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Resumen

En este trabajo se generaliza el formalismo de Koopman para sistemas estad́ısticos clásicos em-

pleando C∗-álgebras y la construcción GNS. Consideramos la aplicación a sistemas h́ıbridos clásico-

cuánticos y se comprueba que la dinámica unitaria h́ıbrida tiene limitaciones para describir dinámica

de sistemas f́ısicos. Se propone una dinámica no unitaria nueva bien definida y se verifica que po-

see propiedades f́ısicas más interesantes que la dinámica unitaria, a pesar de tener también ciertas

limitaciones. Finalmente, se simula numéricamente un sistema h́ıbrido sencillo para corroborar las

predicciones teóricas de este trabajo.

Palabras clave: Formalismo de Koopman, sistemas Hamiltonianos, sistemas h́ıbridos, dinámica

Markoviana.



Abstract

In this project, we generalize Koopman’s formalism for classical statistical mechanics, using C∗-

algebras and the GNS construction and apply it to classical-quantum hybrid systems. We study the

hybrid unitary dynamical systems and realize these have an important limitation when it comes

to describing physical hybrid systems. In order to solve this limitations, we propose a non-unitary

dynamical system based on the theory of quantum open systems, and we check that it is capable of

describing more cases of real hybrid system’s dynamics. Finally, we simulate numerically a simple

hybrid system in order to sustain the theoretical predictions made in this project.

Palabras clave: Koopman’s formalims, Hamiltonian systems, hybrid systems, Markovian dyna-

mics.
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4.2.4. Operador de Kraus puramente cuántico . . . . . . . . . . . . . . . . . . . . . 20

4.2.5. Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. Conclusiones y lineas de trabajo futuro 22
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F.2. Simulación numérica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

F.2.1. Koopman en este ejemplo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

F.2.2. Simulación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



Capı́tulo 1
Introducción y objetivos

Los sistemas h́ıbridos clásico-cuánticos (SHCQ) son aproximaciones a aquellos sistemas original-

mente cuánticos que contienen grados de libertad que pueden aproximarse como variables clásicas.

Esta casúıstica puede darse cuando en un sistema hay diferentes escalas de enerǵıa o masa como

ocurre, por ejemplo, en sistemas moleculares y de materia condensada donde el núcleo es pesado y

lento y los electrones son ligeros y rápidos. De hecho, en f́ısica molecular, como son los electrones de

valencia los que dotan a la molécula de sus propiedades qúımicas, en simulaciones numéricas estos

electrones suelen tratarse cuánticamente y el núcleo y el resto de los electrones clásicamente para

que el coste computacional de las simulaciones sea viable.

La mecánica clásica (MC) y la mecánica cuántica (MQ) presentan diferencias formales en cuanto a

su estructura matemática subyacente se refiere: mientras que MC se ha descrito tradicionalmente en

términos de geometŕıa diferencial, la MQ ha recurrido al análisis funcional y al ágebra; sin embargo,

para poder hacer un formalismo h́ıbrido clásico-cuánticos, ambas teoŕıas han de estar escritas en

el mismo formalismo matemático. Una forma de tratar estos sistemas es con el formalismo de

Ehrenfest, el cual permite controlar fácilmente el error que se comete en el modelo h́ıbrido respecto

al sistema puramente cuántico original (véase [4]). Las ecuaciones de Ehrenfest describen un sistema

dinámico definido en el espacio de fases resultante de hacer el producto cartesiano de los espacios de

fase clásico y la cuánticoMC×MQ. Las ecuaciones de Ehrenfest forman un sistema de ecuaciones no

lineales acopladas que describen la dinámica del sistema h́ıbrido, en la cual la parte clásica y la parte

cuántica se ven afectadas mutuamente. En [3] se prueba que este sistema admite una estructura

Hamiltoniana con un determinado corchete de Poisson h́ıbrido y una función Hamiltoniana h́ıbrida,

haciendo posible el tratamiento geométrico de estos sistemas.

Hasta aqúı, hemos considerado sistemas puros, sin embargo, en simulaciones moleculares por ejem-

plo, es prácticamente imposible determinar el estado inicial de la molécula, por lo que, es más

razonable tratar con sistemas estad́ısticos en vez de sistemas puros. Ya que se tratan de sistemas

Hamiltonianos, un posibilidad consiste en tratarlos en términos geométricos, es decir, un sistema

estad́ıstico h́ıbrido quedaŕıa descrito en términos de densidades de probabilidad sobre el espacio de
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fases h́ıbrido MCQ. Aśı, dada una densidad de probabilidad F :MCQ → R los valores esperados de

las magnitudes f́ısicas se escriben como:

< A >=

∫
MCQ

dµCQFA,

donde A ∈ C∞(MCQ) (véase [3]), y su dinámica viene dada por la Ecuación de Liouville:

∂F

∂t
= −{F,H} (1.0.1)

donde H ∈ C∞(MCQ) es el Hamiltoniano h́ıbrido.

Además, la construcción de una mecánica estad́ıstica de equilibrio para sistemas h́ıbridos es funda-

mental para muchas otras aplicaciones, por ejemplo, en simulaciones moleculares a una temperatura

finita resulta crucial conocer el ensemble canónico del sistema y su entroṕıa asociada. Sin embargo,

antes de definir una mecánica estad́ıstica para sistemas h́ıbridos en equilibrio, debemos considerar

tres cuestiones importantes:

¿Cómo se define una entroṕıa en sistemas h́ıbridos?

¿Cuál es la dinámica de estos sistemas?

¿Esta dinámica deja invariante el ensemble canónico? O dicho de otra manera, ¿puede usarse

el formalismo de Máxima Entroṕıa (MaxEnt) para obtener el ensemble canónico de sistemas

h́ıbridos?

Desafortunadamente, el tratamiento geométrico de SHCQ descrito arriba tiene una limitación muy

importante: la imposibilidad de calcular la entroṕıa del sistema estad́ıstico. Recordemos que la

definición de una entroṕıa requiere la distinción de eventos mutuamente excluyentes, sin embargo,

no hay ninguna manera de determinar si dos eventos son mutuamente excluyentes empleando este

tratamiento geométrico (véase [2]). La única manera de solventar esta limitación es recurrir al

formalismo de las matrices de densidad ρ y emplear la entroṕıa de von Neumann S = −tr(ρ lnρ).

De hecho, en [1] se define una entroṕıa para sistemas h́ıbridos y se propone una candidata para el

ensemble canónico empleando matrices de densidad h́ıbridas. Sin embargo, a d́ıa de hoy, debido a la

no linealidad de la dinámica h́ıbrida, no se conoce cómo evolucionan con el tiempo en este formalismo

(ver [8]). Como resumen, podemos concluir que el tratamiento geométrico de SHCQ no presenta

ningún formalismo matemático que permita describir una dinámica h́ıbrida consistente y permita, a

su vez, considerar la entroṕıa necesaria para una mecánica estad́ıstica h́ıbrida de equilibrio. Nuestro

trabajo va a abordar este problema.

En 1931 [10], Bernard Koopman demuestra que la mecánica estad́ıstica clásica puede tratarse con las

mismas técnicas matemáticas que la MQ. Bajo el formalismo de Koopman, los estados de mecánica

estad́ıstica clásica vienen dados por elementos de un espacio de Hilbert y las magnitudes f́ısicas
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se describen mediante operadores definidos en dicho espacio. Además, se tiene una ecuación de

tipo Schrödinger en este espacio desde la cual se puede recueperar la dinámica clásica dada por la

ecuación de Liouville. Nótese que esta dinámica cuántica es lineal, frente a la no lineal de la que

partimos, es decir, la costrucción de Koopman linealiza la dinámica. Naturalmente, dicho enfoque

abre las puertas a una nueva forma de tratar los SHCQ en términos de espacios de Hilbert y de

operadores, en particular, la definición de una entroṕıa del sistema en este formalismo es inmediata.

En [6] se estudia la forma de adaptar el formalismo de Koopman a sistemas h́ıbridos y se propone

una dinámica unitaria, la cual es la dinámica más sencilla a estudiar en este contexto. No obstante,

en ese art́ıculo se demuestra que los grados de libertad cuánticos reciben influencia de los clásicos

pero no en el otro sentido, es decir, que la dinámica h́ıbrida unitaria no presenta back-reaction; lo

cual supone una limitación a la hora de describir ciertos sistemas f́ısicos.

Este trabajo nace de la necesidad de encontrar una dinámica h́ıbrida no unitaria con propieda-

des f́ısicas más interesantes que la unitaria, como puede ser la back-reaction, en el formalismo de

Koopman. De hecho, veremos que la dinámica no unitaria más simple (dinámica Lindbladiana) śı

que presenta back-reaction; lo demostraremos anaĺıticamente y lo veremos mediante simulaciones

numéricas de un ejemplo sencillo.

La estructura del documento es la siguiente. En el caṕıtulo 2 se parte de la construcción original de

Koopman para sistemas puramente clásicos y se adapta a sistemas h́ıbridos. Para ello, se presenta

una estructura matemática que permite el tratamiento de sistemas clásicos en la imagen de Heisen-

berg de forma más general. En el caṕıtulo 3 nos centraremos en la dinámica de sistemas h́ıbridos y

veremos dos dinámicas h́ıbridas distintas, una unitaria y otra no unitaria. Por un lado, se hace una

exposición de la unitaria y se presentan las propiedades f́ısicas que tiene (véase [6]). Por otro lado, se

propone la dinámica no unitaria más simple disponible en la literatura (la dinámica Lindbladiana) y

se estudia sus propiedades. En el caṕıtulo 4 haremos una implementación numérica del formalismo

de Koopman para sistemas h́ıbridos e ilustraremos y corroboraremos los resultados obtenidos en el

caṕıtulo anterior con un ejemplo.

El uso de una dinámica Lindbladiana en sistemas h́ıbridos supone la mayor aportación original de

este trabajo, siendo el primer caṕıtulo y la primera parte del segundo una revisión bibliográfica

que pretende incidir sobre aquellos aspectos que permiten fundamentar y proporcionar una mejor

comprensión de los resultados finales.

Este trabajo partió de una buena comprensión del problema al cual este trabajo busca dar solución.

A esto le siguió un estudio exhaustivo de herramientas de análisis funcional, álgebra, geometŕıa

diferencial y de mecánica hamiltoniana, con la ayuda de libros de texto y bibliograf́ıa especializa-

da. El siguiente paso consistió en idear una posible solución al problema planteado y en estudiar

anaĺıticamente bajo qué condiciones esta solución es válida y sus consecuencias f́ısicas. Finalmente,

se usaron herramientas del cálculo numérico para simular un ejemplo concreto en diferentes casos

para su posterior análisis. El código desarrollado puede encontrarse en GitHub.
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Capı́tulo 2
Formalismo de Koopman y sistemas h́ıbridos

En este caṕıtulo, en primer lugar, resumimos el formalismo de Koopman para sistemas estad́ısticos

clásicos y, en segundo lugar, lo generalizaremos para obtener una dinámica para sistemas h́ıbridos.

Para ello, construiremos una C*-álgebra que represente los sistemas h́ıbridos, a continuación, des-

cribiremos estados del sistema h́ıbrido como matrices densidad en el espacio de Hilbert obtenidos a

partir de la construcción GNS y definiremos sistemas dinámicos clásico-cuánticos como automorfis-

mos (externos) de la C*-álgebra h́ıbrida. Finalmente, caracterizaremos las dinámicas unitarias para

sistemas h́ıbridos

2.1. Formalismo de Koopman para sistemas estad́ısticos clásicos

I: Imagen de Schrödinger

En esta sección, se hace una presentación resumida de la forma en la que Koopman describió un

sistema estad́ıstico clásico mediante un espacio de Hilbert en su art́ıculo original [10] de 1931. Para

una exposición más detallada y rigurosa, véase el Apéndice C.

Consideramos un sistema estad́ıstico Hamiltoniano clásico definido sobre un espacio de fases M
de dimensión 2n con las correspondientes coordenadas generalizadas qi y momentos conjugados pi,

para i = 1, . . . , n (coordenadas de la carta de Darboux sobre M). La densidad de probabilidad

ρ : M → R+ integrada sobre una región del espacio de fases da la probabilidad de que el sistema

se encuentre en dicha región, y cumple:∫
M
ρ · dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn = 1.

Dado un Hamiltoniano H ∈ C∞(M), la dinámica de la densidad de probabilidad viene dada por la

ecuación de Liouville:

ρ̇ = −{ρ,H}, (2.1.1)

donde {·} es el corchete de Poisson (ver Definición B.0.7).
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El formalismo de Koopman permite describir un sistema estad́ıstico clásico mediante un espacio

de Hilbert. La densidad de probabilidad es obtenida a partir del módulo al cuadrado1 de una

función de onda subyacente, los observables vendrán descritos como operadores multiplicativos2 y

autoadjuntos, y la dinámica se describe a partir de la correspondiente ecuación de Schrödinger.

En su art́ıculo de 1931 ([10]), Koopman demostró que la dinámica que se obtiene a partir de la

ecuación de Schrödinger equivale a la obtenida mediante la ecuación de Liouville clásica. Véase la

Tabla comparativa 2.1.1 entre ambos marcos teóricos.

Sistema estad́ıstico

clásico

Formalismo

Koopman

Estado
Densidad de probabilidad

sobre el espacio de fases
Función de onda

Observables
Funciones C∞ sobre

el espacio de fases

Operadores conmutativos

y autoadjuntos

Dinámica
Ecuación de Liouville

(no lineal)

Ecuación de Schrödinger

(lineal)

Cuadro 2.1.1

A continuación, se presenta la forma que empleó Koopman originalmente para describir mecánica

estad́ıstica clásica en términos de espacios de Hilbert. Para ello, definimos el espacio de Hilbert

L2(M) de funciones de cuadrado integrable sobre M como:

L2(M) =

{
f : M → C |

∫
M
f̄f dqndpn <∞

}
, (2.1.2)

junto con su producto escalar

⟨f |g⟩ :=
∫
M
f̄g dqndpn ∀f, g ∈ L2(M). (2.1.3)

Consideremos un3 estado ϕρ ∈ L2(M) que cumple:

ρ = ϕ̄ρϕρ, (2.1.4)

entonces, ϕρ representa el estado de nuestro sistema estad́ıstico clásico en términos del espacio de

Hilbert L2(M).

En este formalismo, los observables clásicos corresponden a espectros, en general continuos, de

operadores en el espacio de Hilbert L2(M). En particular, como las variables q’s y p’s son análogas,

los que tradicionalmente en f́ısica se consideran operadores posición Q̂ y momento P̂ , cuyos espectros

corresponden a las q’s y p’s, deben conmutar. Por tanto, por extensión, se tiene que el álgebra de

1Analoǵıa a la regla de Born de la Mecánica Cuántica.
2A diferencia de en la Mecánica Cuántica, la conmutatividad de los operadores implica la posibilidad de la medida

simultánea de dos observables clásicos cualesquiera
3No es único debido a la fase.
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observables clásicos es conmutativa vista como operadores del espacio de Hilbert. En la imagen de

Heisenberg, donde la dinámica está definida sobre los operadores, esta conmutatividad impide definir

una evolución que corresponda a un automorfismo interior el álgebra como ocurre en la ecuación

de Heisenberg habitual que corresponde a la acción del conmutador con un Hamiltoniano contenido

en el álgebra. Por tanto, para poder definir una dinámica no trivial a partir de la acción adjunta

de un operador Hamiltoniano, se requiere extender el álgebra de observables clásicos y definir un

automorfismo externo que deje invariante la subálgebra conmutativa clásica. Es esto lo se ha hecho

en el formalismo de Koopman al definir el operador de Koopman que es un operador diferencial

de primer orden por lo que no define un automorfismo interno de la subálgebra conmutativa de las

magnitudes f́ısicas4. Que el operador de Koopman no pertenezca al álgebra de magnitudes f́ısicas

va a tener grandes implicaciones a lo largo del trabajo.

Llegados a este punto, nos hacemos la pregunta ¿cómo evoluciona el estado ϕρ a lo largo del

tiempo? Para responderla, consideramos el flujo Hamiltoniano clásico Ft : M → M, que es una

transformación canónica5 sobreM. En [10], Koopman probó que este flujo define una transformación

unitaria en el espacio de Hilbert L2(M) y, por el Teorema de Stone (Teorema A.1.8), existe un

operador autoadjunto L̂ tal que es el generador infinitesimal de la evolución temporal.

Definición 2.1.1 (Operador de Koopman). Se define el operador de Koopman como el operador

diferencial de primer orden dado por:

L̂ = −i
(
∂H

∂qk
∂

∂pk
− ∂H

∂pk

∂

∂qk

)
. (2.1.5)

Este operador de Koopman corresponde al generador infinitesimal del operador unitario correspon-

diente al flujo Hamiltoniano. De esta manera, se tiene una ecuación de Schrödinger en L2(M) para

ϕρ desde la cual se recupera la ecuación de Liouville si se calcula ρ con la Ecuación (2.1.4):

iϕ̇ρ = L̂ϕρ, (2.1.6)

donde recordemos que ϕρ = ϕρ(q
i, pj) depende de las coordenadas generalizadas q

i y de los momentos

conjugados pj . Es decir, L̂ hace las veces de Hamiltoniano para una ecuación de Schrödinger.

Como conclusión, el formalismo de Koopman define un álgebra conmutativa de operadores que

representan magnitudes clásicas que es una subálgebra del espacio de operadores lineales del espacio

de Hilbert L2(M). La dinámica viene dada por un automorfismo exterior del subálgebra generada

por el operador de Koopman

4Ya que, los operadores
∂

∂qk
y

∂

∂pk
no son observables f́ısicos.

5Una transformación canónica es aquella que deja invariante el paréntesis de Poisson o, en otras palabras, conserva

la forma y la validez de las ecuaciones de Hamilton.
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2.2. Formalismo de Koopman para sistemas estad́ısticos clásicos

II: Imagen de Heisenberg

La forma moderna de tratar el formalismo de Heisenberg de un sistema f́ısico es mediante una

estructura matemática llamada C∗-álgebra. Esta estructura alberga toda la información f́ısica sobre

el conjunto de observables de un sistema como puede ser la dinámica y las probabilidades de un

sistema estad́ıstico6, por tanto, lo podemos usar para generalizar el formalismo de Koopman a

cualquier sistema f́ısico descrito por una C∗-álgebra. Para ello, en esta sección, escribiremos el

formalismo de Koopman que hemos visto en la Sección anterior (véase Sección 2.1) en términos de

C∗-álgebras, para, a posteriori, facilitar la generalización de este procedimiento a la C∗-álgebra de

un sistema h́ıbrido.

Una C∗-álgebra es una estructura algebraica compleja que tiene definida una norma y una con-

jugación en la que podremos identificar una parte real (la subálgebra autoadjunta) y una parte

imaginaria (véase Definición A.1.13). Esta subálgebra autoadjunta de un sistema corresponderá

a los observables f́ısicos del mismo. La construcción GNS7 (véase Apéndice A.1) nos asegura que

dada una C∗-álgebra A cualquiera8, se puede construir una representación π de A en el conjunto

de operadores lineales y acotados de un espacio de Hilbert B(H), es decir, una C∗-álgebra puede

representarse como un subconjunto de operadores lineales y acotados de un espacio de Hilbert9; esto

justifica que nos basta conocer el álgebra A para reconstruir el conjunto de operadores y estados de

un modelo. Las matrices de densidad de dicho espacio de Hilbert serán duales a esos operadores y

corresponderán a los estados f́ısicos del sistema. Si dotamos de dinámica a los operadores de dicho

espacio de Hilbert, diremos que estamos en al imagen de Heisenberg, si por el contrario, dotamos

de dinámica a las matrices de densidad, diremos que estamos en la imagen de Schrödinger.

Hagamos lo mismo que hizo Koopman originalmente pero en términos de C∗-álgebras. Para empezar,

Koopman toma la C∗-álgebra clásica AC correspondiente a la complexificación de los observables

clásicos Cc(MC) (MC el espacio de fases) y, mediante un procedimiento idéntico a la construcción

GNS, obtiene una representación del álgebra AC dentro de B(HC), el conjunto de operadores aco-

tados del espacio de Hilbert HC = L2(M), donde los estados f́ısicos serán elementos de su dual

B∗(HC) que se pueden representar por matrices densidad (véase Figura 2.2.1b).

Sin embargo, el operador de Koopman (cuya representación será el operador Hamiltoniano) no

pertenece a la C∗-álgebra AC , ya que, Πqk y Πpk no son elementos de AC , es decir, el operador de

Koopman no es un observable f́ısico porque Πqk y Πpk tampoco lo son. De hecho, necesitamos que

el operador de Koopman no esté en AC para definir una dinámica no trivial en mecánica clásica

6Más precisamente, es la subálgebra autoadjunta, que forma un álgebra de Lie-Jordan-Banach la que alberga las

propiedades f́ısicas del sistema.
7El procedimiento de Koopman resulta un caso particular de este procedimiento; aunque cabe destacar, que históri-

camente, la construcción GNS es posterior al art́ıculo original de Koopman.
8Y un estado (en el sentido de C∗-álgebra) ω ∈ A de A
9En el caso de Koopman, este espacio de Hilbert es L2(M)
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en este formalismo. Los operadores Q̂ y P̂ , correspondientes a los elementos de AC q y p; y los

operadores πC(Πp) y πC(Πp), correspondientes a los elementos derivativos Πqk y Πpk ; actúan sobre

un ϕ(q, p) ∈ L2(M) de la siguiente manera:

Q̂ϕ(q, p) = q · ϕ(q, p), P̂ ϕ(q, p) = p · ϕ(q, p),

πC(Πq)ϕ(q, p) = −iℏ ∂
∂q
ϕ(q, p), πC(Πp)ϕ(q, p) = −iℏ ∂

∂p
ϕ(q, p) .

En cuanto a la dinámica, hemos visto que, en el formalismo de Koopman, la ecuación de Liouville

de un sistema estad́ıstico clásico en un espacio de fases puede resolverse como la acción de un

grupo uniparamétrico de tranformaciones unitarias en un espacio de Hilbert, es decir, que teńıa

una ecuación de Schrödinger asociada. Este procedimiento linealiza cualquier dinámica clásica no

lineal, en otras palabras, al describir la dinámica clásica en términos de un espacio de Hilbert,

esta se vuelve lineal (véase la Ecuación (2.1.6) donde el operador de Koopman es un operador

lineal). Además, a pesar de que la dinámica ha de estar definida en todo B(HC), esta ha de dejar

invariante la representación de la subálgebra conmutativa πC(AC) y el de los estados f́ısicos (matrices

densidad) D(HC) ⊂ B∗(HC) (en la Figura 2.2.1b se pretende ilustrar esta invariancia de la dinámica

respecto a los subálgebras clásicos) para que esté bien defnido f́ısicamente. En resumen, la dinámica

de Koopman en la imagen de Heisenberg corresponde a un automorfismo externo del subálgebra

πC(AC) generado por un operador Hamiltoniano (2.1.5) que está fuera de la misma.

Si queremos escribir la dinámica sobre los estados, podemos escribir la ecuación de von Neumann

asociada.

i ˙̂ρ = [L̂, ρ̂] (2.2.1)

Basados en las propiedades de la dinámica cuántica del formalismo de Koopman para sistemas

clásicos, impondremos que cualquier dinámica en sistemas h́ıbridos deba cumplir las mismas pro-

piedades.

2.3. C*-álgebra de sistemas h́ıbridos

Una vez visto cómo es el procedimiento, en términos de C∗-álgebras, que empleó Koopman original-

mente para describir un sistema estad́ıstico clásico en términos de operadores sobre un espacio de

Hilbert, identificaremos la C∗-álgebra clásica (la misma que empleó Koopman, véase Sección 2.2) y

la cuántica y postularemos la C∗-álgebra h́ıbrida resultante de unir las dos. Una presentación más

detallada y rigurosa de lo que se va a hacer a continuación se puede encontrar en el Apéndice D.

Por un lado, la C∗-álgebra de un sistema cuántico AQ será el álgebra de operadores acotados B(H)

sobre un espacio de Hilbert H y los observables, naturalmente, los operadores autoadjuntos sobre

dicho espacio, es decir, lo común en mecánica cuántica.
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(a) Esquema de la estructura algebraica de la C∗-

álgebra h́ıbrida y su representación GNS.

(b) Procedimiento de Koopman visto en términos

algebraicos, mostrando las curvas de la dinámica.

Figura 2.2.1: Esquemas de las estructuras algebraicas.

Por otro lado, la C∗-álgebra de un sistema clásico AC , como se ha visto en la sección anterior, será la

complexificación del conjunto de funciones continuas de soporte compacto sobre el espacio de fases

Cc(M,C). Al contrario de lo que pasa en el caso cuántico, en el caso clásico la parte imaginaria

de la C∗-álgebra10 es un artificio matemático sin significado f́ısico, ya que, son los observables los

únicos elementos del álgebra clásica los que poseen sentido f́ısico.

En [6], se postula que el sistema h́ıbrido vendrá descrito por la C∗-álgebra resultante de hacer el

producto tensorial de la C∗-álgebra clásica y cuántica AH := AC⊗AQ. En f́ısica cuántica, el espacio

de Hilbert de un sistema compuesto de dos subsistemas es el producto tensorial entre sus espacios de

Hilbert, por tanto, la razón de definir AH como el producto tensorial del sistema clásico y el cuántico

es que el sistema original es puramente cuántico y lo estamos interpretando como la combinación

de dos subsistemas cuánticos, a pesar de que los operadores de la parte clásica conmuten. Aunque

puede haber más formas de definirla, en este trabajo se seguirá este postulado. Por ejemplo, si

tenemos un sistema clásico acoplado a un sistema cuántico de dos niveles, los elementos de AH

serán matrices 2× 2 cuyos elementos dependerán de (qi, pi).:(
f1 f2

f3 f4

)
, donde fk = fk(q

i, pi)∀k.

En cuanto a los sistemas h́ıbridos, a partir de la construcción anterior, tendremos una representación

πH = πC ⊗ πQ y los operadores de sistemas h́ıbridos (cuyas C∗-álgebras tendrán la forma AH =

AC ⊗ AQ) formarán una subálgebra πH(AH) = πC(AC) ⊗ πQ(AQ) ⊂ B(HC ⊗HQ) del espacio de

operadores lineales y acotados de un espacio de Hilbert HC ⊗HQ (véase Figura 2.2.1a). Los estados

del sistema h́ıbrido vendrán dados por sus matrices densidad correspondientes (véase Teorema A.1.7)

D(H) ⊂ B∗(HC ⊗HQ).
10La parte imaginaria de la C∗-álgebra cuántica contiene, entre otros, el operador unitario que describe la dinámica

de un sistema f́ısico, ya que, esta no es autoadjunta. Es decir, la parte imaginaria de dicha álgebra cuántica surge

naturalmente y posee sentido f́ısico.
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Capı́tulo 3
Dinámica h́ıbrida

Sea un sistema h́ıbrido descrito por la C∗-álgebra AH = AC⊗AQ y πH = πC⊗πQ la representación

GNS sobre B(HC ⊗HQ) (véase Sección 2.3). En analoǵıa al formalismo de Koopman para sistemas

clásicos (véase Ecuaciones 2.1.6 y 2.2.1 de la Sección 2.2), una dinámica h́ıbrida deberá cumplir las

siguientes condiciones:

1. La dinámica será lineal, por lo que existe un operador L ∈ B(HC ⊗HQ) tal que

dπH(f)(t)

dt
= LπH(f)(t), ∀f ∈ AH , (3.0.1)

y en el espacio de matrices densidad D(HC ⊗HQ),

dρ̂H(t)

dt
= L†ρ̂H(t), ∀ρ̂H ∈ D(HC ⊗HQ), (3.0.2)

2. La evolución ha de ser tangente al conjunto de matrices densidad D(HC ⊗HQ), es decir, ha

de definir una curva en el espacio de operadores autoadjuntos definidos positivos (eLtD(HC ⊗
HQ) ⊂ D(HC ⊗HQ), ∀t) y la traza se ha de preservar:

Trρ̂H(t) = 1, ∀t⇒ Tr

(
dρ̂H(t)

dt

)
= 0.

3. La evolución ha de ser un automorfismo externo1 de πH(AH), es decir, necesitamos definir un

operador Hamiltoniano que no pertenezca a la C∗-álgebra conmutativa clásica2 y la evolución

debe dejar invariante el subespacio πH(AH) ⊂ B(HC ⊗HQ), i.e.

eLt(πH(AH)) ⊂ πH(AH), ∀t.
1La C∗-álgebra conmutativa clásica AC tiene una estructura de Lie trivial y, como la estructura de Lie está asociada

a la evolución temporal del sistema, si esta se anula para todo elemento del álgebra, no habŕıa dinámica.
2Análogo al formalismo de Koopman donde el operador de Koopman, que haćıa las veces de Hamiltoniano, tampoco

pertenećıa a AC .
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A continuación, se verán los dos casos de dinámicas más simples posibles, ya que, ambas cumplen,

por construcción, la condición 1 y 2; es decir, ambas dinámicas son lineales y dejan el espacio de

matrices de densidad invariantes. Comprobar que una dinámica cumple la condición 2 anaĺıticamente

es costoso y estos ejemplos son ideales ya que nos aseguran que esta condición se cumple, pudiendo,

aśı, despreocuparnos de ello. En ambos casos, solamente debemos imponer la condición 3.

3.1. Dinámica h́ıbrida unitaria

En esta sección, consideraremos dinámica unitaria, por lo que existirá un operador Hamiltoniano

Ĥ tal que el operador L será su acción adjunta, i.e.

dπH(f)(t)

dt
= i[Ĥ, πH(f)(t)], ∀f ∈ AH , (3.1.1)

o su ecuación dual correspondiente a la ecuación de von Neumann para sistemas clásicos (empleando

matrices de densidad):
dρ(t)

dt
= −i[Ĥ, ρ(t)], ∀ρ ∈ D(HC ⊗HQ),

donde [·, ·] es el conmutador. Esta ecuación dinámica para las matrices densidad define las órbitas

de la acción coadjunta del operador evolución, es decir, la dinámica unitaria preserva el conjunto de

matrices densidad D(HC ⊗HQ) (cumple la condición 2), como lo hace cualquier sistema cuántico.

A partir de ahora, sin pérdida de generalidad, descompondremos el Hamiltoniano como:

Ĥ = ĤC ⊗ IQ + IC ⊗ ĤQ + ĤCQ (3.1.2)

En [6] se da la forma que debe tomar el operador Hamiltoniano de una dinámica h́ıbrida unitaria

para que cumpla la condición 3, cuando tiene la forma de la Ecuación (3.1.2).

Teorema 3.1.1. El único operador Hamiltoniano de la forma de la Ecuación (3.1.2) que genera

una dinámica unitaria en B(HC ⊗HQ) que define un automorfismo externo del subálgebra h́ıbrido

πH(AH) tiene:

una dependencia lineal respecto a πC(Πqk) y πC(Πpj ) en Ĥc tal que

ĤC =
∑
kj

(αkπC(Πqk) + βjπC(Πpj )), (3.1.3)

donde αk, βj ∈ R y ĤC ∈ πC(AC).

Las exponenciales de los otros coeficientes deben pertenecer a sus correspondientes subálgebras,

i.e., eĤQ ∈ πQ(AQ), e
ĤCQ ∈ πH(AH).

Para recuperar la expresión de la construcción de Koopman, podemos darle los siguientes valores a

los coeficientes αk, βj :

αk = πC

(
∂HC(q, p)

∂pk

)
, βj = −πC

(
∂HC(q, p)

∂qj

)
, (3.1.4)
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donde la función HC(q, p) ∈ AC representa la enerǵıa de los grados de libertad clásicos.

Esta dinámica presenta una limitación importante: la falta de back-reaction, un operador puramente

clásico nunca deja de ser puramente clásico con el tiempo, es decir, los grados de libertad cuánticos

no afectan a los clásicos. Veámoslo con el operador3 Q̂⊗ I. La evolución de dicho operador vendrá

dada por la Ecuación (3.1.1):

iℏ
d

dt
(Q̂⊗ I) =�������

i[hc, Q̂]⊗ hQ + i[HC , Q̂]⊗ I. (3.1.5)

Vemos, efectivamente, que esta dinámica carece de esa back-reaction dado que la evolución de un

observable clásico solo va a depender de la parte clásica, y hará falta buscar dinámicas más generales

(no unitarias) que tengan propiedades como las de las Ecuaciones de Ehrenfest.

3.2. Dinámica h́ıbrida Lindbladiana

En esta sección, se presenta la principal aportación original, que consiste en la propuesta de una

dinámica h́ıbrida no unitaria inspirada en la evolución Markoviana en sistemas abiertos. Para ello,

primero, presentaremos la ecuación de Kossakowski-Lindblad y, a continuación, la adaptaremos a

sistemas h́ıbridos imponiendo que la dinámica sea un automorfismo externo de πH(AH).

3.2.1. Dinámica Markoviana en sistemas abiertos

Un sistema se denomina abierto si no está aislado, es decir, si interactúa con el entorno. La dinámica

cuántica de estos sistemas, al contrario de sistemas cerrados, en general, no puede representarse en

términos de una evolución temporal unitaria, sino que debe escribirse mediante una ecuación del

movimiento para las matrices densidad4. La dinámica no unitaria más sencilla será la Markoviana

que dependerá de unos operadores de Kraus que determinan la interacción entre el sistema y el

entorno. Una de las dificultades de la descripción de estos sistemas proviene de las correlaciones

entre el sistema y el entorno, sin embargo, considerando el entorno como un baño térmico, un

reservorio o un equipo de medición, se considera aceptable despreciar el efecto que produce el sistema

cuántico sobre el entorno, lo que implica que la transformación dinámica del sistema cuántico será

completamente positivo (véase Definición E.1.1).

Una evolución Markoviana tiene como propiedad más relevante que el estado en un tiempo dado

no depende del estado en un tiempo anterior, o como se suele decir coloquialmente, una evolución

”que no tiene memoria”. Matemáticamente hablando, el conjunto de transformaciones dinámicas

Markovianas forman un semigrupo5.

3Dado que Q̂ y P̂ son equivalentes y la ecuación diferencial de la dinámica es lineal, si no hay back-reaction para

Q̂⊗ I no la hay para ninguna función bilineal f(Q̂, P̂ ),
4Una ecuación maestra cuántica.
5No forma un grupo porque, para cualquier evolución, no existe su tranformación dinámica inversa correspondiente,

ya que, si existiera, el sistema tendŕıa memoria.
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Definición 3.2.1 (Evolución Markoviana). La evolución de un sistema abierto cuántico se dice

que es Markoviana si la transformación dinámica ϵt′,t : D(H) → D(H) para todo t′ ≥ t satisface la

condición

ϵt2,t1 ◦ ϵt1,t0 = ϵt2,t0 , ∀t2 ≥ t1 ≥ t0. (3.2.1)

En el contexto de sistemas abiertos, la memoria de estados anteriores a un tiempo determinado

se encuentra en el entorno, pero como se considera que el entorno es un reservorio, este no se ve

afectado por el sistema y se da una evolución sin memoria, es decir, un sistema abierto tiene una

evolución Markoviana.

Como resumen, el hecho de despreciar las correlaciones entre el sistema y el entorno implica que

la dinámica de un sistema abierto vendrá dada por el semigrupo de transformaciones lineales com-

pletamente positivos. A continuación introducimos la ecuación maestra que rige la evolución de las

matrices densidad del sistema cuántico:

Definición 3.2.2 (Ecuación de Kossakowski-Lindblad ([11] 1972,[12] 1976)). Sea H un espacio de

Hilbert N -dimensional describiendo un sistema cuántico, y D(H) ⊂ B∗(H) el conjunto de estados

puros y estados mezcla. Asumiendo que la evolución del sistema viene dada por un semigrupo de

transformaciones lineales completamente positivas {ϕLt : D(H) → D(H), t ≥ 0}. Estas transforma-

ciones satisfacen la ecuación diferencial:

d

dt
ϕLt (ρ0) = L(ϕLt (ρ0)). (3.2.2)

La transformación lineal L : Herm(H) → Herm(H) se llama el operador de Kossakowski-Lindblad,

y está dado por:

L(ρ) = −i[H, ρ]︸ ︷︷ ︸
dinámica unitaria

+

D(ρ): disipador︷ ︸︸ ︷
N2−1∑
j=1

γj

(
VjρV

†
j − 1

2
V †
j Vjρ−

1

2
ρV †

j Vj

)
︸ ︷︷ ︸

dinámica Lindbladiana

, (3.2.3)

con ρ ∈ S, H† = H, tr(H) = 0 6, tr(Vj) = 0 y tr(V †
j Vk) = 0 si j ̸= k, para j, k = 1, 2, . . . , N2 − 1.

Una forma más común de escribir la Ecuación 3.2.2, que corresponde a la imagen de Schrödinger,

es la siguiente:
d

dt
ρ(t) = L(ρ(t)) ∀t, ∀ρ(t) ∈ D(HC ⊗HQ), (3.2.4)

o en términos de operadores, en la imagen de Heisenberg,

d

dt
AH(t) = L†(AH(t)) = i[H,AH(t)] +

N2−1∑
j=1

γj

(
V †
j AH(t)Vj −

1

2
V †
j VjAH(t)− 1

2
AH(t)V †

j Vj

)
,

∀t, ∀AH ∈ πH(AH). (3.2.5)

6Dada una evolución, H está uńıvocamente determinado por la condición de la traza.
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Los operadores Vj , j = 1, . . . , N2 − 1 se denominan los operadores de Kraus y se encargan de

determinar la interacción entre el sistema y el entorno. Para una descripción detallada de la obten-

ción de la ecuación maestra véase [9]. La ecuación de Kossakowski-Lindblad describe la evolución

no unitaria más sencilla, es por esto que se ha elegido como candidata para emplearlo en sistemas

h́ıbridos más adelante como primera aproximación de una dinámica h́ıbrida no unitaria.

3.2.2. Dinámica Lindbladiana en sistemas h́ıbridos

En esta sección, adaptaremos la dinámica Lindbladiana de sistemas abiertos a sistemas h́ıbridos im-

poniendo a la ecuación de Kossakowski-Lindblad (3.2.5) las condiciones que debe cumplir cualquier

dinámica h́ıbrida. Como se ha mencionado anteriormente, por construcción, la dinámica Lindbla-

diana deja invariante el conjunto de matrices de densidad; además, la dinámica es lineal (véase la

linealidad del operador de Kossakowski-Lindblad en la Ecuación 3.2.3). Por tanto, la única condi-

ción que se ha de imponer a mano será la condición de que la evolución debe dejar invariante el

subálgebra πH(AH).

Para ello, es suficiente imponer que transformación infinitesimal de cada operador de πH(AH)

sea un operador del mismo espacio. Esta condicción implica que la parte clásica de
d

dt
AH(t) =

d

dt
(AC(t)⊗AQ(t)) solo debe depender de los operadores7 (Q̂i, P̂j) y no de los elementos diferenciales

πC(Πqi) y πC(Πpi). Imponiendo que los elementos dependientes de los operadores diferenciales se

anulen, enunciamos el siguiente teorema, cuya demostración se puede encontrar en el Apéndice E.2.

Teorema 3.2.1. Dado un sistema h́ıbrido descrito por la C∗-álgebra AH = AC⊗AQ, una dinámica

como la de la Ecuación 3.2.5 con los operadores de Kraus de la forma:

Vk =

(
dk(Q̂

i, P̂j) +
n∑

l=1

ek1l(Q̂
i, P̂j)πC(Πql) +

n∑
l=1

ek2l(Q̂
i, P̂j)πC(Πpl)

)
⊗ akq,

dk, ek1i, ek2i ∈ πC(AC), ak ∈ πQ(AQ), ∀k = 1, . . . , N2 − 1, ∀i = 1, . . . , n, (3.2.6)

donde N es la dimensión de HC ⊗HQ y dado un Hamiltoniano con la forma de la Ecuación (3.1.2)

cumpliendo las condiciones del Teorema 3.1.1. Para que la evolución defina un automorfismo externo

del subálgebra h́ıbrido πH(AH) se debe cumplir:

los coeficientes de los operadores de Kraus han de cumplir las siguientes ecuaciones:

N2−1∑
k=1

γke
2
kij = 0, ∀i = 1, 2; j = 1, . . . , n, (3.2.7)

7Denominaremos Q̂i = πC(q
i) y P̂j = πC(pj)
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ak = a ∀k con ekij ̸= 0 para algún i, j: donde a ∈ Z(AQ) es un elemento del centro8 del

álgebra AQ (véase definición de centro de un álgebra en Definición A.1.3).

Demostración. Ver Apéndice E.2.

Estudiemos las propiedades f́ısicas que tiene esta dinámica, en particular, veremos si esta dinámica

proporciona back-reaction, es decir, si un operador puramente clásico deja de serlo con el tiempo.

Para ello, considerando un sistema h́ıbrido de una dimensión clásica con Hamiltoniano H = HC ⊗
I+ I⊗HQ + hc ⊗ hQ, calcularemos la evolución del operador test Q̂⊗ I:

iℏ
d

dt
(Q̂⊗ I) =�������

i[hc, Q̂]⊗ hQ + i[HC , Q̂]⊗ I+
N2−1∑
k=1

γk

n∑
i=1

(
e†k1idki + d†kiek1i

)
⊗ a2. (3.2.8)

Vemos que un operador del centro del álgebra AQ influye en la dinámica puramente clásica, es

decir, el sistema h́ıbrido con la dinámica Lindbladiana tiene back-reaction correspondiente a un

operador del centro del álgebra cuántica. En los ejemplos que consideraremos, la parte cuántica son

dos qubits, por elección de diseño escogeremos a = S2 que es un Casimir del álgebra de Lie cuántica

y por tanto está en el centro Z(AQ); de esta manera, la parte clásica solamente ”verá” el momento

angular total de la parte cuántica (ver siguiente caṕıtulo para una demostración numérica).

8Por ejemplo, para el caso del esṕın de una part́ıcula, a = J2 será el momento angular total que es el operador de

Casimir y pertenece al centro del álgebra de Lie su(2).
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Capı́tulo 4
Implementación numérica y ejemplos

En este caṕıtulo, implementaremos numéricamente el formalismo de Koopman para poder hacer

simulaciones de sistemas h́ıbridos y las dinámicas explicadas en el caṕıtulo anterior. En primer

lugar, se realiza un test de una dinámica armónica en un sistema de Koopman para comprobar

que la implementación numérica es correcta (véase Apéndice F.1) y, en segundo lugar, se toma

un oscilador armónico acoplado a un sistema de dos qubits y se simula una dinámica unitaria y

la dinámica Lindbladiana y vemos sus diferencias. Finalmente, vemos que formas de introducir

dinámicas Lindbladianas diferentes con los términos de interacción y con operadores de Kraus

puramente cuánticos.

4.1. Implementación numérica

Para la simulación de los sistemas h́ıbridos se he empleado la libreŕıa QuTip de Python. El código

desarrollado puede encontrarse en GitHub.

Recordemos que un sistema h́ıbrido en el formalismo de Koopman viene descrito como una función

de onda de un espacio que tendrá una parte clásica y otra cuántica1 HC ⊗ HQ (véase Sección

2.3). Consideremos un sistema h́ıbrido de 1 dimensión clásica2, las funciones de onda clásicas serán

elementos del espacio de Hilbert clásico HC = L2(R)︸ ︷︷ ︸
q

⊗L2(R)︸ ︷︷ ︸
p

.

Consideramos el conjunto {ϕn}∞n=0 de autoestados del oscilador armónico cuántico

ϕn(x) =

√
1

2nn!

(mω
πℏ

)1/4
· e

−
mωx2

2ℏ ·Hn

(√
mω

ℏ
x

)
n = 0, 1, . . . ,

donde m tendrá interpretación de masa de la part́ıcula, ω es la frecuencia natural del oscilador y

1En los ejemplos, consideraremos HQ = C4.
2Una dimensión para la posición y otra dimensión para el momento.
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Hn(x) es el polinomio de Hermite3 de orden n. Este conjunto forma una base de infinitos términos

del espacio L2(R), por lo que, {ϕqn⊗ϕpm}∞n,m=0 formarán base4 deHC . Sin embargo, para poder tratar

estas funciones de onda numéricamente, solo podremos considerar un número finito de elementos de

la base de HC , es decir, haremos un truncamiento de los infinitos elementos de la base. El número

de elementos que se consideren en el tratamiento numérico influirá en la precisión del modelo y en

el costo computacional, requiriendo encontrar un equilibrio para cada uso (véase Apéndice F.1).

Para la parte cuántica consideraremos un espacio de Hilbert de un sistema de dos qubits que es de

dimensión finita.

Supongamos que tenemos un sistema h́ıbrido donde la parte clásica tiene el Hamiltoniano clásico

HC ∈ C∞(M) y la parte cuántica evoluciona con el Hamiltoniano ĤQ. A continuación, describiremos

este sistema en el formalismo de Koopman. En primer lugar, descomponemos el Hamiltoniano

h́ıbrido como se muestra en la Ecuación 3.1.2, es decir, Ĥ = ĤC ⊗ IQ+ IC ⊗ ĤQ+ ĤCQ. En segundo

lugar, obtenemos el operador de Koopman (véase Ecuación 2.1.5) correspondiente:

L̂C = −i
(
∂HC

∂q

∂

∂p
− ∂HC

∂p

∂

∂q

)
, (4.1.1)

y, a partir de dicho operador, obtendremos ĤC ∈ B(HC) escribiendo L̂C en términos de operadores

escalera5 empleando las identidades: Q̂ =
1√
2
(aq + a†q), P̂ =

1√
2
(ap+ a†p), πC(Πq) = − i√

2
(aq − a†q),

πC(Πp) = − i√
2
(ap−a†p). En caso de haber una interacción expĺıcita entre la parte clásica y cuántica,

esta irá en ĤCQ de Ĥ.

4.2. Ejemplos

Considerermos un oscilador armónico clásico acoplado a un sistema de dos qubits en el espacio de

Hilbert H = L2(R)︸ ︷︷ ︸
q

⊗L2(R)︸ ︷︷ ︸
p

⊗C2 ⊗ C2 ∼= L2(q) ⊗ L2(p) ⊗ C4. La parte cuántica de este sistema

es la suma de dos espines S⃗ = S⃗1 + S⃗2, y tiene como momento angular total S2 =
1

2
× 1

2
= 0, 1.

Recordemos que escogemos a = S2, por lo que, la back-reaction de la dinámica Lindbladiana solo

considera el autovalor del operador de Casimir del álgebra de Lie cuántico, es decir, la parte clásica

solo se ve influenciada por el momento angular total de la parte cuántica. En la Ecuación (3.2.8)

se puede observar que si el autovalor de a2 (en nuestro caso (S2)2) es cero, Q̂ ⊗ I seguirá siendo

un operador puramente clásico a lo largo del tiempo; por tanto, hace falta que el momento angular

total de la parte cuántica sea diferente de cero para que el sistema presente back-reaction. Esta es la

razón de haber tomado dos qubits en vez de uno, ya que, cuando S2 = 1 debeŕıa haber back-reaction,

3Hn(x) = (−1)nex
2 dn

dxn
e−x2

n = 0, 1, . . . .
4La razón de elegir esta base es que sabemos cómo actúan los operadores escalera en cada elemento de la base,

lo que nos facilita el escribir las matrices asociadas a cada operador en dicha base: aq/pϕ
q/p
n =

√
nϕ

q/p
n−1 n = 1, . . . y

a†q/pϕ
q/p
n =

√
n+ 1ϕ

q/p
n+1 n = 0, . . .

5Nótese que pasamos impĺıcitamente de funciones C∞(M) a operadores definidos con dominio enHC⊗HQ mediante

la representación GNS.
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pero cuando S2 = 0 la parte clásica debeŕıa estar ciega respecto a la cuántica; comprobaremos estas

predicciones teóricas en las simulaciones.

Consideraremos las dos dinámicas expuestas en el trabajo, la dinámica unitaria y la Lindbladiana,

y simularemos las evoluciones temproales del sistema correspondiente a cada una. Veremos que

solo la dinámica Lindbladiana presenta back-reaction, estudiaremos la pureza de la parte clásica y

discutiremos los resultados obtenidos. A continuación, verificaremos que, en la dinámica Lindbla-

diana, que el sistema presente o no back-reaction depende de si la parte cuántica del estado inicial

es el singlete o no. Además, introduciremos términos puramente cuánticos y de interacción en el

Hamiltoniano (ver Ecuación (3.1.2)) y comprobaremos que generan dinámicas diferentes en la parte

cuántica. Finalmente, añadiremos un operador de Kraus extra puramente cuántico, a partir de los

ya conocidos en sistemas abiertos cuánticos, viendo que también produce dinámicas diferentes.

Véase Apéndice F.2.1 para describir nuestro ejemplo concreto en el formalismo de Koopman.

4.2.1. Back-reaction

En primer lugar, pretendemos ver que efectivamente la parte clásica se ve afectada por la parte

cuántica siempre que la parte cuántica S2 ̸= 0 (estado singlete) con la dinámica Lindbladiana. Para

ello, tomaremos un Hamiltoniano puramente clásico (Ĥ = ĤC⊗I) y los estados |ϕ(q, p)⟩t y |ϕ(q, p)⟩s
con sus respectivas matrices densidad

ρt = |ϕ(q, p)⟩t ⊗ ⟨ϕ(q, p)|t , ρs = |ϕ(q, p)⟩s ⊗ ⟨ϕ(q, p)|s . (4.2.1)

En un sistema cuántico, el hecho de que uno de los subsistemas pierda pureza es un indicativo de

que hay entrelazamiento con el resto del sistema. Análogamente, calcularemos la pureza de la parte

clásica que es indicativo de que hay back-reaction cuando el Hamiltoniano es puramente clásico.

La Figura 4.2.1 muestra los resultados de la pureza clásica con el triplete y el singlete. Vemos

que, tomando la parte cuántica del estado inicial el triplete, la pureza de la parte clásica decae

confirmando que hay back-reaction. Sin embargo, con el singlete, la pureza se mantiene constante

en la unidad, por lo que, efectivamente, concluimos que no hay correlación entre la parte clásica y

cuántica si el estado inicial cuántico es el singlete. Dicho de otra manera, si el estado cuántico incial

es el singlete, no se produce back-reaction, tal y como se hab́ıa predicho teóricamente.

4.2.2. Diferencias entre dinámicas

En segundo lugar, de nuevo con un Hamiltoniano puramente clásico, veamos la diferencia entre la

dinámica unitaria y la dinámica Lindbladiana. Consideramos el estado inicial |ϕ(q, p)⟩m (nótese que

no es el singlete) y su correspondiente matriz densidad ρm = |ϕ(q, p)⟩m ⊗ ⟨ϕ(q, p)|m , lo hacemos

evolucionar en el tiempo (véase la Ecuación 3.2.4) y calculamos la pureza de la parte clásica6; la

Figura 4.2.2 muestra el resultado. En primer lugar, la dinámica unitaria mantiene la pureza de la

6Haciendo la traza parcial a L2(q)⊗ L2(p).
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(a) Triplete (b) Singlete

Figura 4.2.1: Pureza de la parte clásica del sistema. Comparativa de la dinámica Lindbladiana en

función de la condición inicial cuántica (N = 5).

Figura 4.2.2: Evolución de la pureza de la parte clásica para la dinámica unitaria y Lindbladiana

con N = 5 y el estado cuántico inicial mezcla.

parte clásica como se esperaba, ya que, al no verse afectado por la parte cuántica, la parte clásica

sigue la ecuación de Liouville y es en todo momento un estado puro. Sin embargo, se aprecia que la

dinámica Lindbladiana hace que la parte clásica pierda pureza7. La interpretación de este resultado

es que la pérdida de pureza clásica es un fenómeno exclusivo para sistemas h́ıbridos y está relacionado

con la correlación que existe entre la parte clásica y la cuántica siempre y cuando el Hamiltoniano

sea puramente clásico. Estamos apreciando aqúı la generación dinámica de entrelazamiento, como

resultado de la formulación de Koopman en términos de espacios de Hilbert.

Esta diferencia entre dinámicas también se puede apreciar en la evolución del esṕın. A partir de

ahora consideraremos (salvo en la parte en la que se estudia la influencia del término de acoplo,

donde lo pondremos o lo quitaremos) un Hamiltoniano con parte clásica, cuántica y de interacción:

Ĥ = (−
√
2
(
(aq + a†q)(ap − a†p)− (ap + a†p)(aq − a†q)

)
⊗ I+ I⊗ Sx + Q̂⊗ Sz. (4.2.2)

7Esto sucederá cuando haya back-reaction, en este caso, como el estado cuántico inicial no es el singlete (S = 0)

ocurre este fenómeno.
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(a)

Figura 4.2.3: Diferencia entre la dinámica unitaria y la dinámica Lindbladiana en la evo-

lución cuántica. Esfera de Bloch; dinámica Lindbladiana en azul y dinámica unitaria en

rojo. Condiciones iniciales cuánticas |↑↑⟩, operadores de Kraus V1, V2, Hamiltoniano Ĥ =

(−
√
2
(
(aq + a†q)(ap − a†p)− (ap + a†p)(aq − a†q)

)
⊗ I+ I⊗ Sx + Q̂⊗ Sz, T=2, 5 a.u., N = 7

La Figura 4.2.3 muestra un ejemplo ilustrativo de lo que le ocurre a uno de los espines8, vemos

que los operadores de Kraus generan una evolución diferente que corresponde al efecto de poner en

contacto el sistema h́ıbrido con un baño térmico.

La evolución temporal de los estados también difiere entre la dinámica unitaria y la Lindbladiana

(véase la Figura F.2.2 como ejemplo de esta diferencia).

4.2.3. Términos de interacción

Veremos que tenemos formas de generar diferentes dinámicas. Tomemos el Hamiltoniano Ĥ =

ĤC ⊗ I + I ⊗ ĤQ + hC ⊗ hQ︸ ︷︷ ︸
ĤCQ

. Por un lado, el término puramente cuántico I ⊗ ĤQ genera una

dinámica en los espines, la cual se manifesta en la parte clásica; sin embargo, la pureza del sistema

total con la dinámica unitaria sigue manteniéndose en la unidad debido a que, con esta dinámica,

ambos sistemas evolucionan independientemente. Por otro lado, el término de interacción hC ⊗ hQ

produce una interacción expĺıcita entre la parte clásica y cuántica.

Por un lado, la Figura 4.2.4 muestra el efecto que genera el término ĤCQ = q⊗Sz en la dinámica de

la parte cuántica. La diferencia más relevante se da en la dinámica unitaria, donde deja de preceder

sobre el eje x sobre la superficie de la esfera. De esta manera, comprobamos que los términos de

interacción generan dinámicas nuevas.

4.2.4. Operador de Kraus puramente cuántico

Hasta ahora hemos considerado operadores de Kraus con la parte clásica lineal respecto a los

operadores diferenciales Πq, Πp no nula (véase Ecuación F.2.1). Sin embargo, también se pueden

8En este ejemplo concreto, debido a la simetŕıa entre ambos espines en la ecuación diferencial y en las condiciones

iniciales, ambos qubit tienen la misma evolución.
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(a) Con interacción (b) Sin interacción

Figura 4.2.4: Diferencias en la evolución por el términoHCQ en la esfera de Bloch. Dinámica unitaria

en rojo y dinámica Lindbladiana en azul. Condiciones iniciales cuánticas |↑↑⟩, operadores de Kraus

V1, V2, V3, T=2, 5 a.u., N = 7

introducir operadores de Kraus con la parte clásica trivial y la parte cuántica correspondiente a un

operador de Kraus caracteŕıstico de sistemas abiertos (véase [9]); como puede ser el decaimiento de

sistemas de 2-niveles9. Añadiremos a los operadores de Kraus anteriores el operador de Kraus:

V3 = Iq ⊗ Ip ⊗

(
0 1

0 0

)
⊗

(
0 1

0 0

)
, γ3 = 1. (4.2.3)

La gama de elección de la parte cuántica de estos operadores es amplia y conocida en la literatura

[9] y depende del objetivo del modelo, en este caso, este operador produce que el esṕın del sistema

tienda al estado |↑↑⟩. Las Figuras 4.2.3a y ?? muestran dos dinámicas Lindbladianas diferentes:

una con los operdores de Kraus V1 y V2 y la otra con V1, V2 y V3. Vemos, efectivamente, que

introducir un operador de Kraus puramente cuántico genera una dinámica diferente, queda para

futuras investigaciones estudiar el significado f́ısico de las dinámicas que introducen estos operadores

de Kraus h́ıbridos.

4.2.5. Resumen

Con este ejemplo hemos ilustrado y verificado las siguientes propiedades de este sistema:

La dinámica Lindbladiana produce back-reaction siempre y cuando la parte cuántica no sea

el singlete, a diferencia de la dinámica unitaria donde carece de esta back-reaction indepen-

dientemente del estado cuántico.

Se puede generar diferentes dinámicas modificando el término de interacción del Hamiltoniano

y añadiendo operadores de Kraus puramente cuánticos ya conocidos en la literatura ([9]).
9Es una cuestión de diseño, aún no se ha demostrado que este operador genere dicho el mismo comportamiento en

la parte cuántica de sistemas h́ıbridos que en sistemas puramente cuánticos
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Capı́tulo 5
Conclusiones y lineas de trabajo futuro

En este trabajo hemos partido del estudio del formalismo de Koopman para sistemas clásicos. Se

han introducido las herramientas matemáticas que permiten un tratamiento más general de sistemas

f́ısicos y hemos generalizado la construcción de Koopman a sistemas más generales; en particular,

lo hemos adaptado a sistemas h́ıbridos. A continuación, se ha visto que, en este nuevo formalismo

de Koopman para sistemas h́ıbridos, una dinámica unitaria no proporcionaba todas propiedades

f́ısicas que uno se espera de sistemas h́ıbridos, por lo que, inspirados en sistemas abiertos cuánticos,

se ha propuesto una dinámica no unitaria nueva (dinámica Lindbladiana). Se ha comprobado que la

dinámica Lindbladiana proporciona mejores propiedades que la dinámica unitaria, pero también se

ha expuesto las limitaciones que presenta. Finalmente, se ha tomado un ejemplo sencillo y, mediante

herramientas de cálculo numérico, se ha ilustrado y corroborado todas las predicciones teóricas de

este trabajo. La principal aportación original de este trabajo puede sintetizarse como: Se ha hallado

una dinámica no unitaria, que corresponde al sistema h́ıbrido en contacto con un baño térmico,

bien definida en sistemas h́ıbridos en la cual la parte cuántica se ve influida por la parte clásica, sin

embargo, la parte clásica solo recibe una influencia parcial de la cuántica.

Finalmente, como ĺıneas de trabajo futuro en mecánica estad́ıstica h́ıbrida exponemos dos posibles

alternativas:

Viendo que la dinámica Lindbladiana obtenida en este trabajo está bien definida, una posible

ĺınea de trabajo es la verificación de si esta dinámica deja invariante el Hybrid Canonical

Ensemble propuesto en [1] y poder aplicar el formalismo de MaxEnt con el fin de obtener una

termodinámica h́ıbrida.

Dado que la parte clásica recibe una influencia parcial de la parte cuántica, esta dinámica

Lindbladiana no reproduce al completo las propiedades que tienen las Ecuaciones de Ehrenfest

para sistemas h́ıbridos. Por tanto, otra posible ĺınea de trabajo es la búsqueda de una dinámica

no unitaria más general que la Lindbladiana que tenga una back-reaction completa.
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Apéndice A
Preámbulo matemático

A.1. Álgebra

Definición A.1.1 (Álgebra). Sea (VK,+) un espacio vectorial sobre el cuerpo K. Un K-álgebra es

una terna A = (VK,+, ϕ) donde ϕ es una operación bilineal

ϕ : V × V → V,

es la operación ϕ la que determina el tipo de álgebra: conmutativa, asociativa, Lie, etc.

Se dice que un álgebra A es un álgebra con unidad (álgebra unital) si ella tiene unidad, es

decir, existe un elemento 1 ∈ A(1 ̸= 0) tal que ϕ(x, 1) = ϕ(1, x) = x (x ∈ A).

Definición A.1.2 (Ideal de un álgebra). Sea A un álgebra, el subjconjunto J ⊂ A es un ideal por

la izquierda (por la derecha) de A si x ∈ A y y ∈ J ⇒ xy ∈ J (yx ∈ J). Si J es ideal por la

izquierda y por la derecha diremos que es un ideal. Se dice que un ideal J es propio si J ̸= A. Un

ideal propio que no está contenido en ningún otro ideal propio se denomina ideal maximal.

Definición A.1.3 (Centro de un álgebra). Sea A un álgebra, el conjunto

Z(A) = {c ∈ A | ca = ac, ∀a ∈ A},

se denomina centro del álgebra A.

Definición A.1.4 (Derivación de un álgebra). Sea (VK,+, ϕ) un álgebra. Llamamos derivación de

un álgebra a cualquier aplicación lineal

D : (VK,+, ϕ) → (VK,+, ϕ),

que satisface la regla de Leibniz, i.e.

D(ϕ(a, b)) = ϕ(D(a), b) + ϕ(a,D(b)) ∀a, b ∈ VK.
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Definición A.1.5. Un álgebra de Jordan J es un espacio vectorial real dotado de una operación

◦ y una operación · asociativa que satisface que ∀a, b ∈ J :

◦ es conmutativo: a ◦ b = b ◦ a

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2 donde a2 := a · a

Definición A.1.6. Un álgebra de Lie L es un espacio lineal dotado de una aplicación [·, ·] :

L× L→ L que satisface, ∀a, b, c ∈ L

[·, ·] es anticonmutativo: [a, b] = −[b, a]

la identidad de Jacobi se satisface, i.e.

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

Definición A.1.7 (Álgebra de Poisson). Un álgebra de Poisson es un espacio vectorial (VK,+)

sobre el cuerpo K dotada de dos productos bilineales, · y {·, ·}, que tienen las siguientes propiedades:

El producto · forma una K-álgebra asociativa.

El producto {·, ·}, el corchete de Poisson, forma un álgebra de Lie.

El corchete de Poisson actúa como una derivación del producto asociativo ·. De forma que

para tres elementos x, y, z en el álgebra, se tiene que {x, y · z} = {x, y} · z + y · {x, z}.

Definición A.1.8. Un álgebra de Lie-Jordan es un espacio lineal X dotado de dos aplicaciones

◦ y [·, ·] tal que:

(X, ◦) es un álgebra de Jordan

(X, [·, ·]) es un álgebra de Lie

∀x ∈ X, [x, ·] : X → X es una derivación del álgebra de Jordan, i.e.

[x, y ◦ z] = [x, y] ◦ z + y ◦ [x, z] ∀y, z ∈ X.

Además, ambas estructuras no son asociativas, pero sus correspondientes asociadores son
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proporcionales, i.e., ∃λ ∈ R que satisface que ∀a, b, c ∈ AR,

a ◦ (b ◦ c)− (a ◦ b) ◦ c = λ([a, [b, c]]− [[a, b], c]).

Definición A.1.9. Un espacio de Banach es un espacio vectorial normado y completo con la

métrica definida por su norma

Definición A.1.10. Se dice que A es un álgebra de Banach si en A está definida una norma

para el cual A es un espacio de Banach y, además,

∥xy∥ ≤ ∥x∥∥y∥ ∀x, y ∈ A.

Definición A.1.11. Un álgebra de Lie-Jordan X que es un espacio de Banach se llama álgebra

de Lie-Jordan-Banach (LJB)

Los LJB álgebras son cruciales ya que son los objetos que capturarán los operadores f́ısicamente

más relevantes cuando describamos un sistema f́ısico por una C∗-álgebra. Presentemos la noción de

C∗-álgebra.

Definición A.1.12 (∗-álgebra). Un álgebra A se donomina ∗-álgebra si en A está definida una

aplicación ∗ : A → A que satisface las siguientes condiciones (∀x, y ∈ A, λ ∈ C):

(x∗)∗ = x,

(x+ y)∗ = x∗ + y∗,

(xy)∗ = x∗y∗,

(x)∗ = λ̄x∗.

La aplicación ∗ se donomina involución. Si x∗ = x, entonces se dice que el elemento x de la
∗-álgebra es hermı́tico.

Definición A.1.13 (C∗-álgebra). Un álgebra de Banach que es una ∗-álgebra se denomina C∗-

álgebra si para todo elemento x de la misma se cumple la igualdad ∥x∗x∥ = ∥x∥2.

Teorema A.1.1. Sea A una C∗-álgebra, el subconjunto J ⊂ A es un ideal

Proposición A.1.2. El álgebra de Banach B(H) de todos los operadores lineales acotados que

actúan en un espacio de Hilbert H con la operación de paso al operador autoadjunto como involución

es una C∗-álgebra.
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A continuación, vemos que el conjunto de observables de una C∗-álgebra (es decir, los elementos

hermı́ticos del álgebra) tendrá una estructura de álgebra de Lie-Jordan-Banach.

Teorema A.1.3. Sea A una C∗-álgebra con la involución ∗ y la norma ∥·∥. Consideremos el

subconjunto de elementos autoadjuntos reales

AR = {x ∈ A|a∗ = a},

y definamos sobre este las siguientes operaciones:

a ◦ b = 1

2
(ab+ ba) [a, b] =

−i
κ
(ab− ba).

Entonces, (AR, ◦, [·, ·], ∥·∥) es un álgebra de Lie-Jordan-Banach.

Por otro lado, dado un álgebra de LJB, podemos considerar su complexificación y definir una C∗-

álgebra que tenga al álgebra original como subálgebra hermı́tica.

Teorema A.1.4. Dado un álgebra LJB AR, si consideramos su complexificación como un espacio

lineal AC , y la operación:

a ·κ b = a ◦ b+ iκ[a, b],

el conjunto (AC , ·κ, ∥·∥) se vuelve una C∗-álgebra para todo valor de κ ∈ R.

A continuación, se enunciará el Teorema de Guélfank-Naimark el cual emplea la construcción de

Guélfand-Naimark-Segal (GNS) para su demostración. Antes de eso, necesitamos deifnir ciertos

conceptos.

Dada una C∗-álgebra A, definiremos los estados del mismo, para ello, recurriremos al dual de la

C∗-álgebra A∗. Antes, definimos una norma en A∗ empleando la norma definida sobre A,

∥ω∥ = sup{|ω(a)|, ∥a∥ = 1}.

Esto nos permite introducir la noción de positividad que emplearemos en la definición de los estados.

Dado ω ∈ A∗ decimos que es definido positivo si

ω(a∗a) ≥ 0 ∀a ∈ A.

Definición A.1.14 (Estado). Un estado de una C∗-álgebra se define como un funcional lineal

definido positivo sobre A con norma igual a uno.

Definición A.1.15 (Representación). Se denomina representación de una C∗-álgebra A a un

par (π,A), donde π : A → B(H) es un morfismo y H un espacio de Hilbert.

28



Se dice que la representación es ćıclica si existe un vector Ω ∈ H para el cual la variedad lineal

π(A)Ω es densa en H; en ese caso, Ω se denomina vector ćıclico. Una representación π es no

degenerada si {π(x)a |x ∈ A; a ∈ H} es denso en H. En particular, una representación ćıclica es

no degenerada.

Teorema A.1.5 (Teorema de Gelfand-Naimark). Sea A una C∗-álgebra, entonces, A es isométri-

camente *-isomorfa a una C∗-subálgebra del álgebra B(H) de todos los operadores lienales acotados

en cierto espacio de Hilbert H.

Proposición A.1.6. Toda representación π no degenerada es suma directa de representaciones

ćıclicas

Dada la C∗-álgebra A, denotando como S(A) el conjunto de estados de A, la construcción

Gelfand-Naimark-Segal (GNS) consiste en lo siguiente:

1. Dado ω ∈ S(A), definimos la forma sesquilineal ( , )ω0 en A como

(A,B)ω0 := ω(A∗B).

Como ω es un estado, esta forma es semidefinida positiva. Su espacio nulo

Nω = {A ∈ A|ω(A∗A) = 0}

es un ideal por izquierda en A.

2. La forma ( , )ω0 se proyecta sobre el producto interno ( , )ω en el cociente A/Nω. Si Vω : A →
A/Nω es la proyección canónica, entonces, por definición

(VωA, VωB)w := (A,B)ω0 .

El espacio de Hilbert Hω es la clausura de A/Nω ⊂ Hω por

πω(A)VωB := VωAB;

se sigue que πω es continuo. Por tanto, πω(A) puede extenderse por continuidad a todo Hω.

3. El vector ćıclico se define como Ωω = VωI, por tanto,

(Ωω, πω(A)Ωω) = ω(A) ∀A ∈ A.

A.1.1. Teorema de Gleason

El Teorema de Gleason nos permitirá asociar una matriz densidad a cada estado f́ısico. Cuando

hacemos la representación GNS de una C∗-álgebra, los estados de la misma serán medidas definidas

sobre un espacio de Hilbert; es aqúı donde entra en juego el Teorema de Gleason, que nos asegura

que dada una de estas medidas, existirá una matriz densidad asociada (véase el art́ıculo original de

Gleason [7])
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Teorema A.1.7 (Gleason). Sea µ una medida en los subespacios cerrados de un espacio (real

o complejo) de Hilbert separable H de dimensión al menos tres. Existe un operador autoadjunto

semidefinido positivo T tal que todo subespacio cerrado A de H

µ(A) = Tr(TPA), (A.1.1)

donde PA es la proyección ortogonal de H sobre A.

A.1.2. Teorema de Stone

Teorema A.1.8. Sea U(t) una representación unitaria de R, entonces existe un único operador

autoadjunto T (denominado operador infinitesimal del grupo U(t)) tal que

U(t) = exp(iT t) t ∈ R (A.1.2)
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Apéndice B
Mecánica simpléctica

En esta caṕıtulo haremos un tratamiento riguroso de la descripción de sistemas Hamiltonianos cuyo

espacio de fases viene descrito por una variedad diferenciable.

A lo largo del siglo XX, la Mecánica comienza a ser un punto de reunión de diversas disciplinas de

las ciencias como la geometŕıa diferencial, el análisis, la f́ısica, etc. Implicando un gran avance en

la Mecánica. Sus hitos fundacionales se remontan a los inicios del siglo XX con el uso de formas

diferenciables en Mecánica en 1922, por obra de Elie Cartan; seguido por la primera exposición

moderna sobre sistemas hamiltonianos en variedades simplécticas que apareció en un art́ıculo de G.

Reeb en 1952.

Sea N una variedad diferenciable de dimensión n, en una carta local (Ui, ψi), los elementos de

la variedad vienen descritos por las coordenadas {qi} que corresponderán a las coordenadas ge-

neralizadas de un sistema f́ısico más adelante. El conjunto de momentos generalizados {pi} serán

coordenadas de las fibras del espacio cotangente de N , T ∗N , respecto a la base natural asociada a

las coordenadas {qi}. Usaremos T ∗N como el espacio de fases de un sistema f́ısico y escribiremos

nuestras ecuaciones en el conjunto de coordenadas {qi, pi}.

Definición B.0.1 (Forma de Liouville). Llamamos forma de Liouville a la 1-forma θ ∈ Λ1(T ∗N )

que en el conjunto de coordenadas natural tiene la siguiente forma:

θ = pidq
i. (B.0.1)

Una formulación intŕınseca del objeto es el siguiente. Sea α∗N un punto del espacio cotangente,

consideramos el cojunto de vectores tangentes a α, TαT
∗N . La forma de Liouville se define como

la 1-forma θ ∈ Λ1(T ∗N ) que satisface:

θ(α)(V ) = α(π∗αV ), ∀V ∈ TαT
∗N , (B.0.2)

donde π : TαT
∗N → T ∗N es la proyección natural al espacio cotangente.
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Antes de seguir con la forma de Liouville, veamos cómo se defino una forma simpléctica.

Definición B.0.2 (Forma simpléctica). Sea M una variedad diferenciable, una 2-forma ω ∈ Λ2(N )

es una forma simpléctica si y solo si:

Es cerrada: dω = 0

Es no degenerada, i.e. dado un campo vectorial X ∈ X(T ∗N ), la relación

ω(X,Y ) = 0 ∀Y ∈ X(T ∗N ),

implica que

X = 0.

Si relajamos la condición de no degeneración, obtenemos una forma presimpléctica.

Definición B.0.3 (Variedad simpléctica). SeaM una variedad diferenciable y ω una forma simplécti-

ca. Llamaremos variedad simpléctica al par (M, ω).

Hemos visto que dado un espacio de fases dado por el espacio cotangente de una variedad diferencia-

ble, podemos definir naturalmente una forma de Liouville. Dada una forma de Liouville, podemos

definir una forma simpléctica y dotar de estructura de variedad diferenciable al espacio de fases.

Definición B.0.4 (Forma simpléctica canónica). Sea T ∗N el espacio cotangente de una variedad

diferencialN . Llamaremos forma simpléctica canónica a la 2-forma ω ∈ Λ2(T ∗N ) definido como:

ω = −dθ (B.0.3)

Proposición B.0.1. Sea T ∗N el espacio cotangente de una variedad diferencial N . La forma

simpléctica canónica ω ∈ Λ2(T ∗N ) es una forma antisimétrica y cerrada. Además, ω es no degene-

rada si

Ω = ω ∧ · · · ∧ ω︸ ︷︷ ︸
2n

,

es una forma de volumen, donde n es la dimensión de N .

La proposición anterior implica que, como se pod́ıa esperar, la forma simpléctica canónica es una

forma simpléctica, y el par (T ∗N ,−dθ) es una variedad simpléctica.

Sin embargo, se puede hacer mecánica directamente a partir de un espacio de fases dado por una

variedad simpléctica (M, ω). Es decir, no necesitamos que el espacio de fases sea el espacio cotan-

gente de otra variedad, como hab́ıamos supuesto hasta ahora. Nos bastará con la forma simpléctica

para definir localmente una carta donde podemos considerar como coordenadas {qi, pi}.
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Teorema B.0.2 (Darboux, 1882). Sea M una variedad 2n-dimensional. Sea ω ∈ Λ2(M) una dos

forma no degenerada, luego, dω = 0 si y solo si hay una carta (U,ψ) en cada punto p ∈ M tal que

ψ(p) = 0 y la expresión de la dos forma en las coordenadas locales correspondientes {qi, pi} es

(ψ−1)∗ω|U =
n∑

i=1

dqi ∧ dpi.

Definición B.0.5 (Atlas de Darboux). Llamaremos atlás de Darboux al atlas definido por las

cartas de Darboux.

Definición B.0.6 (Transformación canónica). Sean (M1, ω1) y (M2, ω2) dos variedades simplécti-

cas y la transformación F : M1 → M2. Esta transformación se llama transformación canónica

si

F ∗ω2 = ω1.

Definición B.0.7 (Paréntesis de Poisson). Sea (M, ω) una variedad simpléctica. Sean f, g ∈
C∞(M) dos funciones sobre M y Xf , Xg ∈ X(M) los campo vectoriales Hamiltonianos corres-

pondientes. Definimos el paréntesis de Poisson de f y g como la función

{f, g} := ω(Xf , Xg). (B.0.4)

Debido a que la correspondencia entre funciones y campo vectoriales Hamiltonianos está bien defi-

nida, podemos definir una operación en el conjunto de funciones:

{,̇}̇ : C∞(M)× C∞(M) → C∞(M)

f, g → {f, g}. (B.0.5)

Definición B.0.8. Sea T ∗M un espacio cotangente y ω la dos forma simpléctica canónica. Intro-

ducimos la apliación:

ω̂ : T (T ∗M) → T ∗T ∗M

ω̂(X) = ω(X, )̇. (B.0.6)

Una vez tenemos los ingredientes matemáticos, definamos las ecuaciones de Hamilton en términos

geométricos. Sea T ∗M un espacio cotangente, consideremos un Hamiltoniano H ∈ C∞(T ∗M).

Definición B.0.9 (Campo vectorial Hamiltoniano). Sea T ∗M un espacio cotangente con ω su

dos forma simpléctica canónica, y f ∈ C∞(T ∗M). Llamaremos campo vectorial Hamiltoniano

asociado a f al campo vectorial:

Xf = ω̂−1(df). (B.0.7)
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Definición B.0.10. Sea T ∗M un espacio cotangente, y H ∈ C∞(T ∗M). Decimos que la curva

γ : R → T ∗M es una solución de la dinámica Hamiltoniana definida por el Hamiltoniano H si y

solo si, la curva es la curva integral del campo vectorial Hamiltoniano XH que está definido por:

ω̂(XH) = iXH
ω = dH. (B.0.8)

Definición B.0.11 (Simplectomorfismo). Un simplectomorfismo es un difeomorfismo definido

sobre una variedad simpléctica, que preserva la forma simpléctica, es decir, el pullback de la forma

simpléctica ω coincide con la propia forma simpléctica Φ∗ω = ω.

Proposición B.0.3. Sea (M, ω) una variedad simpléctica y X un campo vectorial sobre M, en-

tonces, son equivalentes:

X es localmente Hamiltoniano,

LXω = 0,

El flujo ϕt = ϕ(,̇t) asociado a X es un simplectomorfismo (véase Definición B.0.11), donde L
es la derivada de Lie.

Proposición B.0.4. Sean (M, ω) una variedad simpléctica y f : M → M un difeomorfismo local.

Son equivalentes:

f es un simplectomorfismo,

para todo H : M → R, f es una transformación canónica del sistema (M, H),

f deja invariante el corchete de Poisson, es decir, para cualesquiera F,G ∈ C∞(M),

{F ◦G} ◦ f = {F ◦ f,G ◦ f}.

Una formulación moderna del Teorema de Liouville es la siguiente:

Corolario B.0.5. Si (M, ω,H) es un sistema f́ısico, entonces, LXH
ω = 0.

Debido a la Proposición B.0.3, el corolario anterior implica que el flujo Hamiltoniano es un simplec-

tomorfismo, por lo que preserva el paréntesis de Poisson (véase Proposición B.0.4).

Sin embargo, el siguiente resultado equivalente muestra más el significado f́ısico que el Teorema de

Liouville tiene.
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Corolario B.0.6. Si (M, ω,H) es un sistema f́ısico Hamiltoniano 2n-dimensional, entonces, ϕt

preserva el volumen simpléctico dΩ = ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

.

Este resultado supone que el volumen en el espacio de fases se mantiene en la evolución, lo que

posibilita la definición consistente de la mecánica estad́ıstica.
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Apéndice C
Formalismo de Koopman

Consideramos un sistema Hamiltoniano clásico definido sobre la variedad simpléctica (M, ω). Una

densidad de probabilidad ρ : M → R que describe un sistema estad́ıstico clásico sobre el espacio de

fases define una medida µ que cumple:

µ(M) =

∫
M
dµ =

∫
M
ρdΩ = 1,

donde dΩ es la medida de Liouville de la variedad simpléctica y está definida como el producto

exterior de n copias de la forma simpléctica ω,

dΩ := ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

.

Definimos el espacio de Hilbert L2(M, dΩ) de funciones de cuadrado integrable sobre M a partir

de la medida simpléctica:

L2(M, dΩ) =

{
f : M → C |

∫
M
f̄fdΩ <∞

}
, (C.0.1)

junto con su producto escalar

⟨f |g⟩ :=
∫
M
f̄gdΩ ∀f, g ∈ L2(M, dΩ). (C.0.2)

Sea ψ : M → M una transformación canónica en M, esta define un operador unitario sobre

L2(M, dΩ):

U(f) := ψ∗f = f ◦ ψ ∀f ∈ L2(M, dΩ),

el cual es lineal y mapea L2(M, dΩ) sobre śı mismo. U es una biyección, i.e. U−1(f) = f ◦ ψ−1.

Como ψ es una transformación canónica, define un simplectomorfismo, es decir, preserva la forma
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simpléctica ψ∗ω = ω (donde ψ∗ es el pullback de ψ). Al ser un simplectomorfismo, la transformación

ψ preserva la medida dµ, i.e. dµ(ψ(x)) = dµ(x), haciendo que el operador U defina una isometŕıa:

∥U(f)∥2 =

∫
M
U(f)†U(f)dµ =

∫
M
f(ψ(x))f(ψ(x)) dµ(ψ(x)) =

∫
M
f(x)f(x) dµ(x) = ∥f∥2.

Como caso particular de transformación canónica, consideremos el flujo Hamiltoniano clásico dado

por el Hamiltoniano H ∈ C∞(M), Ft : M → M:

(xi(t), pi(t)) = Ft(x
i(0), pi(0)) t ∈ R.

Sea Ut(f) = f ◦ Ft el operador unitario en L2(M, dΩ) que define esta transformación, si el flujo

Hamiltoniano Ft es completo, es decir, está definido ∀t ∈ R, el operador Ut define un grupo de

transformaciones unitarias de un solo parámetro. Además, el Teorema de Stone (Teorema A.1.8)

nos asegura que existe un operador autoadjunto L̂ tal que

Ut = exp(−iL̂t) ∀t ∈ R,

siendo L̂ el operador de Koopman (véase la Definición 2.1.1) que actúa sobre L2(M, dΩ) como

L̂ϕ = −i
(
∂H

∂qk
∂

∂pk
− ∂H

∂pk

∂

∂qk

)
ϕ ∀ϕ ∈ L2(M, dΩ).

En particular, la función de onda ϕρ ∈ L2(M, dΩ) que cumple:

ρ = ϕ̄ρϕρ, (C.0.3)

representa el estado de nuestro sistema estad́ıstico clásico en términos del espacio de Hilbert

L2(M, dΩ).

De esta manera, se tiene una ecuación de Schrödinger en L2(M, dΩ) para ϕρ desde la cual se

recupera la ecuación de Liouville si se calcula ρ con la Ecuación C.0.3.

iϕ̇ρ = L̂ϕρ, (C.0.4)

y la ecuación de Von Neumann correspondiente

i ˙̂ρ = [L̂, ρ̂]. (C.0.5)
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Apéndice D
La C∗-álgebra h́ıbrida

En este caṕıtulo, se hará un descripción más rigurosa de las C∗-álgebras de los sistemas clásicos y

cuánticos y su extensión a sistemas h́ıbridos.

D.1. Caso clásico

Un sistema clásico tiene definido un espacio de fases MC que tendrá estructura de variedad di-

ferenciable, donde cada punto de la variedad corresponde a un estado del sistema; por otro lado,

los observables serán funciones complejas de clase C∞(MC) definidas sobre la variedad. De esta

manera, para definir la C∗-álgebra correspondiente a un sistema clásico, por simplicidad, se toma

el conjunto de funciones complejas de soporte compacto definidos sobre MC , CC(MC) = {f :

K ⊂ MC → C|K compacto}. Para dotarle de estructura de C∗-álgebra buscamos dotarle al con-

junto CC(MC) de una estructura de álgebra de Lie-Jordan-Banach, y, a continuación, hacer su

complexificación para obtener la C∗-álgebra clásica. Para ello, emplearemos:

el álgebra con el producto punto a punto ·C

la conjugación compleja como involución f∗(x) = f(x),

la noma del supremo ∥f∥ = sup{|f(x)||x ∈ MC}.

Por un lado, es inmediato comprobar que el conjunto AC = CC(MC ,C) tiene estructura de álgebra

de Banach y este conjunto contendrá los observables (acotados) f́ısicos del sistema clásico1. Por otro

lado, la estructura de álgebra de Jordan se la dotamos considerando el producto punto a punto

como el producto de Jordan y, como el álgebra AC es conmutativo, considerando un producto de

Lie que se anula. Este álgebra se puede obtener como un ĺımite de la estructura formal donde el

producto punto a punto hace el papel de producto de Jordan y la estructura de Lie viene dado por

1La condición de compacidad no introduce limitaciones f́ısicas.
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el corchete de Poisson sobre C∞
C (MC) que es un subconjunto denso de CC(MC).

Para ver que nuestro álgebra AC con las anteriores estructuras es un álgebra de Lie-Jordan-Banach,

necesitamos revisar si se cumplen las condiciones de compatibilidad (ver Definición A.1.8):

La estructura de Lie define una derivación de la estructura de Jordan que se satisface por ser

un álgebra de Poisson

La proporcionalidad de las asociadores no se cumple ya que el producto de Jordan es asociativo

pero el álgebra de Poisson no lo es2. Sin embargo, tomando el corchete de Poisson canónico

sobre el espacio de fases simpléctico MC podemos definir una familia de álgebras de Lie de la

forma

{a, b}λ := −iλ{a, b},

que define un corchete de Poisson trivial en el ĺımite λ→ 0.

Por tanto, la familia de álgebras (CC(M), ·C , {·, ·}λ) define una LJB trivial en el ĺımite λ → 0;

denotemos este LJB como AR. Empleando el Teorema A.1.4 podemos obtener la C∗-álgebra cuyo

producto vendrá dado por:

a ·C b = a ◦ b+ λ{a, b} con λ→ 0. (D.1.1)

D.2. Caso cuántico

Consideremos, por simplicidad, el álgebra de operadores acotados B(H) sobre el espacio de Hilbert

H respecto a la composición, el adjunto hermı́tico como involución A∗ = A† y la norma del operador

A:

∥A∥ = sup{∥Aϕ∥ , ϕ ∈ H, ∥ϕ∥ = 1}. (D.2.1)

Por la Proposición A.1.2, AQ = B(H) es una C∗-álgebra. Este C∗-álgebra contiene el conjunto de

observables, que corresponden al subconjunto de operadores autoadjuntos:

L = {A ∈ AQ |A† = A}.

Podemos dotar al conjunto L de una estructura de Lie-Jordan-Banach empleando el Teorema A.1.3

considerando:

El álgebra de Jordan definido simetrizando el producto asociativo de AQ:

A ◦Q B =
1

2
(A ·Q B +B ◦Q A),

2Debido a la identidad de Jacobi que cumple el corchete de Poisson.
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El álgebra de Lie definido por la parte antisimétrica multiplicado por el elemento imaginario

i:

[A,B] = − i

2ℏ
(A ·Q B −B ·Q A).

Ambas operaciones son compatibles entre śı en el sentido de la Definición A.1.8 y, dotado de la

norma de la Ecuación D.2.1, L tiene una estructura de álgebra de Lie-Jordan-Banach. El Teorema

A.1.4 nos permite recuperar el producto de la C∗-álgebra como una combinación de los productos

de Jordan y de Lie con κ = ℏ:
A ·Q B = A ◦Q B + iℏ[A,B].

D.3. C∗-álgebra h́ıbrida

Construiremos la C∗-álgebra h́ıbrida AH a partir de las clásicas y cuánticas, AC y AQ respectiva-

mente. A continuación, caracterizaremos el conjunto de observables de un sistema h́ıbrido empleando

el Teorema A.1.3.

Tomemos el producto tensorial de las C∗-álgebras cuántico y clásico: AH = AC ⊗AQ. El producto

h́ıbrido está definido por los productos clásicos y cuánticos:

(a⊗A) ·H (b⊗B) := (a ·C b)⊗ (A ·Q B) = ĺım
κ→0

(a ◦ b+ iκ{a, b})⊗ (A ◦B + iℏ[A,B]) =

= (a ◦ b)⊗ (A ◦B) + iℏ(a ◦ b)⊗ [A,B] +
((((((((((((((((
ĺım
κ→0

iκ{a, b} ⊗ (A ◦B + iℏ[A,B]) =

= (a ◦ b)⊗ (A ◦B) + iℏ(a ◦ b)⊗ [A,B] ∀a, b ∈ AC , A,B ∈ AQ, (D.3.1)

de donde vemos claramente el producto de Jordan y el de Lie de la estructura de Lie-Jordan h́ıbrido:

(a⊗A) ◦H (b⊗B) = (a ◦ b)⊗ (A ◦B)

[(a⊗A), (b⊗B)] = (a ◦ b)⊗ [A,B]

La involución vendrá dada por las involuciones clásicas y cuánticas. El conjunto de elementos de la

forma

f =
∑
k

γkak ⊗Ak, γk ∈ C, ak ∈ AC , Ak ∈ AQ,

con el producto h́ıbrido dado por la Ecuación D.3.1 tiene estructura de álgebra y lo denotaremos

AH . En dicho álgebra, definimos la involución como

f∗ =
∑
k

γ̄ka
∗
k ⊗A†

k,

donde a∗k y A†
k representan las involuciones clásica y cuántica, respectivamente.
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En cuanto a la norma (véase [5] y [13] para exposiciones más detalladas), consideraremos la nor-

ma espacial definido por la inclusión de B(HC) ⊗ B(HQ) en B(HC ⊗ HQ) y la definición de una

representación

πH = πC ⊗ πQ,

y la norma

∥f∥ = ∥πH(f)∥B(HC⊗HQ).
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Apéndice E
Resultados auxiliares

E.1. Definición E.1.1

Definición E.1.1. Sea una aplicación lineal L : Herm(H) → Herm(H), con H un espacio de Hilbert

complejo , se dice que es positivo si la imagen de un elemento positivo1 es un elemento positivo. El

mapa L se dice que es completamente positivo si, para todo espacio de Hilbert complejo H′
, el

mapa L⊗ Id : Herm(H⊗H′
) → Herm(H⊗H′

) es positivo.

E.2. Teorema 3.2.1

Demostración. Consideremos, por hipótesis, un Hamiltoniano con la forma de la Ecuación (3.1.2)

cumpliendo las condiciones del Teorema 3.1.1 y los operadores de Kraus de la forma de la Ecuación

(3.2.6). Buscamos que la evolución Lindbladiana deje invariante el subespacio h́ıbrido, es decir, que

L†(πH(AH)) ⊂ πH(AH).

1Un elmento ψ ∈ H de un espacio de Hilbert H es positivo si ⟨ψ|ψ⟩ > 0 con el producto escalar.
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Para ello, descomponemos πH(AH) = πC(AC)⊗ πQ(AQ)) y calculamos L†(πC(AC)⊗ πQ(AQ))):

L†(πC(AC)⊗ πQ(AQ))) =

=
N2−1∑
k=1

γk

{(
d†kπC(AC)dk +

∑
i=g,p

n∑
s=0

(
d†kekisπC(AC)Πis +Π†

isπC(AC)e
†
kisdk+

∑
j=q,p

n∑
t=1

(
Π†

ise
†
kisπC(AC)ekjtΠjt

)))
⊗ (a†kqπQ(AQ)akq)−

− 1

2

(
d†kdkπC(AC) +

∑
i=g,p

n∑
s=0

(
d†kekisΠisπC(AC) + Π†

isπC(AC)e
†
kisdk+

∑
j=q,p

n∑
t=1

(
Π†

ise
†
kisekjtΠjtπC(AC)

)))
⊗ (a†kqakqπQ(AQ))−

− 1

2

(
πC(AC)d

†
kdk +

∑
i=g,p

n∑
s=0

(
d†kekisπC(AC)Πis + πC(AC)Π

†
ise

†
kisdk+

∑
j=q,p

n∑
t=1

(
πC(AC)Π

†
ise

†
kisekjtΠjt

)))
⊗ (a†kqakqπQ(AQ))

}
. (E.2.1)

Que un operador esté en πH(AH) no supone ninguna restricción a la parte cuántica pero la parte

clásica solo puede depender de las coordendas canónicas (qi,pj) o dicho de otra manera, los términos

derivativos han de anularse. La única manera que se cumpla eso es que se cumplan las siguientes

condiciones:

1. a = a†kqπQ(AQ)akq = a†kqakqπQ(AQ) = πQ(AQ)a
†
kqakq, ∀k; o lo que es lo mismo, akq =

alq, ∀k, l y [akq, πQ(AQ)], ∀k.

2. Los siguientes términos han de pertenecer a πC(AC):

N2−1∑
k=1

γk

{
Π†

ise
†
kisπC(AC)ekjtΠjt −

1

2
πC(AC)Π

†
ise

†
kisekjtΠjt−

− 1

2
Π†

ise
†
kisekjtΠjtπC(AC)

}
∈ πC(AC), ∀i, j = q, p∀s, t = 1, . . . , n, (E.2.2)

N2−1∑
k=1

γk

{
d†kekis[πC(AC),Πis] ∈ πC(AC), i = q, p; s = 1, . . . , n, (E.2.3)

N2−1∑
k=1

γk

{
[Πis, πC(AC)]dke

†
kis ∈ πC(AC), i = q, p; s = 1, . . . , n, (E.2.4)

De la condicion 1 se obtiene que las partes cuánticas de todos los operadores de Kraus han de ser

iguales y parte del centro del álgebra (conmutan con todos los elementos del álgebra).
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Como [Πis, πC(AC)] ∈ πC(AC) ∀i = q, p; ∀s = 1, . . . , n, solo debemos imponer la condición de la

Ecuación (E.2.2). Para que se cumpla dicha ecuación, además debemos imponer que

N2−1∑
k=1

γke
2
kij = 0, ∀i = q, p; j = 1, . . . , n. (E.2.5)
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Apéndice F
Implementación numérica

F.1. Test

Con el objetivo de comprobar la correcta implementación numérica de los sistemas h́ıbridos, se ha

simulado un oscilador armónico empleando el formalismo de Koopman y se ha verificado, sabiendo

de antemano el comportamiento teórico del mismo, que todo funciona correctamente.

Consideraremos que la parte cuántica del Hamiltoniano h́ıbrido es trivial, es decir, Ĥ = ĤC ⊗ Î.
Tomemos el Hamiltoniano clásico de un oscilador armónico1 HC = p2+q2 y obtengamos el operador

de Koopman correspondiente a este Hamiltoniano (véase Ecuación 2.1.5):

L̂C = −i
(
∂HC

∂q

∂

∂p
− ∂HC

∂p

∂

∂q

)
= −2i

(
q
∂

∂p
− p

∂

∂q

)
, (F.1.1)

y lo escribimos en función de los operadores escalera y obtenemos el operador de Koopman:

L̂C = −
√
2
(
(aq + a†q)(ap − a†p)− (ap + a†p)(aq − a†q)

)
. (F.1.2)

Debido a que se trata de una simulación numérica, la base {ϕqn ⊗ ϕpm}Nn,m=0 tiene un número finito

de elementos. El número de polinomios de Hermite que se toman (N) influye en la evolución del

sistema h́ıbrido. Si se considera solamente uno o dos polinomios de Hermite, el sistema no evoluciona

debido a que los operadores escalera pueden anular el estado; a medida que se aumenta el número de

polinomios de Hermite, la evolución tiende asintóticamente a la evolución real del sistema. Mencionar

también que el número de polinomios a escoger depende también de los grados de polinomios de

Hermite que consideramos como condición incial; es decir, si la densidad de probabilidad clásica

inicial, al descomponerlo en los polinomios de Hermite, toma valor en polinomios de grado alto, el

número N ha de aumentar para una evolución fiel a la realidad, con el coste computacional que

aquello conlleva.

1Despreciaremos las constantes ya que no aportan nada en este test.
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En los ejemplos tratados en esta sección, como el polinomio de Hermite del estado inicial de mayor

grado era 1 (correspondiente a la densidad de probabilidad del momento), con un valor N = 5 la evo-

lución era bastante precisa. A esta conclusión se ha llegado simulando el sistema h́ıbrido con el single-

te, ya que, en este caso, la parte clásica no recibe influencia de la parte cuántica. Y se ha comparado

con la dinámica que se espera de un oscilador armónico clásico en el espacio de fases, que es una ro-

tación en torno al punto (q0, 0) donde q0 es la longitud natural del oscilador (en nuestro caso q0 = 0).

F.2. Simulación numérica

F.2.1. Koopman en este ejemplo

Necesitamos obtener el Hamiltoniano clásico sobre L2(q) ⊗ L2(p), para ello, calculamos L̂C =

−2i

(
q
∂

∂p
− p

∂

∂q

)
y lo escribimos en términos de operadores escalera

ĤC = −
√
2
(
(aq + a†q)(ap − a†p)− (ap + a†p)(aq − a†q)

)
Consideraremos los N primeros polinomios de Hermite2 y la base clásica {ϕn}Nn=0. Para la parte

cuántica, consideraremos el CSCO (S2, Sz).

La dinámica Lindbladiana viene determinada por los operadores de Kraus (véase Ecuación (3.2.2)),

para la simulación tomaremos dos operadores de Kraus3:

γ0 = −γ1 = 1, V1 =
(
6Q̂+Πq −Πp

)
⊗ S2, V2 =

(
4P̂ −Πq +Πp

)
⊗ S2, (F.2.1)

y los siguientes estados como condiciones iniciales:

|ϕ(Q̂, P̂ )⟩triplete = ϕq0(Q̂)⊗ ϕp1(P̂ )⊗ |10⟩ , (F.2.2)

|ϕ(Q̂, P̂ )⟩singlete = ϕq0(Q̂)⊗ ϕp1(P̂ )⊗ |00⟩ ,

|ϕ(Q̂, P̂ )⟩mezcla = ϕq0(Q̂)⊗ ϕp1(P̂ )⊗
1√
2
(|10⟩+ |00⟩) ,

los tres estados comparten el estado de la parte clásica. Recordemos que para recuperar la distri-

bución de probabilidad clásica hay que elevar al cuadrado el módulo de la función de onda, en este

caso, ρq(Q̂) = |ϕq0(Q̂)|2 y ρp(P̂ ) = |ϕp1(P̂ )|2 (véase la Figura F.2.1a y F.2.1b). La Figura F.2.1c

muestra la densidad de probabilidad inicial en una carta del espacio de fases.

F.2.2. Simulación

En la Figura F.2.1 se muestra la densidad de probabilidad clásica que hemos considerado como

condición inicial, en concreto, se trata de la función de onda ϕ(q, p) = ϕq0(q) ⊗ ϕp1(p). La Figura

2Realmente son los primeros N autoestados de un oscilador armónico cuántico, sin embargo, a partir de ahora,

cuando nos mencionemos los polinomios de Hermite, en realidad, nos estaremos refiriendo a los autoestados del

oscilador armónico cuántico (que son proporcionales a dichos polinomios).

3Recordemos que Πq = πC

(
∂

∂q

)
, Πp = πC

(
∂

∂p

)
, Q̂ = πC(q) y P̂ = πC(p).
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(a) Posición (b) Momento

(c) Densidad de probabilidad inicial en el espacio de fases

Figura F.2.1: Condición inicial clásica.

F.2.2 muestra tres fotogramas de las dos dinámicas estudiadas en este trabajo para ilustrar sus

diferencias, animaciones de las simulaciones pueden hallarse en GitHub.
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(a) Unitaria T = 1 a.u. (b) Lindblad T = 1 a.u.

(c) Unitaria T = 2 a.u. (d) Lindblad T = 2 a.u.

(e) Unitaria T = 3 a.u. (f) Lindblad T = 3a.u.

Figura F.2.2: Simulaciones del sistema h́ıbrido N = 7
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