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Jorge Simén Aznar

1. Introduccion

La Inteligencia Artificial (IA) es uno de los temas de los que mas se ha hablado en los tltimos
aflos, especialmente este ultimo tras la llegada de ChatGPT, una poderosa herramienta capaz de aprender
estructuras del lenguaje humano y asi proporcionar respuestas utiles generando contenido coherente en
funcidn de las preguntas y las instrucciones que recibe. ChatGPT pertenece al campo de la IA conococido
como Procesamiento del Lenguaje Natural (NLP por sus siglas en inglés), el cual, ademds de permitir
desarrollar modelos como ChatGPT, también tiene aplicaciones como generar subtitulos en tiempo real,
traducir textos entre idiomas, etc. Por supuesto, hay muchas otras aplicaciones de la IA maés alld del NLP,
destacando entre otras el reconocimiento de imdgenes, empleado por ejemplo por Google Maps o para
la conduccién auténoma de los vehiculos més novedosos, asi como el conocido Big Data.

Hace mucho tiempo que el ser humano empezé a sofiar con la posibilidad de crear mdquinas
que fueran capaces de comportarse como personas, de pensar, de sentir... Inspirados por el complejo
funcionamiento de las neuronas del cerebro humano en 1943 McCulloch y Pitts [1] desarrollaron el
primer modelo de Red Neuronal, un clasificador binario capaz de reconocer dos categorias diferentes. El
problema era que ciertos pardmetros tenian que ser introducidos a mano por las personas. No fue hasta
1958 con la aparicion del Perceptron de Frank Rosenblatt [2] que se pudieron aprender dichos parametros
de forma automadtica. Sin embargo, se dieron cuenta de que este modelo no era mas que un clasificador
lineal y que no podia resolver problemas no lineales, ademas de que no tenfan las herramientas ni potencia
necesarias en sus ordenadores para crear redes neuronales tan profundas. Hubo que esperar hasta 1986
con la llegada del nuevo algoritmo Backpropagation [3] para que el campo de las Redes Neuronales
(RRNN) resucitara.

De esta forma, con las investigaciones realizadas hasta la fecha y con la aparicién en la dltima
década del conocido Deep Learning es como hemos llegado hasta el punto en el que nos encontramos
ahora mismo, capaces de utilizar la IA en un abanico sumamente amplio de dreas de conocimiento como

son la medicina, las finanzas, el marketing, etc.

En este trabajo nos centraremos en el campo del Reconocimiento de imdgenes, en concreto de
imagenes generadas por microscopia de transmision electrénica de barrido, haciendo uso de diferentes
técnicas de IA. En cuanto a la estructura, este se compone de un resumen donde se presenta la motivacién
y metodologia, una seccién de introduccién a los conceptos que se van a tratar, la exposiciéon de los
resultados obtenidos y, finalmente, un apartado conclusivo.
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2. Resumen

Una de las aplicaciones mds demandadas en estos tiempos es, sin duda alguna, el Reconocimiento
de Imdgenes, debido a su gran utilidad en diversas dreas de la ciencia y la tecnologia. Con el desarrollo
del Deep Learning [4] en las tltimas décadas y la aparicién de modelos como las Redes Neuronales Con-
volucionales (CNN) el avance en este campo ha sido exponencial, pudiendo aplicarlo en innumerables
profesiones, como por ejemplo en medicina para la deteccion de aberraciones en pruebas como resonan-
cias magnéticas o radiografias, asi como la deteccién de tumores; en astronomia al analizar imigenes de
telescopio; en astrofisica para la deteccién de particulas o incluso en situaciones mds cotidianas como la
automatizacién de un proceso industrial.

El objetivo principal del presente trabajo es la implementacién de distintas técnicas con IA pa-
ra el filtrado de ruido de imégenes generadas por Microscopia electrénica de transmision de barrido
(STEM) de una pelicula delgada de un ferroeléctrico sobre un buffer conductor, cuya estructura crista-
lina posee dos orientaciones distintas. Por tanto, nuestros objetivos se centran en el filtrado del ruido,
ademas del reconocimiento de inestabilidades en la muestra debidas a la deriva térmica, discontinuida-
des, movimientos oscilatorios, aberraciones del microscopio, etc. Y finalmente, la validacion del modelo
para ambas orientaciones cristalinas. Para ello han sido disefiados varios modelos de Redes Neuronales
(RRNN) mediante el uso del lenguaje de programacion Python, que permite beneficiarse de la platafor-
ma TensorFlow con sus librerias de Keras, asi como otras librerias que facilitan los calculos vectoriales
como NumPy y la representacion grafica como MatPlotLib.
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3. Conceptos basicos

Antes de empezar con el desarrollo del trabajo, es necesaria la introducciéon de conceptos basi-
cos que serdn clave para la elaboracién y comprension de este. En primer lugar, explicaré los conceptos
relacionados con la estructura de las RRNN, desde las neuronas que la componen hasta pardmetros y
funciones a tener en cuenta para el correcto funcionamiento de estas, asi como los modelos a imple-
mentar. Ademds, se mostrardn otras dos técnicas de filtrado: Singular Value Decomposition (SVD) [5]y
Transformada de Fourier [6].

3.1. Redes Neuronales

Las RRNN [7][8] son una de las herramientas mds poderosa de la IA, especialmente en los dmbitos
del NLP y el reconocimiento de imdgenes. Su nombre se debe a que la inspiracidn para llevar a cabo su
desarrollo no fue otra que la red neuronal del tejido cerebral de los seres vivos. La motivacién residia en

que si este tipo de conexiones funciona en nosotros, ;por qué no iba a funcionar en una maquina?

Por tanto, una red no es més que una sucesion de neuronas organizadas en capas, donde la primera
capa o capa de entrada es la denominada Input Layer, la capa final o de salida Output Layer y las capas
intermedias o capas ocultas Hidden Layers. Una red se puede componer de una o varias capas y son las
redes con numerosas capas ocultas las que se denominan Deep Learning. Volviendo a la analogia con las
neuronas de nuestro tejido cerebral y tejidos nerviosos, la forma en la que estas se relacionan consiste en
lo siguiente: Las neuronas reciben un impulso electroquimico de otras neuronas a través de sus dendritas
(input) y, este impulso, si tiene el “poder” necesario como para activar la neurona, serd transmitido a otra
a través del axoén (output). Extrapolando este modelo a una red neuronal artificial, podemos pensar que
nuestras redes deben tener una variable que mida el “poder” de la sefial y otra que active la neurona si se
supera el umbral. Es en este punto cuando Rosenblatt introduce los weights o pesos wi,w;..., nimeros
reales que indican la relevancia del input respecto del output. De esta forma, la informacion de salida de
la neurona dependera de la suma de los valores de entrada ponderados con los respectivos pesos ). wx,
a la que se le aplicard una funcién no lineal llamada funcion de activacion, f(z).

Si escribimos esto dltimo de forma vectorial, dada una capa r, donde r € 1, ..., R con R el ndmero
de capas de la red, y dada una neurona k, donde k € 1,...,N con N el nimero de neuronas de la capa ry
considerando el output x;_l de la capa anterior r — 1, donde j € 1,...,M con M el nimero de neuronas
de la capa anterior, entonces el cdlculo realizado por dicha neurona ser4:

=

Mx=

wi X b, (3.1

j=1

donde wy ; y b son los weights y bias respectivamente. Finalmente, el ouzput de la neurona vendra dado
por f(z;). Si nos fijamos bien, podemos observar como se trata transformaciones lineales seguidas de
transformaciones no lineales y son estos parimetros wy; y by los que hay que entrenar para que la red
aprenda, ya que el output final dependerd de todos los weights y bias de la red.

Al final, lo que hace la red es, dadas unas variables de entrada, generar una salida. El objetivo
es que esta salida se parezca lo maximo posible a la variable objetivo del problema. Esto se consigue
minimizando una funcién de coste (seccién 3.1.2) con algin algoritmo de optimizacion (seccién 3.1.3).
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3.1.1. Funcién de activacion

La funcién de activaciéon [9] es la transformada no lineal mencionada en la seccidn previa. Es-
ta se encarga de dar un valor u otro a nuestra sefial de salida dependiendo del valor resultante de la
transformacioén lineal dada en 3.1, es decir, la sefial de entrada o input.

Existen numerosos tipos de funcién de activacién y cada uno de ellos es més eficaz o conveniente
dependiendo del problema. Las funciones mas comunes son las funciones sigmoide y ReLU. Para enten-
der de una forma m4s intuitiva el funcionamiento de dichas funciones de activacién vamos a ver como

se comporta la funcién escalén, usada en el algoritmo del Perceptron:

1 sizp >0
0 en cualquier otro caso

fz) = (3.2)

Como vemos se trata de una funcién muy sencilla, si la suma de los inputs ponderados con sus
pesos es mayor que 0, la salida es 1, si no es 0. Sin embargo, esta funcién no es eficaz para las redes
actuales, ya que no es diferenciable, lo que supone un problema a la hora de aplicar descenso de gradiente,
un término que veremos mds adelante. Veamos qué forma tienen las funciones mds empleadas y cémo
se comportan para distintos valores de z:

= Sigmoide : la funcién sigmoide es una de las funciones mas utilizadas, sobre todo en modelos en
los que tenemos que predecir el resultado como una probabilidad o en clasificacion binaria, ya que
para valores negativos de z esta se aproxima a 0 y, a medida que z crece, el valor de la funcién se
aproxima a 1.

1

f@zm

(3.3)
= RelU : la funcién ReLU (Rectified Lineal Unit) es la mas empleada a dia de hoy y se utiliza en
casi todas las RRNN, implementandose en las capas ocultas, nunca en la capa final. El resultado
de esta funcién es 0 cuando z es menor que 0y f(z) es igual a z cuando z es superior o igual que 0.

z siz>0
= 3.4
=90 sz<0 34)

Aunque las funciones Sigmoid y ReLu resultan ser de las funciones mds efectivas a la hora de
entrenar redes, podemos encontrar situaciones en las que conviene utilizar otro tipo de funciones ya
que puede aparecer un problema llamado vanishing gradients, el cual supone un estancamiento en la
evolucién de los pesos y bias debido al desvanecimiento del valor de las derivadas parciales durante
el entrenamiento de redes con varias capas (notar que la ReLU tiene derivada nula para x < 0 y que
en la sigmoide las derivadas se aproximan en seguida a 0 en cuanto |x| crece un poco). Por lo que, en
nuestro caso, se ha empleado en las capas ocultas la funcion Leaky ReLU, que es una mejora del valor
predeterminado principal de ReLU, es decir, para valores negativos de z no es 0, si no que es una funcién
lineal con pendiente entre 0 y 1, tipicamente mds cerca de O que de 1, lo que permite que no perdamos
esa informacidén y evitemos los vanishing gradients.
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3.1.2. Funcion coste

La funcién de coste o también llamada Loss no es mds que la diferencia o error entre los datos de
salida de la red o predicciones y los datos de entrada. Es decir, es la funcién que evalda la eficiencia de la
red y que depende de todos los weights y bias de lared y que por tanto, buscaremos minimizar entrenando
dichos pardmetros. Como vemos, aunque su definicion es sencilla, esta es de gran importancia a la hora
de implementar un modelo.

Al igual que la funcién de activacién, existen distintas funciones de coste y su utilizacién varia
también dependiendo del problema. Las mds comunes son Categorical Cross-Entropy , Binary Cross-
Entropy y Mean Squared Error (MSE). En nuestro caso se ha empleado la funcién (MSE) ya que es una
funcién sencilla y calcula el error cuadritico medio entre los valores reales y los predichos, por lo que es
fécil de interpretar y correcta para nuestro problema.

1Y 2
Clwb) = 5 Y lx=wl*, (3.5)

J

donde N es el nimero de datos de entrada a la red y x; e y; representan las predicciones y los valores
reales respectivamente.

3.1.3. Algoritmos de Optimizacion

Como hemos visto en el apartado anterior, el objetivo del entrenamiento de una red es disminuir
la funcién coste, es decir, aumentar su acierto en las predicciones a base de modificar todos los weights
y bias de la red. Pero, ;como modificamos todos estos pardmetros de manera que la red esté lo mds
optimizada posible? Podriamos pensar que una forma seria inicializar de forma aleatoria todos estos
hasta que se de la combinacidon adecuada, sin embargo, si nos fijamos en la ecuacién 3.5, nos damos
cuenta de que, aunque se trata de una funcién sencilla, extrapolada a todas las neuronas de todas las
capas de una red se vuelve un problema complejo de optimizar debido a su gran nimero de pardmetros.
Por tanto, en vez de dejarlo en manos del azar, lo que se usa es un algoritmo que cambia directamente
el valor de cada uno de estos pardmetros, paso a paso. A este algoritmo se le conoce como Descenso de
gradiente [10] y es uno de los mds importantes en la creacién de RRNN modernas.

Entonces, el algoritmo Descenso de gradiente 1o que hace es iterar y desplazarse por el espacio
multidimensional de weights y bias hasta que encuentra un minimo. Y para ello lo que hace es calcular
el gradiente de la funcidn coste o Loss, que es la que queremos minimizar, y se desplaza dando pequefios
saltos en contra de este ya que el gradiente indica la direccién de maxima variacién. Asi, sean el peso y
bias j y la iteracién i tenemos:

: : aC

le"_l — le — aTm, (3.6)
- - aC
i+1 _ g

b’ _bj—aa—bj, (3.7)

donde o es el llamado learning rate, un hiperparametro de la red que controla el tamafio del salto. Si
este es muy grande la red puede ser que aprenda mds rdpido pero también puede ser que al iterar se salga
de la cuenca de un minimo y que la red acabe no aprendiendo, sin embargo, si este es muy pequefio el
proceso serd muy lento y supondré un coste computacional muy elevado.
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Sin embargo, si observamos el esquema de una red neuronal nos damos cuenta de que el cambiar
uno de los pardmetros afecta a los de las siguientes capas, ya que las operaciones que se producen en las
neuronas dependen de estos, lo que complica el proceso de optimizacion. Para solucionar este problema
y calcular de forma efectiva el gradiente de la funcion de coste se utiliza el algoritmo Backpropagation
[3], sin duda alguna, uno de los algoritmos mds importantes y por el cual la IA que conocemos es como
es hoy en dia. Este algoritmo calcula todas las derivadas parciales de la funcidn de coste desde la capa
del output hasta la capa input de la red mediante la regla de la cadena, lo que nos permitira, en primer
lugar, calcular los pardmetros de activaciéon de cada capa de la red (weights y bias) y en segundo lugar,
recorrerla en sentido inverso para calcular el gradiente de la funcién Loss.

Aunque el Descenso de gradiente presenta gran efectividad en redes con datasets pequeiios, cuan-
do tratamos de entrenar grandes cantidades de datos este resulta extremadamente lento. Por ello se han
disenado otros algoritmos, como el Stochastic Gradient Descent (SGD) [10][11], que supone que el
gradiente de un subconjunto (mini batches) de los datos de entrada es semejante al de todos los datos.
De esta forma se introduce un nuevo hiperpardmetro denominado mini batch size, el cual determina el
tamafio del subconjunto de datos escogidos al azar. Cabe destacar que, aunque el SGD es uno de los al-
goritmos m4s eficientes y empleados hoy en dia, existen otros que pueden ser mds efectivos dependiendo
del problema, como por ejemplo Adam [10][12] y RMSProp [10][13], los cuales hemos utilizado en el
desarrollo del trabajo.

3.1.4. Underfitting y Overfitting

Los conceptos de underfitting y overfit-

ting [14] son unos de los problemas mds co- 0.4 . ; : .

1 | —
munes a la hora de entrenar redes neuronales, 035k ! ]
., . , . I ,_/'! |

_ I o |
ya que la eleccién de los hiperparametros co 0 ‘i/Undeﬂitling - | Overiting
, 2, . LI ) |
mo el nimero de épocas (epochs), el learning : e :
\ | - !
rate, el mini batch size, el nimero de neuro- 5 025 ‘,\ / ! )
s 2 S e |
nas y el niimero de capas es una eleccién que = ozh! i )
depende del programador de la red puesto que o5k !
. 0 ] q
. . 1 ]
el valor de estos no se rige por ninguna regla. | | 7
Por ello, es importante saber interpretar los R | —test
i [ e
i i i ien- 0.05 : : : ' :
resultados e identificar si en el entrenamien 0 p o0 pr 200 g 200
to de nuestra red se estd dando uno de estos Epoch

dos conceptos.

El underfitting se da cuando el modelo no puede alcanzar una funcién de loss lo suficientemente
baja en el entrenamiento con los datos que denominamos training set. Es decir, la red falla durante su
aprendizaje y no es capaz de reconocer los patrones de dichos datos. Por otro lado tenemos el overfitting,
que aparece cuando el modelo aprende demasiado bien los patrones de los datos de entrenamiento pero
no es capaz de reconocer la informacion subyacente a estos, por lo que falla prediciendo otros datos, ob-
teniendo asi una funcidén coste baja para el entrenamiento pero elevada para otros datos. El underfitting
es facil de identificar, ya que se suele obtener una funcién coste o pérdida elevadas, sin embargo, para
identificar el overfitting hacemos uso de otro set de datos, al que llamamos validation set. Existen nume-
rosos métodos para solucionar estos problemas. El mas sencillo de todos es afiadir un mayor tamaiio de
dataset, sin embargo, esto puede aumentar notablemente el tiempo de entrenamiento, por lo que no siem-
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pre es recomendable. Otro método es el early stopping, el cual consiste en pausar el entrenamiento de la
red en un punto determinado. Para ello, se programa para que se detenga cada ciertas epochs y asi poder
observar los pardmetros training loss y validation loss. Finalmente, la técnica que hemos empleado en
este trabajo es la de DropOut, cuyo principio es “desconectar” algunas neuronas de la capa que elijamos.
De esta forma se consigue que la red aprenda aquella informacién mds robusta de los datos y deje de
lado la informacién innecesaria, como el ruido, algo que en nuestro trabajo resulta de gran importancia.

3.2. Redes densas y convolucionales

En las redes tradicionales
basadas en el concepto de feedfor-
ward [15], cada neurona de cada
capa esta conectada a todas las neu-
ronas de la capa siguiente, por lo
que dichas neuronas toman la sali-
da de cada una de las neuronas de la
capa anterior, realizan las transfor-
maciones lineal (ec. 3.1) y no lineal
(en caso de activacién sigmoide ec.

Layer 0 Layer 3

. - 1 I Layer 1l Layer 2 Ou 1
3.3) y emiten la sefial a cada una rputiayen . . (Qutput ayer)
. \ /
de las neuronas de la siguiente ca- . /
- _
pa, como sucede en el esquema de Hiddien layers

1 ha. A i .
@ derecha .este tipo de red es a Figura 3.1: Estructura de red densa. Fuente: [8]
la que denominamos red neuronal

densa.

Mientras que las CNN (Convolutional Neural Network) [16][17] no utilizan capas densas hasta
la dltima (de manera opcional), como podemos observar en la figura 3.2, sino que utilizan capas convo-
Iucionales que aplican operaciones de convolucidn a las entradas, permitiéndoles extraer caracteristicas
locales y adquirir representaciones jerarquicas de las imdgenes. Las capas convolucionales se componen
de filtros o kernels, pequefias regiones de la matriz original que se desplazan sobre esta realizando opera-
ciones matematicas locales para generar mapas de caracteristicas que se fusionan en capas subsiguientes
para obtener representaciones mds abstractas de la imagen.

En concreto, en cada capa se

Cl feature C2 feature aplica un tipo de filtro y son es-
maps

maps 52 feature
maps

S1 feature tos los que, durante el entrenamien-
maps Output

to de la red, deben aprender a de-
tectar bordes, utilizar estos bordes
Full para identificar formas y progresi-

Connection

Convolutions vamente ir aumentando la comple-

Convelutions

Subsampling Convolitions Subsampling

jidad hasta llegar a detectar carac-

Figura 3.2: Estructura de red convolucional. Fuente: [17] teristicas y expresiones de mds alto
nivel, como la forma de una cara,

un ojo, una sonrisa, etc. Las principales ventajas que nos ofrece este tipo de red son la invarianza local y
la composicionalidad. La primera de estas nos permite clasificar una imagen dependiendo de qué objeto
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aparece en ella sin importar en qué posicién de la imagen se encuentre, mientras que la segunda hace
referencia a la capacidad de la red para profundizar y aprender caracteristicas complejas a partir de unas
de maés bajo nivel, como son los pixeles.

Ambas redes resultan de gran utilidad y su efectividad, al igual que los hiperpardmetros que esco-
jamos, dependera del tipo de problema al que nos enfrentemos y de lo que sea més adecuado, si aprender
patrones globales como hacen las redes densas o aprender patrones locales como sucede con las redes

convolucionales.

En nuestro caso hemos aplicado ambos tipos de red y estudiaremos los resultados para ver cudl de
ellas funciona mejor para el filtrado del ruido de nuestras iméagenes.

3.3. Autoencoder

Un autoencoder [18] [19] es una red neuronal simétrica basada en el aprendizaje no supervisado
y que se compone de tres partes, encoder R" — R™ | decoder R™ — R" y una representacion latente
de las caracteristicas de los datos, que seria la capa intermedia de la red. Puesto que su estructura es la
unidén de dos redes, esta se entrena de la misma forma, aplicando los mismos algoritmos de optimizacion,
las mismas funciones de coste y de activacion. La funcién principal de este tipo de red es representar el
input de la manera mads fiel y precisa posible, almacenando de alguna manera los rasgos principales en
el espacio latente.

OQQOOQQO
OOOOO“O
(1 )

FrraNEYY

Figura 3.3: Estructura de la red autoencoder (Fuente: [20] )

Aunque pueda parecer de poca utilidad ya que su funcién es reconstruir un objeto que en un
principio ya tenemos, en realidad se trata de una red con gran efectividad en determinados problemas,
como por ejemplo la reduccién de la dimensionalidad; la clasificacién de imédgenes, llegando a reducir
el tiempo de clasificacion en un factor 1000 sacrificando un 7.4 % de acierto en el ejemplo del MNIST;
la deteccién de anomalias y, finalmente, el ejemplo que hemos tratado en este trabajo, la reduccién de
ruido.

3.4. Transformada de Fourier

La Transformada de Fourier es una de las técnicas matematicas mas conocidas y empleadas en el
mundo de la fisica y la ingenieria ya que nos permite conocer con mayor detalle algunas de las carac-
teristicas de un amplio tipo de sefiales. Se trata de la transformacion de una sefial en el dominio temporal
o espacial al dominio frecuencial. Es en este dominio donde hallamos un conjunto de amplitudes comple-



3.4 Transformada de Fourier Jorge Simén Aznar

jas, denominadas coeficientes de las Series de Fourier. De esta forma, una sefial unidimensional se puede
descomponer en un conjunto infinito de sefiales de tipo seno con diferentes frecuencias, amplitudes y
fases.

Como hemos mencionado antes, su uso se extiende a lo largo de un gran nimero de problemas,
sin embargo, nosotros nos centraremos en el filtrado del ruido de una sefial [6]. Cuando se aplica la
Transformada de Fourier a una sefial contaminada con ruido se obtiene un espectro que muestra las
amplitudes y fases de las diferentes frecuencias presentes en la sefial, donde encontraremos también las
del ruido. Por tanto, para eliminarlo podemos realizar un filtrado en el dominio de la frecuencia. Esto
implica identificar las componentes de frecuencia correspondientes al ruido y atenuarlas o eliminarlas por
completo, mientras se conservan las componentes de frecuencia de interés. Para visualizar su uso hemos
desarrollado un sencillo ejemplo. Supongamos una funcién gaussiana del tipo e*%xz, donde x tomara
1000 valores entre -10 y 10 de forma equiespaciada. A la funcién le afiadimos ruido aleatorio a partir
de una distribucién normal con media 0 y desviacion estandar 0.1. Asi, si aplicamos la Transformada
de Fourier a la sefnal contaminada, localizamos la frecuencia de corte a partir de la cual atenuaremos la
sefal y disefiamos un filtro que lleve a 0 la amplitud de la sefial a partir de dicha frecuencia, conseguimos
recuperar la sefial original a partir de la sefial contaminada como se muestra en la figura:

1.24 Con ruido
—— Filtrada
1.0 == Original

0.8

0.6 1

0.2

0.0

-0.21

—0.4+

-10.0 75 -5.0 -25 0.0 255 5.0 75 10.0

Figura 3.4: Filtrado del ruido de una gaussiana e 2 corrupta con frecuencia de corte 0.011 mediante la
Transformada de Fourier

Podemos observar como la sefial filtrada no es exactamente la sefial original, sino que todavia
encontramos cierto ruido en ella. Eso sucede porque hemos aplicado un filtro sencillo colocado “a 0jo”,
por lo que es posible que hayamos dejado algo de ruido o incluso que hayamos cortado antes de tiempo,
por lo que podriamos estar perdiendo informacién de la sefial original. Sin embargo, se aprecia notable-
mente como la mayor parte del ruido ha sido eliminado, recuperando asi con bastante éxito la funcién

gaussiana.
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4. Resultados

En esta seccién expondremos los resultados obtenidos mediante el uso de las técnicas introdu-
cidas. Como ya hemos comentado en apartados anteriores, el problema se centraba en filtrar el ruido
de iméagenes generadas por Microscopia electronica de transmision de barrido (STEM) de una pelicula
delgada de un ferroeléctrico sobre un buffer conductor para asi ser capaces de detectar defectos en la
muestra. Para poder llevar a cabo el trabajo, se nos proporciond un conjunto de imdgenes con las carac-
teristicas ya mencionadas, unas de ellas con un tamafio de 9 pm por pixel y otras de 12 pm. Ademas,
estas imdgenes venian también diferenciadas dependiendo de la orientacién de la estructura cristalina.
Debido al gran nimero de imdgenes y, por tanto, de datos, decidimos trabajar con las imdgenes de 12
pm por pixel, que a su vez tenian un tamafio de 4096x4096 pixeles ya que fraccionando tan solo estas
imagenes podiamos obtener un nimero de datos suficiente para entrenar nuestras redes. A continuacion,
se muestra la primera de las imagenes para que asf se aprecie la magnitud de los resultados obtenidos.
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(a) Imagen original de 4096x4096 (b) Recorte de la imagen original de 64x64

Figura 4.1: Imagen generada por STEM

4.1. Singular Value Decomposition (SVD)

Comenzamos el trabajo mediante el filtrado de las imagenes con la técnica Singular Value De-
composition [5], ya que este era el método utilizado por los investigadores que nos proporcionaron las
imagenes. Se trata de una técnica sencilla cuyo fundamento se basa en la descomposicidon de una matriz
(la imagen en nuestro caso) en sus componentes principales, de manera que

A=UxvT “4.1)

Siendo A la matriz de pixeles de nuestra imagen, U y V matrices unitarias que representan las bases
de nuestra matriz A y X una matriz diagonal semidefinida positiva cuyas componentes son los valores
singulares, por lo que serdn no negativos. Estos valores singulares de la matriz diagonal se encuentran
ordenados de mayor a menor en la diagonal principal, por lo que representan la importancia relativa de
cada elemento de la base.
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4.1 Singular Value Decomposition (SVD) Jorge Simén Aznar

Se trata de una técnica muy empleada en la reduccién de la dimensionalidad, sin embargo, también
es ttil para la reduccién del ruido ya que las componentes principales , es decir los valores singulares mas
grandes, son aquellas que contienen la informacién mds importante, mientras que los valores singulares
mads pequefios serdn aquellos que contengan la informacion innecesaria, como por ejemplo el ruido. El
problema reside en que nuestra matriz diagonal tiene dimensiones de 4096x4096, es decir, 4096 valores
singulares, por lo que no podemos saber a simple vista a partir de qué valor empieza a ser prescindible
la informacidn. Para hacernos una idea de la importancia de estos valores tendremos que hacer uso de la
Varianza Explicada, ya que esta se refiere a la proporcion de la varianza que contiene cada valor singular
respecto de la varianza total, es decir, a mayor varianza explicada, mayor serd la influencia de dicha
componente. Por tanto, haciendo el siguiente calculo:

Expl.Vari= —— 4.2)

2
nn

Donde o son los valores singulares, obtenemos la varianza explicada del i-ésimo valor singular. De esta

forma podemos estimar su importancia:

1.0000 ~

0.9999 -

0.9998 +

0.9997 A

Expl. Var.

0.9996 4

0.9995

0.9994

0 1060 20I00 3060 40|00
Eigenvalue index

Figura 4.2: Varianza explicada de los valores singulares

Se observa como la mayor parte de la varianza explicada (99.96 %) se encuentra en los 50 primeros
valores singulares. Ademds, a partir de este se produce un cambio en la forma de la funcién, por lo que
supondremos que es en este punto en el que empieza a tomar importancia el ruido. De esta forma,
aplicando el método SVD cogiendo sélo los 50 primeros valores obtenemos el siguiente resultado:
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0 10 20 30 40 50 60 0 10 20 30 40 50 60
(a) Original (b) Filtrada

Figura 4.3: Reduccién de ruido mediante SVD con 50 primeros valores singulares

Se aprecia una gran reduccion del ruido, permitiéndonos diferenciar los distintos atomos de la
lamina. Sin embargo, todavia existe la presencia del ruido en la imagen y, aunque si que se puede localizar
la posicién de los atomos, no permitiria distinguir apenas los dos tipos.

4.2. Dense Autoencoder

Como hemos introducido anteriormente, un autoencoder es un tipo de red neuronal cuya entrada
y salida son iguales, por lo que tiene como objetivo reconstruir lo més fielmente posible los datos de
entrada. Dichas redes pueden ser utilizadas para el filtrado de imagenes [21], ya que lo que permite dicha

funcioén es la estructura de encoder, espacio latente y decoder.

En este primer apartado veremos los resultados obtenidos a partir de los distintos modelos de
Dense Autoencoder. En este caso, los datos de entrenamiento, validacién y test han consistido en un
conjunto de recortes de 64x64 pixeles de la imagen presentada anteriormente, en concreto, 4096 recortes.
Los hiperparametros escogidos para los distintos modelos implementados son los siguientes:

Hiperparametro Model 1 \ Model 2
epochs 300
mini batch 10
dataset (tr, val, test) 3645, 410, 41
n°neuronas / capa | (4096,100,50,15,50,100,4096) ‘ (4096,100,50,25,15,25,50,100,4096)
optimizador Adam
learning rate 0.0001
[ activacion RelLU
loss MSE
métrica RMSE

Tabla 4.1: Hiperpardmetros de los modelos 1y 2
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Hiperparametro | Model 3 Model 4
epochs 300
mini batch 10
dataset (tr, val, test) 3645, 410, 41
n‘neuronas / capa | (4096, 100, 50, 15, 50, 100, 4096)
optimizador Adam ‘ RMSProp
learning rate 0.0001
[ activacion Leaky ReLU
loss MSE
métrica RMSE

Tabla 4.2: Hiperpardmetros de los modelos 3 y 4

Se puede observar como los modelos se parecen en gran medida, cambiando en cada uno de ellos
uno o dos hiperpardmetros. Es necesario comentar que para todos ellos se ha empleado la funcién de
activacion sigmoide (ec. 3.3) en la dltima capa de la red. Con todos estos valores y las 3645 imagenes
usadas para entrenar las redes se obtienen un total de 835111 pardmetros, es decir, el niimero de weights

y bias que queremos encontrar. Asi, una vez entrenadas las redes, obtenemos los siguientes resultados:

—— Model 1
R ---- Model 2
A Model 3
0.014 4 L} ---- Model 4
\

0.012 4

Loss

0.010 4

0.008

T T T
150 200 250

360
Epochs

Figura 4.4: Comparacién de la funcién loss de los modelos 1, 2, 3 y 4.

Observamos como los modelos 2 y 4 no consiguen reducir la funcién de coste tanto como los
modelos 1y 3, por lo que a priori cabe esperar que los resultados serdn peores. En cuanto a los modelos
1 y 3, se aprecia una evolucién correcta, por lo que si que parece que hayan entrenado bien las redes,
notando una ligera mejora al aplicar la funcidn de activacion Leaky ReLU en vez de ReLU, hecho que

quizd se deba a que, como mencionamos en la introduccién tedrica, esta funcién no trunca los valores
negativos de z (3.4), sino que toma valores muy pequefios.

Una vez analizados estos resultados, podemos pensar que el modelo 3 es el mds Optimo para el
desarrollo del trabajo, sin embargo, al comparar la funcién de coste del set de training con el set de
validation observamos como a partir de la época 70 se empieza a producir cierto overfitting (ver panel
izquierdo de 4.5). Aunque este no es tan apreciable como el visto en la introduccidn, es conveniente
eliminarlo. Para ello hemos aplicado un DropOut del 20 % tras la primera capa, es decir, por cada época
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se desconecta un 20 % de las neuronas de la primera capa de manera aleatoria, obteniendo el siguiente
resultado:

0.013
1 -=-=- Training Model 3 1 === Training Model 5
1 Lo 1 L
I Validation Model 3 1 Validation Model 5
1 1
00124 | 1
\ 0.012 N
1 A
| \
| 1
{ I
| 1
0.011 1 ‘l 0.011 :
\ I
1 I
\ |
L )
@ | i @ |
& oo10 |‘ 9 50101 |\
~ { ~ ~
| ]
|
1
\ S
0.009 { 1
\ 0.009 4 (N
1 ~
\ \Y
~, 1
3 \
\‘ 0y
0.008 5 0.008 \\
\ . b
\ Y
\N~- ‘\‘_
0.007 4
0 50 100 150 200 250 300 0 50 100 150 200
Epochs

Figura 4.5: Efecto del DropOut sobre el modelo 3 (renombrado como Modelo 5).

Como vemos, hemos conseguido eliminar el efecto del overfitting. Por tanto, una vez estudiado
el comportamiento de la funcién de loss, veamos como de eficaces son los modelos a la hora de filtrar
ruido:

Original Model 1

20

Model 2

60

Model 3 Model 4

Model 5
[

10

20

0

50
20 40 60 0

60
20 40 60

0

20 40 60
Figura 4.6: Comparacion del filtrado de ruido de los distintos modelos implementados.

Los modelos 2 y 4, como era de esperar, no han conseguido extraer la informacién subyacente de
la imagen original, por lo que no han sido capaces de eliminar el ruido correctamente. En cuanto a los

modelos 1, 3 y 5, la diferencia es inapreciable. Los tres modelos han conseguido disminuir la funcion de
coste al mismo valor practicamente y han conseguido recuperar la imagen original de la misma manera.

Por lo que, ya que el modelo 5 es el que presenta la capa de DropOut para evitar el overfitting, sera el
que usemos para reconstruir la imagen original 4.1a.
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Sin embargo, encontramos un problema en nuestros resultados. Y es que, como se aprecia en
la figura 4.7b, podemos observar una cuadricula, como si fuera la “costura” de la reconstruccién de la

imagen a partir de los recortes de 64x64 pixeles. Este fendmeno, el cual no se tuvo en cuenta a la hora
de preparar el dataset, se debe a que los datos que se le introducen a la red son los recortes realizados de
manera consecutiva, es decir, donde termina uno empieza el siguiente, por lo que la red aprende de cada

una de las imagenes por separado pudiendo interpretar las intensidades de los extremos de cada recorte
ligeramente diferentes, produciendo este efecto.
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(a) 4096x4096

3000 3500

4000

(b) 400x400
Figura 4.7: Imagen filtrada por modelo 5

Para solucionar el problema hemos tenido que entrenar la red con unos nuevos pardmetros. En
concreto, hemos realizado 50000 recortes, también de 64x64 pixeles, de manera aleatoria. De esta forma,
la cantidad de datos de entrenamiento aumenta considerablemente, de 3645 a 44500, por lo que no sera
necesaria una capa de DropOut ya que otra forma de solucionar el overfitting es aumentando los datos
de entrenamiento. Finalmente, puesto que el nimero de datos es mucho mayor, tendremos que reducir el

nimero de épocas, en nuestro caso a 100. A dicho nuevo modelo, de ahora en adelante, lo denominaremos
modelo random.

0.012

Aplicando estos cambios en el entrenamiento de nuestra red, obtenemos los siguientes resultados:
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Figura 4.8: Evolucién de la funcién loss en el modelo random.
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Figura 4.9: Imagen filtrada por el modelo random

En la figura 4.8 vemos como no solo no se produce overfitting, sino que se alcanzan unos valores
de la funcién de coste més bajos que mediante los modelos anteriores, lo cual es un indicativo de que
la red es mds efectiva. Ahora, fijdndonos en la figura 4.9 observamos como, ademds de eliminar las
marcas de “costura” al reconstruir la imagen principal, hemos conseguido eliminar en mayor cantidad el
ruido, produciendo una suavidad en los contornos de los 4tomos que no encontrdbamos en las imdgenes

filtradas por los otros modelos.

4.3. Redes Neuronales Convolucionales

Como hemos introducido anteriormente, ademas de las redes neuronales densas, en nuestro caso
aplicadas con la estructura de autoencoder, también hemos empleado redes neuronales convolucionales
[22]. En este apartado presentaremos los resultados obtenidos mediante el uso de esta técnica, asi como
los hiperparametros escogidos para ello.

Tras observar que, para el modelo de autoencoder denso, la mejor forma de preparar los datos
de entrenamiento era hacer recortes de la imagen original 4.1a de manera aleatoria ya que se obtenia
un mejor resultado, decidimos utilizar el mismo training set para nuestra red convolucional. Por tanto,
disponemos de 50000 imdgenes de dimensién 64x64 pixeles ordenadas de forma aleatoria. Ademas, los
hiperpardmetros utilizados son los mismos que para el modelo 3 de red densa presentados en la tabla 4.2,
a excepcion del nimero de épocas y el batch size que, debido al aumento de datos de entrenamiento y
al cambio en la estructura de la red, hemos modificado a 10 y 128 respectivamente. Y al igual que estos
modelos, la funcién sigmoide (ec. 3.3) ha sido utilizada en al capa densa. En cuanto a la estructura de la
red, esta es la siguiente:
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Input (64,64, 1)
Conv2D (64, 64, 8)
MaxPooling2D | (32,32, 8)
Conv2D (32, 32, 16)
MaxPooling2D | (16, 16, 16)
Conv2D (16, 16, 32)
MaxPooling2D | (8, 8, 32)

Conv2D (8, 8,64)
Flatten (4096)
Dense (4096)
Output (64,64, 1)

Tabla 4.3: Estructura red neuronal convolucional

Con la estructura ya presentada, procedemos a analizar los resultados:
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Figura 4.10: Imagen filtrada por el modelo convolucional random

Observamos como los resultados son muy semejantes a los obtenidos mediante el modelo de
autoencoder dense random, siendo la diferencia entre estos practicamente inapreciable.

4.4. Filtrado de ruido mediante la Transformada de Fourier

Finalmente, veremos como la Transformada de Fourier puede ser utilizada para el filtrado de nues-
tras imdgenes de un modo similar al mostrado en el ejemplo 3.4. En este caso, nuestra transformada de
Fourier serd una transformada bidimensional, por lo que la funcién en el espacio de frecuencias depen-
dera de dos variables, K, y K,. Para calcular la transformada de la matriz de pixeles que representa la
imagen hemos empleado la funcién proporcionada por la libreria numpy, numpy.fft.fft2. Una vez hallada
dicha transformada, en primer lugar hemos centrado las frecuencias, es decir, las frecuencias con ma-
yor amplitud han sido colocadas en el centro mediante la funcién numpy.fft.fftshift. De esta forma nos
resulta mas sencillo aplicar un filtro. Por tanto, una vez tenemos la transformada centrada calculamos la
magnitud para asi poder visualizarla y hacernos una idea de cémo debe ser el filtro:
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(a) Magnitud de la Transformada de Fourier (b) Filtro Paso-Bajo sobre la magnitud de la TF

Como vemos, las componentes frecuenciales con mayor amplitud se encuentran en el centro, aque-
llas que tienen un contenido frecuencial mas significativo y que corresponden a la estructura espacial de
la red cristalina, por lo que aplicando un filtro circular que deje pasar las frecuencias que se encuentran
dentro de €l debera bastar para eliminar las frecuencias mas altas, en este caso las del ruido. El filtro di-
sefiado tiene unas dimensiones de 280 pixeles de radio, aproximadamente lo que se aprecia a simple vista
que abarcan las frecuencias centrales. Recomponiendo la imagen tras haber aplicado el filtro obtenemos
los siguientes resultados:
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Figura 4.12: Imagen filtrada mediante la Transformada de Fourier
Se observa como, efectivamente, el método de la Transformada de Fourier es eficaz para el fil-
trado de ruido. De hecho, fijandonos en la figura 4.12b se puede apreciar una suavidad en los contornos
similar a la generada por el modelo random del autoencoder dense, asi como de la red convolucional. Sin

embargo, las formas presentan cierta distorsion, haciéndose mas apreciable al mirar un mayor nimero
de 4tomos, como en el caso de la figura 4.12a.

4.5. Comparacion de resultados

A lo largo de esta seccién hemos ido viendo los resultados que hemos generado mediante el uso de

las diferentes técnicas; SVD, autoencoder denso, red neuronal convolucional y transformada de Fourier.
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Todos estos métodos pueden ser empleados para el filtrado de ruido o denoising, sin embargo, hemos
podido ver como algunos resultan ser mds eficaces que otros. En este apartado vamos a comparar los
distintos modelos, observando recortes aleatorios de la imagen filtrada y calculando una métrica deno-
minada Peak Signal to Noise Ratio (PSNR) [23] para cuantificar de alguna manera el ruido eliminado

por cada método.

El término PSNR es una expresién que relaciona el valor mdximo que puede tomar una imagen
con la distorsién producida por el ruido que afecta a la calidad de esta. Puesto que el rango dindmico
de valores de una imagen puede ser muy amplio, normalmente se expresa el valor en decibelios (dB),
significando que a mayor valor de dB, mayor eliminacién de ruido, por lo que la expresion para calcularlo

(&
max2
PSNR = 10log1o( i SE) 4.3)
1 N—1M-1 5
MSE =37 & X I =il (4.4)

donde max es el valor maximo de la imagen sin ruido, en nuestro caso la imagen filtrada, N y M son las
dimensiones de nuestras imagenes (NXM) y f; ; y g; ; son los valores de los pixeles que componen las
matrices que representan la imagenes filtrada y original respectivamente. Es esta naturaleza logaritmica
la que nos permite diferenciar imagenes que varian ligeramente. Ahora veamos si este término coincide
con nuestra percepcion:
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Figura 4.13: Comparacién de resultados con valores de PSNR (mirar cabecera)

Vemos como, efectivamente, los modelos random son aquellos que mayor valor de PSNR han
obtenido, algo que esperdbamos ya que a simple vista se observa un mejor resultado. En cuanto al mo-
delo 5, aunque este identifica correctamente la estructura de la red cristalina y representa los distintos
atomos con gran precision, no consigue eliminar del todo el ruido, ademds de la existencia de las marcas
de “costura” que comentamos al analizar sus resultados. La filtracién realizada por el método SVD es
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insuficiente, por lo que el valor obtenido es el mas reducido y, por dltimo, puesto que esta métrica cuanti-
fica la proporcidén de ruido eliminado, el modelo de la transformada de Fourier obtiene un resultado més
elevado que el modelo 5, a pesar de distorsionar levemente las formas de los 4tomos.

En la siguiente seccién procederemos a analizar en detalle la imagen al completo, asi como el
resto de imdgenes que nos han sido proporcionadas, en busca de dislocaciones e imperfecciones para
comprobar si la red es capaz de reconstruirlas también. Pero para ello es necesaria la eleccién de uno
de los modelos. En nuestro caso, debido a los valores de PSNR mostrados, nos hemos decantado por el
modelo de Autoencoder Dense Random, a pesar de que a la vista es practicamente idéntico al modelo
de Red Convolucional Random. Es en este punto donde mayor importancia cobra el poder cuantificar el
ruido de una imagen, ya que hay ocasiones en las que determinar si una imagen conserva mejor calidad
que otra de forma subjetiva se vuelve una tarea complicada. Cabe comentar que el uso de este término no
siempre resulta favorable, ya que imagenes tan disparatadas como la generada por el modelo 4 4.6 da un
resultado mayor que el modelo SVD, a pesar de que es una imagen completamente ruidosa sin ningtin
tipo de informacion.

5. Aplicacion de los resultados

Al comienzo de este trabajo hemos introducido que una de las principales motivaciones era desa-
rrollar un modelo que eliminase el ruido de las imdgenes generadas por STEM que tenemos a nuestra
disposicién. Como hemos visto a lo largo del desarrollo de los modelos, todos los resultados expuestos
hasta el momento eran con respecto a la imagen 4.1a, la cual habiamos tomado como referencia. Por
tanto, una cuestion importante es si el modelo que hemos generado es valido también para el resto de
imagenes y es en este capitulo donde vamos a comprobarlo.

En primer lugar, comenzamos analizando una imagen de la misma pelicula delgada, cuya estruc-
tura cristalina posee la misma orientacién que la imagen de referencia, pero ha sido tomada en un punto
distinto.
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Figura 5.1: Imagen filtrada mediante Autoencoder Dense Random

Como podemos observar, ocurre algo que llama la atencién a simple vista y es que al representar
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la imagen se cambian los colores, pasando de ser azul con tonalidades verdes a verde con tonalidades
azules. Este cambio se debe a que al realizar los recortes introducidos en la red Dense Random de manera
aleatoria, un pequefio segmento interior de imagen no fue recortado, por lo que a la hora de represen-
tarla la gama de colores cambia ya que hay unos pixels con valor nulo. Sin embargo, si representamos
zonas concretas, como sucede en 4.9, el color original se recupera. Fijaindonos detenidamente en ambas
imagenes podemos apreciar que la red neuronal ha identificado la estructura a la perfeccién, presentan-
do de este modo las mismas “manchas”, cambios de intensidad, etc. Por lo tanto, podemos confirmar
que el modelo es valido para imagenes que presentan las mismas caracteristicas que nuestra imagen de
referencia 4.1a. Veamos si sucede lo mismo cuando la orientacién de la estructura cristalina ha cambiado.
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Figura 5.2: Imagen filtrada mediante Autoencoder Dense Random con orientacion cristalina diferente

Como vemos, en este caso hemos podido evitar el cambio de color, debido a que ninguna zona
interior se ha visto afectada. Sin embargo, si nos aproximamos se puede apreciar como este filtrado no
es tan claro, ya que, a pesar de que no aparenta haber la robustosidad o pixelacién que produce el ruido
en una imagen, las figuras se encuentran un tanto distorsionadas, siendo mds complicado identificar los

atomos que en el caso de la orientacidn inicial, sobre todo en la parte inferior de la imagen.
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Figura 5.3: Recorte 500x500 de la figura 5.2
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Por tanto, aunque el hecho de que la estructura cristalina no sea la misma haga que el modelo
resulte menos efectivo, vemos como nuestra red trabaja correctamente con imdgenes que no poseen
exactamente las mismas caracteristicas que nuestra imagen original, respetando de alguna manera la
disposicion de los dtomos en la red y aquellas zonas que presentan perturbaciones, como es el caso
de la esquina superior derecha de las figuras que acabamos de mostrar, donde se ve claramente una
imperfeccién y nuestro modelo la detecta y la recrea sin problema alguno.

Finalmente, volviendo a nuestra imagen de referencia 4.1a, hemos observado como la red recrea
los patrones de las imdgenes perfectamente, sin embargo, no hemos comprobado qué sucede con estas
zonas de distorsion cuando nos acercamos. Veamos si podemos visualizar una de estas zonas y si nuestro
modelo nos permite especular sobre los posibles motivos. En concreto, vamos a observar la zona marcada
por el cuadro blanco:
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Figura 5.4: Observacién de distorsién en imagen filtrada por modelo Autoencoder Random

Se puede apreciar claramente la zona de transicién entre la seccién verde y la azul, ademads de la
borrosidad aparente del limite en la zona enmarcada por el recuadro blanco. Este cambio en la tonalidad
de las imdgenes se debe a que se trata de la imagen de una seccidn transversal de la muestra, es decir,
de la profundidad, y por ello podemos observar dos capas diferentes ya que se trata de un ferroeléctrico
sobre un buffer conductor. Por lo tanto, podemos observar como si que es posible distinguir con precision
las distintas zonas de la lamina e incluso los distintos 4tomos, como vemos en la figura 4.9b, por lo que
queda comprobada la utilidad de nuestra red para examinar detalladamente este tipo de imagenes.
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6. Conclusiones

A lo largo de este trabajo se han visto distintas técnicas de Inteligencia Artificial, asi como métodos
clasicos para el tratamiento de imdgenes. El reconocimiento de imdgenes es uno de los campos mas
populares hoy en dia y con mayor empleabilidad por la sociedad y hemos podido comprobar como el uso
de determinadas redes neuronales no demasiado complejas puede permitirnos realizar tareas en cuestion
de dos horas que antiguamente podia llevar dias.

Se han disefiado distintos modelos de RRNN que han sido capaces de reconocer la estructura
cristalina de las imdgenes y de aprender la informacidn subyacente a esta, eliminando la informacién
innecesaria, como por ejemplo el ruido, a pesar de que se trataba de una estructura con forma de reticula
y no presentaba contornos bien definidos, como seria el caso de los famosos digitos del dataset MNIST.
Una prueba més de la efectividad de dichos modelos es el correcto resultado obtenido a pesar de las
limitaciones técnicas a la hora de desarrollar el trabajo, ya que la herramienta empleada ha sido mi orde-
nador portdtil con un procesador Intel Core i5 y una gréifica GeForce GTX 1050, el cual nos ha permitido
entrenar las redes que han resultado ser més efectivas en 2 horas en el caso del dense autoencoder y 47
minutos en el caso de la red neuronal convolucional. Este hecho puede suponer una gran diferencia si
se entrenan las redes con un dataset de gran tamafio, por lo que, aunque en el trabajo hayamos escogi-
do la primera de las redes, no descartamos que el modelo convolucional pueda presentar unos mejores
resultados.

Sin embargo, durante el desarrollo del trabajo también hemos podido comprobar la dificultad a la
hora de medir y entender los resultados en el campo de la reduccién de ruido mediante estos métodos.
Para cuantificar la bondad de los modelos obtenidos hemos usado el PSNR (ver ec. 4.3). Sin embargo,
no es menos cierto que también conviene basarse en factores algo mas subjetivos, como es la evaluacién
a ojo de las figuras filtradas. Por ejemplo, nétese que, dada una imagen ruidosa, otra imagen que fuera
casi idéntica a la misma cambiando solo el valor de un pixel tendria un valor del PSNR enorme, mientras
que seguiria siendo igual de ruidosa que la imagen original. Por tanto, hemos tenido que usar el factor
humano, la subjetividad, para decidir finalmente qué resultados son mds 6ptimos, ya que no hemos
podido encontrar una técnica que sea 100 % efectiva. Hecho que nos lleva a concluir que el ojo sigue
siendo uno de los métodos més fiables a la hora de comparar resultados en el campo del reconocimiento
de imagenes ya que, aunque existen RRNN mejores que el ser humano a la hora de reconocer caras, estas
han sido entrenadas a partir de datos escogidos y etiquetados por personas.

Es innegable el potencial que la Inteligencia Artificial tiene, ya que tan solo en este trabajo hemos
podido observar lo poderosas que son las redes frente a las técnicas cldsicas de tratamiento de sefiales y
como sus resultados nos facilitan enormemente el estudio de estas, pudiendo analizar de una forma m4s
profunda, en nuestro caso, lo que sucede en las ldminas observadas. Y esta no es mds que una diminuta
parte del verdadero poder de la IA, de lo que se ha descubierto y de lo que queda por descubrir.
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