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1 Introducción

El problema del coleccionista de cromos es un problema clásico en probabilidad
combinatoria. Comencemos describiéndolo: consideremos una persona que colec-
ciona una cantidad finita de distintos cromos, digamos n. Estos cromos se
adquieren de uno en uno y la probabilidad de obtener el cromo k es pk. Como
tenemos que obviamente es un espacio de probabilidad completo tenemos que∑n

i=1 pi = 1. El objetivo de este problema es estudiar el número de cromos que
debemos comprar hasta completar la colección. Si las probabilidades pk son
iguales, nos enfrentamos a un problema relativamente sencillo, mientras que en
el caso de que los cromos no sean equiprobables será más complicado pero a su
vez más realista.

La historia de este problema comienza en 1708, cuando el problema apareció
por primera vez en De Mensura Sortis (On the Measurement of Chance) escrito
por A. de Moivre. Gracias a Euler y a Lagrange se obtuvieron más resultados
en el caso de cromos equiprobables, cuando pk = 1

n para todo k.

En 1954 H. Von Schelling obtuvo por primera vez la distribución del tiempo
de espera para completar una colección cuando las probabilidades de cada
cromo son distintas y además en 1960 D.J. Newman y L. Shepp calculó la
distribución del tiempo de espera para completar 2 colecciones en el caso de
cromos equiprobables.

A la hora de realizar un estudio de este problema no nos podemos quedar solo
en los casos más simples sino que también hay otras preguntas que plantearnos:
¿Los cromos son equiprobables o no? ¿Queremos completar una o varias coleccio-
nes? ¿Se compran de forma individual o en sets de varios cromos?. El estudio de
todos estos casos hace que sea un estudio completo del problema, sin embargo,
no nos centraremos en todos los casos.

Además, el problema del coleccionista de cromos tiene muchas aplicaciones,
especialmente en ingenieŕıa eléctrica, aunque también se puede aplicar en bioloǵıa
o en el ámbito de las telecomunicaciones.

En este trabajo estudiaremos, una colección de cromos equiprobables en
el caṕıtulo 2, una colección de cromos no equiprobables en el caṕıtulo 3, varias
colecciones de cromos equiprobables en el caṕıtulo 4 y por último las aplicaciones
del problema en el caṕıtulo 5.
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2 Una colección de cromos equiprobables

2.1 Cálculo de la esperanza y la varianza

En este primer apartado queremos estudiar el caso en el que queremos completar
una colección de n cromos equiprobables, es decir, que la probabilidad de
conseguir cada cromo cuando compramos uno nuevo es 1

n . Denotamos al número
de cromos que necesitamos comprar para completar la colección como X. Este
valor es distinto al número de cromos que hay en la colección ya que al comprarlos
podremos conseguir cromos repetidos. Definamos ahora Xi como el número de
cromos que debemos comprar para tener una colección con i−1 cromos distintos
a i, es decir, que la suma de las variables Xi, i = 1, ..., n es:

X = X1 +X2 + ...+Xn

Cuando compramos el primer cromo no tenemos ninguno, podemos asegurar
que X1 = 1. Además estamos estudiando el caso en el que todos los cromos
tienen la misma probabilidad, que para este enfoque en concreto es 1

n , por lo
que en el momento en el que tenemos i cromos la probabilidad de conseguir
uno nuevo es n−i

n . Las variables Xi son independientes entre ellas y siguen la

ley geométrica con parámetro n−i+1
n . Podemos ahora demostrar el siguiente

teorema:

Teorema 2.1.1: En el problema del coleccionista de cromos con probabilidades
iguales, la esperanza y la varianza del número de cromos que hay que comprar
para completar la colección, son respectivamente:

E[X] = n

n∑
i=1

1

i

V ar[X] = n

n∑
i=1

i− 1

(n− i+ 1)2

Demostración: A partir de la escritura de X: X = X1 +X2 + ...+Xn con
Xi ∼ Geom(n−i+1

n ). Se tiene:

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

n

n− i+ 1
= n

n∑
i=1

1

i

Por último, recordando que la varianza de una geométrica de parámetro p es
1−p
p2 , y debido a la independencia de las variables Xi:

V ar(X) = V ar

(
n∑

i=1

Xi

)
= V ar(X1 + ...+Xn) = V ar(X1) + ...+ V ar(Xn) =

= 0 +
n

(n− 1)2
+

2n

(n− 2)2
+ ...+

n(n− 1)

22
=

n∑
i=1

(i− 1)n

(n− i+ 1)2
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Una vez demostrado que la esperanza y la varianza toman ese valor, otra
forma de calcular la esperanza es a través de cadenas de Markov, que nos serán
útiles más adelante. Antes de comenzar este nuevo enfoque debemos definir
algunos conceptos:

Definición 2.1.1 (Cadena de Markov): Sea E un conjunto contable. Una
sucesión (An)n≥0 de variables aleatorias con valores en E se llama cadena de
Markov si para todo n ≥ 2, i0, ..., in ∈ E se verifica:

P {An = in|A0 = i0, ..., An−1 = ii−1} = P {An = in|An−1 = in−1}

El conjunto E se llama espacio de estados de la cadena. Si E es finito se dice
que la cadena es finita.

Definición 2.1.2: Una cadena de Markov (An)n≥0 se llama homogénea si
para todo n ≥ 0, i, j ∈ E, se verifica P {An+1 = j|An = i} = P {A1 = j|A0 = i}.

Definición 2.1.3: Sea (An)n≥0 una cadena de Markov homogénea. Se
llaman probabilidades de transición de la cadena a pij = P {A1 = j|A0 = i}
y matriz de transición de la cadena a P = (pij)i,j∈E . Para n ≥ 0, se llaman

probabilidades de transición en n etapas de la cadena a p
(n)
ij = P {An = j|A0 = i}

y matriz de transición en n etapas de la cadena a P(n) = (p
(n)
ij )i,j∈E

Ahora que hemos definido estos conceptos veamos cómo la esperanza del número
de cromos que debemos comprar tiene el valor del Teorema 2.1.1 pero desde otro
enfoque, en este caso, las cadenas de Markov. A diferencia del caso anterior,
suponemos que cada cromo llega en una unidad de tiempo, por lo que las
variables Xi pueden interpretarse como el número de unidades de tiempo que
debemos esperar para pasar de tener i− 1 cromos distintos a i cromos. Ahora
definimos Yn como el número de cromos que tendremos después de que pasen n
unidades de tiempo. La probabilidad de conseguir cualquier tipo de cromo en
cualquier momento es p = 1

n . Cada Yn−1 depende de los anteriores, es decir, que
el número de cromos después de n unidades de tiempo depende de los cromos
que tengamos después de n− 1 unidades de tiempo o escrito de otra forma:

P {Yn = in|Y0 = i0, ..., Yn−1 = ii−1} = P {Yn = in|Yn−1 = in−1}

por lo tanto las variables Yn son una cadena de Markov con el espacio de estados
S = {0, 1, ..., n}.
Con la definición de matriz de transición sabemos que pi,j = P {Xn+1 = i|Xn = j}.
Por lo tanto si j > i la probabilidad es cero y por consiguiente sabemos que la
matriz de transición es triangular. Es más si i+ 2 > j la probabilidad también
es cero por la definición de Yn ya que si aumenta una unidad el valor de n solo
aumenta un cromo. El resto de probabilidades son obvias, por lo que llegamos
a la siguiente matriz de transición:
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

0 1 0 · · · · · · 0
0 1

n
n−1
n 0 · · · 0

0 0 2
n

n−2
n · · · 0

...
...

. . .
. . .

. . .
...

0 · · · · · · · · · n−1
n

1
n

0 · · · · · · · · · 0 1


Esta cadena de Markov tiene un estado absorbente y nuestro objetivo es

conocer el número medio de transiciones hasta llegar al estado deseado partiendo
del estado 0. Para ello tenemos:{

kn = 0

ki = 1 +
∑

j ̸=n pijkj , i ̸= n

Y resolviendo este sistema llegamos a:

k0 = n

n∑
i=1

1

i

que coincide con la expresión del Teorema 2.1.1

2.2 Función de masa de probabilidad de X

Una vez calculadas la media y la varianza de X podemos preguntarnos por su
función de masa de probabilidad. Es decir, la probabilidad de que nos haga
falta comprar exactamente K cromos con K ≥ n para completar la colección.
Para hacer un estudio de la función de masa de probabilidad primero tenemos
que definir los números de stirling de segundo tipo.

2.2.1 Definición: Sea sn,k denota el número de particiones de un espacio de
n elementos en k bloques. Podemos usar la siguiente fórmula de recurrencia:

sn,k = sn−1,k−1 + ksn−1,k

para n, k ≥ 1 y con condiciones iniciales sn,0 = s0,k = 0 y s0,0.
Volvamos ahora a nuestro problema. Hay nK formas en las que podŕıa

resultar una secuencia de K intentos. El número de formas en que un cromo
puede aparecer en elK-ésimo intento, y que sea n-ésimo cromo, es (n−1)!sK−1,n−1.
Como tenemos n cromos que pueden aparecer por primera vez en la última
compra, tenemos n(n−1)!sK−1,n−1 = d!sK−1,n−1 formas en las que necesitamos
exactamente K intentos para tener los n cromos. Y aśı:

P (X = K) =
n!sK − 1, n− 1

nK
=

(n− 1)!sK−1,n−1

nK−1
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2.3 Distribución asintótica de X(n)

En el apartado anterior hemos visto la distribución del número de cromos
necesarios para completar la colección y podŕıa ser interesante ver su comportamiento
cuando n tiende a infinito. Para este apartado la variable X suma de variables
independientes la reescribiremos como X(n) para una colección de n cromos.

Teorema 2.3.1: Si X(n) es el número de cromos necesarios para completar

una colección de n cromos equiprobables, se tiene que
X(n)−nlog(n)

n converge en
distribución a una distribución de Gumbel con µ = 0 y β = 1. Es decir:

lim
n→+∞

P (
Xn − nlog(n)

n
< x) = e−e−x

Demostración: Comencemos denotando v(n, k) el número de cromos que
son necesarios para que exactamente tengamos al menos k cromos distintos en
una colección de n cromos.
Entendamos ahora la definición de X(n). X(n) como el número de cromos que
necesitamos comprar para tener al menos 1 cromo de cada tipo, es decir, los
cromos que necesitamos comprar para completar una colección. Lo denotamos
aśı con el objetivo de que nos facilite la expresión en caṕıtulos posteriores.
Por definición v(n, 1) = 1, v(n, n) = X(n) y podemos reformular las variables
Xk comoX1 = 1, Xk = v(n, k)−v(n, k−1) para todo k = 2, 3, ..., n. Recordemos
que las variables Xk son variables aleatorias independientes con ley geométrica
de parámetros n

n−k+1 .

Tomamos ahora la variable aleatoria:

ηn =
X(n)− n

∑n
k=1

1
k

n
=

∑n
i=2Xi − n

∑n
k=1

1
k

n

Antes de seguir, recordemos la definición de función caracteŕıstica:

Definición 2.3.1: Dada una variable aleatoria continuaX su función caracteŕıstica
es una función ψX : R → C definida como

ψX(t) = E[eitX ] =

∫ +∞

−∞
eitxfX(x)dx

Ahora que la hemos definido, podemos estudiar darle valor a la función
caracteŕıstica de la función ηn y es:

ψn(t) =
1∏n

h=1 e
it
h (1 + n

h (e
− it

n − 1))

Si tomamos el ĺımite de cuando n tiende a infinito de esta función caracteŕıstica
converge a:

lim
n→+∞

ψn(t) = Γ(1− it)e−itc
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con Γ la función Gamma y con c la constante de Euler. Por la representación
integral de la función gamma tenemos:∫ +∞

−∞
eitxdF (x) = Γ(1− it)

con F (x) = e−e−x

. Aśı que tenemos que:

lim
n→+∞

P (
v1(n)− n(1 + 1

2 + ...+ 1
n − c)

x
< x) = F (x)

Por último se sabe que:

n∑
k=1

1

k
= log(n) + c+ o(1)

Y aśı obtenemos el resultado esperado y queda acabada la demostración.
Este resultado puede escribirse de forma equivalente usando la distribución

exponencial o la chi-cuadrado de dos grados de libertad.

Corolario 2.3.1: En las condiciones del teorema anterior tenemos que

e−
X(n)

n −log(2n) converge en distribución a una exponencial de parámetro 1
2 Demostración:

Es casi inmediato, simplemente debemos destacar que para t > 0:

P (e−(
X(n)

n −log(2n)) ≤ t) = P (−(
X(n)

n
− log(2n)) ≤ log(t)) =

= P (
X(n)

n
− log(n) ≥ log(

2

t
)) → 1− e−e−log( 2

t
)

= 1− e−
t
2

Por último solo hace falta comparar las funciones de distribución de una chi-
cuadrado de 2 grados de libertad con una exponencial de parámetro 1

2 para ver
que son iguales.

Para finalizar este caṕıtulo estudiemos algunos resultados finales. Definimos
las variablesWn como el tiempo que debemos esperar hasta tener an+1 cromos
con 0 ≤ an < n. Estudiemos las distribuciones asintóticas de las variables Wn

dependiendo del comportamiento de an. Definimos por último bn = n − an y
sea µn y σ2

n la media y la varianza de Wn.

Teorema 2.3.2 : Si an

n
1
2
converge a 0, se tiene que, Wn − an − 1 converge en

probabilidad a 0.

Demostración: Comencemos redefiniendo Wn como:

Wn = Zn
n
+ Zn−1

n
+ ...Z bn

n

8



Pero si pensamos la definición de estas ”nuevas” variables, nos damos cuenta
de que Zn

n
= X1 definida en el primer apartado. Aśı sucesivamente reescribimos

Zn−1
n

= X2, ... ,Z bn
n

= Xan+1, por lo que lo podemos reescribir como:

Wn = X1 +X2 + ...+Xan+1

Obviamente las variablesXi tendrán las medias y varianzas como las halladas
en el primer apartado, pero adaptadas a las definiciones de an y bn y se quedan
de la siguiente forma:

µn = n

n∑
k=bn

1

k

σ2
n = n

n∑
k=bn

n− k

k2

Notemos que en la varianza sustituyendo k por n−i+1 obtenemos la varianza
hallada en el primer apartado.

Debido a esto, la función caracteŕıstica de Wn − an es:

an∏
k=0

1− k
n

1− eit kn

Usando la aproximación de 1 + z = ez+z2θ con |z| ≤ 1
2 y |θ| ≤ 1 en el

numerador y denominador obtenemos lo siguiente:

1 + (−k
n
) = e−

k
n+θ k2

n2

1 + (−eit k
n
) = e−eit k

n+θ(−eit k
n )2

Aśı, el cociente dentro del producto anterior se puede escribir como:

e−
k
n+θ( k

n )2+eit k
n−θ(eit k

n )2

Como es un producto de exponenciales lo podemos reescribir como la exponencial
del sumatorio, por lo que llegamos a la siguiente fórmula:

exp[

an∑
k=0

k

n
(eit − 1) + 2θ

k2

n2
]

Recordamos ahora a qué converge el siguiente sumatorio:

an∑
k=0

k

n
=
an(an + 1)

2n
→ λ2

2

En este caso en particular λ = 0, entonces,
∑an

k=0
k
n → 0. Además

∑an

k=0
k2

n2 → 0.
Es decir que si λ = 0, entonces la función caracteŕıstica deWn−an−1 converge
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a 0.

Teorema 2.3.3 : Si an

n
1
2
converge a una constante positiva λ, por lo tanto,

Wn−an−1 converge en distribución a una distribución de Poisson con media λ2

2

Demostración: Razonando exactamente de la misma manera tenemos que
bajo esta hipótesis λ > 0 y entonces la función caracteŕıstica de Wn − an − 1

converge a exp[ 12λ
2(eit − 1)] que es la de Poisson de media λ2

2 .

Por último enunciaremos el último teorema pero sin demostración ya que es
mucho más compleja.

Teorema 2.3.4: Si an

n
1
2

y bn convergen a infinito, por lo tanto, Xn−µn

σn

converge en distribución a una normal con media 0 y varianza 1.

La demostración de este teorema es muy larga y la dejamos a elección del
lector, se puede encontrar en [1]
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3 Varias colecciones de cromos equiprobables

3.1 El problema de las n urnas

Consideremos ahora el siguiente caso: en una familia de m hermanos quieren
completar m colecciones. Cuando se consigue un cromo nuevo el hermano
mayor lo recibe y se lo guarda, cuando conseguimos por segunda vez el cromo
se lo guarda el segundo hermano de mayor edad y aśı sucesivamente. Ahora
nos volvemos a plantear las mismas preguntas ¿Cuál es el número esperado
de cromos que debemos comprar para completar las m colecciones? ¿Qué
distribución sigue esta variable?

El problema del coleccionista de cromos es equivalente al problema de las
urnas. Este problema consiste en que tenemos n urnas, que seŕıan los distintos
tipos de cromos y vamos lanzando pelotas, que siempre entran en alguna urna
pero de forma completamente aleatoria. El acto de lanzar una pelota es equiva-
lente a comprar un cromo, por lo que efectivamente los problemas son equivalentes.

Nos planteamos ahora la siguiente pregunta: ¿Cuántos cromos debemos
comprar para completar m colecciones? O equivalentemente, ¿cuántas pelotas
debemos lanzar para tener al menos m pelotas en cada una de las n urnas?.

3.2 Cálculo de la esperanza

Denotamos vm(n) como el número de pelotas que debemos lanzar para tener
al menos m pelotas en cada una de las n urnas, por eso en el estudio anterior,
como era para una colección, lo hemos denotado como v1(n). Veamos una
aproximación de la media de la variable vm(n). Comencemos recordando la
aproximación del valor de la media que es

∑n
i=1

1
i = log(n) + c + 1

2n + O( 1
n2 )

con c la constante de Euler.

Enunciemos ahora el siguiente teorema:

Teorema 3.2.1: En el problema del coleccionista de cromos con probabilidades
iguales ym colecciones, la esperanza del número de cromos que hay que comprar
para completar las colecciones es:

E[vm(n)] = nlog(n) + (m− 1)nlog(log(n)) + nCm +O(n)

con Cm constante que depende de m, que toma el valor Cm = c− log(m− 1)!,
resultado que no demostraremos debido a su dificultad en cuanto a cómputos.
Antes de realizar la demostración del valor de la esperanza debemos enunciar y
demostrar un lema:
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Lema 3.2.1: Demostrar que el valor de la esperanza es el anterior es
equivalente a probar que:

E[vm(n+ 1)]

n+ 1
− E[vm(n)]

n
=

1

n+ 1
+

m− 1

nlog(n)
+ λn

con
∑

n |λn| < +∞.

Demostración: Lo que tenemos que probar es que

E[vm(n)]

n
− log(n)− (m− 1)log(log(n)) = Cm + o(1)

lo que es equivalente a ver que el ĺımite de la primera parte de la igualdad cuando

n tiende a infinito es real. Comencemos llamando αn = E[vm(n)]
n , y tenemos que

probar si αn+1−αn = 1
n+1 +

m−1
nlog(n) +λn, entonces existe limn→∞[αn− log(n)−

(m− 1)log(log(n))] y que pertenece a los reales.
Notemos que αn = αn − αn−1 + αn−1 − ... + α2 − α1 por lo que αn se puede
expresar como

αn =

n∑
k=2

(
1

k
+

m− 1

klog(k)
+ λk

)
Por lo que:

αn − log(n)− (m− 1)log(log(n)) =

=

(
n∑

k=2

1

n
− log(n)) + (m− 1)

(
n∑

k=2

1

klog(k)
− log(log(n)

))
+

n∑
k=2

λk

Y obviamente si las dos series entre paréntesis convergen a valores reales y
el sumatorio de λn es una serie absolutamente convergente, entonces existe el
ĺımite y es real.

Demostración (Teorema 3.2.1): Como son resultados equivalentes demostremos
que:

E[vm(n+ 1)]

n+ 1
− E[vm(n)]

n
=

1

n+ 1
+

m− 1

nlog(n)
+ λn

Podemos escribir esta resta como:

E[vm(n+ 1)]

n+ 1
− E[vm(n)]

n
=

∫ +∞

0

e−tSm(t)[1− e−tSm(t)]ndt

con Sm(t) =
∑

k<m
tk

k! . Esta igualdad proviene de E[vm(n)] = n
∫ +∞
0

[1 − (1 −
Sm(t)e−t)n]dt puede verse la explicación en [2]. Haciendo ahora el cambio de

variable x = 1− e−tSm(t) llegamos a que
∫ 1

0
xnSm(t) (m−1)!

tm−1 dx con obviamente
t = t(x). Queremos ahora probar que:

∞∑
n=1

∫ 1

0

xn

tk
dx <∞, k < m
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∫ 1

0

xn

t
dx =

1

nlog(n)
+ αn

con
∑
αn <∞ y aśı quedaŕıa demostrado el teorema.

Por el cambio de variable es obvio que t ≥ log( 1
1−x ) además desarrollando Sm(t)

tenemos que x ≤ tm. Con estas dos desigualdades podemos ver que la siguiente
integral es finita: ∫ 1

0

1

1− x

dx

tk
=

∫ 1
2

0

1

1− x

dx

tk
+

∫ 1

1
2

1

1− x

dx

tk

Y queda aśı demostrado el primer punto. Con el desarrollo del logaritmo y la

primera desigualdad llegamos a que t ≥ xrlog(r) y, por lo tanto,
∫ 1

0
xn

t dx ≤
1

(n−r+1)log(r) . Tomando un valor u ≥ 1 definimos a = 1 − Sm(u)e−u tenemos
que: ∫ 1

0

xn

t
dx ≥ 1

u

∫ a

0

xndx ≥ 1

(n+ 1)u
− Sm(u)e−u

u

Y llegamos a que: ∫ 1

0

xn

t
dx ≥ 1

(n+ 1)u
− um−2e1−u

Tomando ahora r = nlog(n) y u = log(n) +mlog(log(n)) obtenemos que:

1

nlog(n)
− Clog(log(n))

nlog2(n)
≤
∫ 1

0

xn

t
dx ≤ 1

nlog(n)
+
Clog(log(n))

nlog2(n)

y aśı queda acabada la demostración si
∑ log(log(n))

nlog2(n) .

Al igual que en el caso equiprobable, veamos ahora el enfoque de las cadenas
de Markov para m = 2. Sean Yn, n > 0 las variables definidas en el anterior
enfoque de cadena de Markov. Sin embargo, ahora tomamos el espacio de

estados S′ = {(i, j) : i, j ∈ {0, 1, ..., n} , i ≥ j} con |S| = (n+1)(n+2)
2 , el estado

(i, j) define el momento en el que tenemos i cromos distintos de la primera
colección y j de la segunda colección, por eso es obvio que i ≥ j. Entonces las
probabilidades de transición vienen dadas como (0, 0) → (1, 0) con probabilidad
1, (i, j) → (i + 1, j) con probabilidad n−i

n , (i, j) → (i, j + 1) con probabilidad
i−j
n y (i, j) → (i, j) con probabilidad j

n . Por último tenemos que obviamente
(n, n) → (n, n) con probabilidad 1. Ademas en el caso de que i = n tenemos que
las probabilidades de transición son (n, j) → (n, j + 1) con probabilidad n−j

n y

(n, j) → (n, j) con probabilidad j
n .

Para conocer el tiempo de espera para completar las colecciones debemos

calcular el valor de k
(n,n)
(0,0) que se hace resolviendo el sistema lineal como en el

caso visto anteriormente.

13



3.3 Distribución asintótica de vm(n)

Del valor de la esperanza podemos sacar n factor común y a partir de ah́ı
podemos estudiar la convergencia asintótica de la distribución de probabilidad,
es decir, la convergencia en distribución.

En el apartado anterior hemos calculado una expresión asintótica para la
esperanza del número de cromos necesarios para completar m colecciones. El
siguiente teorema, que enunciamos sin demostrar da la convergencia en distribución
de vm(n). Notar que para m = 1 recuperamos el Teorema 2.3.1.

Teorema 3.2.1: Si vm(n) es el número de cromos necesarios para completar
m colecciones de n cromos, entonces se cumple la siguiente fórmula, para todo
x real:

lim
n→+∞

P (
vm(n)

n
< log(n) + (m− 1)log(log(n)) + x) = exp(− e−x

(m− 1)!
)

De todas formas en caso de que se quiera ver una demostración completa
del Teorema 3.2.1 se puede leer en [3]
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4 Una colección de cromos no equiprobables

4.1 Introducción al problema

Una vez estudiado el caso de que todos los cromos tengan la misma probabilidad,
estudiemos un caso algo más realista, una colección donde no todos los cromos
tienen la misma probabilidad. Normalmente en las colecciones de cromos existen
distintas categoŕıas como común, raro, ...

Definimos aśı pi como la probabilidad de conseguir el cromo i-ésimo cada
vez que compramos uno. Al tratarse de un espacio de probabilidad completo
obviamente tenemos que

∑n
i=1 pi = 1 con pi > 0.

Para este nuevo caṕıtulo definimos los Ti como el número de cromos que
debemos comprar hasta conseguir el cromo de tipo i-ésimo. Cada vez que
compramos un cromo tenemos una posibilidad de pi de conseguir el cromo i-
ésimo y una posibilidad de 1 − pi de conseguir cualquier otro, es decir, de no
conseguirlo. Con este argumento deducimos que las variables Ti siguen una ley
geométrica de parametro pi.

Definimos ahora la variable X como el número total de cromos que debemos
comprar para completar la colección. A diferencia del anterior caṕıtulo por
definición, X no va a ser la suma de todos los anteriores Ti sino que seguirá la
siguiente fórmula:

X = max(T1, T2, ..., Tn)

4.2 Cálculo de la esperanza

Como el valor que nos interesa estudiar es la esperanza de la variable X y esta
se define con la función de máximo, lo primero que se nos ocurre es usar la
identidad de mı́nimo-máximo.

Definición 4.2.1: La identidad de mı́nimo-máximo es una relación entre el
máximo de un conjunto S de n elementos y el mı́nimo de los 2n− 1 subespacios
no vaćıos de S. Tomando S = {x1, x2, ..., xn} la identidad dice:

max(x1, x2, ..., xn) =

n∑
i=1

xi −
∑
i<j

min(xi, xj) +
∑

i<j<k

min(xi, xj , xk)− ...

...+ (−1)n+1 min(x1, x2, ..., xn)

Ahora que sabemos la existencia de esta identidad solo nos hace falta saber el
valor de las funciones mı́nimo para las variables Ti. Pensemos en las definiciones
de estas variables, son el número de cromos que debemos comprar hasta conseguir
el cromo i-ésimo por lo que el mı́nimo entre dos variables es el número de cromos
que debemos comprar hasta conseguir uno de los dos tipos de cromos, por lo que
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la distribución del mı́nimo de las dos variables es una geométrica con parámetro
pi + pj . Continuemos calculando el min(Ti, Tj , Tk), que deducimos que también
sigue una ley geométrica con parámetro pi + pj + pk y aśı sucesivamente hasta
que llegamos a que min(T1, T2, ..., Tn) es una geométrica con parámetro

∑n
i=1 pi.

Ahora que ya tenemos todos los valores calculados podemos desarrollar la esperanza
de X:

E[X] = E[ max
i=1,2,..,n

Xi] =

n∑
i=1

E[Ti]−
∑
i<j

E[min(Ti, Tj)]+

+
∑

i<j<k

E[min(Ti, Tj , Tk)]− ...+ (−1)n+1E(min(T1, T2, ..., Tn)) =

=
∑
i

1

pi
−
∑
i<j

1

pi + pj
+ ...+ (−1)n+1 1

p1 + ...+ pn

Como
∫ +∞
0

e−pxdx = 1
p la expresión anterior se puede escribir como:

E[X] =

∫ +∞

0

(
∑
i

e−pix −
∑
i<j

e−(pi+pj)x...+ (−1)n+1e−(p1+...+pn)x)dx

y utilizando la igualdad:

1−
n∏

i=1

(1− e−pix) =
∑
i

epix −
∑
i<j

e−(pi+pj)x + ...+ (−1)n+1e−(p1+...+pn)x

concluimos que el valor de la esperanza es:

E[X] =

∫ +∞

0

(1−
n∏

i=1

(1− e−pix))dx
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5 Aplicaciones

5.1 Problema del rastreo de la IP

Esta primera aplicación se encuentra en el ámbito de las telecomunicaciones.
Es comúnmente sabido que los ataques DoS (Denial of Service) son los ataques
de seguridad más complicados en el ámbito de la ciberseguridad, y es aún más
complicado saber de dónde, o quién provoca este ataque. Este problema, el de
determinar quién provoca el ataque, se conoce como el problema del rastreo
de la IP. Se propuso una prometedora solución para este problema, llamada el
PPM (probabilistic packet marking), o en español, marcado probabiĺıstico de
paquetes. La idea de esta solución es escoger de forma probabiĺıstica información
parcial de cada paquete de la ruta del atacante. A pesar de que cada paquete
representa solo información parcial de la ruta de ataque, una v́ıctima puede
construir la ruta completa combinando la información obtenida de un número
modesto de los paquetes escogidos.

En un esquema PPM, la cantidad de paquetes que la v́ıctima debe recibir
para reconstruir la ruta del ataque es equivalente a la cantidad de cromos
que necesitamos comprar para completar un set de cromos en el problema del
coleccionista de cromos. A la cantidad de cromos que necesitamos comprar para
completar el set que queremos, en el problema del rastreo de la IP se denomina
coste de detección, por lo tanto, analizar la eficencia del esquema PPM se reduce
a resolver nuestro problema. En particular, la proporción de falsos negativos
de un esquema PPM está dada por la función de supervivencia del coste de
detección, por lo tanto, es muy importante calcular esta función a la hora de
evaluar la eficiencia de estos esquemas.

El objetivo a la hora de aplicar los resultados de nuestro problema es calcular
la función de supervivencia del coste de detección con el menor tiempo de
cómputo posible pero con una precisión suficiente para poder asegurar su eficacia
en la práctica. Por eso mismo, es buena idea estudiar los ĺımites superiores e
inferiores de la función de distribución complementaria.

Más concretamente estudiemos que el ataque DoS proviene de un atacante
con una sola fuente y que entre el atacante y la v́ıctima existen n enrutadores,
es decir, n pasos. Denominamos como enlace i al enlace entre el enrutador i− 1
e i. Cada paquete consta de 64 bits de información supongamos que tienen
dos paquetes de 32 bits. Cuando un enrutador marca un paquete, escribe su
dirección IP en uno de los campos, que llamaremos campo fuente. El siguiente
enrutador, escribe su dirección IP en el mismo campo, pero lo denominará
campo de destino. De esta forma conseguimos que no halla dos direcciones IP en
el mismo paquete de información y se evitan malos entendidos. La probabilidad
de que el enlace i marque un paquete recibido por la v́ıctima es pi, donde
pi = p(1 − p)i−1 con p la probabilidad de que un enrutador decida marcar el
paquete.
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Se puede demostrar que una cota inferior es:

P (X > k) ≥
n∑

i=1

(−1)i+1

(
n

i

)
(1− ip)k

con p = 1
n

∑n
i=1 pi y una cota superior:

P (X > k) ≤
n∑

i=1

(−1)i+1

(
n

i

)
(1− ipmin)

k

con pmin = min{p1, ..., pn

Estudiemos ahora la proporción de falsos negativos de un ataque de fuente
única. Definimos p(k : l) = (p1(l), ..., p1(l), ..., pn(l), ..., pn(l)) cada uno k veces

con pi(l) = p(1−p)i−1

l . Definimos Pfn(n) como la probabilidad de que no se
pueda encontrar el camino hasta el atacante cuando la v́ıctima recibe los n
paquetes. Es obvio que el número de paquetes necesarios para obtener el camino
del atacante es equivalente al coste de detección del problema del coleccionista
de cromos, cuando tenemos que p(1 : 1) y aśı obtenemos:

pfn(n) = P (X(p(1 : 1)) > n)

5.2 Método de test aleatorio

Una secuencia aleatoria es una secuencia infinita de d́ıgitos binarios que aparece
aleatoria a cualquier algoritmo. Esta definición puede extenderse a cualquier
conjunto finito de carácteres. Estas secuencias son muy importantes y tienen
dos propósitos comunes. Uno de estos usos es que en la mayoŕıa de algoritmos
de cifrados necesitan una base de datos aleatorios, en la que escogemos las
secuencias aleatorias. Un ejemplo muy conocido donde si se pierde la aleatoriedad
se pierde la seguridad es el sistema, o los basados en el sistema RSA.

El otro uso de los números aleatorios es los generadores de números aleatorios
(RNG), herramientas básicas del modelado estocástico. En la actualidad, existen
muchos conjuntos de pruebas para evaluar la aleatoriedad de las secuencias
binarias de bits como el de los conjuntos de pruebas NIST entre otras. Debido a
que hay tantas pruebas para saber si una secuencia es aleatoria o no, normalmente
el resultado de la prueba es parte de la aleatoriedad.

En la secuencia aleatoria propuesta por el problema del coleccionista de
cromos vemos la longitud de la cadena en 10 caracteres, entre el 0 y el 9, es
decir la cantidad de números que debemos escoger hasta obtener un número
de cada tipo. De esta forma podemos conseguir una cadena de números que
son completamente aleatorios. Es fácil ver la relación con el problema del
coleccionista de cromos, ya que si tenemos una colección de 10 cromos X, el
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número de cromos que necesitamos comprar para completar una colección, será
justo la longitud de la primera cadena de números. Usando la función de masa
de probabilidad con los números de Stirling podemos ver qué valores son los
más probables y cuáles no.

Los valores de los cálculos son muy complejos pero a la vez muy interensantes
de ver, todos estos se pueden ver en [4]

5.3 Otras aplicaciones

Además de estas dos aplicaciones el problema del coleccionista de cromos tiene
muchas más aplicaciones, entre ellas tenemos las siguientes:

- Detección de todas las restricciones necesarias en un problema de optimización
con restricciones.

- Determinar la clausura convexa en un conjunto de puntos S ∈ Rn.

- Pruebas con cultivos biológicos para la contanimación.

- Desarrollo de procesos estocásticos con aplicaciones en redes ”peer-to-peer”.
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