

Trabajo Fin de Grado

Desarrollo de aplicación para seguimiento de

jugadores en cantera de futbol

Autor

Jorge Fuertes Orrios

Director

Jesús Gallardo Casero

Escuela Universitaria Politécnica de Teruel

Ingeniería Electrónica y Automática

2023

Desarrollo de aplicación para seguimiento de jugadores

en cantera de futbol

Resumen

El uso de los dispositivos móviles ha adquirido una importancia mayúscula en nuestras

vidas durante los últimos años, esto ha hecho que dejen de verse como una simple

herramienta para realizar llamadas y que pasen a ser necesarios en casi cualquier

actividad que realizamos.

Este avance tecnológico hace que cada vez más los equipos busquen una manera

informatizada de llevar el control y seguimiento de sus jugadores.

Por tanto, este Trabajo De Final de Grado (TFG) consiste en responder esta necesidad

planteada por el CD Teruel mediante el desarrollo de una aplicación para dispositivos

móviles proporcionando información sobre el desarrollo de los jugadores de los

diferentes equipos de la cantera empleando tecnológicas como la base de datos Room

la arquitectura MVVM o los objetos LiveData.

Como finalidad adicional de este TFG, se pretende aprender conocimientos referentes

al desarrollo de aplicaciones en Android Studio utilizando tecnologías novedosas que

permitan que la aplicación este lo más actualizada posible.

Abstract

The use of mobile devices has acquired a major importance in our lives in recent years,

this has made them stop being seen as a simple tool for making calls and have become

necessary in almost any activity we do.

This technological advance means that more teams are looking for computerized a way

to control and monitor their players.

Therefore, this Final Degree Project (TFG) consist of responding to this need raised by

CD Teruel through the development of a mobile application providing information on

the development of the different team’s players using technologies such as Room

database, MVVM architecture or LiveData objects.

As an additional purpose of this TFG, it is intended to learn knowledge related to the

development of application in Android Studio using innovative technologies that allow

the application to be update as possible.

Tabla de contenido

Resumen……… I

1. Introducción……………………………………………………………………………………………………..1

1.1 Motivación………………………………………………………………………………………………….1

1.2 Objetivo de la Aplicación…………………………………………………………………………….2

1.3 Herramientas y Tecnologías………………………………………………………………………..2

1.4 Decisión Final………………………………………………………………………………………………6

2. Análisis………..7

2.1 Planteamiento del problema……………………………………………………………………….7

2.2 Público Objetivo………………………………………………………………………………………….7

2.3 Aplicaciones Existentes……………………………………………………………………………….8

2.4 Estructuras………………………………………………………………………………………………….9

2.5 Especificaciones de Requisitos…………………………………………………………………..11

2.5.1 Requisitos Funcionales……………………………………………………………………..11

2.5.2 Requisitos no Funcionales………………………………………………………………..13

3. Diseño……….13

 3.1 Arquitectura General del Sistema……………………………………………………………..13

 3.2 Prototipo de interfaces………………………………………………………………………………14

 3.3 Diseño de la Aplicación………………………………………………………………………………16

 3.4 Diagramas…………………………………………………………………………………………………19

 3.4.1 Diagramas de Clase………………………………………………………………………….19

 3.4.2 Diagramas de Actividades…………………………………………………………………20

 3.4.3 Diagrama de la base de datos……………………………………………………………22

4. Desarrollo del Sistema……………………………………………………………………………………24

 4.1 Biblioteca Room………………………………………………………………………………………..24

 4.1.1 Relaciones entre entidades………………………………………………………………27

 4.2 Navegación entre las pantallas………………………………………………………………….28

 4.3 Tecnologías y bibliotecas utilizadas……………………………………………………………29

 4.3.1 Arquitectura MVVM…………………………………………………………………………29

 4.3.2 Biblioteca DataBinding……………………………………………………………………..30

 4.4 Implementación de la base de datos…………………………………………………………31

 4.5 Utilización de LiveData………………………………………………………………………………33

 4.6 Creación de la interfaz de usuario………………………………………………………………35

 4.7 Biblioteca MP AndroidChart………………………………………………………………………39

 4.8 DatePickerFragment y TimePickerFragment………………………………………………41

5 Pruebas de la Aplicación………………………………………………………………………………………42

6 Conclusiones……………………………………………………………………………………………………….43

6.1 Valoración personal………………………………………………………………………………….44

Tabla de figuras

Ilustración 1 Aplicación Goalmanager……………………………………………………………………….....8

Ilustración 2 Aplicación Bcoach………………………………………………………………………...............9

Ilustración 3 Prototipo de Interfaces “SplashScreen” “MenuActivity”…………………………14

Ilustración 4 Prototipo de Interfaces “Listado de Plantillas” “CargarPlantilla” “Cargar

Jugador” ………………………………………………………………………...15

Ilustración 5 Prototipo de Interfaces “Resumen Partido” “Convocatoria de Partido”

“Listado de Partidos” ………………………………………………………………………...........................15

Ilustración 6 Prototipo de Interfaces Pantallas de Estadísticas……………………………………16

Ilustración 7 Componentes del sistema………………………………………………………………………17

Ilustración 8 Diseño de la Aplicación……………………………………………………………………….....18

Ilustración 9 Diagramas de clase………………………………………………………………………...........19

Ilustración 10 Diagrama de Actividades

“Eliminación de jugador de un entrenamiento”………………………………………………………….20

Ilustración 11 Insertar puntuación………………………………………………………………………........21

Ilustración 12 Generar grafico de estadísticas…………………………………………………………….21

Ilustración 13 Diagrama de la base de datos……………………………………………………………….22

Ilustración 14 Código de enlazar ítem de la clase PlantillasAdapter…………………………….23

Ilustración 15 Código de botón CrearEntrenamiento de la clase PlantillasAdapter……..23

Ilustración 16 Parte de código para guardar un entrenamiento de la clase

EntrenamientoViewModel………………………………………………………………………...................23

Ilustración 17 Partes de código de la clase CargarEntrenamientoActivity…………………..24

Ilustración 18 Código con columnas de la tabla de jugadores……………………………………..25

Ilustración 19 Código para crear la base de datos y los métodos DAO asociados a ella..25

Ilustración 20 Código de método de consulta a la base de datos para obtener la lista de

plantillas………………………………………………………………………..26

Ilustración 21 Código de método de inserción de plantilla a la base de datos……………..26

Ilustración 22 Código de método de eliminación de plantilla a la base de datos………….26

Ilustración 23 Columnas de la tabla de JugadoresEnEntrenamientoRelacion………………27

Ilustración 24 Código con los elementos de la clase JugadoresenEntrenamiento…………27

Ilustración 25 Implementación de la biblioteca ViewBinding………………………………………28

Ilustración 26 Código para acceso a una variable de un archivo……………………………………28

Ilustración 27 Navegación entre las distintas pantallas de la aplicación………………………29

Ilustración 28 Implementación de la biblioteca DataBinding……………………………………….30

Ilustración 29 Código para vincular los elementos de la interfaz de usuario a variables

………………………………………….……………………………………………………………………….................30

Ilustración 30 Código para configurar el EditText de la interfaz de usuario………………….30

Ilustración 31 Código para enlazar datos del ViewModel en la actividad………………………31

Ilustración 32 Código para implementar la biblioteca Room………………………………………..31

Ilustración 33 Código con las columnas de la tabla plantilla…………………………………………31

Ilustración 34 Código para declarar la clase AppDao……………………………………………………32

Ilustración 35 Código para crear la base de datos y los métodos DAO asociados a ella..32

Ilustración 36 Código para obtener instancia de la base de datos………………………………..32

Ilustración 37 Código para inicializar la base de datos…………………………………………………32

Ilustración 38 Código para obtener un entrenamiento según un día especifico…………..32

Ilustración 39 Código con la declaración de las diferentes variables Livedata……………….33

Ilustración 40 Código para comprobar si la información de un usuario es correcta……….33

Ilustración 41 Código para guardar un jugador………………….…………………………………………34

Ilustración 42 Código para guardar un jugador cunado el usuario presiona un botón…34

Ilustración 43 Uso de ConstraintLayout y LinearLayout……………………………………………….36

Ilustración 44 Vista en la que el adaptador cargara cada elemento……………………………..37

Ilustración 45 Clase JugadorAdapter……………………………………………………………………….....37

Ilustración 46 Clase ArrayAdapter……………………………………………………………………….........38

Ilustración 47 Repositorio de la biblioteca MP AndroidChart……………………………………….39

Ilustración 48 Implementación de la biblioteca MP AndroidChart……………………………….39

Ilustración 49 Elemento LineChart del fichero ‘activityestadisticas’…………………………….39

Ilustración 50 Función generarDatosPartido de la clase EstadisticasActivity………………..40

Ilustración 51 Código de la clase DatePickerFragment…………………………………………………41

Ilustración 52 Código de la clase TimePickerFragment………………………………………………..42

Listado de Acrónimos

 API: Application Programming Interfaces

 App: Application

 CD: Club Deportivo

 DAO: Data Access Object

 IDE: Integral Development Environment

 Int: Integer

 iOs: iPhone Operating System

 MVVM: Model View ViewModel

 PDA: Personal Digital Assistant

 SQL: Structured Query Language

 TFG: Trabajo Fin de Grado

 UDF: Universal Disk Format

 UTF: Unicode Transformation Format

 UI: User Interface

 XML: Extensible Markup Language

1

1. Introducción

En el presente Trabajo Fin de Grado (TFG) se ha abordado el desarrollo de una aplicación

móvil con la finalidad de que sea usada por el staff de entrenadores de las canteras del

Club Deportivo Teruel.

El objetivo de la aplicación es proporcionar a los entrenadores del club información

sobre sus equipos para que les sea más fácil tomar decisiones en consecuencia con dicha

información.

A continuación, se presenta la memoria y documentación del TFG “Desarrollo de

aplicación para seguimiento de jugadores en canteras de futbol”.

1.1 Motivación

El fútbol es más que un deporte, es una pasión que une a personas de todas las edades,

géneros y culturas de todo el mundo. Las canteras de futbol desempeñan un papel

fundamental en el desarrollo de jóvenes talentos, brindándoles la oportunidad de crecer

no solo como deportistas sino como personas. Sin embargo, la gestión eficiente y el

seguimiento preciso de los jugadores en estas canteras son aspectos que a menudo

pueden ser mejorados.

El futbol está en constante evolución, y la búsqueda de nuevos talentos es esencial para

mantener la competitividad y el éxito de cualquier equipo o selección nacional. Las

canteras de futbol son viveros de talento, donde jóvenes promesas pueden ser

moldeadas y preparadas para alcanzar su máximo potencial. Sin embargo, para que esto

suceda, es crucial contar con herramientas que faciliten la identificación, seguimiento y

desarrollo de estos talentos desde edades tempranas.

A pesar de la importancia de las canteras, muchas enfrentan desafíos significativos en

su gestión. La falta de seguimientos efectivos a menudo conduce a la perdida de talento,

la falta de continuidad en el desarrollo de jugadores y la dificultad para identificar las

áreas de mejora. Además, la presión por obtener resultados inmediatos a veces puede

eclipsar la atención necesaria que requiere el desarrollo a largo plazo de los jóvenes

futbolistas.

La idea de la realización de este trabajo surge tras conservaciones entre mi tutor e

integrantes del staff del club deportivo Teruel y llegaron a la conclusión que el desarrollo

de una aplicación destinada al seguimiento de jugadores puede hacer que los

entrenadores tengan una herramienta tecnológica que los ayude a favorecer el

desarrollo de sus jugadores.

2

1.2 Objetivos de la aplicación

Este trabajo consiste en el desarrollo de una aplicación para dispositivos móviles

Android orientada al seguimiento de diferentes aspectos que conciernen a la progresión

de los jugadores de las canteras del Club Deportivo Teruel.

Para el desarrollo de la aplicación se utilizarán tecnologías que son para mí una novedad

con el objetivo de explorar en profundidad y obtener conocimientos del desarrollo de

aplicaciones móviles.

Por ello, los objetivos del Trabajo Fin De Grado son:

 Desarrollar una aplicación que pueda ser utilizada desde cualquier Smartphone

Android.

 Que la aplicación gestione su propia base de datos.

 Permitir realizar operaciones dentro de esta base de datos como pueden ser la

inserción, eliminación, actualización y consulta de datos.

 Realizar una sección de estadísticas, con el objetivo de filtrar los datos y

mostrarlos de una manera eficiente y fácil de visualizar para el usuario.

 Estudiar tecnologías novedosas que se necesitan implementar en el proyecto y

con las que no he trabajado todavía.

1.3 Herramientas y tecnologías

Android Studio

Es el entorno de desarrollo integrado (IDE) oficial para la plataforma Android. Ofrece

una amplia gama de herramientas y recursos que simplifican la creación de aplicaciones

nativas para dispositivos Android. [1]

 Entre las características destacadas se incluyen:

 Lenguajes de Programación: Android Studio admite Java y Kotlin como lenguajes

principales para el desarrollo de aplicaciones Android. Kotlin, en particular, ha

ganado popularidad debido a su concisión y seguridad.

 Emuladores y Depuración: Proporciona emuladores de dispositivos Android

para probar aplicaciones en diversas configuraciones. Además, ofrece

herramientas de depuración robustas.

 Diseño de Interfaz de Usuario (UI): Android Studio incluye un editor de diseño

visual que facilita la creación de interfaces de usuario atractivas y funcionales.

 Integración con Google Services: Permite la integración sencilla de servicios de

Google, como Google Maps, Firebase y Google Cloud, en las aplicaciones.

3

Flutter

Flutter es un framework de código abierto desarrollado por Google que se utiliza para

crear aplicaciones móviles nativas en plataformas múltiples desde un solo código base.

Algunas de sus características más destacadas son:

 Lenguaje Dart: Flutter utiliza el lenguaje de programación Dart, que es conocido

por su alto rendimiento y su facilidad de aprendizaje.

 Widgets Personalizables: Flutter ofrece un amplio conjunto de widgets

personalizables que permiten a los desarrolladores crear interfaces de usuario

atractivas y consistentes en todas las plataformas.

 Rápido Desarrollo y Recarga en Caliente: La característica de recarga en caliente

de Flutter permite realizar cambios en tiempo real en la aplicación sin necesidad

de reiniciarla, lo que acelera el proceso de desarrollo.

 Compatibilidad Multiplataforma: Flutter permite crear aplicaciones para

Android, iOS, web y escritorio, lo que simplifica la expansión de una aplicación a

diferentes plataformas. [2]

Xcode

Este es un entorno de desarrollo integrado (IDE) desarrollado por Apple que se utiliza

principalmente para crear aplicaciones para dispositivos Apple, como iPhone, iPad, Mac

y Apple Watch.

 Lenguaje de Programación: Tiene varios lenguajes de programación como

pueden ser Swift y Objective-C.

 Diseño de interfaces: Xcode incluye una interfaz de usuario gráfica que facilita la

creación y diseño de interfaces de aplicaciones de manera visual.

 Depuración y pruebas: La plataforma proporciona herramientas de depuración

y emulación que permiten a los desarrolladores probar sus aplicaciones en

simuladores de dispositivos antes de lanzarlas al mercado.

 Integración de servicios: Xcode ofrece integración con otros servicios de Apple,

como iCloud y Game Center, lo que facilita la creación de aplicaciones que

aprovechan estas funcionalidades.

 Desarrollo multiplataforma: Con Xcode, puedes crear aplicaciones que

funcionen en una variedad de dispositivos Apple, incluyendo iOS, macOS,

watchOS y tvOS.

 Gestión de proyectos: Xcode permite organizar y gestionar proyectos de

desarrollo de aplicaciones de manera eficiente, lo que facilita la colaboración en

equipos de desarrollo. [3]

4

Kotlin

Esta herramienta puede trabajar tanto con el lenguaje Java como con Kotlin, este último

ha sido nombrado por Google como lenguaje oficial de Android por lo que ha sido mi

elección para llevar a cabo la implementación de la app.

Kotlin aparece en el 2016, pero es a partir del 2017 cuando empieza a coger fuerza ya

que es en este momento cuando recibe la ya mencionada oficialidad para el desarrollo

de apps de Android.

Es un lenguaje que guarda similitudes con Java a diferencia de que esta combinación de

características modernas con una sintaxis concisa. Al tener una sintaxis concisa Kotlin

reduce el código respecto a Java lo que hace que el desarrollo sea más eficiente.

Además, Kotlin es interoperable con Java, lo que permite a los desarrolladores utilizar

bibliotecas de Java existentes en proyectos de Kotlin y viceversa. [4]

SQLite

SQLite es una herramienta de software libre que permite almacenar información en
dispositivos empotrados de una forma sencilla, eficaz, potente, rápida y en equipos con
pocas capacidades de hardware, como puede ser una PDA o un teléfono. Esta
herramienta de software se puede usar tanto en dispositivos móviles como en sistemas
de escritorio, sin necesidad de realizar procesos complejos de importación y exportación
de datos, ya que existe compatibilidad al 100% entre las diversas plataformas
disponibles, haciendo que la portabilidad entre dispositivos y plataformas sea
transparente.

Estas son algunas de las características principales de SQLite:

 La base de datos completa se encuentra en un solo archivo.

 Puede funcionar enteramente en memoria, lo que la hace muy rápida.

 Tiene un footprint menor a 230KB.

 Es totalmente autocontenida (sin dependencias externas).

 Cuenta con librerías de acceso para muchos lenguajes de programación.

 Soporta texto en formato UTF-8 y UTF-16, así como datos numéricos de 64
bits.

 Soporta funciones SQL definidas por el usuario (UDF).

 El código fuente es de dominio público y se encuentra muy bien
documentado. [6]

5

Room

La biblioteca de persistencias Room brinda una capa de abstracción para SQLite que
permite acceder a la base de datos sin problemas y, al mismo tiempo, aprovechar toda
la potencia de SQLite.

La biblioteca ayuda a crear una caché de los datos de tu app en un dispositivo que la
ejecute. Esta caché, que funciona como la única fuente de confianza de la app, permite
que los usuarios vean una copia coherente de información clave en la app,
independientemente de si cuentan con conexión a Internet. [5]

Entre las características de Room las más destacadas son:

 Relaciones entre tablas: Room facilita la definición de relaciones entre
entidades, lo que simplifica el trabajo con base de datos relacionales. Puedes
establecer fácilmente relaciones uno a uno, uno a muchos y muchos a muchos.

 Validación en tiempo de conmutación: Room realiza comprobaciones en tiempo
de compilación de las consultas SQL, lo que ayuda a evitar errores en tiempo de
ejecución al escribir consultas incorrectas.

 Integración con LiveData: Room se integra bien con LiveData, una clase de la
arquitectura de componentes de Android, lo que facilita la actualización
automática de la interfaz de usuario cuando los datos en la base de datos
cambian.

 Migraciones automáticas: Room puede manejar automáticamente las
migraciones de la base de datos cuando se realizan cambios en el esquema, lo
que simplifica la evolución de la base de datos a medida que la aplicación se
actualiza.

MySQL

MySQL es un sistema de gestión de bases de datos que cuenta con una doble licencia.

Por una parte, es de código abierto, pero por otra, cuenta con una versión comercial

gestionada por la compañía Oracle.

Estas son algunas de las características principales de MySql

 Arquitectura Cliente y Servidor: MySQL basa su funcionamiento en un modelo
cliente y servidor. Es decir, clientes y servidores se comunican entre sí de manera
diferenciada para un mejor rendimiento. Cada cliente puede hacer consultas a
través del sistema de registro para obtener datos, modificarlos, guardar estos
cambios o establecer nuevas tablas de registros, por ejemplo.

 Compatibilidad con SQL: SQL es un lenguaje generalizado dentro de la industria.
Al ser un estándar MySQL ofrece plena compatibilidad por lo que si has trabajado
en otro motor de bases de datos no tendrás problemas en migrar a MySQL.

https://developer.android.com/training/data-storage/room?hl=es-419

6

 Vistas: Desde la versión 5.0 de MySQL se ofrece compatibilidad para poder
configurar vistas personalizadas del mismo modo que podemos hacerlo en otras
bases de datos SQL. En bases de datos de gran tamaño las vistas se hacen un
recurso imprescindible.

 Procedimientos almacenados. MySQL posee la característica de no procesar las
tablas directamente, sino que a través de procedimientos almacenados es
posible incrementar la eficacia de nuestra implementación.

 Desencadenantes. MySQL permite además poder automatizar ciertas tareas
dentro de nuestra base de datos. En el momento que se produce un evento otro
es lanzado para actualizar registros u optimizar su funcionalidad.

 Transacciones. Una transacción representa la actuación de diversas operaciones
en la base de datos como un dispositivo. El sistema de base de registros avala
que todos los procedimientos se establezcan correctamente o ninguna de ellas.
En caso por ejemplo de una falla de energía, cuando el monitor falla u ocurre
algún otro inconveniente, el sistema opta por preservar la integridad de la base
de datos resguardando la información. [7]

1.4 Decisión Final

Una vez vistas y analizadas las tecnologías anteriores, la escogida para realizar la

aplicación ha sido Android Studio debido a estas razones:

 Android Studio permite un acceso directo a las API nativas de Android, lo que

significa que se pueden aprovechar al máximo las características específicas de

Android en tus aplicaciones.

 Dado que Android es una plataforma muy popular he podido encontrar gran

cantidad de recursos en línea como pueden ser tutoriales o información en la

nube factor que me ha sido muy útil durante el desarrollo de la aplicación ya que

partir de cero en cuanto al conocimiento de desarrollo de aplicaciones móviles.

 Dentro de los dos lenguajes de programación disponibles en Android Studio he

elegido Kotlin ya que Google lo está priorizando respecto a Java.

 Para la base de datos he elegido Room ya que es una opción poderosa y eficiente

para la persistencia de datos en aplicaciones Android, mejorando la

productividad del desarrollador y garantizando un manejo más seguro y eficaz

de la base de datos.

 He decidido utilizar SQLite en vez de MySQL debido a que mi aplicación no

requiere de una base de datos demasiado grande y es necesario escribir y leer

directamente desde la aplicación.

7

2. Análisis

La fase de análisis es uno de los pilares fundamentales de todo proyecto de software, es

el punto de partida de este TFG a partir del cual se deben asentar las bases del proyecto.

En esta sección de la memoria se mostrará el planteamiento del problema, el público

objetivo, las aplicaciones existentes y los requisitos incluyendo los funcionales y los no

funcionales.

A partir del planteamiento del problema el público objetivo y las diferentes aplicaciones

existentes se plantearán los requisitos.

2.1 Planteamiento del problema

Como se ha comentado en el apartado de motivación el trabajo está destinado a

proporcionar una herramienta tecnológica a los entrenadores del club deportivo Teruel.

Las canteras de fútbol son fundamentales para los clubes ya que proporcionan una

fuente constante de talento joven y local. Estas canteras no solo ayudan a reducir costos

al nutrir al primer equipo con jugadores de desarrollo propio, sino que también

fortalecen la identidad y la conexión del club con la comunidad local. Además,

contribuyen a la formación de futbolistas profesionales de alta calidad que pueden

generar ingresos a través de transferencias a otros equipos, lo que beneficia

financieramente al club. Por los motivos expuestos considero que las canteras son un

componente esencial en el éxito y la sostenibilidad a largo plazo de los clubes de fútbol.

El auge de las nuevas tecnologías y de los dispositivos móviles abre un mundo de

posibilidades para el desarrollo de aplicaciones que permitan el seguimiento de los

jugadores jóvenes. En el Play Store de Google podemos ver aplicaciones similares pero

la idea era crear una exclusiva para el Club Deportivo Teruel con una interfaz gráfica

amigable con el usuario y un diseño con elementos propios del club como son la imagen

del escudo en diferentes pantallas un fondo de pantalla en el menú principal donde

aparece el campo Pinilla.

2.2 Público Objetivo

La aplicación desarrollada en este TFG está diseñada para ser utilizada por el staff

técnico de las canteras del Club Deportivo Teruel. Este público puede ser de todas

edades de modo que la aplicación debe ser lo más simple e intuitiva posible para

asegurar el correcto uso y la mejor utilidad de esta.

La aplicación podría tener una serie de extensiones que incluyeran más funcionalidades

en tal caso la aplicación podría ser utilizada también por los jugadores del club, por lo

que esta versión solo está destinada a entrenadores.

8

2.3 Aplicaciones existentes

En este apartado voy a exponer ciertas aplicaciones similares a la desarrollada

disponibles en el Play Store de Google.

Gol Manager

Se trata de una aplicación muy similar a la expuesta en el TFG, que consiste en una serie

de funcionalidades estadísticas para el entrenador de un club.

Esta aplicación tiene muchas cosas buenas respecto a la mía como pueden ser una

variedad más amplia de funcionalidades la implementación de un calendario donde

aparecen registrados los entrenamientos y los partidos.

El que esta aplicación tenga tantas funcionalidades es favorable, pese a que en

CanteraControl se ha querido tener una funcionalidad mucho más específica, pero

también tiene sus inconvenientes como que el diseño es muy ostentoso y recargado lo

que no facilita su uso mientras que en CanteraControl uno de los elementos más

importantes de la aplicación es que el diseño es simple e intuitivo.

Esta aplicación tiene otros dos aspectos más negativos, como son la aparición de

anuncios constantes lo que hace que la aplicación en si sea bastante tediosa y por último

que muchas de las funcionalidades de estas son de pago.

Ilustración 1: -Aplicación GolManager

9

Bcoach

Esta aplicación se centra en diversas tareas de registro de los entrenadores con el

objetivo de facilitar su día a día y poder planear la temporada de su equipo. [8]

Esta aplicación cuenta con una pantalla de inicio que te da la opción de crear un

entrenamiento un partido o ir a la pizarra, esta pizarra te sirve para registrar diferentes

estadísticas en el tiempo real de partido como pueden ser los goles minutos jugados o

tarjetas amarillas funcionalidad que me parece bastante interesante y podría ser

implementada en futuras versiones de la aplicación. Cuando finaliza un partido se

pueden ver todas las estadísticas que hayan sido anotadas por el entrenador.

Ilustración 2: -Aplicación Bcoach

Esta aplicación tiene dos inconvenientes principales: el primero que es de pago y el

segundo que solo sirve para monitorizar un equipo.

2.4 Estructuras

A continuación, se detallan los distintos sistemas de los que hace uso la aplicación:

Estructura de jugadores

La estructura de jugadores permitirá guardar jugadores en la base de datos con sus

diferentes parámetros (nombre, posición, dorsal) para que este pueda ser incluido

posteriormente en una plantilla.

Estructura de plantillas

La estructura de plantillas permitirá guardar plantillas con sus diferentes parámetros

(nombre, categoría, temporada) en la base de datos.

Subestructura de consulta de jugadores en plantilla

La subestructura permitirá al usuario visualizar los jugadores que se encuentren dentro

de la plantilla además de poder guardar jugadores dentro de la misma.

10

Subestructura de entrenamientos

En la subestructura de entrenamientos el usuario podrá añadir entrenamientos a la base

de datos del sistema con sus respectivos parámetros (fecha, hora, URL) y cuando los

entrenamientos estén dentro de la base de datos realizar diferentes operaciones que

detallare más adelante en los requisitos funcionales.

Subestructura de partidos

En la subestructura de partidos el usuario podrá guardar partidos en la base de datos

con sus respectivos parámetros (rival, jornada, temporada y URL) y una vez estén dentro

realizar diferentes operaciones y consultas que expondré más adelante.

Estructura de estadísticas

La estructura de estadísticas se encargará de toda la funcionalidad referente a la

generación y visualización de gráficos, siendo una parte fundamental de la aplicación.

Subestructura de generación de estadísticas

En la subestructura de generación de estadísticas se podrá seleccionar primero una

plantilla seguida de una opción referente a los partidos o a los entrenamientos y por

último el nombre del jugador.

Subestructura de visualización de estadísticas

Subestructura que se encargará de mostrar el gráfico que genera el subsistema de

generación de estadísticas, que permitirá interactuar con el gráfico para resaltar alguno

de sus valores o ampliar su tamaño.

11

2.5 Especificación de requisitos

En este apartado, vamos a especificar las funciones que se podrán realizar dentro del

sistema y bajo que restricciones. Para ello vamos a presentar los requisitos funcionales

y no funcionales.

2.5.1 Requisitos funcionales

En esta sección detallaremos los requisitos funcionales de la aplicación catalogados por

los sistemas y subsistemas que ya se han definido.

RF -1 – Añadir un jugador: La aplicación permitirá añadir un jugador con sus diferentes

atributos (nombre, dorsal, posición) a la base de datos.

RF -2 – Añadir una plantilla: La aplicación permitirá añadir una plantilla a la base de

datos con sus diferentes atributos (nombre, categoría, temporada).

RF -3 – Añadir jugadores en la plantilla: El usuario podrá incorporar jugadores en la

plantilla entre los disponibles en la base de datos que aún no hayan sido incluidos en

ninguna plantilla del sistema.

RF -4 – Visualización de jugadores en plantilla: El usuario podrá ver la lista de jugadores

que se hayan introducido en cada una de las diferentes plantillas.

RF -5 – Eliminación de jugadores: El usuario podrá borrar las plantillas y con este todos

sus elementos asociados (jugadores, partidos, entrenamientos, valoraciones del

jugador).

RF -6 – Añadir entrenamientos: El usuario podrá incorporar entrenamientos de las

diferentes plantillas con sus atributos asociados (fecha, hora, URL).

RF -7 – Añadir fotos: El usuario podrá cargar fotos de su galería y guardarlas como

atributo del entrenamiento.

RF -8 – Añadir Anotaciones: El usuario podrá añadir las anotaciones que considere

necesarias a cada entrenamiento.

RF -9 – Eliminar entrenamientos: El usuario podrá eliminar entrenamientos y con este

todos sus elementos asociados (jugadores, puntuaciones de jugadores).

RF -10 – Añadir jugadores al entrenamiento: El usuario podrá seleccionar entre los

jugadores correspondientes de la plantilla que no se hayan añadido con anterioridad a

la base de datos.

RF -11 – Añadir valoraciones a los jugadores: El usuario al mismo tiempo que añade los

jugadores al entrenamiento les podrá asociar una puntuación en consecuencia con su

rendimiento en el entrenamiento que variará de 1 a 5 estrellas.

12

RF -12 – Visualización del entrenamiento: En esta pantalla el usuario podrá ver la foto

asociada a cada entrenamiento junto con las anotaciones y la lista de los jugadores que

hayan acudido al entrenamiento.

RF -13 – Añadir partidos: El usuario podrá incorporar partidos de las diferentes plantillas

con sus atributos asociados (rival, jornada, temporada).

RF -14 – Añadir fotos: El usuario podrá cargar fotos de su galería y guardarlas como

atributo del partido.

RF -15 – Añadir Anotaciones: El usuario podrá añadir las anotaciones que considere

necesarias a cada partido.

RF -16 – Eliminar partidos: El usuario podrá eliminar partidos y con este, todos sus

elementos asociados (jugadores, puntuaciones de jugadores).

RF -17 – Añadir jugadores al partido: El usuario podrá seleccionar entre los jugadores

correspondientes de la plantilla que no se hayan añadido con anterioridad a la base de

datos.

RF -18 – Añadir valoraciones a los jugadores: El usuario al mismo tiempo que añade los

jugadores al partido les podrá asociar una puntuación en consecuencia con su

rendimiento en el entrenamiento que variará de 1 a 5 estrellas.

RF -19 – Visualización del entrenamiento: En esta pantalla el usuario podrá ver la foto

asociada a cada entrenamiento junto con las anotaciones y la lista de los jugadores que

hayan acudido al entrenamiento.

RF -20 – Elegir Plantilla: El usuario podrá seleccionar una plantilla para generar datos

sobre algún jugador incluido en esta.

RF -21 – Elegir partido o entrenamiento: El usuario podrá seleccionar si quiere generar

datos de entrenamientos o partidos.

RF -23 – Elegir jugador: El usuario podrá seleccionar un jugador concreto para generar

datos sobre él.

RF -24 – Generar un gráfico: Una vez seleccionados los parámetros, se podrá generar el

grafico deseado y aunque haya un gráfico ya generado se podrán seleccionar otros

atributos y generar uno distinto.

2.5.2 Requisitos no funcionales

En esta sección se detallarán los requisitos no funcionales con los que debe contar la

aplicación.

RNF 1 – Interfaz sencilla e intuitiva: La interfaz de la aplicación deberá ser simple, pero

de fácil uso y que no sea necesario pasar mucho tiempo usándola para familiarizarse con

ella.

13

RNF 2 – Interfaz personalizada para el club: La interfaz deberá contener elementos que

nos hagan reconocer la aplicación como propia del club deportivo Teruel.

RNF 3 – Fluidez: La aplicación tendrá que ser rápida a la hora de cambiar entre las

distintas vistas que la componen, así como a la hora de generar gráficos.

RNF 4 – Funcionamientos en dispositivos Android: La aplicación debe funcionar en

dispositivos cuya versión mínima sea Android 7(API 24), esto incluye el 96,7 % de todos

los dispositivos.

RNF 5 – Velocidad de acceso a la base de datos: Las acciones que necesiten guardar

datos en la base de datos o acceder a ellos tendrán que ser rápidas para no entorpecer

la experiencia del usuario.

3. Diseño

En este capítulo vamos a describir todo el proceso de diseño de la aplicación móvil.

El diseño realizado engloba todos los requisitos tanto funcionales como no funcionales

descritos en el apartado de análisis.

3.1 Arquitectura general del sistema

La arquitectura de la aplicación será cliente-servidor.

En cuanto a la parte del servidor utilizo la biblioteca Room [9] que es una biblioteca de

persistencia de datos de Android que proporciona una capa de abstracción sobre SQLite

para permitir un acceso más fluido a la base de datos.

Para tratar las fotos que los entrenadores utilizaran para los entrenamientos y los

partidos la aplicación utilizara un directorio ubicado en el almacenamiento externo

donde se pueden almacenar archivos que pertenecen a la aplicación y que no serán

eliminados si el usuario desinstala la aplicación.

Respecto al cliente, se trata de una aplicación en lenguaje Kotlin que será ejecutada

desde dispositivos móviles con un sistema operativo Android. Esta aplicación cliente

será la encargada de contactar con la base de datos Room para obtener la información

necesaria en cada momento.

3.2 Prototipo de interfaces

Los prototipos de interfaces de usuario los utilizare para explorar un diseño de interfaz

de usuario alcanzable y adecuado en consonancia con los requisitos no funcionales

estipulados anteriormente. Este prototipo de interfaces es una representación visual y

14

funcional de cómo se verá y comportará la aplicación antes de desarrollarla

completamente.

En el caso de este trabajo, las interfaces se han adaptado para sistemas móviles de

Android.

La primera interfaz que se muestra al iniciar la app es un splashscreen en el que se

mostrara el logotipo de las canteras del Club Deportivo Teruel sobre un fondo blanco.

Inmediatamente después se mostrará una pantalla de menú en cuyo fondo se mostrará

una imagen proporcionada por el club donde aparece el campo y en el centro el logotipo

de la cantera del Club Deportivo Teruel. En esta pestaña también aparecen cuatro

botones para darle al usuario diferentes opciones según lo que desee hacer.

Ilustración 3: Prototipo de Interfaces “SplashScreen”, “MenuActivity”

15

Ilustración 4: -Prototipo de Interfaces “Lista de plantillas”,” Cargar Plantilla”, “Cargar Jugador”

Ilustración 5: - Prototipo de Interfaces “Resumen Partido” “Convocatoria Partido” “Lista de Partidos”

Los cuadrados de la primera imagen de la ilustración 3 se corresponden con iconos que

funcionan como botones en la aplicación. Las funcionalidades asociadas a estos botones

por orden serían las siguientes: (Añadir Jugadores, Ver Jugadores en la plantilla, Añadir

Plantilla, Añadir Entrenamientos, Lista de Entrenamientos, Añadir Partido y Lista de

Partidos)

16

Ilustración 6: - Prototipo de interfaces pantallas de estadísticas

3.3 Diseño de la aplicación

En las estructuras de las aplicaciones Android la lógica de programa ocurre en

actividades que son independientes entre sí ya que cada una tiene su propio ciclo de

vida. Estas actividades se encargar de llevar todo el flujo del programa haciendo uso de

diferentes componentes como son el modelo o los objetos de la interfaz.

Como se ha comentado en la parte de la arquitectura la aplicación es del tipo cliente

servidor. La parte del servidor es la que se encarga de la gestión de la base de datos la

gestión de la lógica de negocio, la seguridad y protección de datos y la sincronización de

datos. La parte cliente debe estar en constante comunicación con el servidor para

asegurar la persistencia de los datos.

Existente diferentes maneras de asegurar la persistencia de los datos y la elección de la

arquitectura puede ser clave para ello. La arquitectura MVVM ha sido convertida en

Google como estándar para implementar aplicaciones Android por lo tanto ha sido mi

elección para desarrollar el TFG, esta arquitectura la explicare más adelante en la parte

de tecnologías utilizadas.

Una de las principales ventajas de esta arquitectura es el uso de los objetos Live Data la

cual es una clase diseñada específicamente para la comunicación entre componentes de

la interfaz de usuario y componentes de la clase ViewModel.

La clase Live Data está diseñada para ser reactiva. Esto significa que los objetos Live Data

pueden notificar automáticamente a sus observadores cuando los datos subyacentes

cambian. Esta clase además está diseñada para ser consciente del ciclo de vida de los

componentes Android como actividades y fragmentos. Esto garantiza que los

observadores solo reciban actualizaciones cuando el componente este en un estado

activo listo para recibir datos evitando así problemas como la fuga de memoria al

17

desvincular automáticamente los observadores cuando el ciclo de vida del componente

no está activo.

La implementación de Live Data en este proyecto se realiza de la forma siguiente.

 Los datos se encuentran almacenados en la base de datos Room esta base de

datos contiene varias tablas o entidades diferentes dependiendo del dato que

queramos almacenar (jugadores, plantillas, entrenamientos, partidos).

 Existe un componente llamado DAO que se encarga de toda la comunicación con

la base de datos es decir realizar consultas inserciones modificaciones y

eliminaciones. En la clase ViewModel es donde se instancian y modifican los

objetos de tipo Live Data. Para consultar los datos, esta clase implementa un

listener que, ante cambios en la base de datos modifica el valor de los objetos

Live Data manteniendo siempre sincronizados los datos entre cliente y servidor.

 En las actividades se implementa un observer a los objetos Live Data, por lo que

cuando estos son modificados, las actividades reciben los cambios y pueden

actualizar la UI.

Ilustración 7: -Componentes del sistema

18

Ilustracion 8: -Diseño de la aplicación

19

En cuanto a la interfaz de usuario, es bastante simple, con el fin de que la aplicación sea

fácil de usar por el usuario. Se ha utilizado una gama de colores pertenecientes a la

entidad deportiva del CD Teruel como son el rojo y el azul. Por otra parte, he utilizado

unos botones personalizados para las diferentes opciones de la plantilla con el fin de

que quedara más estético y poder poner todas las opciones en una misma línea.

En la Ilustración 8 podemos ver el diseño de la aplicación.

3.4 Diagramas

3.4.1 Diagrama de clases

Ilustración 9: -Diagrama de clases

20

En la Ilustración 9 podemos ver el diagrama de clases de la aplicación. Este diagrama

esta resumido y muestro una selección de clases dentro de la estructura de la aplicación

para que se observe visualmente.

En la sección MVVM muestro por una parte el ‘FormularioPartidoViewModel’ que

contiene los métodos que se utilizaran en ‘CargarPartidoActivity’ a través del objeto

partidoViewModel de tipo viewModels.

Los cambios que hace el usuario en la interfaz de usuario se guardan en el objeto binding

a través de un adapter.

Las actividades ‘SelecciónJugadoresActivity’, ’BorraJugadoresActivty’ y

‘EstadisticasActivty’ siguen una lógica parecida cambiando los métodos que aplicamos

en los diferentes ViewModels y Adapters.

Los Adapters sirven para gestionar elementos de tablas de las diferentes entidades de

la base de datos que se representan en la interfaz de usuario a través de RecyclerViews.

El funcionamiento de RoomDataBase lo explicare en su correspondiente apartado.

3.4.2 Diagramas de actividades

 Ilustración 10: -Diagrama de actividades “Eliminación de Jugador de un entrenamiento”

En la Ilustración 10 podemos observar cómo se relacionan los diferentes procesos que

se llevan a cabo en cada una de las partes (Interacción del Usuario, Interfaz de Usuario,

Lógica de Programa y Servidor).

21

Me parece importante comentar la importancia de que la Interfaz de Usuario muestre

un mensaje de confirmación sobre si se desea realizar la operación ya que al ser un

borrado de jugador es una operación delicada que lleva consigo un proceso largo en

caso de que el usuario se haya equivocado en su decisión.

 Ilustración 11: - Insertar puntuaciones en jugadores de partido

En la Ilustración 11 vemos el proceso para añadir una puntuación a un jugador es

importante recalcar que este proceso es el mismo en el caso de que se quiera añadir

una puntuación para un jugador en un entrenamiento o en un partido.

 Ilustración 12: -Generar gráfico de estadísticas

En la Ilustración 12 se puede observar el procedimiento para generar una gráfica de

valoración de jugadores de una plantilla partidos o entrenamientos a los que hayan

22

asistido la diferencia de seleccionar uno u otro se encuentra en la opción marcada por

el usuario en el spinner comentado.

3.4.3 Diagrama de base de datos

Ilustración 13: -Diagrama de la base de datos

Como se puede ver en la ilustración 13 hay una serie de columnas de las diferentes

tablas de las bases de datos que apuntan a otras, a continuación, voy a explicar cómo

funcionan a nivel interno.

Las columnas que voy a exponer son tabla_plantilla_id y plantilla_id la primera de

tabla_plantilla y la segunda de tabla_entrenamiento.

Antes de explicar esto tengo la necesidad de aclarar que son los intent, ya que los voy a

utilizar en el ejemplo.

Un intent es un objeto que proporciona vinculación en tiempo de ejecución entre

componentes separados, como dos actividades. El intent representa la intención que

tiene una app de realizar una tarea. Puedes usar intents para varias tareas; pero, en este

ejemplo el intent se utiliza para iniciar otra actividad. [10]

23

Ilustración 14: -Código de enlazar ítem de la clase PlantillasAdapter

 Como podemos ver en la Ilustración 14, la clase ViewHolder pertenece a la clase

Adapter y la función enlazar ítem se encarga de que por cada elemento del recyclerView

se asocien a este todas las columnas de la clase PlantillaEntity.

Ilustración 15 -Código del botón CrearEntrenamiento de la clase Plantillas Adapter

Como podemos ver en la Ilustración 15, posteriormente cuando el usuario le da al botón

de crear el entrenamiento se crea una nueva actividad (CargarEntrenamientoActivity) a

través del intent, gracias al método putExtra() la primaryKey tabla_plantilla_id se

guardar en las Constante ID_PLANTILLA para poder ser utilizada en la actividad

comentada.

Ilustración 16: -Parte de Código para guardar un entrenamiento de la clase EntrenamientoViewModel

 Como se pude ver en el método mostrado en la ilustración 16 se procede a la inserción

del entrenamiento en la base de datos pasándole como parámetro un id que se

corresponde con plantilla_id.

24

Ilustración 17: -Partes de Código de la clase CargarEntrenamientoActivity

En el primero de los recortes de la ilustración 17 asignamos el valor de la constante

ID_PLANTILLA procedente de la pantalla de ListadoPlantillasActivity a una variable

utilizando el método getIntExtra() que posteriormente pasaremos como parámetro a la

función guardarEntrenamiento.

4 Desarrollo del sistema

Una vez completada la fase de análisis y diseño del proyecto, la siguiente etapa es

implementar el sistema. En este se define como ha sido el desarrollo de los apartados

más relevantes de todo lo especificado en el diseño, utilizando las herramientas

escogidas al comenzar el proyecto. Para los ficheros de diseño se ha utilizado XML.

4.1 Biblioteca Room

Como ya he mencionado anteriormente he utilizado Room para el diseño de la base de

datos.

Room es una de las bibliotecas de Android Jetpack, un conjunto de librerías para seguir

las prácticas recomendadas por Google a la hora de desarrollar aplicaciones para

Android.

Esta biblioteca funciona proporcionando una capa de abstracción para una base de

datos SQLite creando una memoria cache en el dispositivo en el que estés utilizando

CanteraControl de forma que la base de datos y el acceso a ella es local, lo que supone

que los usuarios podrán acceder a la información de su equipo independientemente si

tienen conexión a internet o no.

Para declarar una tabla en la base de datos mediante Room, lo único que debe hacerse

es sobre una clase de Kotlin añadir una anotación como que se observa en la siguiente

imagen, que es una de las clases y tablas de CanteraControl.

25

Ilustración 18: -Código con las columnas de la tabla_jugadores

Como se puede ver en la ilustración 18, tenemos distintas etiquetas cada una de ellas se

utiliza para una determinada función:

- @Entity = Con esta etiqueta hacemos que una clase se convierta en una tabla de

nuestra base de datos.

- @ColumnInfo= Esta etiqueta la utilizamos para las columnas de las tablas y hace

que podamos elegir un nombre de tablas distinto a las variables asociadas a ellas.

- @PrimaryKey= La utilizamos para registrar de manera única cada registro de

nuestra tabla. Como podemos observar en el código esta clave es autogenerada

y se genera cada vez que se crea un registro.

Para controlar una base de datos mediante Room serán necesarios dos ficheros:

Fichero database

Ilustración 19: -Código para crear la base de datos y los métodos DAO asociados a ella

Como se pude ver en la Ilustración 19, la función de esta clase es declarar la base de

datos y las clases que compondrán sus tablas, además añadimos un método abstracto

26

con el que obtenemos una instancia del objeto DAO cuya utilidad voy a explicar a

continuación.

Fichero DAO

En este fichero se almacenarán las diferentes operaciones a través de las cuales

interactuamos con la base de datos, estas operaciones pueden ser de los diferentes

tipos:

Consulta:

Ilustración 20: -Código de método de consulta a la base de datos para obtener la lista de plantillas

En la ilustración 20 se pude observar el código de la clase Dao para solicitar el conjunto

de plantillas de la base de datos.

Inserción:

Ilustración 21: -Código de método de inserción de una plantilla en la base de datos.

En la ilustración 21 se pude observar el código de la clase Dao para insertar una plantilla

en nuestra base de datos.

Eliminación:

Ilustración 22: -Código de método de eliminación de plantilla en nuestra base de datos

En la ilustración 22 se pude observar el código de la clase Dao para eliminar una plantilla

en nuestra base de datos.

27

4.1.1 Relaciones entre entidades

Cuando se trabaja con bases de datos en aplicaciones Android es común que haya

entidades que estén relacionadas entre sí de diferentes maneras:

Uno a uno: A cada elemento de la entidad principal solo le corresponde uno de la

entidad secundaria y viceversa.

Uno a muchos: A cada elemento de la entidad le corresponden muchos de la entidad

secundaria pero un elemento de la entidad secundaria solo puede ir asociado a uno de

la principal.

Muchos a muchos: A cada elemento de la entidad principal le corresponden muchos de

la secundaria y viceversa.

En nuestra aplicación las relaciones entre entidades son de muchos a muchos y voy a

explicar la forma en que las he modelado.

Ilustración 23: - Columnas de la tabla JugadoresEnEntrenamientoRelacion

Ilustración 24: -Código con los elementos de la clase JugadoresEnEntrenamiento

Estas dos clases combinadas de la ilustración 23 y 24 están diseñadas para manejar una

relación compleja de muchos a muchos entre entrenamientos y jugadores en una base

de datos de Room.

Estas dos clases se utilizan para representar una relación compleja de muchos a muchos

entre los jugadores y los entrenamientos en una base de datos Room. La información

del entrenamiento se incrusta en la tabla de JugadoresenEntrenamiento y la relación

28

entre las dos entidades se gestiona a través de la tabla de enlace

JugadoresEnEntrenamientoRelacion.

4.2 Navegación entre pantallas

Para la navegación entre pantallas de la aplicación se ha utilizado ViewBinding la cual es

una característica de Android Studio que simplifica la forma en que los desarrolladores

de aplicaciones Android interactúan con las vistas (UI) en sus de vistas para cada archivo

de diseño XML. A diferencia de findViewById que era la forma tradicional de obtener

referencias a las vistas en el pasado, ViewBinding genera automáticamente clases de

enlace de vistas para cada archivo de diseño XML en tu proyecto, lo que facilita el acceso

a las vistas y elimina la necesidad de escribir código de búsqueda manual.

Para habilitar ViewBinding en mi proyecto he seguido los siguientes pasos:

1. Agregar la configuración de ViewBinding en mi archivo ‘build.gradle’ (módulo de

la aplicación).

Ilustración 25: -Implementación de la biblioteca viewBinding

2. Android Studio genera automáticamente las clases de enlace de vista para tus

archivos XML de diseño

Una vez habilitado ViewBinding, accedo a las vistas de mi diseño XML de la

siguiente manera.

Ilustración 26: -Código para acceso a una variable de un fichero

A continuación, voy a mostrar de forma gráfica la navegación entre las diferentes

pantallas de la aplicación.

29

Ilustración 27: -Navegación entre las distintas pantallas de la aplicación.

4.3 Tecnologías y Bibliotecas utilizadas

4.3.1 Arquitectura MVVM

La arquitectura MVVM se basa en los siguientes componentes clave:

 Model: El Modelo representa la capa de datos de la aplicación. Contiene la lógica

de negocio, los datos y las operaciones relacionadas con la manipulación de

datos. Puede incluir acceso a bases de datos, servicios web, almacenamiento

local y cualquier fuente de datos necesaria para la aplicación.

 View: La Vista representa la interfaz de usuario (UI) de la aplicación. Es

responsable de mostrar los datos del Modelo y de capturar las interacciones del

usuario, como toques en la pantalla, clics de botones, etc. Sin embargo, la Vista

no contiene lógica de negocio; su papel principal es mostrar la información y las

interacciones al usuario.

 ViewModel: El ViewModel actúa como un intermediario entre el Modelo y la

Vista. Su principal responsabilidad es proporcionar los datos necesarios desde el

Modelo a la Vista de una manera que sea fácil de mostrar en la interfaz de

usuario. También gestiona el estado de la interfaz de usuario y las acciones del

usuario. El ViewModel generalmente se comunica con el Modelo para obtener o

actualizar datos, y luego expone estos datos a la Vista a través de propiedades

observables.

30

4.3.2 Biblioteca DataBinding

La biblioteca DataBinding permite vincular los elementos de la interfaz de Usuario

(UI) de una aplicación Android directamente a los datos subyacentes en el modelo de

datos. Esto simplifica y mejora la forma en que se manejan los datos en la aplicación

al eliminar gran parte del código de enlace manual que normalmente se necesita.

Además, DataBinding es especialmente útil cuando se implementa el patrón de

arquitectura MVVM como es mi caso ya que simplifica la comunicación entre la vista

y el modelo.

Para habilitar DataBinding al proyecto he seguido los siguientes pasos:

1. Agregar la configuración de DataBinding en mi archivo ‘build.gradle’ (módulo de

la aplicación).

Ilustración 28: -Implementación de la biblioteca DataBinding

2. Vincular los elementos de la interfaz de usuario a variables.

Ilustración 29: -Código para vincular elementos de la interfaz de usuario a variables

3. Utilizar DataBinding en las vistas.

Ilustración 30: -Código para configurar el EditText de la interfaz de usuario

31

4. Configurar el enlace de datos con el ViewModel en la actividad.

La declaración de la variable plantillaViewModel está fuera del método onCreate()

mientras que la asignación de plantillaViewModel al model está dentro.

Ilustración 31: -Código para enlazar datos del ViewModel en la Actividad

4.4 Implementación de la base de datos

Para garantizar la persistencia de los datos y almacenar toda la información

relacionada con los puntos de interés era necesario disponer de una base de datos. Tal

y como se ha explicado en la fase de diseño se ha utilizado Room para almacenar los

datos.

Para la implementación de la base de datos Room en mi diseño he seguido los

siguientes pasos:

1. Agregar las dependencias de Room en mi archivo ‘’build.gradle” (módulo de la

aplicación).

Ilustración 32: -Código para implementar la biblioteca Room

2. Definir entidades en la base de datos.

Ilustración 33: Código con las columnas de la tabla_plantilla

32

3. Crear una interfaz DAO para definir las operaciones de acceso a la base de datos.

Ilustración 34: Código para declarar la clase AppDao

4. Crear la base de datos Room.

Ilustración 35: Código para crear la base de datos y los métodos DAO asociados a ella

5. Configurar y obtener una instancia de la base de datos en la aplicación.

Ilustración 36: Código para obtener instancia de la base de datos

Ilustración 37: Código para inicializar la base de datos

6. Manejo de hilos y corrutinas:

Las operaciones de acceso a la base de datos deben realizarse en hilos o corrutinas

diferentes para no bloquear el hilo principal de la interfaz de usuario.

Ilustración 38: Código para obtener un entrenamiento según un día especifico

33

4.5 Utilización de Live Data

La utilización de objetos LiveData es un tema importante en este proyecto, ya que

permite tener una interfaz de datos reactiva ante los cambios realizados en la base de

datos, de modo que la persistencia de datos es siempre óptima. Live Data es una clase

de contenedor de datos observables. A diferencia de un observable regular, LiveData

está optimizado para ciclos de vida, lo que significa que respeta el ciclo de vida de otros

componentes de las apps, como actividades, fragmentos o servicios. Esta optimización

garantiza que LiveData solo actualice observadores de componentes de apps que

tienen un estado de ciclo de vida activo.

Para la utilización de Live Data en mi proyecto he seguido los siguientes pasos:

1. Crear instancia LiveData para contener un tipo de datos determinado. Esta

instancia la he creado en las clases del tipo ViewModel.

Ilustración 39: -Código con la declaración de diferentes variables LiveData

En la Ilustración 39 he querido reflejar esta parte del código ya que pertenece a la

misma clase (FormularioJugadorViewModel) que utilice para explicar el uso de la

biblioteca DataBinding.

En esta clase las dos tecnologías están relacionadas ya que DataBinding vincula

elementos de la interfaz de usuario, Edit Text en este caso a variables y

posteriormente son almacenadas en objetos LiveData.

Ilustración 40: -Código para comprobar si la información del usuario es correcta

Esta función expuesta en la Ilustración 40 comprueba el estado de los LiveData y si

alguno de ellos está vacío devuelve un False.

34

Ilustración 41: -Código para guardar un jugador

Como podemos observar en esta función de la Ilustración 40, si la función

comentada anteriormente nos ha devuelto un True esto significa que los datos del

jugador son válidos por lo que actualizo el valor del objeto LiveData

operacionExitosa a True y procedo a hacer la operación en segundo plano de la

inserción del jugador a la base de datos.

2. Observar los cambios del objeto Live Data desde la actividad y actualizar la interfaz

de usuario en consecuencia.

Ilustración 42: -Código para guardar jugador cuando el usuario presiona un botón

En el momento que el usuario presiona el botón de guardar el observador

comprobara el estado del LiveData operacionExitosa en el caso de que sea true

mostrara el mensaje “el jugador se ha guardado correctamente” en caso contrario

“El jugador no se ha guardado correctamente debido a que todos los campos

deben estar completos”.

35

4.6 Creación de la interfaz de usuario

Un diseño de la estructura de interfaz de usuario en una aplicación, como, por ejemplo,

en una actividad. Todos los elementos del diseño se crean usando la jerarquía de

objetos View y ViewGroup. Una View suele mostrarse en un elemento que el usuario

puede ver y con el que puede interactuar. Por su parte, ViewGroup es un contenedor

invisible que define la estructura de diseño de View y otros objetos ViewGroup.

Los objetos View suelen llamarse widgets y pueden ser una de las muchas subclases,

como Button o TextView. Los objetos ViewGroup se denominan generalmente layouts

y pueden ser de muchos tipos que proporcionan una estructura diferente, como

LinearLayout y Constraintlayout [11].

La interfaz de usuario en Android se define típicamente utilizando archivos de diseño

XML que describen la disposición y el aspecto visual de los elementos de la interfaz de

usuario, como botones, campos de texto, imagen etc. Estos archivos de XML se

encuentran en la carpeta de recursos de la aplicación.

Como se ha comentado anteriormente, los widgets se encuentran contenido en los

layouts, estos pueden ser de muchos tipos, los escogidos para el desarrollo de la

aplicación han sido los ConstraintLayout y los LinearLayout predominando los

segundos sobre los primeros.

LinearLayout es un grupo de vistas que alinea todos los elementos secundarios en una

única dirección, de manera vertical u horizontal. Puedes especificar la dirección del

diseño con el atributo android:orientation [12].

ConstraintLayout te permite crear diseños grandes y complejos con una jerarquía de

vistas plana (sin grupos de vistas anidadas). Es similar a RelativeLayout en cuanto a que

se presentan todas las vistas de acuerdo con las relaciones entre las vistas del mismo

nivel y el diseño de nivel superior, pero es más flexible que RelativeLayout y más fácil

de usar con el editor de diseño de Android Studio[13].

https://developer.android.com/reference/android/widget/LinearLayout?hl=es-419
https://developer.android.com/reference/android/widget/LinearLayout?hl=es-419#attr_android:orientation
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout?hl=es-419
https://developer.android.com/reference/android/widget/RelativeLayout?hl=es-419

36

Ilustración 43: Uso de ConstraintLayout y LinearLayout

A continuación, voy a comentar los aspectos más relevantes e inusuales de lo que ha

sido la implementación de las interfaces en la aplicación. Con inusuales me refiero a

los elementos que se salen de lo que sería común y sencillo como por ejemplo colocar

elementos simples en los layouts.

En la aplicación todos los datos que se muestran como ítems en una lista dinámica que

nos permite desplazarnos hacia arriba y abajo a través de esta son tratados con

RecyclerView.

RecyclerView facilita que se muestren de manera eficiente grandes conjuntos de datos.

Tú proporcionas los datos y defines el aspecto de cada elemento, y la biblioteca

RecyclerView creará los elementos de forma dinámica cuando se los necesite.

Como su nombre lo indica, RecyclerView recicla esos elementos individuales. Cuando

un elemento se desplaza fuera de la pantalla, RecyclerView no destruye su vista. En

cambio, reutiliza la vista para los elementos nuevos que se desplazaron y ahora se

muestran en pantalla. Esto mejora en gran medida el rendimiento y la capacidad de

respuesta de tu app y reduce el consumo de energía [14].

El RecyclerView se encargar de inflar la vista, pero en la pantalla que muestra la lista

de lugares es necesario utilizar un adaptor. Un adaptor es un objeto de una clase que

implementa la interfaz Adapter. Este actúa como un enlace entre un conjunto de datos

y un adaptador de vista. El conjunto de datos puede ser cualquier cosa que presente

datos de una manera estructurada, en este caso se trata de una lista de objetos

JugadorEntity. Un adaptor coge un conjunto de datos y los recorre generando una vista

para cada uno de los registros que contenga el conjunto.

Los adaptadores pueden mostrar grandes conjuntos de datos muy eficientemente, ya

que cargan solamente los objetos View que están listos en pantalla o que están a punto

de moverse en la pantalla. De esta manera, la memoria consumida por un adaptador

puede ser constante e independiente del tamaño del conjunto de datos. [15]

37

Primero es necesario crear un fichero XML que defina la vista en la que el adaptador

cargará la información de cada registro del conjunto de datos.

Ilustración 44: -Vista en la que el adaptador cargara cada elemento

Posteriormente se implementa el adaptador sobrescribiendo los métodos

onCreateViewHolder(), getItemCount() y onBindViewHolder() para definir

manualmente de que lista se deben tomar los datos, a que vista se van a inflar los datos

y a que elementos de dicha vista va a ir cada dato.

Ilustración 45: Clase JugadorAdapter

Voy a explicar lo que realiza la función enlazarItem porque es común a todas las clases

adapter y tiene una importancia bastante notable en la aplicación.

Esta función coge el elemento nombre del fichero ítem jugador, imagen expuesta

anteriormente y le da el valor de la columna nombre perteneciente a la entidad

38

JugadorEntity. En el fichero también existe un elemento llamado CheckBox y dentro

de esta función implementamos un listener que nos avisa de cada vez que ha cambiado

el estado del CheckBox, en el caso de que este activado se van a añadir a la lista result

y al nombre el valor de las columnas id y nombre respectivamente mientras que si esta

desactivado lo que hace es borrar estos elementos de las listas.

Como esta función la utilizamos dentro del onBindViewHolder se va a aplicar a cada

elemento de nuestra lista dinámica.

En la pantalla de estadísticas se deben mostrar las opciones de las plantillas o los

jugadores a seleccionar, en esta ocasión ya no podemos utilizar los RecyclerView ya

que estas opciones deben situarse dentro de Spinners el procedimiento ha sido el

siguiente.

El fichero XML creado es bastante similar al empleado en el RecyclerView lo que si

tiene cambios significativos es el uso del adaptador para este caso.

Ilustración 46: -Clase ArrayAdapter

 Como podemos ver en la ilustración 46la clase getView se encarga de devolver la vista

que se utilizara para representar el elemento seleccionado en el Spinner. Aquí se infla

la vista desde el fichero ‘item_plantilla_est.xml’ y se establece el texto correspondiente

en el elemento de la vista.

La función View se utiliza para configurar los elementos de la vista para cada posición

en el Spinner. Aquí se enlaza el texto de la lista de opciones a un elemento de texto en

la vista.

39

Por último, la función getDropDownView se encarga de devolver la vista que se

utilizara para representar cada elemento en la lista despegable del Spinner. Si la vista

es nula, se infla la vista desde el fichero y luego se establece el texto correspondiente.

4.7 Biblioteca MP Android chart

Para mostrar gráficos en nuestras aplicaciones de Android la biblioteca más utilizada

es MPAndroidChart esta es una biblioteca de gráficos muy potente y fácil de usar. [16]

Para utilizar esta biblioteca tenemos que añadir el siguiente repositorio al build.gradle

(Project:TFG).

Ilustración 47: -Repositorio de la biblioteca MPAndroidChart

Además, debemos añadir la siguiente línea de código al build gradle(Module:App).

Ilustración 48: -Implementación de la biblioteca MPAndroidChart

Una vez que podemos utilizar la biblioteca MPAndroidChart lo primero que hacemos

es crear un elemento MPAndroidChart en el fichero activity_estadisticas.

Ilustración 49: -Elemento LineChart del fichero ‘activity_estadísticas’

40

A continuación, vamos a utilizar este objeto lineChart en la clase EstadisticasActivity.

Ilustración 50: -Función generarDatosPartido de la clase EstadisticasActivity

Lo primero que hace la función es ocultar los elementos de la interfaz de usuario

correspondientes a la elección de opciones como son los spinners, a continuación, se

verifica si el usuario ha elegido un jugador si es correcto a través de

puntuacionesPartidoViewModel se solicita la consulta a la base de datos de la lista de

puntuaciones del jugador seleccionado.

Se comprueba si se ha encontrado una lista de puntuaciones en caso negativo la

aplicación mostrara un mensaje por pantalla para que el usuario sepa que el jugador

seleccionado no ha sido convocado a ningún partido.

Si el usuario ha seleccionado un jugador el proceso es el siguiente:

 Se obtiene una lista de nombres de partidos desde patidoViewModel.

 Se crean una lista de valores de entrada (‘Entry’) para el grafico de líneas.

 Si la lista it (‘listaValoresPuntuaciones’) no es nula se itera sobre ella con el

índice y el valor correspondiente. Luego, se agrega cada valor a la lista ‘yValues’.

 Se configura un conjunto de datos de línea (‘lineDataSet’) con los valores de

‘yValues’ y se establecen varias propiedades entre ellas el color o el radio de

los círculos.

41

 Se crea un objeto de ‘LineData’ a partir del conjunto del conjunto de datos en

línea y se asigna el grafico ’lineChart’en la interfaz de usuario.

 Se configuran los ejes y el formato de los nombres de los partidos en el eje x

del grafico usando los nombres de los partidos obtenidos anteriormente.

4.8 DatePickerFragment y TimePickerFragment

Estas dos clases las utilizo para que en el momento de que el usuario cree un partido

o un entrenamiento y quiera seleccionar una fecha y una hora aparezca un calendario

y un reloj respectivamente.

Ilustración 51: -Código de la clase DatePickerFragment

Esta clase extiende de ‘DialogFragment’ y utiliza la interfaz

‘DatePickerDialog.OnDataSetListener’.

La clase acepta una función anónima como parámetro ‘listener’ que toma tres

argumentos enteros: ‘day’, ‘month’ y ‘year’. Esta función se invocará cuando el usuario

elija una fecha en el selector de fecha.

Se implementa en el método ‘onDataSet’ que se llama cuando el usuario elige una

fecha en ele selector de fecha. Este método invoca la función ‘listener’ con los valores

seleccionado entre los comentados anteriormente.

Se implementa el método ‘onCreateDialog’ para crear y configurar un

‘DatePickerDialog’ con la fecha actual como fecha predeterminada para mostrar al

usuario.

El ‘DatePickerDialog’ se crea con la actividad actual como contexto (activity as context)

y se le asigna un oyente de fecha que es esta instancia en la clase

‘DatePickerFragment’.

42

Ilustración 52: -Código de la clase TimePickerFragment

Como podemos ver en la ilustración 53 esta clase es muy similar a la anterior lo único

que cambia es los argumentos del listener.

5. Pruebas de la aplicación

Este apartado de la memoria está dedicado a las diferentes versiones que ha tenido la

aplicación derivadas de las necesidades manifestadas por el club deportivo Teruel.

Este proyecto requiere de una evaluación final que permita evaluar los objetivos que se

han conseguido y cuáles son los puntos débiles del mismo para tratar de mejorarlos en

futuras versiones de la aplicación.

La aplicación constaba de una primera versión que fue presentada a parte del staff técnico

del Club Deportivo Teruel donde surgieron por su parte una serie de problemas y una falta

de funcionalidades que voy a comentar a continuación.

En cuanto a los problemas la mayor parte eran referentes al diseño de la interfaz de

usuario, estos eran los siguientes:

 En el menú principal no se veían del todo bien los botones sobre el fondo

seleccionado, además de esto había otra serie de botones como el de ‘guardar

plantilla’ de la pantalla ‘crear plantilla’ que tampoco se veían de forma clara.

 Al crear un jugador o una plantilla cuando se le daba al botón crear este no te

conducía a ninguna pantalla además no se borrar lo escrito en el formulario.

 En las pantallas a las que se dirigía el usuario a partir de la pantalla ‘lista de

plantillas’ no había ningún encabezado explicativo de que se hacía en esa pantalla,

debido a que se accedía a dichas pantallas a través de un icono podía no quedar

claro la funcionalidad de esas pantallas.

 Después de añadir jugadores o borrarlos de una plantilla estos seguían en la

pantalla dándole al usuario la opción de añadirlos o borrarlos otra vez.

 Cuando la aplicación pedía una fecha o una hora no existía ni un calendario ni un

reloj para poder facilitar al usuario el ingreso de dichos datos.

 En toda la aplicación faltaban elementos visuales que hicieran reconocer la

aplicación como perteneciente al Club Deportivo Teruel.

43

La falta de funcionalidades de la primera versión de la aplicación eran las siguientes:

 No existía ningún sistema de evaluación del desempeño de los jugadores en

entrenamientos o en partidos.

 El club solicito que se añadiera alguna forma de poder tener en la aplicación un

lugar donde almacenar información sobre el planteamiento previo de partidos y

entrenamientos.

 Cuando se eliminaba un jugador de la base de datos este no se eliminaba de los

partidos o entrenamientos a los que estuviera convocado.

La segunda versión de la aplicación y la expuesta en este TFG incorpora una serie de

funcionalidades y un cambio el diseño de una interfaz de usuario que sirven para

satisfacer las necesidades planteadas por el club.

Cabe destacar que los elementos incluidos en la interfaz de usuario que se incluyeron

para reconocer la identidad del CD Teruel fueron proporcionados por Víctor Muñiz uno

de los responsables de la cantera del club. Los elementos incluidos son los mostrados

anteriormente a excepción de una splashscreen con el escudo de la cantera.

En cuanto a las funcionalidades se cumplieron con éxito los requisitos planteados a la

primera versión.

6. Conclusiones

En este TFG se han alcanzado los objetivos y requisitos planteados al comienzo del mismo.

Se ha desarrollado una aplicación sencilla e intuitiva que aporta a los entrenadores de la

cantera del CD Teruel una herramienta tecnológica que les facilita el seguimiento del

desarrollo de sus jugadores.

Además, he adquirido un gran número de conocimientos de un área que me interesaba

(la programación) y sobre una nueva tecnología y un nuevo lenguaje (Android Studio y

Kotlin).

6.1 Valoración personal

A nivel personal este proyecto ha supuesto un gran reto para mí ya que es un área del

conocimiento que si bien había trabajado en la carrera no tenía nada que ver con lo que

me enfrentaba.

En lo que se refiere al desarrollo de la aplicación, ha requerido mucha dedicación, meses

de mucho trabajo y muchos momentos de frustración. Diferentes etapas del proceso de

44

la aplicación me han exigido mucho esfuerzo y recopilación de información como puede

ser las relaciones entre entidades y el tratamiento de las puntuaciones y su posterior

reflejo en la parte de las estadísticas, pero en gran parte gracias a la ayuda de mi tutor las

he podido sacar adelante.

Nunca había trabajado con Android Studio y el hecho de utilizar el lenguaje Kotlin, aunque

este es el recomendado por los desarrolladores de Android para crear nuevas aplicaciones

tiene la desventaja de que la información disponible en internet para problemas

concretos es mucho menor de la que se puede encontrar en otros lenguajes que tienen

mucho más recorrido.

En resumen, quiero exponer que gracias a este trabajo he aprendido que, aunque es una

tecnología desconocida y nueva para mí con ilusión esfuerzo y trabajo se puede aprender

y conseguir cualquier cosa, también he aprendido que las cosas que realmente merecen

la pena requieren su tiempo y un saber lidiar con la frustración enseñanzas que hoy en

día están en abandono debido a la inmediatez y la ley del mínimo esfuerzo.

45

Referencias

[1] Introducción a Android Studio

https://developer.android.com/studio/intro?hl=es-419

[2] ¿QUÉ ES FLUTTER ?

https://www.startechup.com/es/blog/what-is-flutter/

[3] Ventajas y desventajas de Xcode

https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/

[4] Kotlin vs Java

https://openwebinars.net/blog/kotlin-vs-java/

https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/

[5] Biblioteca de persitencia Room

https://developer.android.com/topic/libraries/architecture/room?hl=es-419

[6] SQLite: La Base de Datos Embedida

https://sg.com.mx/revista/17/sqlite-la-base-datos-embebida

[7] Qué es MySQL: Caracteristicas y ventajas

https://openwebinars.net/blog/que-es-mysql/

[8] Objetivo Analista

https://objetivoanalista.com/conoce-bcoach-la-pizarra-tactica-que-destaca-entre-

analistas-profesionales/

[9] Android Developers, Diseños:

https://developer.android.com/guide/topics/ui/declaring-layout?hl=es-419

[10] Android Developers ,Como crear una UI responsiva con ConstraintLayout:

https://developer.android.com/training/constraint-layout?hl=es-419

[11] Android Developers, Diseño Lineal:

https://developer.android.com/guide/topics/ui/layout/linear?hl=es-419

[12] Android Developers, Crear lista dinámicas con RecyclerView:

https://developer.android.com/guide/topics/ui/layout/recyclerview?hl=es-419

[13] Android desde Cero:entender Adaptadores y Adaptador Vista

https://code.tutsplus.com/es/android-desde-cero-entender-adaptadores-y-

adaptador-vista--cms-26646t

[14] Android Develepers, Cómo compilar un intent

https://developer.android.com/training/basics/firstapp/starting-activity?hl=es-419

[15] Como utilizar MPAndroidChart en AndroidStudio

https://medium.com/@codingInformer/how-to-use-mpandroidchart-in-android-

studio-c01a8150720f

https://developer.android.com/studio/intro?hl=es-419
https://www.startechup.com/es/blog/what-is-flutter/
https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/
https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/
https://developer.android.com/topic/libraries/architecture/room?hl=es-419
https://sg.com.mx/revista/17/sqlite-la-base-datos-embebida
https://openwebinars.net/blog/que-es-mysql/
https://objetivoanalista.com/conoce-bcoach-la-pizarra-tactica-que-destaca-entre-analistas-profesionales/
https://objetivoanalista.com/conoce-bcoach-la-pizarra-tactica-que-destaca-entre-analistas-profesionales/
https://developer.android.com/guide/topics/ui/declaring-layout?hl=es-419
https://developer.android.com/training/constraint-layout?hl=es-419
https://developer.android.com/guide/topics/ui/layout/linear?hl=es-419
https://developer.android.com/guide/topics/ui/layout/recyclerview?hl=es-419
https://code.tutsplus.com/es/android-desde-cero-entender-adaptadores-y-adaptador-vista--cms-26646t
https://code.tutsplus.com/es/android-desde-cero-entender-adaptadores-y-adaptador-vista--cms-26646t
https://developer.android.com/training/basics/firstapp/starting-activity?hl=es-419
https://medium.com/@codingInformer/how-to-use-mpandroidchart-in-android-studio-c01a8150720f
https://medium.com/@codingInformer/how-to-use-mpandroidchart-in-android-studio-c01a8150720f

