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Resumen

El presente trabajo está dedicado al estudio de los grupos abelianos infinitos inyectivos y proyectivos,
grupos de gran importancia al tratar con sucesiones exactas en el campo del álgebra homológica. El principal
objetivo del mismo es caracterizar dichos grupos abelianos y proporcionar una clasificación, mediante mó-
dulos libres en el caso de los grupos proyectivos, y a través del Teorema de Matlis en el caso de los grupos
inyectivos. Para llevar a cabo dicho estudio se aborda la teoría en tres niveles de abstracción:

En el capítulo 1 se presenta una introducción básica desde la visión dada por los grupos cíclicos, trasla-
dándonos eventualmente al ámbito de la teoría de módulos, en la cuál un grupo abeliano es lo mismo que
un Z-módulo. En dicha parte se estudian las operaciones de suma y producto directo, así como las sucesio-
nes exactas y la relación fundamental de los módulos proyectivos e inyectivos con la escisión de sucesiones
exactas cortas.

Posteriormente, en el capítulo 2 se abarca un estudio desde el punto de vista de la teoría de categorías,
en la que los módulos y sus homomorfismos constituyen una categoría abeliana. Dicha abstracción nos per-
mitirá tratar functores como el Hom y el Ext, así como introducir las nociones de resolución proyectiva e
inyectiva, cubierta proyectiva y generadores proyectivos.

La segunda mitad del trabajo está dedicada a la profundización por individual en los módulos proyecti-
vos e inyectivos.

El capítulo 3 se enfoca en los módulos proyectivos, y en él se analiza en mayor profundidad la noción
de módulo libre que facilitará una clasificación de los mismos. Asimismo, se trata la idea de torsión de un
módulo, el producto tensorial y el functor Tor, de nuevo desde un punto de vista categórico. Finalmente se
plantean algunos problemas abiertos relevantes formulados por Kaplansky, así como el problema indecidible
de Whitestone.

En el capítulo 4 se exploran los módulos inyectivos, analizando para ello algunas nociones duales en sentido
categórico a las vistas para módulos proyectivos. De este modo, se estudian los conceptos de módulo divi-
sible y envolvente inyectiva, con resultados importantes como el criterio de Baer. Dicho estudio finaliza con
la clasificación de módulos inyectivos dada por el Teorema de Matlis.

Adicionalmente, el trabajo consta de tres apéndices en los que se pueden consultar las nociones básicas
de teoría de categorías, álgebra homológica y producto tensorial que serán necesarios para un mayor enten-
dimiento de los módulos proyectivos e inyectivos.
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Abstract

This work is dedicated to the study of infinite injective and projective abelian groups, which are of great
importance in dealing with exact sequences in the field of homological algebra. The main objective is to
characterize these abelian groups and provide a classification, using free modules in the case of projective
groups, and through the Matlis Theorem in the case of injective groups. This study is approached at three
levels of abstraction:

Chapter 1 presents a basic introduction starting from the perspective of cyclic groups, eventually transitio-
ning to the realm of module theory, where an abelian group is the same as a Z-module. This part covers the
operations of direct sum and direct product, as well as exact sequences and the fundamental relationship of
projective and injective modules with the splitting of short exact sequences.

Chapter 2 covers the study from the viewpoint of category theory, where modules and their homomorphisms
form an abelian category. This abstraction allows us to deal with functors such as Hom and Ext, and intro-
duces the notions of projective and injective resolutions, projective covers, and projective generators.

The second half of the work is dedicated to a deeper exploration of projective and injective modules.

Chapter 3 focuses on projective modules and delves into the notion of free modules, which facilitates their
classification. The idea of module torsion, tensor product, and the functor Tor are also discussed from a ca-
tegorical perspective. Finally, some relevant open problems formulated by Kaplansky are presented, as well
as the undecidable Whitestone problem.

Chapter 4 analyzes the case of injective modules, and covers certain dual notions in a categorical sense
to those seen for projective modules. Thus, the concepts of divisible module and injective envelope are ex-
plored, along with important results such as the Baer criterion. This study concludes with the classification
of injective modules given by the Matlis Theorem.

Additionally, the work includes three appendices that provide the basic notions of category theory, homologi-
cal algebra, and tensor product, which will be necessary for a better understanding of projective and injective
modules.
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Capítulo 1

Introducción básica

En este primer capítulo se introducirán conceptos fundamentales como los grupos cíclicos y los módulos,
así como las operaciones de sumas y productos directos. Además, se explorarán las sucesiones exactas,
herramientas clave para comprender la estructura de los grupos abelianos y su clasificación.

1.1. Grupos cíclicos

Uno de los tipos de grupos que resulta de mayor importancia, como bien afirma L. Fuchs [3], son los
grupos cíclicos. Para definirlos, consideremos en primer lugar la siguiente notación:

Sea S un subconjunto de un grupo abeliano A, denotaremos por ⟨S⟩ al subgrupo de A generado por S, i.e.,
la intersección de todos los subgrupos de A que contienen a S.
Si S consiste en los elementos ai (i ∈ I), se escribe

⟨S⟩= ⟨. . . ,ai, . . .⟩i∈I,

o simplemente ⟨S⟩= ⟨ai⟩i∈I .

Definición. El subgrupo ⟨S⟩ contiene todas las sumas de la forma n1a1+ · · ·+nkak, llamadas combinaciones
lineales de a1, . . . ,ak, con ai ∈ S, ni ∈ Z y k ∈ N.

Si S es vacío, entonces ⟨S⟩= 0.

Definición. Si ⟨S⟩ = A, S se dice sistema generador de A. Los elementos de S son generadores de A. Un
grupo finitamente generado es aquel que tiene un sistema generador finito.

Con esta notación se tiene la siguiente definición de grupo cíclico:

Definición. Sea un grupo G generado por un único elemento, G= ⟨a⟩, decimos que G es un grupo monógeno
o cíclico.

Una clasificación se tiene al considerar la finitud de los grupos cíclicos:

Si G = ⟨a⟩ es un grupo cíclico infinito, entonces es isomorfo al grupo aditivo Z de los enteros
0,±1,±2, . . . . Se tiene, por tanto, que todos lo grupos cíclicos infinitos son isomorfos.

Si G = ⟨a⟩ es un grupo cíclico finito de orden m, entonces consiste en los elementos 0,a,2a, . . . ,(m−
1)a (pues ma = 0), es decir, G es isomorfo al grupo aditivo Zm. Se tiene que todos los grupos cíclicos
finitos del mismo orden son isomorfos.

Utilizaremos las notaciones de Z y Zm respectivamente para referirnos a estos grupos cíclicos.
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2 Capítulo 1. Introducción básica

Proposición 1.1. Todo subgrupo de un grupo cíclico es también cíclico.

Proposición 1.2. Todo grupo cociente propio de un grupo cíclico es un grupo cíclico finito.

Por último, notar la siguiente relación entre los grupos cíclicos y los grupos abelianos:

Proposición 1.3. Todo grupo cíclico es un grupo abeliano.

Demostración. En efecto, sea el grupo cíclico G = ⟨g⟩, se cumple que si a ∈G, entonces a = gk para algún
k, y por tanto considerando dos elementos gk1 ,gk2 ∈ G, se sigue

gk1gk2 = gk1+k2 = gk2+k1 = gk2gk1 ,

para cualesquiera k1 y k2. ■

Así pues, los grupos cíclicos son unos de los más importantes, si bien cabe destacar otros tipos de
grupos abelianos como los grupos cocíclicos, los grupos racionales o los enteros p-ádicos, en los que no nos
detendremos en este trabajo.

1.2. Módulos

A partir de los grupos cíclicos se pueden construir muchos otros grupos. La construcción más inmediata
de grupos a partir de grupos cíclicos se obtiene a través de la suma directa, pero para introducirla, vamos
primero a trasladarnos a un nivel de abstracción mayor. Las ideas presentadas a continuación pueden ser
consultadas y ampliadas en libros como el de L. Fuchs [3] o el de N. Jacobson [5].

1.2.1. Primeras definiciones

El concepto de módulo resulta de gran importancia, pues nos proporciona una forma algo más abstracta
de ver los grupos abelianos, y lo manejaremos durante gran parte del trabajo:

Definición. Sea R un anillo asociativo y sea M un grupo abeliano tal que

1. ∀ α ∈ R, a ∈M, se tiene un elemento αa ∈M llamado producto de α y a.

2. ∀α,β ∈ R y a ∈ m se tiene (αβ )a = α(βa).

3. ∀α ∈ R y a,b ∈M, α(a+b) = αa+αb.

4. ∀α,β ∈ R y a ∈M, (α +β )a = αa+βa.

Llamamos a M un R-módulo a izquierda sobre R. Si R tiene un elemento unital e, dicho elemento actúa
como identidad en M:

5. ea = a, ∀a ∈M.

Se habla entonces de un R-módulo unital.
De manera análoga se define un R-módulo a derecha sobre R. Además, si el anillo es conmutativo las nocio-
nes de R-módulo a izquierda sobre R y R-módulo a derecha sobre R son equivalentes. En este caso se puede
hablar simplemente de R-módulo sobre R

Con estas nociones, notar que eligiendo R = Z como nuestro anillo, se tiene que un grupo abeliano no es
otra cosa que un Z-módulo.

Definición. Sea N ⊆M un subgrupo, decimos que N es un submódulo si ∀α ∈ R y n ∈ N se tiene αn ∈ N,
es decir, si N es un R-módulo bajo las mismas operaciones.

En el caso de los Z-módulos, un submódulo es lo mismo que un subgrupo.

Definición. Sea M un R-módulo y sea (xi)i∈I una familia libre de M (es decir, k1x1 + k2x2 + · · · = 0 ⇐⇒
ki = 0, ∀i ∈ I), diremos que (xi)i∈I es una base de M sobre R si el submódulo generado por (xi)i∈I es M.
Un R-módulo con base se denomina libre.
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1.2.2. Suma y producto directo

Definición. Sea A un módulo, B, C ≤ A submódulos, se dice que A es suma directa interna de B y C,
denotado A = B⊕C si:

1. A = B+C, es decir, ∀a ∈ A,∃!b ∈ B,c ∈C tales que a = b+ c,

2. B∩C = 0.

Dado A = B⊕C tal que a = b+ c, se pueden entonces definir los epimorfismos πB : a 7→ b y πC : a 7→ c,
de forma que, por el primer teorema de isomorfía se tiene:

B∼= A⧸C C ∼= A⧸B

Definición. Sean B, C dos módulos, el conjunto de pares (b,c) con b∈ B, c∈C forma un módulo A = B⊕C
llamado suma directa externa de B y C, cumpliendo:

1. (b1,c1) = (b2,c2) ⇐⇒ b1 = b2,c1 = c2,

2. (b1,c1)+(b2,c2) = (b1 +b2,c1 + c2).

Definición. Sea {Bi}i∈I un conjunto de módulos, el conjunto de vectores {bi}i∈I forma un módulo C llamado
producto directo de los Bi:

C = ∏
i∈I

Bi.

Las aplicaciones
ρi : bi 7→ c j,

donde c j = 1 si j = i y c j = 0 en otro caso, son isomorfismos de Bi con un submódulo B′i ≤C. Dichos {B′i}i∈I

generan en C el módulo A de todos los vectores con bi = 0 para casi todo i ∈ I (es decir, para todo i ∈ I salvo,
posiblemente, un número finito de excepciones). Llamamos a A suma directa externa de los Bi:

A =
⊕

i

Bi.

Notar que, con la notación anterior, A =C si y solo si I es finito.
Se obtienen así homomorfismos

ρB : b→ (b,0), ρC : c→ (0,c)

πB : (b,c)→ b, ρC : (b,c)→ c

denominadas respectivamente inyecciones y proyecciones, y teniéndose la relación

B B⊕C C
ρB πC

πB ρC

Además, la suma y el producto directos definen para cada i ∈ I una inyección ρi y una proyección πi:

Bi
ρi−→
⊕

Bi
πi−→ Bi Bi

ρi−→∏Bi
πi−→ Bi

Teorema 1.1. Sean ϕi : Bi→ A, i ∈ I homomorfismos, se tiene el diagrama:

Bi
⊕

i Bi

A

ρi

ϕi
ψ
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donde la flecha punteada puede ser completada por un homomorfismo único ψ para hacer el diagrama
conmutativo.

Teorema 1.2. Sean ϕi : A→ Bi, i∈ I homomorfismos, existe un homomorfismo único ψ tal que el diagrama:

A

∏i Bi Bi

ψ
ϕi

πi

es conmutativo.

1.2.3. Sucesiones exactas

La teoría relacionada con sucesiones exactas es de mucha relevancia, pues en ella se basa el campo del
álgebra homológica. Para lo que nos atañe nos centraremos en las nociones básicas, pero para profundizar
más en el tema pueden consultarse los libros de P. J. Hilton y U. Stammbach [4] o el de E. Lluis-Puebla [7].

Definición. Una sucesión de R-módulos Ai y homomorfismos αi:

A0
α1−→ A1

α2−→ . . .
αk−→ Ak

es exacta si
Imαi = Kerαi+1, ∀i = 1, . . . ,k−1.

Es fácil ver que, en particular, 0→ A α−→ B es exacta si y solo si α es monomorfismo, y B
β−→C→ 0 es

exacta si y solo si β es epimorfismo.

Definición. Una sucesión exacta de la forma:

0→ A α−→ B
β−→C→ 0

se denomina sucesión exacta corta.

Notar que, dado que Ker(α) = 0, se tiene por el primer teorema de isomorfía que

A⧸Ker(α) = A∼= Im(α).

Por otro lado Im(β ) =C, por lo que usando de nuevo el primer teorema de isomorfía

B⧸Ker(β ) =
B⧸Im(α)

∼= B⧸A
∼= Im(β ) =C.

Por lo tanto, la sucesión exacta corta anterior es equivalente a:

0→ Im(α)→ B→ B⧸A→ 0

Definición. Dada una sucesión exacta corta

0→ B α−→ A
β−→C→ 0

decimos que A es una extensión de B por C.

Para relacionar con las sumas directas de módulos anteriormente vistas, se tiene que si A = B⊕C,
entonces A es una extensión de B por C y se tiene la sucesión exacta corta:

0→ B ι−→ B⊕C π−→C→ 0,

donde ι es la inclusión canónica b 7→ (b,0), y π es la proyección (b,c) 7→ c.
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Definición. Diremos que una sucesión exacta corta

0→ B α−→ A
β−→C→ 0

se escinde si Im(α) es un sumando directo de A, es decir, si existe un submódulo M ∼= C tal que A =

Im(α)⊕M, de forma que se tiene el isomorfismo A⧸Im(α) =
Im(α)⊕M⧸Im(α) = M ∼=C.

La escisión es una condición que resulta de gran utilidad para analizar y manipular sucesiones exactas
cortas, y con ello las extensiones, sirviendo por tanto en la construcción de módulos a partir de componentes
más "sencillas"(por ejemplo módulos cíclicos). Existen ciertos tipos de módulos con propiedades interesan-
tes relacionadas con la escisión que merece la pena estudiar. Se trata de los módulos inyectivos y proyectivos.

Procedemos ahora a hacer una breve definición de los mismos:

Definición. Un módulo P se dice proyectivo si todo diagrama

P

B C 0
ψ

ϕ

β

con una fila exacta puede ser completada mediante un homomorfismo ψ : P→ B de forma que sea conmuta-
tivo.

Definición. Un módulo I se dice inyectivo si todo diagrama

0 A B

I

α

ξ
η

con una fila exacta puede ser completada mediante un homomorfismo η : B→ I de forma que sea conmuta-
tivo.

Estos módulos se pueden caracterizar del siguiente modo:

Un módulo P es proyectivo si y solo si toda sucesión exacta corta

0→ A→ B→ P→ 0

se escinde.

Un módulo I es inyectivo si y solo si toda sucesión exacta corta

0→ I→ B→C→ 0

se escinde.

Es claro que estos módulos serán importantes a la hora de trabajar con sucesiones exactas cortas, y
dedicaremos el resto del trabajo al estudio en mayor profundidad de sus características y propiedades.
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Capítulo 2

Categorías abelianas y de módulos

Antes de continuar y profundizar en los dos tipos de módulos recién mencionados, vamos a trasladarnos
una vez más a un nivel de abstracción superior, y para ello debe uno estar familiarizado con la teoría de
categorías. Algunos conceptos básicos previos para el entendimiento de lo que sigue son explicados en el
apéndice, y para una mayor profundización en el tema puede consultarse el libro de P. Freyd [8].

2.1. Categorías abelianas

Los módulos y sus homomorfismos constituyen, como muchos otros objetos matemáticos, una categoría,
y en particular una categoría abeliana. Para empezar, introduciremos la noción de categoría abeliana, para
cuya definición se necesitan algunos conceptos previos:

Definición. Un monomorfismo se dice normal si es el núcleo de algún morfismo. Análogamente, un epi-
morfismo se dice conormal si es el conúcleo de algún morfismo.
Una categoría se dice normal (resp. conormal) si todo monomorfismo (resp. epimorfismo) es normal en
dicha categoría. Una categoría que es a la vez normal y conormal se dice binormal.

Definición. Sea C una categoría con morfismos cero. Dada una colección finita de objetos A1, . . . ,An en C ,
su biproducto es un objeto A1⊕·· ·⊕An en C junto con morfismos:

πi : A1⊕·· ·⊕An −→ Ai (los morfismos de proyección)

ιi : Ai −→ A1⊕·· ·⊕An (los morfismos de inclusión)

que satisfacen las siguientes condiciones:

1. πi ◦ ι j = δi, j (la identidad si i = j, y el morfismo cero si i ̸= j).

2. (A1⊕·· ·⊕An,πi) es un producto para los Ai.

3. (A1⊕·· ·⊕An, ιi) es un coproducto para los Ai.

Definición. Una categoría preaditiva C se dice categoría abeliana si:

1. Tiene objeto cero.

2. Tiene todos sus núcleos, conúcleos, y biproductos.

3. Todos los monomorfismos y epimorfismos son normales.

Se tiene que precisamente las categorías RMod y ModR de módulos a izquierda y a derecha son categorías
abelianas (entre muchas otras como la categoría de espacios vectoriales sobre un cuerpo o la categoría de
complejos de cadenas). Es decir, podemos ver los módulos (y, en particular, los grupos abelianos) como
objetos de una categoría abeliana.

7
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2.2. Functor Hom

Una vez colocados en el nivel de la teoría de categorías, una herramienta clave a tener en cuenta son los
functores, y su relación con los módulos proyectivos e inyectivos anteriormente mencionados. Comenzare-
mos definiendo uno de los más importantes, el functor Hom:

Definición. Sean A,B,C tres objetos de una categoría C , se define:

Un functor covariante
Hom(A,−) : C → Set

que envía cada objeto X en C al conjunto de morfismos de A en X ,

X 7→ Hom(A,X),

y cada morfismo f : X → Y a la función Hom(A, f ) : Hom(A,X)→ Hom(A,Y ) dada por g→ f ◦
g, ∀g ∈ Hom(A,X),

f 7→ Hom(A, f ).

Un functor contravariante
Hom(−,B) : C → Set

que envía cada objeto X en C al conjunto de morfismos de X en B,

X 7→ Hom(X ,B),

y cada morfismo h : X→Y a la función Hom(h,B) : Hom(Y,B)→Hom(X ,B) dada por g→ g◦h, ∀g∈
Hom(Y,B),

h 7→ Hom(h,B).

Los functores Hom(A,−) y Hom(−,B) están relacionados de manera natural: para cada par de morfis-
mos f : B→ B′ y h : A′→ A, el siguiente diagrama conmuta:

Hom(A,B) Hom(A′,B)

Hom(A,B′) Hom(A′,B′)

Hom(h,B)

Hom(A, f ) Hom(A′, f )

Hom(h,B′)

La conmutatividad en el diagrama anterior implica que Hom(−,−) es un bifunctor de C ×C en Set, que
es contravariante en el primer argumento y covariante en el segundo, o, equivalentemente,

Hom(−,−) : C op×C → Set.

Del diagrama se infiere también que todo morfismo h : A′→ A da lugar a una transformación natural

Hom(h,−) : Hom(A,−)→ Hom(A′,−)

y cada morfismo f : B→ B′ da lugar a una transformación natural

Hom(−, f ) : Hom(−,B)→ Hom(−,B′).

Por el lema de Yoneda se tiene que toda transformación natural entre functores Hom es de esta forma, es
decir, los functores Hom dan lugar a una subcategoría plena y fiel C en la categoría de functores SetC

op
.

Es interesante mencionar algunas propiedades que resultan de la definición del functor Hom:
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Proposición 2.1. Sean M y N dos objetos de la categoría de módulos ModR,

El functor covariante HomR(R,−)∼= Id. En particular, es claro que HomR(R,M)∼= M.

El functor contravariante HomR(−,R)∼= (·)∗. En particular, es claro que HomR(M,R)∼= M∗.

El functor contravariante HomR(−,N) preserva sumas directas, es decir,

HomR

(⊕
i∈I

M,N

)
∼=
⊕
i∈I

HomR(M,N).

El functor covariante HomR(M,−) preserva productos directos, es decir,

HomR

(
M,∏

i∈I
N

)
∼= ∏

i∈I
HomR(M,N).

También con la noción de functor Hom, se tiene una nueva caracterización para los módulos proyectivos
e inyectivos:

Proposición 2.2. Sean A,B,P, I objetos de la categoría de módulos ModR,

P es un módulo proyectivo si y solo si

HomR(P,B)→ HomR(P,A)

es suprayectiva para todo epimorfismo A→ B.

I es un módulo inyectivo si y solo si

HomR(B, I)→ HomR(A, I)

es suprayectiva para todo monomorfismo A→ B.

Recordemos antes de continuar la noción de functor exacto:

Definición. Sean A y B dos categorías abelianas y sea F : A →B un functor:

Si F es covariante, F se dice exacto si, dada una sucesión exacta corta

0→ A
f−→ B

g−→C→ 0

en A , se tiene una sucesión exacta corta

0→ F(A)
F( f )−−→ F(B)

F(g)−−→ F(C)→ 0

en B.

Si F es contravariante, F se dice exacto si dada una sucesión exacta corta

0→ A
f−→ B

g−→C→ 0

en A , se tiene una sucesión exacta corta

0→ F(C)
F(g)−−→ F(B)

F( f )−−→ F(A)→ 0

en B.
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En particular, un functor covariante F se dice exacto a derecha (resp. exacto a izquierda), si 0→ A→ B→
C→ 0 exacta implica que F(A)→ F(B)→ F(C)→ 0 es exacta (resp. 0→ A→ B→C→ 0 exacta implica
que 0→ F(A)→ F(B)→ F(C) es exacta), y un functor contravariante F se dice exacto a derecha (resp.
exacto a izquierda) si 0→ A→ B→C→ 0 exacta implica que F(C)→ F(B)→ F(A)→ 0 es exacta (resp.
0→ A→ B→C→ 0 exacta implica que 0→ F(C)→ F(B)→ F(A) es exacta).

Con esto, el functor covariante HomR(M,−), es un functor exacto a izquierda, y el functor contravariante
HomR(−,M) es también un functor exacto a izquierda.

Proposición 2.3. Se tienen las siguientes afirmaciones sobre la exactitud del functor Hom:

El functor covariante HomR(P,−) es exacto si y solo si P es proyectivo.

El functor contravariante HomR(−, I) es exacto si y solo si I es inyectivo.

Es decir, el functor HomR(P,−) que va de la categoría de módulos a la categoría de grupos abelianos
preserva la exactitud de sucesiones exactas cortas. Si la sucesión

0→ A→ B→C→ 0

es exacta en la categoría de módulos se tiene la correspondiente sucesión exacta corta

0→ HomR(P,A)−→ HomR(P,B)−→ HomR(P,C)→ 0

en la categoría de grupos abelianos (se tiene un resultado similar, en su versión contravariante, para módulos
inyectivos).

De todo lo anterior se infiere que si P⊕Q es proyectivo, entonces también lo son P y Q. Por otra parte,
si I× J es inyectivo, entonces también lo son I y J. Es claro que en este caso I× J es isomorfo a I⊕ J, pero
podemos considerar un caso más general:

Teorema 2.1. Si {Pα}α∈S es una familia de módulos proyectivos, entonces
⊕

α∈S Pα es un módulo pro-
yectivo. Análogamente, si {Iα}α∈S es una familia de módulos inyectivos, entonces ∏α∈S Iα es un módulo
inyectivo.

Definición. Decimos que una categoría C tiene suficientes proyectivos (resp. suficientes inyectivos) si para
cada objeto M en C existe un epimorfismo P→M con P proyectivo (resp. un monomorfismo M→ I con I
inyectivo).

Notar que la categoría C tiene suficientes proyectivos (resp. suficientes inyectivos) si y solo si la categoría
opuesta C O tiene suficientes inyectivos (resp. suficientes proyectivos). Pese a todo, existe una asimetría
fundamental en el hecho de que muchas categorías abelianas tienen suficientes inyectivos pero no suficientes
proyectivos.

Proposición 2.4. La categoría abeliana ModR de R-módulos tiene suficientes proyectivos, y también sufi-
cientes inyectivos.

2.3. Resolución proyectiva e inyectiva

Para lo que sigue se usará notación y conceptos del álgebra homológica que pueden consultarse en el
apéndice.

Definición. Sea M un R-módulo, una resolución proyectiva de M es una sucesión exacta P de la forma:

P : · · · → Pn
∂n−→ Pn−1

∂n−1−−→ ·· · → P1
∂1−→ P0

ε−→M→ 0

donde Pn es proyectivo para todo n≥ 0.
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Por tanto, una resolución proyectiva es una cadena de R-módulos proyectivos P = {Pn,∂n} tal que el
módulo de homología Hn(P) = 0 para n≥ 1.

Definición. Sea M un R-módulo, una presentación proyectiva de M es una sucesión exacta corta de R-
módulos:

0→ K→ P→M→ 0

tal que P es proyectivo.

Notar que una presentación proyectiva no es otra cosa que un segmento inicial de una resolución proyec-
tiva con P = P0 y K = ker(∂1).
Si P es un módulo libre, se habla de presentación libre de M.

Definición. Si para i > n, Pi = 0, diremos que la resolución P tiene longitud≤ n, y escribimos

0→ Pn→ Pn−1→ ··· → P1→ P0→M→ 0.

Definición. Sea P una resolución proyectiva de un R-módulo M, una resolución proyectiva reducida de M
es una resolución proyectiva de M en la cual M ha sido suprimido:

PM : · · · → Pn
∂n−→ Pn−1

∂n−1−−→ ·· · → P1
∂1−→ P0→ 0.

Es importanto notar que no se pierde ninguna información acerca de P, ya que M = Coker(∂n). La
ventaja que suponen las resoluciones proyectivas reducidas es que constan exclusivamente de R-módulos
proyectivos.

Recordar que todo R-módulo M es cociente de un R-módulo libre. Se tiene por tanto el resultado:

Proposición 2.5. Sea M un R-módulo. Entonces existe una resolución libre L de M.

Además, como todo módulo libre es proyectivo, se tiene también que todo módulo posee una resolución
proyectiva.

Ejemplo 2.1. Particularizando al caso de los Z-módulos, como consecuencia de que los subgrupos de un
grupo libre son libres, se tiene que cualquier grupo abeliano G admite una resolución libre de longitud
menor o igual a 1:

0→ L1→ L0→ G→ 0.

Por ejemplo, consideremos el Z-módulo Zp con p un número primo. Se tiene entonces la resolución:

0→ Z µ−→ Z→ Zp→ 0,

donde µ es la multiplicación por p.

Lógicamente, todo lo visto se puede trasladar a módulos inyectivos:

Definición. Sea M un R-módulo, una resolución inyectiva de M es una sucesión exacta I de la forma:

I : 0→M ε−→ I0 ∂ 1

−→ I2 ∂ 2

−→ ·· · → In ∂ n

−→ In+1 ∂ n+1

−−→ . . .

donde In es inyectivo para todo n≥ 0.

Por tanto, una resolución inyectiva es una cadena de R-módulos inyectivos I= {In,∂ n} tal que el módulo
de homología Hn(I) = 0 para n≥ 1.

Así, se obtienen de manera análoga los mismos resultados obtenidos para módulos proyectivos, con los
cambios obvios.
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2.4. Functor Ext

El functor Hom ya visto no preserva sucesiones exactas en general. Para apañarlo, vamos a ver ahora
otro functor de gran relevancia relacionado con los módulos proyectivos e inyectivos, que nos dará una nueva
caracterización de los mismos.

Sea PM : · · · → Pn
∂n−→ Pn−1

∂n−1−−→ ·· · → P1
∂1−→ P0→ 0 una resolución proyectiva reducida del R-módulo

M y sea N un R-módulo, consideremos HomR(PM,N), es decir, la sucesión

HomR(PM,N) : · · · ← HomR(Pn,N)
HomR(∂n,N)←−−−−−−− ·· · ← HomR(P1,N)

HomR(∂1,N)←−−−−−−− HomR(P0,N)← 0.

HomR(PM,N) es entonces una sucesión semiexacta, pues para todo n > 1 se cumple

HomR(∂n,N)◦HomR(∂n−1,N) = HomR(∂n−1 ◦∂n,N) = HomR(0,N) = 0.

Podemos por tanto formar el R-módulo graduado

H∗(HomR(PM,N)) = {Hn(HomR(PM,N))}n≥0.

Definición. Para cada n ≥ 0, denotamos Hn(HomR(PM,N)) por Extn
R(M,N), y lo llamaremos functor de

extensión de grado n sobre R de M por N.

Notar que si QM es otra resolución proyectiva reducida de M, entonces

Hn(HomR(PM,N))∼= Hn(HomR(QM,N)),

por lo que el functor Extn
R(M,N) depende únicamente de M, N, y n.

Teorema 2.2. Extn
R(−,−) es un bifunctor de la categoría de R-módulos en la categoría de grupos abelianos,

contravariante en la primera variable y covariante en la segunda.

Teorema 2.3. Sean N′ → N → N′′ una sucesión exacta corta de R-módulos y M un R-módulo, existe una
sucesión exacta

0→ Ext0
R(M,N′)→ ··· → Extn

R(M,N′′) κn

−→ Extn+1
R (M,N′)→ Extn+1

R (M,N)→ Extn+1
R (M,N′′)→ . . . .

De forma análoga se tiene también:

Teorema 2.4. Sean M′→M→M′′ una sucesión exacta corta de R-módulos y N un R-módulo, existe una
sucesión exacta

0→ Ext0
R(M

′′,N)→ ··· → Extn
R(M

′,N)
κn

−→ Extn+1
R (M′′,N)→ Extn+1

R (M,N)→ Extn+1
R (M′,N)→ . . . .

Vamos ahora a relacionar el functor Ext con los módulos inyectivos:

Sea IN : · · · → In+1 δ n+1

−−→ In→ ··· → I1 δ 1

−→ I0→ 0 una resolución inyectiva reducida del R-módulo M y
sea M un R-módulo, consideremos HomR(M,IN), es decir, la sucesión

HomR(M,IN) : · · · ← HomR(M, In)
HomR(1,δ n)←−−−−−− . . .

HomR(1,δ 1)←−−−−−− HomR(M, I0)← 0.

HomR(M,IN) es entonces una sucesión semiexacta. A su cohomología de grado n, Hn(HomR(M, IN)), la
denotaremos por Extn

R(M,N).

Proposición 2.6. Se tiene que Extn
R(M,N)∼= Extn

R(M,N).

Vamos ahora a ver una relación directa entre los dos functores estudiados:
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Teorema 2.5. Los functores Ext0
R(−,N) y Ext0

R(M,−) son equivalentes naturalmente a los functores HomR(−,N)
y HomR(M,−), respectivamente.

Debido a este teorema, las sucesiones vistas toman la siguiente forma:

0→ HomR(M,N′)→ HomR(M,N)→ HomR(M,N′′)→ Ext1
R(M,N′)→ ··· → Extn

R(M,N′′)→ . . .

y

0→ HomR(M′′,N)→ HomR(M,N)→ HomR(M′,N)→ Ext1
R(M

′′,N)→ ··· → Extn
R(M

′,N)→ . . .

En el caso en que n = 1, dada una presentación proyectiva P1→ P0→M de M, se tiene la sucesión exacta
corta:

0→ HomR(M,N)→ HomR(P0,N)→ HomR(P1,N)→ Ext1
R(M,N)→ 0,

luego Ext1
R(M,N) es un functor que arregla la inexactitud, formando el módulo de homomorfismos

con una resolución proyectiva finita de un R-módulo M. De manera análoga, se tiene un resultado para
Ext1

R(M,−).

Proposición 2.7. Sean M y N dos R-módulos:

Sea I un módulo inyectivo, entonces Extn
R(M, I) = 0 para todo n ∈ N.

Sea P un módulo proyectivo, entonces Extn
R(P,N) = 0 para todo n ∈ N.

Tenemos pues, una caracterización más para los módulos proyectivos e inyectivos: que el functor Ext se
anule (es decir, que el functor Hom sea exacto y no haya extensiones no triviales).

2.5. Cubierta proyectiva y generadores proyectivos

Un concepto relacionado con los módulos proyectivos es el de cubierta proyectiva, si bien su equivalente
noción dual, la envolvente inyectiva, será de mayor relevancia en futuras secciones. En primer lugar debemos
conocer algunas definiciones previas:

Definición. Sea M un R-módulo, K ⊂ M un submódulo, entonces K se dice superfluo en M (denotado
K≪M) si para cada submódulo L⊂M la igualdad K +L = M implica que L = M.
Un epimorfismo f : M→ N se dice superfluo si ker( f )≪M.

Los conceptos de módulo y epimorfismo superfluo tienen su noción dual en los módulos y monomorfis-
mos esenciales que estudiaremos llegado el momento.

Definición. Sea P un módulo proyectivo y M un R-módulo, un morfismo P→M se dice cubierta proyectiva
si es un epimorfismo superfluo.

Es importante notar que no siempre existe una cubierta proyectiva para un módulo M dado.

Proposición 2.8. Sea M un R-módulo, si existe cubierta proyectiva, ésta es única salvo isomorfismo.

Claramente para un módulo proyectivo P, se tiene que la identidad P→ P es un epimorfismo superfluo
(tiene núcleo 0), luego trivialmente los módulos proyectivos siempre tienen cubierta proyectiva.

Recordar la definición de generador de un grupo cíclico (o un módulo) vista en el primer capítulo, y
echemos un vistazo a la noción de generador proyectivo.

Definición. Un R-módulo G en una categoría abeliana de módulos ModR es un generador proyectivo si es
proyectivo y para cada R-módulo H de ModR existe un homomorfismo no nulo ϕ : G→ H.
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Proposición 2.9. Sean M y N dos R-módulos, se tienen las siguientes caracterizaciones:

G es un generador si y solo si para cada M→ N ̸= 0 existe una aplicación G→M→ N ̸= 0.

G es un generador si y solo si para cada submódulo propio de M existe una aplicación G→M cuya
imagen no está contenida en dicho submódulo.

Proposición 2.10. Sea M un R-módulo:

M es proyectivo si y solo si M es un sumando directo de una suma directa (posiblemente infinita) de
copias de R.

M es un generador si y solo si R es un sumando directo de una suma directa (posiblemente infinita) de
copias de M.

Notar que si R es un anillo, considerando la categoría de R-módulos ModR, entonces R es un generador
proyectivo en ModR. de hecho, el functor

(R,−) : ModR→Mod

es el functor olvido, el cuál asigna a cada R-módulo el grupo abeliano subyacente.



Capítulo 3

Módulos proyectivos y libres

Vamos ahora a dedicar la sección al estudio de los módulos proyectivos en particular. Para ello, vamos a
considerar las nociones de módulos libres ya vistas, así como nuevos conceptos como la torsión y su relación
con el producto tensorial. Finalmente se plantearán una serie de problemas abiertos.

3.1. Módulos libres

Como ya vimos en las primeras secciones, los módulos libres están muy relacionados con los módulos
proyectivos. Recordemos la definición, desde un punto de vista algo distinto:

Definición. Un módulo F es libre si es suma directa de módulos cíclicos infinitos:

F =
⊕
i∈I

⟨xi⟩,

es decir, si para todo g ∈ F existen n1, . . . ,nk ∈ Z/{0}, k ∈ N, únicos tales que

g = n1xi1 + · · ·+nkxik .

Llamamos dimensión del módulo al cardinal de su base. Un módulo libre F de dimensión n lo denotaremos
como Fn.

Notar que esta caracterización es equivalente a la definición vista para módulos libres en el primer capí-
tulo. Dada su relación con los módulos cíclicos, se cumplen también las siguientes propiedades:

Proposición 3.1. Dos módulos libres finitamente generados Fm y Fn son isomorfos si y solo si m = n.

Se tiene por tanto que dos módulos libres son isomorfos si y solo si tienen la misma dimensión.

Teorema 3.1. Un conjunto X = {xi}i∈I de generadores de F es un conjunto libre de generadores (y por tanto
F es libre) si y solo si para cada morfismo ϕ de X en un módulo A, A puede ser extendido a un homomorfismo
único ψ : F → A.

Corolario 3.1. Todo módulo con a lo sumo m generadores es la imagen por un epimorfismo de Fm

Teorema 3.2. Si B es un submódulo de A tal que A⧸B es libre, entonces B es un sumando directo de A.

Teorema 3.3. Todo submódulo de un módulo libre es libre de dimensión menor o igual que la del módulo.

Si tenemos una sucesión exacta
A

β−→C→ 0

con C un módulo libre, entonces la sucesión se escinde.

15
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3.2. Torsión

Un concepto relacionado con el de módulos libres es el de torsión, cuya ausencia nos servirá para definir
la idea de divisibilidad en la sección dedicada a módulos inyectivos.

Definición. Sea T un Z-módulo, decimos que T es módulo de torsión si todos sus elementos tienen orden
finito. Opuestamente, si todos los elementos de T tienen orden infinito (salvo el 0), decimos que T es libre
de torsión.

El conjunto T de todos los elementos de orden finito en un módulo M es un submódulo de M. Es fácil
ver que T es módulo de torsión y el cociente M⧸T es libre de torsión.

Definición. Sea T un módulo de torsión, si todos sus elementos tienen orden una potencia de p con p un
número primo, decimos que T es un módulo primario.

Teorema 3.4. Todo módulo de torsión es suma directa de módulos primarios.

Una relación importante entre la idea de torsión y los módulos libres es la siguiente:

Proposición 3.2. Todo módulo libre es libre de torsión.

Demostración. En efecto, si F es un R-módulo libre con base {xi}i∈I , se tiene x = ∑i∈I rixi donde ri ∈ R es 0
para casi todo i ∈ I. Si 0 ̸= r ∈ {r ∈ R|rx = 0}, se tiene que 0 = rx = ∑i∈I rrixi, luego rri = 0 para todo i ∈ I
ya que los elementos (xi)i∈I son una base. Esto implica que ri = 0 para todo i ∈ I, porque R es un dominio y
R ̸= 0. Por tanto x = 0 y F es libre de torsión. ■

Corolario 3.2. Sea M un R-módulo con R un DIP, entonces M es libre si y solo si M es libre de torsión.

Demostración. Suponer que M es un R-módulo libre de torsión finitamente generado, M = R⟨x1, . . .xn⟩, y
probemos que M es libre por inducción en n. Si n = 1, M = Rx1, considerar la aplicación h : R→M = Rxn

dada por h(r) = rx1. h es un epimorfismo y ker(h) = {r ∈ R|rx1 = 0}= 0 ya que M es libre de torsión, luego
M ∼= R, que es libre.
Si n≥ 2 y se satisface la hipótesis para módulos con a lo sumo n−1 generadores, sea N = R⟨x1, . . . ,xn−1⟩,
entonces M⧸N = ∑

n
i=1 R(xi +N) = Rxn +N⧸N

∼= Rxn⧸N∩Rxn
. Como N puede ser generado por n− 1 ele-

mentos y es un submódulo de un módulo libre de torsión, N es libre de torsión y por tanto libre por hipótesis
inductiva. Por lo tanto N ∩Rxn es libre, y el epimorfismo M→ M⧸Rxn

= N +Rxn⧸Rxn
∼= N⧸N∩Rxn

se es-

cinde y M ∼= M⧸Rxn⊕Rxn
∼= N⧸N∩Rxn

⊕Rxn, que es una suma directa de R-módulos libres, luego es libre.
■

3.3. Producto tensorial

Un concepto también relevante a la hora de manejar módulos proyectivos, y que tiene relación con la
torsión y el functor Hom es el producto tensorial, gracias al cuál podemos definir el functor Tor. Una intro-
ducción básica en la materia se encuentra en el apéndice, y para ahondar más puede encontrarse información
en el libro de M. F. Atiyah y I. G. MacDonald [1], y en el de P.J. Hilton y U. Stammbach [4].

Proposición 3.3. Sean M, N y P tres R-módulos se tiene el siguiente isomorfismo que relaciona el producto
tensorial y el functor Hom:

Hom(M⊗N,P)∼= Hom(M,Hom(N,P))

Como luego veremos, el producto tensorial define un functor. En este caso, se dice que el producto
tensorial y el functor Hom son functores adjuntos, es decir, se cumple la relación dada.
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Proposición 3.4. Sea

M′
f−→M

g−→M′′→ 0

una sucesión exacta de R-módulos y homomorfismos y sea N un R-módulo, entonces la sucesión

M′⊗N
f⊗1−−→M⊗N

g⊗1−−→M′′⊗N→ 0

es exacta.

Definición. Dada una aplicación α : A→ A′ denotaremos por α∗ : A⊗B→ A′⊗B a la aplicación inducida
dada por α∗(a⊗b)= (αa)⊗b. Del mismo modo, dada la aplicación β : B→B′ denotaremos por β∗ : A⊗B→
A⊗B a la aplicación inducida dada por β∗(a⊗b) = a⊗ (βb).

Con esto, se tiene que α⊗β = α∗β∗ = β∗⊗α∗.

Proposición 3.5. Sean A y B dos R-módulos, se tienen el functor covariante

−⊗B : ModR→ Ab

y el functor covariante
A⊗− : ModR→ Ab.

Además, −⊗− es un bifunctor.

Definición. Sean M y N dos R-módulos, N se dice módulo plano si para cada sucesión exacta corta M′
µ−→

M ε−→M′′, se induce otra sucesión exacta corta:

0→M′⊗N
µ∗−→M⊗N→M′′⊗N→ 0.

Es decir, para cada monomorfismo µ : M′ → M, el homomorfismo inducido µ∗ : M′⊗N → M⊗N es un
monomorfismo.

Notar que lo último no es cierto en general:

Ejemplo 3.1. Consideremos el caso de grupos abelianos, es decir R=Z, y tomemos M =Z2. Sea la sucesión
exacta corta Z µ−→ Z→ Z2, donde µ es la multiplicación por 2. Entonces

µ∗(n⊗m) = n⊗2m = 2n⊗m = 0⊗m = 0,

con n ∈ Z2 y m ∈ Z. Por tanto, µ∗ : Z2⊗Z→ Z2⊗Z es la aplicación nula, pero Z2⊗Z∼= Z2.

Los módulos planos son por tanto una herramienta importante, pues son los que preservan la exactitud
de sucesiones exactas cortas tras aplicarles el functor dado por el producto tensorial.

Proposición 3.6. Las siguientes afirmaciones son equivalentes:

N es plano.

Si 0→ M′ → M → M′′ → 0 es cualquier sucesión exacta de R-módulos, entonces la sucesión 0→
M′⊗N→M⊗N→M′′⊗N→ 0 es exacta.

Si f : M′→M es inyectiva, entonces f ⊗1 : M′⊗N→M⊗N es inyectiva.

Si f : M′→M es inyectiva y M, M′ son finitamente generados, entonces f ⊗1 : M′⊗N→M⊗N es
inyectiva.

Veamos ahora la relación directa entre los módulos planos y los proyectivos:
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Proposición 3.7. Todo módulo proyectivo es plano.

Es más, en el caso de los Z-módulos, un módulo es plano si y solo si es libre de torsión. Notar que, en
general, los módulos planos no son proyectivos (considérese el grupo de los racionales Q, que es libre de
torsión pero no libre).

Vamos a ver ahora el functor Tor, el cuál es, junto al functor Ext, uno de los conceptos centrales del
álgebra homológica.

Definición. Sean M y N dos R-módulos, dada una presentación proyectiva K→ P→M de M, se define el
functor:

TorR
ε (M,N) = ker(µ∗ : K⊗N→ P⊗M).

Proposición 3.8. La sucesión

0→ TorR
ε (M,N)→ K⊗N→ P⊗N→M⊗N→ 0

es exacta.

De forma análoga:

Definición. Sean M y N dos R-módulos, dada una presentación proyectiva S ν−→ Q
η−→ N de N, se define el

functor:
TorR

ε (M,N) = ker(ν∗ : M⊗S→M⊗Q).

Proposición 3.9. La sucesión

0→ TorR
ε (M,N)→M⊗S→M⊗Q→M⊗N→ 0

es exacta.

Proposición 3.10. Si M o N es proyectivo, entonces

TorR
ε (M,N) = 0 = TorR

η(M,N).

Teorema 3.5. Sea M un R-módulo y sea N ′ κ−→ N ν−→ N′′ una sucesión exacta de R-módulos, entonces existe
un homomorfismo ω : TorR(M,N′′)→M⊗N′ tal que la siguiente sucesión es exacta:

TorR(M,N′) κ∗−→ TorR(M,N)
ν∗−→ TorR(M,N′′) ω−→M⊗N′ κ∗−→M⊗N ν∗−→M⊗N′′→ 0.

Teorema 3.6. Sea N un R-módulo y sea M′ κ−→ N ν−→M′′ una sucesión exacta de R-módulos, entonces existe
un homomorfismo ω : TorR(M′′,N)→M′⊗N tal que la siguiente sucesión es exacta:

TorR(M′,N)
κ∗−→ TorR(M,N)

ν∗−→ TorR(M′′,N)
ω−→M′⊗N κ∗−→M⊗N ν∗−→M′′⊗N→ 0.

El functor Tor es lo que se conoce como el functor derivado del producto tensorial, así como el functor
Ext es el functor derivado del functor Hom.

3.4. Módulos proyectivos

Vamos ahora a estudiar la relación entre los conceptos vistos y los módulos proyectivos, particularizando
al caso de los Z-módulos, es decir, grupos abelianos.

Teorema 3.7. Un módulo es proyectivo si y solo si es libre.
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Demostración. Para verlo, sea β : B→C un epimorfismo y F un módulo libre con ϕ : F →C. Para cada
xi en un conjunto de generadores {xi} de F, tomamos bi ∈ B tal que βbi = ϕxi, lo cuál es posible por ser β

un epimorfismo. La correspondencia xi 7→ bi puede entonces ser extendida a un homomorfismo ψ : F → B
que satisface βψ = ϕ , luego F es proyectivo. Recíprocamente, sea G un módulo proyectivo y β : F → G un
epimorfismo de un módulo libre F sobre G. Entonces existe un homomorfismo ψ : G→ F tal que βψ = 1G.
Por tanto ψ es un monomorfismo sobre un sumando directo de F, es decir, G es isomorfo a un sumando
directo de F, y en consecuencia G es libre. ■

Notar que lo anterior no es cierto en general, pero sí en el caso de los grupos abelianos finitamente
generados, pues son DIPs. Lo que sí es cierto en general es que todo módulo libre es proyectivo.

Ejemplo 3.2. Como contraejemplo en el que esto no sucede, tomando como anillo R = Z, si β es el epimor-
fismo único de B = Z⧸4Z a C = Z⧸2Z, la aplicación identidad ϕ de G = Z⧸2Z a C no puede ser completado
por un homomorfismo ψ : G→ B, luego Z⧸2Z no es proyectivo.

Una relación fundamental entre módulos libres y módulos proyectivos es la siguiente:

Proposición 3.11. Un módulo es proyectivo si y solo si es un sumando directo de un módulo libre.

Es decir, para todo módulo proyectivo P, existe un módulo libre H tal que P⊕H = F es libre. De este
hecho se infiere la caracterización vista para módulos proyectivos en relación con las resoluciones libres y
proyectivas: la sucesión exacta corta

0→ H→ F → P→ 0

con P proyectivo siempre tiene una extensión trivial dada por F = P⊕H, luego se escinde.

Proposición 3.12. Si P es un módulo proyectivo, entonces existe un módulo libre F tal que P⊕F ∼= F. Esto
es lo que se conoce como el truco de Eilenberg.

3.5. Algunos problemas abiertos

Llegados a este punto, nuestro objetivo es encontrar una forma de clasificar todos los grupos abeliano,
o dar un conjunto completo de invariantes para grupos abelianos, condiciones necesarias y suficientes para
que dos grupos abelianos sean isomorfos.
Por el momento no hay ninguna forma de hacer algo así para grupos abelianos en general, pero podemos
restringir el problema para estudiarlo más en detalle.
Hay muchas cuestiones que comprenden estos temas, como cómo saber cuándo tenemos un teorema real-
mente satisfactorio, pues al fin y al cabo tener un conjunto completo de invariantes puede acabar siendo tan
complicado como inviable en la práctica.
Al respecto, el matemático Irving Kaplansky [6] propone tres problemas abiertos para grupos abelianos
generales: Sean G, H y F tres Z-módulos (grupos abelianos):

1. Si G es isomorfo a un sumando directo de H, y H es isomorfo a un sumando directo de G, ¿son G y
H necesariamente isomorfos?

2. Si G⊕G y H⊕H son isomorfos, ¿son G y H isomorfos?

3. Si F es finitamente generado y F⊕G es isomorfo a F⊕H, ¿son G y H isomorfos?

Asimismo se tiene el llamado problema de Whitehead: sea A un grupo abeliano con Ext1(A,Z) = 0, ¿es
A necesariamente libre?

Si un grupo abeliano A es libre, es proyectivo, y se sigue que Ext1(A,Z) = 0 (escinde sucesiones exac-
tas cortas), luego lo que hay que probar es el recíproco. Está demostrado que el problema de Whitehead es
indecidible bajo los axiomas de Zermelo-Fraenkel y el axioma de elección.
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Capítulo 4

Módulos inyectivos y divisibles

Pasamos ahora a profundizar en el concepto de módulos inyectivos, una noción dual (en sentido cate-
górico) a la de módulos proyectivos vista en el capítulo anterior. Un mayor esfuerzo será necesario para
caracterizarlos, introduciendo conceptos como el de envolvente inyectiva y terminando con su clasificación,
dada por el teorema de Matlis.

4.1. Módulos divisibles

Empezamos definiendo el concepto de módulos divisibles, una noción dual a la de módulos de torsión
que caracterizaban a los módulos libres en el capítulo anterior.

Definición. Un módulo D se dice divisible si n|a para todo a ∈ D y todo n > 0, es decir, si existe x ∈ D tal
que nx = a.

La definición anterior se puede expresar de manera equivalente usando la idea de anulador:

Definición. Sea un R-módulo M, a ∈ D, llamamos anulador de a en R al conjunto

annR(a) = {r ∈ R|ra = 0}.

De forma más general podemos hablar del anulador de M:

annR(M) = {r ∈ R|a ∈M =⇒ ra = 0}.

De esta forma, un módulo D es divisible si para todo u ∈ D y a ∈ R tal que annR(a) ⊆ annR(u), u es
divisible por a.

Notar que si x = b es solución, el coconjunto b+D[n] es el conjunto de todas las soluciones. Además, si
D es libre de torsión, entonces nx = a tiene al menos una solución. Asimismo se tiene que D es divisible si
y solo si nD = D para todo n > 0.

Proposición 4.1. La suma directa y el producto directo de módulos es un módulo divisible si y solo si todas
las componentes son divisibles.

En particular, en el caso de Z-módulos, un submódulo divisible es un sumando directo.

Teorema 4.1. Un submódulo divisible D de un módulo A es un sumando directo de A, A = D⊕C para algún
submódulo C de A. Dicho C puede ser elegido de forma que contenga al submódulo B de A tal que D∩B = 0.

21
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4.2. Módulos inyectivos

De nuevo, vamos a relacionar lo visto acerca de módulos divisibles con la noción de módulos inyectivos
definida en el primer capítulo.

Teorema 4.2. Los grupos divisibles son inyectivos.

Demostración. Para verlo, sea D un módulo divisible y sea el diagrama dado por:

0 A B

D

α

ξ
η

en el que consideramos a A submódulo de B. Tomamos todos los módulos G entre A y B, A≤G≤B, tal que ξ

tiene una extensión θ : G→ D. Ordenamos parcialmente los pares (G,θ) tal que (G,θ)≤ (G′,θ ′) significa
G≤ G′ y θ es la restricción de θ ′ : G′→ D a G. El conjunto de pares es no vacío, ya que (A,ξ ) pertenece a
él, y es inductivo ya que las cadenas (Gi,θi) tienen límite superior (G,θ) con G =

⋃
i Gi y θ : G→ D. Por

el lema de Zorn existe un par (G0,θ0) maximal en el conjunto. Si G0 < B y b ∈ B⧸G0
satisface nb ∈G0 para

algún n > 0, entonces podemos elegir el mínimo n tal que nb = g ∈ G0. Por la divisibilidad de D, habrá
algún x ∈ D tal que nx = θ0g. Se tiene que

c+ rb 7→ θ0c+ rx (c ∈ G0,0≤ r < n)

es un homomorfismo de ⟨G0,b⟩ en D. Si nb ̸∈ G0 salvo si n = 0; entonces se tiene un homomorfismo de
⟨G0,b⟩ en D donde x ∈ D es arbitrario. Por tanto G0 < B contradice la maximalidad de (G0,θ0), luego
G0 = B y θ0 = η . ■

La afirmación anterior es un si y solo si en el caso en que R sea un DIP. Se tiene, por tanto:

Corolario 4.1. un grupo abeliano es inyectivo si y solo si es divisible.

Proposición 4.2. Sea R un dominio conmutativo, y M un R-módulo libre de torsión, entonces M es inyectivo
si y solo si es divisible.

Teorema 4.3 (Criterio de Baer). Un R-módulo I es inyectivo si y solo si para cualquier ideal U de R, todo
R-homomorfismo f : U → I puede ser extendido a f ′ : R→ I.

Notar que un homomorfismo f ′ : R→ I está unívocamente determinado especificando la imagen f ′(1) ∈
I, luego extender f a algún f ′ consiste en encontrar un elemento x ∈ I tal que f (r) = xr, ∀r ∈U .

Demostración. Sea el siguiente diagrama donde I es un módulo inyectivo, y tomemos A como submódulo
de B:

0 A B

I

α

ξ
η

Por el lema de Zorn, podemos encontrar un h0 : A0 → I donde A ⊆ A0 ⊆ B, h0|A = h tal que h0 no puede
ser extendido a ningún submódulo de B que contiene a A0 propiamente. De esto se sigue que que A0 = B y
queda demostrado. Veamos que efectivamente se cumple por reducción al absurdo:
Suponer que existe un elemento b ∈ B\A0. Entonces

U := {r ∈ R|br ∈ A0}
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es un ideal de R. Sea f (r) = h0(br), ∀r ∈ U, se sigue que f ∈ HomR(U, I). Por asunción, se asume que
existe un elemento x ∈ I tal que f (r) = xr ∀r ∈ U. Sea A1 = A0 + bR y definimos h1 : A1 → I dada por
h1(a : 0+br) = h0(a0)+ xr, ∀a0 ∈ A0,r ∈ R.
Finalmente, para ver que h1 está bien definida, suponer que a0+br = a′0+br′, luego b(r−r′) = a0−a′0 ∈ A0
y r− r′ ∈U. Por tanto f (r′− r) = x(r′− r). Por otro lado, f (r− r) = h0(b(r′− r)) = h0(a0−a′0) = h0(a0)−
h0(a′0), luego x(r′ − r) = h0(a0)− h0(a′0) y por tanto h0(a0) + xr = h0(a′0) + xr′. Por tanto h1 está bien
definida. Esto es, h1 ∈ HomR(A1, I) y h1 extiende a h0, lo cuál contradice la hipótesis. ■

El Criterio de Baer es un importante resultado del que se deriva la siguiente particularización:

Proposición 4.3. Sea R un dominio conmutativo con cuerpo cociente K y sea I un K-espacio vectorial,
entonces IR es un R-módulo inyectivo.

Definición. Un módulo C se dice reducido si no tiene submódulos divisibles aparte del 0.

Teorema 4.4. Todo módulo A es suma directa de un módulo divisible D y un módulo reducido C:

A = D⊕C,

donde D está unívocamente determinado y C es único salvo isomorfismo.

El teorema estructural para Z-módulos divisibles muestra que todos los módulos divisibles son precisa-
mente las sumas directas de Q y Z(p∞), denominado p-grupo de Prüfer (L. Fuchs [3]).

Por último, se tiene el siguiente resultado dado por la noción de módulo puro:

Definición. Un submódulo H de un Z-módulo M se dice puro si h ∈ H, h = ny (con n ∈ Z, y ∈M) implica
h = nh0, con h0 ∈ H.

Es decir, un módulo H será puro si todo elemento de H que es divisible por n en M, es divisible por n en
H.

4.3. Envolvente inyectiva

Los módulos libres son universales en el sentido en que todo módulo es la imagen epimórfica de algún
módulo libre. De manera similar, se puede establecer un resultado dual para módulos divisibles.

Teorema 4.5. Todo módulo puede ser encajado como un submódulo en un módulo divisible.

El teorema anterior puede mejorarse introduciendo el concepto de un módulo divisible minimal que
contiene a un módulo dado.

Definición. Un submódulo E de un módulo A se dice esencial si E ∩B ̸= 0 con B cualquier submódulo no
trivial de A. En tal caso, A se dice extensión esencial de E.

Lema 4.1. Un módulo es inyectivo si y solo si no tiene ninguna extensión esencial propia.

Definición. Sea un módulo A, un sistema independiente M de A tal que que no hay otro sistema indepen-
diente de A que contenga a M propiamente se dice maximal.

Con esta idea se tienen las siguientes definiciones de rango:

Definición. Llamamos rango de un módulo A, denotado r(A), al cardinal de un sistema independiente ma-
ximal que contiene únicamente elementos de orden infinito y primo. Si nos restringimos a los elementos
de orden infinito, entonces la cardinalidad de este sistema se llama rango libre de torsión, denotado r0(A).
Análogamente, considerando los elementos cuyo orden es una potencia de algún primo p, se tiene el p-rango
de A, denotado rp(A).
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Se tiene la siguiente relación entre rangos:

r(A) = r0(A)+∑
p

rp(A)

Lema 4.2. Un submódulo B de A es esencial si y solo si un homomorfismo α : A→ M con un módulo
arbitrario M es necesariamente mónico siempre que α|B : B→M es un monomorfismo.

Definición. Dado A, llamamos al módulo divisible E que contiene a A un módulo divisible minimal si ningún
submódulo divisible propio de E contiene a A.

Lema 4.3. Un módulo divisible E que contiene a A es divisible minimal cuando A es un submódulo esencial
de E.

Teorema 4.6. Todo módulo divisible que contiene a A contiene un módulo divisible minimal que contiene a
A. Todo par de módulos divisibles minimales que contienen a A son isomorfos sobre A.

Definición. Dicho módulo divisible minimal E que contiene a A es llamado envolvente inyectiva de A.

Se tiene que
r0(E) = r0(A) y rp(E) = rp(A), ∀p primo

La estructura de la envolvente inyectiva de un módulo A está completamente determinada por los rangos
de A.

Teorema 4.7. Sea D un módulo, son equivalentes:

1. D es divisible.

2. D es inyectivo.

3. D es un sumando directo de cada módulo que contiene a D.

De lo anterior se sigue el resultado visto en el segundo capítulo, teniéndose la presentación inyectiva:

0→ A→ D→ D′→ 0

con D (y por tanto D′) módulos divisibles, cuya existencia para cada A está garantizada. Esta sucesión exacta,
por tanto, tiene la extensión trivial dada por D = A⊕D′.

Proposición 4.4. Si C es un submódulo de un módulo B tal que B⧸C es isomorfo a un submódulo H de M,
entonces existe un módulo A que contiene a B tal que A⧸C

∼= M.

Esto quiere decir que el siguiente diagrama es conmutativo

0 C B H 0

0 C A M 0

donde ambas sucesiones son exactas y las aplicaciones verticales son inyecciones.
Se tiene también el siguiente resultado:

Teorema 4.8. Sea un módulo M ⊆ I, son equivalentes:

1. I es esencial maximal sobre M.

2. I es inyectivo y esencial sobre M.



Clasificación de grupos abelianos infinitos inyectivos y proyectivos - Álvaro Navarro Álvarez 25

3. I es inyectivo minimal sobre M.

Notar que dicho módulo I es precisamente una envolvente inyectiva de M.

Corolario 4.2. Si I y I′ son dos envolventes inyectivas de M, entonces son isomorfas.

Nos referiremos a partir de ahora como E(M) a ”la” envolvente inyectiva de M.

Corolario 4.3. Si I es un módulo inyectivo y M es un submódulo de I, entonces I contiente una copia de
E(M).
Si M ⊆ N entonces N puede ser agrandado a una copia de E(M) (de hecho E(N) = E(M)).

Dado un módulo, se tiene un método de construcción de su envolvente inyectiva:

Proposición 4.5. Sea M un Z-módulo y x ̸= 0 un elemento de m de orden n (que puede ser infinito) y sea

ϕ : ⟨x⟩ →Q⧸Z

x 7→

{
1
x +Z if n < ∞

1
2 +Z if n = ∞

un homomorfismo, Q⧸Z se extiende a un homomorfismo no nulo ϕ : M→ Q⧸Z, luego HomZ

(
R,Q⧸Z

)
es un cogenerador inyectivo.

La noción de envolvente inyectiva de M, un módulo inyectivo I para el que existe un monomorfismo
M→ I cuya imagen es "grande", es precisamente dual a la noción de cubierta proyectivo de M, un módulo
proyectivo P para el que existe un epimorfismo P→M cuyo núcleo es "pequeño".

Un ejemplo del concepto de envolvente inyectiva en el caso de grupos abelianos (Z-módulos) es el
siguiente:

Ejemplo 4.1. Sea M un Z-módulo, la envolvente inyective E(M) es lo que comúnmente se llama envolvente
divisible del grupo abeliano.
Sea Cn el grupo cíclico de orden n. Para cada primo p, se tiene el p-grupo de Prüfer Cp∞ , la unión ascendente
de grupos

Cp ⊂Cp2 ⊂Cp3 ⊂ . . . .

Entonces Cp∞ es p-divisible y por tanto divisible (es isomorfo a la parte p-primaria de Q⧸Z). Además, Cp∞

es Z-inyectivo y esencial sobre cualquier Cpi (i≥ 1). Por tanto,

E(Cpi) =Cp∞ , ∀i≥ 1.

4.4. Teorema de Matlis

Finalmente, nuestro objetivo es proporcionar una clasificación de los módulos inyectivos, y para ello va-
mos a hacer uso de la teoría desarrollada por el matemático Eben Matlis. Para una exposición en profundidad
de dicha teoría puede consultarse el libro de T. Y. Lam [9], entre otros.

Definición. Sea R un anillo que satisface la condición de cadena ascendente en ideales a izquierda y derecha,
entonces llamamos a R un anillo noetheriano. Es decir, para toda cadena ascendente de ideales I1 ⊆ I2 ⊆ I3 ⊂
. . . existe n ∈ N tal que In = In+1 = . . . .

Teorema 4.9. Para cualquier anillo R, las siguientes afirmaciones son equivalentes:

1. Todo límite directo de módulos inyectivos es inyectivo.
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2. Toda suma directa de módulos inyectivos es inyectiva.

3. Toda suma directa contable de módulos inyectivos es inyectiva.

4. R es un anillo noetheriano.

Teorema 4.10. Para todo anillo R, las siguientes afirmaciones son equivalentes:

1. R es noetheriano.

2. Todo R-módulo inyectivo M es suma directa de submódulos (inyectivos) indescomponibles.

3. Existe un número cardinal α tal que todo R-módulo inyectivo M es suma directa de submódulos
(inyectivos) de cardinalidad < α .

Corolario 4.4. Sea N un módulo finitamente generado sobre un anillo noetheriano, entonces E(N) es suma
directa finita de inyectivos indescomponibles.

Definición. Un R-módulo no nulo M se dice uniforme si todo par de submódulos no nulos de M intersecan de
manera no trivial (equivalentemente, todo submódulo no nulo de M es indescomponible, o todo submódulo
no nulo de M es esencial en M).
Un ideal U ⊂ R se dice inter-indescomponible si el módulo cíclico

(
R⧸U

)
R

es uniforme (equivalentemente,

si para todo par de ideales V,V ′ ⊇U , V ∩V ′ =U implica V =U o V ′ =U).

Ejemplo 4.2. Para cualquier R-módulo M se tiene que simple =⇒ uniforme =⇒ indescomponible. De
hecho, las tres nociones son equivalentes si R es un anillo semisimple, es decir, un anillo que es un módulo
semisimple (suma directa de submódulos simples) sobre sí mismo.
En el caso de grupos abelianos, es decir, si R = Z, se tiene que Z, Q y Zpn (n ≥ 2), son uniformes pero no
simples.

Teorema 4.11. Para todo módulo inyectivo M sobre un anillo R, las siguientes condiciones son equivalentes:

1. M es indescomponible.

2. M ̸= 0, y M = E(M′) para cualquier submódulo no nulo M′ ⊆M.

3. M is uniforme.

4. M = E(U) para algún módulo uniforme U.

5. M = E
(

R⧸U
)

para algún ideal inter-indescomponible U ⊂ R.

6. M es fuertemente indescomponible, es decir, E = End(MR) es un anillo local.

Corolario 4.5. Si un R-módulo inyectivo I puede expresarse como M1⊕·· ·⊕Mn donde Mi son indescom-
ponibles, entonces n está unívocamente determinado, como también lo están (salvo permutaciones) los su-
mandos indescomponibles M1, . . . ,Mn, salvo isomorfismo.

Esto aplica, en particular, a la descomposición directa de I = E(N) donde N es un módulo finitamente
generado sobre un anillo noetheriano.

Definición. Decimos que un R-módulo N es primo si N ̸= 0, y ann(N) = ann(N′) para cualquier submódulo
no nulo N′ ⊂ N. Para tal módulo primo N, p := ann(N) es siempre un ideal primo en R.

Definición. Sea M un R-módulo, un ideal p de R se dice un primo asociado de M si existe un submódulo
primo N ⊆M tal que p= ann(N).
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El conjunto de primos asociados de M se denota Ass(M). Por ejemplo, Ass(0) =∅, y si N es un módulo
primo, se tiene Ass(N) = {ann(N)}.

Lema 4.4. Sea R un anillo conmutativo y sea M un R-módulo, entonces un ideal primo p pertenece a Ass(M)
si y solo si p= ann(m) para algún m ∈M.

Esto es, en el caso conmutativo, se tiene que p es un primo asociado de M si y solo si podemos encontrar
una copia de R⧸p en M.

Lema 4.5. Sea M ̸= 0 un módulo uniforme. Si ann(N0) es un miembro maximal de la familia {ann(N)}
donde N abarca todos los submódulos no nulos de M, entonces N0 es un submódulo primo y ann(N0) es
un primo asociado de M. En particular, si R es un anillo cuyos ideales satisfacen la condición de cadena
ascendente (es decir, si R es un anillo noetheriano), entonces para todo módulo no nulo M, Ass(M) ̸=∅.

Lema 4.6. Si M es un R-módulo uniforme, entonces

|Ass(M)| ≤ 1.

Denotaremos a partir de ahora como I (R) al conjunto de clases de isomorfismo de los módulos inyec-
tivos indescomponibles sobre un anillo R. Denotaremos también como Spec(R) al espectro primo de R, es
decir, el conjunto de todos los ideales primos de R.

Teorema 4.12. Sea R un anillo noetheriano, entonces existe una sobreyección natural α : I → Spec(R).

En general, α no es una biyección. Esto se cumplirá en el caso en que R sea un anillo artiniano, es decir,
un anillo que satisface la condición de cadena descendente (en contraposición a los anillos noetherianos):

Teorema 4.13. Sea R un anillo artiniano, entonces α : I → Spec(R) es una biyección. Si {V1, . . . ,Vn}
es un conjunto completo de R-módulos simples entonces {E(V1), . . . ,E(Vn)} es un conjunto completo de
R-módulos inyectivos indescomponibles (salvo isomorfismo).

Por último, vamos a ver el teorema de clasificación de módulos inyectivos. El resultado es válido pa-
ra cualquier anillo noetheriano conmutativo R, pero en este caso lo particularizaremos al caso de grupos
abelianos, es decir, tomando como anillo R = Z:

Teorema 4.14 (Matlis). La aplicación

α : I (Z)→ Spec(Z)

es una biyección. Además, {
E
(
Z⧸p
)

: p ∈ Spec(Z)
}

proporciona una lista completa de Z-módulos inyectivos indescomponibles, salvo isomorfismo.

Demostración. Para p ∈ Spec(Z), Z⧸p es un Z-módulo uniforme, luego podemos definir β : Spec(Z)→
I (Z) tal que

β (p) =
[
E
(
Z⧸p
)]
∈I (Z).

Es claro que αβ (p) = p.
Por último debemos probar que βα[M] = [M] para cualquier [M] ∈ I (Z). Sea Ass(Z) = {p}, entonces
p = ann(m) para algún m ∈M, y por tanto mZ ∼= Z⧸p como Z-módulos. Por otro lado, se cumple también
M = E(mZ), luego

[M] =
[
E
(
Z⧸p
)]

= β (p) = βα[M].

■
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Apéndice A

Teoría de categorías

A.1. Objetos y morfismos

Definición. una categoría C consiste en:

1. Una clase ObC de objetos.

2. Para cada par de objetos A,B ∈ ObC , un conjunto MorC (A,B) de morfismos.

3. Para cada terna de objetos A,B,C ∈ ObC una aplicación

MorC (B,C)×MorC (A,B)→MorC (A,B)

que satisface las siguientes condiciones:

a) Si (A,B) ̸= (C,D), entonces

MorC (A,B)∩MorC (C,D) =∅.

b) Si f ∈MorC (A,B), g ∈MorC (B,C), h ∈MorC (C,D), entonces

( f g)h = f (gh).

c) Para cada objeto A, existe un morfismo único 1A ∈MorC (A,A) de modo que

f 1A = f ,

∀ f ∈MorC (A,B) y 1Ag = g ∀g ∈MorC (B,A).

Definición. Si f ∈MorC (A,B), A se dice dominio de f , y B codominio de f .

Definición. Sean C , D dos categorías, D es una subcategoría de C si ∀A,B ∈ ObD ,

ObD ⊆ ObC y MorD(A,B)⊆MorC (A,B).

Una subcategoría D de C se dice plena si ∀A,B ∈ ObD ,

MorD(A,B) = MorC (A,B).

Definición. Sean C , D dos categorías, la categoría producto C ×D está dada por:

1. Ob(C ×D) = ObC ×ObD .

29



30 Capítulo A. Teoría de categorías

2. Si (A,B), (A′,B′) ∈ ObC ×ObD ,

MorC×D((A,B),(A′,B′)) = MorC (A,A′)×MorD(B,B′).

3. Si ( f ,g) ∈MorC×D((A,B),(A′,B′)), ( f ′,g′) ∈MorC×D((A′,B′),(A′′,B′′)),

( f ′,g′) · ( f ,g) = ( f ′ f ,g′g).

Definición. Una categoría C se dice pequeña si ObC es un conjunto.

Definición. Sea C una categoría, dos objetos C,D ∈ ObC se dicen isomorfos si existen h ∈ MorC (C,D),
g ∈MorC (D,C) con

gh = 1C, hg = 1D.

En este caso se dice que h y g son isomorfismos.
Si h ∈MorC (A,B), g ∈MorC (B,A) cumple gh = 1A, h se dice sección y g retracción.
Un morfismo h ∈MorC (A,B) se dice epimorfismo si ∀g1,g2 ∈MorC (B,C) con C ∈ ObC ,

g1h = g2h =⇒ g1 = g2.

Se dice que h es un monomorfismo si ∀C ∈ ObC , f1, f2 ∈MorC (C,A),

h f1 = h f2 =⇒ f1 = f2.

Una categoría en la que cada morfismo que es epimorfismo y monomorfismo es isomorfismo se llama equi-
librada.

Definición. Sea C una categoría, se llama subobjeto de A ∈ ObC a un par (C,α) con α : C→ A un mono-
morfismo.

C A

D

α

h
β

Se llama objeto cociente de A ∈ ObC a un par (Q, p) con p : A→ Q un epimorfismo.

A L

Q

q

hp

Definición. Un objeto P en una categoría se dice final si para cada objeto A, Mor(A,P) contiene un único
elemento.
Un objeto Q en una categoría se dice inicial si para cada objeto A, Mor(Q,A) contiene un único elemento.
Un objeto O en una categoría se dice objeto cero si es inicial y final.

Definición. Sea C una categoría con objeto cero O y A,B∈ObC , un morfismo OAB : A→B se dice morfismo
cero si puede factorizarse a través del objeto cero:

A B

O

OAB

Definición. Sean f ,g : A→ B morfismos en una categoría, un par (K,τ) con K un objeto y τ : K → A un
morfismo se dice igualador de f y g si:
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1. f τ = gτ .

2. ∀α : X → A con f α = gα , existe un único β : X → K tal que α = τβ :

K A B

X

τ
f

g
β

α

Definición. Si f ,g;A→ B son morfismos en C , un par (Q, p) con p : B→ Q se dice coigualador de f y g
si:

1. p f = pg.

2. ∀q : B→ X con q f = qg, existe un único h : Q→ X tal que hp = q:

A B Q

X

f

g
q

τ

h

Definición. Sea C una categoría con objeto cero, se llama núcleo de un morfismo f : X → Y a

Ker f := Ig( f ,OXY ).

Se llama conúcleo de f al coigualador de f y OXY :

Coker f :=Coig( f ,OXY ).

Definición. Sea C una categoría, la categoría opuesta C O viene dada por:

1. ObC = ObC O.

2. Si A,B ∈ ObC , MorC O(A,B) = MorC (B,A).

3. Si f ∈MorC O(A,B), g ∈MorC O(B,C). La composición de f y g es f ◦g = g f .

A.2. Functores

Definición. Sean C y D categorías, un functor covariante F : C →D es:

1. Una función
F : ObC → ObD

A 7→ FA

2. Una función
F : MorC →MorD

f 7→ F f

cumpliendo:

a) Si f ∈MorC (A,B), F f ∈MorD(FA,FB).

b) Si g ∈MorC (B,C), F(g f ) = F(g)F( f ).
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c) F(1A) = 1FA.

Definición. Se llama functor contravariante de C en D a la noción dual del functor covariante, es decir, al
functor F : C O→D . Así, F es por una parte una función ObC →D y para cada A,B ∈ObC una aplicación

F : MorC (A,B)→MorD(FB,FA)

cumpliendo
F( f g) = F(g)F( f ).

Definición. Sean C1, . . . ,Cn con n = r + s categorías, se llama multifunctor r veces covariante y s veces
contravariante a un functor

F : C1×·· ·×Cr×C O
r+1× . . .C O

n →D .

Sea x j ∈ ObC j, se tiene el functor
Fx1, . . . , x̂i, . . . ,xn : Ci→ D

dado por Fx1,...,x̂i,...,xn(A)=Fx1, . . . ,xi−1,A,xi+1, . . . ,xn y si f ∈MorC i, Fx1, . . . , x̂i, . . . ,xn( f )=F(1x1, . . . ,1xi−1 , f ,1xi+1 , . . . ,xn).
Si F es r veces covariante y s veces contravariante, Fx1,...,x̂i,...,xn es covariante o contravariante si i≤ r o i > r
respectivamente.

Definición. Dos categorías C y D se dicen isomorfas si existen functores F : C → D y G : D → C tales
que FG = 1D y GF = 1C . Se dice entonces que F y G son isomorfos de categoría.

Definición. Sean C , D dos categorías y F : C →D un functor. Para cada par de objetos A,B∈ObC se tiene
la aplicación

MorC (A,B)→MorD(FA,FB)

f 7→ F f

Un functor se dice fiel si esta aplicación es inyectiva para cada par de objetos A,B ∈ ObC , y se dice pleno si
es suprayectiva.

A.3. Transformaciones naturales

Definición. Sean C , D dos categorías y F,G : C →D functores covariantes, una transformación natural η :
F→G es una función ObC →MorD que a cada objeto A de C asocia un morfismo ηA ∈MorD(FA,GA) de
modo que para cada par de objetos A,B de C y cada morfismo f ∈MorC (A,B), el diagrama es conmutativo
(ηBF( f ) = G( f )ηA):

FA FB

GA GB

F f

ηA ηB

G f

Si F y G son contravariantes la definición es análoga (F,G : C O→D).

Definición. Una transformación natural η : F→G se dice equivalencia natural si para cada objeto A, ηA es
un isomorfismo. En este caso se denotará F ∼= G y diremos que F y G son naturalmente equivalentes.
Dos categorías C , D se dicen naturalmente equivalentes si existen functores F : C →D y G : D → C tales
que FG∼= 1D y GF ∼= 1C .

Lema (Yoneda). Sea F : C → Set un functor covariante y A un objeto de C , pongamos Nat(MorC (A,−),F)
para la clase de transformaciones naturales MorC (A,−)→ F, entonces existe una biyección

Y : Nat(MorC (A,−),F)→ FA

que asocia a una transformación natural ϕ : MorC (A,−)→ F el elemento y(ϕ) = ϕA(1A).
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Definición. Sea A una categoría abeliana, un complejo de cadenas en A es una sucesión de objetos y
morfismos de A :

C : · · · →Cn
∂n−→Cn−1

∂n−1−−→Cn−2→ . . .

cumpliendo ∂n−1∂n = 0.

A dicho complejo de cadenas lo denotaremos C= {Cn,∂n}.

Definición. un morfismo de cadenas ϕ : C→ D es una colección de morfismos que hace conmutativo el
diagrama:

C : . . . //

ϕ

��

Cn−1 ∂n+1 //

ϕn−1

��

Cn ∂n //

ϕn

��

Cn+1 //

ϕn+1

��

. . .

D : . . . // Dn−1 βn+1 // Dn βn // Dn+1 // . . .

Definición. Se puede definir una categoría de cadenas C (A ), cuyos objetos son cadenas y cuyos morfismos
son morfismos de cadenas, la cuál es una categoría abeliana.

Definición. Sea A una categoría abeliana, un complejo de cocadenas en A es una sucesión de objetos y
morfismos de A :

C : · · · →Cn
∂ n

−→Cn−1
∂ n+1

−−→Cn−2→ . . .

cumpliendo ∂ n+1∂ n = 0.

A dicho complejo de cadenas lo denotaremos C= {Cn,∂
n}.

Definición. un morfismo de cocadenas ϕ : C→ D es una colección de morfismos que hace conmutativo el
diagrama:

C : . . . //

ϕ

��

Cn−1 ∂ n−1
//

ϕn−1

��

Cn ∂ n
//

ϕn

��

Cn+1 //

ϕn+1

��

. . .

D : . . . // Dn−1 β n−1
// Dn β n

// Dn+1 // . . .

Definición. Se puede definir una categoría de cocadenas C O(A ), cuyos objetos son cocadenas y cuyos
morfismos son morfismos de cocadenas, la cuál es una categoría abeliana.
Además C O(A ) y C (A ) son isomorfas, y C O(A ) = C (A O)O.

Definición. Si (Cn,∂n) es un complejo de (co)cadenas, los operadores ∂n se llaman operadores (co)borde

Definición. Sea C : · · · →Cn
∂n−→Cn−1

∂n−1−−→Cn−2→ ··· ∈ C (A ),

33
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se denota por Bn(C) la imagen de ∂n+1, cuyos elementos se llaman bordes.

se denota por Zn(C) el núcleo de ∂n, cuyos elementos se llaman ciclos.

Ambos son subobjetos de Cn, y la sucesión será exacta si Bn(C) = Zn(C). Además, ∂n−1∂n = 0 =⇒ Bn(C)≤
Zn(C), luego existe un monomorfismo Bn(C)→ Zn(C) tal que:

Cn

Bn(C) Zn(C)

Definición. Se llama n-ésimo objeto de homología de C= {Cn,∂n} a

Hn(C) =Coker(Zn(C)/Bn(C)).

A dicho objeto también se le conoce como módulo de homología de grado (o dimensión) n de C, y
puede expresarse también como Hn(C) = ker(∂n)/im(∂n+1). Es decir, si C es un sucesión semiexacta (i.e.,
im(∂n+1)⊂ ker(∂n)), el módulo de homología de grado n, Hn(C), mide la inexactitud de C. Si C es exacta,
entonces im(∂n+1) = ker(∂n) y Hn(C) = 0.

Definición. Diremos que dos elementos de Hn(C) son homólogos si pertenecen a la misma clase lateral. El
elemento de Hn(C), determinado por el ciclo c de grado n, se llama clase de homología de c y se denota [c].

Definición. Se dice que un complejo de cadenas C= {Cn,∂n} es acíclico si Hn(C) = 0 para n≥ 1 (es decir,
C es exacta hasta C1, y H0(C) puede ser diferente de 0). Equivalentemente, la sucesión

· · · →Cn→Cn−1→ ·· · →C1
∂1−→C0

ε−→ H0(C)→ 0

es exacta.

Definición. Para cada n∈Z, se tiene el módulo de homología Hn(C). El módulo graduado H∗(C) = {Hn(C)}
se denomina homología de la cadena C.

Se tiene que H∗(−) es un functor covariante de la categoría de complejos de cadenas en la categoría de
R-módulos graduados,

H∗(−) : C (A )→ModZ
R .

Evidentemente, todo lo visto tiene su equivalente en la categoría dual de cocadenas.
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Producto tensorial

Definición. Sea M, N y P tres R-módulos y sea f : M×N → P, f se dice R-bilineal si para cada x ∈ M,
la aplicación y 7→ f (x,y) de N en P es R-linear y para cada y ∈ N, la aplicación x 7→ f (x,y) de M en P es
R-lineal.

Pasamos ahora a definir la noción de producto tensorial:

Proposición. Sean M y N dos R-módulos, entonces existe un par (T,g) que consiste en un R-módulo T y una
aplicación R-bilineal g : M×N→ T , tal que dado un A-módulo P y una aplicación R-bilineal f : M×N→P,
existe una única aplicación R-linear f ′ : T → P tal que f = f ′ ◦g.
Además, si (T,g) y (T ′,g′) son dos pares con dicha propiedad, existe un único isomorfismo j : T → T ′ tal
que j ◦g = g′.

Definición. El módulo T construido en la proposición anterior es llamado producto tensorial de M y N, y se
denota M⊗N.

Dicho modulo es generado como un R-módulo por el producto x⊗ y. Si (xi)i∈I , (y j) j∈J son familias de
generadores de M y N respectivamente, entonces los elementos xi⊗ yi generan M⊗N. En particular, si M y
N son finitamente generados, también lo es M⊗N.

Proposición. Sean M1, . . . ,Mr R-módulos, entonces exite un par (T,g) consistente en un R-módulo T y
una aplicación R-multilinear g : M1× ·· · ×Mr → T tal que dado un R-módulo P y cualquier aplicación
R-multilinear f : M1×·· ·×Mr→ T , existe un único R-homomorfismo f ′ : T → P tal que f ′ ◦g = f .
Además, si (T,g) y (T ′,g′) son dos pares con dicha propiedad, existe un único isomorfismo j : T → T ′ tal
que j ◦g = g′.

El producto tensorial tiene las siguientes propiedades:

Proposición. Sean M, N y P tres R-módulos,

M⊗N ∼= N⊗M.

(M⊗N)⊗P∼= M⊗ (N⊗P)∼= M⊗N⊗P.

(M⊕N)⊗P∼= (M⊕P)⊗ (N⊕P).

R⊗M ∼= M⊗R∼= M.

Veamos también que el producto tensorial actúa, no solo sobre R-módulos, sino sobre las aplicaciones:

Proposición. Sean f : M→M′, g : N→N′ dos homomorfismos de R-módulos. Sea h : M×N→M′×N′ dada
por h(x,y) = f (x)× g(y). Se tiene entonces que h es una aplicación R-bilineal e induce un homomorfismo
de R-módulos:

f ⊗g : M⊗N→M′⊗N′
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tal que
( f ⊗g)(x⊗ y) = f (x)⊗g(y), (x ∈M, y ∈ N).

Con lo anterior, los homomorfismos ( f ′ ◦ f )⊗ (g′ ◦ g) y ( f ′⊗ g′) ◦ ( f ⊗ g) coinciden en todos sus ele-
mentos de la forma x⊗ y en M⊗N. Como dichos elementos generan M⊗N, se tiene que

( f ′ ◦ f )⊗ (g′ ◦g) = ( f ′⊗g′)◦ ( f ⊗g).
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