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1 Introduccién

El problema del coleccionista de cromos es un problema clasico en probabilidad
combinatoria. Comencemos describiéndolo: consideremos una persona que colec-
ciona una cantidad finita de distintos cromos, digamos n. Estos cromos se
adquieren de uno en uno y la probabilidad de obtener el cromo k es p. Como
tenemos que obviamente es un espacio de probabilidad completo tenemos que
>oi, pi = 1. El objetivo de este problema es estudiar el nimero de cromos que
debemos comprar hasta completar la coleccién. Si las probabilidades p; son
iguales, nos enfrentamos a un problema relativamente sencillo, mientras que en
el caso de que los cromos no sean equiprobables serd mas complicado pero a su
vez mas realista.

La historia de este problema comienza en 1708, cuando el problema aparecié
por primera vez en De Mensura Sortis (On the Measurement of Chance) escrito
por A. de Moivre. Gracias a Euler y a Lagrange se obtuvieron mas resultados
en el caso de cromos equiprobables, cuando pi = % para todo k.

En 1954 H. Von Schelling obtuvo por primera vez la distribucién del tiempo
de espera para completar una coleccién cuando las probabilidades de cada
cromo son distintas y ademas en 1960 D.J. Newman y L. Shepp calculd la
distribucién del tiempo de espera para completar 2 colecciones en el caso de
cromos equiprobables.

A la hora de realizar un estudio de este problema no nos podemos quedar solo
en los casos mas simples sino que también hay otras preguntas que plantearnos:
(Los cromos son equiprobables o no? ; Queremos completar una o varias coleccio-
nes? ;Se compran de forma individual o en sets de varios cromos?. El estudio de
todos estos casos hace que sea un estudio completo del problema, sin embargo,
no nos centraremos en todos los casos.

Ademas, el problema del coleccionista de cromos tiene muchas aplicaciones,
especialmente en ingenieria eléctrica, aunque también se puede aplicar en biologia
o en el Ambito de las telecomunicaciones.

En este trabajo estudiaremos, una coleccién de cromos equiprobables en
el capitulo 2, una coleccién de cromos no equiprobables en el capitulo 3, varias
colecciones de cromos equiprobables en el capitulo 4 y por tltimo las aplicaciones
del problema en el capitulo 5.



2 Una coleccion de cromos equiprobables

2.1 Calculo de la esperanza y la varianza

En este primer apartado queremos estudiar el caso en el que queremos completar
una coleccion de n cromos equiprobables, es decir, que la probabilidad de
conseguir cada cromo cuando compramos uno nuevo es % Denotamos al niimero
de cromos que necesitamos comprar para completar la coleccién como X. Este
valor es distinto al niimero de cromos que hay en la colecciéon ya que al comprarlos
podremos conseguir cromos repetidos. Definamos ahora X; como el nimero de
cromos que debemos comprar para tener una coleccién con ¢ — 1 cromos distintos
a i, es decir, que la suma de las variables X;,7i =1,...,n es:

X=X1+Xo+..+ X,

Cuando compramos el primer cromo no tenemos ninguno, podemos asegurar
que X; = 1. Ademés estamos estudiando el caso en el que todos los cromos
tienen la misma probabilidad, que para este enfoque en concreto es %, por lo
que en el momento en el que tenemos 7 cromos la probabilidad de conseguir
Uno nuevo es "T_ Las variables X; son independientes entre ellas y siguen la
ley geométrica con parametro ”T“rl Podemos ahora demostrar el siguiente

teorema:

Teorema 2.1.1: En el problema del coleccionista de cromos con probabilidades
iguales, la esperanza y la varianza del nimero de cromos que hay que comprar
para completar la coleccién, son respectivamente:

Demostracion: A partir de la escritura de X: X = X7 + Xo + ... + X,, con
X; ~ Geom("=1). Se tiene:

n

B R e O

Por ﬁltimo recordando que la varianza de una geométrica de pardametro p es

1-— p X
Var(X)=Var (ZX ) Var(Xi1+ ...+ Xp) =Var(Xy) + ... + Var(X,,) =
n 2n n(n—1) " (i—1)n
R e e D D i U |

=1



Una vez demostrado que la esperanza y la varianza toman ese valor, otra
forma de calcular la esperanza es a través de cadenas de Markov, que nos serdn
utiles méds adelante. Antes de comenzar este nuevo enfoque debemos definir
algunos conceptos:

Definicion 2.1.1 (Cadena de Markov): Sea E un conjunto contable. Una
sucesién (A,)n,>0 de variables aleatorias con valores en E se llama cadena de
Markov si para todo n > 2, ig, ...,i, € E se verifica:

P{An = Zn|AO = iOy ~~7An71 = iifl} = P{An = Z’n|14~nfl = Z'nfl}

El conjunto E se llama espacio de estados de la cadena. Si E es finito se dice
que la cadena es finita.

Definicion 2.1.2: Una cadena de Markov (A,),>0 se llama homogénea si
paratodon > 0,4,j € E, se verifica P {A,+1 = j|4, =i} = P{A; = j|4o = i}.

Definicion 2.1.3:  Sea (Ap)n>0 una cadena de Markov homogénea. Se
llaman probabilidades de transicién de la cadena a p;; = P{A; = j|Ag =i}
y matriz de transicién de la cadena a P = (pij)i,jeE. Para n > 0, se llaman
probabilidades de transicién en n etapas de la cadena apz(.;’) = P{A, =jl4o =i}
y matriz de transicién en n etapas de la cadena a P = (pz(-;-l))i’jeE
Ahora que hemos definido estos conceptos veamos cémo la esperanza del nimero
de cromos que debemos comprar tiene el valor del Teorema 2.1.1 pero desde otro
enfoque, en este caso, las cadenas de Markov. A diferencia del caso anterior,
suponemos que cada cromo llega en una unidad de tiempo, por lo que las
variables X; pueden interpretarse como el nimero de unidades de tiempo que
debemos esperar para pasar de tener ¢ — 1 cromos distintos a ¢ cromos. Ahora
definimos Y,, como el niimero de cromos que tendremos después de que pasen n
unidades de tiempo. La probabilidad de conseguir cualquier tipo de cromo en
cualquier momento es p = % Cada Y;,_1 depende de los anteriores, es decir, que
el nimero de cromos después de n unidades de tiempo depende de los cromos
que tengamos después de n — 1 unidades de tiempo o escrito de otra forma:

P{Yn = Zn‘Yb = 7:07 ~~~7Yn71 = Zlifl} = P{Yn = in|Yn71 = infl}

por lo tanto las variables Y,, son una cadena de Markov con el espacio de estados
S={0,1,...,n}.

Con la definicién de matriz de transicién sabemos que p; j = P { X1 =4 Xn =3}
Por lo tanto si j > i la probabilidad es cero y por consiguiente sabemos que la
matriz de transicién es triangular. Es mas si ¢ + 2 > j la probabilidad también
es cero por la definicién de Y,, ya que si aumenta una unidad el valor de n solo
aumenta un cromo. El resto de probabilidades son obvias, por lo que llegamos

a la siguiente matriz de transicion:



0 1 0 0
0 + =1 0 0
0 -~ ... 0 1

Esta cadena de Markov tiene un estado absorbente y nuestro objetivo es
conocer el nimero medio de transiciones hasta llegar al estado deseado partiendo
del estado 0. Para ello tenemos:

kn=0
ki =1+ Z‘#npijkj,i 7’5 n

Y resolviendo este sistema llegamos a:
n 1
ko=n -
o=n) 3
i=1
que coincide con la expresién del Teorema 2.1.1

2.2 Funcion de masa de probabilidad de X

Una vez calculadas la media y la varianza de X podemos preguntarnos por su
funciéon de masa de probabilidad. Es decir, la probabilidad de que nos haga
falta comprar exactamente K cromos con K > n para completar la coleccion.
Para hacer un estudio de la funciéon de masa de probabilidad primero tenemos
que definir los nimeros de stirling de segundo tipo.

2.2.1 Definicion: Sea s, j denota el niimero de particiones de un espacio de
n elementos en k bloques. Podemos usar la siguiente férmula de recurrencia:

Sn,k = Sn—1,k—1 + ksnfl,k

para n,k > 1y con condiciones iniciales s, o = 5o,z = 0y 50,0-

Volvamos ahora a nuestro problema. Hay n formas en las que podria
resultar una secuencia de K intentos. El nimero de formas en que un cromo
puede aparecer en el K-ésimo intento, y que sea n-ésimo cromo, es (n—1)!sx_1,n_1.
Como tenemos n cromos que pueden aparecer por primera vez en la tultima
compra, tenemos n(n—1)sx_1,-1 = dlsg_1,,—1 formas en las que necesitamos
exactamente K intentos para tener los n cromos. Y asi:

nlsK —1,n—1  (n—1)lsg_1n1

P(X=K)= nk k-1



2.3 Distribucién asintética de X (n)

En el apartado anterior hemos visto la distribucién del nimero de cromos
necesarios para completar la coleccién y podria ser interesante ver su comportamiento
cuando n tiende a infinito. Para este apartado la variable X suma de variables
independientes la reescribiremos como X (n) para una coleccién de n cromos.

Teorema 2.3.1: Si X(n) es el nlimero de cromos necesarios para completar
‘s . ) . X (n)—nlog(n)
una coleccién de n cromos equiprobables, se tiene que —————— converge en
distribucién a una distribucién de Gumbel con p =0y 8 = 1. Es decir:
n—-+oo n

Demostracion:  Comencemos denotando v(n, k) el nimero de cromos que
son necesarios para que exactamente tengamos al menos k cromos distintos en
una coleccién de n cromos.
Entendamos ahora la definicién de X (n). X(n) como el nimero de cromos que
necesitamos comprar para tener al menos 1 cromo de cada tipo, es decir, los
cromos que necesitamos comprar para completar una colecciéon. Lo denotamos
asi con el objetivo de que nos facilite la expresién en capitulos posteriores.
Por definicién v(n,1) = 1, v(n,n) = X(n) y podemos reformular las variables
X como X1 =1, Xy, = v(n, k)—v(n,k—1) para todo k = 2, 3, ..., n. Recordemos
que las variables X} son variables aleatorias independientes con ley geométrica
de parametros n%k_u
Tomamos ahora la variable aleatoria:

X(n) — ”22:1 % _ Z?:Q Xi — ”22:1 %

n n

n =

Antes de seguir, recordemos la definicién de funcién caracteristica:

Definicion 2.3.1: Dada una variable aleatoria continua X su funcién caracteristica
es una funcién ¢x : R — C definida como

—+oo

Yx(t) = E[e™™] = / e fx (x)dx

— 00

Ahora que la hemos definido, podemos estudiar darle valor a la funcién
caracteristica de la funcién 7, y es:

1
[Tioy e (14 fi(e™ = 1)

Si tomamos el limite de cuando n tiende a infinito de esta funcién caracteristica
converge a:

Un (1)

lim 4, (t) = T(1 — it)e "**

n—-+oo



con I' la funcién Gamma y con c la constante de Euler. Por la representacion
integral de la funciéon gamma tenemos:

“+o0
/ ¢ dR(z) = T(1 — it)

— 0o
con F(z) =e ¢ . Asf que tenemos que:

lim P(vl(n)fn(1+%+...+%fc)

n——+00 xT

Por ultimo se sabe que:

3

=log(n) + c+o(1)

| =

k=1

Y asi obtenemos el resultado esperado y queda acabada la demostracién.
Este resultado puede escribirse de forma equivalente usando la distribucién
exponencial o la chi-cuadrado de dos grados de libertad.

Corolario 2.3.1:  En las condiciones del teorema anterior tenemos que
_X0) C . [ .
e~ "n 109(2n) converge en distribucién a una exponencial de pardmetro % Demostracion:

Es casi inmediato, simplemente debemos destacar que para ¢ > 0:

X(n)

P(e= 109 m) < ) — p(—( —log(2n)) < log(t)) =

X(n)

2
8*109(?)

[SIEN

= P( —log(n) > log(%)) —1l—e" =1—e"

Por 1ltimo solo hace falta comparar las funciones de distribucién de una chi-
cuadrado de 2 grados de libertad con una exponencial de parametro % para ver
que son iguales.

Para finalizar este capitulo estudiemos algunos resultados finales. Definimos
las variables W,, como el tiempo que debemos esperar hasta tener a,, +1 cromos
con 0 < a,, < n. Estudiemos las distribuciones asintéticas de las variables W,
dependiendo del comportamiento de a,. Definimos por ultimo b, = n —a, y
sea fi, ¥ 02 la media y la varianza de W,,.

Teorema 2.3.2 : Si 2% converge a 0, se tiene que, W,, — a,, — 1 converge en
n2
probabilidad a 0.

Demostracion: Comencemos redefiniendo W,, como:

W, = Z% +Zna+ .. 00,



Pero si pensamos la definicién de estas "nuevas” variables, nos damos cuenta
de que Zz = X, definida en el primer apartado. Asf sucesivamente reescribimos
Zn-1 = Xo, ... \Zv, = X,4, 41, por lo que lo podemos reescribir como:

n n

Wy = X1+ X+ o+ Xa 1

Obviamente las variables X; tendrén las medias y varianzas como las halladas
en el primer apartado, pero adaptadas a las definiciones de a,, y b, y se quedan
de la siguiente forma:

n

1
k=b,
o2 —n “n—k
n = 2
k=b, &

Notemos que en la varianza sustituyendo k& por n—i+1 obtenemos la varianza
hallada en el primer apartado.
Debido a esto, la funcién caracteristica de W,, — a,, es:

An, k

[0
_ itk

paiird 1—ets

Usando la aproximacién de 1 + z = e*72°% con |z| < 2y|0] <lenel

numerador y denominador obtenemos lo siguiente:
k k K2
—Eioks

1+(fﬁ):e

L (ceithy C etbraet sy
n

Asi, el cociente dentro del producto anterior se puede escribir como:

67%+9(%)2+en£79(6m%)2

Como es un producto de exponenciales lo podemos reescribir como la exponencial
del sumatorio, por lo que llegamos a la siguiente féormula:

LI k?
exp[z %(e -1)+ 20ﬁ]
k=0

Recordamos ahora a qué converge el siguiente sumatorio:

iﬁ_wﬁﬁ
n_ 2n 2
k=0

. _ an k ‘ an  k?
En este caso en particular A = 0, entonces, ) ;" o = — 0. Ademds ) ;" & — 0.
Es decir que si A = 0, entonces la funcién caracteristica de W,, —a,, — 1 converge



a 0.

Teorema 2.8.3 : Si 4% converge a una constante positiva A, por lo tanto,
nz2
. . . s . . ., . . 2
Wy, —an, —1 converge en distribucién a una distribucién de Poisson con media %

Demostracion: Razonando exactamente de la misma manera tenemos que

bajo esta hipdtesis A > 0 y entonces la funcién caracteristica de W,, — a,, — 1
. 2
converge a exp[iA%(e’ — 1)] que es la de Poisson de media 4.

Por ultimo enunciaremos el dltimo teorema pero sin demostracion ya que es
mucho mas compleja.

Teorema 2.3.4: Si “—% y b, convergen a infinito, por lo tanto,
converge en distribucion a una normal con media 0 y varianza 1.

Xn—pn
On

La demostracion de este teorema es muy larga y la dejamos a eleccién del
lector, se puede encontrar en [1]
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3 Varias colecciones de cromos equiprobables

3.1 El problema de las n urnas

Consideremos ahora el siguiente caso: en una familia de m hermanos quieren
completar m colecciones. Cuando se consigue un cromo nuevo el hermano
mayor lo recibe y se lo guarda, cuando conseguimos por segunda vez el cromo
se lo guarda el segundo hermano de mayor edad y asi sucesivamente. Ahora
nos volvemos a plantear las mismas preguntas ;Cudl es el nimero esperado
de cromos que debemos comprar para completar las m colecciones? ;Qué
distribucién sigue esta variable?

El problema del coleccionista de cromos es equivalente al problema de las
urnas. Este problema consiste en que tenemos n urnas, que serian los distintos
tipos de cromos y vamos lanzando pelotas, que siempre entran en alguna urna
pero de forma completamente aleatoria. El acto de lanzar una pelota es equiva-
lente a comprar un cromo, por lo que efectivamente los problemas son equivalentes.

Nos planteamos ahora la siguiente pregunta: ;Cuédntos cromos debemos
comprar para completar m colecciones? O equivalentemente, jcudntas pelotas
debemos lanzar para tener al menos m pelotas en cada una de las n urnas?.

3.2 Calculo de la esperanza

Denotamos v,,(n) como el nimero de pelotas que debemos lanzar para tener
al menos m pelotas en cada una de las n urnas, por eso en el estudio anterior,
como era para una coleccién, lo hemos denotado como v(n). Veamos una
aproximacién de la media de la variable v,,(n). Comencemos recordando la
aproximacién del valor de la media que es Y. | + = log(n) + ¢ + 3= + O(53)
con ¢ la constante de Euler.

Enunciemos ahora el siguiente teorema:

Teorema 3.2.1: En el problema del coleccionista de cromos con probabilidades
iguales y m colecciones, la esperanza del niimero de cromos que hay que comprar
para completar las colecciones es:

Elvy,(n)] = nlog(n) + (m — 1)nlog(log(n)) + nCy, + O(n)

con Cy, constante que depende de m, que toma el valor C,, = ¢ — log(m — 1),
resultado que no demostraremos debido a su dificultad en cuanto a computos.
Antes de realizar la demostracion del valor de la esperanza debemos enunciar y
demostrar un lema:

11



Lema 3.2.1:  Demostrar que el valor de la esperanza es el anterior es
equivalente a probar que:
Elvym(n+1)] Elvg,(n)] 1 m—1

_ = \,
n+1 n n+1+nlog(n)+

con y . |An| < +o0.

Demostracion: Lo que tenemos que probar es que

Elom _ og(n) ~ (m — 1)iog(iog(n)) = Cu + o(1)

lo que es equivalente a ver que el limite de la primera parte de la igualdad cuando
Elvm ()]

n tiende a infinito es real. Comencemos llamando «;,, = ==2-=, y tenemos que
probar si 41—y = %_H + #’(z) + A, entonces existe lim,,—, o [, —log(n) —
(m — 1)log(log(n))] y que pertenece a los reales.
Notemos que a,, = ay — @1 + Q1 — ... + @3 — a1 por lo que «,, se puede
expresar como
1 o m-—1
ap = ; (k + Flog (k) + /\k)

Por lo que:
oy — log(n) — (m —1)log(log(n)) =

n n n
1 1
= — =1 -1 — —log(l A
(322 oo+ m 1) (32 gk - otiont) ) + o

k=2 k=2 k=2
Y obviamente si las dos series entre paréntesis convergen a valores reales y
el sumatorio de \,, es una serie absolutamente convergente, entonces existe el
limite y es real.

Demostracion (Teorema 3.2.1): Como son resultados equivalentes demostremos

que:
Elop(n+1)]  Efvm(n)] _ 1 4 m= 1 Y
n+1 n n+1  nlog(n)

Podemos escribir esta resta como:

U (T Um (N oo

con Sy (t) = D pem tk—k, Esta igualdad proviene de E[v,,(n)] =n 0+OO[1 -(1-
S (t)e~)™]dt puede verse la explicacién en [2]. Haciendo ahora el cambio de
variable z = 1 — e7%S,,,(t) llegamos a que fol x”Sm(t)%dm con obviamente

t = t(z). Queremos ahora probar que:
Z —dr < oo,k <m
tk
n=1"0

12



/1 x”d 1 n
—dr=———+an
0o t nlog(n)

con Y an < ooy asi quedarfa demostrado el teorema

Por el cambio de variable es obvio que t > log(2-) ademds desarrollando Sy, (t)
tenemos que z < t". Con estas dos de51gua1dades podemos ver que la siguiente
integral es finita:

L1 de 21 dr [t 1 de
o l—zth J, 1—xtk 11—z tk
2

Y queda asi demostrado el primer punto. Con el desarrollo del logaritmo y la

primera desigualdad llegamos a que t > z"log(r) y, por lo tanto, fol %dw <

Tomando un valor w > 1 definimos a = 1 — S;,,(u)e™™ tenemos

1 n a —u
/ x—dm > 1/ z"dx > 1 — Sim (u)e
o t u Jo (n+ 1u u

Y llegamos a que:

1
(n—r+1)log(r) "
que:

1
n) + mlog(log(n)) obtenemos que:

1 Clog( log / 1 Clog(log(n))
—dx
nlog(n) nlog?( ~ nlog(n) nlog?(n)
y asi queda acabada la demostracién si ) %.

Al igual que en el caso equiprobable, veamos ahora el enfoque de las cadenas
de Markov para m = 2. Sean Y,,,n > 0 las variables definidas en el anterior
enfoque de cadena de Markov. Sin embargo, ahora tomamos el espacio de
estados S" = {(i,7) : 4,5 € {0,1,...,n},i > j} con |S| = %, el estado
(7,7) define el momento en el que tenemos i cromos distintos de la primera
coleccién y j de la segunda coleccién, por eso es obvio que 7 > j. Entonces las
probabilidades de transicién vienen dadas como (0,0) — (1, 0) con probabilidad
1, (i,j) = (i +1,7) con probabilidad %=, (i,j) — (i,j + 1) con probabilidad
% (i,4) — (i,7) con probabilidad ZL . Por dltimo tenemos que obviamente
(n,n) — (n,n) con probabilidad 1. Ademas en el caso de que i = n tenemos que
las probabilidades de transicién son (n,j) = (n,j + 1) con probabilidad =~ y
(n,j) = (n,j) con probabilidad Z.

Para conocer el tiempo de espera para completar las colecciones debemos
calcular el valor de kEO o) dque se hace resolviendo el sistema lineal como en el

caso visto anteriormente.

13



3.3 Distribucién asintética de v,,(n)

Del valor de la esperanza podemos sacar n factor comtin y a partir de ahi
podemos estudiar la convergencia asintética de la distribucion de probabilidad,
es decir, la convergencia en distribucion.

En el apartado anterior hemos calculado una expresién asintética para la
esperanza del nimero de cromos necesarios para completar m colecciones. El
siguiente teorema, que enunciamos sin demostrar da la convergencia en distribucién
de v,,(n). Notar que para m = 1 recuperamos el Teorema 2.3.1.

Teorema 3.2.1: Sivp,(n) es el nimero de cromos necesarios para completar
m colecciones de n cromos, entonces se cumple la siguiente férmula, para todo
x real:

nﬂlfoo P(va(n) <log(n)+ (m — 1)log(log(n)) + x) = emp(_(mL—zl)!

)

De todas formas en caso de que se quiera ver una demostraciéon completa
del Teorema 3.2.1 se puede leer en [3]

14



4 Una coleccién de cromos no equiprobables

4.1 Introduccion al problema

Una vez estudiado el caso de que todos los cromos tengan la misma probabilidad,
estudiemos un caso algo mas realista, una coleccién donde no todos los cromos
tienen la misma probabilidad. Normalmente en las colecciones de cromos existen
distintas categorias como comun, raro, ...

Definimos asi p; como la probabilidad de conseguir el cromo i-ésimo cada
vez que compramos uno. Al tratarse de un espacio de probabilidad completo
obviamente tenemos que >, p; = 1 con p; > 0.

Para este nuevo capitulo definimos los T; como el nimero de cromos que
debemos comprar hasta conseguir el cromo de tipo i-ésimo. Cada vez que
compramos un cromo tenemos una posibilidad de p; de conseguir el cromo i-
ésimo y una posibilidad de 1 — p; de conseguir cualquier otro, es decir, de no
conseguirlo. Con este argumento deducimos que las variables T} siguen una ley
geométrica de parametro p;.

Definimos ahora la variable X como el nimero total de cromos que debemos
comprar para completar la coleccién. A diferencia del anterior capitulo por
definicién, X no va a ser la suma de todos los anteriores T; sino que seguira la
siguiente férmula:

X = max(Tl, TQ, ceey Tn)

4.2 Calculo de la esperanza

Como el valor que nos interesa estudiar es la esperanza de la variable X y esta
se define con la funciéon de méximo, lo primero que se nos ocurre es usar la
identidad de minimo-maximo.

Definicion 4.2.1: La identidad de minimo-méximo es una relacién entre el
méaximo de un conjunto S de n elementos y el minimo de los 2" — 1 subespacios
no vacios de S. Tomando S = {x1, z2, ..., x,} la identidad dice:

n
max(xy, o, ..., Tp) = le - Zmin(zi,zj) + Z min(x;, €, Tx) — ...
i=1

i<j i<j<k

A (=) min(zy, 20, ..., 2,)

Ahora que sabemos la existencia de esta identidad solo nos hace falta saber el
valor de las funciones minimo para las variables T;. Pensemos en las definiciones
de estas variables, son el niimero de cromos que debemos comprar hasta conseguir
el cromo i-ésimo por lo que el minimo entre dos variables es el niimero de cromos
que debemos comprar hasta conseguir uno de los dos tipos de cromos, por lo que
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la distribucién del minimo de las dos variables es una geométrica con parametro

pi + p;. Continuemos calculando el min(7;, Tj,Tk), que deducimos que también
sigue una ley geométrica con pardmetro p; + p; + py y asi sucesivamente hasta
que llegamos a que min(7%, Tb, ..., T},) es una geométrica con pardmetro y ., p;.
Ahora que ya tenemos todos los valores calculados podemos desarrollar la esperanza
de X:

n

BIX] = B[ max Xi) =Y EIT) — Y Blmin(T,, 7))+

+ Y Emin(T3, 75, T3)] — ... + (—1)" T E(min(Ty, Ty, ..., Tp)) =

i<j<k

1 1 1
D IR P e
— Di Z.<jpi+Pj p1+ ... +Dn

+oo  _ ., . o1 e
Como fo e Prdx = % la expresion anterior se puede escribir como:

+oo
BIX) = [ (T e - e nn g (et sy
0 i i<j

y utilizando la igualdad:

n

1— H(l —e Py = Zel’ﬂ _ Ze_(pi"!‘Pj)l o+ (_1)n+16—(p1+...+pn)ﬂc

i=1 i i<j
concluimos que el valor de la esperanza es:

n

+oo
E[X] = /0 (1-JJ —e™))da

i=1

16



5 Aplicaciones

5.1 Problema del rastreo de la IP

Esta primera aplicacién se encuentra en el ambito de las telecomunicaciones.
Es cominmente sabido que los ataques DoS (Denial of Service) son los ataques
de seguridad mas complicados en el &mbito de la ciberseguridad, y es atin més
complicado saber de dénde, o quién provoca este ataque. Este problema, el de
determinar quién provoca el ataque, se conoce como el problema del rastreo
de la IP. Se propuso una prometedora solucién para este problema, llamada el
PPM (probabilistic packet marking), o en espanol, marcado probabilistico de
paquetes. La idea de esta solucién es escoger de forma probabilistica informacién
parcial de cada paquete de la ruta del atacante. A pesar de que cada paquete
representa solo informacién parcial de la ruta de ataque, una victima puede
construir la ruta completa combinando la informacién obtenida de un nidmero
modesto de los paquetes escogidos.

En un esquema PPM, la cantidad de paquetes que la victima debe recibir
para reconstruir la ruta del ataque es equivalente a la cantidad de cromos
que necesitamos comprar para completar un set de cromos en el problema del
coleccionista de cromos. A la cantidad de cromos que necesitamos comprar para
completar el set que queremos, en el problema del rastreo de la IP se denomina
coste de deteccidn, por lo tanto, analizar la eficencia del esquema PPM se reduce
a resolver nuestro problema. En particular, la proporcién de falsos negativos
de un esquema PPM estd dada por la funcién de supervivencia del coste de
deteccién, por lo tanto, es muy importante calcular esta funciéon a la hora de
evaluar la eficiencia de estos esquemas.

El objetivo a la hora de aplicar los resultados de nuestro problema es calcular
la funcién de supervivencia del coste de deteccién con el menor tiempo de
cémputo posible pero con una precisién suficiente para poder asegurar su eficacia
en la préactica. Por eso mismo, es buena idea estudiar los limites superiores e
inferiores de la funcién de distribucién complementaria.

Maés concretamente estudiemos que el ataque DoS proviene de un atacante
con una sola fuente y que entre el atacante y la victima existen n enrutadores,
es decir, n pasos. Denominamos como enlace i al enlace entre el enrutador ¢ — 1
e i. Cada paquete consta de 64 bits de informacién supongamos que tienen
dos paquetes de 32 bits. Cuando un enrutador marca un paquete, escribe su
direccién IP en uno de los campos, que llamaremos campo fuente. El siguiente
enrutador, escribe su direccién IP en el mismo campo, pero lo denominara
campo de destino. De esta forma conseguimos que no halla dos direcciones IP en
el mismo paquete de informacién y se evitan malos entendidos. La probabilidad
de que el enlace i marque un paquete recibido por la victima es p;, donde
pi = p(1 — p)*~! con p la probabilidad de que un enrutador decida marcar el
paquete.
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Se puede demostrar que una cota inferior es:
n n
P> 1) = 30 (7 )
i=1 L
con p = % > i, pi y una cota superior:

P(X > k)< i(—l)i“ (7)(1 ~ iPmin)"

- 1
i=1
CON Pmin = min{pla <y Pn

Estudiemos ahora la proporcién de falsos negativos de un ataque de fuente
tnica. Definimos p(k : 1) = (p1(1), ..., p1(1), s P (1), ..., pr (1)) cada uno k veces
con p;(l) = M Definimos Py, (n) como la probabilidad de que no se
pueda encontrar el camino hasta el atacante cuando la victima recibe los n
paquetes. Es obvio que el nimero de paquetes necesarios para obtener el camino
del atacante es equivalente al coste de deteccién del problema del coleccionista
de cromos, cuando tenemos que p(1: 1) y asi obtenemos:

pin(n) = P(X(p(1:1)) > n)

5.2 Método de test aleatorio

Una secuencia aleatoria es una secuencia infinita de digitos binarios que aparece
aleatoria a cualquier algoritmo. Esta definicién puede extenderse a cualquier
conjunto finito de caracteres. Estas secuencias son muy importantes y tienen
dos propositos comunes. Uno de estos usos es que en la mayoria de algoritmos
de cifrados necesitan una base de datos aleatorios, en la que escogemos las
secuencias aleatorias. Un ejemplo muy conocido donde si se pierde la aleatoriedad
se pierde la seguridad es el sistema, o los basados en el sistema RSA.

El otro uso de los nimeros aleatorios es los generadores de niimeros aleatorios
(RNG), herramientas basicas del modelado estocastico. En la actualidad, existen
muchos conjuntos de pruebas para evaluar la aleatoriedad de las secuencias
binarias de bits como el de los conjuntos de pruebas NIST entre otras. Debido a
que hay tantas pruebas para saber si una secuencia es aleatoria o no, normalmente
el resultado de la prueba es parte de la aleatoriedad.

En la secuencia aleatoria propuesta por el problema del coleccionista de
cromos vemos la longitud de la cadena en 10 caracteres, entre el 0 y el 9, es
decir la cantidad de nimeros que debemos escoger hasta obtener un nimero
de cada tipo. De esta forma podemos conseguir una cadena de numeros que
son completamente aleatorios. Es féacil ver la relacion con el problema del
coleccionista de cromos, ya que si tenemos una coleccién de 10 cromos X, el
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nimero de cromos que necesitamos comprar para completar una coleccién, serd
justo la longitud de la primera cadena de ntimeros. Usando la funcién de masa
de probabilidad con los nimeros de Stirling podemos ver qué valores son los
mas probables y cudles no.

Los valores de los calculos son muy complejos pero a la vez muy interensantes
de ver, todos estos se pueden ver en [4]

5.3 Otras aplicaciones

Ademas de estas dos aplicaciones el problema del coleccionista de cromos tiene
muchas mas aplicaciones, entre ellas tenemos las siguientes:

- Deteccion de todas las restricciones necesarias en un problema de optimizacion
con restricciones.

- Determinar la clausura convexa en un conjunto de puntos S € R™.
- Pruebas con cultivos biolégicos para la contanimacién.

- Desarrollo de procesos estocasticos con aplicaciones en redes ” peer-to-peer” .
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