
Anexos

A Modelo tight-binding en una red de grafeno

Para determinar la relación de dispersión de los electrones de una red de grafeno vamos a emplear

un modelo tight-binding. Llamando Ri a las posiciones de los átomos de la subred i y τl a las

posiciones de los primeros vecinos de un átomo, el hamiltoniano del modelo que empleamos es

[17]

H = −t
∑
RB

3∑
l=1

a†RB+τl
bRB

+ h.c. (A.1)

τ1 = −
√
3a0
2

x̂− a0
2
ŷ τ2 =

√
3a0
2

x̂− a0
2
ŷ τ3 = a0ŷ

donde h.c. denota ’el complejo conjugado de lo anterior’, y donde t es la integral de hopping y

a†/a y b†/b son operadores creación/destrucción de electrones en un punto de las subredes A y

B, respectivamente.

Una forma más útil de este hamiltoniano la obtenemos mediante la transformada de Fourier,

definiendo los operadores creación/destrucción de estados con momento k, que denotamos por

α (β) para la subred A (B):

a†RA
=

1√
LxLy

∑
k

e−ik·RAα†
k b†RB

=
1√
LxLy

∑
k

e−ik·RBβ†k

aRA
=

1√
LxLy

∑
k

eik·RAαk bRB
=

1√
LxLy

∑
k

eik·RBβk

(A.2)

Introduciendo estas definiciones en el hamiltoniano se tiene

H = −t
∑
k

3∑
l=1

e−ik·τlα†
kβk + h.c. (A.3)

Para obtener la relación de dispersión E(k) tomamos un estado de una part́ıcula con momento

definido definido sobre una celda unidad

|ψ(k)⟩ = (Aα†
k +Bβ†k) |0⟩ (A.4)

donde |0⟩ = |0A, 0B⟩ es el estado vaćıo, es decir, el estado sin electrones en ninguno de los

dos átomos. Introduciendo este estado en la ecuación de autovalores H |ψ(k)⟩ = E(k) |ψ(k)⟩ y
usando las relaciones
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αkα
†
k |0⟩ = |0⟩ αk |0A, ψB⟩ = 0

βkβ
†
k |0⟩ = |0⟩ βk |ψA, 0B⟩ = 0

(A.5)

puede verse que la ecuación de autovalores se convierte en la relación matricial 0 f∗AB(k)

fAB(k) 0

A
B

 = E

A
B

 donde fAB(k) = −t
3∑

l=1

e−ik·τl (A.6)

Las soluciones de esta ecuación son E(k) = ±
√
|fAB(k)|2. Introduciendo los vectores τl de

(A.1) queda, tras un poco de álgebra, la relación de dispersión

E(k) = ±
√
|fAB(k)|2 = ±t

√
1 + 4 cos2

kxa

2
+ 4 cos

kxa

2
cos
√
3kya2 (A.7)

Notar que es una función simétrica respecto del plano E = 0, correspondiendo cada signo a

la banda de valencia y la de conducción. Esto, junto con el hecho de que solamente participa

en la conducción un electrón de cada átomo, a temperatura cero la banda de valencia se ocupa

completamente y la de conducción está vaćıa, quedando el nivel de Fermi en EF = 0. Además,

esta función se anula en seis puntos, de los cuales solo dos son no-equivalentes, y usualmente se

denominan valles K+ y K−

K+ =
2π

a

2/3

0

 K− =
2π

a

−2/3
0

 (A.8)

Si nos situamos en un punto k = K±+ q, con |q| ≪ |K±| y expandimos el hamiltoniano en

una serie de Taylor en torno a q = 0 tenemos:

HK±+q =
3a0
2
t

 0 qx − iqy
qx + iqy 0

 ≡ ℏvF (qxσx + qyσy) (A.9)

donde σi son las matrices de Pauli

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1


Este hamiltoniano es equivalente al hamiltoniano de Dirac para part́ıculas sin masa,

HD = iℏcγµ∂µ = ℏcσµkµ = ℏc(kxσx + kyσy) (A.10)
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y la relación de dispersión cerca de los puntos K± queda

E(K± + q) = ℏvF
√
q2x + q2y (A.11)

Vemos que los electrones del grafeno en el nivel de Fermi no tienen la relación de dispersión

parabólica propia de materiales convencionales, sino que es lineal, comportándose como fermiones

relativistas con masa efectiva nula.
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B Modelo tight-binding en nanocintas de grafeno

Análogamente a como hemos hecho con el grafeno en el Anexo A, podemos emplear un método

de tight-binding en nanocintas para cada geometŕıa para obtener tanto la estructura de bandas

como las funciones de onda.

Figura 14: Representación de los dos tipos de nanocintas de grafeno: (a) Armchair y (b)
Zigzag. Se asume que los átomos situados en los bordes están enlazados a hidrógenos para que
no contribuyan a la conductividad. Imágenes tomadas de [17].

Nanocinta tipo armchair

Primero tratamos el caso de una nanocinta tipo armchair. Definimos su anchura como el número

de d́ımeros en la dirección trasversal, etiquetados por m, y definimos la celda unidad como la

sección que se repite periódicamente en la dirección longitudinal, etiquetadas por l (figura (14a)).

El hamiltoniano tight-binding empleado para describir el sistema es [17]

H =− t
∑
l

 ∑
m impar

a†l (m)bl−1(m) +
∑

m par

a†l (m)bl(m)

+ h.c.

− t
∑
l

N+1∑
m=1

{
b†l (m+ 1)al(m) + a†l (m+ 1)bl(m)

}
+ h.c.

(B.1)

En este hamiltoniano, la primera ĺınea representa movimiento de electrones en la dirección

trasversal, mientras que la segunda representa un movimiento longitudinal. Aqúı, el operador

a†l (m) representa la creación de un electrón en el átomo de la subred A, del d́ımero m y la

celda unidad l. Análogamente, b†l (m) crea un electrón en el átomo correspondiente de la sub-

red B. Aprovechando la simetŕıa bajo desplazamientos en el eje longitudinal, podemos definir

operadores creación y destrucción de estados con momento definido k como la transformada de
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Fourier

a†l (m) =
1√
Ly

∑
k

e−ikyl,mAα†
k(m) b†l (m) =

1√
Ly

∑
k

e−ikyl,mBβ†k(m)

al(m) =
1√
Ly

∑
k

eikyl,mAαk(m) bl(m) =
1√
Ly

∑
k

eikyl,mBβk(m)
(B.2)

Por conveniencia definimos la coordenada y de los átomos como

yl,1A = yl,2B = yl,3A = ... = yl

yl,1B = yl,2A = yl,3B = ... = yl + aT /2
(B.3)

donde aT = 3a0 es la anchura de la celda unidad. Introduciendo todo esto en el hamiltoniano

se tiene

H =− t
∑
k

∑
m

e−ikaT /2α†
k(m)βk(m) + h.c.

− t
∑
k

∑
m

{
β†k(m+ 1)αk(m) + α†

k(m+ 1)βk(m)
}
+ h.c.

(B.4)

Definimos un estado de un electrón en la celda unidad como

|ψ(k)⟩ =
∑
m

(ψmAα
†
k(m) + ψmBβ

†
k(m)) |0⟩ (B.5)

donde |0⟩ es el estado vaćıo. La relación de dispersión viene dada por la ecuación de autovalores

H |ψ(k)⟩ = E(k) |ψ(k)⟩, luego introduciendo este estado en el hamiltoniano y empleando las

relaciones

αk(m)α†
k(m) |0⟩ = |0⟩ αk(m) |0A, ψB⟩ = 0

βk(m)β†k(m) |0⟩ = |0⟩ βk(m) |ψA, 0B⟩ = 0
(B.6)

se llega al sistema de ecuaciones (a partir de ahora denotamos E = E/t)

EψmA = −e−ikaT /2ψmB − ψ(m−1)B − ψ(m+1)B

EψmB = −eikaT /2ψmA − ψ(m−1)A − ψ(m+1)A

(B.7)

que debemos resolver con las condiciones de contorno adecuadas. Estas condiciones consisten en

suponer que los átomos de los bordes de la nanocinta están enlazados a átomos de hidrógeno,

correspondientes a las posicionesm = 0 ym = N+1. Por tanto imponemos que en los hidrógenos

la función de onda se anule, esto es,

ψ0A = ψ0B = ψ(N+1)A = ψ(N+1)B = 0 (B.8)
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Proponemos una solución de la forma

ψmA = Aeipm +Be−ipm = A(eipm − e−ipm)

ψmB = Ceipm +De−ipm = C(eipm − e−ipm)
(B.9)

donde hemos usado las condiciones de contorno en m = 0 para relacionar A = −B y C = −D,

y donde p corresponde con el vector de ondas en la dirección trasversal (que estará discretizado

por la anchura finita) y k el vector de ondas en la dirección longitudinal (que será continuo entre

−π/2 < kaT < π/2). Sustituyendo en las ecuaciones anteriores tenemos E ϵp + e−ikaT /2

ϵp + eikaT /2 E

A
C

 =

0

0

 (B.10)

donde definimos ϵp = 2 cos(p), de tal forma que tendremos una solución no trivial cuando el

determinante de la matriz sea nulo. Esta condición nos da finalmente la relación de dispersión

de la figura (9a,b).

E(k, p) = ±
√
1 + 2ϵp cos

kaT
2

+ ϵ2p (B.11)

Adicionalmente, podemos emplear las condiciones de contorno en m = N + 1 que no hemos

usado antes para obtener la discretización de p:

ψ(N+1)A = A(eip(N+1) − e−ip(N+1) = 0 =⇒ sin(p(N + 1)) = 0 (B.12)

luego tenemos N valores de p correspondientes a diferentes subbandas de enerǵıa, dados por

p =
r

N + 1
π r = 1, ..., N (B.13)

Como último comentario acerca de la relación de dispersión, puede verse que existen valores

de N para los que la nanocinta es metálica y otros para los que presenta un gap de enerǵıa en

E = 0. Tomando k = 0 y E = 0 en (B.11), la condición que debe cumplirse para que el sistema

sea metálico es

N = 3r − 1 (B.14)

Podemos también obtener las funciones de onda en la nanocinta. Tomando el sistema de

ecuaciones (B.10) podemos relacionar los coeficientes A y C como

A = ∓

√
ϵp + e−ikaT /2√
ϵp + eikaT /2

C (B.15)
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de forma que la función de onda es, normalizándola debidamente,ψmA

ψmB

 = N

∓√ϵp + e−ikaT /2√
ϵp + eikaT /2

 sin(mp) (B.16)

o equivalentemente, en el espacio de posiciones,ψmA(yl,mA)

ψmB(yl,mB)

 =
N√
Ly

∑
k

∓√ϵp + e−ikaT /2eikyl,mA√
ϵp + eikaT /2eikyl,mB

 sin(mp) (B.17)

Vemos, por tanto, que la función de onda está extendida por toda la red y que toma el mismo

valor, salvo por una diferencia de fases, en los dos tipos de átomos A y B.

Nanocinta tipo zigzag

Tratemos ahora el caso de una nanocinta tipo zigzag (figura (14b). En este caso, la anchura

se define como el número de cadenas en zigzag en la dirección trasversal. El hamiltoniano

tight-binding que empleamos en este caso es

H =− t
∑
l

 ∑
m par

b†l (m)al−1(m) +
∑

m impar

a†l (m)bl−1(m)

+ h.c.

− t
∑
l

N∑
m=1

b†l (m)al(m) + h.c.

− t
∑
l

N−1∑
m=1

a†l (m+ 1)bl(m)

(B.18)

donde la primera ĺınea representa un movimiento longitudinal entre celdas unidad, la segunda

ĺınea representa un movimiento longitudinal dentro de una misma celda y la tercera ĺınea rep-

resenta un movimiento en la dirección trasversal.

Análogamente al caso armchair se emplean los operadores creación y destrucción en el espacio

de momentos y se resuelve la ecuación de autovalores H |ψ(k)⟩ = E(k) |ψ(k)⟩, con |ψ(k)⟩ definido
en (B.5). El sistema de ecuaciones al que se llega en este caso es

EψmA = −gkψmB − ψ(m−1)B

EψmB = −gkψmA − ψ(m−1)A

(B.19)

donde gk = 2 cos(kaT /2), y donde en este caso debemos resolverlo con las condiciones de contorno

impuestas por la existencia de átomos de hidrógeno en los bordes:

ψ0B = ψ(m+1)A = 0 (B.20)
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Si proponemos una solución de la forma

ψmA = Aeipm +Be−ipm = A(eipm − z2e−ipm)

ψmB = Ceipm +De−ipm = C(eipm − e−ipm)
(B.21)

donde hemos utilizado las condiciones de contorno y definido z = exp(ip(N +1)), al sustituir en

las ecuaciones queda E(eipm − z2eipm) (gk + e−ip)eipm − (gk + eip)e−ipm

(gk + eip)eipm − z2(gk + e−ip)e−ipm E(eipm − eipm)

A
C

 =

0

0


(B.22)

Nuevamente, la solución no trivial viene determinada por det(M) = 0. Esto es posible para

p ̸= 0, π, valores para los cuales la matriz se anula idénticamente. Anulando el determinante

tenemos:

[E2 − (gk + e−ip)(gk + eip)]︸ ︷︷ ︸
v

e2ipm + [E2z2 − z2(gk + e−ip)(gk + eip)]︸ ︷︷ ︸
w

e−2ipm+

+ [−E2 − E2z2 + z2(gk + e−ip)2 + (gk + eip)2]︸ ︷︷ ︸
x

= 0

=⇒ ve2ipm + we−2ipm + x = 0

(B.23)

Debemos, por tanto, anular los coeficientes v, w, x por separado:

• Anulando v o w se obtiene la relación de dispersión,

E = ±
√
g2k + 2 cos(p)gk + 1 (B.24)

• Anulando x se obtiene la discretización del vector de ondas trasversal, p,

F (p,N) = sin(pN) + gk sin[p(N + 1)] = 0 (B.25)

Aunque (B.25) puede resolverse numéricamente, vale la pena analizarla gráficamente. Esta

función se muestra en la figura (15). Puede verse que existe un valor de gk cŕıtico por debajo

del cual desaparece una de las soluciones, indicando la degeneración de dos bandas en una sola

(E = 0). Este valor cŕıtico se da cuando la pendiente de la función en p = π se anula, es decir,

∂

∂p
F (p,N)

∣∣∣∣
p=π

= 0 ⇐⇒ gck = ± 1

1 + 1/N
(B.26)
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Figura 15: Representación de la función F (p,N = 4) de (B.25). (a) Caso |gk| ≥ gck, para el
cual existen N soluciones. (b) Caso |gk| < gck, para el cual existen N − 1 soluciones. Imágenes
tomadas de [17]

luego el valor de k cŕıtico es, recordando la definición gk = 2 cos(kaT /2),

kc = ± 2

aT
cos−1

(
1/2

1 + 1/N

)
−−−−→
N→∞

±2π

3a
(B.27)

que en el ĺımite de grafeno 2D, N →∞, coincide con los puntos de Dirac.

Tras este análisis distinguimos dos tipos de estados:

• Primero tenemos los estados extendidos, que son aquellos solución de (B.25) y cuya relación

de dispersión es (B.24). Las funciones de onda de estos estados sonψmA

ψmB

 = N

sin[p(N + 1−m)]

sin(pm)

 (B.28)

• Por otro lado tenemos los estados localizados, que son los estados que ’desaparecen’ para

|gk| < gck. Estos podemos obtenerlos extendiendo los anteriores anaĺıticamente, es decir,

tomando una parte compleja en p = 0, π. Aśı, definimos p0 = 0± iη y pπ = π± iη, y donde

η es único para cada valor de p y puede obtenerse de (B.25).

La relación de dispersión de estos estados se obtiene tomando (B.24) y tomando

cos(π ± iη) = 1

2
(eiπ∓η + e−iπ±η) = −1

2
(e∓η + e±η) = − cosh(η)

cos(0± iη) = 1

2
(ei0∓η + e−i0±η) =

1

2
(e∓η + e±η) = cosh(η)

(B.29)

obteniendo aśı la relación de dispersión

E =

 ±
√

1 + g2k − 2gk cosh(η) , para pπ

±
√

1 + g2k + 2gk cosh(η) , para p0
(B.30)
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En cuanto a sus funciones de onda, se pueden obtener de las anteriores y son funciones

localizadas exponencialmente en los bordes de la nanocinta:

ψmA

ψmB

 =


Neiπm

∓eiπ(N+1) sinh[η(N + 1−m)]

sinh(ηm)

 , para pπ

N

∓ sinh[η(N + 1−m)]

sinh(ηm)

 , para p0

(B.31)

36



C Ecuación de Mel’nikov

Para obtener la ecuación de Mel’nikov (2.19) vamos a considerar un conductor unidimensional

de longitud L en el que existe desorden. La matriz de transferencia en forma polar es

M =

eiµ 0

0 e−iµ

√1 + λeiθ
√
λe−iθ

√
λeiθ

√
1 + λe−iλ

e−iµ 0

0 e−iµ

 (C.1)

donde los distintos parámetros seguirán una cierta distribución de probabilidad. Dado un en-

semble de conductores, definimos la probabilidad diferencial de una matriz M como

dP̃L(M) = pL(M)dµ(M) (C.2)

donde pL(M) es la densidad de probabilidad deM y dµ(M) una medida invariante, de tal forma

que el valor esperado de una función de M es

< f(M) >=

∫
f(M)pL(M)dµ(M) (C.3)

Supongamos que tenemos dos secciones de conductor de longitudes L′′ y L′, con matrices

de transferencia M ′′ y M ′. Por la propiedad multiplicativa de la matriz de transferencia, para

el sistema completo se cumple M = M ′M ′′. Primero debemos hallar, conocidas las densidades

pL′(M ′) y pL′′(M ′′), la densidad de probabilidad pL′+L′′(M). Para ello, suponiendo que las dos

secciones son estad́ısticamente independientes, escribimos el valor esperado de una función de

M :

< f(M) > =

∫∫
f(M ′M ′′)pL′(M ′)dµ(M ′)pL′′(M ′′)dµ(M ′′) =

=

∫
dµ(M)f(M)

∫
dµ(M ′)pL′′(M ′−1M)pL′(M ′)

(C.4)

donde en la segunda igualdad se ha hecho el cambio de variableM ′′ =M ′−1M . Comparando esta

expresión con (C.3) podemos identificar la densidad de probabilidad total como la convolución

pL′′+L′(M) = pL′′ ⊗ pL′ =

∫
dµ(M ′)pL′′(M ′−1M)pL′(M ′) (C.5)

Esta expresión la vamos a emplear tomando L′′ = L y L′ = δL de forma que, partiendo de

un conductor de longitud L, podemos añadir una sección infinitesimal δL de forma recursiva

para lograr conductores de cualquier longitud. Para hacer esto necesitamos conocer la densidad

de probabilidad de la matriz de transferencia asociada al bloque δL. Esto lo logramos con

un modelo de máxima entroṕıa. Definimos la entroṕıa asociada a la densidad de probabilidad
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pδL(M
′) como

S[pδL] = −
∫
pδL(M

′) ln
(
pδL(M

′)
)
dµ(M ′)

= −
∫
pδL(λ

′, θ′, µ′) ln
(
pδL(λ

′, θ′, µ′)
)
dµ(λ′, θ′, µ′)

(C.6)

Obtenemos la densidad pδL maximizando esta entroṕıa bajo las siguientes restricciones:

1. Normalización:
∫
pδL(λ

′, θ′, µ′)dλ′dθ′dµ′ = 1

2. Primer momento: < λ′ >= δL/l, donde l es el mean free path elástico.

El resultado de maximizar la entroṕıa es la densidad de probabilidad

pδL(M
′) =

1

δL/l
e−λ′/(δL/l)pδL(θ

′) = pδL(λ
′, θ′) (C.7)

La densidad de probabilidad de λ la obtenemos por medio de la transformada de Fourier de

la función generadora de momentos

PL+δL(λ) =
1

2π

∫ ∞

−∞
e−itλp̃L+δL(t)dt donde

p̃L+δL(t) =
〈
eitλ(M

′,M ′′)
〉
=

∫∫∫
eitλpL(λ

′′, θ′′)pδL(λ
′, θ′)dλ′dλ′′

dθ′

2π

dθ′′

2π

dµ′

2π

dµ′′

2π

(C.8)

y donde λ(M ′,M ′′) lo obtenemos a partir del producto M =M ′M ′′, quedando

λ = λ′′ + λ′ + 2λ′′λ′ + 2
√
λ′′(1 + λ′′)λ′(1 + λ′) cos[2(µ′′ + θ′ − µ′)] (C.9)

El objetivo es transformar pL+δL en una ecuación diferencial, para lo cual tomaremos el

ĺımite δL → 0. En este ĺımite la matriz de transferencia M ′ debe tender a la identidad, por lo

que λ′ → 0. Por ello, expandimos las integrales anteriores en potencias de λ′, quedando

pL+δL(λ) = pL(λ) +
∂2

∂λ2
[λ(1 + λ)pL(λ)]

〈
λ′(1 + λ′)

〉
δL
− ∂

∂λ
[(1 + 2λ)pL(λ)]

〈
λ′
〉
δL

+O
〈
(λ′)2

〉 (C.10)

Los momentos ⟨(λ′)n⟩δL los podemos obtener a partir de la distribución marginal de λ′,

obtenida de (C.7)

pδL(λ
′) =

∫
pδL

dθ′

2π
=

1

δL/l
e−λ′/(δL/l) =⇒

〈
(λ′)n

〉
δL

= n!

(
δL

l

)n

(C.11)
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Sustituyendo en (C.10) y tomando el ĺımite

lim
δL→0

pL+δL(λ)− pL(λ)
δL

=
∂pL(λ)

∂L

tenemos finalmente la ecuación de Mel’nikov:

∂ps(λ)

∂s
=

∂

∂λ

[
λ(1 + λ)

∂ps(λ)

∂λ

]
(C.12)

donde definimos s = L/l.
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D Combinación de matrices de scattering

Dado un problema de scattering en un conductor con un número elevado de conexiones es

habitual dividirlo en problemas más pequeños, definiendo para cada uno de ellos una matriz de

scattering, y combinarlas para obtener la del sistema completo:

S = S(1) ⋆ S(2) (D.1)

Para ilustrar el mecanismo de combinar matrices S tomemos el problema de la figura (5), para

el que buscamos la matriz S′ tal que {b′} = S′{a′} y donde separamos el problema en los dos

puntos de contacto definiendo las matrices S(1) y S(2) tales que

b′1

b′2

b′3

b′4


= S′



a′1

a′2

a′3

a′4




b′1

a

b′3

 = S(1)


a′1

b

a′3



b′2

a′

b′4

 = S(2)


a′2

b′

a′4

 (D.2)

Además, por comodidad relacionamos las amplitudes (a, b, a′, b′) a través de otra matrizb

b′

 = S̃(12)

a

a′

 =

r̃ t̃

t̃ r̃′

a

a′

 (D.3)

La idea es manipular estas relaciones matriciales para obtener una matriz que relacione

directamente las amplitudes b′i y a
′
i. Para ello, podemos reescribir las relaciones (D.2) como



b′1

b′2

b′3

b′4

a

a′


=



S
(1)
11 0 S

(1)
13 0 S

(1)
12 0

0 S
(2)
11 0 S

(2)
13 0 S

(2)
12

S
(1)
31 0 S

(1)
33 0 S

(1)
32 0

0 S
(2)
31 0 S

(2)
33 0 S

(2)
32

S
(1)
21 0 S

(1)
23 0 S

(1)
22 0

0 S
(2)
21 0 S

(2)
23 0 S

(2)
22





a′1

a′2

a′3

a′4

b

b′


←→

b′

A

 =

SPP SPQ

SQP SQQ

a′

B



(D.4)
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De esta forma nos queda el siguiente sistema:

{b′} = SPP {a′}+ SPQ{B}

{A} = SQP {a′}+ SQQ{B}

{B} = S̃(12){A}

(D.5)

Despejando {B} de la segunda ecuación usando la tercera y la unitariedad de S̃(12), y susti-

tuyéndolo en la primera ecuación, tenemos finalmente

{b′} = S′{a′} donde S′ = SPP + SPQ

[
S̃(12)∗ − SQQ

]−1
SQP (D.6)

o, de forma expĺıcita,

S′ = SPP+

1

∆



S
(1)
12 (r̃

′∗ − S(2)
22 )S

(1)
21 −S(1)

12 t̃
∗S

(2)
31 S

(1)
12 (r̃

′∗ − S(2)
22 )S

(1)
23 −S(1)

12 t̃
∗S

(2)
23

−S(2)
12 t̃

∗S
(1)
21 S

(2)
12 (r̃

∗ − S(1)
22 )S

(2)
31 −S(2)

12 t̃
∗S

(1)
23 S

(2)
12 (r̃

∗ − S(1)
22 )S

(2)
23

S
(1)
32 (r̃

′∗ − S(1)
22 )S

(1)
21 −S(1)

32 t̃
∗S

(2)
31 S

(1)
23 (r̃

′∗ − S(2)
22 )S

(1)
32 −S(1)

32 t̃
∗S

(2)
23

−S(2)
32 t̃

∗S
(1)
21 S

(2)
32 (r̃

∗ − S(1)
22 )S

(2)
31 −S(2)

32 t̃
∗S

(1)
23 S

(2)
32 (r̃

∗ − S(1)
22 )S

(2)
23


donde ∆ = (r̃∗ − S(1)

22 )(r̃
′∗ − S(2)

22 )− (t̃∗)2

(D.7)

de donde obtenemos directamente las relaciones (4.4).
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