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1 Introducción

Los fenómenos de transporte electrónico a nivel macroscópico son conocidos. Las propiedades

conductoras de una muestra vienen caracterizadas por la cáıda de potencial V a lo largo de esta

cuando circula una corriente I. Si tomamos un conductor de longitud L y sección trasversal W ,

el voltaje está dado por la ley de Ohm,

V = IR R =
L

σW
(1.1)

donde σ es la conductividad del conductor.

Sin embargo, la descripción de Ohm de los conductores no es válida en sistemas pequeños

(∼ µm) donde los efectos cuánticos del transporte cobran relevancia. Esta escala, llamada

mesoscópica, corresponde con tamaños menores que la longitud de coherencia de los electrones

(mean free path inelástico), que es el rango de distancias que pueden recorrer de forma coherente.

Es por esto que a escala mesoscópica la descripción del transporte electrónico es imprescindible

tener en cuenta su comportamiento ondulatorio y, en consecuencia, los efectos de interferencia

cuántica.

En régimen macroscópico, la ley de Ohm establece que el voltaje depende linealmente de

L. Como veremos en este trabajo, a escalas mesoscópicas esto deja de ser cierto y el voltaje

puede oscilar como una función de L debido a las interferencias constructivas y destructivas de

los electrones.

Figura 1: Esquema del montaje con cuatro terminales que se aborda en este trabajo. La zona
central sombreada es una muestra de grafeno con imperfecciones, mientras que las zonas sin
sombrear no presentan imperfecciones y conectan la muestra con los cuatro terminales.

Habitualmente, tanto en sistemas macroscópicos como mesoscópicos, las medidas de cáıda de

potencial en una muestra conductora se realizan por medio de montajes multiterminales, donde

se inyecta una corriente entre dos terminales y se emplean el resto como sondas de voltaje. Es

por ello de interés estudiar el comportamiento del voltaje medido en un montaje de este tipo

bajo los efectos de interferencia cuántica.
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En este trabajo se va a estudiar el sistema de la figura (1), donde una nanocinta de grafeno se

coloca entre cuatro terminales. Una corriente I circula entre los terminales 1 y 2, mientras que

el voltaje se mide entre los terminales 3 y 4. Desde su descubrimiento en 2004, el grafeno ha sido

un material de gran interés debido a sus propiedades únicas de transporte. Sin embargo, a pesar

de los avances en la fabricación de nanoestructuras, el grafeno no tiene una estructura perfecta,

ya sea por la existencia de impurezas o defectos en la propia red, o por el efecto que el sustrato

sobre el que se colocan la muestra tiene sobre la red. Estas imperfecciones las modelaremos en

forma de un desorden aleatorio en la red, lo cual tiene un fuerte efecto sobre el transporte de

electrones a escalas mesoscópicas y nanoscópicas.

Para abordar el problema teóricamente se emplea el formalismo de Landauer para describir el

transporte cuántico a escala mesoscópica, aśı como la teoŕıa de matrices aleatorias para abordar

estad́ısticamente las imperfecciones de la muestra de grafeno. Aśımismo, se obtienen resultados

numéricos por medio del software Kwant y se contrastarán con la teoŕıa.

2 Marco teórico

2.1 Transporte cuántico: Formalismo de Landauer

Antes de estudiar un sistema multiterminal damos una breve introducción al problema de trans-

porte electrónico en un sistema de dos terminales. Para ello, vamos a emplear el llamado formal-

ismo de scattering o formalismo de Landauer [1]. Este marco basa el transporte de electrones a

lo largo de un conductor según la probabilidad de que se transmitan a través del mismo.

Figura 2: (a) Conductor baĺıstico conectado a dos terminales con potenciales µ1 y µ2. (b)
Conductor con coeficiente de transmisión T conectado a dos terminales de potenciales µ1 y
µ2.

En lo que sigue vamos a tratar con un conductor de longitud L colocado entre dos terminales

de potenciales electroqúımicos µ1 y µ2 (figura 2),1 de tal forma que los estados electrónicos

1La razón por la que se usa el potencial electroqúımico µ y no el electrostático V es porque la conducción
puede darse tanto por un campo eléctrico (deriva) como por un gradiente de concentración de electrones (di-
fusión). Aśı, este potencial engloba ambos procesos y la corriente es J ∝ dµ/dx.
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pueden expresarse como ψ(x, y) = φ(x)ϕ(y). La parte transversal, ϕ(y), está completamente

determinada por la geometŕıa del conductor y define una estructura de bandas con enerǵıas

En(k) . A una cierta enerǵıa E se define el número de canales de transmisión disponibles, N(E),

como el número de bandas que ’atraviesan’ dicha enerǵıa, es decir,

N(E) =
∑
n

θ(E − En(k = 0)) (2.1)

Tomemos primero el caso de un conductor baĺıstico (figura 2a), es decir, un conductor de

longitud menor que el recorrido libre medio (mean free path) de los electrones, de tal forma que

no ocurren procesos de scattering. La corriente puede expresarse como el número de electrones

multiplicado por el tiempo que pasan en el conductor, esto es,

i+ = e
∑
k

N1(E)f1(E)
vg
L

=
e

L

∑
k

N1(E)f1(E)
1

ℏ
∂E

∂k

=
e

L

1

ℏ
2
L

2π

∫
N1(E)f1(E)

∂E

∂k
dk =

2e

h

∫
f1(E)N1(E)dE

(2.2)

donde f1 es la distribución de Fermi del contacto de la izquierda. Análogamente podemos escribir

i− =
2e

h

∫
f2(E)N2(E)dE (2.3)

Aśı, la corriente total es, suponiendo N1 = N2 (lo cual es cierto en ausencia de scattering

inelástico),

I = i+ − i− =
2e

h

∫
N(E)(f1(E)− f2(E))dE ≃ 2e

h

∫
N(E)

(
∂f

∂µ

)
eq

(µ1 − µ2)dE

=
2e2

h
N(Ef )

µ1 − µ2
e

(2.4)

donde hemos asumido bajas temperaturas y una diferencia de potencial pequeña, y donde N(Ef )

es el número de canales en el nivel de Fermi. De esta forma, vemos que la conductancia, definida

como G = I/V , queda cuantizada en múltiplos enteros de G0 = 2e2/h. En la figura (3) se

muestra la evolución de la conductancia con la enerǵıa para un conductor con una red cristalina

cuadrada.

Landauer generaliza el desarrollo anterior al caso más realista de un conductor donde el

scattering elástico de electrones, debido a imperfecciones en la red cristalina, es relevante (figura

2b). En este caso, los procesos de scattering elástico se recogen en el coeficiente de transmisión

T de un electrón proveniente del terminal 1 que se transmite al terminal 2. Aśı, podemos escribir

las corrientes entrantes y salientes como

i+1 =
2e2

h
N
µ1 − µ2

e
i+2 =

2e2

h
NT

µ1 − µ2
e

i−1 =
2e2

h
N(1− T )µ1 − µ2

e
(2.5)
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Figura 3: (a) Estructura de bandas de una red cuadrada. (b) Dependencia de la conductancia
(en unidades de G0) con la enerǵıa (en unidades del parámetro de tight-binding t) a temper-
atura T = 0 K. Notar cómo la conductancia vaŕıa en múltiplos enteros del cuanto G0 conforme
vaŕıa la enerǵıa y se van abriendo o cerrando canales.

La corriente total y la conductancia en este caso son

I = i+1 − i
−
1 =

2e2

h
NT

µ1 − µ2
e

G =
2e2

h
NT = G0T (2.6)

donde T = NT . Esta expresión es la fórmula de Landauer y la base del formalismo de scattering

para el transporte cuántico. Además, para T = 1 recuperamos la expresión (2.4) del caso

baĺıstico.

2.2 Dispositivos multiterminales: Formalismo de Büttiker

En medidas experimentales es habitual usar sistemas multiterminales para medir voltajes, de

forma que la corriente se inyecta y recoge por dos de ellos y los demás miden el voltaje a corriente

nula. Un ejemplo de ello se muestra en la figura (1). Mientras que en sistemas macroscópicos

se supone que los terminales empleados para medir el voltaje solamente ’sienten’ el potencial

local sin interferir en el sistema, en un sistema mesoscópico no puede suponerse esto, pues la

existencia de estos terminales ofrecen a los electrones nuevos caminos de scattering. Büttiker

[2] soluciona este problema generalizando la fórmula de Landauer y tratando sin distinción los

terminales. Aśı, la corriente Ip por el terminal p puede escribirse en términos del potencial de

los demás terminales como

Ip =
2e2

h

∑
q

[
T qp

µp
e
− T pq

µq
e

]
(2.7)

donde T pq es el coeficiente de transmisión desde el terminal q al terminal p. Para asegurar que

las corrientes se anulan cuando todos los potenciales son iguales, debe cumplirse∑
q

T qp =
∑
q

T pq (2.8)
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luego la ecuación de Büttiker queda

Ip =
2e2

h

∑
q

T pq(µp − µq)/e (2.9)

o, equivalentemente,

Ip =
2e2

h

T ppµp −
∑
q ̸=p

T pqµq

 (2.10)

2.3 Matriz de scattering

La conductancia de una muestra, de acuerdo con el formalismo anterior, depende del coeficiente

de transmisión T a través del mismo, tanto en el caso de dos terminales como en el caso multi-

terminal. Esta función puede obtenerse a través de la matriz de scattering S, que relaciona las

amplitudes de las ondas entrantes y salientes del conductor. En general podemos escribir estas

funciones de onda (estados de scattering) en el p-ésimo terminal como

ψp =
∑
E

ψpE =
∑
E

[
apEϕpE(y)e

ik+Exp + bpEϕpE(y)e
ik−Exp

]
(2.11)

La matriz de scattering relaciona las amplitudes salientes con las entrantes: {b} = [S]{a}.
Si cada conexión del conductor con los terminales tiene Np modos de propagación abiertos,

entonces la matriz de scattering tiene dimensiones NT ×NT , con NT =
∑

pNp.

Aśı, si el conductor está conectado a los distintos terminales por NT modos de propagación

con amplitudes (a1, b1), (a2, b2), ..., (aNT
, bNT

), entonces la matriz de scattering tiene la forma

b1

b2
...

bNT


=


s11 s12 . . . s1NT

s21 s22 . . . s2NT

...
...

. . .
...

sNT 1 sNT 2 . . . sNTNT





a1

a2
...

aNT


(2.12)

De esta forma, conocida la matriz de scattering para un conductor dado2, el coeficiente de

transmisión entre el canal n y el canal m está dado por

Tmn = |smn|2 (2.13)

2Existen diferentes algoritmos para computarla. En este trabajo se emplea el algoritmo de Kwant (WFM,
Wave function matching), descrito en la sección (3.2).
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y, por tanto, el coeficiente de transmisión del terminal q al terminal p viene dado por

T pq =
∑
n∈q

∑
m∈p
|smn|2 (2.14)

Mencionar también que una propiedad importante de la matriz de scattering es que, para

asegurar la conservación de la corriente, debe ser unitaria. Es decir,

S†S = I = SS† (2.15)

2.4 Transporte en presencia de desorden

Como se ha mencionado, el objeto de estudio es el transporte electrónico a través de un sistema

desordenado, es decir, un sistema con imperfecciones distribuidas a lo largo de su red de forma

aleatoria. La presencia de fuentes de desorden da un carácter aleatorio al transporte y, por

tanto, se hace necesario un análisis estad́ıstico del mismo. En la figura (2.4a) se muestra la

conductancia como función de la enerǵıa para un sistema desordenado, observándose fuertes

fluctuaciones de G. Por ello recurrimos a la teoŕıa de matrices aleatorias para modelar este

desorden.

Figura 4: (a) Conductancia en función de la enerǵıa en un sistema desordenado, presentando
fuertes fluctuaciones. (b) Esquema de las amplitudes de onda entrantes y salientes, rela-
cionadas por las matrices de scattering y transferencia.

En este contexto es habitual emplear la matriz de transferencia M en lugar de la matriz

S. Mientras que la matriz de scattering relaciona amplitudes de onda entrantes y salientes del

sistema, la matriz de transferencia relaciona la función de onda en un extremo del conductor

con la función de onda en el otro extremo. Por ejemplo, para el sistema de la figura (2.4b),b

b′

 =

r t′

t r′


︸ ︷︷ ︸

S

a

a′


a′b′

 =

 α β

β∗ α∗


︸ ︷︷ ︸

M

ab


donde α = 1/t∗ ; β = r′/t′ ; β∗ = −r/t′ ; α∗ = 1/t′

(2.16)
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donde en este caso r y r′ son las amplitudes de reflexión y t y t′ las de transmisión.

La utilidad de esta matriz reside principalmente en su propiedad multiplicativa: si en un

conductor existen dos centros de scattering con matrices de transferencia M2 y M1, entonces la

matriz de transferencia del sistema conjunto es M = M1M2. Además, la conservación del flujo

(2.15) se traduce para la matriz de transferencia en la condición det(M) = 1. Es común expresar

esta matriz en forma polar, quedando definida por parámetros independientes (λ, θ, µ),

M =

eiµ 0

0 e−iµ

√1 + λeiθ
√
λe−iθ

√
λeiθ

√
1 + λe−iλ

e−iµ 0

0 e−iµ

 (2.17)

de forma que el coeficiente de transmisión (y, por tanto, la conductancia) se relaciona con λ

como

T =
1

1 + λ
(2.18)

El objetivo del uso de la teoŕıa de matrices aleatorias es hallar una distribución de proba-

bilidad para la conductancia o, equivalentemente, para λ, pues por la relación anterior se puede

obtener una a partir de la otra. Uno de los resultados de la teoŕıa es la llamada ecuación de

Mel’nikov (Anexo C), una ecuación diferencial para describir la evolución de la densidad de

probabilidad p(λ), conforme vaŕıa la longitud del sistema. Dado un sistema unidimensional de

longitud L, la ecuación de Mel’nikov es [4]

∂ps(λ)

∂s
=

∂

∂λ

[
λ(1 + λ)

∂ps(λ)

∂λ

]
(2.19)

donde se define el parámetro adimensional s = L/l, siendo l el mean free path elástico.

La solución ps(λ) de esta ecuación nos proporciona la distribución de la conductancia G, la

cual es proporcional a T , por medio de la relación (2.18), siendo esta [8]

Ps(G) = C
[acosh(1/

√
G)]1/2

G3/2(1−G)1/4
e−(1/s)acosh2(1/

√
G) (2.20)

donde s = L/l y C es una constante de normalización. A partir de esta distribución pueden

obtenerse los valores promedio de G y ln(G) sobre distintas realizaciones del desorden,

< G > = e−L/l < − ln(G) > = L/l (2.21)

Notemos que < G > decae exponencialmente con L. Esto es una consecuencia de la llamada

localización de Anderson, un efecto ampliamente estudiado por el cual las funciones de onda en

un sistema unidimensional desordenado se localizan exponencialmente en el espacio.
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Existen, además, sistemas en los que la localización de las funciones de onda causada por la

existencia de desorden no es exponencial. A este efecto lo llamamos localización anómala. En

este caso se encuentra que

< G > ∝ 1

Lα
< − ln(G) > ∝ Lα α < 1 (2.22)

En particular esto ocurre t́ıpicamente para enerǵıas E ≈ 0 en el centro de la banda [7].

Además de la distribución de G, otro resultado de la teoŕıa de matrices aleatorias que vamos

a emplear es el siguiente. Dada una matriz de transferencia con entradas aleatorias (ver ecuación

(2.16)) y una función de ellas, F (α, α∗, β, β∗), puede determinarse su valor esperado a partir de

la ecuación [6]
∂ < F >

∂s
=< HF >s (2.23)

donde s = L/l y H es el operador diferencial

H =(αα∗ + ββ∗)

[
∂2

∂α∂α∗

]
+ 2αβ∗

∂2

∂α∂β∗
+ 2α∗β

∂2

∂α∗∂β

− 1

2

[
α2 ∂

2

∂α2
+ 2αβ

∂2

∂α∂β
+ β2

∂2

∂β2

]
− 1

2

[
α∗2 ∂2

∂α∗2 + 2α∗β∗
∂2

∂α∗∂β∗
+ β∗2

∂2

∂β∗2

] (2.24)

y donde la ecuación debe resolverse con la condición inicial

< F (α, α∗, β, β∗) >s=0= F (1, 1, 0, 0) (2.25)

es decir, con la condición de que para un sistema de tamaño nulo la matriz M es la identidad.

3 Modelo numérico

Para tratar numéricamente el problema de la figura (1) debemos, por un lado, modelar la propia

red atómica del material para obtener su estructura de bandas y trabajar sobre ella. Por otro

lado, debemos poder, dado el sistema y los terminales a los que está conectado, computar su

matriz de scattering y conductancia.

3.1 Modelo tight-binding

El modelo tight-binding es un modelo empleado para describir los electrones de una red cristalina.

Este método, como su nombre indica, se basa en suponer que las funciones de onda atómicas

están fuertemente localizadas en cada átomo, de forma que el solapamiento entre funciones de

onda de distintos átomos sea pequeño. En esta situación, la función de onda de un electrón en

un punto de la red podrá expresarse como una combinación lineal de orbitales atómicos (LCAO,
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Linear Combination of Atomic Orbitals):

|i⟩ =
∑
j

aij |ϕj⟩ (3.1)

Usando la propiedad
∑

i |i⟩ ⟨i| = I, el hamiltoniano del sistema será

H =
∑
i

∑
j

|i⟩ ⟨i|H |j⟩ ⟨j| =
∑
i,j

Hij |i⟩ ⟨j| =
∑
i

ϵi |i⟩ ⟨i| −
∑

i,j(i ̸=j)

tij |i⟩ ⟨j| (3.2)

donde ϵi son las enerǵıas ’onsite’, es decir, los elementos de matriz del hamiltoniano entre estados

de un punto de la red, y −tij (integral de transferencia) son las enerǵıas ’offsite’, es decir, los

elementos de matriz entre puntos distintos de la red. La forma más simple de este hamiltoniano

es suponer que solamente hay un acoplo entre primeros vecinos de la red: tij = t si i y j son

primeros vecinos, y 0 en caso contrario. Por simplicidad también supondremos que ϵi = 0,

pues solo contribuyen con un desplazamiento en enerǵıa de la estructura de bandas. Aśı, el

hamiltoniano empleado es

H = −t
∑
<i,j>

|i⟩ ⟨j| (3.3)

donde < i, j > denota que la suma recorre los pares de ı́ndices de primeros vecinos.

En el problema que se trata en este trabajo el sistema tiene un número finito de átomos, pues

tratamos con una nanocinta de grafeno colocada entre dos terminales. En tal caso, el hamilto-

niano (3.3) puede escribirse en forma matricial numerando los átomos de la red y colocando la

integral de transferencia en los elementos de matriz correspondientes a primeros vecinos, como

por ejemplo para un sistema de cuatro átomos:

H =


0 −t −t 0

−t 0 0 −t

−t 0 0 −t

0 −t −t 0

 (3.4)

Aśı, conociendo t a través de medidas experimentales solo hay que diagonalizar el hamiltoniano

para obtener la estructura de bandas.

Para realizar cálculos anaĺıticos es más útil emplear la segunda cuantización. En segunda

cuantización las funciones de onda pasan a emplearse como operadores, y, por tanto, los co-

eficientes ai de (3.1) también. Estos operadores ai y sus adjuntos a†i se llaman operadores

destrucción y creación, respectivamente. Además, se trabaja en el espacio de números de ocu-

pación, donde los estados representan la cantidad de part́ıculas presentes en cada estado. Por

ejemplo, en un sistema de dos átomos, el estado |1, 0⟩ simboliza un electrón en el primer átomo y

ninguno en el segundo, mientras que |1, 1⟩ simboliza un electrón en cada uno de los dos átomos.
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Los operadores creación y destrucción actúan sobre este espacio creando y destruyendo

part́ıculas. Si |0⟩ es el estado vaćıo (es decir, sin electrones en ningún átomo), entonces

a†1 |0⟩ = |1, 0⟩ a†2 |0⟩ = |0, 1⟩

a1 |1, 0⟩ = |0⟩ a2 |0, 1⟩ = |0⟩

a1 |0⟩ = 0 a2 |0⟩ = 0

(3.5)

De esta forma, si los estados de (3.1) los interpretamos como |i⟩ = a†i |0⟩, el hamiltoniano

(3.3) se convierte en

H = −t
∑
<i,j>

a†iaj (3.6)

En el caso de redes bipartitas, como el grafeno, la red se puede separar en dos subredes de tal

forma que todos los vecinos de un átomo de una red pertenecen a la otra red. Por tanto, si ai

son operadores creación/destrucción sobre una red y bi lo son sobre la otra red,

H = −t
∑
<i,j>

(a†ibj + b†jai) (3.7)

3.2 Matriz de scattering : Kwant

Para los cálculos numéricos en este trabajo se ha empleado el software Kwant [13], cuya principal

función es obtener la función de onda y matriz de scattering de un sistema dado.

Para ello, se describe el sistema de estudio y sus conexiones mediante un modelo tight-binding

con el fin de resolver el problema de autovalores

HS V †
LS 0 0 0

VLS HL V †
L 0 0

0 VL HL V †
L 0

0 0 VL HL V †
L

0 0 0 VL
. . .





ψn(S)

ϕn(1)

ϕn(2)

ϕn(3)
...


= En



ψn(S)

ϕn(1)

ϕn(2)

ϕn(3)
...


(3.8)

donde se tratan todos los contactos como un único contacto efectivo disconexo, dividido en

múltiples secciones, cada una de ellas más alejada del sistema central que la anterior.

Aśı, el hamiltoniano total del sistema tiene una forma tridiagonal3 donde HL es el hamilto-

niano de cada una de estas secciones, el sistema central está acoplado a la primera sección por

la matriz VLS y cada sección está acoplada a la siguiente por la matriz VL. Además, HS es el

3Esto es muy conveniente, pues existen algoritmos optimizados para diagonalizar matrices con muchos ele-
mentos nulos.
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hamiltoniano del sistema central, con la forma matricial de (3.3), ψn(S) es la función de onda

en el sistema central y ϕn(i) son las funciones de onda en la i-ésima sección del contacto.

Dada la simetŕıa traslacional de los contactos, podemos emplear el teorema de Bloch para

escribir los autoestados del operador traslación como

ξn(p) = χne
−iknpa donde (HL + VLe

ikna + V †
Le

−ikna)χn = ϵnχn (3.9)

donde a es el parámetro de red de dicha simetŕıa traslacional. Estos autoestados los clasificamos

en modos evanescentes (ξ
(ev)
n (p), kn ∈ C) y propagantes (kn ∈ R). Además, los propagantes

los clasificamos en entrantes (ξ
(in)
n (p), kn < 0) y salientes (ξ

(out)
n (p), kn < 0), que por definición

quedan relacionados por la matriz de scattering

ξ(out)n (p) =
∑
m

Smnξ
(in)
m (p) (3.10)

De esta forma, podemos expresar las funciones de onda en (3.8) como

ϕn(i) = ξ(in)n (i) +
∑
m

Smnξ
(in)
m (i) +

∑
m

S̃mnξ
(ev)
m (p) (3.11)

donde S̃ es una matriz de scattering generalizada para modos de enerǵıa cerrados (ondas evanes-

centes). El algoritmo de Kwant, tras diagonalizar (3.8), tiene como principal resultado la matriz

Smn y las funciones de onda en el sistema central, ψn(S). Aśı, el coeficiente de transmisión entre

los contactos i y j puede obtenerse como

Tij =
∑

m∈i, n∈j
|Smn|2 (3.12)

donde la suma recorre los canales de enerǵıa disponibles en cada contacto.

4 Tratamiento teórico del problema multiterminal

Recordemos que el objetivo es estudiar un montaje t́ıpico de medidas de voltaje con cuatro

puntas de prueba en nanocintas de grafeno (figura (1)). Para ello vamos a describir, basándonos

en el formalismo de Landauer-Büttiker, un sistema unidimensional esquematizado en la figura

(5). En el tratamiento de este problema es fundamental obtener la matriz de scattering del

sistema completo.

Partiendo de la ecuación de Büttiker (2.10) e imponiendo que la corriente por los terminales

3 y 4, al ser sondas de voltaje, se anule, tenemos que la corriente en cada terminal se escribe

como
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Figura 5: Sistema de estudio: un conductor con imperfecciones conectado a cuatro terminales.
Se inyecta una corriente por el terminal 1 que se recoge por el 2, mientras que los terminales 3
y 4 se emplean para medir el voltaje o, equivalentemente, la resistencia de la muestra.

I1 =
2e2

h
[T11µ1 − T12µ2 − T13µ3 − T14µ4]

I2 =
2e2

h
[T22µ2 − T21µ1 − T23µ3 − T24µ4]

I1 = I2

I3 =
2e2

h
[T33µ3 − T31µ1 − T32µ2 − T34µ4] = 0

I4 =
2e2

h
[T44µ4 − T41µ1 − T42µ2 − T43µ3] = 0

(4.1)

Manipulando este sistema algebraicamente, puede demostrarse (sección 3.4.3.3 de [3]) que la

relación de voltajes en este sistema viene dada por

v =
µ3 − µ4
µ2 − µ1

=
T13T24 − T23T14

(T13 + T23 + T43)(T14 + T24 + T34)− T43T34
(4.2)

Dado que nos interesa conocer las propiedades de transporte de la muestra conductora (una

nanocinta de grafeno), vamos a considerar que solamente la muestra está desordenada y que

los contactos son perfectos. Aśı, la matriz de scattering que nos interesa es la que relaciona las

amplitudes primadas, {b′} = [S′]{a′}, de dimensión 4x4. Asimismo [11], definimos matrices de

scattering para ambos puntos de contacto S(1) y S(2) y para el sistema central S̃(12)
b′1

a

b′3

 = S(1)


a′1

b

a′3



b′2

a′

b′4

 = S(2)


a′2

b′

a′4


b

b′

 = S̃(12)

a

a′

 =

r̃ t̃

t̃ r̃′

a

a′


(4.3)
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donde hay que destacar que la matriz S̃(12) está tomada respecto de dos puntos de referencia en

los extremos del sistema central, y no respecto de un solo origen como es habitual.

Puede comprobarse (Anexo D) que los elementos de la matriz S′ relevantes para la expresión

(4.2) expresados en términos de la matriz de scattering del sistema central y las matrices de

scattering de los puntos de contacto tienen la forma

S′
13 = S

(1)
13 +

1

∆
S
(1)
12 (r̃

′∗ − S(2)
22 )S

(1)
23 ,

S′
24 = S

(2)
13 +

1

∆
S
(2)
12 (r̃

∗ − S(1)
22 )S

(2)
23 ,

S′
14 = −

1

∆
S
(1)
12 t̃

∗S
(2)
23 ,

S′
23 = −

1

∆
S
(2)
12 t̃

∗S
(1)
23 ,

S′
34 = −

1

∆
S
(1)
32 t̃

∗S
(2)
23

(4.4)

donde ∆ = (r̃∗ − S(1)
22 )(r̃

′∗ − S(2)
22 )− (t̃∗)2.

Por un lado, calcularemos la matriz S̃(12) del sistema central numéricamente empleando el

software Kwant, y por otro lado modelaremos las matrices S(1) y S(2) como [12]

S(1) = S(2) =


a b

√
ϵ

b a
√
ϵ

√
ϵ
√
ϵ −(a+ b)

 donde


a = −1

2
(1−

√
1− 2ϵ)

b =
1

2
(1 +

√
1− 2ϵ)

(4.5)

donde 0 ≤ ϵ ≤ 1/2 puede interpretarse como la intensidad del acoplo de la punta de prueba al

sistema. Aśı, especificado este parámetro podemos calcular todos los coeficientes de transmisión

Tij = |S′
ij |2 y, con ellos, el voltaje.

Para tratar estad́ısticamente el voltaje empleamos la matriz de transferencia M . Dado que

la matriz S̃(12) está tomada desde dos puntos de referencia, podemos relacionarla con una matriz

de transferencia M̃ con los mismos puntos de referencia, dada por

r̃ = − β̃
∗

α̃∗ t̃ =
1

α̃∗ r̃′ =
β̃

α̃∗ (4.6)

mientras que la matriz de transferenciaM con un solo origen (situado en el centro del conductor)

viene dada por un desplazamiento en las fases de las amplitudes de onda: α̃ β̃

β̃∗ α̃∗


︸ ︷︷ ︸

M̃

=

eikL/2 0

0 e−ikL/2

 α β

β∗ α


︸ ︷︷ ︸

M

eikL/2 0

0 e−ikL/2

 (4.7)
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De esta forma, las expresiones (4.2), (4.4), (4.6) y (4.7) nos dan la diferencia de potencial v

como función de α, α∗, β, β∗.

(a) ϵ = 0 (b) ϵ = 0.1

(c) ϵ = 0.5

Figura 6: Valor promedio de la diferencia de potencial v medida en una red unidimensional
para tres valores del acoplo ϵ de los terminales 3 y 4. Los puntos experimentales se contrastan
con el promedio (ĺınea roja) y desviación estándar (zona sombreada) teóricos calculados medi-
ante (4.8).

Utilizando la expresión (2.23) podemos calcular cantidades de relevancia estad́ıstica como

el voltaje medio y la varianza del voltaje. Los cálculos son sumamente complicados, pero estos

se ven simplificados asumiendo un conductor débilmente desordenado (s ≪ 1). De esta forma

podemos hacer una expansión del voltaje y su varianza hasta términos de orden s:

< v > ≈ [< v >]1100 +

[
∂ < v >

∂s

]
1100

s =

= [< v >]1100 +

[
∂2v

∂α∂α∗ +
∂2v

∂β∂β∗
− 1

2

∂2v

∂α2
− 1

2

∂2v

∂α∗2

]
1100

s

(δv)2 = < v2 > − < v >2 ≈ [< v2 >]1100 +

[
∂ < v2 >

∂s

]
1100

s − < v >2 =

=

[
2
∂v

∂α

∂v

∂α∗ + 2
∂v

∂β

∂v

∂β∗
−
(
∂v

∂α

)2

−
(
∂v

∂α∗

)2
]
1100

s

(4.8)
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donde [.]1100 denota evaluar la expresión en α = α∗ = 1 y β = β∗ = 0. Calculando las derivadas,

puede demostrarse que < v >= s/2 para ϵ = 0.

Antes de estudiar el voltaje en nanocintas de grafeno presentamos los resultados para una

red unidimensional con cuatro puntas de prueba. En la figura (6) se contrasta la teoŕıa con el

cálculo numérico en una red unidimensional con l = 2000 (kl = 400), en la que se muestra tanto

el voltaje promedio como su desviación estándar. Notemos que únicamente en el caso de acoplo

nulo el voltaje vaŕıa linealmente con L. En los otros casos el voltaje oscila en contraste con el

caso macroscópico. Vemos que los resultados siguen la tendencia predicha por la teoŕıa, aunque

la desviación estándar teórica queda un poco sobreestimada para acoplos pequeños. Además,

puede apreciarse que, aunque el voltaje promedio siempre es positivo, existe una probabilidad

no nula de medir voltajes negativos, especialmente para acoplos pequeños.

5 Propiedades electrónicas del grafeno

La muestra conductora que vamos a estudiar en el montaje de la figura (5) es una nanocinta

de grafeno. El grafeno es un material bidimensional formado por átomos de carbono dispuestos

según una red hexagonal. El carbono ([He]2s22p4), al ser tetravalente, forma tres enlaces de

hibridación sp2 con sus tres primeros vecinos, mientras que el electrón restante del orbital pz

es el que participa en las propiedades de conducción. Además, al ser una red bipartita, puede

dividirse en dos redes no equivalentes, describiendo aśı la red mediante una red de Bravais

triangular junto con una base de dos átomos (figura (7a)). Mencionar que la distancia entre

primeros vecinos es a0 = 1.42 Å y el parámetro de red a =
√
3a0 [14].

Figura 7: (a) Red cristalina hexagonal: cada una de las dos subredes (A y B) se representa
en un color, y la zona sombreada es la celda unidad. Imagen modificada de [16]. (b) Repre-
sentación en el espacio de momentos de la ecuación (5.1). En los puntos K± de la primera
zona de Brillouin la relación de dispersión es lineal. A la relación de dispersión cerca de estos
puntos se le llama ’conos de Dirac’.
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5.1 Estructura de bandas del grafeno

Para describir las propiedades electrónicas del grafeno podemos obtener su estructura de bandas

a partir de un modelo tight-binding [17] (este modelo se desarrolla en más detalle en el apartado

(3.1)). Diagonalizando el hamiltoniano del modelo (Anexo A) se obtiene la siguiente relación de

dispersión, mostrada en la figura (7b):

E(k) = ±t

√
1 + 4 cos2

kxa

2
+ 4 cos

kxa

2
cos

√
3kya

2
(5.1)

donde t = 2.74 eV [14] es la integral de hopping, es decir, la enerǵıa necesaria para que un

electrón en un átomo salte a un átomo vecino.

Puede comprobarse que esta función se anula en seis puntos, que se clasifican en dos puntos

no equivalentes, llamados puntos de Dirac: K+ = 2π
a (23 , 0) y K

− = 2π
a (−2

3 , 0). En estos puntos

la banda de valencia y la de conducción entran en contacto, haciendo que el grafeno se comporte

como un semiconductor sin gap. Además, en un entorno de los puntos de Dirac la relación

de dispersión es lineal, comportándose aśı los electrones como fermiones relativistas sin masa

efectiva, ya que su relación de dispersión es igual que la de los fotones, pero con velocidad de

grupo vF = 3a0t/2ℏ = 106 m/s.

5.2 Nanocintas de grafeno

Figura 8: Las dos geometŕıas básicas de nanocintas de grafeno: (a) Zigzag y (b) Armchair. La
anchura N se define según el número de cadenas (zigzag) o según el número de d́ımeros en la
dirección trasversal (armchair).

Una de las geometŕıas que pueden formarse a partir del grafeno son las nanocintas, constru-

idas a partir de dos cortes paralelos en la red del grafeno. Según la dirección del corte pueden

obtenerse dos tipos de nanocintas (zigzag y armchair) o una combinación de ambas, como se

muestra en la figura (8). La diferencia entre ambas reside en la geometŕıa de los ejes, que les

proporciona propiedades electrónicas muy diferentes. Ambos casos se analizan en detalle en el

Anexo B.
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En el caso de nanocintas tipo armchair, la estructura de bandas se muestra en la figura (9a).

En general el sistema presenta un gap de enerǵıa en torno al nivel de Fermi, pero cuando la

anchura es N = 3r − 1 (r ∈ N) el gap se anula y el sistema se vuelve metálico. En este caso, en

el centro de la banda (E = 0, k = 0) los estados electrónicos son funciones de onda extensas, tal

como se muestra en la figura (9b).

Figura 9: (a) Estructura de bandas de una nanocinta armchair metálica con anchura N = 14.
(b) En color azul, módulo al cuadrado de la función de onda en el centro de la banda (k = 0).

En el caso de nanocintas tipo zigzag la situación es diferente. Para |ka| > 2π/3 aparece una

banda de enerǵıa en torno a E = 0 prácticamente plana, es decir, con velocidad de grupo casi

nula. Los autoestados del hamiltoniano en esta banda pueden interpretarse como funciones de

onda concentradas en los bordes. Para ka = π, la función de onda queda completamente con-

centrada en el borde zigzag (figura (10b)), mientras que al variar k se suprime exponencialmente

al alejarse del borde (figura (10c)).

Figura 10: (a) Estructura de bandas de una nanocinta zigzag con anchura N = 7. (b) En color
azul, módulo al cuadrado de la función de onda en el centro de la banda (ka ∼ π). (c) En
color azul, módulo al cuadrado de la función de onda ligeramente fuera del centro de la banda
(ka = 2.35).

Vemos, por tanto, que la geometŕıa de las nanocintas tiene consecuencias muy importantes

sobre las propiedades electrónicas de la muestra. En el caso zigzag, la función de onda se
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encuentra concentrada en los bordes, haciendo del transporte un problema esencialmente unidi-

mensional. En cambio, en el caso armchair, la función de onda se concentra a lo largo y ancho

de la red, haciendo del transporte un problema bidimensional.

5.3 Localización

Como hab́ıamos visto, en un sistema unidimensional desordenado se produce un fenómeno de

interferencia llamado localización de Anderson, por el cual las funciones de onda se localizan

exponencialmente. Este será el caso de los estados electrónicos en las nanocintas zigzag en el

centro de la banda. Para las nanocintas armchair, en cambio, se observa localización anómala

para los estados en el centro de la banda [8].

En la figura (11) se muestra la distribución P (G) de la expresión (2.20) junto con la dis-

tribución obtenida mediante cálculo numérico para los dos tipos de nanocintas. Ambas distribu-

ciones se han tomado con igual promedio < G >= 0.34 a enerǵıa E = 10−6. Puede apreciarse

que, efectivamente, el caso zigzag se comporta como un sistema unidimensional con localización

de Anderson, pues se ajusta perfectamente a la distribución teórica, mientras que el armchair

sigue una distribución distinta debido a la localización anómala. Esto lo confirma también el

inset de la figura, donde para el caso zigzag < − ln(G) >= L/l, con l = 63, propio de la lo-

calización de Anderson; mientras que en el caso armchair < − ln(T ) >∝ Lα, con α = 0.66, de

acuerdo con las expresiones (2.21) y (2.22).

Figura 11: Histogramas de P (G) para el caso zigzag (rojo) y armchair (azul). La curva teórica
de (2.20) se muestra en ĺınea continua. Inset: dependencia de < − ln(G) > con la longi-
tud L del sistema, contrastando la localización de Anderson (< − ln(G) >∝ L) y anómala
(< − ln(G) >∝ Lα).
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6 Resultados

Con todo lo visto hasta ahora ya podemos abordar el problema multiterminal para nanocintas de

grafeno. Los resultados numéricos, como ya se ha explicado, se obtienen por medio del software

Kwant. Para ello creamos un sistema tight-binding hexagonal con las dos posibles geometŕıas

que definen las nanocintas de grafeno: armchair y zigzag, y lo conectamos por sus dos extremos

a dos contactos de grafeno sin imperfecciones. Aśı, si el sistema central no está desordenado, la

transmisión será T = 1.

El desorden puede introducirse en el hamiltoniano (3.3) de dos formas: en la diagonal o en

los elementos fuera de esta. En este trabajo se opta por estudiar el segundo caso, pues en las

nanocintas tipo armchair un desorden no-diagonal causa la aparición de estados anómalamente

localizados [9], permitiéndonos estudiar su efecto en el voltaje. Además, este desorden modela

una red realista en la que se producen pequeñas deformaciones en su fabricación. Aśı, manten-

emos en el hamiltoniano ϵi = 0, pero generamos los coeficientes tij aleatoriamente como

tij = t0 ± wij (6.1)

donde t0 = 2.74 eV y wij una variable aleatoria generada según una distribución uniforme en

(−W,W ). Las magnitudes promedio como el voltaje < v > o la conductancia (transmisión)

< G > se calculan tomando múltiples (∼ 103 − 104) realizaciones del mismo sistema.

Además, se van a estudiar dos situaciones: primero vamos a estudiar el voltaje v = (µ3 −
µ4)/(µ1 − µ2) cuando los electrones inyectados tienen enerǵıas E ̸= 0, es decir, fuera del centro

de la banda; y después estudiaremos el caso de E → 0.

Cabe destacar que todas las magnitudes con dimensiones de longitud están dadas en unidades

del parámetro de red a, aśı como los vectores de onda. Igualmente, las enerǵıas vienen dadas en

unidades del parámetro tight-binding t.

6.1 Enerǵıa fuera del centro de la banda

Para enerǵıas alejadas del centro de la banda, cualquier desorden causa localización de Anderson,

lo cual se refleja en la distribución P (G) y, en particular, en la dependencia < − ln(G) >= L/l.

En una sección anterior se ha contrastado el valor teórico del voltaje para una red unidi-

mensional. Ahora lo contrastamos con nanocintas de grafeno. En general, la teoŕıa de matrices

aleatorias empleada no es válida para sistemas bidimensionales como lo es el grafeno. Sin em-

bargo, la particularidad de las nanocintas es que en un entorno del nivel de Fermi, al contrario

que en otras redes bidimensionales, existe un solo canal de enerǵıa abierto. Esto permite usar

la teoŕıa de matrices aleatorias del caso estrictamente unidimensional.
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ϵ = 0

(a) (d)

ϵ = 0.1

(b) (e)

ϵ = 0.5

(c) (f)

Figura 12: Voltaje v según la expresión (4.2) como función de la longitud del sistema, y el
promedio (ĺınea roja) y desviación estándar (zona sombreada) teóricos según (4.8). Se mues-
tra en las figuras (a), (b) y (c) el voltaje en una nanocinta zigzag (N = 5) para tres valores del
acoplamiento ϵ de las puntas de prueba; y en las figuras (d), (e) y (f) la misma situación para
la nanocinta armchair (N = 8).
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En la figura (12) se muestran estos resultados numéricos junto con el valor teórico del voltaje

para distintos valores del acoplo de las puntas de prueba, ϵ. El caso zigzag se muestra en las

figuras (a), (b) y (c), donde se ha empleado una enerǵıa E = 1.77 (k = π/2) y l = 720; y el

caso armchair se muestra en las figuras (d), (e), y (f), donde se emplea E = 0.69 (k = 0.5)

y l = 1000. Puede verse una buena concordancia entre los resultados teóricos y los numéricos

para ambas nanocintas, aunque al igual que en el caso unidimensional las desviaciones estándar

quedan sobreestimadas. Aśı, verificamos que se aproximan a un comportamiento unidimensional,

siempre y cuando la enerǵıa sea tal que solamente haya un canal abierto.

Además, es interesante contrastar estos resultados con los que esperaŕıamos de un conductor

macroscópico. En el caso ϵ = 0 tenemos el caso de dos puntas de prueba que ’sienten’ el

voltaje local, lo que clásicamente seŕıa un volt́ımetro con resistencia interna infinita. En ese

caso esperaŕıamos un voltaje directamente proporcional a la resistencia, es decir, v ∝ L. Esto

coincide con las observaciones en el régimen cuántico, aunque existe una diferencia importante:

la anchura de la distribución de v oscila con la longitud, dando lugar a una alta probabilidad de

medir diferencias de potencial negativas.

En los casos ϵ ̸= 0 la situación es distinta: tanto el voltaje como su desviación estándar

oscilan con L, disminuyendo además la probabilidad de medir voltajes negativos a medida que

aumenta ϵ. Estas oscilaciones pueden entenderse como producto de la influencia de las puntas

de prueba, que al no estar débilmente acopladas proporcionan nuevos mecanismos de dispersión

a los electrones, dando lugar a interferencias constructivas y destructivas.

6.2 Enerǵıa en el centro de la banda

Para enerǵıa E ≈ 0, los estados en el caso zigzag se localizan Anderson, pero en el caso armchair

lo hacen anómalamente. Por tanto, esperamos encontrar esta diferencia reflejada en el voltaje.

Debido a la forma de la estructura de bandas de las dos nanocintas solamente tiene sentido

estudiar el caso de acoplo ϵ = 0. En el caso zigzag, para E → 0 tenemos k → π, por lo

que se tendŕıa poca densidad de puntos en el eje kL; mientras que en el caso armchair, para

E → 0 tenemos k → 0, por lo que seŕıa necesario considerar sistemas de longitudes inabarcables

computacionalmente.

Por ello, se ha optado por estudiar la evolución del voltaje para ϵ = 0 frente al parámetro

de localización, < − ln(T ) >, realizando los cálculos a la misma enerǵıa para ambas nanocintas

(E ∼ 10−8). Estos resultados se muestran en la figura (13).

En primer lugar, puede observarse en el inset cómo en el caso zigzag se produce localización de

Anderson, ya que < − ln(T ) >= L/l con l = 45. En cambio, en el caso armchair la dependencia

es propia de una localización anómala, < − ln(T ) >= aLα, con α = 0.7 y a = 0.06.
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Figura 13: Voltaje v medido a enerǵıas cercanas a cero como función del parámetro de local-
ización, comparando los casos zigzag (N = 5) y armchair (N = 8). Cerca del origen se muestra
en ĺınea continua la recta < v >= s/2. Inset: dependencia de < − ln(T ) > con la longitud del
sistema.

En segundo lugar, en la figura principal puede verse que, para < − ln(T ) >→ 0, el voltaje

en la nanocinta zigzag sigue la dependencia < v >= s/2 predicha para el caso unidimensional.

Este no es el caso para la nanocinta armchair, donde la dependencia es distinta. Adicional-

mente, puede observarse que la diferencia de potencial para el caso armchair es consistentemente

mayor. Esto, intuitivamente, podemos entenderlo de la siguiente forma: dado un valor fijo de

< − ln(T ) >, la longitud L en el zigzag es menor (ver inset) que en el armchair luego, dado que

uno esperaŕıa que la resistencia escalase con la longitud, en el caso zigzag la resistencia seŕıa

menor y, por tanto, también el voltaje.

7 Conclusiones

En este trabajo hemos ha estudiado la diferencia de potencial v en un montaje de cuatro puntas

de prueba como el de la figura (1), utilizando como muestra conductora una nanocinta de grafeno

con imperfecciones en su red. En particular hemos obtenido el promedio y la varianza del voltaje

como función de la distancia entre las puntas de prueba para los dos tipos de nanocintas de

grafeno: armchair y zigzag. Todo nuestro análisis se ha realizado a bajas enerǵıas donde un solo

canal contribuye al transporte.

Hemos estudiado la diferencia de potencial teóricamente desde una teoŕıa de transporte

cuántico basada en los procesos de scattering y desde un modelo estad́ıstico de teoŕıa de matrices

aleatorias. Este voltaje se expresa en las ecuaciones (4.2), (4.4), (4.6) y (4.7) como una función

de los parámetros de la matriz de transferencia M , pudiendo aśı aplicar el modelo estad́ıstico

(2.23) para calcular el primer y segundo momentos de la distribución.
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Los estudios realizados con las dos posibles geometŕıas en una nanocinta de grafeno (zigzag y

armchair) muestran un comportamiento unidimensional en el transporte para enerǵıas fuera del

centro de la banda, localizándose los estados exponencialmente (< − ln(T ) >= L/l) en presencia

de desorden, y como consecuencia < G >∝ e−L/l. En el centro de la banda, en cambio, las

nanocintas tipo zigzag mantienen su comportamiento unidimensional y los estados se localizan

exponencialmente, mientras que en las nanocintas tipo armchair los estados se localizan de

manera anómala (< − ln(T ) >∝ Lα) y, como consecuencia, < G >∝ L−α.

Los resultados de la figura (12) muestran la evolución del voltaje con la longitud L del sistema,

suponiendo el ĺımite de bajo desorden. Estos resultados muestran una buena concordancia entre

la teoŕıa desarrollada para sistemas unidimensionales y las nanocintas de grafeno que, a pesar

de ser bidimensionales, tienen un comportamiento esencialmente unidimensional.

En la figura (13) se muestra la evolución del voltaje con el parámetro de localización para

un desorden arbitrario, mostrando aśı la existencia de una diferencia en el voltaje cuando la

localización en el transporte es exponencial o anómala.

Adicionalmente, hemos estudiado el voltaje en muestras de conductores unidimensionales,

observando un buen acuerdo con los resultados teóricos basados en la teoŕıa de matrices aleato-

rias.
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