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1 Introduccion

Los fenémenos de transporte electrénico a nivel macroscépico son conocidos. Las propiedades
conductoras de una muestra vienen caracterizadas por la caida de potencial V' a lo largo de esta
cuando circula una corriente I. Si tomamos un conductor de longitud L y seccién trasversal W,

el voltaje esta dado por la ley de Ohm,
V=1IR R=— (1.1)

donde o es la conductividad del conductor.

Sin embargo, la descripcion de Ohm de los conductores no es véalida en sistemas pequeiios
(~ pwm) donde los efectos cudnticos del transporte cobran relevancia. FEsta escala, llamada
mesoscépica, corresponde con tamanos menores que la longitud de coherencia de los electrones
(mean free path ineldstico), que es el rango de distancias que pueden recorrer de forma coherente.
Es por esto que a escala mesoscopica la descripcién del transporte electronico es imprescindible
tener en cuenta su comportamiento ondulatorio y, en consecuencia, los efectos de interferencia

cuantica.

En régimen macroscépico, la ley de Ohm establece que el voltaje depende linealmente de
L. Como veremos en este trabajo, a escalas mesoscépicas esto deja de ser cierto y el voltaje
puede oscilar como una funcién de L debido a las interferencias constructivas y destructivas de

los electrones.

Figura 1: Esquema del montaje con cuatro terminales que se aborda en este trabajo. La zona
central sombreada es una muestra de grafeno con imperfecciones, mientras que las zonas sin
sombrear no presentan imperfecciones y conectan la muestra con los cuatro terminales.

Habitualmente, tanto en sistemas macroscépicos como mesoscopicos, las medidas de caida de
potencial en una muestra conductora se realizan por medio de montajes multiterminales, donde
se inyecta una corriente entre dos terminales y se emplean el resto como sondas de voltaje. Es
por ello de interés estudiar el comportamiento del voltaje medido en un montaje de este tipo

bajo los efectos de interferencia cudntica.



En este trabajo se va a estudiar el sistema de la figura (1), donde una nanocinta de grafeno se
coloca entre cuatro terminales. Una corriente I circula entre los terminales 1 y 2, mientras que
el voltaje se mide entre los terminales 3 y 4. Desde su descubrimiento en 2004, el grafeno ha sido
un material de gran interés debido a sus propiedades tinicas de transporte. Sin embargo, a pesar
de los avances en la fabricacién de nanoestructuras, el grafeno no tiene una estructura perfecta,
ya sea por la existencia de impurezas o defectos en la propia red, o por el efecto que el sustrato
sobre el que se colocan la muestra tiene sobre la red. Estas imperfecciones las modelaremos en
forma de un desorden aleatorio en la red, lo cual tiene un fuerte efecto sobre el transporte de

electrones a escalas mesoscépicas y nanoscépicas.

Para abordar el problema tedricamente se emplea el formalismo de Landauer para describir el
transporte cuantico a escala mesoscépica, asi como la teoria de matrices aleatorias para abordar
estadisticamente las imperfecciones de la muestra de grafeno. Asimismo, se obtienen resultados

numéricos por medio del software Kwant y se contrastaran con la teoria.

2 Marco teorico

2.1 Transporte cuantico: Formalismo de Landauer

Antes de estudiar un sistema multiterminal damos una breve introduccién al problema de trans-
porte electrénico en un sistema de dos terminales. Para ello, vamos a emplear el llamado formal-
ismo de scattering o formalismo de Landauer [1]. Este marco basa el transporte de electrones a

lo largo de un conductor segin la probabilidad de que se transmitan a través del mismo.

(a) . L . (b) L S
it L)
«— <«
i I
i Vv

Figura 2: (a) Conductor balistico conectado a dos terminales con potenciales p; y p2. (b)
Conductor con coeficiente de transmisién T' conectado a dos terminales de potenciales g y

2.

En lo que sigue vamos a tratar con un conductor de longitud L colocado entre dos terminales

de potenciales electroquimicos 1 y po (figura 2),! de tal forma que los estados electrénicos

'La razén por la que se usa el potencial electroquimico p y no el electrostatico V es porque la conduccién
puede darse tanto por un campo eléctrico (deriva) como por un gradiente de concentracién de electrones (di-
fusién). Asi, este potencial engloba ambos procesos y la corriente es J o du/dz.
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pueden expresarse como ¥(z,y) = ¢(z)P(y). La parte transversal, ¢(y), estd completamente
determinada por la geometria del conductor y define una estructura de bandas con energias
E, (k) . A una cierta energia F se define el nimero de canales de transmisién disponibles, N(FE),

como el nimero de bandas que ’atraviesan’ dicha energia, es decir,

=Y 0(E - E,(k =0)) (2.1)

Tomemos primero el caso de un conductor balistico (figura 2a), es decir, un conductor de
longitud menor que el recorrido libre medio (mean free path) de los electrones, de tal forma que
no ocurren procesos de scattering. La corriente puede expresarse como el numero de electrones

multiplicado por el tiempo que pasan en el conductor, esto es,

i+=€ZN1(E)f1( e *ZNl ;Laaf
A (2.2)
el ()ﬁ(ﬁaﬁ=h/MEM@WE

donde f7 es la distribucién de Fermi del contacto de la izquierda. Anélogamente podemos escribir

i = % / F2(E)N(E)dE (2.3)

Asi, la corriente total es, suponiendo N; = N» (lo cual es cierto en ausencia de scattering

inelastico),

=it i =% [ NEAE - aEps = [N (5 )<Mﬂmw

2¢? p1 — 2
= —N(F
" (Bf)——— .

(2.4)

donde hemos asumido bajas temperaturas y una diferencia de potencial pequefia, y donde N (Ey)
es el nimero de canales en el nivel de Fermi. De esta forma, vemos que la conductancia, definida
como G = I/V, queda cuantizada en miiltiplos enteros de Gy = 2¢2/h. En la figura (3) se
muestra la evolucién de la conductancia con la energia para un conductor con una red cristalina

cuadrada.

Landauer generaliza el desarrollo anterior al caso més realista de un conductor donde el
scattering elastico de electrones, debido a imperfecciones en la red cristalina, es relevante (figura
2b). En este caso, los procesos de scattering eldstico se recogen en el coeficiente de transmision
T de un electrén proveniente del terminal 1 que se transmite al terminal 2. Asi, podemos escribir

las corrientes entrantes y salientes como

n e 2 s B A
4

2¢? - 2¢? 2¢? -
= N if = 2 LT 2 = N1-T)2 2 (2.5)
e
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Figura 3: (a) Estructura de bandas de una red cuadrada. (b) Dependencia de la conductancia
(en unidades de Gy) con la energia (en unidades del pardmetro de tight-binding t) a temper-
atura T' = 0 K. Notar como la conductancia varia en multiplos enteros del cuanto Gy conforme
varia la energia y se van abriendo o cerrando canales.

La corriente total y la conductancia en este caso son

_ 2¢2 _

I=if —iy = NTEL"E2 G NT =G T (2.6)
h e h

donde T = NT. Esta expresion es la férmula de Landauer y la base del formalismo de scattering

para el transporte cudntico. Ademds, para T = 1 recuperamos la expresiéon (2.4) del caso

balistico.

2.2 Dispositivos multiterminales: Formalismo de Biuttiker

En medidas experimentales es habitual usar sistemas multiterminales para medir voltajes, de
forma que la corriente se inyecta y recoge por dos de ellos y los demdas miden el voltaje a corriente
nula. Un ejemplo de ello se muestra en la figura (1). Mientras que en sistemas macroscépicos
se supone que los terminales empleados para medir el voltaje solamente ’sienten’ el potencial
local sin interferir en el sistema, en un sistema mesoscépico no puede suponerse esto, pues la
existencia de estos terminales ofrecen a los electrones nuevos caminos de scattering. Biittiker
[2] soluciona este problema generalizando la férmula de Landauer y tratando sin distincién los
terminales. Asi, la corriente I, por el terminal p puede escribirse en términos del potencial de
los dema&s terminales como 002

I = % [qu% - qu% (2.7)
donde qu es el coeficiente de transmisién desde el terminal ¢ al terminal p. Para asegurar que

las corrientes se anulan cuando todos los potenciales son iguales, debe cumplirse

Z qu = Z qu (2.8)
q q



luego la ecuacién de Biittiker queda

2¢? =
I, = o Z Tpg(pp — 11q)/ € (2.9)
q
0, equivalentemente,
2e? | — —
I = h Tppip — Z T'pqtiq (2.10)
a#p

2.3 Matriz de scattering

La conductancia de una muestra, de acuerdo con el formalismo anterior, depende del coeficiente
de transmisién T' a través del mismo, tanto en el caso de dos terminales como en el caso multi-
terminal. Esta funcién puede obtenerse a través de la matriz de scattering S, que relaciona las
amplitudes de las ondas entrantes y salientes del conductor. En general podemos escribir estas

funciones de onda (estados de scattering) en el p-ésimo terminal como

wp = prE = Z [apE¢pE(y)eik;5xp + pr¢pE(y)eikExp (2'11)
E E

La matriz de scattering relaciona las amplitudes salientes con las entrantes: {b} = [S]{a}.
Si cada conexién del conductor con los terminales tiene IV, modos de propagacién abiertos,

entonces la matriz de scattering tiene dimensiones Ny x Np, con Ny = Zp Np.

Asi, si el conductor estd conectado a los distintos terminales por Ny modos de propagacién

con amplitudes (a1, b1), (ag,b2), ..., (an,, bn, ), entonces la matriz de scattering tiene la forma

/ - -

b1 11 812 ...  SINg ay
bo S21 522 S2N. as
. -
- (2.12)
bNT SNTl SNT2 SNTNT CLNT

De esta forma, conocida la matriz de scattering para un conductor dado?, el coeficiente de

transmision entre el canal n y el canal m esta dado por

Tmn - ‘Smn|2 (213)

2Existen diferentes algoritmos para computarla. En este trabajo se emplea el algoritmo de Kwant (WFM,
Wave function matching), descrito en la seccién (3.2).



y, por tanto, el coeficiente de transmisién del terminal ¢ al terminal p viene dado por

TPQ = Z Z |5mn|2 (2.14)

neq mep

Mencionar también que una propiedad importante de la matriz de scattering es que, para

asegurar la conservacion de la corriente, debe ser unitaria. Es decir,

STS =1= 55T (2.15)

2.4 Transporte en presencia de desorden

Como se ha mencionado, el objeto de estudio es el transporte electrénico a través de un sistema
desordenado, es decir, un sistema con imperfecciones distribuidas a lo largo de su red de forma
aleatoria. La presencia de fuentes de desorden da un caracter aleatorio al transporte y, por
tanto, se hace necesario un analisis estadistico del mismo. En la figura (2.4a) se muestra la
conductancia como funciéon de la energia para un sistema desordenado, observandose fuertes
fluctuaciones de G. Por ello recurrimos a la teoria de matrices aleatorias para modelar este

desorden.
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Figura 4: (a) Conductancia en funcién de la energia en un sistema desordenado, presentando
fuertes fluctuaciones. (b) Esquema de las amplitudes de onda entrantes y salientes, rela-
cionadas por las matrices de scattering y transferencia.

En este contexto es habitual emplear la matriz de transferencia M en lugar de la matriz
S. Mientras que la matriz de scattering relaciona amplitudes de onda entrantes y salientes del
sistema, la matriz de transferencia relaciona la funciéon de onda en un extremo del conductor

con la funcién de onda en el otro extremo. Por ejemplo, para el sistema de la figura (2.4b),

b r t a a a B a
AR ARY vl g o |
Y . (2.16)

donde a=1/t"; B=r"/t'; B*=—r/t'; =1/



donde en este caso r y v’ son las amplitudes de reflexién y ¢ y ¢ las de transmision.

La utilidad de esta matriz reside principalmente en su propiedad multiplicativa: si en un
conductor existen dos centros de scattering con matrices de transferencia Ms y My, entonces la
matriz de transferencia del sistema conjunto es M = M1 Ms. Ademds, la conservacion del flujo
(2.15) se traduce para la matriz de transferencia en la condicién det(M) = 1. Es comun expresar

esta matriz en forma polar, quedando definida por pardmetros independientes (A, 0, ),

et 0 V1 + et Ve ¥ e~ 0
M = | | | | (2.17)
0 e ™ Vet V14 de 0 e

de forma que el coeficiente de transmisién (y, por tanto, la conductancia) se relaciona con A

€omo
1

= 2.18
1+ A ( )

El objetivo del uso de la teoria de matrices aleatorias es hallar una distribucién de proba-
bilidad para la conductancia o, equivalentemente, para A, pues por la relacidon anterior se puede
obtener una a partir de la otra. Uno de los resultados de la teoria es la llamada ecuacién de
Mel’'nikov (Anexo C), una ecuacién diferencial para describir la evolucién de la densidad de
probabilidad p(\), conforme varia la longitud del sistema. Dado un sistema unidimensional de

longitud L, la ecuacién de Mel’'nikov es [4]

Ops(N) _ 9
ds O\

(2.19)

[)\(1 + A)aps()\)]

oA
donde se define el pardmetro adimensional s = L/I, siendo [ el mean free path eléstico.

La solucién ps(A) de esta ecuacién nos proporciona la distribucién de la conductancia G, la

cual es proporcional a T', por medio de la relacién (2.18), siendo esta [§]

. [aCOSh<1/\/é)]1/2 e—(l/s)acosh2(1/\/a)

Py(G) = G3/2(1 — G)V/4

(2.20)

donde s = L/l y C es una constante de normalizacién. A partir de esta distribucién pueden

obtenerse los valores promedio de G y In(G) sobre distintas realizaciones del desorden,
<G>=el/ <—In(G) > =L/l (2.21)

Notemos que < G > decae exponencialmente con L. Esto es una consecuencia de la llamada
localizacion de Anderson, un efecto ampliamente estudiado por el cual las funciones de onda en

un sistema unidimensional desordenado se localizan exponencialmente en el espacio.



Existen, ademads, sistemas en los que la localizacién de las funciones de onda causada por la
existencia de desorden no es exponencial. A este efecto lo llamamos localizacién anémala. En

este caso se encuentra que

1
<G>°‘ﬁ < —In(G) > o< L a<l (2.22)

En particular esto ocurre tipicamente para energias E ~ 0 en el centro de la banda [7].

Ademsds de la distribucién de G, otro resultado de la teoria de matrices aleatorias que vamos
a emplear es el siguiente. Dada una matriz de transferencia con entradas aleatorias (ver ecuacién
(2.16)) y una funcién de ellas, F(a, a*, 8, 8*), puede determinarse su valor esperado a partir de

la ecuacién [6]
O<F >

ds
donde s = L/l y H es el operador diferencial

=< HF >, (2.23)

2
dada*

92 o
dooi 2% P aaran

H =(aa™ + B5%) [ ] + 2a8*

(2.24)
*2 82

85*2

1[5 02 0? 5, 02 1[ ., 02 0?
2 [O‘ 902 T2 g0a5 TP o | T2 | da T2V Garap TP

y donde la ecuacién debe resolverse con la condicién inicial
< F(a,a*, B,B") >s—0= F(1,1,0,0) (2.25)

es decir, con la condicion de que para un sistema de tamano nulo la matriz M es la identidad.

3 Modelo numérico

Para tratar numéricamente el problema de la figura (1) debemos, por un lado, modelar la propia
red atémica del material para obtener su estructura de bandas y trabajar sobre ella. Por otro
lado, debemos poder, dado el sistema y los terminales a los que estd conectado, computar su

matriz de scattering y conductancia.

3.1 Modelo tight-binding

El modelo tight-binding es un modelo empleado para describir los electrones de una red cristalina.
Este método, como su nombre indica, se basa en suponer que las funciones de onda atémicas
estan fuertemente localizadas en cada dtomo, de forma que el solapamiento entre funciones de
onda de distintos atomos sea pequeno. En esta situacién, la funcién de onda de un electrén en

un punto de la red podra expresarse como una combinacién lineal de orbitales atémicos (LCAO,

9



Linear Combination of Atomic Orbitals):
i)=Y ailé;) (3.1)
J

Usando la propiedad ), |i) (i| = I, el hamiltoniano del sistema sera

H =373 li) il H i) ( ZHWI (l= Zez Z tij |i) (j] (3.2)

donde €; son las energias ’onsite’, es decir, los elementos de matriz del hamiltoniano entre estados
de un punto de la red, y —t;; (integral de transferencia) son las energias ’offsite’, es decir, los
elementos de matriz entre puntos distintos de la red. La forma més simple de este hamiltoniano
es suponer que solamente hay un acoplo entre primeros vecinos de la red: ¢;; = ¢ si iy j son

primeros vecinos, y 0 en caso contrario. Por simplicidad también supondremos que €; = 0,

pues solo contribuyen con un desplazamiento en energia de la estructura de bandas. Asi, el

H=—tY [i){jl (33)

<ij>

hamiltoniano empleado es

donde < i,j > denota que la suma recorre los pares de indices de primeros vecinos.

En el problema que se trata en este trabajo el sistema tiene un nimero finito de 4tomos, pues
tratamos con una nanocinta de grafeno colocada entre dos terminales. En tal caso, el hamilto-
niano (3.3) puede escribirse en forma matricial numerando los atomos de la red y colocando la
integral de transferencia en los elementos de matriz correspondientes a primeros vecinos, como

por ejemplo para un sistema de cuatro dtomos:

0 -t —t 0
-t 0 0 -t
-t 0 0 —t
0 -t —t 0

Asi, conociendo t a través de medidas experimentales solo hay que diagonalizar el hamiltoniano

para obtener la estructura de bandas.

Para realizar célculos analiticos es mds 1til emplear la segunda cuantizaciéon. En segunda
cuantizacién las funciones de onda pasan a emplearse como operadores, y, por tanto, los co-

eficientes a; de (3.1) también. Estos operadores a; y sus adjuntos aj-

se llaman operadores
destruccién y creacion, respectivamente. Ademads, se trabaja en el espacio de nimeros de ocu-
pacién, donde los estados representan la cantidad de particulas presentes en cada estado. Por
ejemplo, en un sistema de dos dtomos, el estado |1, 0) simboliza un electrén en el primer atomo y

ninguno en el segundo, mientras que |1, 1) simboliza un electrén en cada uno de los dos dtomos.

10



Los operadores creacién y destrucciéon actian sobre este espacio creando y destruyendo

particulas. Si |0) es el estado vacio (es decir, sin electrones en ningin dtomo), entonces
110y = 1,0 §10) = o, 1)
aj : al ,

a1 [1,0) =10 az[0,1) = |0) (3.5)
ar0) =0  ay0) =0

= =

De esta forma, si los estados de (3.1) los interpretamos como |i) = aj |0), el hamiltoniano
(3.3) se convierte en
H=—t Z a;-raj (3.6)
<i,5>
En el caso de redes bipartitas, como el grafeno, la red se puede separar en dos subredes de tal
forma que todos los vecinos de un atomo de una red pertenecen a la otra red. Por tanto, si a;

son operadores creacién/destruccién sobre una red y b; lo son sobre la otra red,

H=—tY (abj+bla;) (3.7)
<1,5>

3.2 DMatriz de scattering: Kwant

Para los cdlculos numéricos en este trabajo se ha empleado el software Kwant [13], cuya principal

funcién es obtener la funciéon de onda y matriz de scattering de un sistema dado.

Para ello, se describe el sistema de estudio y sus conexiones mediante un modelo tight-binding

con el fin de resolver el problema de autovalores

Hs Vg 0 0 0] v [4u(S)]
Vis Hp Vi 0 0] |ea()) n(1)
0 Vo Hp Vi 0| |6én@)|=En|on(2 (3.8)
0 0 Vi Hp V| |6éa(3) én(3)
00 0 W 1] I |

donde se tratan todos los contactos como un unico contacto efectivo disconexo, dividido en

multiples secciones, cada una de ellas més alejada del sistema central que la anterior.

Asf, el hamiltoniano total del sistema tiene una forma tridiagonal® donde Hj, es el hamilto-
niano de cada una de estas secciones, el sistema central estd acoplado a la primera seccién por

la matriz Vi g y cada seccién estd acoplada a la siguiente por la matriz V. Ademds, Hg es el

3Esto es muy conveniente, pues existen algoritmos optimizados para diagonalizar matrices con muchos ele-
mentos nulos.
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hamiltoniano del sistema central, con la forma matricial de (3.3), 1,,(S) es la funcién de onda

en el sistema central y ¢, (7) son las funciones de onda en la i-ésima seccién del contacto.

Dada la simetria traslacional de los contactos, podemos emplear el teorema de Bloch para

escribir los autoestados del operador traslaciéon como
En(p) = xne HnP donde (Hp, + Ve 4 viemknayy, = €, (3.9)

donde a es el pardmetro de red de dicha simetria traslacional. Estos autoestados los clasificamos
en modos evanescentes (&(fv) (p), kn € C) y propagantes (k, € R). Ademas, los propagantes
los clasificamos en entrantes ( 7(1'm)( ), kn < 0) y salientes ( (om)( ), kn < 0), que por definicién

quedan relacionados por la matriz de scattering

£ (p) = Smn€iM (p) (3.10)

De esta forma, podemos expresar las funciones de onda en (3.8) como

an( (m + Z Syl m) _|_ Zsmng ev) (3.11)

donde S es una matriz de scattering generalizada para modos de energfa cerrados (ondas evanes-
centes). El algoritmo de Kwant, tras diagonalizar (3.8), tiene como principal resultado la matriz
Smn v las funciones de onda en el sistema central, 1,,(S). Asi, el coeficiente de transmisién entre

los contactos ¢ y j puede obtenerse como

Tij = Z ’Smn‘2 (3.12)

meEi, n€j

donde la suma recorre los canales de energia disponibles en cada contacto.

4 Tratamiento teodrico del problema multiterminal

Recordemos que el objetivo es estudiar un montaje tipico de medidas de voltaje con cuatro
puntas de prueba en nanocintas de grafeno (figura (1)). Para ello vamos a describir, basdndonos
en el formalismo de Landauer-Biittiker, un sistema unidimensional esquematizado en la figura
(5). En el tratamiento de este problema es fundamental obtener la matriz de scattering del

sistema completo.

Partiendo de la ecuaciéon de Biittiker (2.10) e imponiendo que la corriente por los terminales
3 y 4, al ser sondas de voltaje, se anule, tenemos que la corriente en cada terminal se escribe

como

12
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Figura 5: Sistema de estudio: un conductor con imperfecciones conectado a cuatro terminales.
Se inyecta una corriente por el terminal 1 que se recoge por el 2, mientras que los terminales 3
v 4 se emplean para medir el voltaje o, equivalentemente, la resistencia de la muestra.

2¢?

= 22 30 Taga — T — Tua
2¢?

I, = T[nglug —To1p1 — Togug — T24“4]

L1, (4.1)
2¢?

I3 = T[Tg?,us = Ts1pn — Tsopo — Taapa] = 0

2¢?
Iy = T[T44M4 — Ty — Tappg — Tazps] = 0

Manipulando este sistema algebraicamente, puede demostrarse (seccién 3.4.3.3 de [3]) que la
relacion de voltajes en este sistema viene dada por
y M8 1 T13T54 — To3T14

— 4.2
p2 — 1 (Tig + Tog + Tug)(Tra + Tog + Tra) — TuzTs (4.2)

Dado que nos interesa conocer las propiedades de transporte de la muestra conductora (una
nanocinta de grafeno), vamos a considerar que solamente la muestra estd desordenada y que
los contactos son perfectos. Asi, la matriz de scattering que nos interesa es la que relaciona las
amplitudes primadas, {b'} = [S']{a’}, de dimensién 4x4. Asimismo [11], definimos matrices de

scattering para ambos puntos de contacto S y S y para el sistema central S5(12)

b ay by a .
JAosm)y sV sy Pl _gup)al_ |7 b Ja
b a’ t | |d
by ay b) a
(4.3)
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donde hay que destacar que la matriz S(12) egt4 tomada respecto de dos puntos de referencia en

los extremos del sistema central, y no respecto de un solo origen como es habitual.

Puede comprobarse (Anexo D) que los elementos de la matriz S’ relevantes para la expresién
(4.2) expresados en términos de la matriz de scattering del sistema central y las matrices de

scattering de los puntos de contacto tienen la forma

1 ~I%
Sis = Sty + xS0 (77 — 55))55.

A
Sty = 5E + 1526 — 538,
Sty =5 SWs, (4.4)
Sty = — SIS,
Shy =~ Sis)

donde A = (7 — S (7 — 82y — (#)2.

Por un lado, calcularemos la matriz S12 del sistema central numéricamente empleando el

software Kwant, y por otro lado modelaremos las matrices S y S como [12]

1
@ b Ve a=—5(1-v1i-2)
s —s@ _ | NG donde 1 (4.5)
b==(1 1—2€e
Ve Ve —(a+b) (V=29
donde 0 < € < 1/2 puede interpretarse como la intensidad del acoplo de la punta de prueba al
sistema. Asi, especificado este pardmetro podemos calcular todos los coeficientes de transmisién

Tij = |Sj;|* v, con ellos, el voltaje.

Para tratar estadisticamente el voltaje empleamos la matriz de transferencia M. Dado que
la matriz S1?) est4 tomada desde dos puntos de referencia, podemos relacionarla con una matriz

de transferencia M con los mismos puntos de referencia, dada por

(4.6)

~ - 1
7= —— t=—
a* a*

mientras que la matriz de transferencia M con un solo origen (situado en el centro del conductor)

viene dada por un desplazamiento en las fases de las amplitudes de onda:

a f eikL/Q 0 a B eikL/Z 0
B* o 0 e—ikL/2 B* « 0 e—1kL/2

M M
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De esta forma, las expresiones (4.2), (4.4), (4.6) y (4.7) nos dan la diferencia de potencial v

sz * *
como funcién de a, o™, 5, B*.

(a) €=0 (b) €=0.1

] 0E IHMHIHHII

P rHIITE ¢

<v>

Figura 6: Valor promedio de la diferencia de potencial v medida en una red unidimensional
para tres valores del acoplo € de los terminales 3 y 4. Los puntos experimentales se contrastan
con el promedio (linea roja) y desviacién estandar (zona sombreada) tedricos calculados medi-
ante (4.8).

Utilizando la expresién (2.23) podemos calcular cantidades de relevancia estadistica como
el voltaje medio y la varianza del voltaje. Los calculos son sumamente complicados, pero estos
se ven simplificados asumiendo un conductor débilmente desordenado (s < 1). De esta forma

podemos hacer una expansion del voltaje y su varianza hasta términos de orden s:

o<wv>
<v> & [<v>leot |—— s =
s 1100
—<v>] n v n v B 1821) 1 0%
N HO T 1 8adar T 9B9B* 2007 28072 ] |,
2 (4.8)
((5’0)2_<’U2>—<'U>2%[<’U2>]1100+|:8<U>:| S—<U>2:
s 1100
ov Jv ov Ov ov\? ov \ 2
= |24 +2— - == - s
Jda D™ 0p IB* Oa da* 1100
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donde [.]1100 denota evaluar la expresién en « = o* = 1y f = * = 0. Calculando las derivadas,

puede demostrarse que < v >= s/2 para € = 0.

Antes de estudiar el voltaje en nanocintas de grafeno presentamos los resultados para una
red unidimensional con cuatro puntas de prueba. En la figura (6) se contrasta la teorfa con el
célculo numérico en una red unidimensional con [ = 2000 (kI = 400), en la que se muestra tanto
el voltaje promedio como su desviacion estandar. Notemos que tnicamente en el caso de acoplo
nulo el voltaje varia linealmente con L. En los otros casos el voltaje oscila en contraste con el
caso macroscopico. Vemos que los resultados siguen la tendencia predicha por la teoria, aunque
la desviacién estandar tedrica queda un poco sobreestimada para acoplos pequefios. Ademds,
puede apreciarse que, aunque el voltaje promedio siempre es positivo, existe una probabilidad

no nula de medir voltajes negativos, especialmente para acoplos pequenos.

5 Propiedades electréonicas del grafeno

La muestra conductora que vamos a estudiar en el montaje de la figura (5) es una nanocinta
de grafeno. El grafeno es un material bidimensional formado por dtomos de carbono dispuestos
segiin una red hexagonal. El carbono ([He|2s22p*), al ser tetravalente, forma tres enlaces de
hibridacién sp? con sus tres primeros vecinos, mientras que el electrén restante del orbital p,
es el que participa en las propiedades de conduccién. Ademads, al ser una red bipartita, puede
dividirse en dos redes no equivalentes, describiendo asi la red mediante una red de Bravais
triangular junto con una base de dos atomos (figura (7a)). Mencionar que la distancia entre

primeros vecinos es ag = 1.42 A y el pardmetro de red a = v/3ag [14].

(b)

Figura 7: (a) Red cristalina hexagonal: cada una de las dos subredes (A y B) se representa
en un color, y la zona sombreada es la celda unidad. Imagen modificada de [16]. (b) Repre-
sentacién en el espacio de momentos de la ecuacién (5.1). En los puntos K+ de la primera
zona de Brillouin la relacién de dispersién es lineal. A la relacién de dispersién cerca de estos
puntos se le llama ’conos de Dirac’.
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5.1 Estructura de bandas del grafeno

Para describir las propiedades electrénicas del grafeno podemos obtener su estructura de bandas
a partir de un modelo tight-binding [17] (este modelo se desarrolla en més detalle en el apartado
(3.1)). Diagonalizando el hamiltoniano del modelo (Anexo A) se obtiene la siguiente relacion de

dispersién, mostrada en la figura (7b):

k. k. 3k
B(k) = ﬂ\/ 1t dcos2 B0 4 4 cos B2 o Y0 6.1)

2 2
donde t = 2.74 eV [14] es la integral de hopping, es decir, la energia necesaria para que un

electrén en un 4tomo salte a un a4tomo vecino.

Puede comprobarse que esta funcién se anula en seis puntos, que se clasifican en dos puntos
no equivalentes, llamados puntos de Dirac: K+ = %’T(%,O) y K™ = %’T(—g, 0). En estos puntos
la banda de valencia y la de conduccién entran en contacto, haciendo que el grafeno se comporte
como un semiconductor sin gap. Ademads, en un entorno de los puntos de Dirac la relacién
de dispersién es lineal, comportandose asi los electrones como fermiones relativistas sin masa
efectiva, ya que su relacion de dispersion es igual que la de los fotones, pero con velocidad de

grupo vr = 3apt/2h = 10° m/s.

5.2 Nanocintas de grafeno

(a)(YYYYYYYY . (b)<—.\_<"\_<_.\_<_.\_(_.\:;
560060000y Ve PP Pe S
1060066666 CEPS 02002 08 Gk

\T’
YYYTYTYTYTITIITITrry
6o eest eI Se0e0s000
vvvv\o:vvvv*-—w ..../"(_./"(_.("(_.("(_.("(...._N

L

Figura 8: Las dos geometrias bésicas de nanocintas de grafeno: (a) Zigzag y (b) Armchair. La
anchura N se define segin el nimero de cadenas (zigzag) o segun el nimero de dimeros en la
direccién trasversal (armchair).

Una de las geometrias que pueden formarse a partir del grafeno son las nanocintas, constru-
idas a partir de dos cortes paralelos en la red del grafeno. Segin la direccién del corte pueden
obtenerse dos tipos de nanocintas (zigzag y armchair) o una combinacién de ambas, como se
muestra en la figura (8). La diferencia entre ambas reside en la geometria de los ejes, que les
proporciona propiedades electrénicas muy diferentes. Ambos casos se analizan en detalle en el
Anexo B.
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En el caso de nanocintas tipo armchair, la estructura de bandas se muestra en la figura (9a).
En general el sistema presenta un gap de energia en torno al nivel de Fermi, pero cuando la
anchura es N = 3r — 1 (r € N) el gap se anula y el sistema se vuelve metalico. En este caso, en
el centro de la banda (E = 0, k = 0) los estados electrénicos son funciones de onda extensas, tal

como se muestra en la figura (9b).

(a) (b)
7.5 P — —
o o
G'A AWA ANWA AWWA AWWA AWA AA A"
25 (NN NN NN NN
' . A AWWA AWA AWWVA AWWVA AWVA AWVA AWVA A)
E 0.0 a7 a7 &7 &7 &7 &/ &/ &7/
G'A AWA AWWA NWA ANWA AIWA AWWVA AV
-2.5 (Nl Nl Nl N NN NN
. A AMWA AWWA AWWA AWA AWVA AWWA AWIWA A) .
-5.0 tv N/ &7 &7 &7 &7 \&/ &/ \&/
75 I W W W W W '\

kaT

Figura 9: (a) Estructura de bandas de una nanocinta armchair metélica con anchura N = 14.
(b) En color azul, médulo al cuadrado de la funcién de onda en el centro de la banda (k = 0).

En el caso de nanocintas tipo zigzag la situacién es diferente. Para |ka| > 27/3 aparece una
banda de energia en torno a ' = 0 practicamente plana, es decir, con velocidad de grupo casi
nula. Los autoestados del hamiltoniano en esta banda pueden interpretarse como funciones de
onda concentradas en los bordes. Para ka = m, la funcién de onda queda completamente con-
centrada en el borde zigzag (figura (10b)), mientras que al variar k se suprime exponencialmente
al alejarse del borde (figura (10c)).

(b)

(a)

7.5
5.0

2.5

0.0

E/t

-2.5

-5.0

=75

Figura 10: (a) Estructura de bandas de una nanocinta zigzag con anchura N = 7. (b) En color
azul, médulo al cuadrado de la funcién de onda en el centro de la banda (ka ~ ). (c) En
color azul, médulo al cuadrado de la funcién de onda ligeramente fuera del centro de la banda
(ka = 2.35).

Vemos, por tanto, que la geometria de las nanocintas tiene consecuencias muy importantes

sobre las propiedades electronicas de la muestra. En el caso zigzag, la funcién de onda se
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encuentra concentrada en los bordes, haciendo del transporte un problema esencialmente unidi-
mensional. En cambio, en el caso armchair, la funcién de onda se concentra a lo largo y ancho

de la red, haciendo del transporte un problema bidimensional.

5.3 Localizacion

Como habiamos visto, en un sistema unidimensional desordenado se produce un fenémeno de
interferencia llamado localizacién de Anderson, por el cual las funciones de onda se localizan
exponencialmente. Este serd el caso de los estados electronicos en las nanocintas zigzag en el
centro de la banda. Para las nanocintas armchair, en cambio, se observa localizacién andémala

para los estados en el centro de la banda [8].

En la figura (11) se muestra la distribucién P(G) de la expresién (2.20) junto con la dis-
tribucién obtenida mediante cdlculo numérico para los dos tipos de nanocintas. Ambas distribu-
ciones se han tomado con igual promedio < G >= 0.34 a energia E = 1075, Puede apreciarse
que, efectivamente, el caso zigzag se comporta como un sistema unidimensional con localizacién
de Anderson, pues se ajusta perfectamente a la distribucién tedrica, mientras que el armchair
sigue una distribucién distinta debido a la localizacién andémala. Esto lo confirma también el
inset de la figura, donde para el caso zigzag < —In(G) >= L/, con | = 63, propio de la lo-
calizacién de Anderson; mientras que en el caso armchair < —In(7) >x L%, con a = 0.66, de

acuerdo con las expresiones (2.21) y (2.22).

— Zigzag L i
617 — Armchair A6 = ]
— P(G) Teorica O r
~ 4 —
L =L 1
V2 .
L A P T R B
6 4 %0 100 200 300 400 300
N L
A L d

Figura 11: Histogramas de P(G) para el caso zigzag (rojo) y armchair (azul). La curva tedrica
de (2.20) se muestra en linea continua. Inset: dependencia de < —In(G) > con la longi-

tud L del sistema, contrastando la localizacién de Anderson (< —In(G) >oc L) y andmala

(< =In(G) >x L%).
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6 Resultados

Con todo lo visto hasta ahora ya podemos abordar el problema multiterminal para nanocintas de
grafeno. Los resultados numéricos, como ya se ha explicado, se obtienen por medio del software
Kwant. Para ello creamos un sistema tight-binding hexagonal con las dos posibles geometrias
que definen las nanocintas de grafeno: armchair y zigzag, y lo conectamos por sus dos extremos
a dos contactos de grafeno sin imperfecciones. Asi, si el sistema central no estd desordenado, la

transmisiéon sera T = 1.

El desorden puede introducirse en el hamiltoniano (3.3) de dos formas: en la diagonal o en
los elementos fuera de esta. En este trabajo se opta por estudiar el segundo caso, pues en las
nanocintas tipo armchair un desorden no-diagonal causa la apariciéon de estados anémalamente
localizados [9], permitiéndonos estudiar su efecto en el voltaje. Ademads, este desorden modela
una red realista en la que se producen pequenas deformaciones en su fabricaciéon. Asi, manten-

emos en el hamiltoniano €; = 0, pero generamos los coeficientes t;; aleatoriamente como
tij = to + wl-j (61)

donde ty = 2.74 eV y w;; una variable aleatoria generada segin una distribucién uniforme en
(=W, W). Las magnitudes promedio como el voltaje < v > o la conductancia (transmision)

< G > se calculan tomando muiltiples (~ 103 — 10%) realizaciones del mismo sistema.

Ademds, se van a estudiar dos situaciones: primero vamos a estudiar el voltaje v = (us —
ta)/(p1 — p2) cuando los electrones inyectados tienen energias E # 0, es decir, fuera del centro

de la banda; y después estudiaremos el caso de £ — 0.

Cabe destacar que todas las magnitudes con dimensiones de longitud estan dadas en unidades
del parametro de red a, asi como los vectores de onda. Igualmente, las energias vienen dadas en

unidades del parametro tight-binding t.

6.1 Energia fuera del centro de la banda

Para energias alejadas del centro de la banda, cualquier desorden causa localizacién de Anderson,

lo cual se refleja en la distribucién P(G) y, en particular, en la dependencia < —In(G) >= L/I.

En una seccién anterior se ha contrastado el valor tedrico del voltaje para una red unidi-
mensional. Ahora lo contrastamos con nanocintas de grafeno. En general, la teoria de matrices
aleatorias empleada no es valida para sistemas bidimensionales como lo es el grafeno. Sin em-
bargo, la particularidad de las nanocintas es que en un entorno del nivel de Fermi, al contrario
que en otras redes bidimensionales, existe un solo canal de energia abierto. Esto permite usar

la teoria de matrices aleatorias del caso estrictamente unidimensional.
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Figura 12: Voltaje v segun la expresién (4.2) como funcién de la longitud del sistema, y el
promedio (linea roja) y desviacién estandar (zona sombreada) tedricos segin (4.8). Se mues-
tra en las figuras (a), (b) y (c) el voltaje en una nanocinta zigzag (N = 5) para tres valores del
acoplamiento € de las puntas de prueba; y en las figuras (d), (e) y (f) la misma situacién para
la nanocinta armchair (N = 8).
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En la figura (12) se muestran estos resultados numéricos junto con el valor tedrico del voltaje
para distintos valores del acoplo de las puntas de prueba, €. El caso zigzag se muestra en las
figuras (a), (b) y (c), donde se ha empleado una energia £ = 1.77 (k = 7/2) y | = 720; y el
caso armchair se muestra en las figuras (d), (e), y (f), donde se emplea E = 0.69 (k = 0.5)
y [ = 1000. Puede verse una buena concordancia entre los resultados tedricos y los numéricos
para ambas nanocintas, aunque al igual que en el caso unidimensional las desviaciones estandar
quedan sobreestimadas. Asi, verificamos que se aproximan a un comportamiento unidimensional,

siempre y cuando la energia sea tal que solamente haya un canal abierto.

Ademsds, es interesante contrastar estos resultados con los que esperariamos de un conductor
macroscopico. En el caso € = 0 tenemos el caso de dos puntas de prueba que ’sienten’ el
voltaje local, lo que clasicamente seria un voltimetro con resistencia interna infinita. En ese
caso esperariamos un voltaje directamente proporcional a la resistencia, es decir, v o< L. Esto
coincide con las observaciones en el régimen cuantico, aunque existe una diferencia importante:
la anchura de la distribucién de v oscila con la longitud, dando lugar a una alta probabilidad de

medir diferencias de potencial negativas.

En los casos € # 0 la situacién es distinta: tanto el voltaje como su desviacién estandar
oscilan con L, disminuyendo ademas la probabilidad de medir voltajes negativos a medida que
aumenta €. Estas oscilaciones pueden entenderse como producto de la influencia de las puntas
de prueba, que al no estar débilmente acopladas proporcionan nuevos mecanismos de dispersién

a los electrones, dando lugar a interferencias constructivas y destructivas.

6.2 Energia en el centro de la banda

Para energia E ~ 0, los estados en el caso zigzag se localizan Anderson, pero en el caso armchair

lo hacen anémalamente. Por tanto, esperamos encontrar esta diferencia reflejada en el voltaje.

Debido a la forma de la estructura de bandas de las dos nanocintas solamente tiene sentido
estudiar el caso de acoplo € = 0. En el caso zigzag, para E — 0 tenemos k£ — m, por lo
que se tendria poca densidad de puntos en el eje kL; mientras que en el caso armchair, para
E — 0 tenemos k — 0, por lo que seria necesario considerar sistemas de longitudes inabarcables

computacionalmente.

Por ello, se ha optado por estudiar la evolucién del voltaje para € = 0 frente al parametro
de localizacién, < —In(T") >, realizando los célculos a la misma energia para ambas nanocintas

(E ~ 1078). Estos resultados se muestran en la figura (13).

En primer lugar, puede observarse en el inset como en el caso zigzag se produce localizacion de
Anderson, ya que < —1In(T") >= L/l con [ = 45. En cambio, en el caso armchair la dependencia

es propia de una localizacién anémala, < —In(7T") >= aL®, con a = 0.7 y a = 0.06.
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Figura 13: Voltaje v medido a energias cercanas a cero como funcién del parametro de local-
izacién, comparando los casos zigzag (N = 5) y armchair (N = 8). Cerca del origen se muestra
en linea continua la recta < v >= s/2. Inset: dependencia de < —In(7") > con la longitud del
sistema.

En segundo lugar, en la figura principal puede verse que, para < —In(7") >— 0, el voltaje
en la nanocinta zigzag sigue la dependencia < v >= s/2 predicha para el caso unidimensional.
Este no es el caso para la nanocinta armchair, donde la dependencia es distinta. Adicional-
mente, puede observarse que la diferencia de potencial para el caso armchair es consistentemente
mayor. Esto, intuitivamente, podemos entenderlo de la siguiente forma: dado un valor fijo de
< —1In(T) >, la longitud L en el zigzag es menor (ver inset) que en el armchair luego, dado que
uno esperaria que la resistencia escalase con la longitud, en el caso zigzag la resistencia seria

menor y, por tanto, también el voltaje.

7 Conclusiones

En este trabajo hemos ha estudiado la diferencia de potencial v en un montaje de cuatro puntas
de prueba como el de la figura (1), utilizando como muestra conductora una nanocinta de grafeno
con imperfecciones en su red. En particular hemos obtenido el promedio y la varianza del voltaje
como funcién de la distancia entre las puntas de prueba para los dos tipos de nanocintas de
grafeno: armchair y zigzag. Todo nuestro analisis se ha realizado a bajas energias donde un solo

canal contribuye al transporte.

Hemos estudiado la diferencia de potencial tedricamente desde una teoria de transporte
cuantico basada en los procesos de scattering y desde un modelo estadistico de teoria de matrices
aleatorias. Este voltaje se expresa en las ecuaciones (4.2), (4.4), (4.6) y (4.7) como una funcién
de los pardametros de la matriz de transferencia M, pudiendo asi aplicar el modelo estadistico

(2.23) para calcular el primer y segundo momentos de la distribucién.
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Los estudios realizados con las dos posibles geometrias en una nanocinta de grafeno (zigzag y
armchair) muestran un comportamiento unidimensional en el transporte para energias fuera del
centro de la banda, localizandose los estados exponencialmente (< — In(7") >= L/I) en presencia

—L/l_ En el centro de la banda, en cambio, las

de desorden, y como consecuencia < G > e
nanocintas tipo zigzag mantienen su comportamiento unidimensional y los estados se localizan
exponencialmente, mientras que en las nanocintas tipo armchair los estados se localizan de

manera anémala (< —In(7") >oc L?) y, como consecuencia, < G >oc L™,

Los resultados de la figura (12) muestran la evolucién del voltaje con la longitud L del sistema,
suponiendo el limite de bajo desorden. Estos resultados muestran una buena concordancia entre
la teoria desarrollada para sistemas unidimensionales y las nanocintas de grafeno que, a pesar

de ser bidimensionales, tienen un comportamiento esencialmente unidimensional.

En la figura (13) se muestra la evolucién del voltaje con el pardmetro de localizacién para
un desorden arbitrario, mostrando asi la existencia de una diferencia en el voltaje cuando la

localizacion en el transporte es exponencial o andémala.

Adicionalmente, hemos estudiado el voltaje en muestras de conductores unidimensionales,
observando un buen acuerdo con los resultados tedricos basados en la teoria de matrices aleato-

rias.
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