 

corresponden con las fechas 9 de marzo de 2020 y 24 de marzo de 2020 (crisis de la 

COVID), como en la subsección anterior. 

Las estimaciones obtenidas del modelo VAR(1) con sus p-valores entre paréntesis se 

presentan en la Tabla 7. 
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Tabla 7. Estimación del modelo VAR(1) 

 

CLEAN.l1 OIL_GAS.l1 

exo1 

(1650) 

exo2 

(1661) 

CLEAN 
0,1508 

(0.0000) 

0,0250 

(0.2145) 

-10,1642 

(0.0000) 

12,5822 

(0.0000) 

OIL_GAS 
0,0775 

(0.0000) 

0,0019 

(0.9257) 

-16,5667 

(0.0000) 

16,2363 

(0.0000) 

 

Se observa que los coeficientes del modelo son significativos salvo para el retardo de la 

rentabilidad del OIL_GAS. Esto sugiere que las energías limpias (CLEAN) y el sector 

OIL_GAS están interconectados de manera significativa en el corto plazo, con las 

variaciones en las energías limpias influenciando de manera significativa tanto el presente 

como el próximo período. Sin embargo, el hecho de que el retardo uno del OIL_GAS no 

sea significativo indica que el impacto de las variaciones pasadas en el sector de energías 

fósiles puede no ser tan relevante en el período inmediatamente siguiente. 

A pesar de que el modelo VAR (1) ha logrado capturar efectivamente el comportamiento 

medio de las energías limpias y el sector de energías fósiles, se ha observado que no ha 

sido igualmente exitoso en modelar el comportamiento en volatilidad, ya que se han 

identificado residuos heterocedásticos. Esta heterocedasticidad implica que la varianza 

de los errores no es constante a lo largo del tiempo, lo que puede indicar la presencia de 

patrones no lineales o cambios en la volatilidad a lo largo de las observaciones. Para poder 

ajustar este comportamiento se plantea un modelo de correlación dinámica condicional 

de los presentados en la sección previa. 

Se ha contrastado que los errores 𝜀𝑡 = (
ε1t

ε2t
) tienen media 0 (E[𝜀𝑡] = (

0
0

), pero su matriz 

de varianzas y covarianzas Ht  no puede considerarse constante porque ambos índices son 

series heterocedásticas, por lo tanto, dicha matriz Ht es dinámica en el tiempo y 

emplearemos modelos de correlación dinámica condicional (CCC, DCCS y DCCA). 

Se van a estimar los tres modelos y se seleccionará mediante el criterio de selección de 

modelos BIC el que mejor se ajuste. Los valores obtenidos del criterio BIC para los 

modelos se muestran en la Tabla 8. 
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Tabla 8. Criterio de selección BIC de los modelos 

 

 

 

 

El mínimo criterio BIC corresponde al modelo DCCS, indicando que dicho modelo es la 

opción más adecuada. El DCCS permite que la matriz de correlación evolucione de 

manera dinámica, reflejando cambios en la relación de las variabilidades condicionales 

entre las series a lo largo del tiempo. A diferencia del CCC, que asume una correlación 

constante, el DCCS captura de manera más efectiva las variaciones en la volatilidad, 

adaptándose a las complejidades inherentes a la relación entre energías limpias y fósiles, 

cuyas estimaciones se muestran en la Tabla 9. Además, la estimación del parámetro g de 

asimetría en el modelo DDCA no era significativo implicando que las correlaciones 

dinámicas entre ambas rentabilidades no vienen influenciadas de forma diferente por 

errores positivos o negativos, es decir, importa la noticia inesperada, pero no si son 

ganancias o pérdidas inesperadas. 

En la Tabla 9 se observan que todos los coeficientes son significativos porque sus p-

valores son nulos o prácticamente nulos. La matriz de varianzas y covarianza dinámica 

según el modelo DCCS tiene un valor estimado a=0,0170 y b=0,9744, indicando una alta 

persistencia en mantener la influencia de las noticias inesperadas que llegan al mercado 

porque la suma de ambos a+b=0,9914 es muy cercana a 1. Además, se ha empleado una 

distribución t de student para los errores para recoger su alta curtosis y los grados de 

libertad estimados son 6,78, tal como se había observado en la subsección anterior  

 

 

 

 

 

 

 

CRITERIO DE BAYES 

CCC 6,4232 

DCC Simétrico 6,4152 

DCC Asimétrico 6,4182 
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Tabla 9. Estimación del modelo DCCS-GARCH(1,1) 

 
Estimate Std. Error t value Pr(>|t|) 

[CLEAN]. omega 0,0181 0,0078 2,3248 0,0200 

[CLEAN]. alpha1 0,0835 0,0183 4,5743 0,0000 

[CLEAN]. beta1 0,9100 0,019 47,4750 0,0000 

[OIL_GAS]. omega 0,0185 0,0079 2,3460 0,0190 

[OIL_GAS]. alpha1 0,0776 0,0170 4,5524 0,0000 

[OIL_GAS]. beta1 0,9176 0,0162 56,4705 0,0000 

[Joint]dcca1 0,0170 0,0057 3,0070 0,0026 

[Joint]dccb1 0,9744 0,0108 90,4538 0,0000 

[Joint]mshape 6,7808 0,4749 14,2818 0,0000 

Se presentan las volatilidades estimadas para ambas series y la correlación entre ellas en 

el panel gráfico de la Figura 7. Se observa claramente que la correlación (gráfico fuera de 

la diagonal) es cambiante en el tiempo y se señala con una línea roja el valor estimado si 

la correlación fuera constante en todo el periodo analizado. Dicha correlación es distinta 

de cero indicando que los movimientos o variabilidades de ambas series están 

relacionadas y en algunos instantes de tiempo toma valores que llegan a 0,70. 

Las volatilidades de ambas series (gráficos en la diagonal) son similares a los obtenidos 

en la subsección anterior puesto que los valores estimados del modelo GARCH(1,1) 

prácticamente coinciden. Ambas señalan episodios de alta variabilidad en torno al inicio 

de la pandemia de la COVID 19 y de la guerra de Ucrania. 

Ilustración 7. Volatilidad estimada de cada índice y la correlación entre ambas 
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3.3 CÁLCULO DE LOS PESOS DE LA CARTERA FORMADA POR LOS 

ÍNDICES 

El objetivo de esta subsección será determinar los pesos de cada índice en la cartera para 

corroborar que el mercado potencia o incentiva la inversión en energías renovables frente 

a las energías fósiles que son más contaminantes. Una explicación más detallada se puede 

ver en Gargallo y otros (2021). 

Sean las rentabilidades 𝑟𝑡 = (
Xt

Yt
) en un instante t de ambos índices, con Xt la rentabilidad 

de la serie denominada CLEAN e Yt la rentabilidad de la series denominada OIL_GAS; 

y denotamos por wt = (
w1t

w2t
) los pesos de la cartera formada por dichos índices. La 

rentabilidad de la cartera sería el producto 𝑤𝑡
′𝑟𝑡 y el riesgo o volatilidad se calcularía como 

wt
′ ∙ Var[rt|It−1] ∙ wt, siendo It−1 la información conocida hasta el instante t-1. Para 

explicar el cálculo de los pesos de la cartera óptima se denota  Ωt = Var[rt|It−1] a la 

matriz de varianzas y covarianza condicional de la rentabilidad de ambas series 

Para construir la cartera óptima se deben determinar los pesos para que con una 

rentabilidad fija tengamos el menor riesgo o menor varianza, es decir, resolver el 

problema: 

min
wt

 wt
′ ∙ Ωt ∙ wt     sujeto a que    wt

′μ = μ0 

donde 𝜇 es la rentabilidad esperada. 

La solución a este problema es la siguiente: 

wt =
Ωt

−1μ

μ′Ωt
−1μ

μ0 

• Dado que  Ω𝑡 no es conocida emplearemos su estimación: H𝑡, como se ha visto 

en la subsección anterior se empleará l modelo DCCS-GARCH(1,1) con la 

información hasta el instante t-1. 

• Para calcular 𝜇, trabajamos con diferentes escenarios calculando la rentabilidad 

trimestral durante todo el periodo estudiado. El peso dado a cada índice será el 

promedio de todos los pesos calculados para cada escenario posible. 

 

El estudio planteado para la estimación será trimestral, es decir, iremos añadiendo las 

rentabilidades de un trimestre nuevo para volver a estimar el modelo y actualizar los pesos 
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correspondientes. En cada instante de tiempo con el modelo estimado haremos las 

predicciones de la matriz de varianzas y covarianzas (volatilidad de la cartera) para volver 

a optimizar la cartera con el menor riesgo posibles para una rentabilidad fija dada.  

Siguiendo con este planteamiento de los trimestres y rentabilidades trimestrales 

normalizadas, desde un principio partíamos de una serie con 33 trimestres, sin embargo, 

se encuentran algunas negativas que habrá que descartar porque un inversor solo fija 

rentabilidades positivas y se eliminarán escenarios que se puedan repetir, por lo que al 

final tendremos solo 16 escenarios de posibles rentabilidades y que se muestran en la 

Tabla 10. 

Tabla 10. Rentabilidades trimestrales μ 

 CLEAN OIL_GAS 

Escenario 1 0,5700 0,8217 

Escenario 2 0,9963 0,0856 

Escenario 3 0,4900 0,8717 

Escenario 4 0,9208 0,3901 

Escenario 5 0,9005 0,4348 

Escenario 6 0,5278 0,8494 

Escenario 7 0,8472 0,5312 

Escenario 8 0,8131 0,5822 

Escenario 9 0,9977 0,0677 

Escenario 10 0,9999 0,0167 

Escenario 11 0,8682 0,4962 

Escenario 12 0,2255 0,9742 

Escenario 13 0,9875 0,1574 

Escenario 14 0,3690 0,9294 

Escenario 15 1,0000 0,0000 

Escenario 16 0,0000 1,0000 

El procedimiento para el instante t comenzará fijando el periodo de estimación, desde el 

instante inicial hasta el final del trimestre anterior al instante t de tiempo. Con dicha 

información se estimará el modelo VAR(1)-DCCS-GARCH(1,1) como se ha visto en la 

subsección anterior y de forma iterativa se estimará la matriz de varianzas y covarianza 

condicional Ht, con los parámetros estimados y las rentabilidades diarias que llegan hasta 
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el instante t-1.  Con la matriz estimada Ht y cada 𝜇 recogido en un escenario, se calculará 

los pesos óptimos para ese escenario y el peso asignado, como se ha explicado, será el 

promedio de los 16 pesos óptimos calculados en cada escenario.  

La suma de los pesos generalmente no es 1, por lo tanto, el peso que falta (1 − w1t −

w2t) se asigna a un activo libre de riesgo, que suelen ser letras del tesoro o inversiones 

con un interés fijo. 

La Figura 8 presenta los pesos de la cartera óptima, indicado que prácticamente el peso 

de las energías renovables (CLEAN) es mayor que el de las energías fósiles (OIL_GAS) 

prácticamente en todo el periodo estudiado, salvo en periodos de tiempo muy concretos. 

Esto implica que el mercado ofrece más rentabilidad en el índice de las energías 

renovables asumiendo un riesgo menor que invirtiendo en energías fósiles. 

Ilustración 8. Pesos de la cartera óptima 

 

Posiblemente si hubiéramos empezado este periodo unos cuantos años antes veríamos 

como la línea de energías verdes “CLEAN” estaría más abajo antes de este periodo, ya 

que antes no había esta preocupación a nivel mundial por las energías limpias y cuidar el 

medioambiente para el futuro por el gran problema que se nos avecina por el cambio 

climático. 

Por otra parte, hay que destacar como ambas energías se juntan en los puntos destacados 

con anterioridad a lo largo de este estudio como son la pandemia mundial “COVID-19” 

alrededor de marzo del año 2020 y la Guerra de Ucrania a mediados de febrero del 2022 

en la cual suben las energías sucias. 
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Por último, se presenta el grafico de la volatilidad (véase Figura 10) de la cartera óptima 

construida, donde se observa desde el inicio del periodo hasta principios del 2020 una 

variabilidad controlada  y constante, con un riesgo escaso,  pero en marzo del 2020 tiene 

un fuerte crecimiento hasta casi al 6% que coincide con la pandemia de la COVID_19 y 

posteriormente, se producen más variabilidades con otro episodio de alta volatilidad, casi 

del 3%,  con la Guerra de Ucrania sobre mediados de febrero del 2022. 

Ilustración 9. Volatilidad de la cartera óptima 

 

 

4. CONCLUSIONES 

Dada la trascendencia de reducir la huella de carbono y fomentar la inversión en energías 

limpias, es crucial establecer metas claras y ambiciosas. Estos objetivos deben ser no solo 

realistas y alcanzables, sino que deben instar a la sociedad y a los mercados a emprender 

acciones concretas para mitigar el cambio climático. A pesar de que la conciencia pública 

sobre este tema está en constante crecimiento y la sociedad se encuentra cada vez más 

comprometida, la urgencia se hace evidente en la actualidad con fenómenos climáticos 

extremos. 

La inversión en energías limpias para frenar el cambio climático y favorecer la transición 

energética se ha notado de manera muy acusada durante y posteriormente a la pandemia 

de la COVID 2019. Tal vez por la mayor financiación y apoyo político que ha tenido 

durante estos últimos meses como por el hecho de que la demanda de las tecnologías 

relacionadas con las energías limpias ha aumentado. 
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Algunos posibles beneficios de este tipo de energías limpias podrían incluir la reducción 

de las emisiones de gases de efecto invernadero y el no agotamiento de recursos 

provenientes de combustibles fósiles. Además, las políticas actuales favorecen el aumento 

de la capacidad de generación de energías limpias, la promoción de la investigación y 

desarrollo de nuevas tecnologías, la dotación de inventivos y ayudas a empresas y la 

implementación de regulaciones que fomentan la inversión en energías limpias. 

Concretamente en el caso de nuestro país, España, según estimaciones de la Asociación 

de Empresas de Energías Renovables (APPA), la transición energética podría generar 

inversiones entre los 80.000 y los 100.000 millones de euros entre el 2018 y el 2030. Las 

expectativas favorables del mercado, particularmente para el sector fotovoltaico, se deben 

en parte a las ventajas geográficas del país, que en su área sur recibe tanta luz como el 

norte del continente africano. En consecuencia, de cara al futuro el sector público de 

España estima además una inversión de 200.000 millones euros hasta el 2030, dirigidos 

hacia la eficiencia energética y el desarrollo de renovables, entre otros. 

En este contexto, los mercados financieros desempeñan un papel crucial en la transición 

hacia una economía baja en carbono y sostenible. Al incentivar la inversión en energías 

limpias, los mercados pueden contribuir significativamente a la reducción de la huella de 

carbono y al desarrollo de un futuro más sostenible, ya que dichos mercados son los 

motores del mundo y la economía.  

Por lo tanto, el trabajo ha estudiado la construcción de una cartera diversificando en dos 

índices que recogen la inversión en industrias relacionadas con los combustibles fósiles 

frente a otra que se basa en el uso de energías verdes. La construcción de la cartera óptima 

entre estas dos series financieras destaca un pronunciado incremento en la presencia de 

energías renovables en comparación con las no renovables en los últimos años. Este 

cambio representativo en la composición de las energías, visualizado de manera clara en 

la representación gráfica de los pesos de la cartera, subraya la tendencia ascendente de las 

fuentes de energía sostenibles, marcando un hito significativo en el panorama energético-

financiero. 
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