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Resumen

El presente trabajo estd dedicado al estudio de los grupos abelianos infinitos inyectivos y proyectivos,
grupos de gran importancia al tratar con sucesiones exactas en el campo del dlgebra homoldgica. El principal
objetivo del mismo es caracterizar dichos grupos abelianos y proporcionar una clasificacién, mediante mé-
dulos libres en el caso de los grupos proyectivos, y a través del Teorema de Matlis en el caso de los grupos
inyectivos. Para llevar a cabo dicho estudio se aborda la teoria en tres niveles de abstraccion:

En el capitulo 1 se presenta una introduccion bdsica desde la visién dada por los grupos ciclicos, trasla-
dandonos eventualmente al 4mbito de la teoria de médulos, en la cudl un grupo abeliano es lo mismo que
un Z-mdédulo. En dicha parte se estudian las operaciones de suma y producto directo, asi como las sucesio-
nes exactas y la relacién fundamental de los médulos proyectivos e inyectivos con la escision de sucesiones
exactas cortas.

Posteriormente, en el capitulo 2 se abarca un estudio desde el punto de vista de la teoria de categorias,
en la que los médulos y sus homomorfismos constituyen una categoria abeliana. Dicha abstraccion nos per-
mitird tratar functores como el Hom y el Ext, asi como introducir las nociones de resolucién proyectiva e
inyectiva, cubierta proyectiva y generadores proyectivos.

La segunda mitad del trabajo estd dedicada a la profundizacién por individual en los médulos proyecti-
vOs € inyectivos.

El capitulo 3 se enfoca en los mddulos proyectivos, y en €l se analiza en mayor profundidad la nocién
de moédulo libre que facilitard una clasificacion de los mismos. Asimismo, se trata la idea de torsién de un
modulo, el producto tensorial y el functor Tor, de nuevo desde un punto de vista categérico. Finalmente se
plantean algunos problemas abiertos relevantes formulados por Kaplansky, asi como el problema indecidible
de Whitestone.

En el capitulo 4 se exploran los médulos inyectivos, analizando para ello algunas nociones duales en sentido
categdrico a las vistas para médulos proyectivos. De este modo, se estudian los conceptos de médulo divi-
sible y envolvente inyectiva, con resultados importantes como el criterio de Baer. Dicho estudio finaliza con
la clasificacién de médulos inyectivos dada por el Teorema de Matlis.

Adicionalmente, el trabajo consta de tres apéndices en los que se pueden consultar las nociones bdsicas

de teoria de categorias, dlgebra homoldgica y producto tensorial que serdn necesarios para un mayor enten-
dimiento de los médulos proyectivos e inyectivos.
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Abstract

This work is dedicated to the study of infinite injective and projective abelian groups, which are of great
importance in dealing with exact sequences in the field of homological algebra. The main objective is to
characterize these abelian groups and provide a classification, using free modules in the case of projective
groups, and through the Matlis Theorem in the case of injective groups. This study is approached at three
levels of abstraction:

Chapter 1 presents a basic introduction starting from the perspective of cyclic groups, eventually transitio-
ning to the realm of module theory, where an abelian group is the same as a Z-module. This part covers the
operations of direct sum and direct product, as well as exact sequences and the fundamental relationship of
projective and injective modules with the splitting of short exact sequences.

Chapter 2 covers the study from the viewpoint of category theory, where modules and their homomorphisms
form an abelian category. This abstraction allows us to deal with functors such as Hom and Ext, and intro-
duces the notions of projective and injective resolutions, projective covers, and projective generators.

The second half of the work is dedicated to a deeper exploration of projective and injective modules.

Chapter 3 focuses on projective modules and delves into the notion of free modules, which facilitates their
classification. The idea of module torsion, tensor product, and the functor Tor are also discussed from a ca-
tegorical perspective. Finally, some relevant open problems formulated by Kaplansky are presented, as well
as the undecidable Whitestone problem.

Chapter 4 analyzes the case of injective modules, and covers certain dual notions in a categorical sense
to those seen for projective modules. Thus, the concepts of divisible module and injective envelope are ex-
plored, along with important results such as the Baer criterion. This study concludes with the classification
of injective modules given by the Matlis Theorem.

Additionally, the work includes three appendices that provide the basic notions of category theory, homologi-
cal algebra, and tensor product, which will be necessary for a better understanding of projective and injective
modules.
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Capitulo 1

Introduccion basica

En este primer capitulo se introducirdn conceptos fundamentales como los grupos ciclicos y los médulos,
asi como las operaciones de sumas y productos directos. Ademds, se explorardn las sucesiones exactas,
herramientas clave para comprender la estructura de los grupos abelianos y su clasificacion.

1.1. Grupos ciclicos

Uno de los tipos de grupos que resulta de mayor importancia, como bien afirma L. Fuchs [3], son los
grupos ciclicos. Para definirlos, consideremos en primer lugar la siguiente notacion:

Sea S un subconjunto de un grupo abeliano A, denotaremos por (S) al subgrupo de A generado por S, i.e.,
la interseccion de todos los subgrupos de A que contienen a S.
Si S consiste en los elementos a; (i € I), se escribe

o simplemente (S) = (a;)e;.

Definicion. El subgrupo (S) contiene todas las sumas de la forma nja; + - - - + ngay, llamadas combinaciones
lineales de ay,...,a;,cona;, € S,n; € ZykeN.

Si S es vacio, entonces (S) = 0.

Definicién. Si (S) = A, S se dice sistema generador de A. Los elementos de S son generadores de A. Un
grupo finitamente generado es aquel que tiene un sistema generador finito.

Con esta notacidn se tiene la siguiente definicién de grupo ciclico:

Definicién. Sea un grupo G generado por un tnico elemento, G = (a), decimos que G es un grupo monégeno
o ciclico.

Una clasificacion se tiene al considerar la finitud de los grupos ciclicos:

= Si G = (a) es un grupo ciclico infinito, entonces es isomorfo al grupo aditivo Z de los enteros
0,£1,%2,.... Se tiene, por tanto, que todos lo grupos ciclicos infinitos son isomorfos.

= Si G = (a) es un grupo ciclico finito de orden m, entonces consiste en los elementos 0,a,2aq, ..., (m—
1)a (pues ma = 0), es decir, G es isomorfo al grupo aditivo Z,,. Se tiene que todos los grupos ciclicos
finitos del mismo orden son isomorfos.

Utilizaremos las notaciones de Z y Z,, respectivamente para referirnos a estos grupos ciclicos.
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Proposicion 1.1. Todo subgrupo de un grupo ciclico es también ciclico.

Proposicion 1.2. Todo grupo cociente propio de un grupo ciclico es un grupo ciclico finito.
Por dltimo, notar la siguiente relacion entre los grupos ciclicos y los grupos abelianos:

Proposicion 1.3. Todo grupo ciclico es un grupo abeliano.

Demostracién. En efecto, sea el grupo ciclico G = (g), se cumple que si a € G, entonces a = g€ para algiin
k, y por tanto considerando dos elementos g1, g" € G, se sigue

gkl ng — gk] +ky — gk2+k| — gkzg]q?
para cualesquiera ky y k. i

Asi pues, los grupos ciclicos son unos de los mas importantes, si bien cabe destacar otros tipos de
grupos abelianos como los grupos cociclicos, los grupos racionales o los enteros p-ddicos, en los que no nos
detendremos en este trabajo.

1.2. Modulos

A partir de los grupos ciclicos se pueden construir muchos otros grupos. La construccién mds inmediata
de grupos a partir de grupos ciclicos se obtiene a través de la suma directa, pero para introducirla, vamos
primero a trasladarnos a un nivel de abstraccién mayor. Las ideas presentadas a continuacién pueden ser
consultadas y ampliadas en libros como el de L. Fuchs [3] o el de N. Jacobson [5].

1.2.1. Primeras definiciones

El concepto de médulo resulta de gran importancia, pues nos proporciona una forma algo més abstracta
de ver los grupos abelianos, y lo manejaremos durante gran parte del trabajo:

Definicion. Sea R un anillo asociativo y sea M un grupo abeliano tal que

1. Va €R, a €M, se tiene un elemento aa € M llamado producto de ¢ y a.
2. Vo, € Rya€ msetiene (aff)a = a(Pa).

3. Va€eRya,beM,ala+b)=aa+ ab.

4. Va,BERyaeM, (au+p)a= oa+ Pa.

Llamamos a M un R-mddulo a izquierda sobre R. Si R tiene un elemento unital e, dicho elemento actda
como identidad en M:

5. ea=a,VaeM.

Se habla entonces de un R-modulo unital.
De manera andloga se define un R-mddulo a derecha sobre R. Ademds, si el anillo es conmutativo las nocio-
nes de R-mddulo a izquierda sobre R y R-mdédulo a derecha sobre R son equivalentes. En este caso se puede
hablar simplemente de R-mddulo sobre R

Con estas nociones, notar que eligiendo R = Z como nuestro anillo, se tiene que un grupo abeliano no es
otra cosa que un Z-moédulo.

Definicion. Sea N C M un subgrupo, decimos que N es un submddulo si Vo € Ry n € N se tiene an € N,
es decir, si N es un R-médulo bajo las mismas operaciones.

En el caso de los Z-médulos, un submddulo es lo mismo que un subgrupo.

Definicion. Sea M un R-médulo y sea (x;);e; una familia libre de M (es decir, kjx; +kpxp + -+ =0 <—
ki =0, Vi € I), diremos que (x;);cs es una base de M sobre R si el submédulo generado por (x;)ic; es M.
Un R-moédulo con base se denomina libre.
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1.2.2. Suma y producto directo

Definicion. Sea A un médulo, B, C < A submddulos, se dice que A es suma directa interna de By C,
denotado A = BE C si:

1. A=B+C,esdecir,Vac A,A'be B,ceCtalesquea=>b+c,
2. BNC=0.

Dado A = B® C tal que a = b + ¢, se pueden entonces definir los epimorfismos g :a+— by 7ic : a > c,
de forma que, por el primer teorema de isomorfia se tiene:

B=4- c=44

Definicién. Sean B, C dos médulos, el conjunto de pares (b,c) con b € B, ¢ € C forma un méduloA = B&C
llamado suma directa externa de B'y C, cumpliendo:

1. (b1,c1) = (b2,c2) <= b1 =by,c1 =c2,
2. (bl,cl) + (bQ,Cz) = (bl + by, +6‘2).

Definicion. Sea {B;};c; un conjunto de médulos, el conjunto de vectores {b; };c; forma un médulo C llamado
producto directo de los B;:
c=[]s
icl
Las aplicaciones
pi:bi—cj,

donde c; =1si j =iy c;=0en otro caso, son isomorfismos de B; con un submédulo B; < C. Dichos {B;}ig
generan en C el médulo A de todos los vectores con b; = 0 para casi todo i €  (es decir, para todo i € [ salvo,
posiblemente, un ndmero finito de excepciones). Llamamos a A suma directa externa de los B;:

A=PB.
i

Notar que, con la notacién anterior, A = C si y solo si / es finito.
Se obtienen asi homomorfismos
ps:b— (b,0), pc:c—(0,c)

mg: (b,c) = b, pc:(byc)—c

denominadas respectivamente inyecciones y proyecciones, y teniéndose la relacion

B pc
BTHTBEBC”:CC

Ademads, la suma y el producto directos definen para cada i € I una inyeccién p; y una proyeccién 7;:
B, P % B B L[]8 % Bi
Teorema 1.1. Sean @; : B; — A, i € I homomorfismos, se tiene el diagrama:

Pi
B; —— @;B;

l‘Pi ,//
a4

k

A
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donde la flecha punteada puede ser completada por un homomorfismo tinico Y para hacer el diagrama
conmutativo.

Teorema 1.2. Sean @;: A — B;, i € I homomorfismos, existe un homomorfismo tvinico Y tal que el diagrama:

es conmutativo.

1.2.3. Sucesiones exactas

La teoria relacionada con sucesiones exactas es de mucha relevancia, pues en ella se basa el campo del
algebra homoldgica. Para lo que nos atafie nos centraremos en las nociones bésicas, pero para profundizar
mads en el tema pueden consultarse los libros de P. J. Hilton y U. Stammbach [4] o el de E. Lluis-Puebla [7].

Definicion. Una sucesién de R-médulos A; y homomorfismos o;:
o [07 Q
Ag =3 AL = ... =5 Ay

€es exacta si
Imao; = Keroyy1, Vi=1,...,k—1.

Es facil ver que, en particular, 0 — A 2, B es exacta si y solo si & es monomorfismo, y B E> C—0es

exacta si y solo si § es epimorfismo.

Definicion. Una sucesién exacta de la forma:

05A%BEco0

se denomina sucesion exacta corta.

Notar que, dado que Ker(a) = 0, se tiene por el primer teorema de isomorfia que
Y ker(a) =A = Im(a).
Por otro lado Im(f3) = C, por lo que usando de nuevo el primer teorema de isomorfia
5 ker(p) =" im(a) = a=1m(B) =C.
Por lo tanto, la sucesion exacta corta anterior es equivalente a:
0—Im(a) —>B—>B/A—>O

Definicion. Dada una sucesion exacta corta

08%alc0

decimos que A es una extension de B por C.

Para relacionar con las sumas directas de mddulos anteriormente vistas, se tiene que si A = B& C,
entonces A es una extensién de B por C y se tiene la sucesion exacta corta:

0B B®CEC—0,

donde 1 es la inclusién canénica b — (b,0), y & es la proyeccién (b,¢) — c.
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Definicion. Diremos que una sucesion exacta corta

05B8%Aalc50

se escinde si Im(a) es un sumando directo de A, es decir, si existe un submédulo M = C tal que A =
Im(a) &M, de forma que se tiene el isomorfismo A/Im(oc) = Im(a) @M/Im(a) =M=C.

La escision es una condicion que resulta de gran utilidad para analizar y manipular sucesiones exactas
cortas, y con ello las extensiones, sirviendo por tanto en la construccién de médulos a partir de componentes
mas "sencillas"(por ejemplo mddulos ciclicos). Existen ciertos tipos de médulos con propiedades interesan-
tes relacionadas con la escision que merece la pena estudiar. Se trata de los médulos inyectivos y proyectivos.

Procedemos ahora a hacer una breve definicién de los mismos:

Definicion. Un médulo P se dice proyectivo si todo diagrama

P
i
B—/=C—0

con una fila exacta puede ser completada mediante un homomorfismo y : P — B de forma que sea conmuta-
tivo.

Definicion. Un médulo 7 se dice inyectivo si todo diagrama

0——A—%*+B
&
le 4
1

con una fila exacta puede ser completada mediante un homomorfismo 1 : B — I de forma que sea conmuta-
tivo.

Estos médulos se pueden caracterizar del siguiente modo:
= Un médulo P es proyectivo si y solo si toda sucesion exacta corta
0—-A—=B—-P—0

se escinde.

= Un médulo / es inyectivo si y solo si toda sucesion exacta corta
0=+I—-B—=C—0
se escinde.

Es claro que estos médulos serdn importantes a la hora de trabajar con sucesiones exactas cortas, y
dedicaremos el resto del trabajo al estudio en mayor profundidad de sus caracteristicas y propiedades.
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Capitulo 2

Categorias abelianas y de modulos

Antes de continuar y profundizar en los dos tipos de mddulos recién mencionados, vamos a trasladarnos
una vez mds a un nivel de abstraccidn superior, y para ello debe uno estar familiarizado con la teoria de
categorias. Algunos conceptos bdsicos previos para el entendimiento de lo que sigue son explicados en el
apéndice, y para una mayor profundizacion en el tema puede consultarse el libro de P. Freyd [8].

2.1. Categorias abelianas

Los médulos y sus homomorfismos constituyen, como muchos otros objetos matematicos, una categoria,
y en particular una categoria abeliana. Para empezar, introduciremos la nocién de categoria abeliana, para
cuya definicién se necesitan algunos conceptos previos:

Definicion. Un monomorfismo se dice normal si es el nicleo de algin morfismo. Andlogamente, un epi-
morfismo se dice conormal si es el conticleo de algtin morfismo.

Una categoria se dice normal (resp. conormal) si todo monomorfismo (resp. epimorfismo) es normal en
dicha categoria. Una categoria que es a la vez normal y conormal se dice binormal.

Definicion. Sea % una categoria con morfismos cero. Dada una coleccion finita de objetos Ay,...,A, en %,
su biproducto es un objeto A; & --- G A, en € junto con morfismos:

A D DA, — A; (los morfismos de proyeccion)
1,:Ai — A1 D - @A, (los morfismos de inclusién)

que satisfacen las siguientes condiciones:

1. mjo1; = §;; (laidentidad si i = j, y el morfismo cero si i # j).

2. (A1 @®--- DAy, m) es un producto para los A;.

3. (A1 ®--- DA, 1) es un coproducto para los A;.
Definicion. Una categoria preaditiva € se dice categoria abeliana si:

1. Tiene objeto cero.

2. Tiene todos sus nicleos, contcleos, y biproductos.

3. Todos los monomorfismos y epimorfismos son normales.

Se tiene que precisamente las categorias gpMod y Modr de médulos a izquierda y a derecha son categorias
abelianas (entre muchas otras como la categoria de espacios vectoriales sobre un cuerpo o la categoria de
complejos de cadenas). Es decir, podemos ver los médulos (y, en particular, los grupos abelianos) como
objetos de una categoria abeliana.
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2.2. Functor Hom

Una vez colocados en el nivel de la teoria de categorias, una herramienta clave a tener en cuenta son los
functores, y su relacién con los mddulos proyectivos e inyectivos anteriormente mencionados. Comenzare-
mos definiendo uno de los mas importantes, el functor Hom:

Definicion. Sean A, B,C tres objetos de una categoria €, se define:

= Un functor covariante
Hom(A,—): %€ — Set

que envia cada objeto X en % al conjunto de morfismos de A en X,
X — Hom(A,X),

y cada morfismo f : X — Y a la funcién Hom(A, f) : Hom(A,X) — Hom(A,Y) dada por g — fo
g, Vg € Hom(A,X),
f—Hom(A,f).

= Un functor contravariante
Hom(—,B) : % — Set

que envia cada objeto X en % al conjunto de morfismos de X en B,
X — Hom(X,B),

y cada morfismo /i : X — Y ala funcion Hom(h,B) : Hom(Y,B) — Hom(X,B) dada por g — goh, Vg €
Hom(Y,B),
h+— Hom(h,B).

Los functores Hom(A,—) y Hom(—,B) estdn relacionados de manera natural: para cada par de morfis-
mos f:B— B yh:A" — A, el siguiente diagrama conmuta:

Hom(A, B) "% Hom(a’,B)

Hom(A,f) Hom(A',f)

Hom(A,B’)HM )Hom(A’,B’)

La conmutatividad en el diagrama anterior implica que Hom(—, —) es un bifunctor de & x & en Set, que
es contravariante en el primer argumento y covariante en el segundo, o, equivalentemente,

Hom(—,—): 6" X € — Set.
Del diagrama se infiere también que todo morfismo 4 : A’ — A da lugar a una transformacion natural
Hom(h,—) : Hom(A,—) — Hom(A',—)
y cada morfismo f : B — B’ da lugar a una transformacion natural
Hom(—, f) : Hom(—,B) — Hom(—,B').

Por el lema de Yoneda se tiene que toda transformacién natural entre functores Hom es de esta forma, es
decir, los functores Hom dan lugar a una subcategoria plena y fiel € en la categoria de functores Set? " .

Es interesante mencionar algunas propiedades que resultan de la definicion del functor Hom:
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Proposicion 2.1. Sean M y N dos objetos de la categoria de mddulos Modp,
» El functor covariante Homg(R,—) = Id. En particular, es claro que Homg(R,M) = M.

Y

» El functor contravariante Homg(—,R) = (-)*. En particular, es claro que Homg(M,R) = M*.

» El functor contravariante Homg(—,N) preserva sumas directas, es decir,
Homg (@M,N) =~ (P Homg(M,N).
iel icl
» El functor covariante Homg(M, —) preserva productos directos, es decir,
Homg (M,HN) = [[Homg(M,N).
iel icl

También con la nocién de functor Hom, se tiene una nueva caracterizacion para los médulos proyectivos
e inyectivos:

Proposicion 2.2. Sean A, B, P,I objetos de la categoria de mddulos Modg,
= P es un modulo proyectivo si y solo si
Homg(P,B) — Homg(P,A)
es suprayectiva para todo epimorfismo A — B.
= [ es un modulo inyectivo si'y solo si
Homg(B,I) — Homg(A,I)
es suprayectiva para todo monomorfismo A — B.
Recordemos antes de continuar la nocién de functor exacto:
Definicion. Sean 7' y £ dos categorias abelianas y sea F : &/ — 28 un functor:
= Si F es covariante, F se dice exacto si, dada una sucesion exacta corta
0-ALBSCo0
en .7, se tiene una sucesion exacta corta
0= FA) 2 k) 29 Fio) =0
en A.
= Si F es contravariante, F' se dice exacto si dada una sucesion exacta corta
0-ALBSCco0

en £/, se tiene una sucesion exacta corta

0 F() 2% r) LY Fa) » 0

en 4.
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En particular, un functor covariante F' se dice exacto a derecha (resp. exacto a izquierda), si0 -+ A — B —
C — 0 exacta implica que F(A) — F(B) — F(C) — 0 es exacta (resp. 0 - A — B — C — 0 exacta implica
que 0 — F(A) — F(B) — F(C) es exacta), y un functor contravariante F se dice exacto a derecha (resp.
exacto a izquierda) si 0 — A — B — C — 0 exacta implica que F(C) — F(B) — F(A) — 0 es exacta (resp.
0 — A — B — C — 0 exacta implica que 0 — F(C) — F(B) — F(A) es exacta).

Con esto, el functor covariante Homg (M, —), es un functor exacto a izquierda, y el functor contravariante
Hompg(—,M) es también un functor exacto a izquierda.

Proposicion 2.3. Se tienen las siguientes afirmaciones sobre la exactitud del functor Hom:
» El functor covariante Homg(P, —) es exacto si 'y solo si P es proyectivo.
» El functor contravariante Homg(—,I) es exacto si 'y solo si I es inyectivo.

Es decir, el functor Homg(P,—) que va de la categoria de mddulos a la categoria de grupos abelianos
preserva la exactitud de sucesiones exactas cortas. Si la sucesion

0—+A—=B—C—0
es exacta en la categoria de médulos se tiene la correspondiente sucesion exacta corta
0 — Homg(P,A) — Homg(P,B) — Homg(P,C) — 0
en la categoria de grupos abelianos (se tiene un resultado similar, en su versién contravariante, para médulos

inyectivos).

De todo lo anterior se infiere que si P @ Q es proyectivo, entonces también lo son Py Q. Por otra parte,
si [ x J es inyectivo, entonces también lo son / y J. Es claro que en este caso I x J es isomorfo a I & J, pero
podemos considerar un caso mds general:

Teorema 2.1. Si {Py}qcs es una familia de modulos proyectivos, entonces @ 5Py es un médulo pro-
yectivo. Andlogamente, si {Iq}qcs es una familia de médulos inyectivos, entonces [[gcsly s un médulo
inyectivo.

Definicion. Decimos que una categoria & tiene suficientes proyectivos (resp. suficientes inyectivos) si para
cada objeto M en € existe un epimorfismo P — M con P proyectivo (resp. un monomorfismo M — I con [
inyectivo).

Notar que la categoria % tiene suficientes proyectivos (resp. suficientes inyectivos) si y solo si la categoria
opuesta ©'© tiene suficientes inyectivos (resp. suficientes proyectivos). Pese a todo, existe una asimetria
fundamental en el hecho de que muchas categorias abelianas tienen suficientes inyectivos pero no suficientes
proyectivos.

Proposicion 2.4. La categoria abeliana Modg de R-mddulos tiene suficientes proyectivos, y también sufi-
cientes inyectivos.

2.3. Resolucion proyectiva e inyectiva

Para lo que sigue se usard notacién y conceptos del dlgebra homolédgica que pueden consultarse en el
apéndice.

Definicion. Sea M un R-médulo, una resolucion proyectiva de M es una sucesion exacta P de la forma:
On O 0
P:oo-ms PP 2 5P SR SM—0

donde P, es proyectivo para todo n > 0.
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Por tanto, una resolucién proyectiva es una cadena de R-médulos proyectivos P = {P,,d,} tal que el
modulo de homologia H, (P) =0 paran > 1.

Definicion. Sea M un R-médulo, una presentacion proyectiva de M es una sucesion exacta corta de R-
moédulos:
0O—-K—-P—-M—0

tal que P es proyectivo.

Notar que una presentacion proyectiva no es otra cosa que un segmento inicial de una resolucién proyec-
tivacon P =Py y K = ker(d).
Si P es un médulo libre, se habla de presentacion libre de M.

Definicion. Si parai > n, P, =0, diremos que la resolucién P tiene longitud< n, y escribimos
O—=P—-P 41— —=P—>P—>M—=0.

Definicion. Sea IP una resolucién proyectiva de un R-médulo M, una resolucion proyectiva reducida de M
es una resolucién proyectiva de M en la cual M ha sido suprimido:

oy O 9
Py:---— P, — P —1>--~—>P1 —1>Po—>0.

Es importanto notar que no se pierde ninguna informacién acerca de P, ya que M = Coker(d,). La
ventaja que suponen las resoluciones proyectivas reducidas es que constan exclusivamente de R-mddulos
proyectivos.

Recordar que todo R-médulo M es cociente de un R-mddulo libre. Se tiene por tanto el resultado:

Proposicion 2.5. Sea M un R-mddulo. Entonces existe una resolucion libre L de M.

Ademds, como todo médulo libre es proyectivo, se tiene también que todo médulo posee una resolucién
proyectiva.

Ejemplo 2.1. Particularizando al caso de los Z-modulos, como consecuencia de que los subgrupos de un
grupo libre son libres, se tiene que cualquier grupo abeliano G admite una resolucion libre de longitud
menor o igual a 1:

0—-L —Ly—G—0.

Por ejemplo, consideremos el Z-modulo 7., con p un niimero primo. Se tiene entonces la resolucion:

O—>Zi>Z—>Zp—>O,

donde UL es la multiplicacion por p.
Loégicamente, todo lo visto se puede trasladar a médulos inyectivos:
Definicion. Sea M un R-mdédulo, una resolucion inyectiva de M es una sucesion exacta I de la forma:

al (92 on an+1
[0-MS1°P 5P %S s St 2

donde " es inyectivo para todo n > 0.

Por tanto, una resolucion inyectiva es una cadena de R-médulos inyectivos I = {I",9"} tal que el médulo
de homologia H,(I) = 0 paran > 1.

Asi, se obtienen de manera andloga los mismos resultados obtenidos para médulos proyectivos, con los
cambios obvios.
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2.4. Functor Ext

El functor Hom ya visto no preserva sucesiones exactas en general. Para apafarlo, vamos a ver ahora
otro functor de gran relevancia relacionado con los médulos proyectivos e inyectivos, que nos dard una nueva
caracterizacion de los mismos.

O On 0 .. . . L
SeaPy:--— P 2P 2 .. 5 P 25 Py — 0 una resolucién proyectiva reducida del R-mdédulo
M y sea N un R-médulo, consideremos Hompg (P, N), es decir, la sucesion

Homg(d,,N) Homg(0d,N)
—r —

Homg(Py,N) : -+ < Homg(P,,N) -+ <= Homg(P;,N) Hompg(Py,N) < 0.

Hompg(Py,N) es entonces una sucesion semiexacta, pues para todo n > 1 se cumple
Homg(9d,,N)oHomg(dy—1,N) = Homg(9,—1 09,,N) = Homg(0,N) = 0.
Podemos por tanto formar el R-médulo graduado
H*(Homg(Py,N)) = {H" (Homg(Pp,N)) }n>0-

Definicion. Para cada n > 0, denotamos H"(Hompg(Py,N)) por Ext}(M,N), y lo llamaremos functor de
extension de grado n sobre R de M por N.

Notar que si Qs es otra resolucién proyectiva reducida de M, entonces
H"(HomR(]P’M,N)) = H"(HomR(QM,N)),
por lo que el functor Exty(M,N) depende tnicamente de M, N, y n.

Teorema 2.2. Ext}(—,—) es un bifunctor de la categoria de R-mddulos en la categoria de grupos abelianos,
contravariante en la primera variable y covariante en la segunda.

Teorema 2.3. Sean N' — N — N una sucesion exacta corta de R-médulos y M un R-mddulo, existe una
sucesion exacta

0 — Extd(M,N') = -+ — Ext}(M,N") < Ext2™ (M,N') = Ext’™ (M,N) — Ext*' (M,N") — ...
De forma andloga se tiene también:

Teorema 2.4. Sean M’ — M — M" una sucesion exacta corta de R-mdédulos y N un R-mddulo, existe una
sucesion exacta

0 — Extd(M",N) — - — Extp(M',N) < Exti™ (M" | N) = Ext3 ™ (M,N) = Exti™ (M N) — ...

Vamos ahora a relacionar el functor Ext con los médulos inyectivos:

6n+1 51 e, . . . 2
Seally:--- =11 2 ... 51" 25 19 - 0 una resolucién inyectiva reducida del R-médulo M y
sea M un R-médulo, consideremos Homg(M,Iy), es decir, la sucesién

Homg(1,6") Homg(1,61)

Homg(M,Iy) : --- < Homg(M,I") Homg(M,1°) + 0.

Hompg(M,Iy) es entonces una sucesién semiexacta. A su cohomologia de grado n, H"(Homg(M,Iy)), la
denotaremos por Ext(M,N).

Proposicién 2.6. Se tiene que Extji(M,N) = Extx(M,N).

Vamos ahora a ver una relacidn directa entre los dos functores estudiados:
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Teorema 2.5. Los functores Exty(—,N) y Exty(M, —) son equivalentes naturalmente a los functores Homg(—,N)
y Homg(M,—), respectivamente.

Debido a este teorema, las sucesiones vistas toman la siguiente forma:

0 — Homg(M,N') — Homg(M,N) — Homg(M,N") — Exty(M,N') — --- — Exta(M,N") — ...

0 — Homg(M" ,N) — Homg(M,N) — Homg(M' ,N) — Exty(M",N) — --- — Exti(M',N) — ...

En el caso en que n = 1, dada una presentacion proyectiva P| — Py — M de M, se tiene la sucesién exacta
corta:
0 — Homg(M,N) — Homg(Py,N) — Homg(P,,N) — Exty(M,N) — 0,

luego Exti(M,N) es un functor que arregla la inexactitud, formando el médulo de homomorfismos
con una resolucién proyectiva finita de un R-médulo M. De manera andloga, se tiene un resultado para

Exty(M,—).
Proposicion 2.7. Sean M y N dos R-mddulos:
» Sea I un médulo inyectivo, entonces Ext}(M,I) = 0 para todo n € N.
» Sea P un modulo proyectivo, entonces Ext}(P,N) = 0 para todo n € N.

Tenemos pues, una caracterizacién mas para los médulos proyectivos e inyectivos: que el functor Ext se
anule (es decir, que el functor Hom sea exacto y no haya extensiones no triviales).

2.5. Cubierta proyectiva y generadores proyectivos

Un concepto relacionado con los médulos proyectivos es el de cubierta proyectiva, si bien su equivalente
nocién dual, la envolvente inyectiva, serd de mayor relevancia en futuras secciones. En primer lugar debemos
conocer algunas definiciones previas:

Definiciéon. Sea M un R-médulo, K C M un submddulo, entonces K se dice superfluo en M (denotado
K < M) si para cada submoédulo L C M la igualdad K + L = M implica que L = M.
Un epimorfismo f : M — N se dice superfluo si ker(f) < M.

Los conceptos de médulo y epimorfismo superfluo tienen su nocién dual en los médulos y monomorfis-
mos esenciales que estudiaremos llegado el momento.

Definicion. Sea P un médulo proyectivo y M un R-médulo, un morfismo P — M se dice cubierta proyectiva
si es un epimorfismo superfluo.

Es importante notar que no siempre existe una cubierta proyectiva para un médulo M dado.
Proposicion 2.8. Sea M un R-mddulo, si existe cubierta proyectiva, ésta es vinica salvo isomorfismo.

Claramente para un médulo proyectivo P, se tiene que la identidad P — P es un epimorfismo superfluo
(tiene nucleo 0), luego trivialmente los médulos proyectivos siempre tienen cubierta proyectiva.

Recordar la definicién de generador de un grupo ciclico (o un médulo) vista en el primer capitulo, y
echemos un vistazo a la nocién de generador proyectivo.

Definicion. Un R-mdédulo G en una categoria abeliana de médulos Modg es un generador proyectivo si es
proyectivo y para cada R-médulo H de Modg existe un homomorfismo no nulo ¢ : G — H.
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Proposicion 2.9. Sean M y N dos R-mddulos, se tienen las siguientes caracterizaciones:
= G es un generador si y solo si para cada M — N # 0 existe una aplicacion G — M — N # 0.

= G es un generador si y solo si para cada submédulo propio de M existe una aplicacion G — M cuya
imagen no estd contenida en dicho submodulo.

Proposicion 2.10. Sea M un R-mddulo:

» M es proyectivo si y solo si M es un sumando directo de una suma directa (posiblemente infinita) de
copias de R.

= M es un generador si 'y solo si R es un sumando directo de una suma directa (posiblemente infinita) de
copias de M.

Notar que si R es un anillo, considerando la categoria de R-mdédulos Modp, entonces R es un generador
proyectivo en Modp. de hecho, el functor

(R,—) : Modgr — Mod

es el functor olvido, el cudl asigna a cada R-mddulo el grupo abeliano subyacente.



Capitulo 3

Modulos proyectivos y libres

Vamos ahora a dedicar la seccién al estudio de los médulos proyectivos en particular. Para ello, vamos a
considerar las nociones de médulos libres ya vistas, asi como nuevos conceptos como la torsién y su relacion
con el producto tensorial. Finalmente se planteardn una serie de problemas abiertos.

3.1. Modulos libres

Como ya vimos en las primeras secciones, los médulos libres estdn muy relacionados con los médulos
proyectivos. Recordemos la definicién, desde un punto de vista algo distinto:

Definicion. Un médulo F es libre si es suma directa de mddulos ciclicos infinitos:

F= @<xi>7

icl
es decir, si para todo g € F existen ny,...,n; € Z/{0}, k € N, tnicos tales que
g =nmixj + -+ nx;, .

Llamamos dimension del médulo al cardinal de su base. Un mddulo libre F de dimensién # lo denotaremos
como F;,.

Notar que esta caracterizacion es equivalente a la definicién vista para médulos libres en el primer capi-
tulo. Dada su relacién con los médulos ciclicos, se cumplen también las siguientes propiedades:

Proposicion 3.1. Dos mddulos libres finitamente generados F,, y F,, son isomorfos si 'y solo si m = n.
Se tiene por tanto que dos médulos libres son isomorfos si y solo si tienen la misma dimensién.

Teorema 3.1. Un conjunto X = {x; }ics de generadores de F es un conjunto libre de generadores (y por tanto
F es libre) si y solo si para cada morfismo @ de X en un médulo A, A puede ser extendido a un homomorfismo
tnico y : FF — A.

Corolario 3.1. Todo médulo con a lo sumo m generadores es la imagen por un epimorfismo de F,,
Teorema 3.2. Si B es un submodulo de A tal que A/ B es libre, entonces B es un sumando directo de A.
Teorema 3.3. Todo submddulo de un médulo libre es libre de dimension menor o igual que la del modulo.

Si tenemos una sucesion exacta

A&C—>O

con C un modulo libre, entonces la sucesion se escinde.

15
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3.2. Torsion

Un concepto relacionado con el de médulos libres es el de torsién, cuya ausencia nos servird para definir
la idea de divisibilidad en la seccién dedicada a médulos inyectivos.

Definicion. Sea T un Z-mdédulo, decimos que T es mddulo de torsion si todos sus elementos tienen orden
finito. Opuestamente, si todos los elementos de 7 tienen orden infinito (salvo el 0), decimos que T es libre
de torsion.

El conjunto T de todos los elementos de orden finito en un médulo M es un submdédulo de M. Es ficil
ver que T es mddulo de torsidn y el cociente M/T es libre de torsion.

Definicion. Sea 7' un médulo de torsion, si todos sus elementos tienen orden una potencia de p con p un
nimero primo, decimos que 7' es un modulo primario.

Teorema 3.4. Todo modulo de torsion es suma directa de médulos primarios.
Una relacion importante entre la idea de torsiéon y los médulos libres es la siguiente:
Proposicion 3.2. Todo mddulo libre es libre de torsion.

Demostracion. En efecto, si F es un R-mddulo libre con base {x;}icy, se tiene x =Y ;c;rix; donde r; € R es 0
para casitodoi € 1. Si 0 # r € {r € Rlrx =0}, se tiene que 0 = rx =Y ;c;rrix;, luego rr; =0 para todo i € I
ya que los elementos (x;)ic; son una base. Esto implica que r;i = 0 para todo i € I, porque R es un dominio y
R#0. Portantox =0y F es libre de torsion. B

Corolario 3.2. Sea M un R-mddulo con R un DIP, entonces M es libre si y solo si M es libre de torsion.

Demostracion. Suponer que M es un R-mddulo libre de torsion finitamente generado, M = R{xy,...x,), y
probemos que M es libre por induccion en n. Si n = 1, M = Rx, considerar la aplicacion h: R — M = Rx,,
dada por h(r) = rxy. h es un epimorfismo y ker(h) = {r € R|rx; =0} = 0 ya que M es libre de torsion, luego
M = R, que es libre.

Si n > 2y se satisface la hipétesis para modulos con a lo sumo n— 1 generadores, sea N = R{(xy,...,x,—1),
entonces M/N =YY" | R(x;i+N) = Rxy +N/N = RXVNmen. Como N puede ser generado por n— 1 ele-
mentos y es un submédulo de un médulo libre de torsion, N es libre de torsion y por tanto libre por hipotesis
inductiva. Por lo tanto N N Rx,, es libre, y el epimorfismo M — M/Rvn = N+RX’VRxn = N/NﬂRx,, se es-

cinde y M = M/Rxn @ Rx, = N/NﬂRxn @ Rx,, que es una suma directa de R-médulos libres, luego es libre.
|

3.3. Producto tensorial

Un concepto también relevante a la hora de manejar médulos proyectivos, y que tiene relacién con la
torsion y el functor Hom es el producto tensorial, gracias al cual podemos definir el functor Tor. Una intro-
duccién bésica en la materia se encuentra en el apéndice, y para ahondar mas puede encontrarse informacién
en el libro de M. F. Atiyah y I. G. MacDonald [1], y en el de P.J. Hilton y U. Stammbach [4].

Proposicion 3.3. Sean M, N y P tres R-mddulos se tiene el siguiente isomorfismo que relaciona el producto
tensorial y el functor Hom:
Hom(M ®N,P) = Hom(M,Hom(N,P))

Como luego veremos, el producto tensorial define un functor. En este caso, se dice que el producto
tensorial y el functor Hom son functores adjuntos, es decir, se cumple la relacién dada.
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Proposicion 3.4. Sea
MLMEM o0
una sucesion exacta de R-médulos y homomorfismos y sea N un R-moédulo, entonces la sucesion
®1 ®1
MaN I MoN £ M oN -0
es exacta.

Definicion. Dada una aplicacién o : A — A’ denotaremos por o, : A® B — A’ ® B a la aplicacién inducida
dada por o, (a®b) = (a) ® b. Del mismo modo, dada la aplicacién 8 : B— B’ denotaremos por 3, : AQ B —
A ® B ala aplicacién inducida dada por . (a ®b) = a® (BD).

Con esto, se tiene que ¢ @ B = o, f, = B. ® Q.
Proposicion 3.5. Sean A y B dos R-modulos, se tienen el functor covariante
—Q®B:Modr — Ab

y el functor covariante
A®—: Modgr — Ab.

Ademds, — @ — es un bifunctor.

o ez Z . 2 . ., H
Definicién. Sean M y N dos R-médulos, N se dice médulo plano si para cada sucesion exacta corta M’ —
€ . .2
M = M, se induce otra sucesién exacta corta:

0-MeNEMeN M @N—0.

Es decir, para cada monomorfismo u : M — M, el homomorfismo inducido tt, : M @ N - M @ N es un
monomorfismo.

Notar que lo dltimo no es cierto en general:

Ejemplo 3.1. Consideremos el caso de grupos abelianos, es decir R =7, y tomemos M = Z;. Sea la sucesion

exacta corta 7. %5 7 — Zy, donde W es la multiplicacion por 2. Entonces
W(ne@m)=n®2m=2n@m=0@m=0,
conn € Zyymé€ Z. Por tanto, W, : Lo Q7L — Lo @7 es la aplicacion nula, pero Zy Q7. = 7.

Los médulos planos son por tanto una herramienta importante, pues son los que preservan la exactitud
de sucesiones exactas cortas tras aplicarles el functor dado por el producto tensorial.

Proposicion 3.6. Las siguientes afirmaciones son equivalentes:
= N es plano.

» Si0—M —M— M"— 0 es cualquier sucesion exacta de R-mddulos, entonces la sucesién 0 —
MIN—->MIN—-M'®N — 0es exacta.

» Si f: M — M es inyectiva, entonces f Q1 :M' QN — M QN es inyectiva.

s Si f: M — M es inyectiva y M, M’ son finitamente generados, entonces f @1 : M QN — M QN es
inyectiva.

Veamos ahora la relacion directa entre los mddulos planos y los proyectivos:
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Proposicion 3.7. Todo mddulo proyectivo es plano.

Es mas, en el caso de los Z-mé6dulos, un médulo es plano si y solo si es libre de torsién. Notar que, en
general, los médulos planos no son proyectivos (considérese el grupo de los racionales @, que es libre de
torsion pero no libre).

Vamos a ver ahora el functor Tor, el cudl es, junto al functor Ext, uno de los conceptos centrales del
dlgebra homoldgica.

Definicion. Sean M y N dos R-médulos, dada una presentacion proyectiva K — P — M de M, se define el
functor:
TorR(M,N) = ker(u. : K& N — PQM).

Proposicion 3.8. La sucesion
0— TorR(M,N) -+ KQN - PQN - M®N — 0
es exacta.
De forma analoga:

Definicion. Sean M y N dos R-médulos, dada una presentacion proyectiva S %0 Ay N de N, se define el
functor:
Tors(M,N) = ker(v, - M®S — M® Q).

Proposicion 3.9. La sucesion

0— TorR(M,N) = M®S -M®Q —+M®N — 0
es exacta.
Proposicion 3.10. Si M o N es proyectivo, entonces

Torf(M,N) =0 =Tory (M,N).

P % . . .
Teorema 3.5. Sea M un R-médulo y sea N' 5N Y N una sucesion exacta de R-modulos, entonces existe
un homomorfismo @ : Tor®(M,N") — M ®@ N’ tal que la siguiente sucesion es exacta:

Tor®(M,N') =5 Tor®R(M,N) 25 Torf(M,N") & M@N S M&@N 2 M@N" — 0.

, K \% ., , .
Teorema 3.6. Sea N un R-mddulo y sea M’ — N — M" una sucesion exacta de R-médulos, entonces existe
un homomorfismo @ : Tor®(M" ,N) — M' @ N tal que la siguiente sucesion es exacta:

Tor®(M',N) =5 Tor®(M,N) 25 Tor®R(M",N) & M' @ N = M@QN 2 M" @ N — 0.
El functor Tor es lo que se conoce como el functor derivado del producto tensorial, asi como el functor
Ext es el functor derivado del functor Hom.
3.4. Modulos proyectivos

Vamos ahora a estudiar la relacién entre los conceptos vistos y los médulos proyectivos, particularizando
al caso de los Z-mddulos, es decir, grupos abelianos.

Teorema 3.7. Un modulo es proyectivo si 'y solo si es libre.
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Demostracion. Para verlo, sea B : B — C un epimorfismo y F un mddulo libre con ¢ : F — C. Para cada
x; en un conjunto de generadores {x;} de F, tomamos b; € B tal que Bb; = @x;, lo cudl es posible por ser B
un epimorfismo. La correspondencia x; — b; puede entonces ser extendida a un homomorfismo vy : F — B
que satisface By = @, luego F es proyectivo. Reciprocamente, sea G un médulo proyectivoy B : F — G un
epimorfismo de un médulo libre F sobre G. Entonces existe un homomorfismo ¥ : G — F tal que By = 1¢.
Por tanto y es un monomorfismo sobre un sumando directo de F, es decir, G es isomorfo a un sumando
directo de F, y en consecuencia G es libre. B

Notar que lo anterior no es cierto en general, pero si en el caso de los grupos abelianos finitamente
generados, pues son DIPs. Lo que si es cierto en general es que todo médulo libre es proyectivo.

Ejemplo 3.2. Como contraejemplo en el que esto no sucede, tomando como anillo R =7, si B es el epimor-
fismo tinico de B = Z/42 aC= Z/ZZ’ la aplicacion identidad @ de G = Z/ZZ a C no puede ser completado
por un homomorfismo Y : G — B, luego Z/ZZ no es proyectivo.

Una relacién fundamental entre médulos libres y médulos proyectivos es la siguiente:
Proposicion 3.11. Un mddulo es proyectivo si y solo si es un sumando directo de un médulo libre.

Es decir, para todo médulo proyectivo P, existe un médulo libre H tal que P& H = F es libre. De este
hecho se infiere la caracterizacion vista para médulos proyectivos en relacion con las resoluciones libres y
proyectivas: la sucesion exacta corta

O—-H—=F—=P—0

con P proyectivo siempre tiene una extension trivial dada por F = P& H, luego se escinde.

Proposicion 3.12. Si P es un mddulo proyectivo, entonces existe un modulo libre F tal que P& F = F. Esto
es lo que se conoce como el truco de Eilenberg.

3.5. Algunos problemas abiertos

Llegados a este punto, nuestro objetivo es encontrar una forma de clasificar todos los grupos abeliano,
o dar un conjunto completo de invariantes para grupos abelianos, condiciones necesarias y suficientes para
que dos grupos abelianos sean isomorfos.
Por el momento no hay ninguna forma de hacer algo asi para grupos abelianos en general, pero podemos
restringir el problema para estudiarlo mas en detalle.
Hay muchas cuestiones que comprenden estos temas, como cdmo saber cudndo tenemos un teorema real-
mente satisfactorio, pues al fin y al cabo tener un conjunto completo de invariantes puede acabar siendo tan
complicado como inviable en la prictica.
Al respecto, el matemético Irving Kaplansky [6] propone tres problemas abiertos para grupos abelianos
generales: Sean G, H y F tres Z-médulos (grupos abelianos):

1. Si G es isomorfo a un sumando directo de H, y H es isomorfo a un sumando directo de G, (son G y
H necesariamente isomorfos?

2. SiGH Gy H @ H son isomorfos, ¢son G y H isomorfos?

3. Si F es finitamente generado y F' & G es isomorfo a F & H, (son G y H isomorfos?

Asimismo se tiene el llamado problema de Whitehead: sea A un grupo abeliano con Ext!(A,Z) = 0, ;es
A necesariamente libre?

Si un grupo abeliano A es libre, es proyectivo, y se sigue que Ext'(A,Z) = 0 (escinde sucesiones exac-
tas cortas), luego lo que hay que probar es el reciproco. Estd demostrado que el problema de Whitehead es
indecidible bajo los axiomas de Zermelo-Fraenkel y el axioma de eleccidn.
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Capitulo 4

Modulos inyectivos y divisibles

Pasamos ahora a profundizar en el concepto de médulos inyectivos, una nocién dual (en sentido cate-
gobrico) a la de modulos proyectivos vista en el capitulo anterior. Un mayor esfuerzo serd necesario para
caracterizarlos, introduciendo conceptos como el de envolvente inyectiva y terminando con su clasificacion,
dada por el teorema de Matlis.

4.1. Modulos divisibles

Empezamos definiendo el concepto de mddulos divisibles, una nocién dual a la de médulos de torsién
que caracterizaban a los médulos libres en el capitulo anterior.

Definiciéon. Un médulo D se dice divisible si n|a para todo a € D'y todo n > 0, es decir, si existe x € D tal
que nx = a.

La definicién anterior se puede expresar de manera equivalente usando la idea de anulador:
Definicion. Sea un R-médulo M, a € D, llamamos anulador de a en R al conjunto
anng(a) = {r € R|ra = 0}.
De forma mads general podemos hablar del anulador de M:
anng(M) ={r e Rlae M = ra=0}.

De esta forma, un médulo D es divisible si para todo u € D'y a € R tal que anng(a) C anng(u), u es
divisible por a.

Notar que si x = b es solucién, el coconjunto b+ D|n]| es el conjunto de todas las soluciones. Ademas, si
D es libre de torsién, entonces nx = a tiene al menos una soluciéon. Asimismo se tiene que D es divisible si
y solo si nD = D para todo n > 0.

Proposicion 4.1. La suma directa y el producto directo de modulos es un médulo divisible si y solo si todas
las componentes son divisibles.

En particular, en el caso de Z-médulos, un submédulo divisible es un sumando directo.

Teorema 4.1. Un submddulo divisible D de un médulo A es un sumando directo de A, A= D@ C para algiin
submodulo C de A. Dicho C puede ser elegido de forma que contenga al submodulo B de A tal que DB = 0.
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4.2. Modulos inyectivos

De nuevo, vamos a relacionar lo visto acerca de mddulos divisibles con la nocién de mddulos inyectivos
definida en el primer capitulo.

Teorema 4.2. Los grupos divisibles son inyectivos.

Demostracion. Para verlo, sea D un mddulo divisible y sea el diagrama dado por:

0——A—%*+B

-,
s

s
s
D

en el que consideramos a A submédulo de B. Tomamos todos los médulos G entre Ay B, A < G < B, tal que &
tiene una extension 6 : G — D. Ordenamos parcialmente los pares (G, 0) tal que (G,0) < (G, 0') significa
G < G’y 0 eslarestriccion de 0’ : G' — D a G. El conjunto de pares es no vacio, ya que (A, &) pertenece a
él, y es inductivo ya que las cadenas (G, 0;) tienen limite superior (G,0) con G =J;G;y 6 : G — D. Por
el lema de Zorn existe un par (Gy, 6y) maximal en el conjunto. Si Gy < By b € B/Go satisface nb € Go para
algiin n > 0, entonces podemos elegir el minimo n tal que nb = g € Gy. Por la divisibilidad de D, habrd
algiin x € D tal que nx = 6yg. Se tiene que

c+rb— Oc+rx (c € Gy,0<r<n)

es un homomorfismo de (Go,b) en D. Si nb & Gy salvo si n = 0; entonces se tiene un homomorfismo de
(Go,b) en D donde x € D es arbitrario. Por tanto Gy < B contradice la maximalidad de (Go,6), luego
Go=By6=n.1

La afirmacién anterior es un si y solo si en el caso en que R sea un DIP. Se tiene, por tanto:
Corolario 4.1. un grupo abeliano es inyectivo si 'y solo si es divisible.

Proposicion 4.2. Sea R un dominio conmutativo, y M un R-mddulo libre de torsion, entonces M es inyectivo
si y solo si es divisible.

Teorema 4.3 (Criterio de Baer). Un R-mddulo I es inyectivo si y solo si para cualquier ideal U de R, todo
R-homomorfismo f : U — I puede ser extendido a ' : R — I.

Notar que un homomorfismo f’ : R — I estd univocamente determinado especificando la imagen f'(1) €
1, luego extender f a algdn f’ consiste en encontrar un elemento x € [ tal que f(r) = xr, Vr € U.

Demostracion. Sea el siguiente diagrama donde I es un modulo inyectivo, y tomemos A como submddulo
de B:

0——A—%*+B
¢
[ 4
1

Por el lema de Zorn, podemos encontrar un hy : Ay — I donde A C Ay C B, hyo|a = h tal que hy no puede
ser extendido a ningiin submodulo de B que contiene a Ay propiamente. De esto se sigue que que Ao = B y
queda demostrado. Veamos que efectivamente se cumple por reduccion al absurdo:

Suponer que existe un elemento b € B\ Ag. Entonces

U :={reR|breAp}
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es un ideal de R. Sea f(r) = ho(br), Vr € U, se sigue que f € Homg(U,I). Por asuncion, se asume que
existe un elemento x € I tal que f(r) = xr ¥r € U. Sea Ay = Ao + bR y definimos hy : Ay — I dada por
hi(a:0+br)=ho(agp) +xr, Yag € Ag,r € R.

Finalmente, para ver que h, estd bien definida, suponer que ao+br = ay+br’, luego b(r—r') = ag—ajy € Ag
yr—r e€U. Portanto f(r' —r) = x(r' —r). Por otro lado, f(r—r) = ho(b(r' —r)) = ho(ao — ap,) = ho(ap) —
ho(ag), luego x(r' —r) = ho(ag) — ho(ay) y por tanto ho(ag) + xr = ho(ayy) +xr’. Por tanto hy estd bien
definida. Esto es, hy € Homg(A1,I) y hy extiende a hy, lo cudl contradice la hipotesis. B

El Criterio de Baer es un importante resultado del que se deriva la siguiente particularizacién:

Proposicion 4.3. Sea R un dominio conmutativo con cuerpo cociente K y sea I un K-espacio vectorial,
entonces Ig es un R-médulo inyectivo.

Definicion. Un médulo C se dice reducido si no tiene submédulos divisibles aparte del 0.
Teorema 4.4. Todo modulo A es suma directa de un médulo divisible D y un modulo reducido C:
A=Da®C,
donde D estd univocamente determinado y C es tinico salvo isomorfismo.
El teorema estructural para Z-modulos divisibles muestra que todos los médulos divisibles son precisa-
mente las sumas directas de Q y Z(p*), denominado p-grupo de Priifer (L. Fuchs [3]).
Por ultimo, se tiene el siguiente resultado dado por la nocién de médulo puro:

Definiciéon. Un submédulo H de un Z-médulo M se dice puro sih € H, h =ny (conn € Z, y € M) implica
h =nhgy, con hy € H.

Es decir, un médulo H serd puro si todo elemento de H que es divisible por n en M, es divisible por n en
H.

4.3. Envolvente inyectiva

Los médulos libres son universales en el sentido en que todo médulo es la imagen epimérfica de algtin
moédulo libre. De manera similar, se puede establecer un resultado dual para médulos divisibles.

Teorema 4.5. Todo modulo puede ser encajado como un submodulo en un modulo divisible.

El teorema anterior puede mejorarse introduciendo el concepto de un médulo divisible minimal que
contiene a un médulo dado.

Definicion. Un submédulo E de un médulo A se dice esencial si E N B # 0 con B cualquier submédulo no
trivial de A. En tal caso, A se dice extension esencial de E.

Lema 4.1. Un mddulo es inyectivo si y solo si no tiene ninguna extension esencial propia.

Definicion. Sea un médulo A, un sistema independiente M de A tal que que no hay otro sistema indepen-
diente de A que contenga a M propiamente se dice maximal.

Con esta idea se tienen las siguientes definiciones de rango:

Definicién. Llamamos rango de un médulo A, denotado r(A), al cardinal de un sistema independiente ma-
ximal que contiene Unicamente elementos de orden infinito y primo. Si nos restringimos a los elementos
de orden infinito, entonces la cardinalidad de este sistema se llama rango libre de torsion, denotado ry(A).
Andlogamente, considerando los elementos cuyo orden es una potencia de algtin primo p, se tiene el p-rango
de A, denotado r,(A).
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Se tiene la siguiente relacidn entre rangos:
r(A) = ro(A) +)_rp(A)
p
Lema 4.2. Un submodulo B de A es esencial si y solo si un homomorfismo o : A — M con un mddulo

arbitrario M es necesariamente ménico siempre que ¢|B : B — M es un monomorfismo.

Definicion. Dado A, llamamos al médulo divisible E que contiene a A un mddulo divisible minimal si ningln
submédulo divisible propio de E contiene a A.

Lema 4.3. Un modulo divisible E que contiene a A es divisible minimal cuando A es un submodulo esencial
de E.

Teorema 4.6. Todo mddulo divisible que contiene a A contiene un médulo divisible minimal que contiene a
A. Todo par de modulos divisibles minimales que contienen a A son isomorfos sobre A.

Definicion. Dicho médulo divisible minimal E que contiene a A es llamado envolvente inyectiva de A.

Se tiene que
ro(E)=ro(A) 'y rp(E)=ry(A), Vp primo

La estructura de la envolvente inyectiva de un médulo A estd completamente determinada por los rangos
de A.

Teorema 4.7. Sea D un modulo, son equivalentes:
1. D es divisible.
2. D es inyectivo.
3. D es un sumando directo de cada modulo que contiene a D.

De lo anterior se sigue el resultado visto en el segundo capitulo, teniéndose la presentacion inyectiva:
0—+A—D—D —0

con D (y por tanto D') médulos divisibles, cuya existencia para cada A estd garantizada. Esta sucesion exacta,
por tanto, tiene la extension trivial dada por D=A® D',

Proposicion 4.4. Si C es un submddulo de un mddulo B tal que B/C es isomorfo a un submodulo H de M,

entonces existe un modulo A que contiene a B tal que A/C =M.

Esto quiere decir que el siguiente diagrama es conmutativo

0 C B H 0
I
0 C A M 0

donde ambas sucesiones son exactas y las aplicaciones verticales son inyecciones.
Se tiene también el siguiente resultado:

Teorema 4.8. Sea un modulo M C I, son equivalentes:
1. I es esencial maximal sobre M.

2. I es inyectivo y esencial sobre M.
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3. I es inyectivo minimal sobre M.

Notar que dicho médulo / es precisamente una envolvente inyectiva de M.
Corolario 4.2. Si I y I' son dos envolventes inyectivas de M, entonces son isomorfas.

Nos referiremos a partir de ahora como E (M) a ”1a” envolvente inyectiva de M.

Corolario 4.3. Si I es un modulo inyectivo y M es un submodulo de I, entonces I contiente una copia de
E(M).
Si M C N entonces N puede ser agrandado a una copia de E(M) (de hecho E(N) = E(M)).

Dado un médulo, se tiene un método de construccién de su envolvente inyectiva:

Proposicion 4.5. Sea M un Z-médulo y x # 0 un elemento de m de orden n (que puede ser infinito) y sea

‘P1<x>—>@/z
Loz oo
PN )1C+ l.fl’l<
§+Z lfI’lZOO

un homomorfismo, Q/Z se extiende a un homomorfismo no nulo @ : M — @/Z, luego Homy, (R, Q/Z)

es un cogenerador inyectivo.

La nocién de envolvente inyectiva de M, un moédulo inyectivo / para el que existe un monomorfismo
M — I cuya imagen es "grande", es precisamente dual a la nocién de cubierta proyectivo de M, un médulo
proyectivo P para el que existe un epimorfismo P — M cuyo nicleo es "pequefio”.

Un ejemplo del concepto de envolvente inyectiva en el caso de grupos abelianos (Z-mddulos) es el
siguiente:

Ejemplo 4.1. Sea M un Z-mddulo, la envolvente inyective E(M) es lo que comiinmente se llama envolvente
divisible del grupo abeliano.
Sea C, el grupo ciclico de orden n. Para cada primo p, se tiene el p-grupo de Priifer C=, la union ascendente
de grupos

C,CCrCCprC....

Entonces Cp~ es p-divisible y por tanto divisible (es isomorfo a la parte p-primaria de Q/Z ). Ademds, Cp~
es Z-inyectivo y esencial sobre cualquier C i (i > 1). Por tanto,

E(Cy)=Cp, Vi> 1.

4.4. Teorema de Matlis

Finalmente, nuestro objetivo es proporcionar una clasificacidon de los médulos inyectivos, y para ello va-
mos a hacer uso de la teoria desarrollada por el matematico Eben Matlis. Para una exposicion en profundidad
de dicha teoria puede consultarse el libro de T. Y. Lam [9], entre otros.

Definicion. Sea R un anillo que satisface la condicion de cadena ascendente en ideales a izquierda y derecha,
entonces llamamos a R un anillo noetheriano. Es decir, para toda cadena ascendente de ideales I} C I, C I3 C
.existeneNtalquel, =111 =....

Teorema 4.9. Para cualquier anillo R, las siguientes afirmaciones son equivalentes:

1. Todo limite directo de médulos inyectivos es inyectivo.
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2. Toda suma directa de modulos inyectivos es inyectiva.
3. Toda suma directa contable de modulos inyectivos es inyectiva.
4. R es un anillo noetheriano.
Teorema 4.10. Para todo anillo R, las siguientes afirmaciones son equivalentes:
1. R es noetheriano.
2. Todo R-modulo inyectivo M es suma directa de submodulos (inyectivos) indescomponibles.

3. Existe un nimero cardinal o tal que todo R-modulo inyectivo M es suma directa de submodulos
(inyectivos) de cardinalidad < o.

Corolario 4.4. Sea N un mddulo finitamente generado sobre un anillo noetheriano, entonces E(N) es suma
directa finita de inyectivos indescomponibles.

Definiciéon. Un R-médulo no nulo M se dice uniforme si todo par de submoédulos no nulos de M intersecan de
manera no trivial (equivalentemente, todo submédulo no nulo de M es indescomponible, o todo submédulo
no nulo de M es esencial en M).

Un ideal U C R se dice inter-indescomponible si el médulo ciclico (R/U>R es uniforme (equivalentemente,
si para todo par de ideales V.V D U, VNV’ =U implicaV =U o V' = U).

Ejemplo 4.2. Para cualquier R-modulo M se tiene que simple —> uniforme —> indescomponible. De
hecho, las tres nociones son equivalentes si R es un anillo semisimple, es decir, un anillo que es un modulo
semisimple (suma directa de submodulos simples) sobre si mismo.

En el caso de grupos abelianos, es decir, si R =7, se tiene que Z, Q y Z, (n > 2), son uniformes pero no
simples.

Teorema 4.11. Para todo modulo inyectivo M sobre un anillo R, las siguientes condiciones son equivalentes:
1. M es indescomponible.
2. M#0,yM = E(M') para cualquier submédulo no nulo M’ C M.
3. M is uniforme.

4. M = E(U) para algiin médulo uniforme U.
5. M=E (R/U) para algiin ideal inter-indescomponible U C R.

6. M es fuertemente indescomponible, es decir, E = End(Mg) es un anillo local.

Corolario 4.5. Si un R-mdédulo inyectivo I puede expresarse como M| & - -- & M,, donde M; son indescom-
y p P

ponibles, entonces n estd univocamente determinado, como también lo estdn (salvo permutaciones) los su-

mandos indescomponibles M1, ..., M,, salvo isomorfismo.

Esto aplica, en particular, a la descomposicion directa de I = E(N) donde N es un médulo finitamente
generado sobre un anillo noetheriano.

Definicion. Decimos que un R-médulo N es primo si N # 0, y ann(N) = ann(N') para cualquier submédulo
no nulo N’ C N. Para tal médulo primo N, p := ann(N) es siempre un ideal primo en R.

Definicion. Sea M un R-mddulo, un ideal p de R se dice un primo asociado de M si existe un submdédulo
primo N C M tal que p = ann(N).
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El conjunto de primos asociados de M se denota Ass(M). Por ejemplo, Ass(0) = &, y si N es un médulo
primo, se tiene Ass(N) = {ann(N)}.

Lema 4.4. Sea R un anillo conmutativo 'y sea M un R-mddulo, entonces un ideal primo p pertenece a Ass(M)
siy solo si p = ann(m) para algiin m € M.

Esto es, en el caso conmutativo, se tiene que p es un primo asociado de M si y solo si podemos encontrar
una copia de R/p en M.

Lema 4.5. Sea M # 0 un mddulo uniforme. Si ann(Ny) es un miembro maximal de la familia {ann(N)}
donde N abarca todos los submddulos no nulos de M, entonces Ny es un submddulo primo y ann(Np) es
un primo asociado de M. En particular, si R es un anillo cuyos ideales satisfacen la condicion de cadena
ascendente (es decir, si R es un anillo noetheriano), entonces para todo médulo no nulo M, Ass(M) # &.

Lema 4.6. Si M es un R-modulo uniforme, entonces
|Ass(M)| < 1.

Denotaremos a partir de ahora como .# (R) al conjunto de clases de isomorfismo de los médulos inyec-
tivos indescomponibles sobre un anillo R. Denotaremos también como Spec(R) al espectro primo de R, es
decir, el conjunto de todos los ideales primos de R.

Teorema 4.12. Sea R un anillo noetheriano, entonces existe una sobreyeccion natural & : & — Spec(R).

En general, & no es una biyeccion. Esto se cumplird en el caso en que R sea un anillo artiniano, es decir,
un anillo que satisface la condicion de cadena descendente (en contraposicidn a los anillos noetherianos):

Teorema 4.13. Sea R un anillo artiniano, entonces o, : .% — Spec(R) es una biyeccion. Si {Vi,...,V,}
es un conjunto completo de R-mddulos simples entonces {E(V1),...,E(V,)} es un conjunto completo de
R-modulos inyectivos indescomponibles (salvo isomorfismo).

Por dltimo, vamos a ver el teorema de clasificacién de médulos inyectivos. El resultado es véalido pa-
ra cualquier anillo noetheriano conmutativo R, pero en este caso lo particularizaremos al caso de grupos
abelianos, es decir, tomando como anillo R = 7Z:

Teorema 4.14 (Matlis). La aplicacion
o: I(Z)— Spec(Z)

es una biyeccion. Ademads,
{E <Z/p> pe Spec(Z)}
proporciona una lista completa de Z-mddulos inyectivos indescomponibles, salvo isomorfismo.
Demostracion. Para p € Spec(7Z), Z/p es un Z-mddulo uniforme, luego podemos definir B : Spec(Z) —
S (Z) tal que
Bw) = |E(%4)| e 7 @),
Es claro que o3 (p) = p.

Por ultimo debemos probar que Bo[M) = [M| para cualquier [M] € 7 (Z). Sea Ass(Z) = {p}, entonces

p = ann(m) para algiin m € M, y por tanto mZ = Z/p como Z-modulos. Por otro lado, se cumple también
M = E(mZ), luego

M) = [E(%4)] = Br) = Balm].
|
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Apéndice A

Teoria de categorias

A.1. Objetos y morfismos

Definicion. una categoria € consiste en:
1. Una clase Ob% de objetos.
2. Para cada par de objetos A, B € Ob%’, un conjunto Mory (A, B) de morfismos.

3. Para cada terna de objetos A, B,C € Ob% una aplicacion
Morg(B,C) x Morg(A,B) — Morg(A,B)
que satisface las siguientes condiciones:
a) Si (A,B) # (C,D), entonces
Morg(A,B)NMorg(C,D) = .
b) Si f € Mory(A,B), g € Mor¢(B,C), h € Mory(C,D), entonces
(f8)h= f(gh).
c¢) Para cada objeto A, existe un morfismo tnico 14 € Mory(A,A) de modo que
fla=f,
Vf € Morg(A,B)y 148 = g Vg € Morg(B,A).
Definicion. Si f € Mory(A,B), A se dice dominio de f,y B codominio de f.
Definicion. Sean ¥, 2 dos categorias, & es una subcategoria de € si VA,B € Ob 2,
Ob2 C Ob% y Mory(A,B) C Morg(A,B).
Una subcategoria & de ¢ se dice plena si VA,B € Ob%,
Morg(A,B) = Morg (A, B).
Definicion. Sean %, 2 dos categorias, la categoria producto € x & esta dada por:

1. Ob(€¢ x ) = Ob¥ x Ob2Z.

29
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2. Si (A,B), (A',B) € ObE x ObF,
Morgy5((A,B),(A',B")) = Morg(A,A") x Mory(B,B').
3. Si(f,g) € Morg«((A,B),(A",B)), (f',¢) € Morgx4((A',B'),(A”,B")),
(f,¢)-(f.e) = (ff.d¢)

Definicion. Una categoria ¢ se dice pequeria si Ob% es un conjunto.

Definicién. Sea % una categoria, dos objetos C,D € Ob% se dicen isomorfos si existen h € Mory(C,D),
g € Morg(D,C) con
gh: 1C7 hg: lD'

En este caso se dice que /' y g son isomorfismos.
Sih € Morg(A,B), g € Morg(B,A) cumple gh = 14, h se dice seccidn y g retraccion.
Un morfismo h € Mory (A, B) se dice epimorfismo siVg1,g, € Morg(B,C) con C € Ob%,

gih=gh — g =g.

Se dice que & es un monomorfismo si VC € Ob%, fi, f» € Mory(C,A),

hfi =hfs = fi = fa.

Una categoria en la que cada morfismo que es epimorfismo y monomorfismo es isomorfismo se llama equi-
librada.

Definicién. Sea ¢ una categoria, se llama subobjeto de A € Ob% a un par (C, ) con o : C — A un mono-
morfismo.

c 25 A
1 V
D
Se llama objeto cociente de A € Ob% a un par (Q, p) con p : A — Q un epimorfismo.

A1

N
0

Definicion. Un objeto P en una categoria se dice final si para cada objeto A, Mor(A, P) contiene un tinico
elemento.

Un objeto Q en una categoria se dice inicial si para cada objeto A, Mor(Q,A) contiene un tnico elemento.
Un objeto O en una categoria se dice objeto cero si es inicial y final.

Definicion. Sea ¥ una categoria con objeto cero Oy A, B € Ob%’, un morfismo Oxp : A — B se dice morfismo
cero si puede factorizarse a través del objeto cero:

A2, p
\T
0

Definicién. Sean f,g: A — B morfismos en una categoria, un par (K,7) con K un objetoy 7: K — A un
morfismo se dice igualador de fy g si:
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1. ft=gr.

2. Va : X — A con fo = ga, existe un tnico f : X — K tal que a = 7[3:

f
K—"+A—2B

ﬁj{% ’

Definiciéon. Si f,g;A — B son morfismos en %, un par (Q, p) con p : B— Q se dice coigualador de fy g
si:

1. pf=psg.

2. Vg:B — X con qf = qg, existe un tnico h: Q — X tal que hp = g:

AigB%Q

8 X lh
X
Definicion. Sea % una categoria con objeto cero, se llama niicleo de un morfismo f: X — Y a
Kerf := Ig(f, Oxy).
Se llama coniicleo de f al coigualador de f y Oxy:
Cokerf := Coig(f,Oxy).

Definicién. Sea ¢ una categoria, la categoria opuesta ¢° viene dada por:

1. Ob% = 0be°.

2. SiA,B € Ob6, Morgo(A,B) = Morg(B,A).

3. Si f €Moryo(A,B), g € Moryo(B,C). La composicionde fy ges fog=gf.

A.2. Functores

Definicion. Sean ¢’y Z categorias, un functor covariante F : ¢ — 9 es:

1. Una funcién
F : 0b¢ — ObD

A—FA

2. Una funcién
F :Mor€ — Mor9

f=Ff
cumpliendo:
a) Sife€Mory(A,B), Ff € Morgy(FA,FB).
b) Sig € Morg(B,C), F(gf) = F()F (f)-
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¢) F(la) = 1.

Definicion. Se llama functor contravariante de € en & ala nocién dual del functor covariante, es decir, al
functor F : 9 — 2. Asi, F es por una parte una funcién Ob% — 2y para cada A, B € Ob% una aplicacién

F :Morg(A,B) — Morg(FB,FA)

cumpliendo
F(f8) = F(Q)F(f)-

Definicion. Sean %7,...,%, con n = r+ s categorias, se llama multifunctor r veces covariante y s veces

contravariante a un functor
F:6 % x6xC x...€0 - 9.
Sea xj € Ob¥ j, se tiene el functor
Fxl,...,fi,...,xn:%’%D
dadopor Fy, . ¢i.. x,(A) =Fx1,...,Xi—1,A,Xit1,...,Xa ysi f €EMor€i, Fxy,... . %i,...,x,(f) =F(1x1,..., 1 |, f, Ly - -
Si F es r veces covariante y s veces contravariante, Fy, . ., €S covariante o contravariante sii <roi>r
respectivamente.

Definicion. Dos categorias " y & se dicen isomorfas si existen functores F : 4 — 2y G: 9 — ¥ tales
que FG = 15 y GF = 1. Se dice entonces que F' y G son isomorfos de categoria.

Definicion. Sean ¥, Z dos categorias y F : € — 2 un functor. Para cada par de objetos A, B € Ob% se tiene
la aplicacién
Morg(A,B) — Morg(FA,FB)
f=Ff
Un functor se dice fiel si esta aplicacion es inyectiva para cada par de objetos A, B € Ob%, y se dice pleno si
es suprayectiva.

A.3. Transformaciones naturales

Definicion. Sean ¢, & dos categorias y F,G : € — & functores covariantes, una transformacion natural 1 :
F — G es una funcién Ob% — Mor% que a cada objeto A de € asocia un morfismo 1Ny € Mory(FA,GA) de
modo que para cada par de objetos A,B de "y cada morfismo f € Mor4(A,B), el diagrama es conmutativo

(nBF (f) = G(f)Na):

FA -5, B

b

Ga L, GB
Si F y G son contravariantes la definicién es andloga (F,G : €° — ).

Definicion. Una transformacion natural 1) : F — G se dice equivalencia natural si para cada objeto A, 1,4 es
un isomorfismo. En este caso se denotard F' = G y diremos que F' y G son naturalmente equivalentes.

Dos categorias ¢, & se dicen naturalmente equivalentes si existen functores F : ¢ — 2y G: 9 — € tales
que FG= 19y GF = 1.

Lema (Yoneda). Sea F : € — Set un functor covariante y A un objeto de €, pongamos Nat(Morg (A, —),F)
para la clase de transformaciones naturales Mory (A, —) — F, entonces existe una biyeccion

Y : Nat(Mory(A,—),F) — FA

que asocia a una transformacion natural Q : Mory (A, —) — F el elemento y(¢) = @a(14).
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Definicion. Sea 7 una categoria abeliana, un complejo de cadenas en </ es una sucesion de objetos y
morfismos de 7:

Cion GG 250 0.
cumpliendo d,_19, = 0.
A dicho complejo de cadenas lo denotaremos C = {C,,d, }.

Definicién. un morfismo de cadenas ¢ : C — ID es una coleccién de morfismos que hace conmutativo el
diagrama:

Ciimson 1 2 on O ol
lq} iq’nl \L(pn \L(piﬂrl
D —eprt P P e

Definiciéon. Se puede definir una categoria de cadenas € (<), cuyos objetos son cadenas y cuyos morfismos
son morfismos de cadenas, la cudl es una categoria abeliana.

Definicion. Sea <7 una categoria abeliana, un complejo de cocadenas en </ es una sucesion de objetos y

morfismos de
an+1

C:.---=C, ﬁ>Cn_1 —— Cphn — ...
cumpliendo 9" 19" = 0.
A dicho complejo de cadenas lo denotaremos C = {C,,d"}.

Definicion. un morfismo de cocadenas ¢ : C — D es una coleccién de morfismos que hace conmutativo el
diagrama:

C:...—sc"! £>C"i>(f"+l — ...
lq} iq’nl l(Pn \L(pwrl
n—1 n
D: ...HDni1 ﬁHDnHDn+1 —_— ...

Definicién. Se puede definir una categoria de cocadenas €°(</), cuyos objetos son cocadenas y cuyos

morfismos son morfismos de cocadenas, la cudl es una categoria abeliana.
Ademids €9 (o) y € (/) son isomorfas, y €9 (o) = € (7 7)°.

Definicion. Si (C,,d,) es un complejo de (co)cadenas, los operadores d, se llaman operadores (co)borde
Definicion. Sea C: - — Cp 2% Coy 2= Cpy 5 --- € C(),

33
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= se denota por B, (C) la imagen de d,, cuyos elementos se llaman bordes.
= se denota por Z,(C) el niicleo de d,, cuyos elementos se llaman ciclos.

Ambos son subobjetos de C,,, y la sucesion serd exacta si B,(C) = Z,(C). Ademds, d,_1d, =0 = B,(C) <
Z,(C), luego existe un monomorfismo B,(C) — Z,(C) tal que:

Gy
B,(C) —— Z,(C)
Definicion. Se llama n-ésimo objeto de homologia de C = {C,,d,} a
H,(C) = Coker(Z,(C)/B,(C)).

A dicho objeto también se le conoce como mddulo de homologia de grado (o dimensién) n de C, y
puede expresarse también como H,(C) = ker(d,)/im(dy+1). Es decir, si C es un sucesion semiexacta (i.e.,
im(dpt1) C ker(dy)), el médulo de homologia de grado n, H,(C), mide la inexactitud de C. Si C es exacta,
entonces im(dyy1) = ker(dy) y H,(C) = 0.

Definicion. Diremos que dos elementos de H,(C) son homdlogos si pertenecen a la misma clase lateral. El
elemento de H,(C), determinado por el ciclo ¢ de grado n, se llama clase de homologia de ¢ y se denota [c].

Definicion. Se dice que un complejo de cadenas C = {C,,d, } es aciclico si H,(C) =0 paran > 1 (es decir,
C es exacta hasta C;, y Hy(C) puede ser diferente de 0). Equivalentemente, la sucesion

---—>C,1—>C,H—>---—>C1a—‘>Coi>Ho((C)—>0

€s exacta.

Definicion. Para cadan € Z, se tiene el médulo de homologia H,(C). El médulo graduado H,(C) = {H,(C)}
se denomina homologia de la cadena C.

Se tiene que H,(—) es un functor covariante de la categoria de complejos de cadenas en la categoria de
R-médulos graduados,
H.(-):€() = Mod%.

Evidentemente, todo lo visto tiene su equivalente en la categoria dual de cocadenas.
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Producto tensorial

Definicion. Sea M, N y P tres R-médulos y sea f: M x N — P, f se dice R-bilineal si para cada x € M,
la aplicacion y — f(x,y) de N en P es R-linear y para cada y € N, la aplicacion x — f(x,y) de M en P es
R-lineal.

Pasamos ahora a definir la nocién de producto tensorial:

Proposicion. Sean M y N dos R-mddulos, entonces existe un par (T, g) que consiste en un R-mddulo T y una
aplicacion R-bilineal g: M x N — T, tal que dado un A-modulo Py una aplicacion R-bilineal f : M X N — P,
existe una unica aplicacién R-linear f' : T — P tal que f = f’'og.

Ademds, si (T,g) y (T',g') son dos pares con dicha propiedad, existe un iinico isomorfismo j:T — T' tal
que jog=g'.

Definicion. El mdédulo T construido en la proposicion anterior es llamado producto tensorial de My N, y se
denota M Q@ N.

Dicho modulo es generado como un R-médulo por el producto x ®y. Si (x;)ics, (vj)jes son familias de
generadores de M y N respectivamente, entonces los elementos x; ® y; generan M ® N. En particular, si M y
N son finitamente generados, también lo es M @ N.

Proposicién. Sean M,,...,M, R-mddulos, entonces exite un par (T,g) consistente en un R-médulo T y
una aplicacion R-multilinear g : My X --- X M, — T tal que dado un R-modulo Py cualquier aplicacion
R-multilinear f : My X -+ X M, — T, existe un tinico R-homomorfismo f': T — P tal que f'og = f.
Ademds, si (T,g) y (T',g') son dos pares con dicha propiedad, existe un inico isomorfismo j: T — T’ tal
que jog =g’

El producto tensorial tiene las siguientes propiedades:
Proposicion. Sean M, N y P tres R-mddulos,

s MIN=ENRQIM.

" MRON)QPEMRNQP)=ZMRNQP.

"  MON)QPE(M®P)Q(N®P).

" RRM=EMQR=M.

Veamos también que el producto tensorial actiia, no solo sobre R-mddulos, sino sobre las aplicaciones:

Proposicion. Sean f:M — M’, g: N — N’ dos homomorfismos de R-médulos. Seah: M x N — M’ x N' dada
por h(x,y) = f(x) x g(y). Se tiene entonces que h es una aplicacion R-bilineal e induce un homomorfismo
de R-modulos:

fRg:MQN —-M N
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tal que
(fegxey)=fx)®g(y), (xeM,yeN).

Con lo anterior, los homomorfismos ("o f)® (g'og) y (f'®¢") o (f ® g) coinciden en todos sus ele-
mentos de la forma x®y en M @ N. Como dichos elementos generan M @ N, se tiene que

(ffofl@(gog)=(f®g)o(fog).
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