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Resumen

En este trabajo se generaliza el formalismo de Koopman para sistemas estadisticos cldsicos em-
pleando C*-algebras y la construcciéon GNS. Consideramos la aplicacion a sistemas hibridos clasico-
cuanticos y se comprueba que la dindmica unitaria hibrida tiene limitaciones para describir dinamica
de sistemas fisicos. Se propone una dindmica no unitaria nueva bien definida y se verifica que po-
see propiedades fisicas mas interesantes que la dindmica unitaria, a pesar de tener también ciertas
limitaciones. Finalmente, se simula numéricamente un sistema hibrido sencillo para corroborar las

predicciones tedricas de este trabajo.

Palabras clave: Formalismo de Koopman, sistemas Hamiltonianos, sistemas hibridos, dindmica
Markoviana.



Abstract

In this project, we generalize Koopman’s formalism for classical statistical mechanics, using C*-
algebras and the GNS construction and apply it to classical-quantum hybrid systems. We study the
hybrid unitary dynamical systems and realize these have an important limitation when it comes
to describing physical hybrid systems. In order to solve this limitations, we propose a non-unitary
dynamical system based on the theory of quantum open systems, and we check that it is capable of
describing more cases of real hybrid system’s dynamics. Finally, we simulate numerically a simple
hybrid system in order to sustain the theoretical predictions made in this project.

Palabras clave: Koopman’s formalims, Hamiltonian systems, hybrid systems, Markovian dyna-

mics.
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Capitulo

Introduccion y objetivos

Los sistemas hibridos clasico-cudnticos (SHCQ) son aproximaciones a aquellos sistemas original-
mente cuanticos que contienen grados de libertad que pueden aproximarse como variables clasicas.
Esta casuistica puede darse cuando en un sistema hay diferentes escalas de energia o masa como
ocurre, por ejemplo, en sistemas moleculares y de materia condensada donde el nicleo es pesado y
lento y los electrones son ligeros y rapidos. De hecho, en fisica molecular, como son los electrones de
valencia los que dotan a la molécula de sus propiedades quimicas, en simulaciones numéricas estos
electrones suelen tratarse cuanticamente y el nicleo y el resto de los electrones clasicamente para

que el coste computacional de las simulaciones sea viable.

La mecanica cldsica (MC) y la mecdnica cuantica (MQ) presentan diferencias formales en cuanto a
su estructura matematica subyacente se refiere: mientras que MC se ha descrito tradicionalmente en
términos de geometria diferencial, la MQ ha recurrido al andlisis funcional y al 4gebra; sin embargo,
para poder hacer un formalismo hibrido clasico-cuanticos, ambas teorfas han de estar escritas en
el mismo formalismo matematico. Una forma de tratar estos sistemas es con el formalismo de
Ehrenfest, el cual permite controlar facilmente el error que se comete en el modelo hibrido respecto
al sistema puramente cudntico original (véase [1]). Las ecuaciones de Ehrenfest describen un sistema
dindmico definido en el espacio de fases resultante de hacer el producto cartesiano de los espacios de
fase cldsico y la cudntico M¢ x Mg. Las ecuaciones de Ehrenfest forman un sistema de ecuaciones no
lineales acopladas que describen la dindmica del sistema hibrido, en la cual la parte clasica y la parte
cuédntica se ven afectadas mutuamente. En [3] se prueba que este sistema admite una estructura
Hamiltoniana con un determinado corchete de Poisson hibrido y una funcién Hamiltoniana hibrida,
haciendo posible el tratamiento geométrico de estos sistemas.

Hasta aqui, hemos considerado sistemas puros, sin embargo, en simulaciones moleculares por ejem-
plo, es practicamente imposible determinar el estado inicial de la molécula, por lo que, es mas
razonable tratar con sistemas estadisticos en vez de sistemas puros. Ya que se tratan de sistemas
Hamiltonianos, un posibilidad consiste en tratarlos en términos geométricos, es decir, un sistema

estadistico hibrido quedaria descrito en términos de densidades de probabilidad sobre el espacio de



fases hibrido Mcq. Asi, dada una densidad de probabilidad F : Mcg — R los valores esperados de

las magnitudes fisicas se escriben como:
<A>= / d,U,CQF A,
MCQ

donde A € C*®(Mcq) (véase [3]), y su dindamica viene dada por la Ecuacién de Liouville:

%: — {F.H) (1.0.1)

donde H € C*°(Mc¢q) es el Hamiltoniano hibrido.

Ademas, la construccién de una mecédnica estadistica de equilibrio para sistemas hibridos es funda-
mental para muchas otras aplicaciones, por ejemplo, en simulaciones moleculares a una temperatura
finita resulta crucial conocer el ensemble candnico del sistema y su entropia asociada. Sin embargo,
antes de definir una mecédnica estadistica para sistemas hibridos en equilibrio, debemos considerar

tres cuestiones importantes:
= ;Cémo se define una entropia en sistemas hibridos?
= ;Cudl es la dinamica de estos sistemas?

= ; Esta dindmica deja invariante el ensemble canénico? O dicho de otra manera, ;puede usarse
el formalismo de Maxima Entropfa (MaxEnt) para obtener el ensemble candnico de sistemas
hibridos?

Desafortunadamente, el tratamiento geométrico de SHCQ descrito arriba tiene una limitacién muy
importante: la imposibilidad de calcular la entropia del sistema estadistico. Recordemos que la
definicién de una entropia requiere la distincion de eventos mutuamente excluyentes, sin embargo,
no hay ninguna manera de determinar si dos eventos son mutuamente excluyentes empleando este
tratamiento geométrico (véase [2]). La tnica manera de solventar esta limitacién es recurrir al
formalismo de las matrices de densidad p y emplear la entropia de von Neumann S = —tr(plnp).
De hecho, en [1] se define una entropia para sistemas hibridos y se propone una candidata para el
ensemble canénico empleando matrices de densidad hibridas. Sin embargo, a dia de hoy, debido a la
no linealidad de la dindmica hibrida, no se conoce cémo evolucionan con el tiempo en este formalismo
(ver [¢]). Como resumen, podemos concluir que el tratamiento geométrico de SHCQ no presenta
ningun formalismo matemadtico que permita describir una dindmica hibrida consistente y permita, a
su vez, considerar la entropia necesaria para una mecdanica estadistica hibrida de equilibrio. Nuestro
trabajo va a abordar este problema.

En 1931 [10], Bernard Koopman demuestra que la mecénica estadistica cldsica puede tratarse con las
mismas técnicas matematicas que la MQ. Bajo el formalismo de Koopman, los estados de mecéanica
estadistica cldsica vienen dados por elementos de un espacio de Hilbert y las magnitudes fisicas



se describen mediante operadores definidos en dicho espacio. Ademds, se tiene una ecuacién de
tipo Schrodinger en este espacio desde la cual se puede recueperar la dinamica clasica dada por la
ecuacién de Liouville. Notese que esta dinamica cuantica es lineal, frente a la no lineal de la que
partimos, es decir, la costruccion de Koopman linealiza la dindamica. Naturalmente, dicho enfoque
abre las puertas a una nueva forma de tratar los SHCQ en términos de espacios de Hilbert y de
operadores, en particular, la definicién de una entropia del sistema en este formalismo es inmediata.
En [0] se estudia la forma de adaptar el formalismo de Koopman a sistemas hibridos y se propone
una dindmica unitaria, la cual es la dindmica més sencilla a estudiar en este contexto. No obstante,
en ese articulo se demuestra que los grados de libertad cuanticos reciben influencia de los clasicos
pero no en el otro sentido, es decir, que la dindmica hibrida unitaria no presenta back-reaction; lo

cual supone una limitacion a la hora de describir ciertos sistemas fisicos.

Este trabajo nace de la necesidad de encontrar una dinamica hibrida no unitaria con propieda-
des fisicas mas interesantes que la unitaria, como puede ser la back-reaction, en el formalismo de
Koopman. De hecho, veremos que la dindmica no unitaria més simple (dindmica Lindbladiana) si
que presenta back-reaction; lo demostraremos analiticamente y lo veremos mediante simulaciones

numéricas de un ejemplo sencillo.

La estructura del documento es la siguiente. En el capitulo 2 se parte de la construccién original de
Koopman para sistemas puramente clasicos y se adapta a sistemas hibridos. Para ello, se presenta
una estructura matematica que permite el tratamiento de sistemas cléasicos en la imagen de Heisen-
berg de forma mas general. En el capitulo 3 nos centraremos en la dindmica de sistemas hibridos y
veremos dos dinamicas hibridas distintas, una unitaria y otra no unitaria. Por un lado, se hace una
exposicién de la unitaria y se presentan las propiedades fisicas que tiene (véase [0]). Por otro lado, se
propone la dindmica no unitaria méas simple disponible en la literatura (la dindmica Lindbladiana) y
se estudia sus propiedades. En el capitulo 4 haremos una implementacion numérica del formalismo
de Koopman para sistemas hibridos e ilustraremos y corroboraremos los resultados obtenidos en el

capitulo anterior con un ejemplo.

El uso de una dindmica Lindbladiana en sistemas hibridos supone la mayor aportacién original de
este trabajo, siendo el primer capitulo y la primera parte del segundo una revisién bibliografica
que pretende incidir sobre aquellos aspectos que permiten fundamentar y proporcionar una mejor
comprension de los resultados finales.

Este trabajo partié de una buena comprensién del problema al cual este trabajo busca dar solucién.
A esto le siguié un estudio exhaustivo de herramientas de anélisis funcional, dlgebra, geometria
diferencial y de mecdnica hamiltoniana, con la ayuda de libros de texto y bibliografia especializa-
da. El siguiente paso consistié en idear una posible solucién al problema planteado y en estudiar
analiticamente bajo qué condiciones esta solucion es vélida y sus consecuencias fisicas. Finalmente,
se usaron herramientas del célculo numérico para simular un ejemplo concreto en diferentes casos

para su posterior analisis. El cédigo desarrollado puede encontrarse en GitHub.


https://github.com/paulrosa7/Formalismo-de-Koopman

Capitulo

Formalismo de Koopman y sistemas hibridos

En este capitulo, en primer lugar, resumimos el formalismo de Koopman para sistemas estadisticos
clésicos y, en segundo lugar, lo generalizaremos para obtener una dindmica para sistemas hibridos.
Para ello, construiremos una C*-dlgebra que represente los sistemas hibridos, a continuacion, des-
cribiremos estados del sistema hibrido como matrices densidad en el espacio de Hilbert obtenidos a
partir de la construccién GNS y definiremos sistemas dinamicos clasico-cuanticos como automorfis-
mos (externos) de la C*-algebra hibrida. Finalmente, caracterizaremos las dindmicas unitarias para

sistemas hibridos

2.1. Formalismo de Koopman para sistemas estadisticos clasicos
I: Imagen de Schrodinger

En esta seccién, se hace una presentacién resumida de la forma en la que Koopman describié un
sistema estadistico cldsico mediante un espacio de Hilbert en su articulo original [10] de 1931. Para
una exposicion mas detallada y rigurosa, véase el Apéndice C.

Consideramos un sistema estadistico Hamiltoniano clasico definido sobre un espacio de fases M
de dimensién 2n con las correspondientes coordenadas generalizadas ¢* y momentos conjugados p;,
para i = 1,...,n (coordenadas de la carta de Darboux sobre M). La densidad de probabilidad
p: M — RT integrada sobre una regién del espacio de fases da la probabilidad de que el sistema
se encuentre en dicha regién, y cumple:

/ p-dgt Ao ANdg" Ndpy A -+ ANdpp, = 1.
M

Dado un Hamiltoniano H € C°°(M), la dindmica de la densidad de probabilidad viene dada por la
ecuacién de Liouville:

p= —{p,H}, (2'1'1)

donde {-} es el corchete de Poisson (ver Definicién B.0.7).



El formalismo de Koopman permite describir un sistema estadistico cldsico mediante un espacio
de Hilbert. La densidad de probabilidad es obtenida a partir del médulo al cuadrado! de una
funcién de onda subyacente, los observables vendran descritos como operadores multiplicativos® y
autoadjuntos, y la dindmica se describe a partir de la correspondiente ecuaciéon de Schrodinger.
En su articulo de 1931 ([10]), Koopman demostré que la dindmica que se obtiene a partir de la
ecuacién de Schrodinger equivale a la obtenida mediante la ecuacién de Liouville cldsica. Véase la
Tabla comparativa 2.1.1 entre ambos marcos tedricos.

Sistema estadistico Formalismo
clasico Koopman
Densidad d babilidad
Estado eustdad de plfo abtida Funcién de onda
sobre el espacio de fases
Funciones C'*° sobre Operadores conmutativos
Observables ) )
el espacio de fases y autoadjuntos
L. Ecuacién de Liouville FEcuacién de Schriodinger
Dinamica . .
(no lineal) (lineal)
Cuadro 2.1.1

A continuacién, se presenta la forma que empleé Koopman originalmente para describir mecénica
estadistica clasica en términos de espacios de Hilbert. Para ello, definimos el espacio de Hilbert
L2(M) de funciones de cuadrado integrable sobre M como:

L2(M) = {f : M — C | /M ff dq"dp™ < oo}, (2.1.2)
junto con su producto escalar
o) = [ Fadaat Wi M) (213)
Consideremos un® estado ¢, € £2(M) que cumple:

P = Gpdp, (2.1.4)

entonces, ¢, representa el estado de nuestro sistema estadistico cldsico en términos del espacio de
Hilbert £2(M).

En este formalismo, los observables clasicos corresponden a espectros, en general continuos, de
operadores en el espacio de Hilbert £2(M). En particular, como las variables ¢’s y p’s son andlogas,
los que tradicionalmente en fisica se consideran operadores posicion Q y momento ]5, cuyos espectros
corresponden a las ¢’s y p’s, deben conmutar. Por tanto, por extensién, se tiene que el algebra de

! Analogfa a la regla de Born de la Mecénica Cudntica.

2A diferencia de en la Mecénica Cuéntica, la conmutatividad de los operadores implica la posibilidad de la medida
simultdnea de dos observables clasicos cualesquiera

3No es tinico debido a la fase.



observables clasicos es conmutativa vista como operadores del espacio de Hilbert. En la imagen de
Heisenberg, donde la dindmica esta definida sobre los operadores, esta conmutatividad impide definir
una evolucién que corresponda a un automorfismo interior el dlgebra como ocurre en la ecuacion
de Heisenberg habitual que corresponde a la accién del conmutador con un Hamiltoniano contenido
en el dlgebra. Por tanto, para poder definir una dindmica no trivial a partir de la accién adjunta
de un operador Hamiltoniano, se requiere extender el dlgebra de observables cldsicos y definir un
automorfismo externo que deje invariante la subdlgebra conmutativa clasica. Es esto lo se ha hecho
en el formalismo de Koopman al definir el operador de Koopman que es un operador diferencial
de primer orden por lo que no define un automorfismo interno de la subalgebra conmutativa de las
magnitudes fisicas?. Que el operador de Koopman no pertenezca al dlgebra de magnitudes fisicas
va a tener grandes implicaciones a lo largo del trabajo.

Llegados a este punto, nos hacemos la pregunta ;cémo evoluciona el estado ¢, a lo largo del
tiempo? Para responderla, consideramos el flujo Hamiltoniano clasico F; : M — M, que es una
transformacion canénica® sobre M. En [10], Koopman probé que este flujo define una transformacién
unitaria en el espacio de Hilbert £2(M) y, por el Teorema de Stone (Teorema A.1.8), existe un

operador autoadjunto L tal que es el generador infinitesimal de la evoluciéon temporal.

Definicién 2.1.1 (Operador de Koopman). Se define el operador de Koopman como el operador
diferencial de primer orden dado por:

. OH o OH 0
R e I 2.1,
' (8q’“ Opr  Opy 8q’“> (2:15)

Este operador de Koopman corresponde al generador infinitesimal del operador unitario correspon-
diente al flujo Hamiltoniano. De esta manera, se tiene una ecuacién de Schrodinger en £2(M) para
¢, desde la cual se recupera la ecuacién de Liouville si se calcula p con la Ecuacién (2.1.4):

igp, = Loy, (2.1.6)

donde recordemos que ¢, = (bp(qi, p;) depende de las coordenadas generalizadas ¢" v de los momentos
conjugados p;. Es decir, L hace las veces de Hamiltoniano para una ecuacién de Schrodinger.

Como conclusién, el formalismo de Koopman define un algebra conmutativa de operadores que
representan magnitudes clasicas que es una subalgebra del espacio de operadores lineales del espacio
de Hilbert £2(M). La dindmica viene dada por un automorfismo exterior del subdlgebra generada
por el operador de Koopman

qu y a—pk no son observables fisicos.

®Una transformacién canénica es aquella que deja invariante el paréntesis de Poisson o, en otras palabras, conserva

“Ya, que, los operadores

la forma y la validez de las ecuaciones de Hamilton.



2.2. Formalismo de Koopman para sistemas estadisticos clasicos

II: Imagen de Heisenberg

La forma moderna de tratar el formalismo de Heisenberg de un sistema fisico es mediante una
estructura matematica llamada C*-dlgebra. Esta estructura alberga toda la informacién fisica sobre
el conjunto de observables de un sistema como puede ser la dindmica y las probabilidades de un
sistema estadistico®, por tanto, lo podemos usar para generalizar el formalismo de Koopman a
cualquier sistema fisico descrito por una C*-algebra. Para ello, en esta seccién, escribiremos el
formalismo de Koopman que hemos visto en la Seccién anterior (véase Seccién 2.1) en términos de
C*-algebras, para, a posteriori, facilitar la generalizacién de este procedimiento a la C*-algebra de
un sistema hibrido.

Una C*-édlgebra es una estructura algebraica compleja que tiene definida una norma y una con-
jugacién en la que podremos identificar una parte real (la subdlgebra autoadjunta) y una parte
imaginaria (véase Definicién A.1.13). Esta subélgebra autoadjunta de un sistema corresponderd
a los observables fisicos del mismo. La construccién GNS7 (véase Apéndice A.1) nos asegura que

8. se puede construir una representaciéon 7 de A en el conjunto

dada una C*-dlgebra A cualquiera
de operadores lineales y acotados de un espacio de Hilbert B(H), es decir, una C*-algebra puede
representarse como un subconjunto de operadores lineales y acotados de un espacio de Hilbert?; esto
justifica que nos basta conocer el dlgebra A para reconstruir el conjunto de operadores y estados de
un modelo. Las matrices de densidad de dicho espacio de Hilbert seran duales a esos operadores y
corresponderan a los estados fisicos del sistema. Si dotamos de dindmica a los operadores de dicho
espacio de Hilbert, diremos que estamos en al imagen de Heisenberg, si por el contrario, dotamos

de dindmica a las matrices de densidad, diremos que estamos en la imagen de Schrodinger.

Hagamos lo mismo que hizo Koopman originalmente pero en términos de C*-algebras. Para empezar,
Koopman toma la C*-dlgebra clasica A¢ correspondiente a la complexificacién de los observables
clasicos C.(M¢) (Mc el espacio de fases) y, mediante un procedimiento idéntico a la construccién
GNS, obtiene una representacion del dlgebra Ac dentro de B(H¢), el conjunto de operadores aco-
tados del espacio de Hilbert Ho = L£2(M), donde los estados fisicos serdn elementos de su dual

B*(Hc) que se pueden representar por matrices densidad (véase Figura 2.2.1Db).

Sin embargo, el operador de Koopman (cuya representacién sera el operador Hamiltoniano) no
pertenece a la C*-algebra Ac, ya que, Il x y II,, no son elementos de A¢, es decir, el operador de
Koopman no es un observable fisico porque Il » y Il tampoco lo son. De hecho, necesitamos que
el operador de Koopman no esté en A¢ para definir una dindmica no trivial en mecénica cldsica

5M4s precisamente, es la subélgebra autoadjunta, que forma un 4lgebra de Lie-Jordan-Banach la que alberga las
propiedades fisicas del sistema.

"El procedimiento de Koopman resulta un caso particular de este procedimiento; aunque cabe destacar, que histéri-
camente, la construccién GNS es posterior al articulo original de Koopman.

%Y un estado (en el sentido de C*-lgebra) w € A de A

°En el caso de Koopman, este espacio de Hilbert es £2(M)



en este formalismo. Los operadores Q y 15, correspondientes a los elementos de A¢ ¢ y p; y los
operadores m¢(Il,) y mo(I1,), correspondientes a los elementos derivativos I y 11, ; actian sobre
un ¢(q,p) € L2(M) de la siguiente manera:

= Qo(q,p) = q- ¢(q,p), Pd(a,p) =p- d(q,p),

. 7o(,)é(¢,p) = —ih§q¢<q,p>, re () (g, p) = —ma‘iqﬁ(q,p) |

En cuanto a la dinamica, hemos visto que, en el formalismo de Koopman, la ecuacién de Liouville
de un sistema estadistico clasico en un espacio de fases puede resolverse como la accién de un
grupo uniparamétrico de tranformaciones unitarias en un espacio de Hilbert, es decir, que tenia
una ecuacién de Schrodinger asociada. Este procedimiento linealiza cualquier dindmica clasica no
lineal, en otras palabras, al describir la dindmica clasica en términos de un espacio de Hilbert,
esta se vuelve lineal (véase la Ecuacién (2.1.6) donde el operador de Koopman es un operador
lineal). Ademads, a pesar de que la dindmica ha de estar definida en todo B(H¢), esta ha de dejar
invariante la representacion de la subélgebra conmutativa m¢(A¢) y el de los estados fisicos (matrices
densidad) D(H¢) C B*(Hc) (en la Figura 2.2.1b se pretende ilustrar esta invariancia de la dindmica
respecto a los subdlgebras clasicos) para que esté bien defnido fisicamente. En resumen, la dindmica
de Koopman en la imagen de Heisenberg corresponde a un automorfismo externo del subdalgebra
o (Ac) generado por un operador Hamiltoniano (2.1.5) que esté fuera de la misma.

Si queremos escribir la dinamica sobre los estados, podemos escribir la ecuacién de von Neumann
asociada.
ip = [L,p] (2.2.1)

Basados en las propiedades de la dindmica cudntica del formalismo de Koopman para sistemas
clasicos, impondremos que cualquier dindmica en sistemas hibridos deba cumplir las mismas pro-

piedades.

2.3. C*-3lgebra de sistemas hibridos

Una vez visto como es el procedimiento, en términos de C*-dlgebras, que empleé Koopman original-
mente para describir un sistema estadistico clasico en términos de operadores sobre un espacio de
Hilbert, identificaremos la C*-algebra clasica (la misma que empleé Koopman, véase Seccién 2.2) y
la cudntica y postularemos la C*-dlgebra hibrida resultante de unir las dos. Una presentacion maés
detallada y rigurosa de lo que se va a hacer a continuacién se puede encontrar en el Apéndice D.

Por un lado, la C*-dlgebra de un sistema cudntico Ag sera el dlgebra de operadores acotados B(H)
sobre un espacio de Hilbert H y los observables, naturalmente, los operadores autoadjuntos sobre

dicho espacio, es decir, lo comtn en mecanica cuantica.



Duales

B(H:® HQ)

(a) Esquema de la estructura algebraica de la C*-  (b) Procedimiento de Koopman visto en términos
algebra hibrida y su representacién GNS. algebraicos, mostrando las curvas de la dindmica.

Figura 2.2.1: Esquemas de las estructuras algebraicas.

Por otro lado, la C*-dlgebra de un sistema cldsico A¢, como se ha visto en la seccién anterior, serd la
complexificacién del conjunto de funciones continuas de soporte compacto sobre el espacio de fases
C.(M,C). Al contrario de lo que pasa en el caso cuédntico, en el caso clésico la parte imaginaria
de la C*-4lgebra!® es un artificio matematico sin significado fisico, ya que, son los observables los

unicos elementos del dlgebra clédsica los que poseen sentido fisico.

En [0], se postula que el sistema hibrido vendra descrito por la C*-algebra resultante de hacer el
producto tensorial de la C*-dlgebra clasica y cudntica Ay := Ac®.Ag. En fisica cudntica, el espacio
de Hilbert de un sistema compuesto de dos subsistemas es el producto tensorial entre sus espacios de
Hilbert, por tanto, la razén de definir Ag como el producto tensorial del sistema clésico y el cudntico
es que el sistema original es puramente cuantico y lo estamos interpretando como la combinacion
de dos subsistemas cuénticos, a pesar de que los operadores de la parte cldsica conmuten. Aunque
puede haber mas formas de definirla, en este trabajo se seguird este postulado. Por ejemplo, si
tenemos un sistema cldsico acoplado a un sistema cudntico de dos niveles, los elementos de Ay
seran matrices 2 x 2 cuyos elementos dependeran de (¢, p;).:

fi fe

nonl donde fi = fi(q", pi) Vk.

En cuanto a los sistemas hibridos, a partir de la construccion anterior, tendremos una representacién
T = Tc ® mg y los operadores de sistemas hibridos (cuyas C*-dlgebras tendran la forma Apy =
Ac ® Ag) formaran una subalgebra 7y (Ap) = mc(Ac) ® m1g(Ag) C B(Hc ® Hg) del espacio de
operadores lineales y acotados de un espacio de Hilbert Ho @ H¢ (véase Figura 2.2.1a). Los estados
del sistema hibrido vendran dados por sus matrices densidad correspondientes (véase Teorema A.1.7)
D(H) C B*(He ® Hg).

107 3 parte imaginaria de la C*-dlgebra cudntica contiene, entre otros, el operador unitario que describe la dindmica

de un sistema fisico, ya que, esta no es autoadjunta. Es decir, la parte imaginaria de dicha algebra cuantica surge
naturalmente y posee sentido fisico.



Capitulo

Dinamica hibrida

Sea un sistema hibrido descrito por la C*-dlgebra Ag = Ac ® Ag y mg = mc ® 7@ la representacion
GNS sobre B(Hc ® Hg) (véase Seccién 2.3). En analogia al formalismo de Koopman para sistemas
clésicos (véase Ecuaciones 2.1.6 y 2.2.1 de la Seccién 2.2), una dindmica hibrida deberd cumplir las

siguientes condiciones:

1. La dindmica sera lineal, por lo que existe un operador £ € B(Hc ® Hg) tal que

dru (f)()

S = Len(H(®),  Vf € An, (3.0.1)

y en el espacio de matrices densidad D(H¢o @ Hq),

dpr(t)

= LTout),  Vpg € D(He @ Hg), (3.0.2)

2. La evolucién ha de ser tangente al conjunto de matrices densidad D(Hc ® Hq), es decir, ha
de definir una curva en el espacio de operadores autoadjuntos definidos positivos (e“* D(Hc ®
Hg) C D(He @ Hg), Vt) y la traza se ha de preservar:

dpu(t
Trpp(t) = 1, Vt:>Tr< pZ”):o.

3. La evolucién ha de ser un automorfismo externo! de mg(Ap), es decir, necesitamos definir un
operador Hamiltoniano que no pertenezca a la C*-4lgebra conmutativa clasica® y la evolucién
debe dejar invariante el subespacio 7y (Ag) C B(He ® Ho), i.e.

eﬁt(ﬁH(AH)) - WH(AH), Vt.

'La C*-4lgebra conmutativa clésica Ac tiene una estructura de Lie trivial y, como la estructura de Lie estd asociada

a la evolucién temporal del sistema, si esta se anula para todo elemento del dlgebra, no habria dindmica.
2 An4logo al formalismo de Koopman donde el operador de Koopman, que hacfa las veces de Hamiltoniano, tampoco

pertenecia a Ac.
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A continuacidn, se veran los dos casos de dindmicas méas simples posibles, ya que, ambas cumplen,
por construccién, la condicién 1 y 2; es decir, ambas dindmicas son lineales y dejan el espacio de
matrices de densidad invariantes. Comprobar que una dindmica cumple la condicién 2 analiticamente
es costoso y estos ejemplos son ideales ya que nos aseguran que esta condicién se cumple, pudiendo,

asi, despreocuparnos de ello. En ambos casos, solamente debemos imponer la condicién 3.

3.1. Dinamica hibrida unitaria

En esta seccién, consideraremos dinamica unitaria, por lo que existird un operador Hamiltoniano

H tal que el operador £ serd su accién adjunta, i.e.

‘”HC(JW) = i[H, 7z (f)(1)], Ve Ay, (3.1.1)

o su ecuacién dual correspondiente a la ecuacién de von Neumann para sistemas cldsicos (empleando

matrices de densidad):

dp(t B
P — i), V€ DlHo ®Ha)
donde [, -] es el conmutador. Esta ecuacién dindmica para las matrices densidad define las érbitas

de la accién coadjunta del operador evolucién, es decir, la dindmica unitaria preserva el conjunto de
matrices densidad D(Hc ® Hg) (cumple la condicién 2), como lo hace cualquier sistema cuantico.

A partir de ahora, sin pérdida de generalidad, descompondremos el Hamiltoniano como:
f[:ﬁc®HQ +Hc®ﬁQ+ﬁcQ (3.1.2)

En [0] se da la forma que debe tomar el operador Hamiltoniano de una dindmica hibrida unitaria
para que cumpla la condicién 3, cuando tiene la forma de la Ecuacién (3.1.2).

Teorema 3.1.1. El dnico operador Hamiltoniano de la forma de la Ecuacion (3.1.2) que genera
una dindmica unitaria en B(Hc @ Hg) que define un automorfismo externo del subdlgebra hibrido

wru(Ap) tiene:

= una dependencia lineal respecto a mc(Il k) y mo(Ilp,) en H. tal que

E[C = Z(Oékﬂ'(j(nqk) + ﬁj?‘(c(ﬂpj)), (3.1.3)
kj

donde ay, B; € R y He e mo(Ac).

= Las exponenciales de los otros coeficientes deben pertenecer a sus correspondientes subdlgebras,
i.e., e € mo(Ag), efoe € Ty (Ay).

Para recuperar la expresién de la construcciéon de Koopman, podemos darle los siguientes valores a

los coeficientes ay, §;:

ap = TC (W) , Bj = —m¢ (W) , (3.1.4)
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donde la funcién He(q,p) € Ac representa la energia de los grados de libertad clésicos.

Esta dinamica presenta una limitacién importante: la falta de back-reaction, un operador puramente
cldsico nunca deja de ser puramente clasico con el tiempo, es decir, los grados de libertad cudnticos
no afectan a los clasicos. Vedmoslo con el operador? Q ® I. La evolucién de dicho operador vendra
dada por la Ecuacién (3.1.1):

Q) = ilhe QFeTg +ilHe, Q) @ 1 (3.1.5)

Vemos, efectivamente, que esta dindmica carece de esa back-reaction dado que la evolucién de un
observable cldsico solo va a depender de la parte clasica, y hara falta buscar dindmicas mas generales
(no unitarias) que tengan propiedades como las de las Ecuaciones de Ehrenfest.

3.2. Dinamica hibrida Lindbladiana

En esta seccion, se presenta la principal aportacion original, que consiste en la propuesta de una
dindmica hibrida no unitaria inspirada en la evolucién Markoviana en sistemas abiertos. Para ello,
primero, presentaremos la ecuacion de Kossakowski-Lindblad y, a continuacién, la adaptaremos a
sistemas hibridos imponiendo que la dindmica sea un automorfismo externo de g (Ag).

3.2.1. Dinamica Markoviana en sistemas abiertos

Un sistema se denomina abierto si no esta aislado, es decir, si interactiia con el entorno. La dindmica
cudntica de estos sistemas, al contrario de sistemas cerrados, en general, no puede representarse en
términos de una evoluciéon temporal unitaria, sino que debe escribirse mediante una ecuacién del
movimiento para las matrices densidad®. La dindmica no unitaria més sencilla sers la Markoviana
que dependera de unos operadores de Kraus que determinan la interaccién entre el sistema y el
entorno. Una de las dificultades de la descripcion de estos sistemas proviene de las correlaciones
entre el sistema y el entorno, sin embargo, considerando el entorno como un bano térmico, un
reservorio o un equipo de medicion, se considera aceptable despreciar el efecto que produce el sistema
cuantico sobre el entorno, lo que implica que la transformacién dindmica del sistema cudntico sera

completamente positivo (véase Definicion E.1.1).

Una evolucion Markoviana tiene como propiedad mas relevante que el estado en un tiempo dado
no depende del estado en un tiempo anterior, o como se suele decir coloquialmente, una evolucion
”que no tiene memoria”. Matematicamente hablando, el conjunto de transformaciones dinamicas

Markovianas forman un semigrupo®.

3Dado que Q y P son equivalentes y la ecuacién diferencial de la dindmica es lineal, si no hay back-reaction para
Q ® I no la hay para ninguna funcién bilineal f((:?, [:’),

4Una ecuacién maestra cudntica.

®No forma un grupo porque, para cualquier evolucién, no existe su tranformacién dindmica inversa correspondiente,

ya que, si existiera, el sistema tendria memoria.
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Definicién 3.2.1 (Evolucién Markoviana). La evolucién de un sistema abierto cuédntico se dice
que es Markoviana si la transformacién dindmica ey ¢ : D(H) — D(H) para todo ¢’ > ¢ satisface la
condicién

€to,tr O €ty to = Etajty>  Vi2 > 11 > 1. (3.2.1)

En el contexto de sistemas abiertos, la memoria de estados anteriores a un tiempo determinado
se encuentra en el entorno, pero como se considera que el entorno es un reservorio, este no se ve
afectado por el sistema y se da una evolucién sin memoria, es decir, un sistema abierto tiene una

evoluciéon Markoviana.

Como resumen, el hecho de despreciar las correlaciones entre el sistema y el entorno implica que
la dindmica de un sistema abierto vendrd dada por el semigrupo de transformaciones lineales com-
pletamente positivos. A continuacién introducimos la ecuaciéon maestra que rige la evolucién de las
matrices densidad del sistema cuantico:

Definicién 3.2.2 (Ecuacién de Kossakowski-Lindblad ([11] 1972,[12] 1976)). Sea H un espacio de
Hilbert N-dimensional describiendo un sistema cudntico, y D(H) C B*(H) el conjunto de estados
puros y estados mezcla. Asumiendo que la evolucién del sistema viene dada por un semigrupo de
transformaciones lineales completamente positivas {¢f : D(H) — D(H), t > 0}. Estas transforma-

cilones satisfacen la ecuacién diferencial:
d
201 (p0) = L(#¢ (p0))- (3.2.2)

La transformacién lineal L : Herm(#H) — Herm(#H) se llama el operador de Kossakowski-Lindblad,
y estd dado por:

D(p): disipador

N2-1

, 1 1
Lip)= ZilHp + > (WVJ —3ViVie - QPVJVa)a (3:23)

NI - =1
dindmica unitaria J

dindmica Ijirndbladiana

conpeS, HY = H, tr(H) =06, tx(V;) =0y te(VVi) =0si j £k, para jk=1,2,..., N2 — 1.

Una forma més comtn de escribir la Ecuacién 3.2.2, que corresponde a la imagen de Schrodinger,

es la siguiente:

Colt) = Lip(t)) ¥, olt) € D(He @ Ho), (3.2
o en términos de operadores, en la imagen de Heisenberg,
d N 1 1
a0 = L (A (®) = {H Au®] + 3 7 (VJAHu)Vj —5VViAn(®) - 2AH<t>v;Vj) ,
j=

Vt, VAyg € WH(AH). (3.2.5)

5Dada una evolucién, H estd univocamente determinado por la condicién de la traza.
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Los operadores V;, j =1,...,N 2 — 1 se denominan los operadores de Kraus y se encargan de
determinar la interaccion entre el sistema y el entorno. Para una descripcién detallada de la obten-
cién de la ecuaciéon maestra véase [9]. La ecuacién de Kossakowski-Lindblad describe la evolucién
no unitaria mas sencilla, es por esto que se ha elegido como candidata para emplearlo en sistemas
hibridos mas adelante como primera aproximacién de una dindmica hibrida no unitaria.

3.2.2. Dinamica Lindbladiana en sistemas hibridos

En esta seccién, adaptaremos la dindmica Lindbladiana de sistemas abiertos a sistemas hibridos im-
poniendo a la ecuacién de Kossakowski-Lindblad (3.2.5) las condiciones que debe cumplir cualquier
dindmica hibrida. Como se ha mencionado anteriormente, por construccién, la dindmica Lindbla-
diana deja invariante el conjunto de matrices de densidad; ademés, la dindmica es lineal (véase la
linealidad del operador de Kossakowski-Lindblad en la Ecuacién 3.2.3). Por tanto, la dnica condi-
cién que se ha de imponer a mano sera la condicién de que la evolucién debe dejar invariante el

subdlgebra 7 (Ag).

Para ello, es suficiente imponer que transformacién infinitesimal de cada operador de mp(Apf)

d
sea un operador del mismo espacio. Esta condiccién implica que la parte clasica de d—AH(t) =

d p

—t(AC (t)® Ag(t)) solo debe depender de los operadores” (Q%, Pj) y no de los elementos diferenciales
mc(lyi) y mo(Ilp,). Imponiendo que los elementos dependientes de los operadores diferenciales se
anulen, enunciamos el siguiente teorema, cuya demostracién se puede encontrar en el Apéndice E.2.

Teorema 3.2.1. Dado un sistema hibrido descrito por la C*-dlgebra Ag = Ac®Ag, una dindmica
como la de la Ecuacion 3.2.5 con los operadores de Kraus de la forma:

Vi = ( Q ]5 Jrzekll Q P Jrzeky C(H )) ® kg,
dk,ekli,ek% eno(Ac), ap€ wQ(AQ), Vk=1,...,N>—1,Vi=1,...,n, (3.2.6)

donde N es la dimension de He ® Hg y dado un Hamiltoniano con la forma de la Ecuacion (3.1.2)
cumpliendo las condiciones del Teorema 3.1.1. Para que la evolucion defina un automorfismo externo
del subdlgebra hibrido m(Ap) se debe cumplir:

= [os coeficientes de los operadores de Kraus han de cumplir las siguientes ecuaciones:

> wmer; =0, Vi=1,2j=1,...,n, (3.2.7)

"Denominaremos Q° = o (q') y P; = o (p;)
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» ap =a Yk con ey # 0 para algin i,j: donde a € Z(Ag) es un elemento del centro® del

dlgebra Ag (véase definicion de centro de un dlgebra en Definicion A.1.3).
Demostracion. Ver Apéndice E.2. ]

Estudiemos las propiedades fisicas que tiene esta dindmica, en particular, veremos si esta dindmica
proporciona back-reaction, es decir, si un operador puramente clasico deja de serlo con el tiempo.
Para ello, considerando un sistema hibrido de una dimensién clasica con Hamiltoniano H = Hg ®
[+1® Hg + he ® hg, calcularemos la evolucién del operador test Q QI

N2-1 n
ih%(@ ® 1) :WJF i[Ho, Q@ 1+ Z Vi Z (e}mdki + dzieku) ® a?. (3.2.8)

k=1  i=1
Vemos que un operador del centro del algebra Ag influye en la dindmica puramente clésica, es
decir, el sistema hibrido con la dindmica Lindbladiana tiene back-reaction correspondiente a un
operador del centro del algebra cuantica. En los ejemplos que consideraremos, la parte cudntica son
dos qubits, por eleccién de disefio escogeremos a = S? que es un Casimir del dlgebra de Lie cudntica
y por tanto estd en el centro Z(Ag); de esta manera, la parte cldsica solamente ”verd” el momento

angular total de la parte cudntica (ver siguiente capitulo para una demostracién numérica).

8Por ejemplo, para el caso del espin de una particula, a = J? serd el momento angular total que es el operador de
Casimir y pertenece al centro del dlgebra de Lie su(2).
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Capitulo

Implementacion numérica y ejemplos

En este capitulo, implementaremos numéricamente el formalismo de Koopman para poder hacer
simulaciones de sistemas hibridos y las dindmicas explicadas en el capitulo anterior. En primer
lugar, se realiza un test de una dindmica arménica en un sistema de Koopman para comprobar
que la implementacién numérica es correcta (véase Apéndice F.1) y, en segundo lugar, se toma
un oscilador arménico acoplado a un sistema de dos qubits y se simula una dindmica unitaria y
la dindmica Lindbladiana y vemos sus diferencias. Finalmente, vemos que formas de introducir
dindmicas Lindbladianas diferentes con los términos de interaccién y con operadores de Kraus

puramente cuanticos.

4.1. Implementacién numérica

Para la simulacién de los sistemas hibridos se he empleado la libreria QuTip de Python. El cédigo
desarrollado puede encontrarse en GitHub.

Recordemos que un sistema hibrido en el formalismo de Koopman viene descrito como una funcién
de onda de un espacio que tendrd una parte clisica y otra cudntica! Ho ® Hg (véase Seccion
2.3). Consideremos un sistema hibrido de 1 dimensién clésica?, las funciones de onda clésicas seran
elementos del espacio de Hilbert clésico He = £2(R) ® L2(R).

—— ——

q p

Consideramos el conjunto {¢,}>°, de autoestados del oscilador arménico cudntico

2

1 1/4 mwx

muw - mw
_ e 2h . mw —0,1,...
(@) =\ g <7rn) ‘ Hn <\/ I x) n=01

donde m tendra interpretacion de masa de la particula, w es la frecuencia natural del oscilador y

'En los ejemplos, consideraremos Hg = C*.
2Una dimensién para la posicién y otra dimensién para el momento.
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H,(x) es el polinomio de Hermite® de orden n. Este conjunto forma una base de infinitos términos
del espacio L2(R), por lo que, {¢f @ ¢}, formardn base® de H¢. Sin embargo, para poder tratar
estas funciones de onda numéricamente, solo podremos considerar un nimero finito de elementos de
la base de H¢, es decir, haremos un truncamiento de los infinitos elementos de la base. El niimero
de elementos que se consideren en el tratamiento numérico influird en la precisiéon del modelo y en
el costo computacional, requiriendo encontrar un equilibrio para cada uso (véase Apéndice F.1).
Para la parte cuantica consideraremos un espacio de Hilbert de un sistema de dos qubits que es de

dimension finita.

Supongamos que tenemos un sistema hibrido donde la parte clésica tiene el Hamiltoniano cléasico
He € C®(M) y la parte cuntica evoluciona con el Hamiltoniano H ©- A continuacién, describiremos
este sistema en el formalismo de Koopman. En primer lugar, descomponemos el Hamiltoniano
hibrido como se muestra en la Ecuacién 3.1.2, es decir, H=Hq @Ig+Ic® ﬁQ + ﬁCQ. En segundo
lugar, obtenemos el operador de Koopman (véase Ecuacién 2.1.5) correspondiente:

i (0Hc O 9Ho D
“ dq 9p  Op 0q)’

(4.1.1)

y, a partir de dicho operador, obtendremos He € B(Hc) escribiendo L¢ en términos de operadores

1 ” 1 7
(ag+ab), P = —=(ap+ap), mc(Ily) = —

E V2 E(@q_ag),

mo(ll,) = 7 (ap—a;ro). En caso de haber una interaccién explicita entre la parte cldsica y cuantica,

esta ird en ﬁCQ de H.

escalera® empleando las identidades: Q =

4.2. Ejemplos

Considerermos un oscilador armonico clasico acoplado a un sistema de dos qubits en el espacio de
Hilbert H = £*(R) ® L%(R) ®C? ® C? = £%(¢q) ® L2(p) ® C*. La parte cudntica de este sistema
——  N——
q P .

.o 1
es la suma de dos espines S = S; + S, y tiene como momento angular total S? = 5 X 3= 0,1.

Recordemos que escogemos a = S2, por lo que, la back-reaction de la dindmica Lindbladiana solo
considera el autovalor del operador de Casimir del dlgebra de Lie cudntico, es decir, la parte clasica
solo se ve influenciada por el momento angular total de la parte cudntica. En la Ecuacién (3.2.8)
se puede observar que si el autovalor de a? (en nuestro caso (52)2) es cero, Q ® I seguiré siendo
un operador puramente clasico a lo largo del tiempo; por tanto, hace falta que el momento angular
total de la parte cuantica sea diferente de cero para que el sistema presente back-reaction. Esta es la
razén de haber tomado dos qubits en vez de uno, ya que, cuando S? = 1 deberfa haber back-reaction,

SH,.(2z) = (—1)"@””2d9£—neﬂ”2 n=0,1,....

4La razén de elegir esta base es que sabemos cémo actian los operadores escalera en cada elemento de la base,

lo que nos facilita el escribir las matrices asociadas a cada operador en dicha base: aq/p(b?/p = ﬁqﬁf/fl n=1,...y
a:;/pgb?/P =+n+ 1(;52/_,?1 n=0,...

®Nétese que pasamos implicitamente de funciones C> (M) a operadores definidos con dominio en Hc®H o mediante
la representacién GNS.
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pero cuando S? = 0 la parte cldsica deberfa estar ciega respecto a la cudntica; comprobaremos estas

predicciones tedricas en las simulaciones.

Consideraremos las dos dindmicas expuestas en el trabajo, la dindmica unitaria y la Lindbladiana,
y simularemos las evoluciones temproales del sistema correspondiente a cada una. Veremos que
solo la dindmica Lindbladiana presenta back-reaction, estudiaremos la pureza de la parte clasica y
discutiremos los resultados obtenidos. A continuacién, verificaremos que, en la dindmica Lindbla-
diana, que el sistema presente o no back-reaction depende de si la parte cuantica del estado inicial
es el singlete o no. Ademds, introduciremos términos puramente cuanticos y de interacciéon en el
Hamiltoniano (ver Ecuacién (3.1.2)) y comprobaremos que generan dindmicas diferentes en la parte
cuantica. Finalmente, anadiremos un operador de Kraus extra puramente cuantico, a partir de los
ya conocidos en sistemas abiertos cuanticos, viendo que también produce dindmicas diferentes.

Véase Apéndice F.2.1 para describir nuestro ejemplo concreto en el formalismo de Koopman.

4.2.1. Back-reaction

En primer lugar, pretendemos ver que efectivamente la parte clasica se ve afectada por la parte
cuéntica siempre que la parte cudntica S? # 0 (estado singlete) con la dindmica Lindbladiana. Para
ello, tomaremos un Hamiltoniano puramente clasico (H = Ho®1) y los estados |¢(q,p)), v |9(q, D)),
con sus respectivas matrices densidad

pt = |6(q,0)); @ (D0, D)l; s ps = |¢(q;p))s @ (H(q,D)], - (4.2.1)

En un sistema cuéntico, el hecho de que uno de los subsistemas pierda pureza es un indicativo de
que hay entrelazamiento con el resto del sistema. Analogamente, calcularemos la pureza de la parte
clasica que es indicativo de que hay back-reaction cuando el Hamiltoniano es puramente clésico.
La Figura 4.2.1 muestra los resultados de la pureza clasica con el triplete y el singlete. Vemos
que, tomando la parte cuantica del estado inicial el triplete, la pureza de la parte clasica decae
confirmando que hay back-reaction. Sin embargo, con el singlete, la pureza se mantiene constante
en la unidad, por lo que, efectivamente, concluimos que no hay correlaciéon entre la parte clasica y
cudntica si el estado inicial cuantico es el singlete. Dicho de otra manera, si el estado cuantico incial

es el singlete, no se produce back-reaction, tal y como se habia predicho teéricamente.

4.2.2. Diferencias entre dinamicas

En segundo lugar, de nuevo con un Hamiltoniano puramente clasico, veamos la diferencia entre la
dindmica unitaria y la dindmica Lindbladiana. Consideramos el estado inicial |¢(q, p)),, (nétese que
no es el singlete) y su correspondiente matriz densidad p,, = |¢(g,p)),, @ (¢(¢,p)|,, , lo hacemos
evolucionar en el tiempo (véase la Ecuacién 3.2.4) y calculamos la pureza de la parte clésica’; la
Figura 4.2.2 muestra el resultado. En primer lugar, la dindmica unitaria mantiene la pureza de la

®Haciendo la traza parcial a £2(q) ® £2(p).
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Figura 4.2.1: Pureza de la parte clasica del sistema. Comparativa de la dindmica Lindbladiana en
funcién de la condicién inicial cuantica (N = 5).
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Figura 4.2.2: Evolucién de la pureza de la parte clasica para la dindmica unitaria y Lindbladiana
con N =5y el estado cudntico inicial mezcla.

parte clasica como se esperaba, ya que, al no verse afectado por la parte cudntica, la parte clasica
sigue la ecuacion de Liouville y es en todo momento un estado puro. Sin embargo, se aprecia que la
dindmica Lindbladiana hace que la parte cldsica pierda pureza’. La interpretacién de este resultado
es que la pérdida de pureza clasica es un fenémeno exclusivo para sistemas hibridos y esté relacionado
con la correlacién que existe entre la parte clasica y la cudntica siempre y cuando el Hamiltoniano
sea puramente clasico. Estamos apreciando aqui la generaciéon dindmica de entrelazamiento, como

resultado de la formulacién de Koopman en términos de espacios de Hilbert.

Esta diferencia entre dindmicas también se puede apreciar en la evolucién del espin. A partir de
ahora consideraremos (salvo en la parte en la que se estudia la influencia del término de acoplo,

donde lo pondremos o lo quitaremos) un Hamiltoniano con parte clésica, cudntica y de interaccién:

H=(-V2 ((aq +al)(ap — af) — (ap + af ) (ag — ap) RI+I® S, +Q®S.. (4.2.2)

"Esto suceders cuando haya back-reaction, en este caso, como el estado cudntico inicial no es el singlete (S = 0)
ocurre este fenémeno.
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10y

Figura 4.2.3: Diferencia entre la dindmica unitaria y la dindmica Lindbladiana en la evo-
lucién cuéantica. Esfera de Bloch; dinamica Lindbladiana en azul y dindmica unitaria en
rojo. Condiciones iniciales cudnticas [11), operadores de Kraus Vi, Vo, Hamiltoniano H =
(-2 ((aq + ag)(ap — a;,) — (ap + a;)(aq - aj])) @I+1®8, +Q®S,, T=2,5au, N =7

La Figura 4.2.3 muestra un ejemplo ilustrativo de lo que le ocurre a uno de los espines®, vemos

que los operadores de Kraus generan una evolucién diferente que corresponde al efecto de poner en
contacto el sistema hibrido con un bano térmico.

La evolucién temporal de los estados también difiere entre la dindmica unitaria y la Lindbladiana
(véase la Figura F.2.2 como ejemplo de esta diferencia).

4.2.3. Términos de interaccion

Veremos que tenemos formas de generar diferentes dindmicas. Tomemos el Hamiltoniano H =
He @1+ 1® Hg + he ® hg. Por un lado, el término puramente cudntico I ® Hg genera una
v
HCQ
dindmica en los espines, la cual se manifesta en la parte cldsica; sin embargo, la pureza del sistema
total con la dinamica unitaria sigue manteniéndose en la unidad debido a que, con esta dindmica,
ambos sistemas evolucionan independientemente. Por otro lado, el término de interacciéon hc ® hq

produce una interaccion explicita entre la parte clasica y cuantica.

Por un lado, la Figura 4.2.4 muestra el efecto que genera el término H, cQ = q® S, en la dindmica de
la parte cuantica. La diferencia mas relevante se da en la dindmica unitaria, donde deja de preceder
sobre el eje x sobre la superficie de la esfera. De esta manera, comprobamos que los términos de

interaccion generan dindmicas nuevas.

4.2.4. Operador de Kraus puramente cuantico

Hasta ahora hemos considerado operadores de Kraus con la parte clasica lineal respecto a los
operadores diferenciales I1,, I, no nula (véase Ecuacién F.2.1). Sin embargo, también se pueden

8En este ejemplo concreto, debido a la simetria entre ambos espines en la ecuacién diferencial y en las condiciones

iniciales, ambos qubit tienen la misma evolucién.
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Figura 4.2.4: Diferencias en la evolucién por el término Heg en la esfera de Bloch. Dindmica unitaria
en rojo y dindmica Lindbladiana en azul. Condiciones iniciales cudnticas [11), operadores de Kraus
Vl, Vz,‘/g, T:2,5 a.u., N=7

introducir operadores de Kraus con la parte clasica trivial y la parte cuantica correspondiente a un
operador de Kraus caracteristico de sistemas abiertos (véase [9]); como puede ser el decaimiento de
sistemas de 2-niveles?. Anadiremos a los operadores de Kraus anteriores el operador de Kraus:

01 01

, =1. 4.2.3
00®00 V3 (4.2.3)

Vi=1,®1,®

La gama de eleccién de la parte cudntica de estos operadores es amplia y conocida en la literatura
[9] y depende del objetivo del modelo, en este caso, este operador produce que el espin del sistema
tienda al estado |[11). Las Figuras 4.2.3a y ?? muestran dos dindmicas Lindbladianas diferentes:
una con los operdores de Kraus V; y Vo y la otra con Vi, Vo y V3. Vemos, efectivamente, que
introducir un operador de Kraus puramente cudntico genera una dinamica diferente, queda para
futuras investigaciones estudiar el significado fisico de las dindmicas que introducen estos operadores
de Kraus hibridos.

4.2.5. Resumen

Con este ejemplo hemos ilustrado y verificado las siguientes propiedades de este sistema:

= La dindmica Lindbladiana produce back-reaction siempre y cuando la parte cuantica no sea
el singlete, a diferencia de la dindmica unitaria donde carece de esta back-reaction indepen-

dientemente del estado cuantico.

= Se puede generar diferentes dindmicas modificando el término de interaccion del Hamiltoniano

y anadiendo operadores de Kraus puramente cudnticos ya conocidos en la literatura ([9]).

9Es una cuestién de disefio, aiin no se ha demostrado que este operador genere dicho el mismo comportamiento en

la parte cuantica de sistemas hibridos que en sistemas puramente cuanticos
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Capitulo

Conclusiones vy lineas de trabajo futuro

En este trabajo hemos partido del estudio del formalismo de Koopman para sistemas clasicos. Se
han introducido las herramientas matemaéticas que permiten un tratamiento més general de sistemas
fisicos y hemos generalizado la construcciéon de Koopman a sistemas mas generales; en particular,
lo hemos adaptado a sistemas hibridos. A continuacién, se ha visto que, en este nuevo formalismo
de Koopman para sistemas hibridos, una dinamica unitaria no proporcionaba todas propiedades
fisicas que uno se espera de sistemas hibridos, por lo que, inspirados en sistemas abiertos cuanticos,
se ha propuesto una dindmica no unitaria nueva (dindmica Lindbladiana). Se ha comprobado que la
dindmica Lindbladiana proporciona mejores propiedades que la dindmica unitaria, pero también se
ha expuesto las limitaciones que presenta. Finalmente, se ha tomado un ejemplo sencillo y, mediante
herramientas de célculo numérico, se ha ilustrado y corroborado todas las predicciones tedricas de
este trabajo. La principal aportacion original de este trabajo puede sintetizarse como: Se ha hallado
una dindmica no unitaria, que corresponde al sistema hibrido en contacto con un baro térmico,
bien definida en sistemas hibridos en la cual la parte cudntica se ve influida por la parte clasica, sin
embargo, la parte cldsica solo recibe una influencia parcial de la cudntica.

Finalmente, como lineas de trabajo futuro en mecénica estadistica hibrida exponemos dos posibles

alternativas:

= Viendo que la dindmica Lindbladiana obtenida en este trabajo esta bien definida, una posible
linea de trabajo es la verificacién de si esta dindmica deja invariante el Hybrid Canonical
Ensemble propuesto en [1] y poder aplicar el formalismo de MaxEnt con el fin de obtener una

termodinamica hibrida.

= Dado que la parte cldsica recibe una influencia parcial de la parte cudntica, esta dindmica
Lindbladiana no reproduce al completo las propiedades que tienen las Ecuaciones de Ehrenfest
para sistemas hibridos. Por tanto, otra posible linea de trabajo es la bisqueda de una dindmica
no unitaria més general que la Lindbladiana que tenga una back-reaction completa.
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Apéndice

Preambulo matematico

A.l. Algebra

Definicién A.1.1 (Algebra). Sea (Vi,+) un espacio vectorial sobre el cuerpo K. Un K-dlgebra es
una terna A = (Vk, +, ¢) donde ¢ es una operacién bilineal

¢o:VxV =V,

es la operacién ¢ la que determina el tipo de algebra: conmutativa, asociativa, Lie, etc.

Se dice que un algebra A es un algebra con unidad (Algebra unital) si ella tiene unidad, es
decir, existe un elemento 1 € A(1 # 0) tal que ¢(z,1) = ¢(l,2) =z (x € A).

Definicién A.1.2 (Ideal de un algebra). Sea A un élgebra, el subjconjunto J C A es un ideal por
la izquierda (por la derecha) de Asiz € AyyeJ = azy e J (yz € J). Si J es ideal por la
izquierda y por la derecha diremos que es un ideal. Se dice que un ideal J es propio si J # A. Un
ideal propio que no esta contenido en ningtn otro ideal propio se denomina ideal maximal.
Definicién A.1.3 (Centro de un algebra). Sea A un algebra, el conjunto

Z(A)={ce A|ca=ac,Va € A},
se denomina centro del algebra A.
Definicién A.1.4 (Derivacién de un élgebra). Sea (Vi,+, ¢) un algebra. Llamamos derivacion de
un dlgebra a cualquier aplicacién lineal

D: (VKa +7 ¢) - (VK7 +7 ¢)7

que satisface la regla de Leibniz, i.e.

D(¢(a,b)) = ¢(D(a),b) + ¢(a, D(b)) Va,b e Vk.
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Definiciéon A.1.5. Un algebra de Jordan J es un espacio vectorial real dotado de una operacién

o y una operacién - asociativa que satisface que Va,b € J:
= 0 es conmutativo: aob=1boa
» ao(boa?)=(aob)oa?donde a®:=a-a

Definicién A.1.6. Un &algebra de Lie L es un espacio lineal dotado de una aplicacién [-,-] :
L x L — L que satisface, Va,b,c € L

» [,] es anticonmutativo: [a,b] = —[b, a]

= la identidad de Jacobi se satisface, i.e.

[a7 [b7 C]] + [C7 [a’7 bH + [bv [C7 a]] =0

Definicién A.1.7 (Algebra de Poisson). Un algebra de Poisson es un espacio vectorial (Vi,+)
sobre el cuerpo K dotada de dos productos bilineales, - y {-, -}, que tienen las siguientes propiedades:

= Kl producto - forma una K-dlgebra asociativa.
» El producto {-,}, el corchete de Poisson, forma un élgebra de Lie.

= El corchete de Poisson actia como una derivacién del producto asociativo -. De forma que

para tres elementos z,y, z en el dlgebra, se tiene que {z,y -z} = {z,y} - 2+ y - {x, z}.

Definiciéon A.1.8. Un algebra de Lie-Jordan es un espacio lineal X dotado de dos aplicaciones
oy [,] tal que:

= (X, 0) es un algebra de Jordan

» (X,[-,"]) es un édlgebra de Lie

Ve € X, [x,] : X — X es una derivacién del dlgebra de Jordan, i.e.

[z,yoz] =[z,yloz+yolr,z]  VyzelX

Ademds, ambas estructuras no son asociativas, pero sus correspondientes asociadores son
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proporcionales, i.e., I € R que satisface que Va, b, c € A%,

ao(boc)—(aob)oc= Ala,lb, ] —[[a,b],d]).

Definicion A.1.9. Un espacio de Banach es un espacio vectorial normado y completo con la

métrica definida por su norma

Definicién A.1.10. Se dice que A es un dlgebra de Banach si en A estd definida una norma

para el cual A es un espacio de Banach y, ademds,

eyl < llzllllyll - Va,y € A

Definiciéon A.1.11. Un algebra de Lie-Jordan X que es un espacio de Banach se llama algebra
de Lie-Jordan-Banach (LJB)

Los LJB algebras son cruciales ya que son los objetos que capturaran los operadores fisicamente
més relevantes cuando describamos un sistema fisico por una C*-dlgebra. Presentemos la nocién de
C*-algebra.

Definicién A.1.12 (x-algebra). Un dlgebra A se donomina *-algebra si en A estd definida una
aplicaciéon * : A — A que satisface las siguientes condiciones (Vz,y € A, A € C):

[ |
—
8
+
&
*
I
8
*
+
<
\.*

*

La aplicaciéon * se donomina involucion. Si z* = z, entonces se dice que el elemento = de la

*-algebra es hermitico.

Definiciéon A.1.13 (Cx-élgebra). Un algebra de Banach que es una *-dlgebra se denomina C*-
algebra si para todo elemento x de la misma se cumple la igualdad ||z*z| = ||z]|?.

Teorema A.1.1. Sea A una C*-dlgebra, el subconjunto J C A es un ideal
Proposicién A.1.2. El dlgebra de Banach B(H) de todos los operadores lineales acotados que

actian en un espacio de Hilbert H con la operacion de paso al operador autoadjunto como involucion

es una C*-dlgebra.
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A continuacién, vemos que el conjunto de observables de una C*-dlgebra (es decir, los elementos

hermiticos del dlgebra) tendrd una estructura de algebra de Lie-Jordan-Banach.

Teorema A.1.3. Sea A una C*-dlgebra con la involucion * y la norma |-||. Consideremos el

subconjunto de elementos autoadjuntos reales
AR = {2 € Ala* = a},
y definamos sobre este las siguientes operaciones:
1 —i
aob:§(ab—|—ba) [a,b] = —(ab — ba).
K

Entonces, (A% o,[-,-],|I||) es un dlgebra de Lie-Jordan-Banach.

Por otro lado, dado un algebra de LJB, podemos considerar su complexificacién y definir una C*-
algebra que tenga al dlgebra original como subdlgebra hermitica.

Teorema A.1.4. Dado un dlgebra LIB A%, si consideramos su complezificacion como un espacio
lineal A®, vy la operacion:
a-xb=aob+ikla,b,

el conjunto (A, -, |||l) se vuelve una C*-dlgebra para todo valor de r € R.
A continuacion, se enunciara el Teorema de Guélfank-Naimark el cual emplea la construccién de

Guélfand-Naimark-Segal (GNS) para su demostraciéon. Antes de eso, necesitamos deifnir ciertos

conceptos.

Dada una C*-dlgebra A, definiremos los estados del mismo, para ello, recurriremos al dual de la

C*-algebra A*. Antes, definimos una norma en A* empleando la norma definida sobre A,

lwll = sup{lw(a)l, [la] = 1}.

Esto nos permite introducir la nocién de positividad que emplearemos en la definicién de los estados.
Dado w € A* decimos que es definido positivo si

w(a*a) >0 Vae A.

Definicién A.1.14 (Estado). Un estado de una C*-dlgebra se define como un funcional lineal

definido positivo sobre A con norma igual a uno.

Definicién A.1.15 (Representacién). Se denomina representacién de una C*-dlgebra A a un
par (7, A), donde 7 : A — B(H) es un morfismo y H un espacio de Hilbert.
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Se dice que la representacion es ciclica si existe un vector {2 € H para el cual la variedad lineal
m(A)Q es densa en H; en ese caso, ) se denomina vector ciclico. Una representaciéon 7 es no
degenerada si {m(z)a|x € A; a € H} es denso en H. En particular, una representacién ciclica es

no degenerada.

Teorema A.1.5 (Teorema de Gelfand-Naimark). Sea A una C*-dlgebra, entonces, A es isométri-
camente *-isomorfa a una C*-subdlgebra del dlgebra B(H) de todos los operadores lienales acotados

en cierto espacio de Hilbert H.

Proposicién A.1.6. Toda representacion m no degenerada es suma directa de representaciones

ciclicas

Dada la C*-dlgebra A, denotando como S(A) el conjunto de estados de A, la construccién

Gelfand-Naimark-Segal (GNS) consiste en lo siguiente:

1. Dado w € S(A), definimos la forma sesquilineal (, )§ en A como
(A, B) = w(A"B).
Como w es un estado, esta forma es semidefinida positiva. Su espacio nulo
Ny ={A € Ajw(A*A) = 0}

es un ideal por izquierda en A.

2. La forma (, )§ se proyecta sobre el producto interno (, )., en el cociente A/N,,. Si V,, : A —

A/N,, es la proyeccién canénica, entonces, por definicién
(VwA,VyB)w == (A, B)g.
El espacio de Hilbert H,, es la clausura de A/N,, C H,, por
Tw(A) VB =V, ,AB;

se sigue que 7, es continuo. Por tanto, 7, (A) puede extenderse por continuidad a todo H,,.

3. El vector ciclico se define como §2,, = VI, por tanto,

(Quo, T (A)) = w(A) VA€ A.

A.1.1. Teorema de Gleason

El Teorema de Gleason nos permitird asociar una matriz densidad a cada estado fisico. Cuando
hacemos la representacién GNS de una C*-algebra, los estados de la misma seran medidas definidas
sobre un espacio de Hilbert; es aqui donde entra en juego el Teorema de Gleason, que nos asegura
que dada una de estas medidas, existird una matriz densidad asociada (véase el articulo original de
Gleason [7])
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Teorema A.1.7 (Gleason). Sea p una medida en los subespacios cerrados de un espacio (real
o complejo) de Hilbert separable H de dimension al menos tres. Existe un operador autoadjunto

semidefinido positivo T tal que todo subespacio cerrado A de H
w(A) = Tr(TPy), (A.1.1)

donde P4 es la proyeccion ortogonal de H sobre A.

A.1.2. Teorema de Stone

Teorema A.1.8. Sea U(t) una representacion unitaria de R, entonces existe un unico operador
autoadjunto T (denominado operador infinitesimal del grupo U(t)) tal que

U(t) = exp(iTt) teR (A.1.2)
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Apéndice

Mecanica simpléctica

En esta capitulo haremos un tratamiento riguroso de la descripcién de sistemas Hamiltonianos cuyo

espacio de fases viene descrito por una variedad diferenciable.

A lo largo del siglo XX, la Mecédnica comienza a ser un punto de reunién de diversas disciplinas de
las ciencias como la geometria diferencial, el andlisis, la fisica, etc. Implicando un gran avance en
la Mecanica. Sus hitos fundacionales se remontan a los inicios del siglo XX con el uso de formas
diferenciables en Mecédnica en 1922, por obra de Elie Cartan; seguido por la primera exposicién
moderna sobre sistemas hamiltonianos en variedades simplécticas que aparecio en un articulo de G.
Reeb en 1952.

Sea N una variedad diferenciable de dimensién n, en una carta local (U;,;), los elementos de
la variedad vienen descritos por las coordenadas {q'} que corresponderdn a las coordenadas ge-
neralizadas de un sistema fisico mas adelante. El conjunto de momentos generalizados {p;} seran
coordenadas de las fibras del espacio cotangente de N, T* N, respecto a la base natural asociada a
las coordenadas {q¢'}. Usaremos T*N como el espacio de fases de un sistema fisico y escribiremos
nuestras ecuaciones en el conjunto de coordenadas {¢, p;}.

Definicién B.0.1 (Forma de Liouville). Llamamos forma de Liouville a la 1-forma 6 € AY(T*N)
que en el conjunto de coordenadas natural tiene la siguiente forma:

0 = pidq’. (B.0.1)

Una formulacién intrinseca del objeto es el siguiente. Sea o* /N un punto del espacio cotangente,
consideramos el cojunto de vectores tangentes a «, T,T*N. La forma de Liouville se define como
la 1-forma 6 € AY(T*N') que satisface:

0(a)(V) = a(mV), VYV eT,T*N, (B.0.2)

donde 7 : T,T*N — T*N es la proyeccién natural al espacio cotangente.
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Antes de seguir con la forma de Liouville, veamos cémo se defino una forma simpléctica.

Definicién B.0.2 (Forma simpléctica). Sea M una variedad diferenciable, una 2-forma w € A?(N')
es una forma simpléctica si y solo si:

= Es cerrada: dw =0

» Es no degenerada, i.e. dado un campo vectorial X € X(T*N), la relacién
w(X,Y)=0 VY € X(T*N),

implica que
X =0.

Si relajamos la condicién de no degeneracion, obtenemos una forma presimpléctica.

Definicién B.0.3 (Variedad simpléctica). Sea M una variedad diferenciable y w una forma simplécti-
ca. Llamaremos variedad simpléctica al par (M,w).

Hemos visto que dado un espacio de fases dado por el espacio cotangente de una variedad diferencia-
ble, podemos definir naturalmente una forma de Liouville. Dada una forma de Liouville, podemos
definir una forma simpléctica y dotar de estructura de variedad diferenciable al espacio de fases.

Definicién B.0.4 (Forma simpléctica canénica). Sea T*\ el espacio cotangente de una variedad
diferencial /. Llamaremos forma simpléctica canénica a la 2-forma w € A%(T*N) definido como:

w = —df (B.0.3)

Proposicién B.0.1. Sea T*N el espacio cotangente de una variedad diferencial N'. La forma
simpléctica canénica w € A2(T*N') es una forma antisimétrica y cerrada. Ademds, w es no degene-
rada si
Q=wA - ANw,
T
es una forma de volumen, donde n es la dimensién de N .

La proposicién anterior implica que, como se podia esperar, la forma simpléctica candnica es una

forma simpléctica, y el par (T*N, —df) es una variedad simpléctica.

Sin embargo, se puede hacer mecanica directamente a partir de un espacio de fases dado por una
variedad simpléctica (M,w). Es decir, no necesitamos que el espacio de fases sea el espacio cotan-
gente de otra variedad, como habiamos supuesto hasta ahora. Nos bastara con la forma simpléctica
para definir localmente una carta donde podemos considerar como coordenadas {¢‘, p;}.
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Teorema B.0.2 (Darboux, 1882). Sea M una variedad 2n-dimensional. Sea w € A*>(M) una dos
forma no degenerada, luego, dw = 0 si y solo si hay una carta (U,1) en cada punto p € M tal que

Y(p) =0 y la expresion de la dos forma en las coordenadas locales correspondientes {q*,p;} es

W Ywly =>_dg’ Adpi.

i=1

Definicién B.0.5 (Atlas de Darboux). Llamaremos atlds de Darboux al atlas definido por las

cartas de Darboux.

Definicién B.0.6 (Transformacién canénica). Sean (Mi,wi) y (Ma,ws) dos variedades simplécti-
cas y la transformacion F' : M1 — Maj. Esta transformacion se llama transformacion candnica
si

F*(,Ug = wi.

Definicién B.0.7 (Paréntesis de Poisson). Sea (M,w) una variedad simpléctica. Sean f,g €
C>*(M) dos funciones sobre M y Xy, X, € X(M) los campo vectoriales Hamiltonianos corres-
pondientes. Definimos el paréntesis de Poisson de f y g como la funcién

{f,9} = w(Xy, X). (B.0.4)

Debido a que la correspondencia entre funciones y campo vectoriales Hamiltonianos esta bien defi-
nida, podemos definir una operacién en el conjunto de funciones:

{1 C®(M) x C®(M) — C(M)

frg—=Af g} (B.0.5)

Definicion B.0.8. Sea T* M un espacio cotangente y w la dos forma simpléctica canénica. Intro-
ducimos la apliacién:
w:T(T*M) = T*T*M

H(X) = w(X,). (B.0.6)

Una vez tenemos los ingredientes matematicos, definamos las ecuaciones de Hamilton en términos

geométricos. Sea T*M un espacio cotangente, consideremos un Hamiltoniano H € C*(T*M).

Definicién B.0.9 (Campo vectorial Hamiltoniano). Sea T*M un espacio cotangente con w su
dos forma simpléctica canénica, y f € C*°(T*M). Llamaremos campo vectorial Hamiltoniano

asociado a f al campo vectorial:
X = 1df). (B.0.7)
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Definicién B.0.10. Sea T*M un espacio cotangente, y H € C>®(T*M). Decimos que la curva
v : R — T*M es una soluciéon de la dindmica Hamiltoniana definida por el Hamiltoniano H si y

solo si, la curva es la curva integral del campo vectorial Hamiltoniano Xz que esta definido por:

(,:)(XH) = iXHw =dH. (B.O.S)

Definicién B.0.11 (Simplectomorfismo). Un simplectomorfismo es un difeomorfismo definido
sobre una variedad simpléctica, que preserva la forma simpléctica, es decir, el pullback de la forma

simpléctica w coincide con la propia forma simpléctica ®*w = w.

Proposicién B.0.3. Sea (M,w) una variedad simpléctica y X un campo vectorial sobre M, en-
tonces, son equivalentes:

s X es localmente Hamiltoniano,
s Lxw =0,

» Fl flujo ¢ = ¢(it) asociado a X es un simplectomorfismo (véase Definicion B.0.11), donde L

es la derivada de Lie.

Proposicién B.0.4. Sean (M,w) una variedad simpléctica y f : M — M un difeomorfismo local.
Son equivalentes:

= f es un simplectomorfismo,
» para todo H : M — R, f es una transformacion candnica del sistema (M, H),

» f deja invariante el corchete de Poisson, es decir, para cualesquiera F,G € C*(M),

{FoG)of={FofGoJ}.

Una formulacién moderna del Teorema de Liouville es la siguiente:
Corolario B.0.5. Si (M,w, H) es un sistema fisico, entonces, Lx, w = 0.

Debido a la Proposicién B.0.3, el corolario anterior implica que el flujo Hamiltoniano es un simplec-
tomorfismo, por lo que preserva el paréntesis de Poisson (véase Proposicién B.0.4).

Sin embargo, el siguiente resultado equivalente muestra mas el significado fisico que el Teorema de
Liouville tiene.
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Corolario B.0.6. Si (M,w, H) es un sistema fisico Hamiltoniano 2n-dimensional, entonces, ¢y

preserva el volumen simpléctico dd =w A --- Aw.
—_—

n

Este resultado supone que el volumen en el espacio de fases se mantiene en la evolucién, lo que

posibilita la definicién consistente de la mecanica estadistica.
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Apéndice

Formalismo de Koopman

Consideramos un sistema Hamiltoniano clasico definido sobre la variedad simpléctica (M, w). Una
densidad de probabilidad p : M — R que describe un sistema estadistico clasico sobre el espacio de
fases define una medida u que cumple:

(M) = /M dy = /M pdQ = 1,

donde df2 es la medida de Liouville de la variedad simpléctica y estd definida como el producto
exterior de n copias de la forma simpléctica w,

dQV:=wAN---ANw.
—_—

Definimos el espacio de Hilbert £2(M, dQ?) de funciones de cuadrado integrable sobre M a partir
de la medida simpléctica:

£2(M,dQ):{f:M—>(C | / ffdQ<oo}, (C.0.1)
M
junto con su producto escalar

(flg) = /M Fod  i.ge £2(M.dQ). (C02)

Sea ¥ : M — M una transformacién candnica en M, esta define un operador unitario sobre
L2(M,dQ):

U(f):=¢"f=forp  VfeL(M,d),
el cual es lineal y mapea £2(M,dSQ) sobre si mismo. U es una biyeccién, i.e. U7L(f) = foyp~t

Como 9 es una transformacion canénica, define un simplectomorfismo, es decir, preserva la forma
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simpléctica *w = w (donde ¥* es el pullback de ). Al ser un simplectomorfismo, la transformacién

1 preserva la medida dy, i.e. du(ip(x)) = du(z), haciendo que el operador U defina una isometria:

Wk = [ oo = [ FE@we) dwe) = [ @ e = 117

Como caso particular de transformacion candnica, consideremos el flujo Hamiltoniano clasico dado
por el Hamiltoniano H € C*(M), F; : M — M:

(2 (1), pi(t)) = Fi(2'(0), ps(0))  teR.

Sea Uy(f) = f o F el operador unitario en £2(M,dS2) que define esta transformacion, si el flujo
Hamiltoniano F; es completo, es decir, estd definido Vi € R, el operador U; define un grupo de
transformaciones unitarias de un solo pardmetro. Ademds, el Teorema de Stone (Teorema A.1.8)

nos asegura que existe un operador autoadjunto L tal que
U; = exp(—iLt) vt € R,

siendo L el operador de Koopman (véase la Definicién 2.1.1) que actiia sobre £2(M, dS)) como

w:_i(aﬂ 9 OH 9

2
9 oo~ apkaqk> ¢ Vo Li(M,d).

En particular, la funcién de onda ¢, € £2(M, dS2) que cumple:

p= Qb_p(lspa (C.0.3)
representa el estado de nuestro sistema estadistico clasico en términos del espacio de Hilbert

L2(M, dQ).

De esta manera, se tiene una ecuacién de Schrodinger en L£2(M,dQ2) para ¢, desde la cual se
recupera la ecuacion de Liouville si se calcula p con la Ecuacién C.0.3.

Z'Qb.p = f4¢p> (C.04)

y la ecuacién de Von Neumann correspondiente

ip =L, p). (C.0.5)

37



Apéndice

La C*-algebra hibrida

En este capitulo, se hard un descripcién més rigurosa de las C*-dlgebras de los sistemas clasicos y

cuanticos y su extension a sistemas hibridos.

D.1. Caso clasico

Un sistema clédsico tiene definido un espacio de fases M que tendrd estructura de variedad di-
ferenciable, donde cada punto de la variedad corresponde a un estado del sistema; por otro lado,
los observables seran funciones complejas de clase C°°(M) definidas sobre la variedad. De esta
manera, para definir la C*-dlgebra correspondiente a un sistema clasico, por simplicidad, se toma
el conjunto de funciones complejas de soporte compacto definidos sobre Mg, Co(Me) = {f :
K C M¢ — C|K compacto}. Para dotarle de estructura de C*-dlgebra buscamos dotarle al con-
junto Co(M¢) de una estructura de algebra de Lie-Jordan-Banach, y, a continuacién, hacer su

complexificacion para obtener la C*-algebra clésica. Para ello, emplearemos:
= el dlgebra con el producto punto a punto -¢
» la conjugacién compleja como involucién f*(x) = f(x),
» la noma del supremo ||f|| = sup{|f(x)||z € Mc}.

Por un lado, es inmediato comprobar que el conjunto Ac = Co(Mc, C) tiene estructura de dlgebra
de Banach y este conjunto contendra los observables (acotados) fisicos del sistema cldsico®. Por otro
lado, la estructura de algebra de Jordan se la dotamos considerando el producto punto a punto
como el producto de Jordan y, como el dlgebra Ac es conmutativo, considerando un producto de
Lie que se anula. Este algebra se puede obtener como un limite de la estructura formal donde el
producto punto a punto hace el papel de producto de Jordan y la estructura de Lie viene dado por

'La condicién de compacidad no introduce limitaciones fisicas.
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el corchete de Poisson sobre O (M) que es un subconjunto denso de Co(Mc).

Para ver que nuestro algebra Ac con las anteriores estructuras es un algebra de Lie-Jordan-Banach,

necesitamos revisar si se cumplen las condiciones de compatibilidad (ver Definicién A.1.8):

= La estructura de Lie define una derivacion de la estructura de Jordan que se satisface por ser
un algebra de Poisson

= La proporcionalidad de las asociadores no se cumple ya que el producto de Jordan es asociativo
pero el dlgebra de Poisson no lo es?. Sin embargo, tomando el corchete de Poisson canénico
sobre el espacio de fases simpléctico M podemos definir una familia de dlgebras de Lie de la

forma
{CL, b})\ = 71')‘{0” b}7

que define un corchete de Poisson trivial en el limite A — 0.

Por tanto, la familia de dlgebras (Cc(M), ¢, {-, }) define una LIB trivial en el limite A — 0;
denotemos este LJB como A®. Empleando el Teorema A.1.4 podemos obtener la C*-dlgebra cuyo
producto vendra dado por:

a-cb=aob+ Ma,b} con A—0. (D.1.1)

D.2. Caso cuantico

Consideremos, por simplicidad, el dlgebra de operadores acotados B(H) sobre el espacio de Hilbert

H respecto a la composicién, el adjunto hermitico como involucién A* = Af y la norma del operador
A:
[All = sup{[[A¢]l, ¢ €H, [|o]] =1} (D.2.1)

Por la Proposicién A.1.2, Ag = B(H) es una C*-algebra. Este C*-dlgebra contiene el conjunto de
observables, que corresponden al subconjunto de operadores autoadjuntos:

L={AcAg| Al = A}.

Podemos dotar al conjunto L de una estructura de Lie-Jordan-Banach empleando el Teorema A.1.3

considerando:

= El dlgebra de Jordan definido simetrizando el producto asociativo de Ag:

AOQB:%(A-QB—I-BOQA),

2Debido a la identidad de Jacobi que cumple el corchete de Poisson.

39



= El dlgebra de Lie definido por la parte antisimétrica multiplicado por el elemento imaginario
1 .
1

ABI= 5

(A-gB—B-qA).

Ambas operaciones son compatibles entre si en el sentido de la Definicién A.1.8 y, dotado de la
norma de la Ecuacién D.2.1, L tiene una estructura de dlgebra de Lie-Jordan-Banach. El Teorema
A.1.4 nos permite recuperar el producto de la C*-dlgebra como una combinacién de los productos
de Jordan y de Lie con k = h:

A.gB=Aog B+ ih[A,B].

D.3. (*-algebra hibrida

Construiremos la C*-dlgebra hibrida Ay a partir de las cldsicas y cuanticas, Ac y Ag respectiva-
mente. A continuacién, caracterizaremos el conjunto de observables de un sistema hibrido empleando
el Teorema A.1.3.

Tomemos el producto tensorial de las C*-dlgebras cuantico y clasico: Ay = Ac ® Ag. El producto
hibrido estd definido por los productos cldsicos y cuanticos:

(a®A) g (b® B) = (a-cb)@)(A-QB):iig%)(aob—i—i/ﬁ{d,b})@(AoB—l—ih[A,B]):
:(aob)®(AoB)+ih(aob)®[A,B]—i—il’i)r%)in{a,b}@ A, B]) =

=(aob)® (AoB)+ih(aob)®[A,B] Va,be Ac, A,B e Ay, (D.3.1)
de donde vemos claramente el producto de Jordan y el de Lie de la estructura de Lie-Jordan hibrido:
" (a®A)oyg (b®B)=(aob)® (Ao B)
« [(a®4),(b® B)] = (aob) @ [4, B]

La involucién vendréd dada por las involuciones clasicas y cuanticas. El conjunto de elementos de la

forma

F=Y ma®Ar,  w€Ca € Ao, Ay € Ag,
k

con el producto hibrido dado por la Ecuaciéon D.3.1 tiene estructura de algebra y lo denotaremos
Apr. En dicho algebra, definimos la involucién como

f1=> " qkay ® Al
k

donde aj, y AL representan las involuciones clasica y cuantica, respectivamente.
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En cuanto a la norma (véase [5] y [13] para exposiciones més detalladas), consideraremos la nor-
ma espacial definido por la inclusion de B(H¢c) ® B(Hq) en B(He ® Hg) y la definicién de una
representacion

TH = Tc Q@ TQ,

y la norma

1A= llwe (D) Brcena)-
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Apéndice

Resultados auxiliares

E.1. Definicion E.1.1

Definicién E.1.1. Sea una aplicacién lineal L : Herm(#) — Herm(# ), con ‘H un espacio de Hilbert
complejo , se dice que es positivo si la imagen de un elemento positivo® es un elemento positivo. El
mapa L se dice que es completamente positivo si, para todo espacio de Hilbert complejo 7—[/, el
mapa L @ I; : Herm(H @ H') — Herm(H @ H') es positivo.

E.2. Teorema 3.2.1

Demostracion. Consideremos, por hipdtesis, un Hamiltoniano con la forma de la Ecuacién (3.1.2)
cumpliendo las condiciones del Teorema 3.1.1 y los operadores de Kraus de la forma de la Ecuacién
(3.2.6). Buscamos que la evolucién Lindbladiana deje invariante el subespacio hibrido, es decir, que

LT(WH(.AH)) C 7TH(.AH>

'Un elmento 1 € H de un espacio de Hilbert H es positivo si (|} > 0 con el producto escalar.
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Para ello, descomponemos 7y (Apn) = mo(Ac) ® mg(Ag)) v calculamos L (1o (Ac) @ mo(Ag))):

N2-1
=) ’m{( Iro(Ac)de + > Z (d enismo(Ac)Lis + Il o (Ac)ef, di+

i=g,p s=0

> (Teligmo(Ac)eridlye) )) ® (af,,m(AQ)arg)~
t=1

J=4q,p
<d dpmo .AC Z Z <dL€kisHi57rC(~AC) + HZSWC(‘AC)G;Lisdk—F
i=g,p s=0
Z Z (H;rsezisekjtﬂjtﬂ'C(.AC)> )) ® (azqakqu(AQ))—
J=q,p t=1
1 n
-3 (ﬂc(AC)dek + igpg <dLekis7TC(AC)His + ﬂc(Ac)HIseLisdk-i-
A el il 1 A E2.1
T[-C( C) lsekzsekjt Jt ® (akqakqﬂ-Q( Q)) . ( ik )
J=q,p t=1

Que un operador esté en mpy(Ag) no supone ninguna restriccién a la parte cudntica pero la parte
clasica solo puede depender de las coordendas canénicas (¢*,p;) o dicho de otra manera, los términos
derivativos han de anularse. La tnica manera que se cumpla eso es que se cumplan las siguientes

condiciones:

l.a = anwQ(AQ)akq = alqakqﬁQ(.AQ) = ﬂQ(AQ)anakq, VEk; o lo que es lo mismo, ap, =
aig, Yk, 1y [arq, mq(AQ)], Vk

2. Los siguientes términos han de pertenecer a ¢ (Ac):

N2-1

1
Z {]._I]L ekzsﬂ-C(AC)ethH]t — iﬂc(AC)HlsekwekﬁHﬂ—
k=1
1 .
- §H2Tsezisekjtnjt7r0(“40)} e nc(Ac), Vi,j=gq,pVs,t=1,...,n, (E.2.2)
N2-1
Yk dTekis[ﬂ-C(Ao)vnis] S 7TC’("“C)? 1= q,p; S = 17 AN D) (E23)
>
k=1
N2-1
e [Mis, (A drel,, € mo(Ac), i=apis=1,...,n, (E2.4)
k=1

De la condicion 1 se obtiene que las partes cuanticas de todos los operadores de Kraus han de ser
iguales y parte del centro del algebra (conmutan con todos los elementos del algebra).
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Como [I;s, 7o (Ac)] € mo(Ac) Vi=q,p; Vs =1,...,n, solo debemos imponer la condicién de la
Ecuacién (E.2.2). Para que se cumpla dicha ecuacién, ademds debemos imponer que

N2-1
Z '7;.36%@-]- =0, Yi=q,p;7=1,...,n. (E.2.5)
k=1
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Apéndice

Implementacion numérica

F.1. Test

Con el objetivo de comprobar la correcta implementacién numérica de los sistemas hibridos, se ha
simulado un oscilador armoénico empleando el formalismo de Koopman y se ha verificado, sabiendo

de antemano el comportamiento tedrico del mismo, que todo funciona correctamente.

Consideraremos que la parte cudntica del Hamiltoniano hibrido es trivial, es decir, H=H:® I
Tomemos el Hamiltoniano clasico de un oscilador arménico! Ho = p? +¢? y obtengamos el operador
de Koopman correspondiente a este Hamiltoniano (véase Ecuacién 2.1.5):

N . (OHg O O0Hqs 0 ) 0 0
)P — — ) =—-2 - —p— F11
¢ Z( dq dp  Op 861) Z(qap 8(1)’ ( )

y lo escribimos en funcién de los operadores escalera y obtenemos el operador de Koopman:

i/C =—V2 ((aq + aj;)(ap - a;fa) — (ap + a;;)(aq - G:S)) . (F.1.2)

Debido a que se trata de una simulacién numérica, la base {¢f ® ¢h, ﬁf m—o tiene un numero finito
de elementos. El nimero de polinomios de Hermite que se toman (N) influye en la evolucién del
sistema hibrido. Si se considera solamente uno o dos polinomios de Hermite, el sistema no evoluciona
debido a que los operadores escalera pueden anular el estado; a medida que se aumenta el niimero de
polinomios de Hermite, la evolucion tiende asintéticamente a la evolucién real del sistema. Mencionar
también que el nimero de polinomios a escoger depende también de los grados de polinomios de
Hermite que consideramos como condicién incial; es decir, si la densidad de probabilidad clésica
inicial, al descomponerlo en los polinomios de Hermite, toma valor en polinomios de grado alto, el
nimero N ha de aumentar para una evolucién fiel a la realidad, con el coste computacional que
aquello conlleva.

1Despreciaremos las constantes ya que no aportan nada en este test.
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En los ejemplos tratados en esta seccién, como el polinomio de Hermite del estado inicial de mayor
grado era 1 (correspondiente a la densidad de probabilidad del momento), con un valor N = 5 la evo-
lucién era bastante precisa. A esta conclusion se ha llegado simulando el sistema hibrido con el single-
te, ya que, en este caso, la parte cldsica no recibe influencia de la parte cudntica. Y se ha comparado
con la dindmica que se espera de un oscilador arménico clasico en el espacio de fases, que es una ro-
tacién en torno al punto (go, 0) donde gp es la longitud natural del oscilador (en nuestro caso ggp = 0).

F.2. Simulacion numérica

F.2.1. Koopman en este ejemplo

Necesitamos obtener el Hamiltoniano clésico sobre £2(q) ® L£2(p), para ello, calculamos Lo =

Yop "o

(0 o o
-2 y lo escribimos en términos de operadores escalera

He = —V2 ((a, +a})(a — a}) — (a, + a})(a, — a}))

Consideraremos los N primeros polinomios de Hermite? y la base clasica {qbn}fl\]:o. Para la parte
cuantica, consideraremos el CSCO (S2,S,).

La dindmica Lindbladiana viene determinada por los operadores de Kraus (véase Ecuacion (3.2.2)),

para la simulacién tomaremos dos operadores de Kraus®:

Yo=-n=1 Vi= <6Q 10, — Hp> ®S% Vy= (415 ~ 10, + Hp) ® 52, (F.2.1)
y los siguientes estados como condiciones iniciales:

|¢(Q7 p)>triplete = ¢8(Q) ® ¢]1)(p) ® |1O> ’ (F22)
16(Q: P)) gingtete = 94(Q) ® @7 (P) ® |00)

16(Q, P)) ereta = $4(Q) @ #4(P) ® —= (]110) +100)) ,

1
V2
los tres estados comparten el estado de la parte clasica. Recordemos que para recuperar la distri-
bucién de probabilidad clésica hay que elevar al cuadrado el médulo de la funcién de onda, en este
caso, pa(Q) = |93(Q)1> y pp(P) = |$7(P)|? (véase la Figura F.2.1a y F.2.1b). La Figura F.2.1c
muestra la densidad de probabilidad inicial en una carta del espacio de fases.

F.2.2. Simulacién

En la Figura F.2.1 se muestra la densidad de probabilidad clasica que hemos considerado como

condicién inicial, en concreto, se trata de la funcién de onda ¢(q,p) = ¢f(q) ® ¢7(p). La Figura

2Realmente son los primeros N autoestados de un oscilador arménico cudntico, sin embargo, a partir de ahora,
cuando nos mencionemos los polinomios de Hermite, en realidad, nos estaremos refiriendo a los autoestados del
oscilador arménico cudntico (que son proporcionales a dichos polinomios).

9] o} A -
3Recordemos que I, = ¢ (8—(1), II, = nc (877)’ Q=mc(q) y P=mc(p).
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Figura F.2.1: Condicién inicial clésica.

F.2.2 muestra tres fotogramas de las dos dinamicas estudiadas en este trabajo para ilustrar sus
diferencias, animaciones de las simulaciones pueden hallarse en GitHub.
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https://github.com/paulrosa7/Formalismo-de-Koopman

(e) Unitaria T' = 3 a.u. (f) Lindblad T = 3a.u.

Figura F.2.2: Simulaciones del sistema hibrido N =7
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