as Universidad
i0f Zaragoza

Trabajo Fin de Grado

Desarrollo de aplicacion para sequimiento de
jugadores en cantera de futbol

Autor

Jorge Fuertes Orrios

Director

Jesus Gallardo Casero

Escuela Universitaria Politécnica de Teruel
Ingenieria Electronica y Automatica

2023

Desarrollo de aplicacidon para seguimiento de jugadores
en cantera de futbol

Resumen

El uso de los dispositivos mdviles ha adquirido una importancia mayuscula en nuestras
vidas durante los Ultimos afios, esto ha hecho que dejen de verse como una simple
herramienta para realizar llamadas y que pasen a ser necesarios en casi cualquier
actividad que realizamos.

Este avance tecnoldgico hace que cada vez mas los equipos busquen una manera
informatizada de llevar el control y seguimiento de sus jugadores.

Por tanto, este Trabajo De Final de Grado (TFG) consiste en responder esta necesidad
planteada por el CD Teruel mediante el desarrollo de una aplicacion para dispositivos
moviles proporcionando informacion sobre el desarrollo de los jugadores de los
diferentes equipos de la cantera empleando tecnolégicas como la base de datos Room
la arquitectura MVVM o los objetos LiveData.

Como finalidad adicional de este TFG, se pretende aprender conocimientos referentes
al desarrollo de aplicaciones en Android Studio utilizando tecnologias novedosas que
permitan que la aplicacion este lo mas actualizada posible.

Abstract

The use of mobile devices has acquired a major importance in our lives in recent years,
this has made them stop being seen as a simple tool for making calls and have become
necessary in almost any activity we do.

This technological advance means that more teams are looking for computerized a way
to control and monitor their players.

Therefore, this Final Degree Project (TFG) consist of responding to this need raised by
CD Teruel through the development of a mobile application providing information on
the development of the different team’s players using technologies such as Room
database, MVVM architecture or LiveData objects.

As an additional purpose of this TFG, it is intended to learn knowledge related to the
development of application in Android Studio using innovative technologies that allow
the application to be update as possible.

Tabla de contenido

RESUMEBN ...t ettt ettt st et et sae e eb e ste et eea e saeees e sbeeaeeenatesuseessesseesnsean I
O [o Yo [1 o] Lo o FOS OO TSROSO PRSPPSO 1
000 Y [1 Y Tl T Y o OO SRRSRT 1

1.2 Objetivo de 1a APliCACIiON....c..cceee et st e 2

1.3 Herramientas Y TECNOIOZIaS. ..cccceceeeeeieeetieee ettt e st s sr s e e 2

1.4 DECiSION FIN@l.uiiiiiiiieiiriee ettt st st sa e st s s es e e s 6

2. ANBLISIS ittt e e et ae st et et et s s e b et ene st e benee 7
2.1 Planteamiento del problema... ...ttt e sre et en s e 7

2.2 PUDIICO ODJEEIVO...cvieveetteieeeecte ettt et sttt sae b e s e er s be e e st enes 7

2.3 ApliCACIONES EXISTENTES. ...cuviuveuieiieeietiriietiet sttt et se e ste st st sre e saesae e e neas 8

2.4 ESTIUCTUNAS ittt ettt ettt ettt s ettt sttt sae et be s sbeesaetesaeeease sbeennenn 9

2.5 Especificaciones de REQUISITOS.....cccceieieiceietietieee e sttt s er e 11
2.5.1 Requisitos FUNCIONAIES.........ccvviieeieeeceece et 11

2.5.2 Requisitos N0 FUNCIONAIES.......cuceecece et e e 13

3. DlSEMIO ittt et e e ehe sae sae st st st st st e e e e e e s benben 13
3.1 Arquitectura General del SiIStEMa........ecveceecene e e 13

3.2 Prototip0 de iNterfaces.....ccoceieieirierr e e st s 14

3.3 DiseN0 de 1a APlICACION.....c.coeeieieiet ettt et st e st e e s 16

R DI T=d -1 g - 1RSSR 19
3.4.1 Diagramas de Clase.......ccecceeeeece ettt st ee et e stesre e eeraesaens 19

3.4.2 Diagramas de Actividades........ccceceveeeeiceieieeccerse e e 20

3.4.3 Diagrama de la base de datos.......cccceeceevuieieecceise s e 22

4. Desarrollo del SistemMa.......oucueireieririeieir s e s s 24
4.1 BiblioteCa ROOM.....ccui ettt ettt v et er s e e e e eaesreeaeeaesaeseeea s 24
4.1.1 Relaciones entre entidades........cccoceeceieceveseesiesee s 27

4.2 Navegacion entre [as pantallas........coeeviiieiceiieice e 28

4.3 Tecnologias y bibliotecas utilizadas..........cccvvirieeccece e, 29
4.3.1 Arquitectura MVVIM.......o ettt st st e s een e e 29

4.3.2 Biblioteca DataBinding.......ccccevvvieiecieese e e 30

4.4 Implementacion de la base de datos........cccceveieieicieicise e 31

4.5 Utilizacion de LIVeData.......cccceceeeeeieieeeeieteeeretest st ee e s s sae e enesne e 33

4.6 Creacion de [ainterfaz de USUArio......ccce e ie e cesesee s 35

4.7 Biblioteca MP ANdroidChart.......cccccoveieiese v e raereeeae 39

4.8 DatePickerFragment y TimePickerFragment........cooocoveiecveeciiciececcese e, 41

5 Pruebas de 1a APliICACION ..ot st et e ae e 42
6 CONCIUSIONES... ettt sttt ettt et st st st st st st e st ses e e e e e s bentens 43

6.1 Valoracion pPersoNal......... ittt 44

Tabla de figuras

[lustracion 1 Aplicacion GOAlIMANAGENccuueiiieiietiriirt sttt st sre e e e 8
[lustracion 2 Aplicacion BCOACK.......ccuciiiiiir e st s e e 9
llustracién 3 Prototipo de Interfaces “SplashScreen” “MenuActivity”........ccccveevveverreenene. 14

llustracién 4 Prototipo de Interfaces “Listado de Plantillas” “CargarPlantilla” “Cargar

U == Vo Lo ot OSSPSR 15
llustracién 5 Prototipo de Interfaces “Resumen Partido” “Convocatoria de Partido”
“Listado de Partidos”ccoueiriineienireietise ettt sttt st et s b st e e s s ateeenas 15
llustracidn 6 Prototipo de Interfaces Pantallas de Estadisticas......c.ccccceeveveeecceecerneiennnee, 16
llustracidn 7 Componentes del SiStEMa......ccoce e eceiceieiieeeece et s e 17
[lustracion 8 Disefio de 1a APlICACION.......covuiieieieieie et st sae s 18
[lustracidn 9 Diagramas A€ ClaS.......ueuricieceerreeteeeee ettt ebeete e aerse e e s e nnnnes 19

llustracién 10 Diagrama de Actividades

“Eliminacién de jugador de un entrenamiento”........cccveceeececceesieeceece e 20
llustracidn 11 Insertar PUNTUACION.......cceice ettt st s e et s e nneaees 21
llustracion 12 Generar grafico de estadistiCas.......cvevvvrverienienceneeee e 21
llustracidn 13 Diagrama de [a base de datos........cecevvevrveiiiiceiie ettt e er s 22
llustracién 14 Cédigo de enlazar item de la clase PlantillasAdapter.........cccoveeeeeienennnns 23
llustracién 15 Cddigo de botdn CrearEntrenamiento de la clase PlantillasAdapter........ 23

llustracién 16 Parte de cdodigo para guardar un entrenamiento de la clase

EntrenamientOVIEWIMOAEL......vuieeie ettt st st e e e e e e e e e e e e 23
llustracion 17 Partes de cddigo de la clase CargarEntrenamientoActivity........ccccuvveenene. 24
llustracion 18 Codigo con columnas de la tabla de jugadores.........coooveveveveevrccrceseenns 25

llustracién 19 Cdodigo para crear la base de datos y los métodos DAO asociados a ella..25

llustracién 20 Codigo de método de consulta a la base de datos para obtener la lista de

1 =T 1L PRSI 26
llustracién 21 Cédigo de método de insercion de plantilla a la base de datos................. 26
llustracidon 22 Cédigo de método de eliminacion de plantilla a la base de datos............. 26
llustracién 23 Columnas de la tabla de JugadoresEnEntrenamientoRelacion.................. 27
llustracién 24 Cédigo con los elementos de la clase JugadoresenEntrenamiento............ 27

llustracién 25 Implementacion de la biblioteca ViewBinding..........ccccooevveveceeceeveceienenes 28

llustracién 26 Cédigo para acceso a una variable de un archivo.........cccccocecveceieceieninnn, 28
llustracidn 27 Navegacion entre las distintas pantallas de la aplicacion..........ccccceveuenene 29
llustracidon 28 Implementacidn de la biblioteca DataBinding..........cocovevevvenverceneneieienns 30

llustracién 29 Cdodigo para vincular los elementos de la interfaz de usuario a variables

... 30
llustracién 30 Cédigo para configurar el EditText de la interfaz de usuario..........c......... 30
llustracidon 31 Cédigo para enlazar datos del ViewModel en la actividad............cccccueeeee. 31
llustracidn 32 Cédigo para implementar la biblioteca RoOOM........cccovevvvieieceece e, 31
llustracidon 33 Codigo con las columnas de la tabla plantilla........cccooeeeveiveieneieeieieins 31
llustracién 34 Cédigo para declarar la clase APPDa0..........oveveeceereceecceereeerreeecee e e eeeeens 32

llustracién 35 Cédigo para crear la base de datos y los métodos DAO asociados a ella..32

llustracidon 36 Codigo para obtener instancia de la base de datos........cccoeceveveceeceeceennnns 32
llustracidn 37 Codigo para inicializar la base de datos........ccuecveeeve i, 32
llustracidon 38 Codigo para obtener un entrenamiento seguin un dia especifico.............. 32
llustracién 39 CAdigo con la declaracién de las diferentes variables Livedata................... 33
llustracién 40 Cédigo para comprobar sila informacién de un usuario es correcta.......... 33
llustracion 41 Cédigo para guardar UN JUBAAONc.ceceeiceeieeeee e e raeraeeans 34

llustracién 42 Cédigo para guardar un jugador cunado el usuario presiona un botén...34

llustracidon 43 Uso de ConstraintLayout y LinearLayout.......cccceveveeevevesecesceecer e 36
llustracién 44 Vista en la que el adaptador cargara cada elemento.........cccceevcevreerrevenennnns 37
[lustracion 45 Clase JUAAOrAAAPLEr......ccccueeee ettt e e ete e sre st sae e 37
[lustracion 46 Clase ArrayAdAPLer.......c o iieeee ettt e s er s e ere e e e e ennnes 38
llustracidn 47 Repositorio de la biblioteca MP AndroidChart.........ccccoeeoeeieeiceiececeeees 39
llustracién 48 Implementacién de la biblioteca MP AndroidChart........cccceceeeveveceeceennenns 39
llustracién 49 Elemento LineChart del fichero ‘activityestadisticas’........cccoecevevecverveennnes 39
llustracién 50 Funcién generarDatosPartido de la clase EstadisticasActivity.................... 40
llustracién 51 Codigo de la clase DatePickerFragment..........cocooeeiececeeieeiecceee e 41

llustracion 52 Cédigo de la clase TimePickerFragment.......ccocoveveieveveneseseseesesces s 42

Listado de Acrénimos

e API: Application Programming Interfaces
o App: Application

e CD: Club Deportivo

e DAO: Data Access Object

e |DE: Integral Development Environment
e |nt: Integer

e iOs: iPhone Operating System

e MVVM: Model View ViewModel

e PDA: Personal Digital Assistant

e SQL: Structured Query Language

e TFG: Trabajo Fin de Grado

e UDF: Universal Disk Format

e UTF: Unicode Transformation Format

e Ul: User Interface

e XML: Extensible Markup Language

1. Introduccioén

En el presente Trabajo Fin de Grado (TFG) se ha abordado el desarrollo de una aplicacidn
movil con la finalidad de que sea usada por el staff de entrenadores de las canteras del
Club Deportivo Teruel.

El objetivo de la aplicacién es proporcionar a los entrenadores del club informacion
sobre sus equipos para que les sea mas facil tomar decisiones en consecuencia con dicha
informacién.

A continuacidén, se presenta la memoria y documentacién del TFG “Desarrollo de
aplicacién para seguimiento de jugadores en canteras de futbol”.

1.1 Motivacion

El futbol es mds que un deporte, es una pasién que une a personas de todas las edades,
géneros y culturas de todo el mundo. Las canteras de futbol desempefian un papel
fundamental en el desarrollo de jévenes talentos, brindandoles la oportunidad de crecer
no solo como deportistas sino como personas. Sin embargo, la gestion eficiente y el
seguimiento preciso de los jugadores en estas canteras son aspectos que a menudo
pueden ser mejorados.

El futbol esta en constante evolucién, y la busqueda de nuevos talentos es esencial para
mantener la competitividad y el éxito de cualquier equipo o seleccidn nacional. Las
canteras de futbol son viveros de talento, donde jévenes promesas pueden ser
moldeadas y preparadas para alcanzar su maximo potencial. Sin embargo, para que esto
suceda, es crucial contar con herramientas que faciliten la identificacion, seguimiento y
desarrollo de estos talentos desde edades tempranas.

A pesar de la importancia de las canteras, muchas enfrentan desafios significativos en
su gestion. La falta de seguimientos efectivos a menudo conduce a la perdida de talento,
la falta de continuidad en el desarrollo de jugadores y la dificultad para identificar las
areas de mejora. Ademas, la presion por obtener resultados inmediatos a veces puede
eclipsar la atencién necesaria que requiere el desarrollo a largo plazo de los jovenes
futbolistas.

La idea de la realizacién de este trabajo surge tras conservaciones entre mi tutor e
integrantes del staff del club deportivo Teruel y llegaron a la conclusion que el desarrollo
de una aplicacién destinada al seguimiento de jugadores puede hacer que los
entrenadores tengan una herramienta tecnoldgica que los ayude a favorecer el
desarrollo de sus jugadores.

1.2 Objetivos de la aplicacién

Este trabajo consiste en el desarrollo de una aplicacién para dispositivos mdviles
Android orientada al seguimiento de diferentes aspectos que conciernen a la progresion
de los jugadores de las canteras del Club Deportivo Teruel.

Para el desarrollo de la aplicacidn se utilizardn tecnologias que son para mi una novedad
con el objetivo de explorar en profundidad y obtener conocimientos del desarrollo de
aplicaciones moéviles.

Por ello, los objetivos del Trabajo Fin De Grado son:

» Desarrollar una aplicacidon que pueda ser utilizada desde cualquier Smartphone
Android.

» Que la aplicacion gestione su propia base de datos.

» Permitir realizar operaciones dentro de esta base de datos como pueden ser la
insercidn, eliminacion, actualizacidn y consulta de datos.

» Realizar una seccién de estadisticas, con el objetivo de filtrar los datos y
mostrarlos de una manera eficiente y facil de visualizar para el usuario.

» Estudiar tecnologias novedosas que se necesitan implementar en el proyecto y
con las que no he trabajado todavia.

1.3 Herramientas y tecnologias
Android Studio

Es el entorno de desarrollo integrado (IDE) oficial para la plataforma Android. Ofrece
una amplia gama de herramientas y recursos que simplifican la creacion de aplicaciones
nativas para dispositivos Android. [1]

Entre las caracteristicas destacadas se incluyen:

e Lenguajes de Programacion: Android Studio admite Java y Kotlin como lenguajes
principales para el desarrollo de aplicaciones Android. Kotlin, en particular, ha
ganado popularidad debido a su concision y seguridad.

e Emuladores y Depuracion: Proporciona emuladores de dispositivos Android
para probar aplicaciones en diversas configuraciones. Ademas, ofrece
herramientas de depuracion robustas.

e Diseiio de Interfaz de Usuario (Ul): Android Studio incluye un editor de disefio
visual que facilita la creacién de interfaces de usuario atractivas y funcionales.

e Integracion con Google Services: Permite la integracion sencilla de servicios de
Google, como Google Maps, Firebase y Google Cloud, en las aplicaciones.

Flutter

Flutter es un framework de cédigo abierto desarrollado por Google que se utiliza para
crear aplicaciones mdviles nativas en plataformas multiples desde un solo cédigo base.
Algunas de sus caracteristicas mas destacadas son:

e Lenguaje Dart: Flutter utiliza el lenguaje de programacion Dart, que es conocido
por su alto rendimiento y su facilidad de aprendizaje.

e Widgets Personalizables: Flutter ofrece un amplio conjunto de widgets
personalizables que permiten a los desarrolladores crear interfaces de usuario
atractivas y consistentes en todas las plataformas.

e Rapido Desarrollo y Recarga en Caliente: La caracteristica de recarga en caliente
de Flutter permite realizar cambios en tiempo real en la aplicacidn sin necesidad
de reiniciarla, lo que acelera el proceso de desarrollo.

e Compatibilidad Multiplataforma: Flutter permite crear aplicaciones para
Android, iOS, web y escritorio, lo que simplifica la expansién de una aplicacién a
diferentes plataformas. [2]

Xcode

Este es un entorno de desarrollo integrado (IDE) desarrollado por Apple que se utiliza
principalmente para crear aplicaciones para dispositivos Apple, como iPhone, iPad, Mac
y Apple Watch.

e Lenguaje de Programacion: Tiene varios lenguajes de programacion como
pueden ser Swift y Objective-C.

e Diseino de interfaces: Xcode incluye una interfaz de usuario grafica que facilita la
creacion y disefio de interfaces de aplicaciones de manera visual.

e Depuracion y pruebas: La plataforma proporciona herramientas de depuracion
y emulacién que permiten a los desarrolladores probar sus aplicaciones en
simuladores de dispositivos antes de lanzarlas al mercado.

e Integracion de servicios: Xcode ofrece integracién con otros servicios de Apple,
como iCloud y Game Center, lo que facilita la creacion de aplicaciones que
aprovechan estas funcionalidades.

e Desarrollo multiplataforma: Con Xcode, puedes crear aplicaciones que
funcionen en una variedad de dispositivos Apple, incluyendo iOS, macQOS,
watchOS y tvOS.

e Gestion de proyectos: Xcode permite organizar y gestionar proyectos de
desarrollo de aplicaciones de manera eficiente, lo que facilita la colaboracién en
equipos de desarrollo. [3]

Kotlin

Esta herramienta puede trabajar tanto con el lenguaje Java como con Kotlin, este ultimo
ha sido nombrado por Google como lenguaje oficial de Android por lo que ha sido mi
eleccién para llevar a cabo la implementacion de la app.

Kotlin aparece en el 2016, pero es a partir del 2017 cuando empieza a coger fuerza ya
gue es en este momento cuando recibe la ya mencionada oficialidad para el desarrollo
de apps de Android.

Es un lenguaje que guarda similitudes con Java a diferencia de que esta combinacién de
caracteristicas modernas con una sintaxis concisa. Al tener una sintaxis concisa Kotlin
reduce el cédigo respecto a Java lo que hace que el desarrollo sea mas eficiente.
Ademas, Kotlin es interoperable con Java, lo que permite a los desarrolladores utilizar
bibliotecas de Java existentes en proyectos de Kotlin y viceversa. [4]

SQLite

SQLite es una herramienta de software libre que permite almacenar informacién en
dispositivos empotrados de una forma sencilla, eficaz, potente, rapida y en equipos con
pocas capacidades de hardware, como puede ser una PDA o un teléfono. Esta
herramienta de software se puede usar tanto en dispositivos méviles como en sistemas
de escritorio, sin necesidad de realizar procesos complejos de importacién y exportaciéon
de datos, ya que existe compatibilidad al 100% entre las diversas plataformas
disponibles, haciendo que la portabilidad entre dispositivos y plataformas sea
transparente.

Estas son algunas de las caracteristicas principales de SQLite:

e Labase de datos completa se encuentra en un solo archivo.

e Puede funcionar enteramente en memoria, lo que la hace muy rapida.

e Tiene un footprint menor a 230KB.

e Estotalmente autocontenida (sin dependencias externas).

e Cuenta con librerias de acceso para muchos lenguajes de programacion.

e Soporta texto en formato UTF-8 y UTF-16, asi como datos numéricos de 64
bits.

e Soporta funciones SQL definidas por el usuario (UDF).

e El cédigo fuente es de dominio publico y se encuentra muy bien
documentado. [6]

Room

La biblioteca de persistencias Room brinda una capa de abstraccién para SQLite que
permite acceder a la base de datos sin problemas vy, al mismo tiempo, aprovechar toda
la potencia de SQLite.

La biblioteca ayuda a crear una caché de los datos de tu app en un dispositivo que la
ejecute. Esta caché, que funciona como la Unica fuente de confianza de la app, permite
que los usuarios vean una copia coherente de informacién clave en la app,
independientemente de si cuentan con conexién a Internet. [5]

Entre las caracteristicas de Room las mas destacadas son:

e Relaciones entre tablas: Room facilita la definicion de relaciones entre
entidades, lo que simplifica el trabajo con base de datos relacionales. Puedes
establecer facilmente relaciones uno a uno, uno a muchos y muchos a muchos.

e Validacién en tiempo de conmutaciéon: Room realiza comprobaciones en tiempo
de compilacién de las consultas SQL, lo que ayuda a evitar errores en tiempo de
ejecucidn al escribir consultas incorrectas.

e Integracion con LiveData: Room se integra bien con LiveData, una clase de la
arquitectura de componentes de Android, lo que facilita la actualizacién
automatica de la interfaz de usuario cuando los datos en la base de datos
cambian.

e Migraciones automaticas: Room puede manejar automaticamente las
migraciones de la base de datos cuando se realizan cambios en el esquema, lo
que simplifica la evolucién de la base de datos a medida que la aplicacion se
actualiza.

MysQL

MySQL es un sistema de gestidon de bases de datos que cuenta con una doble licencia.
Por una parte, es de cddigo abierto, pero por otra, cuenta con una versiéon comercial
gestionada por la compaiiia Oracle.

Estas son algunas de las caracteristicas principales de MySq|l

e Arquitectura Cliente y Servidor: MySQL basa su funcionamiento en un modelo
cliente y servidor. Es decir, clientes y servidores se comunican entre si de manera
diferenciada para un mejor rendimiento. Cada cliente puede hacer consultas a
través del sistema de registro para obtener datos, modificarlos, guardar estos
cambios o establecer nuevas tablas de registros, por ejemplo.

e Compatibilidad con SQL: SQL es un lenguaje generalizado dentro de la industria.
Al ser un estandar MySQL ofrece plena compatibilidad por lo que si has trabajado
en otro motor de bases de datos no tendras problemas en migrar a MySQL.

https://developer.android.com/training/data-storage/room?hl=es-419

Vistas: Desde la version 5.0 de MySQL se ofrece compatibilidad para poder
configurar vistas personalizadas del mismo modo que podemos hacerlo en otras
bases de datos SQL. En bases de datos de gran tamano las vistas se hacen un
recurso imprescindible.

Procedimientos almacenados. MySQL posee la caracteristica de no procesar las
tablas directamente, sino que a través de procedimientos almacenados es
posible incrementar la eficacia de nuestra implementacion.

Desencadenantes. MySQL permite ademas poder automatizar ciertas tareas
dentro de nuestra base de datos. En el momento que se produce un evento otro
es lanzado para actualizar registros u optimizar su funcionalidad.
Transacciones. Una transaccion representa la actuacion de diversas operaciones
en la base de datos como un dispositivo. El sistema de base de registros avala
que todos los procedimientos se establezcan correctamente o ninguna de ellas.
En caso por ejemplo de una falla de energia, cuando el monitor falla u ocurre
algln otro inconveniente, el sistema opta por preservar la integridad de la base
de datos resguardando la informacién. [7]

1.4 Decision Final

Una vez vistas y analizadas las tecnologias anteriores, la escogida para realizar la
aplicacion ha sido Android Studio debido a estas razones:

Android Studio permite un acceso directo a las APl nativas de Android, lo que
significa que se pueden aprovechar al maximo las caracteristicas especificas de
Android en tus aplicaciones.

Dado que Android es una plataforma muy popular he podido encontrar gran
cantidad de recursos en linea como pueden ser tutoriales o informacion en la
nube factor que me ha sido muy atil durante el desarrollo de la aplicacion ya que
partir de cero en cuanto al conocimiento de desarrollo de aplicaciones moviles.
Dentro de los dos lenguajes de programacion disponibles en Android Studio he
elegido Kotlin ya que Google lo esta priorizando respecto a Java.

Para la base de datos he elegido Room ya que es una opcidn poderosa y eficiente
para la persistencia de datos en aplicaciones Android, mejorando Ia
productividad del desarrollador y garantizando un manejo mas seguro y eficaz
de la base de datos.

He decidido utilizar SQLite en vez de MySQL debido a que mi aplicaciéon no
requiere de una base de datos demasiado grande y es necesario escribir y leer
directamente desde la aplicacién.

2. Analisis

La fase de analisis es uno de los pilares fundamentales de todo proyecto de software, es
el punto de partida de este TFG a partir del cual se deben asentar las bases del proyecto.

En esta seccion de la memoria se mostrara el planteamiento del problema, el publico
objetivo, las aplicaciones existentes y los requisitos incluyendo los funcionales y los no
funcionales.

A partir del planteamiento del problema el publico objetivo y las diferentes aplicaciones
existentes se plantearan los requisitos.

2.1 Planteamiento del problema

Como se ha comentado en el apartado de motivacién el trabajo estad destinado a
proporcionar una herramienta tecnoldgica a los entrenadores del club deportivo Teruel.

Las canteras de futbol son fundamentales para los clubes ya que proporcionan una
fuente constante de talento joven y local. Estas canteras no solo ayudan a reducir costos
al nutrir al primer equipo con jugadores de desarrollo propio, sino que también
fortalecen la identidad y la conexion del club con la comunidad local. Ademas,
contribuyen a la formacién de futbolistas profesionales de alta calidad que pueden
generar ingresos a través de transferencias a otros equipos, lo que beneficia
financieramente al club. Por los motivos expuestos considero que las canteras son un
componente esencial en el éxito y la sostenibilidad a largo plazo de los clubes de futbol.

El auge de las nuevas tecnologias y de los dispositivos méviles abre un mundo de
posibilidades para el desarrollo de aplicaciones que permitan el seguimiento de los
jugadores jovenes. En el Play Store de Google podemos ver aplicaciones similares pero
la idea era crear una exclusiva para el Club Deportivo Teruel con una interfaz grafica
amigable con el usuario y un disefo con elementos propios del club como son la imagen
del escudo en diferentes pantallas un fondo de pantalla en el menu principal donde
aparece el campo Pinilla.

2.2 Publico Objetivo

La aplicacién desarrollada en este TFG estd disefiada para ser utilizada por el staff
técnico de las canteras del Club Deportivo Teruel. Este publico puede ser de todas
edades de modo que la aplicacion debe ser lo mas simple e intuitiva posible para
asegurar el correcto uso y la mejor utilidad de esta.

La aplicacién podria tener una serie de extensiones que incluyeran mas funcionalidades
en tal caso la aplicacion podria ser utilizada también por los jugadores del club, por lo
gue esta version solo esta destinada a entrenadores.

2.3 Aplicaciones existentes

En este apartado voy a exponer ciertas aplicaciones similares a la desarrollada
disponibles en el Play Store de Google.

Gol Manager

Se trata de una aplicacion muy similar a la expuesta en el TFG, que consiste en una serie
de funcionalidades estadisticas para el entrenador de un club.

Esta aplicacién tiene muchas cosas buenas respecto a la mia como pueden ser una
variedad mas amplia de funcionalidades la implementacidon de un calendario donde
aparecen registrados los entrenamientos y los partidos.

El que esta aplicacion tenga tantas funcionalidades es favorable, pese a que en
CanteraControl se ha querido tener una funcionalidad mucho mas especifica, pero
también tiene sus inconvenientes como que el disefio es muy ostentoso y recargado lo
gue no facilita su uso mientras que en CanteraControl uno de los elementos mas
importantes de la aplicacidn es que el diseiio es simple e intuitivo.

Esta aplicacién tiene otros dos aspectos mas negativos, como son la aparicion de
anuncios constantes lo que hace que la aplicacion en si sea bastante tediosa y por ultimo
gue muchas de las funcionalidades de estas son de pago.

- T 1Az

< Aoy Bhorn

e Plantilio e Temporodas e Plantilio
Q Porticdos) Notificaciones o Portidos
@ Estodisticas) Informes de entrenomiento @ Estadisticos
@ Asistencio 0 entrenamientos Colaborodores @ Asistencio 0 entrenamientos
° Estrotegias e Migracién de jugodores ° Estroteglas
e Comporor jugadores e informacion de jugodores e Comporor jugodores
Pogos en el club Convocotona
0 Convocotorio .
Soporte Pizorro
O Pizorre ,
= o
= 6 @ & @ o @ 2
6 O 2 @
— —

llustracién 1: -Aplicacién GolManager

Bcoach

Esta aplicacién se centra en diversas tareas de registro de los entrenadores con el
objetivo de facilitar su dia a dia y poder planear la temporada de su equipo. [8]

Esta aplicacidon cuenta con una pantalla de inicio que te da la opcidon de crear un
entrenamiento un partido o ir a la pizarra, esta pizarra te sirve para registrar diferentes
estadisticas en el tiempo real de partido como pueden ser los goles minutos jugados o
tarjetas amarillas funcionalidad que me parece bastante interesante y podria ser
implementada en futuras versiones de la aplicacién. Cuando finaliza un partido se
pueden ver todas las estadisticas que hayan sido anotadas por el entrenador.

llustracién 2: -Aplicacién Bcoach

Esta aplicacién tiene dos inconvenientes principales: el primero que es de pago v el
segundo que solo sirve para monitorizar un equipo.

2.4 Estructuras
A continuacién, se detallan los distintos sistemas de los que hace uso la aplicacién:
Estructura de jugadores

La estructura de jugadores permitird guardar jugadores en la base de datos con sus
diferentes pardmetros (nombre, posicién, dorsal) para que este pueda ser incluido
posteriormente en una plantilla.

Estructura de plantillas

La estructura de plantillas permitirda guardar plantillas con sus diferentes parametros
(nombre, categoria, temporada) en la base de datos.

Subestructura de consulta de jugadores en plantilla

La subestructura permitira al usuario visualizar los jugadores que se encuentren dentro
de la plantilla ademas de poder guardar jugadores dentro de la misma.

Subestructura de entrenamientos

En la subestructura de entrenamientos el usuario podra afadir entrenamientos a la base
de datos del sistema con sus respectivos pardmetros (fecha, hora, URL) y cuando los
entrenamientos estén dentro de la base de datos realizar diferentes operaciones que
detallare mas adelante en los requisitos funcionales.

Subestructura de partidos

En la subestructura de partidos el usuario podra guardar partidos en la base de datos
con sus respectivos parametros (rival, jornada, temporada y URL) y una vez estén dentro
realizar diferentes operaciones y consultas que expondré mas adelante.

Estructura de estadisticas

La estructura de estadisticas se encargard de toda la funcionalidad referente a la
generacion y visualizacion de gréficos, siendo una parte fundamental de la aplicacién.

Subestructura de generacidn de estadisticas

En la subestructura de generacion de estadisticas se podrd seleccionar primero una
plantilla seguida de una opcién referente a los partidos o a los entrenamientos y por
ultimo el nombre del jugador.

Subestructura de visualizacion de estadisticas

Subestructura que se encargard de mostrar el grafico que genera el subsistema de
generacion de estadisticas, que permitird interactuar con el grafico para resaltar alguno
de sus valores o ampliar su tamaiio.

10

2.5

En este apartado, vamos a especificar las funciones que se podrdan realizar dentro del
sistema y bajo que restricciones. Para ello vamos a presentar los requisitos funcionales
y no funcionales.

2.5.1 Requisitos funcionales

En esta seccidn detallaremos los requisitos funcionales de la aplicacion catalogados por
los sistemas y subsistemas que ya se han definido.

RF -1 — Anadir un jugador: La aplicacidon permitira afiadir un jugador con sus diferentes
atributos (nombre, dorsal, posicidn) a la base de datos.

RF -2 — Anadir una plantilla: La aplicacidon permitird afiadir una plantilla a la base de
datos con sus diferentes atributos (nombre, categoria, temporada).

RF -3 — Afadir jugadores en la plantilla: El usuario podrd incorporar jugadores en la
plantilla entre los disponibles en la base de datos que aun no hayan sido incluidos en
ninguna plantilla del sistema.

RF -4 - Visualizacion de jugadores en plantilla: El usuario podra ver la lista de jugadores
gue se hayan introducido en cada una de las diferentes plantillas.

RF -5 — Eliminacion de jugadores: El usuario podra borrar las plantillas y con este todos
sus elementos asociados (jugadores, partidos, entrenamientos, valoraciones del
jugador).

RF -6 — Afiadir entrenamientos: El usuario podra incorporar entrenamientos de las
diferentes plantillas con sus atributos asociados (fecha, hora, URL).

RF -7 — Ahadir fotos: El usuario podra cargar fotos de su galeria y guardarlas como
atributo del entrenamiento.

RF -8 — Anadir Anotaciones: El usuario podra afadir las anotaciones que considere
necesarias a cada entrenamiento.

RF -9 — Eliminar entrenamientos: El usuario podra eliminar entrenamientos y con este
todos sus elementos asociados (jugadores, puntuaciones de jugadores).

RF -10 — Ahadir jugadores al entrenamiento: El usuario podra seleccionar entre los
jugadores correspondientes de la plantilla que no se hayan afiadido con anterioridad a
la base de datos.

RF -11 - Ainadir valoraciones a los jugadores: El usuario al mismo tiempo que afiade los
jugadores al entrenamiento les podra asociar una puntuacién en consecuencia con su
rendimiento en el entrenamiento que variard de 1 a 5 estrellas.

11

RF -12 - Visualizacion del entrenamiento: En esta pantalla el usuario podrd ver la foto
asociada a cada entrenamiento junto con las anotaciones y la lista de los jugadores que
hayan acudido al entrenamiento.

RF -13 — Anadir partidos: El usuario podrd incorporar partidos de las diferentes plantillas
con sus atributos asociados (rival, jornada, temporada).

RF -14 — Adadir fotos: El usuario podra cargar fotos de su galeria y guardarlas como
atributo del partido.

RF -15 — Aiadir Anotaciones: El usuario podra anadir las anotaciones que considere
necesarias a cada partido.

RF -16 — Eliminar partidos: El usuario podra eliminar partidos y con este, todos sus
elementos asociados (jugadores, puntuaciones de jugadores).

RF -17 — Adadir jugadores al partido: El usuario podrd seleccionar entre los jugadores
correspondientes de la plantilla que no se hayan afiadido con anterioridad a la base de
datos.

RF -18 — Ainadir valoraciones a los jugadores: El usuario al mismo tiempo que anade los
jugadores al partido les podra asociar una puntuacidon en consecuencia con su
rendimiento en el entrenamiento que variard de 1 a 5 estrellas.

RF -19 — Visualizacion del entrenamiento: En esta pantalla el usuario podra ver la foto
asociada a cada entrenamiento junto con las anotaciones y la lista de los jugadores que
hayan acudido al entrenamiento.

RF -20 - Elegir Plantilla: El usuario podra seleccionar una plantilla para generar datos
sobre algun jugador incluido en esta.

RF -21 - Elegir partido o entrenamiento: El usuario podra seleccionar si quiere generar
datos de entrenamientos o partidos.

RF -23 - Elegir jugador: El usuario podra seleccionar un jugador concreto para generar
datos sobre él.

RF -24 — Generar un grafico: Una vez seleccionados los parametros, se podra generar el
grafico deseado y aunque haya un grafico ya generado se podrdn seleccionar otros
atributos y generar uno distinto.

2.5.2 Requisitos no funcionales

En esta seccion se detallaran los requisitos no funcionales con los que debe contar la
aplicacion.

RNF 1 — Interfaz sencilla e intuitiva: La interfaz de la aplicacion debera ser simple, pero
de facil uso y que no sea necesario pasar mucho tiempo usandola para familiarizarse con
ella.

12

RNF 2 - Interfaz personalizada para el club: La interfaz debera contener elementos que
nos hagan reconocer la aplicacion como propia del club deportivo Teruel.

RNF 3 - Fluidez: La aplicacion tendra que ser rapida a la hora de cambiar entre las
distintas vistas que la componen, asi como a la hora de generar graficos.

RNF 4 — Funcionamientos en dispositivos Android: La aplicacién debe funcionar en
dispositivos cuya version minima sea Android 7(API 24), esto incluye el 96,7 % de todos
los dispositivos.

RNF 5 — Velocidad de acceso a la base de datos: Las acciones que necesiten guardar
datos en la base de datos o acceder a ellos tendran que ser rapidas para no entorpecer
la experiencia del usuario.

3. Diseno

En este capitulo vamos a describir todo el proceso de disefio de la aplicacion mavil.

El disefio realizado engloba todos los requisitos tanto funcionales como no funcionales
descritos en el apartado de andlisis.

3.1 Arquitectura general del sistema
La arquitectura de la aplicacion sera cliente-servidor.

En cuanto a la parte del servidor utilizo la biblioteca Room [9] que es una biblioteca de
persistencia de datos de Android que proporciona una capa de abstraccion sobre SQLite
para permitir un acceso mas fluido a la base de datos.

Para tratar las fotos que los entrenadores utilizaran para los entrenamientos y los
partidos la aplicacion utilizara un directorio ubicado en el almacenamiento externo
donde se pueden almacenar archivos que pertenecen a la aplicacidn y que no seran
eliminados si el usuario desinstala la aplicacién.

Respecto al cliente, se trata de una aplicacidn en lenguaje Kotlin que serd ejecutada
desde dispositivos méviles con un sistema operativo Android. Esta aplicacién cliente
serd la encargada de contactar con la base de datos Room para obtener la informacién
necesaria en cada momento.

3.2 Prototipo de interfaces

Los prototipos de interfaces de usuario los utilizare para explorar un disefio de interfaz
de usuario alcanzable y adecuado en consonancia con los requisitos no funcionales
estipulados anteriormente. Este prototipo de interfaces es una representacion visual y

13

funcional de coémo se vera y comportara la aplicacion antes de desarrollarla
completamente.

En el caso de este trabajo, las interfaces se han adaptado para sistemas méviles de
Android.

La primera interfaz que se muestra al iniciar la app es un splashscreen en el que se
mostrara el logotipo de las canteras del Club Deportivo Teruel sobre un fondo blanco.

Inmediatamente después se mostrara una pantalla de menu en cuyo fondo se mostrara
una imagen proporcionada por el club donde aparece el campo y en el centro el logotipo
de la cantera del Club Deportivo Teruel. En esta pestafia también aparecen cuatro
botones para darle al usuario diferentes opciones segun lo que desee hacer.

{ N)

LOGOTIPO GANTERA CARGAR JUGADOR
ca:HsAR PLANTILL]

[LISTA PLANTILLAS
[ESTADISTICAS

o v \

llustracion 3: Prototipo de Interfaces “SplashScreen”, “MenuActivity”

’

14

[- o ——— [-] fm——=—
€— [LSTA PLANTILLAS] «— €— [CARGAR PARTIDD|
[] ||
ESCUDO TERUEL
_— —
[] C—
==)] O000 [FErromAoR]
E=]00000
(AR ETET)
\ - J J 9 _—_—)

llustracién 4: -Prototipo de Interfaces “Lista de plantillas”,” Cargar Plantilla”, “Cargar Jugador”

' . =\ (2 =3 (P — }
——m ESCUDO TERVEL
ESCUDOTERUEL‘ || ESCUD0 TERVEL
)
M= ddirie ¥ = EEH
GADOR ONVO OF
f&?.:‘T
JUGADOR 2
JUGADOR 3
\ ¥ WA ——— f RRAR pE !EEI
BORRAR JUGADORES
_
L L —_— v L) i)

" u

llustracién 5: - Prototipo de Interfaces “Resumen Partido” “Convocatoria Partido” “Lista de Partidos”

Los cuadrados de la primera imagen de la ilustracién 3 se corresponden con iconos que
funcionan como botones en la aplicacién. Las funcionalidades asociadas a estos botones
por orden serian las siguientes: (Anadir Jugadores, Ver Jugadores en la plantilla, Afiadir
Plantilla, Afadir Entrenamientos, Lista de Entrenamientos, Afadir Partido y Lista de
Partidos)

15

ESTADGTICAS
A : - ¢ [EroEmcas)

ESCUDO TERUEL |
I T I ESCUDD TEAUEL

[Famiia | [Ferid | [Fugader]

GENERAR GRAFICAS]

llustracién 6: - Prototipo de interfaces pantallas de estadisticas

3.3 Diseno de la aplicacion

En las estructuras de las aplicaciones Android la légica de programa ocurre en
actividades que son independientes entre si ya que cada una tiene su propio ciclo de
vida. Estas actividades se encargar de llevar todo el flujo del programa haciendo uso de
diferentes componentes como son el modelo o los objetos de la interfaz.

Como se ha comentado en la parte de la arquitectura la aplicacidn es del tipo cliente
servidor. La parte del servidor es la que se encarga de la gestion de la base de datos la
gestion de la logica de negocio, la seguridad y proteccion de datos y la sincronizacién de
datos. La parte cliente debe estar en constante comunicacién con el servidor para
asegurar la persistencia de los datos.

Existente diferentes maneras de asegurar la persistencia de los datos y la eleccién de |a
arquitectura puede ser clave para ello. La arquitectura MVVM ha sido convertida en
Google como estandar para implementar aplicaciones Android por lo tanto ha sido mi
eleccién para desarrollar el TFG, esta arquitectura la explicare mas adelante en la parte
de tecnologias utilizadas.

Una de las principales ventajas de esta arquitectura es el uso de los objetos Live Data la
cual es una clase disenada especificamente para la comunicacién entre componentes de
la interfaz de usuario y componentes de la clase ViewModel.

La clase Live Data estd disefiada para ser reactiva. Esto significa que los objetos Live Data
pueden notificar automaticamente a sus observadores cuando los datos subyacentes
cambian. Esta clase ademas esta disefiada para ser consciente del ciclo de vida de los
componentes Android como actividades y fragmentos. Esto garantiza que los
observadores solo reciban actualizaciones cuando el componente este en un estado
activo listo para recibir datos evitando asi problemas como la fuga de memoria al

16

desvincular automaticamente los observadores cuando el ciclo de vida del componente
no esta activo.

La implementacién de Live Data en este proyecto se realiza de la forma siguiente.

e Los datos se encuentran almacenados en la base de datos Room esta base de
datos contiene varias tablas o entidades diferentes dependiendo del dato que
queramos almacenar (jugadores, plantillas, entrenamientos, partidos).

e Existe un componente llamado DAO que se encarga de toda la comunicacidn con
la base de datos es decir realizar consultas inserciones modificaciones y
eliminaciones. En la clase ViewModel es donde se instancian y modifican los
objetos de tipo Live Data. Para consultar los datos, esta clase implementa un
listener que, ante cambios en la base de datos modifica el valor de los objetos
Live Data manteniendo siempre sincronizados los datos entre cliente y servidor.

e Enlas actividades se implementa un observer a los objetos Live Data, por lo que
cuando estos son modificados, las actividades reciben los cambios y pueden
actualizar la UL.

Layout(U1}

Activity

ViewModel
H]

L em oomomemsse

[—

SaLite

17

-
Lista De Plantillas

< € Comvocatoria Entrenamients € Jugadores En Entrenamiento
BUSCAR PLANTILLA ,
B s ke i
TR S ZLHER B o + ok K
TR wm Sa L2 [Ee
St em Ba &4 e @S
e em o, ir it e
AMOCTAT KORES Fate enfrenamignic ha Bovids
SIS TOMNGIA ENTRERAMIENTO
pepe
ove manurl
4
Estadisticas * Cargar Entrenamiento &« Lista De Entrenamientos
) u
w _— [sia T30 2030 - A =1
HORAA WHera -1 722 +- _-o
) e [ia frele »
- a0 =
4 cancamsare o2 = oA e
//
fa 12 . - =
/ E e b = A Fe
-
ey
A
A
A
a A
-
-
-
e
I
o
r
A
s
e
L3
R _ womman inTasHAINTD |

llustracion 8: -Disefio de la aplicacién

18

En cuanto a la interfaz de usuario, es bastante simple, con el fin de que la aplicacion sea
facil de usar por el usuario. Se ha utilizado una gama de colores pertenecientes a la
entidad deportiva del CD Teruel como son el rojo y el azul. Por otra parte, he utilizado
unos botones personalizados para las diferentes opciones de la plantilla con el fin de

gue quedara mas estético y poder poner todas las opciones en una misma linea.

En la llustracion 8 podemos ver el disefio de la aplicacion.

3.4 Diagramas

3.4.1 Diagrama de clases

M |

FormularioPartidoViewhlodel

+id: MitableLiveData<nt>

+ operacionExtosa : MutableLiveData
+ rival: MutableL iveData< String=

+ jornada : MutableLiveData<Strings-
+temporada : Mutabiel veDatac3tring>
+fotoCargada : MutableLiveDtz<Bo.
+imagen: MulzbleLiveData<Siring>

+validariformacion): Boolean
+validsrinform acin()
+QuardarPartid{String et Sting)
+Quardarimagen(Siring)

JugadoresEnPartidoViewModel

+ listaJugadaresEnPartido : MutableLiveData<JugadoresEnParidos
+bodlean: MutableLveData<Bovlean>

+quardarlugadorEnPartidointin)
+iniciar(inf)
+barrarJugadarPartidofirt,)

CargarPartidoActivity

+ateirit bindng : ActivtyCargarPartidoBinding
+parfidoViewhlodel: FomularioPartido\iewModel

+cargarFate: ActiityResutlauncher<PickVisuaMediaRequests
+lateiit cargarBolon : Button

+override onCreate(Bundle)

SeleccionJugadoresPartidoActivity

+ lateint bindng : ActivitySeleccionJugadoresPartidoBinding
+ jugadoresEnPlanila - JugadoresErPlantlaViewMode!
+jugadores : Jugador\iewMade!

+lstaPuntuecion : PuntuacionesPariooliewiode!
+jugadoresEnPartido - JugadoresEnPartidoViewhade!
+planilla ; string

+id1 : integer

+id: integer

EstadisticasActivity

+Dinding : ActivtyE stadsticasBinding

+ plantilaViewMode! - Plantila ViewMode!

+plartila: string

+ puntuaciongsParido\iewhode! - Purtuaciones Partido\iewMode!
+ purtuaciongsVienMode!: Puntuaciones\iewhMode!

+jug lugadoresEnPlanii

+ partidosViewodel: ListaParfidosViewhiode!

+ entrenamientos Vieshlodel - ListaEnirenamientos\Viewode!

+override fun onCreate(Bunde)
+override fun onltem Selected Adapter\iiew View Int Long)
+override fun onNathingSelectedAdapter\Aew)

BorrarJugadoresEntrenamientoAcfivity

+ binding - ActvtyBorrar ugadores EnrenamiznteBinding
+ugadoresEnEntrenamientoVieMade!: Jugadares EnEntrenam entobiswhlode!
+1esut: NutableListeint>

+ puntuaciones\ViewMode! - PuntuacionesViewhiodel

+nombres : MutableList<Sirings

+id: integer

+idi : integer

+hsenvaciones - sking

+anotaciones - string

+plantla : string

+confimarDislogal)

MenuActivity

+ irPantallaCargarJugador()
+ iiPantallaCargarPlartila()
+ irPantallaListadoPlantilss)
+ iiPantallaEstadificas()

DatePickerFragmenifistener(int Int nt)->Unit):
DialogF ragment() DatePickerDialog OnDataSetListener

+override fun onDataSet{DatePicker nt intt)
+override fun anCreateDialog(Bunde) Dilog

+generariatosParidof) +0nDialogPositiveClick{DialogFragment)
+generarDatosEntrenamintof) +0nDialoghegativeClick{ DislogFragment)
+volverAliciof)
RoomDataBase
Teruel
Adapters | +‘W
+pb: DataBase
JugadorAdapter Arayhdapter +veride fun anCreate()

+ ViewHoldes(): ReeyelerView viewHolder)

(-

+lyoutifater : Layoutinfiater

+onCreateNiewHolderViewGroup f)
+onBindViewHolder{vizwHolder)
+geftemCount()
+enlazartem{JugadorEntty)

+QefView(Int View ViewGroup): View

+super.onCreate()

DataBase:RoomDatabase)

+getDao(AppDao

+iie(View nf) View
+getDrapDownViesw(int View, ViewGroup): View

inferface AppDao

+{lnsert suspend fun insertlugador(List=ugadorEntty):ListLong

+@Query(SELECT * FROM tabla_gntrenamiento WHERE tabla_entrenamiento id=id) —suspend fun getJugadoreseEntrenamizntolid nt): Jugadores EnErtrenamiento

+(@Delete suspend fun deletePlantila(PlantilaEntiy): it

Ilustracién 9: -Diagrama de clases

19

En la llustracién 9 podemos ver el diagrama de clases de la aplicacién. Este diagrama
esta resumido y muestro una seleccidn de clases dentro de la estructura de la aplicaciéon
para que se observe visualmente.

En la seccion MVVM muestro por una parte el ‘FormularioPartidoViewModel’ que
contiene los métodos que se utilizaran en ‘CargarPartidoActivity’ a través del objeto
partidoViewModel de tipo viewModels.

Los cambios que hace el usuario en la interfaz de usuario se guardan en el objeto binding
a través de un adapter.

Las actividades ‘SelecciénlugadoresActivity’, "BorralugadoresActivty’ y
‘EstadisticasActivty’ siguen una légica parecida cambiando los métodos que aplicamos
en los diferentes ViewModels y Adapters.

Los Adapters sirven para gestionar elementos de tablas de las diferentes entidades de
la base de datos que se representan en la interfaz de usuario a través de RecyclerViews.

El funcionamiento de RoomDataBase lo explicare en su correspondiente apartado.

3.4.2 Diagramas de actividades

Interaccien de Usuario : Interfaz de Usuario : Logica De Programa : Servidor :

Mostrar pantalla para
seleccionar jugadores

Guardar nombres
jugadores en una
lista

. Pulsar
_\—) Boton

Solicitar Id de
puntuacienes de cada
jupador

Proporcionar
datos de id

Seleccionar
Jugadores

L U—

Mosatrar menzaje de Observador de
confirmacion LiveData de
listapuntuaciones

[Aceptrr]
N\ Solicitud de Eliminacion de

eliminado de puntuaciones

2 {
(.) iDesearealizar|a A¥4 .
NE op eracion? puntuaciones

Pulsar boton

Guardar id de
jugadores en una
lista
Eliminacion de

jugadores

Solicitar eliminacion
de jugadores

[lustracién 10: -Diagrama de actividades “Eliminacién de Jugador de un entrenamiento”

En la llustracion 10 podemos observar como se relacionan los diferentes procesos que
se llevan a cabo en cada una de las partes (Interaccién del Usuario, Interfaz de Usuario,
Légica de Programa y Servidor).

20

Me parece importante comentar la importancia de que la Interfaz de Usuario muestre
un mensaje de confirmacion sobre si se desea realizar la operacion ya que al ser un
borrado de jugador es una operacién delicada que lleva consigo un proceso largo en
caso de que el usuario se haya equivocado en su decision.

Interaccion de Usuario : Interfaz de Usuario : Légica de Programa : Servidor :

Presionar _1
Icono Afiadir
Jugadores

Cargar Jugadores de
|| Plantilla que no esten
convocados

Mostrar

Panatalla con Ingert:
Seleccionar numero de : Insertar
estraallay darle click al lista de Guardar —} Puntuaciones
check Jugadores _ | puntuaciones |

en una lista

Solicitar operacion
[de insertar
puntuaciones

Mostrar Nimero de
estrellas
Presionar Boton seleccionadas y
anadir Jugaderes estado del check

Borrar

_ | Puntuaciones de
\ la Lista J

Ilustracién 11: - Insertar puntuaciones en jugadores de partido

En la llustracién 11 vemos el proceso para afiadir una puntuaciéon a un jugador es
importante recalcar que este proceso es el mismo en el caso de que se quiera afadir
una puntuacién para un jugador en un entrenamiento o en un partido.

Interaccion de usuario : Interfaz de Usuario : Légica de programa : Servidor :

(Pulsar Botén de IMastrar Pantalla Solicitud de Carga de
Estadisticas de Estaditicas | Carga de Plantillas
Plantillas

Spinner con
[listade

-Salecclon 2 [
l o

Solicitud de Carga de
Seleccion de || (Cargarde g
| partido o Spinner de Jugadores
enfrenamie nto] partido o

Solocitud de
Carga de
Puntuaciones

Spinner con
[Listade
Jugadores

Seleccién de
Jugador

Pulsar Botén
de Generar
Gréficas

Carga de
Puntuaciones

, Ocultar
spinners

Observador estado de
[LiveData
ListaPuntuaciones

,-"_._'\-‘ Mostrar
~ ﬂ/
llustracidn 12: -Generar grafico de estadisticas

En la llustracién 12 se puede observar el procedimiento para generar una grafica de
valoracion de jugadores de una plantilla partidos o entrenamientos a los que hayan

21

asistido la diferencia de seleccionar uno u otro se encuentra en la opcién marcada por
el usuario en el spinner comentado.

3.4.3 Diagrama de base de datos

= tabla_puntuaciones Stabla_entrenamiento
——— puntuaciones_id ———
tabla_enirenamiento_id
= JugasoresuntuscionesRalacion nembre_jugador
—— i plartila_ntrenamiento
2bla_jugadores e nombre_pizntils piantila_id
puntuacion magen
jugasor_id)
dia
N JugadoresFlanlaRelacion
= tabla_plantila nara
nembre_jugador tabla_planilla_jd I —
S I anctaciones
dorsal jugador_id
pasician
= JugadoresEnEntranamientoRelazion [ETp——
tabla_entrenamiento_id
jugaor_id
nombre_plantila
= lugsdoresParidoRelacion g
categoria
artido_id
peeico_ temporada
Jugador_id = izbla_paride
partido_jd
JugadoresPuniuzcionesPartidoRelacion
L jgador id planilla_partido
puntuaciones_partido_id — plantila_id
imagen
tabla_puntusciones_partido fival
L puntuaciones_partida_id jomada
nemére_jugador —
partido_id anotsciones

nombre_glanila

puntiacion

llustracion 13: -Diagrama de la base de datos

Como se puede ver en la ilustracién 13 hay una serie de columnas de las diferentes
tablas de las bases de datos que apuntan a otras, a continuacidn, voy a explicar como
funcionan a nivel interno.

Las columnas que voy a exponer son tabla_plantilla_id y plantilla_id la primera de
tabla_plantilla y la segunda de tabla_entrenamiento.

Antes de explicar esto tengo la necesidad de aclarar que son los intent, ya que los voy a
utilizar en el ejemplo.

Un intent es un objeto que proporciona vinculacion en tiempo de ejecucion entre
componentes separados, como dos actividades. El intent representa la intencion que
tiene una app de realizar una tarea. Puedes usar intents para varias tareas; pero, en este
ejemplo el intent se utiliza para iniciar otra actividad. [10]

22

ViewHolder (v

llustracién 14: -Cédigo de enlazar item de la clase PlantillasAdapter

Como podemos ver en la llustracién 14, la clase ViewHolder pertenece a la clase
Adaptery la funcion enlazar item se encarga de que por cada elemento del recyclerView
se asocien a este todas las columnas de la clase PlantillaEntity.

.setOnClickListener {
intent = Intent(CargarEntrenamientoActivity::
intent.putEx

llustracion 15 -Codigo del botén CrearEntrenamiento de la clase Plantillas Adapter

Como podemos ver en la llustracién 15, posteriormente cuando el usuario le da al botén
de crear el entrenamiento se crea una nueva actividad (CargarEntrenamientoActivity) a
través del intent, gracias al método putExtra() la primaryKey tabla_plantilla_id se
guardar en las Constante ID_PLANTILLA para poder ser utilizada en la actividad
comentada.

guardarEntrenamient ing,id:Int,i:String) {
(validarInfc

[lustracion 16: -Parte de Codigo para guardar un entrenamiento de la clase EntrenamientoViewModel

Como se pude ver en el método mostrado en la ilustracion 16 se procede a la insercion
del entrenamiento en la base de datos pasandole como pardmetro un id que se
corresponde con plantilla_id.

23

.getIntExtra(Constantes.

.quardarEntrenamiento(nombre!!, id

llustracion 17: -Partes de Cddigo de la clase CargarEntrenamientoActivity

En el primero de los recortes de la ilustraciéon 17 asignamos el valor de la constante
ID_PLANTILLA procedente de la pantalla de ListadoPlantillasActivity a una variable
utilizando el método getintExtra() que posteriormente pasaremos como parametro a la
funcién guardarEntrenamiento.

4 Desarrollo del sistema

Una vez completada la fase de andlisis y disefo del proyecto, la siguiente etapa es
implementar el sistema. En este se define como ha sido el desarrollo de los apartados
mas relevantes de todo lo especificado en el disefio, utilizando las herramientas
escogidas al comenzar el proyecto. Para los ficheros de disefio se ha utilizado XML.

4.1 Biblioteca Room

Como ya he mencionado anteriormente he utilizado Room para el disefio de la base de
datos.

Room es una de las bibliotecas de Android Jetpack, un conjunto de librerias para seguir
las practicas recomendadas por Google a la hora de desarrollar aplicaciones para
Android.

Esta biblioteca funciona proporcionando una capa de abstraccion para una base de
datos SQLite creando una memoria cache en el dispositivo en el que estés utilizando
CanteraControl de forma que la base de datos y el acceso a ella es local, lo que supone
que los usuarios podran acceder a la informacion de su equipo independientemente si
tienen conexidn a internet o no.

Para declarar una tabla en la base de datos mediante Room, lo Unico que debe hacerse
es sobre una clase de Kotlin afiadir una anotacién como que se observa en la siguiente
imagen, que es una de las clases y tablas de CanteraControl.

24

@Entity(tableName =

JugadorEntity(

autoGenerate

@ColumnInfo(name=
@ColumnInfo(name=

@ColumnInfo(name=

:Int=
:5tring

ring

@ColumnInfo(names= :5tring

[lustracion 18: -Cddigo con las columnas de la tabla_jugadores

Como se puede ver en la ilustracidn 18, tenemos distintas etiquetas cada una de ellas se
utiliza para una determinada funcién:

- @Entity = Con esta etiqueta hacemos que una clase se convierta en una tabla de
nuestra base de datos.

- @Columninfo= Esta etiqueta la utilizamos para las columnas de las tablas y hace
gue podamos elegir un nombre de tablas distinto a las variables asociadas a ellas.

- @PrimaryKey= La utilizamos para registrar de manera Unica cada registro de
nuestra tabla. Como podemos observar en el cédigo esta clave es autogenerada
y se genera cada vez que se crea un registro.

Para controlar una base de datos mediante Room seran necesarios dos ficheros:

Fichero database

[JugadorEntity:: Plantillakntity::
EntrenamientoEntity::

PuntuacionesEntity:: JugadoresPuntuaci artidoRelacion::

PuntuacionesPartidoEntity:: Jugad

llustracidn 19: -Cédigo para crear la base de datos y los métodos DAO asociados a ella

Como se pude ver en la llustracion 19, la funcion de esta clase es declarar la base de
datos y las clases que compondran sus tablas, ademas afiadimos un método abstracto

25

con el que obtenemos una instancia del objeto DAO cuya utilidad voy a explicar a
continuacion.

Fichero DAO

En este fichero se almacenaran las diferentes operaciones a través de las cuales
interactuamos con la base de datos, estas operaciones pueden ser de los diferentes
tipos:

Consulta:

* tabla_plantilla")

getAllPlantillas(): List<PlantillaEntity>

llustracion 20: -Cddigo de método de consulta a la base de datos para obtener la lista de plantillas

En la ilustracion 20 se pude observar el cddigo de la clase Dao para solicitar el conjunto
de plantillas de la base de datos.

Insercion:

@Insert

insertPlantilla(plantilla: List<PlantillaEntity>):List<Long>

llustracion 21: -Cddigo de método de insercidon de una plantilla en la base de datos.

En lailustracién 21 se pude observar el cddigo de la clase Dao para insertar una plantilla
en nuestra base de datos.

Eliminacion:

@elete

deletePlantilla(plantilla: PlantillaEntity): Int

[lustracion 22: -Codigo de método de eliminacién de plantilla en nuestra base de datos

En lailustracion 22 se pude observar el cddigo de la clase Dao para eliminar una plantilla
en nuestra base de datos.

26

4.1.1 Relaciones entre entidades

Cuando se trabaja con bases de datos en aplicaciones Android es comun que haya
entidades que estén relacionadas entre si de diferentes maneras:

Uno a uno: A cada elemento de la entidad principal solo le corresponde uno de la
entidad secundaria y viceversa.

Uno a muchos: A cada elemento de la entidad le corresponden muchos de la entidad
secundaria pero un elemento de la entidad secundaria solo puede ir asociado a uno de
la principal.

Muchos a muchos: A cada elemento de la entidad principal le corresponden muchos de
la secundaria y viceversa.

En nuestra aplicacién las relaciones entre entidades son de muchos a muchos y voy a
explicar la forma en que las he modelado.

@Entity(primary

JugadoresEnEntrenamientoRelacion(
:Int
:Int)

[lustracion 23: - Columnas de la tabla JugadoresEnEntrenamientoRelacion

sEnEntrenamiento(
EntrenamientoEntity

Junction(JugadoresEnEntrenamientoRelacion::

gadorEntity>

[lustracion 24: -Cddigo con los elementos de la clase JugadoresEnEntrenamiento

Estas dos clases combinadas de la ilustracion 23 y 24 estan disefiadas para manejar una
relacion compleja de muchos a muchos entre entrenamientos y jugadores en una base
de datos de Room.

Estas dos clases se utilizan para representar una relacién compleja de muchos a muchos
entre los jugadores y los entrenamientos en una base de datos Room. La informacién
del entrenamiento se incrusta en la tabla de JugadoresenEntrenamiento y la relacién

27

entre las dos entidades se gestiona a través de la tabla de enlace
JugadoresEnEntrenamientoRelacion.

4.2 Navegacion entre pantallas

Para la navegacion entre pantallas de la aplicacién se ha utilizado ViewBinding la cual es
una caracteristica de Android Studio que simplifica la forma en que los desarrolladores
de aplicaciones Android interactian con las vistas (Ul) en sus de vistas para cada archivo
de disefio XML. A diferencia de findViewByld que era la forma tradicional de obtener
referencias a las vistas en el pasado, ViewBinding genera automaticamente clases de
enlace de vistas para cada archivo de disefio XML en tu proyecto, lo que facilita el acceso
a las vistas y elimina la necesidad de escribir cddigo de busqueda manual.

Para habilitar ViewBinding en mi proyecto he seguido los siguientes pasos:

1. Agregar la configuracion de ViewBinding en mi archivo ‘build.gradle’ (mddulo de
la aplicacién).

buildFeaturesd{

viewBinding=

llustracién 25: -Implementacion de la biblioteca viewBinding

2. Android Studio genera automaticamente las clases de enlace de vista para tus
archivos XML de disefio
Una vez habilitado ViewBinding, accedo a las vistas de mi disefio XML de la
siguiente manera.

~rgarPlantillaBinding.inflate(

llustracion 26: -Cadigo para acceso a una variable de un fichero

A continuacion, voy a mostrar de forma grafica la navegaciéon entre las diferentes
pantallas de la aplicacion.

28

Bomar | Plantlia Cargar Cargar

Jugadores * con Entrenamiento Parlido
= Jugadores

Cargar
Jugadores
Cargar
Jugador

o Menu 1 Lista
Cargar Lista de Plantillas Entrenamientos Jugadores |,
Plantillas y En

Entrenamiento

Borrar
Jugadores

Estadisticas Borrar
Plantillas Anotaciones
Borrar
Entrenamientos

Lista de Partidos

Borrar
Partidos

Jugadores
En {Anotaciones,
Entrenamienta

Cargar
Jugador

Borrar
Jugadores

4.3 Tecnologias y Bibliotecas utilizadas

4.3.1 Arquitectura MVVM

La arquitectura MVVM se basa en los siguientes componentes clave:

Model: El Modelo representa la capa de datos de la aplicacion. Contiene la légica
de negocio, los datos y las operaciones relacionadas con la manipulacién de
datos. Puede incluir acceso a bases de datos, servicios web, almacenamiento
local y cualquier fuente de datos necesaria para la aplicacion.

View: La Vista representa la interfaz de usuario (Ul) de la aplicacién. Es
responsable de mostrar los datos del Modelo y de capturar las interacciones del
usuario, como toques en la pantalla, clics de botones, etc. Sin embargo, la Vista
no contiene ldgica de negocio; su papel principal es mostrar la informacién y las
interacciones al usuario.

ViewModel: El ViewModel actia como un intermediario entre el Modelo y la
Vista. Su principal responsabilidad es proporcionar los datos necesarios desde el
Modelo a la Vista de una manera que sea facil de mostrar en la interfaz de
usuario. También gestiona el estado de la interfaz de usuario y las acciones del
usuario. El ViewModel generalmente se comunica con el Modelo para obtener o
actualizar datos, y luego expone estos datos a la Vista a través de propiedades
observables.

29

4.3.2 Biblioteca DataBinding

La biblioteca DataBinding permite vincular los elementos de la interfaz de Usuario
(UI) de una aplicacién Android directamente a los datos subyacentes en el modelo de
datos. Esto simplifica y mejora la forma en que se manejan los datos en la aplicacién
al eliminar gran parte del cédigo de enlace manual que normalmente se necesita.
Ademads, DataBinding es especialmente atil cuando se implementa el patréon de
arquitectura MVVM como es mi caso ya que simplifica la comunicacidn entre la vista
y el modelo.

Para habilitar DataBinding al proyecto he seguido los siguientes pasos:

1. Agregar la configuracién de DataBinding en mi archivo ‘build.gradle’ (mdédulo de
la aplicacién).

buildFeaturesd

dataBinding

[lustracion 28: -Implementacion de la biblioteca DataBinding

2. Vincular los elementos de la interfaz de usuario a variables.

llustracion 29: -Cddigo para vincular elementos de la interfaz de usuario a variables
3. Utilizar DataBinding en las vistas.
<EditText
yout_height

thint

modelo.nombre

intStart_to rtaf
aintTop_toBottomO+Ff

llustracion 30: -Cddigo para configurar el EditText de la interfaz de usuario

30

4. Configurar el enlace de datos con el ViewModel en la actividad.
La declaracion de la variable plantillaViewModel esta fuera del método onCreate()
mientras que la asignaciéon de plantillaViewModel al model esta dentro.

FormularioPlantillaViewModel viewModels ()

[lustracidn 31: -Cddigo para enlazar datos del ViewModel en la Actividad

4.4 Implementacion de la base de datos

Para garantizar la persistencia de los datos y almacenar toda la informacién
relacionada con los puntos de interés era necesario disponer de una base de datos. Tal
y como se ha explicado en la fase de disefio se ha utilizado Room para almacenar los
datos.

Para la implementacién de la base de datos Room en mi disefio he seguido los
siguientes pasos:

1. Agregar las dependencias de Room en mi archivo “build.gradle” (mdédulo de la
aplicacion).

implementation
kapt

llustracion 32: -Cddigo para implementar la biblioteca Room

2. Definir entidades en la base de datos.

mnInfol(

llustracion 33: Cédigo con las columnas de la tabla_plantilla

31

3. Crear una interfaz DAO para definir las operaciones de acceso a la base de datos.

AppDao {

rt
insertJugador(jugado : List<JugadorEntity>): List<Long>

llustracion 34: Cddigo para declarar la clase AppDao

4, Crear la base de datos Room.

idoRelacion::

llustracion 35: Cédigo para crear la base de datos y los métodos DAO asociados a ella
5. Configurar y obtener una instancia de la base de datos en la aplicacion.
DataBase : RoomDatab]

getDaol(): AppDaoc

llustracion 36: Cédigo para obtener instancia de la base de datos

TeruelApp: Application() {

pb: DataBase

llustracion 37: Cédigo para inicializar la base de datos

6. Manejo de hilos y corrutinas:
Las operaciones de acceso a la base de datos deben realizarse en hilos o corrutinas

diferentes para no bloquear el hilo principal de la interfaz de usuario.
(dia: String) {
.launch {
{

TeruelApp.| tDa getEntrenamientoD antilla(dia)

llustracion 38: Cédigo para obtener un entrenamiento segun un dia especifico

32

4.5 Utilizacion de Live Data

La utilizacién de objetos LiveData es un tema importante en este proyecto, ya que
permite tener una interfaz de datos reactiva ante los cambios realizados en la base de
datos, de modo que la persistencia de datos es siempre éptima. Live Data es una clase
de contenedor de datos observables. A diferencia de un observable regular, LiveData
estd optimizado para ciclos de vida, lo que significa que respeta el ciclo de vida de otros
componentes de las apps, como actividades, fragmentos o servicios. Esta optimizacion
garantiza que LiveData solo actualice observadores de componentes de apps que
tienen un estado de ciclo de vida activo.

Para la utilizacidn de Live Data en mi proyecto he seguido los siguientes pasos:

1. Crear instancia LiveData para contener un tipo de datos determinado. Esta
instancia la he creado en las clases del tipo ViewModel.

[lustracion 39: -Cadigo con la declaracidén de diferentes variables LiveData

En la llustracién 39 he querido reflejar esta parte del cédigo ya que pertenece a la
misma clase (FormularioJugadorViewModel) que utilice para explicar el uso de la
biblioteca DataBinding.

En esta clase las dos tecnologias estan relacionadas ya que DataBinding vincula
elementos de la interfaz de usuario, Edit Text en este caso a variables y
posteriormente son almacenadas en objetos LiveData.

validarInformacion(): Boc
1C . .IisNullOrE
LASNULLOrEmpty
LAsSNulLLOrEmpty()

llustracidn 40: -Cédigo para comprobar si la informacidon del usuario es correcta

Esta funcion expuesta en la llustracién 40 comprueba el estado de los LiveData y si
alguno de ellos esta vacio devuelve un False.

33

quardarJugador

LidarInforr

= withContext hers.I0) TeruelApp.pb.getDao() .insertJugador(

llustracion 41: -Cddigo para guardar un jugador

Como podemos observar en esta funcion de la llustracién 40, si la funcién
comentada anteriormente nos ha devuelto un True esto significa que los datos del
jugador son validos por lo que actualizo el valor del objeto LiveData
operacionExitosa a True y procedo a hacer la operacidon en segundo plano de la
insercion del jugador a la base de datos.

Observar los cambios del objeto Live Data desde la actividad y actualizar la interfaz

.borrarDatos()

Toast.makeText(

-borrarDat

llustracion 42: -Cddigo para guardar jugador cuando el usuario presiona un botén

En el momento que el usuario presiona el botén de guardar el observador
comprobara el estado del LiveData operacionExitosa en el caso de que sea true
mostrara el mensaje “el jugador se ha guardado correctamente” en caso contrario
“El jugador no se ha guardado correctamente debido a que todos los campos
deben estar completos”.

34

Un diseno de la estructura de interfaz de usuario en una aplicacion, como, por ejemplo,
en una actividad. Todos los elementos del disefio se crean usando la jerarquia de
objetos View y ViewGroup. Una View suele mostrarse en un elemento que el usuario
puede ver y con el que puede interactuar. Por su parte, ViewGroup es un contenedor
invisible que define la estructura de disefio de View y otros objetos ViewGroup.

Los objetos View suelen llamarse widgets y pueden ser una de las muchas subclases,
como Button o TextView. Los objetos ViewGroup se denominan generalmente layouts
y pueden ser de muchos tipos que proporcionan una estructura diferente, como
LinearLayout y Constraintlayout [11].

La interfaz de usuario en Android se define tipicamente utilizando archivos de disefio
XML que describen la disposicion y el aspecto visual de los elementos de la interfaz de
usuario, como botones, campos de texto, imagen etc. Estos archivos de XML se
encuentran en la carpeta de recursos de la aplicacion.

Como se ha comentado anteriormente, los widgets se encuentran contenido en los
layouts, estos pueden ser de muchos tipos, los escogidos para el desarrollo de la
aplicacion han sido los ConstraintLayout y los LinearLayout predominando los
segundos sobre los primeros.

LinearLayout es un grupo de vistas que alinea todos los elementos secundarios en una
Unica direccién, de manera vertical u horizontal. Puedes especificar la direccién del
disefio con el atributo android:orientation [12].

ConstraintLayout te permite crear disefios grandes y complejos con una jerarquia de
vistas plana (sin grupos de vistas anidadas). Es similar a RelativeLayout en cuanto a que
se presentan todas las vistas de acuerdo con las relaciones entre las vistas del mismo
nivel y el disefio de nivel superior, pero es mas flexible que RelativeLayout y mas facil
de usar con el editor de disefio de Android Studio[13].

35

https://developer.android.com/reference/android/widget/LinearLayout?hl=es-419
https://developer.android.com/reference/android/widget/LinearLayout?hl=es-419#attr_android:orientation
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout?hl=es-419
https://developer.android.com/reference/android/widget/RelativeLayout?hl=es-419

Caagar Jugeedor

A continuacion, voy a comentar los aspectos mas relevantes e inusuales de lo que ha
sido la implementacién de las interfaces en la aplicacidén. Con inusuales me refiero a
los elementos que se salen de lo que seria comun y sencillo como por ejemplo colocar
elementos simples en los layouts.

En la aplicacién todos los datos que se muestran como items en una lista dindmica que
nos permite desplazarnos hacia arriba y abajo a través de esta son tratados con
RecyclerView.

RecyclerView facilita que se muestren de manera eficiente grandes conjuntos de datos.
Tu proporcionas los datos y defines el aspecto de cada elemento, y la biblioteca
RecyclerView creara los elementos de forma dinamica cuando se los necesite.

Como su nombre lo indica, RecyclerView recicla esos elementos individuales. Cuando
un elemento se desplaza fuera de la pantalla, RecyclerView no destruye su vista. En
cambio, reutiliza la vista para los elementos nuevos que se desplazaron y ahora se
muestran en pantalla. Esto mejora en gran medida el rendimiento y la capacidad de
respuesta de tu app y reduce el consumo de energia [14].

El RecyclerView se encargar de inflar la vista, pero en la pantalla que muestra la lista
de lugares es necesario utilizar un adaptor. Un adaptor es un objeto de una clase que
implementa la interfaz Adapter. Este actia como un enlace entre un conjunto de datos
y un adaptador de vista. El conjunto de datos puede ser cualquier cosa que presente
datos de una manera estructurada, en este caso se trata de una lista de objetos
JugadorEntity. Un adaptor coge un conjunto de datos y los recorre generando una vista
para cada uno de los registros que contenga el conjunto.

Los adaptadores pueden mostrar grandes conjuntos de datos muy eficientemente, ya
gue cargan solamente los objetos View que estan listos en pantalla o que estan a punto
de moverse en la pantalla. De esta manera, la memoria consumida por un adaptador
puede ser constante e independiente del tamafio del conjunto de datos. [15]

36

Primero es necesario crear un fichero XML que defina la vista en la que el adaptador
cargara la informacion de cada registro del conjunto de datos.

llustracidn 44: -Vista en la que el adaptador cargara cada elemento

Posteriormente se implementa el adaptador sobrescribiendo los métodos
onCreateViewHolder(), getltemCount() vy onBindViewHolder() para definir
manualmente de que lista se deben tomar los datos, a que vista se van a inflar los datos
y a que elementos de dicha vista va a ir cada dato.

llustracion 45: Clase JugadorAdapter

Voy a explicar lo que realiza la funcion enlazarltem porque es comun a todas las clases
adapter y tiene una importancia bastante notable en la aplicacion.

Esta funcion coge el elemento nombre del fichero item jugador, imagen expuesta
anteriormente y le da el valor de la columna nombre perteneciente a la entidad

37

JugadorEntity. En el fichero también existe un elemento llamado CheckBox y dentro
de esta funcion implementamos un listener que nos avisa de cada vez que ha cambiado
el estado del CheckBox, en el caso de que este activado se van a afiadir a la lista result
y al nombre el valor de las columnas id y nombre respectivamente mientras que si esta
desactivado lo que hace es borrar estos elementos de las listas.

Como esta funcién la utilizamos dentro del onBindViewHolder se va a aplicar a cada
elemento de nuestra lista dinamica.

En la pantalla de estadisticas se deben mostrar las opciones de las plantillas o los
jugadores a seleccionar, en esta ocasién ya no podemos utilizar los RecyclerView ya
gue estas opciones deben situarse dentro de Spinners el procedimiento ha sido el
siguiente.

El fichero XML creado es bastante similar al empleado en el RecyclerView lo que si
tiene cambios significativos es el uso del adaptador para este caso.

getView(position: os w?, parent: ViewGroup): View {

op

binding=TIter

binding.

getDropDownView(position: Int, convertView: View?, parent: ViewGroup): View {

.inflate(R.layout. parent

! position)

llustracion 46: -Clase ArrayAdapter

Como podemos ver en la ilustracion 46la clase getView se encarga de devolver la vista
gue se utilizara para representar el elemento seleccionado en el Spinner. Aqui se infla
la vista desde el fichero ‘item_plantilla_est.xml’ y se establece el texto correspondiente
en el elemento de la vista.

La funcidn View se utiliza para configurar los elementos de la vista para cada posicidn
en el Spinner. Aqui se enlaza el texto de la lista de opciones a un elemento de texto en
la vista.

38

Por ultimo, la funcion getDropDownView se encarga de devolver la vista que se
utilizara para representar cada elemento en la lista despegable del Spinner. Si la vista
es nula, se infla la vista desde el fichero y luego se establece el texto correspondiente.

4.7 Biblioteca MP Android chart
Para mostrar graficos en nuestras aplicaciones de Android la biblioteca mas utilizada
es MPAndroidChart esta es una biblioteca de graficos muy potente y facil de usar. [16]

Para utilizar esta biblioteca tenemos que anadir el siguiente repositorio al build.gradle
(Project:TFG).

llustracidn 47: -Repositorio de la biblioteca MPAndroidChart
Ademas, debemos afiadir la siguiente linea de cédigo al build gradle(Module:App).

implementation

llustracion 48: -Implementacion de la biblioteca MPAndroidChart

Una vez que podemos utilizar la biblioteca MPAndroidChart lo primero que hacemos
es crear un elemento MPAndroidChart en el fichero activity_estadisticas.

<com.github.mikephil.charting.charts.LineChart
:id
| rout_width

:Layout_height

llustracion 49: -Elemento LineChart del fichero ‘activity_estadisticas’

39

A continuacién, vamos a utilizar este objeto lineChart en la clase EstadisticasActivity.

llustracion 50: -Funcidn generarDatosPartido de la clase EstadisticasActivity
Lo primero que hace la funcién es ocultar los elementos de la interfaz de usuario
correspondientes a la eleccidn de opciones como son los spinners, a continuacion, se
verifica si el usuario ha elegido un jugador si es correcto a través de
puntuacionesPartidoViewModel se solicita la consulta a la base de datos de la lista de
puntuaciones del jugador seleccionado.

Se comprueba si se ha encontrado una lista de puntuaciones en caso negativo la
aplicacion mostrara un mensaje por pantalla para que el usuario sepa que el jugador
seleccionado no ha sido convocado a ningun partido.

Si el usuario ha seleccionado un jugador el proceso es el siguiente:

e Se obtiene una lista de nombres de partidos desde patidoViewModel.

e Secrean una lista de valores de entrada (‘Entry’) para el grafico de lineas.

e Sila lista it (‘listaValoresPuntuaciones’) no es nula se itera sobre ella con el
indice y el valor correspondiente. Luego, se agrega cada valor a la lista ‘yValues’.

e Se configura un conjunto de datos de linea (‘lineDataSet’) con los valores de
‘yValues’ y se establecen varias propiedades entre ellas el color o el radio de
los circulos.

40

e Se crea un objeto de ‘LineData’ a partir del conjunto del conjunto de datos en
linea y se asigna el grafico ’lineChart’en la interfaz de usuario.

e Se configuran los ejes y el formato de los nombres de los partidos en el eje x
del grafico usando los nombres de los partidos obtenidos anteriormente.

4.8 DatePickerFragment y TimePickerFragment

Estas dos clases las utilizo para que en el momento de que el usuario cree un partido
0 un entrenamiento y quiera seleccionar una fecha y una hora aparezca un calendario
y un reloj respectivamente.

y:Int,month:Int,year:Int) ->Unit): Dialog

onDateSet(? year: Int month: Int dayOfMonth: Int) A
Month

nstanceState: Bundle?): Dialeog {

year,month, day)

llustracion 51: -Cddigo de la clase DatePickerFragment

Esta clase extiende de ‘DialogFragment’ y utiliza la interfaz
‘DatePickerDialog.OnDataSetListener’.

La clase acepta una funcién andnima como pardmetro ‘listener’ que toma tres
argumentos enteros: ‘day’, ‘month’ y ‘year’. Esta funcidn se invocara cuando el usuario
elija una fecha en el selector de fecha.

Se implementa en el método ‘onDataSet’ que se llama cuando el usuario elige una
fecha en ele selector de fecha. Este método invoca la funcién ‘listener’ con los valores
seleccionado entre los comentados anteriormente.

Se implementa el método ‘onCreateDialog’ para crear y configurar un
‘DatePickerDialog’ con la fecha actual como fecha predeterminada para mostrar al
usuario.

El ‘DatePickerDialog’ se crea con la actividad actual como contexto (activity as context)
y se le asigna un oyente de fecha que es esta instancia en la clase
‘DatePickerFragment’.

41

TimePickerFragment((Str) nit) :DialogFragment(), TimePickerDialog.OnT Listener {

onTimeSet im hour0OfDay: Int, minute: Int) {

: Bundle?): Dialog {

Context hour, minute

[lustracion 52: -Cddigo de la clase TimePickerFragment

Como podemos ver en la ilustracion 53 esta clase es muy similar a la anterior lo Unico
gue cambia es los argumentos del listener.

5. Pruebas de la aplicacion

Este apartado de la memoria estd dedicado a las diferentes versiones que ha tenido la
aplicaciéon derivadas de las necesidades manifestadas por el club deportivo Teruel.

Este proyecto requiere de una evaluacion final que permita evaluar los objetivos que se
han conseguido y cudles son los puntos débiles del mismo para tratar de mejorarlos en
futuras versiones de la aplicacion.

La aplicacion constaba de una primera versién que fue presentada a parte del staff técnico
del Club Deportivo Teruel donde surgieron por su parte una serie de problemas y una falta
de funcionalidades que voy a comentar a continuacién.

En cuanto a los problemas la mayor parte eran referentes al disefio de la interfaz de
usuario, estos eran los siguientes:

e En el menu principal no se veian del todo bien los botones sobre el fondo
seleccionado, ademas de esto habia otra serie de botones como el de ‘guardar
plantilla’ de la pantalla ‘crear plantilla’ que tampoco se veian de forma clara.

e Al crear un jugador o una plantilla cuando se le daba al botén crear este no te
conducia a ninguna pantalla ademas no se borrar lo escrito en el formulario.

e En las pantallas a las que se dirigia el usuario a partir de la pantalla ‘lista de
plantillas’ no habia ninglin encabezado explicativo de que se hacia en esa pantalla,
debido a que se accedia a dichas pantallas a través de un icono podia no quedar
claro la funcionalidad de esas pantallas.

e Después de aifadir jugadores o borrarlos de una plantilla estos seguian en la
pantalla dandole al usuario la opcidn de afiadirlos o borrarlos otra vez.

e Cuando la aplicacion pedia una fecha o una hora no existia ni un calendario ni un
reloj para poder facilitar al usuario el ingreso de dichos datos.

e En toda la aplicacién faltaban elementos visuales que hicieran reconocer la
aplicacion como perteneciente al Club Deportivo Teruel.

42

La falta de funcionalidades de la primera versidn de la aplicacién eran las siguientes:

e No existia ningln sistema de evaluacion del desempefio de los jugadores en
entrenamientos o en partidos.

e El club solicito que se afiadiera alguna forma de poder tener en la aplicacion un
lugar donde almacenar informacion sobre el planteamiento previo de partidos y
entrenamientos.

e Cuando se eliminaba un jugador de la base de datos este no se eliminaba de los
partidos o entrenamientos a los que estuviera convocado.

La segunda versién de la aplicacidn y la expuesta en este TFG incorpora una serie de
funcionalidades y un cambio el disefio de una interfaz de usuario que sirven para
satisfacer las necesidades planteadas por el club.

Cabe destacar que los elementos incluidos en la interfaz de usuario que se incluyeron
para reconocer la identidad del CD Teruel fueron proporcionados por Victor Mufiiz uno
de los responsables de la cantera del club. Los elementos incluidos son los mostrados
anteriormente a excepcién de una splashscreen con el escudo de la cantera.

En cuanto a las funcionalidades se cumplieron con éxito los requisitos planteados a la
primera version.

6. Conclusiones

En este TFG se han alcanzado los objetivos y requisitos planteados al comienzo del mismo.
Se ha desarrollado una aplicacién sencilla e intuitiva que aporta a los entrenadores de la
cantera del CD Teruel una herramienta tecnoldgica que les facilita el seguimiento del
desarrollo de sus jugadores.

Ademads, he adquirido un gran nimero de conocimientos de un area que me interesaba
(la programacién) y sobre una nueva tecnologia y un nuevo lenguaje (Android Studio y
Kotlin).

A nivel personal este proyecto ha supuesto un gran reto para mi ya que es un area del
conocimiento que si bien habia trabajado en la carrera no tenia nada que ver con lo que
me enfrentaba.

En lo que se refiere al desarrollo de la aplicacion, ha requerido mucha dedicacidn, meses
de mucho trabajo y muchos momentos de frustracion. Diferentes etapas del proceso de

43

la aplicacién me han exigido mucho esfuerzo y recopilacidon de informacién como puede
ser las relaciones entre entidades y el tratamiento de las puntuaciones y su posterior
reflejo en la parte de las estadisticas, pero en gran parte gracias a la ayuda de mi tutor las
he podido sacar adelante.

Nunca habia trabajado con Android Studio y el hecho de utilizar el lenguaje Kotlin, aunque
este es el recomendado por los desarrolladores de Android para crear nuevas aplicaciones
tiene la desventaja de que la informacién disponible en internet para problemas
concretos es mucho menor de la que se puede encontrar en otros lenguajes que tienen
mucho mas recorrido.

En resumen, quiero exponer que gracias a este trabajo he aprendido que, aunque es una
tecnologia desconocida y nueva para mi con ilusién esfuerzo y trabajo se puede aprender
y conseguir cualquier cosa, también he aprendido que las cosas que realmente merecen
la pena requieren su tiempo y un saber lidiar con la frustracidén ensefianzas que hoy en
dia estdn en abandono debido a la inmediatez y la ley del minimo esfuerzo.

44

Referencias

[1] Introduccién a Android Studio
https://developer.android.com/studio/intro?hl=es-419

[2] ¢QUE ES FLUTTER ?

https://www.startechup.com/es/blog/what-is-flutter/

[3] Ventajas y desventajas de Xcode
https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/

[4] Kotlin vs Java

https://openwebinars.net/blog/kotlin-vs-java/
https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/

[5] Biblioteca de persitencia Room
https://developer.android.com/topic/libraries/architecture/room?hl=es-419
[6] SQLite: La Base de Datos Embedida
https://sg.com.mx/revista/17/sqlite-la-base-datos-embebida

[7] Qué es MySQL: Caracteristicas y ventajas
https://openwebinars.net/blog/que-es-mysal/

[8] Objetivo Analista
https://objetivoanalista.com/conoce-bcoach-la-pizarra-tactica-que-destaca-entre-
analistas-profesionales/

[9] Android Developers, Disefios:
https://developer.android.com/guide/topics/ui/declaring-layout?hl=es-419
[10] Android Developers ,Como crear una Ul responsiva con ConstraintLayout:
https://developer.android.com/training/constraint-layout?hl=es-419

[11] Android Developers, Disefio Lineal:
https://developer.android.com/guide/topics/ui/layout/linear?hl=es-419

[12] Android Developers, Crear lista dindmicas con RecyclerView:
https://developer.android.com/guide/topics/ui/layout/recyclerview?hl=es-419
[13] Android desde Cero:entender Adaptadores y Adaptador Vista
https://code.tutsplus.com/es/android-desde-cero-entender-adaptadores-y-
adaptador-vista--cms-26646t

[14] Android Develepers, Cbmo compilar un intent
https://developer.android.com/training/basics/firstapp/starting-activity?hl=es-419
[15] Como utilizar MPAndroidChart en AndroidStudio
https://medium.com/@codingInformer/how-to-use-mpandroidchart-in-android-
studio-c01a8150720f

45

https://developer.android.com/studio/intro?hl=es-419
https://www.startechup.com/es/blog/what-is-flutter/
https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/
https://keepcoding.io/blog/ventajas-y-desventajas-de-xcode/
https://developer.android.com/topic/libraries/architecture/room?hl=es-419
https://sg.com.mx/revista/17/sqlite-la-base-datos-embebida
https://openwebinars.net/blog/que-es-mysql/
https://objetivoanalista.com/conoce-bcoach-la-pizarra-tactica-que-destaca-entre-analistas-profesionales/
https://objetivoanalista.com/conoce-bcoach-la-pizarra-tactica-que-destaca-entre-analistas-profesionales/
https://developer.android.com/guide/topics/ui/declaring-layout?hl=es-419
https://developer.android.com/training/constraint-layout?hl=es-419
https://developer.android.com/guide/topics/ui/layout/linear?hl=es-419
https://developer.android.com/guide/topics/ui/layout/recyclerview?hl=es-419
https://code.tutsplus.com/es/android-desde-cero-entender-adaptadores-y-adaptador-vista--cms-26646t
https://code.tutsplus.com/es/android-desde-cero-entender-adaptadores-y-adaptador-vista--cms-26646t
https://developer.android.com/training/basics/firstapp/starting-activity?hl=es-419
https://medium.com/@codingInformer/how-to-use-mpandroidchart-in-android-studio-c01a8150720f
https://medium.com/@codingInformer/how-to-use-mpandroidchart-in-android-studio-c01a8150720f

