Anexos

A Modelo tight-binding en una red de grafeno

Para determinar la relacién de dispersién de los electrones de una red de grafeno vamos a emplear
un modelo tight-binding. Llamando R; a las posiciones de los atomos de la subred ¢ y 77 a las
posiciones de los primeros vecinos de un atomo, el hamiltoniano del modelo que empleamos es

[17]

3
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donde h.c. denota ’el complejo conjugado de lo anterior’, y donde t es la integral de hopping y
a'/a y b1 /b son operadores creacién/destruccién de electrones en un punto de las subredes A y

B, respectivamente.

Una forma més 1til de este hamiltoniano la obtenemos mediante la transformada de Fourier,
definiendo los operadores creacién/destruccion de estados con momento k, que denotamos por
a (B) para la subred A (B):

[ 1 —ik-Ra .t T 1 —ik-Rp ot
AR, = D > e knRng
L.L, - L.L, -
(A.2)
1 ik-Ra 1 ik-R
AR, = e o bR, = e B B
VLI, zk: i LoLy zk::

Introduciendo estas definiciones en el hamiltoniano se tiene

3
H=—t Z Z e_ik'”oz;zﬁk + h.c. (A.3)
k=1

Para obtener la relacién de dispersién E(k) tomamos un estado de una particula con momento

definido definido sobre una celda unidad
(k) = (Aaf, + BB) |0) (A4)

donde |0) = ]04,0p) es el estado vacio, es decir, el estado sin electrones en ninguno de los
dos atomos. Introduciendo este estado en la ecuacién de autovalores H |¢(k)) = E(k) [(k)) vy

usando las relaciones
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agal [0) = |0) ok |04, 05) =0

T (A5)
Brpy, 10) = [0) B [1a,0B) =0

puede verse que la ecuacién de autovalores se convierte en la relacion matricial

« 3
0 Tap(k) A =F A donde fap(k) = —tZe_ik'” (A.6)
fap(k) 0 B B =1

Las soluciones de esta ecuacion son E(k) = ++/|fap(k)|?. Introduciendo los vectores 7 de

(A.1) queda, tras un poco de élgebra, la relacién de dispersién

K ko
E(k) = +/|fap(k)|?2 = it\/l + 4 cos? Ta + 4 cos Ta cos \/§k:ya2 (A7)

Notar que es una funcion simétrica respecto del plano E = 0, correspondiendo cada signo a
la banda de valencia y la de conduccién. Esto, junto con el hecho de que solamente participa
en la conduccién un electrén de cada dtomo, a temperatura cero la banda de valencia se ocupa
completamente y la de conduccion esta vacia, quedando el nivel de Fermi en Er = 0. Ademss,
esta funcién se anula en seis puntos, de los cuales solo dos son no-equivalentes, y usualmente se

denominan valles KT y K~

_ 21 2/3 e 21 —2/3
a 0 a 0

K+ (A.8)

Si nos situamos en un punto k = K* + g, con |g| < |K*| y expandimos el hamiltoniano en
P q q y

una serie de Taylor en torno a g = 0 tenemos:

3a0t 0 dx — iQy

HK:I:Jrq = 7 . = th(QacUac + any) (A9)
Qe +1qy 0
donde o; son las matrices de Pauli
0 1 0 —i 1 0
Oy — Oy = o, =
10 i 0 0 -1

Este hamiltoniano es equivalente al hamiltoniano de Dirac para particulas sin masa,

Hp = ihey"0,, = heatky, = he(kpor + kyoy) (A.10)
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y la relacién de dispersién cerca de los puntos K+ queda
E(K* +q) = hvpy/¢3 + ¢ (A.11)

Vemos que los electrones del grafeno en el nivel de Fermi no tienen la relacién de dispersién
parabdlica propia de materiales convencionales, sino que es lineal, comportdndose como fermiones

relativistas con masa efectiva nula.
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B Modelo tight-binding en nanocintas de grafeno

Andlogamente a como hemos hecho con el grafeno en el Anexo A, podemos emplear un método
de tight-binding en nanocintas para cada geometria para obtener tanto la estructura de bandas

como las funciones de onda.
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Figura 14: Representacién de los dos tipos de nanocintas de grafeno: (a) Armchair y (b)
Zigzag. Se asume que los dtomos situados en los bordes estan enlazados a hidrégenos para que
no contribuyan a la conductividad. Imagenes tomadas de [17].

Nanocinta tipo armchair

Primero tratamos el caso de una nanocinta tipo armchair. Definimos su anchura como el nimero
de dimeros en la direccién trasversal, etiquetados por m, y definimos la celda unidad como la
seccién que se repite periddicamente en la direccién longitudinal, etiquetadas por [ (figura (14a)).

El hamiltoniano tight-binding empleado para describir el sistema es [17]

H=-t)" Z af (m)b_1(m) + > af(m)b(m) p + h.c.
! N: impar m par (Bl)

3y {b}(m + Da(m) + af (m + 1)b,(m)} Y he
I m=1

En este hamiltoniano, la primera linea representa movimiento de electrones en la direccién
trasversal, mientras que la segunda representa un movimiento longitudinal. Aqui, el operador
azr(m) representa la creacién de un electrén en el dtomo de la subred A, del dimero m y la
celda unidad [. Analogamente, b;(m) crea un electrén en el atomo correspondiente de la sub-
red B. Aprovechando la simetria bajo desplazamientos en el eje longitudinal, podemos definir

operadores creacion y destruccién de estados con momento definido k& como la transformada de
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Fourier

flm) — & —ikyma o} flm) — —ikymp g
ay(m) = Ze mAag(m) by (m) = Ze mE By (m)
Ly k /Ly k (B.2)
1 ” 1 ” )
ay(m) = e mA o (m) bi(m) = e"™mB B (m)
V' Ly zk: V' Ly zk:
Por conveniencia definimos la coordenada y de los 4tomos como
A= = A= ..=
Yia Yi2B = Y13 Ui (B.3)
YI1B = Y24 = Yi3B = -.. = Y1 +ar/2

donde ar = 3ag es la anchura de la celda unidad. Introduciendo todo esto en el hamiltoniano

se tiene

H=-—t Z Z efik“TﬂaL(m)ﬁk(m) + h.c.
k m

(B.4)
—t Z Z {B,i(m + Dag(m) + a;fc(m + 1)/Bk(m)} + h.c.
k m
Definimos un estado de un electrén en la celda unidad como
(k) = > (bmack(m) + mpBl(m)) |0) (B.5)

m

donde |0) es el estado vacio. La relacién de dispersién viene dada por la ecuacién de autovalores

H|y(k)) = E(k)|¢(k)), luego introduciendo este estado en el hamiltoniano y empleando las

relaciones
ag(m)a (m) |0) = |0) ay(m)[04,9p) =0 (B.6)
Br(m)BLm)[0) =10)  Br(m) [4,0) = 0
se llega al sistema de ecuaciones (a partir de ahora denotamos E = E/t)
Etma = —e~thar/2 mB — Y(m— — ¥(im
Yma YmB — Y(m-1)B — Y(m+1)B B.7)

Emp = —e*T 204 — P 194 — Yima1)a

que debemos resolver con las condiciones de contorno adecuadas. Estas condiciones consisten en
suponer que los dtomos de los bordes de la nanocinta estdn enlazados a atomos de hidrégeno,
correspondientes a las posiciones m = 0y m = N+1. Por tanto imponemos que en los hidrégenos

la funcién de onda se anule, esto es,

Yoa = YoB = Yn+1)a = Vw1 =0 (B.8)
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Proponemos una solucién de la forma

Yma = AP 4 Be T = A(eWT — T

. | | | (B.9)
¢mB — C«ezpm + De—'me — C(ezpm . e—zpm)

donde hemos usado las condiciones de contorno en m = 0 para relacionar A = —-By C = —D,
y donde p corresponde con el vector de ondas en la direccién trasversal (que estard discretizado
por la anchura finita) y & el vector de ondas en la direccién longitudinal (que serd continuo entre

—m/2 < kar < w/2). Sustituyendo en las ecuaciones anteriores tenemos

E €p + e~ tkar /2 A 0
= (B.10)
€p + etkar/2 FE C 0

donde definimos €, = 2cos(p), de tal forma que tendremos una solucién no trivial cuando el
determinante de la matriz sea nulo. Esta condicién nos da finalmente la relaciéon de dispersién
de la figura (9a,b).

lmT
E(kvp) = i\/1+2€pCOSQ+€% (Bll)

Adicionalmente, podemos emplear las condiciones de contorno en m = N + 1 que no hemos

usado antes para obtener la discretizaciéon de p:
binsya = APV — PN = — sin(p(N +1)) =0 (B.12)

luego tenemos N valores de p correspondientes a diferentes subbandas de energia, dados por

r=1,.,N (B.13)

Como ultimo comentario acerca de la relacién de dispersion, puede verse que existen valores
de N para los que la nanocinta es metalica y otros para los que presenta un gap de energia en
E =0. Tomando k =0y F =0 en (B.11), la condicién que debe cumplirse para que el sistema
sea metélico es

N=3r-1 (B.14)

Podemos también obtener las funciones de onda en la nanocinta. Tomando el sistema de

ecuaciones (B.10) podemos relacionar los coeficientes A y C' como

ep + e*ikaT/Q
A=F C (B.15)

/ep + e’ik(lT/Q




de forma que la funcién de onda es, normalizdndola debidamente,

€ + e—ik:aT/Q
Vma =N TV sin(mp) (B.16)
me lep + e’ik‘(lT/2

o equivalentemente, en el espacio de posiciones,

N :F\/meikyl,mA
wmA (ylﬂnA) _ Z P s]n(mp) (Bl?)

UmB(Yi,mB) VEy 57\ /6 + eihar/2ebnms

Vemos, por tanto, que la funcién de onda estd extendida por toda la red y que toma el mismo

valor, salvo por una diferencia de fases, en los dos tipos de dtomos A y B.

Nanocinta tipo zigzag

Tratemos ahora el caso de una nanocinta tipo zigzag (figura (14b). En este caso, la anchura
se define como el nimero de cadenas en zigzag en la direccion trasversal. El hamiltoniano

tight-binding que empleamos en este caso es

H=—tY" ¢ bima_i(m)+ > al(mb_i(m)p+h.c.
l

m par m impar

N
— tz Z b;(m)al(m) + h.c. (B.18)
I m=1

N-1
—t> 3" aj(m+1)bi(m)
I m=1

donde la primera linea representa un movimiento longitudinal entre celdas unidad, la segunda
linea representa un movimiento longitudinal dentro de una misma celda y la tercera linea rep-

resenta un movimiento en la direccién trasversal.

Andlogamente al caso armchair se emplean los operadores creacion y destruccion en el espacio
de momentos y se resuelve la ecuacion de autovalores H [¢)(k)) = E(k) [¢(k)), con |¢(k)) definido

en (B.5). El sistema de ecuaciones al que se llega en este caso es

EvYma = —gk¥Pmp — 'Qb(m—l)B (B 19)

EtYmp = —gktma — ¢(m—1)A

donde g = 2 cos(kar/2), y donde en este caso debemos resolverlo con las condiciones de contorno

impuestas por la existencia de atomos de hidrégeno en los bordes:

YoB = Ym+1)a =0 (B.20)
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Si proponemos una, solucién de la forma

Yma = AeP™ 4+ Bem T = AP — 22~

, . . . (B.21)
me — (P 4 De~Pm — C(ezpm . e—zpm)

donde hemos utilizado las condiciones de contorno y definido z = exp(ip(/N + 1)), al sustituir en

las ecuaciones queda

E(eipm _ zQeipm) (gk’ + efip)eipm _ (gk + eip)efipm A B 0
(gr + €P)eP™ — 22(gp + e~ P)e~Pm E(ePm — i) C 0
(B.22)

Nuevamente, la solucién no trivial viene determinada por det(M) = 0. Esto es posible para
p # 0,7, valores para los cuales la matriz se anula idénticamente. Anulando el determinante

tenemos:

[E? — (g1, + e7P) (g, + €P)] XP™ + [E222 — 2% (g + e~ P) (gp + €P)] e 2Py
v w
+[~E? = B22? 4 22(gy + ¢ 7)? + (g5 + %)% = 0 (B.23)

T

— 0?4 e P 4 g =)

Debemos, por tanto, anular los coeficientes v, w, x por separado:

e Anulando v o w se obtiene la relacién de dispersion,

E = i\/gg + 2cos(p)gr + 1 (B.24)

e Anulando z se obtiene la discretizacion del vector de ondas trasversal, p,

F(p,N) =sin(pN) + gisin[p(N +1)] =0 (B.25)

Aunque (B.25) puede resolverse numéricamente, vale la pena analizarla graficamente. Esta
funcién se muestra en la figura (15). Puede verse que existe un valor de g critico por debajo
del cual desaparece una de las soluciones, indicando la degeneracién de dos bandas en una sola

(E = 0). Este valor critico se da cuando la pendiente de la funcién en p = 7 se anula, es decir,

F(p,N) =0 <= gi=t—— (B.26)
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Figura 15: Representacién de la funcién F(p, N = 4) de (B.25). (a) Caso |gr| > g, para el

cual existen N soluciones. (b) Caso |gx| < gf, para el cual existen N — 1 soluciones. Iméagenes
tomadas de [17]

luego el valor de k critico es, recordando la definicién g = 2 cos(kar/2),

2 1/2 o
k¢ =+-—cos™! +— B.2
cos <1 1 /N) Nooo  3a (B-27)

que en el limite de grafeno 2D, N — oo, coincide con los puntos de Dirac.

Tras este andlisis distinguimos dos tipos de estados:

e Primero tenemos los estados extendidos, que son aquellos solucién de (B.25) y cuya relacién

de dispersién es (B.24). Las funciones de onda de estos estados son

¢mA - N Sin[p(N +1- m)] (B28)

UmB sin(pm)

e Por otro lado tenemos los estados localizados, que son los estados que ’desaparecen’ para
lgr| < g;- Estos podemos obtenerlos extendiendo los anteriores analiticamente, es decir,
tomando una parte compleja en p = 0, 7. Asi, definimos pg = 0+in y pr = w+in, y donde

7 es Unico para cada valor de p y puede obtenerse de (B.25).

La relacién de dispersion de estos estados se obtiene tomando (B.24) y tomando

1, . , 1
cos(m +in) = 5(6”r¢77 + e imE) = —5(6:':77 + ) = — cosh(n)

1 ‘ 1 (B.29)
cos(0 £ in) = 5(67’0@7 + e 10%m) = 5(63”’ + ) = cosh(n)
obteniendo asi la relaciéon de dispersion
:l:\/l + g2 — 2g;, cosh(n) , para pr
Jo k (n) (B.30)

j:\/l + g,% + 2gy, cosh(n) , para pg
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En cuanto a sus funciones de onda, se pueden obtener de las anteriores y son funciones

localizadas exponencialmente en los bordes de la nanocinta:

. TN+ Ginh[n(N +1 —m
Neimm [ T [n( )l C para
sinh(nm
Yma | _ (m) (B.31)
YmB Fsinh[n(N + 1 —m)]
N , para pg
sinh(nm)
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C Ecuacién de Mel’nikov

Para obtener la ecuacién de Mel’'nikov (2.19) vamos a considerar un conductor unidimensional

de longitud L en el que existe desorden. La matriz de transferencia en forma polar es

M et 0 V1+ det? Ve e~ 0 1)
0 e Ve V14 de 0 e '

donde los distintos pardmetros seguirdn una cierta distribucién de probabilidad. Dado un en-

semble de conductores, definimos la probabilidad diferencial de una matriz M como
dPy(M) = pr,(M)du(M) (C.2)

donde pr, (M) es la densidad de probabilidad de M y du(M) una medida invariante, de tal forma

que el valor esperado de una funcién de M es

< f(M) >= / (M) pr (M)dp(M) (C3)

Supongamos que tenemos dos secciones de conductor de longitudes L” y L', con matrices
de transferencia M"” y M’. Por la propiedad multiplicativa de la matriz de transferencia, para
el sistema completo se cumple M = M’M"”. Primero debemos hallar, conocidas las densidades
pr(M') y ppn(M"), la densidad de probabilidad prs»(M). Para ello, suponiendo que las dos
secciones son estadisticamente independientes, escribimos el valor esperado de una funcién de
M:

< 500) > = [ [ 70 (s (M) (317) =
(C.4)

— [ a0 £ [ a0 0 0 31 (01

donde en la segunda igualdad se ha hecho el cambio de variable M” = M'~'M. Comparando esta

expresién con (C.3) podemos identificar la densidad de probabilidad total como la convolucién

puis(M) = pir @1 = [ MY (M M)y (1) (C.5)

Esta expresion la vamos a emplear tomando L” = L y L' = §L de forma que, partiendo de
un conductor de longitud L, podemos anadir una seccién infinitesimal §L de forma recursiva
para lograr conductores de cualquier longitud. Para hacer esto necesitamos conocer la densidad
de probabilidad de la matriz de transferencia asociada al bloque éL. Esto lo logramos con

un modelo de méaxima entropia. Definimos la entropia asociada a la densidad de probabilidad
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ps,(M') como

Stpst) = = [ por (M) In (psr (M) du(2
(C.6)
- /pﬁL()\/v 0/7 :U'/) In (p(SL()\/: 0,1 /.L/)) dﬂ()\/7 9/7 M,)
Obtenemos la densidad ps; maximizando esta entropia bajo las siguientes restricciones:
1. Normalizacién: [ psr(N, 0, p')dNdo'dy' =1

2. Primer momento: < X' >=0L/l, donde [ es el mean free path eldstico.

El resultado de maximizar la entropia es la densidad de probabilidad

1 '
psL(M') = 5T/l€_/\ /LMD ps(0') = psp(X,0) (C.7)

La densidad de probabilidad de A la obtenemos por medio de la transformada de Fourier de

la funcién generadora de momentos

1 [
Prisp(A) = / e prisr(t)dt donde

(C.8)

T do’ do” dy’ du”

Prasr(t) = < AN(M' M ) ///e i )\// 9" p&L()\, Q)d/\ ' ap ap

o 21 21 2m

y donde A\(M’, M") lo obtenemos a partir del producto M = M’'M", quedando

A= N N 4 2NN 4 20/ N (1 + NN+ N cos2(i” + 0 — )] (C.9)

El objetivo es transformar prysr en una ecuacién diferencial, para lo cual tomaremos el
limite 6L — 0. En este limite la matriz de transferencia M’ debe tender a la identidad, por lo

que X' — 0. Por ello, expandimos las integrales anteriores en potencias de )\, quedando

2

5 O (14 20)p (] (V)

A+ XpL NN+ X)) = 55
+O ((X)?)

pr+sc(A) = pr(A) + (C.10)

Los momentos ((\')");; los podemos obtener a partir de la distribucién marginal de X,
obtenida de (C.7)

psr(\) = /JUJL27r ST = (W) =nt 7 (C.11)
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Sustituyendo en (C.10) y tomando el limite

i PLror) =pr(A) _ 9pr(A)
11m —
SL—0 oL oL

tenemos finalmente la ecuacion de Mel’nikov:

dps(A) 0
ds O\

(C.12)

donde definimos s = L/I.
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D Combinacién de matrices de scattering

Dado un problema de scattering en un conductor con un numero elevado de conexiones es
habitual dividirlo en problemas maés pequenos, definiendo para cada uno de ellos una matriz de

scattering, y combinarlas para obtener la del sistema completo:
S =504 502 (D.1)

Para ilustrar el mecanismo de combinar matrices S tomemos el problema de la figura (5), para
el que buscamos la matriz S’ tal que {0’} = S’{a’} y donde separamos el problema en los dos

puntos de contacto definiendo las matrices S y S tales que

( / !
", “ b " l "
b al,
h=54" ap=804p o 3 =Sy (D.2)
b as
" y by ay by ay
4 4

Ademés, por comodidad relacionamos las amplitudes (a,b,d’,b") a través de otra matriz

il
~
S

b _ 5(12) a

v a’ t 7 a’

(D.3)

La idea es manipular estas relaciones matriciales para obtener una matriz que relacione

directamente las amplitudes b} y a,. Para ello, podemos reescribir las relaciones (D.2) como

) N I O B I
2 0o S 0 sFio sy |
I O VI A O N Y e [see seo| [
v, 0o s o s o SB[ ]a Al |Sor Soo| | B
ol |5 o0 s 0 s o b
d] o s o0 sEio sH |

(D.4)

40



De esta forma nos queda el siguiente sistema:

{0'} = Spp{d’} + Spo{B}
{A} = Sqp{d'} + Seq{B} (D.5)
{B} = S {A}

Despejando {B} de la segunda ecuacién usando la tercera y la unitariedad de S02) ¢ susti-
tuyéndolo en la primera ecuacion, tenemos finalmente
- —1
{b/} = Sl{a/} donde S’ ' =Spp+ Sp@ SU2)x _ SQQ] Sop (D.6)
o, de forma explicita,
S = Spp+
(1) 2)\ o(1 17 o2 1) 2)\ o(1 17 o2
S§2)(7"/ - 552))551) *S§2)t Sigl) S§2)(T/ - Séz))sés) *S§2)t 553)
2) 7 o1 2) [ ) o2 2) 7 o(1 2) 1) o2
1 _552)75 551) 552)(7“ - 552))53(&) _552% 553) 552)("” - 552))553)
N (D.7)
1) s 1)y o1 1)z o2 1) /i 2)5 o1 1) 74 o2
Szgz) (7" — SéZ))Sél) _Szg,z)t 5251) Ség) (7" — SéQ))S?EQ) _Séz)t Sés)
2) 2 (1 2) [ ) o2 2) 7% o(1 2) 1) o2
- éz)t Sél) Sa(¢2)(7" *552))5351) - :E,z)t 553) S§2)(r *Séz))séza)_

donde A= (T"— S%))(f/* — 552)) — ()

de donde obtenemos directamente las relaciones (4.4).
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