
Universidad de Zaragoza

FACULTAD DE CIENCIAS

————————————————————————-

INTELIGENCIA ARTIFICAL APLICADA AL

TRATAMIENTO DE IMÁGENES GENERADAS

POR MICROSCOPÍA DE TRANSMISIÓN

ELECTRÓNICA
————————————————————————-

Trabajo de Fin de Grado – Grado en Fı́sica

Autor:

Jorge SIMÓN AZNAR

Directores:

Luis MARTÍN MORENO

Eduardo SÁNCHEZ BURILLO

Julio de 2023

Índice

1. Introducción 2

2. Resumen 3

3. Conceptos básicos 4

3.1. Redes Neuronales . 4

3.1.1. Función de activación . 5

3.1.2. Función coste . 6

3.1.3. Algoritmos de Optimización . 6

3.1.4. Underfitting y Overfitting . 7

3.2. Redes densas y convolucionales . 8

3.3. Autoencoder . 9

3.4. Transformada de Fourier . 9

4. Resultados 11

4.1. Singular Value Decomposition (SVD) . 11

4.2. Dense Autoencoder . 13

4.3. Redes Neuronales Convolucionales . 17

4.4. Filtrado de ruido mediante la Transformada de Fourier 18

4.5. Comparación de resultados . 19

5. Aplicación de los resultados 21

6. Conclusiones 24

Jorge Simón Aznar

1. Introducción

La Inteligencia Artificial (IA) es uno de los temas de los que más se ha hablado en los últimos
años, especialmente este último tras la llegada de ChatGPT, una poderosa herramienta capaz de aprender
estructuras del lenguaje humano y ası́ proporcionar respuestas útiles generando contenido coherente en
función de las preguntas y las instrucciones que recibe. ChatGPT pertenece al campo de la IA conococido
como Procesamiento del Lenguaje Natural (NLP por sus siglas en inglés), el cual, además de permitir
desarrollar modelos como ChatGPT, también tiene aplicaciones como generar subtı́tulos en tiempo real,
traducir textos entre idiomas, etc. Por supuesto, hay muchas otras aplicaciones de la IA más allá del NLP,
destacando entre otras el reconocimiento de imágenes, empleado por ejemplo por Google Maps o para
la conducción autónoma de los vehı́culos más novedosos, ası́ como el conocido Big Data.

Hace mucho tiempo que el ser humano empezó a soñar con la posibilidad de crear máquinas
que fueran capaces de comportarse como personas, de pensar, de sentir... Inspirados por el complejo
funcionamiento de las neuronas del cerebro humano en 1943 McCulloch y Pitts [1] desarrollaron el
primer modelo de Red Neuronal, un clasificador binario capaz de reconocer dos categorı́as diferentes. El
problema era que ciertos parámetros tenı́an que ser introducidos a mano por las personas. No fue hasta
1958 con la aparición del Perceptrón de Frank Rosenblatt [2] que se pudieron aprender dichos parámetros
de forma automática. Sin embargo, se dieron cuenta de que este modelo no era más que un clasificador
lineal y que no podı́a resolver problemas no lineales, además de que no tenı́an las herramientas ni potencia
necesarias en sus ordenadores para crear redes neuronales tan profundas. Hubo que esperar hasta 1986
con la llegada del nuevo algoritmo Backpropagation [3] para que el campo de las Redes Neuronales
(RRNN) resucitara.

De esta forma, con las investigaciones realizadas hasta la fecha y con la aparición en la última
década del conocido Deep Learning es como hemos llegado hasta el punto en el que nos encontramos
ahora mismo, capaces de utilizar la IA en un abanico sumamente amplio de áreas de conocimiento como
son la medicina, las finanzas, el marketing, etc.

En este trabajo nos centraremos en el campo del Reconocimiento de imágenes, en concreto de
imágenes generadas por microscopı́a de transmisión electrónica de barrido, haciendo uso de diferentes
técnicas de IA. En cuanto a la estructura, este se compone de un resumen donde se presenta la motivación
y metodologı́a, una sección de introducción a los conceptos que se van a tratar, la exposición de los
resultados obtenidos y, finalmente, un apartado conclusivo.

2

Jorge Simón Aznar

2. Resumen

Una de las aplicaciones más demandadas en estos tiempos es, sin duda alguna, el Reconocimiento
de Imágenes, debido a su gran utilidad en diversas áreas de la ciencia y la tecnologı́a. Con el desarrollo
del Deep Learning [4] en las últimas décadas y la aparición de modelos como las Redes Neuronales Con-
volucionales (CNN) el avance en este campo ha sido exponencial, pudiendo aplicarlo en innumerables
profesiones, como por ejemplo en medicina para la detección de aberraciones en pruebas como resonan-
cias magnéticas o radiografı́as, ası́ como la detección de tumores; en astronomı́a al analizar imágenes de
telescopio; en astrofı́sica para la detección de partı́culas o incluso en situaciones más cotidianas como la
automatización de un proceso industrial.

El objetivo principal del presente trabajo es la implementación de distintas técnicas con IA pa-
ra el filtrado de ruido de imágenes generadas por Microscopı́a electrónica de transmisión de barrido
(STEM) de una pelı́cula delgada de un ferroeléctrico sobre un buffer conductor, cuya estructura crista-
lina posee dos orientaciones distintas. Por tanto, nuestros objetivos se centran en el filtrado del ruido,
además del reconocimiento de inestabilidades en la muestra debidas a la deriva térmica, discontinuida-
des, movimientos oscilatorios, aberraciones del microscopio, etc. Y finalmente, la validación del modelo
para ambas orientaciones cristalinas. Para ello han sido diseñados varios modelos de Redes Neuronales
(RRNN) mediante el uso del lenguaje de programación Python, que permite beneficiarse de la platafor-
ma TensorFlow con sus librerı́as de Keras, ası́ como otras librerı́as que facilitan los calculos vectoriales
como NumPy y la representación gráfica como MatPlotLib.

3

Jorge Simón Aznar

3. Conceptos básicos

Antes de empezar con el desarrollo del trabajo, es necesaria la introducción de conceptos bási-
cos que serán clave para la elaboración y comprensión de este. En primer lugar, explicaré los conceptos
relacionados con la estructura de las RRNN, desde las neuronas que la componen hasta parámetros y
funciones a tener en cuenta para el correcto funcionamiento de estas, ası́ como los modelos a imple-
mentar. Además, se mostrarán otras dos técnicas de filtrado: Singular Value Decomposition (SVD) [5] y
Transformada de Fourier [6].

3.1. Redes Neuronales

Las RRNN [7][8] son una de las herramientas más poderosa de la IA, especialmente en los ámbitos
del NLP y el reconocimiento de imágenes. Su nombre se debe a que la inspiración para llevar a cabo su
desarrollo no fue otra que la red neuronal del tejido cerebral de los seres vivos. La motivación residı́a en
que si este tipo de conexiones funciona en nosotros, ¿por qué no iba a funcionar en una máquina?

Por tanto, una red no es más que una sucesión de neuronas organizadas en capas, donde la primera
capa o capa de entrada es la denominada Input Layer, la capa final o de salida Output Layer y las capas
intermedias o capas ocultas Hidden Layers. Una red se puede componer de una o varias capas y son las
redes con numerosas capas ocultas las que se denominan Deep Learning. Volviendo a la analogı́a con las
neuronas de nuestro tejido cerebral y tejidos nerviosos, la forma en la que estas se relacionan consiste en
lo siguiente: Las neuronas reciben un impulso electroquı́mico de otras neuronas a través de sus dendritas
(input) y, este impulso, si tiene el “poder” necesario como para activar la neurona, será transmitido a otra
a través del axón (output). Extrapolando este modelo a una red neuronal artificial, podemos pensar que
nuestras redes deben tener una variable que mida el “poder” de la señal y otra que active la neurona si se
supera el umbral. Es en este punto cuando Rosenblatt introduce los weights o pesos w1,w2..., números
reales que indican la relevancia del input respecto del output. De esta forma, la información de salida de
la neurona dependerá de la suma de los valores de entrada ponderados con los respectivos pesos ∑ j w jx j,
a la que se le aplicará una función no lineal llamada función de activación, f (z).

Si escribimos esto último de forma vectorial, dada una capa r, donde r ∈ 1, ...,R con R el número
de capas de la red, y dada una neurona k, donde k ∈ 1, ...,N con N el número de neuronas de la capa r y
considerando el output xr−1

j de la capa anterior r− 1, donde j ∈ 1, ...,M con M el número de neuronas
de la capa anterior, entonces el cálculo realizado por dicha neurona será:

zr
k =

M

∑
j=1

wr
k jx

r−1
j +br

k, (3.1)

donde wr
k j y br

k son los weights y bias respectivamente. Finalmente, el output de la neurona vendrá dado
por f (zr

k). Si nos fijamos bien, podemos observar como se trata transformaciones lineales seguidas de
transformaciones no lineales y son estos parámetros wr

k j y br
k los que hay que entrenar para que la red

aprenda, ya que el output final dependerá de todos los weights y bias de la red.

Al final, lo que hace la red es, dadas unas variables de entrada, generar una salida. El objetivo
es que esta salida se parezca lo máximo posible a la variable objetivo del problema. Esto se consigue
minimizando una función de coste (sección 3.1.2) con algún algoritmo de optimización (sección 3.1.3).

4

3.1 Redes Neuronales Jorge Simón Aznar

3.1.1. Función de activación

La función de activación [9] es la transformada no lineal mencionada en la sección previa. Es-
ta se encarga de dar un valor u otro a nuestra señal de salida dependiendo del valor resultante de la
transformación lineal dada en 3.1, es decir, la señal de entrada o input.

Existen numerosos tipos de función de activación y cada uno de ellos es más eficaz o conveniente
dependiendo del problema. Las funciones más comunes son las funciones sigmoide y ReLU. Para enten-
der de una forma más intuitiva el funcionamiento de dichas funciones de activación vamos a ver como
se comporta la función escalón, usada en el algoritmo del Perceptrón:

f (zr
k) =

{
1 si zr

k > 0
0 en cualquier otro caso

(3.2)

Como vemos se trata de una función muy sencilla, si la suma de los inputs ponderados con sus
pesos es mayor que 0, la salida es 1, sı́ no es 0. Sin embargo, esta función no es eficaz para las redes
actuales, ya que no es diferenciable, lo que supone un problema a la hora de aplicar descenso de gradiente,
un término que veremos más adelante. Veamos qué forma tienen las funciones más empleadas y cómo
se comportan para distintos valores de z:

Sigmoide : la función sigmoide es una de las funciones más utilizadas, sobre todo en modelos en
los que tenemos que predecir el resultado como una probabilidad o en clasificación binaria, ya que
para valores negativos de z esta se aproxima a 0 y, a medida que z crece, el valor de la función se
aproxima a 1.

f (z) =
1

1+ e−z (3.3)

ReLU : la función ReLU (Rectified Lineal Unit) es la más empleada a dı́a de hoy y se utiliza en
casi todas las RRNN, implementándose en las capas ocultas, nunca en la capa final. El resultado
de esta función es 0 cuando z es menor que 0 y f (z) es igual a z cuando z es superior o igual que 0.

f (z) =

{
z si z > 0
0 si z < 0

(3.4)

Aunque las funciones Sigmoid y ReLu resultan ser de las funciones más efectivas a la hora de
entrenar redes, podemos encontrar situaciones en las que conviene utilizar otro tipo de funciones ya
que puede aparecer un problema llamado vanishing gradients, el cual supone un estancamiento en la
evolución de los pesos y bias debido al desvanecimiento del valor de las derivadas parciales durante
el entrenamiento de redes con varias capas (notar que la ReLU tiene derivada nula para x < 0 y que
en la sigmoide las derivadas se aproximan en seguida a 0 en cuanto |x| crece un poco). Por lo que, en
nuestro caso, se ha empleado en las capas ocultas la función Leaky ReLU, que es una mejora del valor
predeterminado principal de ReLU, es decir, para valores negativos de z no es 0, si no que es una función
lineal con pendiente entre 0 y 1, tı́picamente más cerca de 0 que de 1, lo que permite que no perdamos
esa información y evitemos los vanishing gradients.

5

3.1 Redes Neuronales Jorge Simón Aznar

3.1.2. Función coste

La función de coste o también llamada Loss no es más que la diferencia o error entre los datos de
salida de la red o predicciones y los datos de entrada. Es decir, es la función que evalúa la eficiencia de la
red y que depende de todos los weights y bias de la red y que por tanto, buscaremos minimizar entrenando
dichos parámetros. Como vemos, aunque su definición es sencilla, esta es de gran importancia a la hora
de implementar un modelo.

Al igual que la función de activación, existen distintas funciones de coste y su utilización varı́a
también dependiendo del problema. Las más comunes son Categorical Cross-Entropy , Binary Cross-
Entropy y Mean Squared Error (MSE). En nuestro caso se ha empleado la función (MSE) ya que es una
función sencilla y calcula el error cuadrático medio entre los valores reales y los predichos, por lo que es
fácil de interpretar y correcta para nuestro problema.

C(w,b) =
1
N

N

∑
j
|x j − y j|2, (3.5)

donde N es el número de datos de entrada a la red y x j e y j representan las predicciones y los valores
reales respectivamente.

3.1.3. Algoritmos de Optimización

Como hemos visto en el apartado anterior, el objetivo del entrenamiento de una red es disminuir
la función coste, es decir, aumentar su acierto en las predicciones a base de modificar todos los weights
y bias de la red. Pero, ¿cómo modificamos todos estos parámetros de manera que la red esté lo más
optimizada posible? Podrı́amos pensar que una forma serı́a inicializar de forma aleatoria todos estos
hasta que se de la combinación adecuada, sin embargo, si nos fijamos en la ecuación 3.5, nos damos
cuenta de que, aunque se trata de una función sencilla, extrapolada a todas las neuronas de todas las
capas de una red se vuelve un problema complejo de optimizar debido a su gran número de parámetros.
Por tanto, en vez de dejarlo en manos del azar, lo que se usa es un algoritmo que cambia directamente
el valor de cada uno de estos parámetros, paso a paso. A este algoritmo se le conoce como Descenso de
gradiente [10] y es uno de los más importantes en la creación de RRNN modernas.

Entonces, el algoritmo Descenso de gradiente lo que hace es iterar y desplazarse por el espacio
multidimensional de weights y bias hasta que encuentra un mı́nimo. Y para ello lo que hace es calcular
el gradiente de la función coste o Loss, que es la que queremos minimizar, y se desplaza dando pequeños
saltos en contra de este ya que el gradiente indica la dirección de máxima variación. Ası́, sean el peso y
bias j y la iteración i tenemos:

wi+1
j = wi

j −α
∂C
∂w j

, (3.6)

bi+1
j = bi

j −α
∂C
∂b j

, (3.7)

donde α es el llamado learning rate, un hiperparámetro de la red que controla el tamaño del salto. Si
este es muy grande la red puede ser que aprenda más rápido pero también puede ser que al iterar se salga
de la cuenca de un mı́nimo y que la red acabe no aprendiendo, sin embargo, si este es muy pequeño el
proceso será muy lento y supondrá un coste computacional muy elevado.

6

3.1 Redes Neuronales Jorge Simón Aznar

Sin embargo, si observamos el esquema de una red neuronal nos damos cuenta de que el cambiar
uno de los parámetros afecta a los de las siguientes capas, ya que las operaciones que se producen en las
neuronas dependen de estos, lo que complica el proceso de optimización. Para solucionar este problema
y calcular de forma efectiva el gradiente de la función de coste se utiliza el algoritmo Backpropagation
[3], sin duda alguna, uno de los algoritmos más importantes y por el cual la IA que conocemos es como
es hoy en dı́a. Este algoritmo calcula todas las derivadas parciales de la función de coste desde la capa
del output hasta la capa input de la red mediante la regla de la cadena, lo que nos permitirá, en primer
lugar, calcular los parámetros de activación de cada capa de la red (weights y bias) y en segundo lugar,
recorrerla en sentido inverso para calcular el gradiente de la función Loss.

Aunque el Descenso de gradiente presenta gran efectividad en redes con datasets pequeños, cuan-
do tratamos de entrenar grandes cantidades de datos este resulta extremadamente lento. Por ello se han
diseñado otros algoritmos, como el Stochastic Gradient Descent (SGD) [10][11], que supone que el
gradiente de un subconjunto (mini batches) de los datos de entrada es semejante al de todos los datos.
De esta forma se introduce un nuevo hiperparámetro denominado mini batch size, el cual determina el
tamaño del subconjunto de datos escogidos al azar. Cabe destacar que, aunque el SGD es uno de los al-
goritmos más eficientes y empleados hoy en dı́a, existen otros que pueden ser más efectivos dependiendo
del problema, como por ejemplo Adam [10][12] y RMSProp [10][13], los cuales hemos utilizado en el
desarrollo del trabajo.

3.1.4. Underfitting y Overfitting

Los conceptos de underfitting y overfit-
ting [14] son unos de los problemas más co-
munes a la hora de entrenar redes neuronales,
ya que la elección de los hiperparámetros co-
mo el número de épocas (epochs), el learning
rate, el mini batch size, el número de neuro-
nas y el número de capas es una elección que
depende del programador de la red puesto que
el valor de estos no se rige por ninguna regla.
Por ello, es importante saber interpretar los
resultados e identificar si en el entrenamien-
to de nuestra red se está dando uno de estos
dos conceptos.

El underfitting se da cuando el modelo no puede alcanzar una función de loss lo suficientemente
baja en el entrenamiento con los datos que denominamos training set. Es decir, la red falla durante su
aprendizaje y no es capaz de reconocer los patrones de dichos datos. Por otro lado tenemos el overfitting,
que aparece cuando el modelo aprende demasiado bien los patrones de los datos de entrenamiento pero
no es capaz de reconocer la información subyacente a estos, por lo que falla prediciendo otros datos, ob-
teniendo ası́ una función coste baja para el entrenamiento pero elevada para otros datos. El underfitting
es fácil de identificar, ya que se suele obtener una función coste o pérdida elevadas, sin embargo, para
identificar el overfitting hacemos uso de otro set de datos, al que llamamos validation set. Existen nume-
rosos métodos para solucionar estos problemas. El más sencillo de todos es añadir un mayor tamaño de
dataset, sin embargo, esto puede aumentar notablemente el tiempo de entrenamiento, por lo que no siem-

7

3.2 Redes densas y convolucionales Jorge Simón Aznar

pre es recomendable. Otro método es el early stopping, el cual consiste en pausar el entrenamiento de la
red en un punto determinado. Para ello, se programa para que se detenga cada ciertas epochs y ası́ poder
observar los parámetros training loss y validation loss. Finalmente, la técnica que hemos empleado en
este trabajo es la de DropOut, cuyo principio es “desconectar” algunas neuronas de la capa que elijamos.
De esta forma se consigue que la red aprenda aquella información más robusta de los datos y deje de
lado la información innecesaria, como el ruido, algo que en nuestro trabajo resulta de gran importancia.

3.2. Redes densas y convolucionales

Figura 3.1: Estructura de red densa. Fuente: [8]

En las redes tradicionales
basadas en el concepto de feedfor-
ward [15], cada neurona de cada
capa está conectada a todas las neu-
ronas de la capa siguiente, por lo
que dichas neuronas toman la sali-
da de cada una de las neuronas de la
capa anterior, realizan las transfor-
maciones lineal (ec. 3.1) y no lineal
(en caso de activación sigmoide ec.
3.3) y emiten la señal a cada una
de las neuronas de la siguiente ca-
pa, como sucede en el esquema de
la derecha. A este tipo de red es a
la que denominamos red neuronal
densa.

Mientras que las CNN (Convolutional Neural Network) [16][17] no utilizan capas densas hasta
la última (de manera opcional), como podemos observar en la figura 3.2, sino que utilizan capas convo-
lucionales que aplican operaciones de convolución a las entradas, permitiéndoles extraer caracterı́sticas
locales y adquirir representaciones jerárquicas de las imágenes. Las capas convolucionales se componen
de filtros o kernels, pequeñas regiones de la matriz original que se desplazan sobre esta realizando opera-
ciones matemáticas locales para generar mapas de caracterı́sticas que se fusionan en capas subsiguientes
para obtener representaciones más abstractas de la imagen.

Figura 3.2: Estructura de red convolucional. Fuente: [17]

En concreto, en cada capa se
aplica un tipo de filtro y son es-
tos los que, durante el entrenamien-
to de la red, deben aprender a de-
tectar bordes, utilizar estos bordes
para identificar formas y progresi-
vamente ir aumentando la comple-
jidad hasta llegar a detectar carac-
terı́sticas y expresiones de más alto
nivel, como la forma de una cara,

un ojo, una sonrisa, etc. Las principales ventajas que nos ofrece este tipo de red son la invarianza local y
la composicionalidad. La primera de estas nos permite clasificar una imagen dependiendo de qué objeto

8

3.3 Autoencoder Jorge Simón Aznar

aparece en ella sin importar en qué posición de la imagen se encuentre, mientras que la segunda hace
referencia a la capacidad de la red para profundizar y aprender caracterı́sticas complejas a partir de unas
de más bajo nivel, como son los pı́xeles.

Ambas redes resultan de gran utilidad y su efectividad, al igual que los hiperparámetros que esco-
jamos, dependerá del tipo de problema al que nos enfrentemos y de lo que sea más adecuado, si aprender
patrones globales como hacen las redes densas o aprender patrones locales como sucede con las redes
convolucionales.

En nuestro caso hemos aplicado ambos tipos de red y estudiaremos los resultados para ver cuál de
ellas funciona mejor para el filtrado del ruido de nuestras imágenes.

3.3. Autoencoder

Un autoencoder [18] [19] es una red neuronal simétrica basada en el aprendizaje no supervisado
y que se compone de tres partes, encoder Rn −→ Rm , decoder Rm −→ Rn y una representación latente
de las caracterı́sticas de los datos, que serı́a la capa intermedia de la red. Puesto que su estructura es la
unión de dos redes, esta se entrena de la misma forma, aplicando los mismos algoritmos de optimización,
las mismas funciones de coste y de activación. La función principal de este tipo de red es representar el
input de la manera más fiel y precisa posible, almacenando de alguna manera los rasgos principales en
el espacio latente.

Figura 3.3: Estructura de la red autoencoder (Fuente: [20])

Aunque pueda parecer de poca utilidad ya que su función es reconstruir un objeto que en un
principio ya tenemos, en realidad se trata de una red con gran efectividad en determinados problemas,
como por ejemplo la reducción de la dimensionalidad; la clasificación de imágenes, llegando a reducir
el tiempo de clasificación en un factor 1000 sacrificando un 7.4% de acierto en el ejemplo del MNIST;
la detección de anomalı́as y, finalmente, el ejemplo que hemos tratado en este trabajo, la reducción de
ruido.

3.4. Transformada de Fourier

La Transformada de Fourier es una de las técnicas matemáticas más conocidas y empleadas en el
mundo de la fı́sica y la ingenierı́a ya que nos permite conocer con mayor detalle algunas de las carac-
terı́sticas de un amplio tipo de señales. Se trata de la transformación de una señal en el dominio temporal
o espacial al dominio frecuencial. Es en este dominio donde hallamos un conjunto de amplitudes comple-

9

3.4 Transformada de Fourier Jorge Simón Aznar

jas, denominadas coeficientes de las Series de Fourier. De esta forma, una señal unidimensional se puede
descomponer en un conjunto infinito de señales de tipo seno con diferentes frecuencias, amplitudes y
fases.

Como hemos mencionado antes, su uso se extiende a lo largo de un gran número de problemas,
sin embargo, nosotros nos centraremos en el filtrado del ruido de una señal [6]. Cuando se aplica la
Transformada de Fourier a una señal contaminada con ruido se obtiene un espectro que muestra las
amplitudes y fases de las diferentes frecuencias presentes en la señal, donde encontraremos también las
del ruido. Por tanto, para eliminarlo podemos realizar un filtrado en el dominio de la frecuencia. Esto
implica identificar las componentes de frecuencia correspondientes al ruido y atenuarlas o eliminarlas por
completo, mientras se conservan las componentes de frecuencia de interés. Para visualizar su uso hemos
desarrollado un sencillo ejemplo. Supongamos una función gaussiana del tipo e−

1
2 x2

, donde x tomará
1000 valores entre -10 y 10 de forma equiespaciada. A la función le añadimos ruido aleatorio a partir
de una distribución normal con media 0 y desviación estándar 0.1. Ası́, si aplicamos la Transformada
de Fourier a la señal contaminada, localizamos la frecuencia de corte a partir de la cual atenuaremos la
señal y diseñamos un filtro que lleve a 0 la amplitud de la señal a partir de dicha frecuencia, conseguimos
recuperar la señal original a partir de la señal contaminada como se muestra en la figura:

Figura 3.4: Filtrado del ruido de una gaussiana e−
1
2 x2

corrupta con frecuencia de corte 0.011 mediante la
Transformada de Fourier

Podemos observar como la señal filtrada no es exactamente la señal original, sino que todavı́a
encontramos cierto ruido en ella. Eso sucede porque hemos aplicado un filtro sencillo colocado “a ojo”,
por lo que es posible que hayamos dejado algo de ruido o incluso que hayamos cortado antes de tiempo,
por lo que podrı́amos estar perdiendo información de la señal original. Sin embargo, se aprecia notable-
mente como la mayor parte del ruido ha sido eliminado, recuperando ası́ con bastante éxito la función
gaussiana.

10

Jorge Simón Aznar

4. Resultados

En esta sección expondremos los resultados obtenidos mediante el uso de las técnicas introdu-
cidas. Como ya hemos comentado en apartados anteriores, el problema se centraba en filtrar el ruido
de imágenes generadas por Microscopı́a electrónica de transmisión de barrido (STEM) de una pelı́cula
delgada de un ferroeléctrico sobre un buffer conductor para ası́ ser capaces de detectar defectos en la
muestra. Para poder llevar a cabo el trabajo, se nos proporcionó un conjunto de imágenes con las carac-
terı́sticas ya mencionadas, unas de ellas con un tamaño de 9 pm por pixel y otras de 12 pm. Además,
estas imágenes venı́an también diferenciadas dependiendo de la orientación de la estructura cristalina.
Debido al gran número de imágenes y, por tanto, de datos, decidimos trabajar con las imágenes de 12
pm por pixel, que a su vez tenı́an un tamaño de 4096x4096 pı́xeles ya que fraccionando tan solo estas
imágenes podı́amos obtener un número de datos suficiente para entrenar nuestras redes. A continuación,
se muestra la primera de las imágenes para que ası́ se aprecie la magnitud de los resultados obtenidos.

(a) Imagen original de 4096x4096 (b) Recorte de la imagen original de 64x64

Figura 4.1: Imagen generada por STEM

4.1. Singular Value Decomposition (SVD)

Comenzamos el trabajo mediante el filtrado de las imágenes con la técnica Singular Value De-
composition [5], ya que este era el método utilizado por los investigadores que nos proporcionaron las
imágenes. Se trata de una técnica sencilla cuyo fundamento se basa en la descomposición de una matriz
(la imagen en nuestro caso) en sus componentes principales, de manera que

A =UΣV T (4.1)

Siendo A la matriz de pı́xeles de nuestra imagen, U y V matrices unitarias que representan las bases
de nuestra matriz A y Σ una matriz diagonal semidefinida positiva cuyas componentes son los valores
singulares, por lo que serán no negativos. Estos valores singulares de la matriz diagonal se encuentran
ordenados de mayor a menor en la diagonal principal, por lo que representan la importancia relativa de
cada elemento de la base.

11

4.1 Singular Value Decomposition (SVD) Jorge Simón Aznar

Se trata de una técnica muy empleada en la reducción de la dimensionalidad, sin embargo, también
es útil para la reducción del ruido ya que las componentes principales , es decir los valores singulares más
grandes, son aquellas que contienen la información más importante, mientras que los valores singulares
más pequeños serán aquellos que contengan la información innecesaria, como por ejemplo el ruido. El
problema reside en que nuestra matriz diagonal tiene dimensiones de 4096x4096, es decir, 4096 valores
singulares, por lo que no podemos saber a simple vista a partir de qué valor empieza a ser prescindible
la información. Para hacernos una idea de la importancia de estos valores tendremos que hacer uso de la
Varianza Explicada, ya que esta se refiere a la proporción de la varianza que contiene cada valor singular
respecto de la varianza total, es decir, a mayor varianza explicada, mayor será la influencia de dicha
componente. Por tanto, haciendo el siguiente cálculo:

Expl.Vari =
σ2

i

∑n σ2
n

(4.2)

Donde σ son los valores singulares, obtenemos la varianza explicada del i-ésimo valor singular. De esta
forma podemos estimar su importancia:

Figura 4.2: Varianza explicada de los valores singulares

Se observa como la mayor parte de la varianza explicada (99.96%) se encuentra en los 50 primeros
valores singulares. Además, a partir de este se produce un cambio en la forma de la función, por lo que
supondremos que es en este punto en el que empieza a tomar importancia el ruido. De esta forma,
aplicando el método SVD cogiendo sólo los 50 primeros valores obtenemos el siguiente resultado:

12

4.2 Dense Autoencoder Jorge Simón Aznar

(a) Original (b) Filtrada

Figura 4.3: Reducción de ruido mediante SVD con 50 primeros valores singulares

Se aprecia una gran reducción del ruido, permitiéndonos diferenciar los distintos átomos de la
lámina. Sin embargo, todavı́a existe la presencia del ruido en la imagen y, aunque si que se puede localizar
la posición de los átomos, no permitirı́a distinguir apenas los dos tipos.

4.2. Dense Autoencoder

Como hemos introducido anteriormente, un autoencoder es un tipo de red neuronal cuya entrada
y salida son iguales, por lo que tiene como objetivo reconstruir lo más fielmente posible los datos de
entrada. Dichas redes pueden ser utilizadas para el filtrado de imágenes [21], ya que lo que permite dicha
función es la estructura de encoder, espacio latente y decoder.

En este primer apartado veremos los resultados obtenidos a partir de los distintos modelos de
Dense Autoencoder. En este caso, los datos de entrenamiento, validación y test han consistido en un
conjunto de recortes de 64x64 pı́xeles de la imagen presentada anteriormente, en concreto, 4096 recortes.
Los hiperparámetros escogidos para los distintos modelos implementados son los siguientes:

Hiperparámetro Model 1 Model 2
epochs 300

mini batch 10
dataset (tr, val, test) 3645, 410, 41
nºneuronas / capa (4096,100,50,15,50,100,4096) (4096,100,50,25,15,25,50,100,4096)

optimizador Adam
learning rate 0.0001
f. activación ReLU

loss MSE
métrica RMSE

Tabla 4.1: Hiperparámetros de los modelos 1 y 2

13

4.2 Dense Autoencoder Jorge Simón Aznar

Hiperparámetro Model 3 Model 4
epochs 300

mini batch 10
dataset (tr, val, test) 3645, 410, 41
nºneuronas / capa (4096, 100, 50, 15, 50, 100, 4096)

optimizador Adam RMSProp
learning rate 0.0001
f. activación Leaky ReLU

loss MSE
métrica RMSE

Tabla 4.2: Hiperparámetros de los modelos 3 y 4

Se puede observar como los modelos se parecen en gran medida, cambiando en cada uno de ellos
uno o dos hiperparámetros. Es necesario comentar que para todos ellos se ha empleado la función de
activación sigmoide (ec. 3.3) en la última capa de la red. Con todos estos valores y las 3645 imágenes
usadas para entrenar las redes se obtienen un total de 835111 parámetros, es decir, el número de weights
y bias que queremos encontrar. Ası́, una vez entrenadas las redes, obtenemos los siguientes resultados:

Figura 4.4: Comparación de la función loss de los modelos 1, 2, 3 y 4.

Observamos como los modelos 2 y 4 no consiguen reducir la función de coste tanto como los
modelos 1 y 3, por lo que a priori cabe esperar que los resultados serán peores. En cuanto a los modelos
1 y 3, se aprecia una evolución correcta, por lo que si que parece que hayan entrenado bien las redes,
notando una ligera mejora al aplicar la función de activación Leaky ReLU en vez de ReLU, hecho que
quizá se deba a que, como mencionamos en la introducción teórica, esta función no trunca los valores
negativos de z (3.4), sino que toma valores muy pequeños.

Una vez analizados estos resultados, podemos pensar que el modelo 3 es el más óptimo para el
desarrollo del trabajo, sin embargo, al comparar la función de coste del set de training con el set de
validation observamos como a partir de la época 70 se empieza a producir cierto overfitting (ver panel
izquierdo de 4.5). Aunque este no es tan apreciable como el visto en la introducción, es conveniente
eliminarlo. Para ello hemos aplicado un DropOut del 20% tras la primera capa, es decir, por cada época

14

4.2 Dense Autoencoder Jorge Simón Aznar

se desconecta un 20% de las neuronas de la primera capa de manera aleatoria, obteniendo el siguiente
resultado:

Figura 4.5: Efecto del DropOut sobre el modelo 3 (renombrado como Modelo 5).

Como vemos, hemos conseguido eliminar el efecto del overfitting. Por tanto, una vez estudiado
el comportamiento de la función de loss, veamos como de eficaces son los modelos a la hora de filtrar
ruido:

Figura 4.6: Comparación del filtrado de ruido de los distintos modelos implementados.

Los modelos 2 y 4, como era de esperar, no han conseguido extraer la información subyacente de
la imagen original, por lo que no han sido capaces de eliminar el ruido correctamente. En cuanto a los
modelos 1, 3 y 5, la diferencia es inapreciable. Los tres modelos han conseguido disminuir la función de
coste al mismo valor prácticamente y han conseguido recuperar la imagen original de la misma manera.
Por lo que, ya que el modelo 5 es el que presenta la capa de DropOut para evitar el overfitting, será el
que usemos para reconstruir la imagen original 4.1a.

15

4.2 Dense Autoencoder Jorge Simón Aznar

Sin embargo, encontramos un problema en nuestros resultados. Y es que, como se aprecia en
la figura 4.7b, podemos observar una cuadrı́cula, como si fuera la “costura” de la reconstrucción de la
imagen a partir de los recortes de 64x64 pı́xeles. Este fenómeno, el cual no se tuvo en cuenta a la hora
de preparar el dataset, se debe a que los datos que se le introducen a la red son los recortes realizados de
manera consecutiva, es decir, donde termina uno empieza el siguiente, por lo que la red aprende de cada
una de las imágenes por separado pudiendo interpretar las intensidades de los extremos de cada recorte
ligeramente diferentes, produciendo este efecto.

(a) 4096x4096 (b) 400x400

Figura 4.7: Imagen filtrada por modelo 5

Para solucionar el problema hemos tenido que entrenar la red con unos nuevos parámetros. En
concreto, hemos realizado 50000 recortes, también de 64x64 pı́xeles, de manera aleatoria. De esta forma,
la cantidad de datos de entrenamiento aumenta considerablemente, de 3645 a 44500, por lo que no será
necesaria una capa de DropOut ya que otra forma de solucionar el overfitting es aumentando los datos
de entrenamiento. Finalmente, puesto que el número de datos es mucho mayor, tendremos que reducir el
número de épocas, en nuestro caso a 100. A dicho nuevo modelo, de ahora en adelante, lo denominaremos
modelo random.

Aplicando estos cambios en el entrenamiento de nuestra red, obtenemos los siguientes resultados:

Figura 4.8: Evolución de la función loss en el modelo random.

16

4.3 Redes Neuronales Convolucionales Jorge Simón Aznar

(a) 400x400 (b) 64x64

Figura 4.9: Imagen filtrada por el modelo random

En la figura 4.8 vemos como no solo no se produce overfitting, sino que se alcanzan unos valores
de la función de coste más bajos que mediante los modelos anteriores, lo cual es un indicativo de que
la red es más efectiva. Ahora, fijándonos en la figura 4.9 observamos como, además de eliminar las
marcas de “costura” al reconstruir la imagen principal, hemos conseguido eliminar en mayor cantidad el
ruido, produciendo una suavidad en los contornos de los átomos que no encontrábamos en las imágenes
filtradas por los otros modelos.

4.3. Redes Neuronales Convolucionales

Como hemos introducido anteriormente, además de las redes neuronales densas, en nuestro caso
aplicadas con la estructura de autoencoder, también hemos empleado redes neuronales convolucionales
[22]. En este apartado presentaremos los resultados obtenidos mediante el uso de esta técnica, ası́ como
los hiperparámetros escogidos para ello.

Tras observar que, para el modelo de autoencoder denso, la mejor forma de preparar los datos
de entrenamiento era hacer recortes de la imagen original 4.1a de manera aleatoria ya que se obtenı́a
un mejor resultado, decidimos utilizar el mismo training set para nuestra red convolucional. Por tanto,
disponemos de 50000 imágenes de dimensión 64x64 pı́xeles ordenadas de forma aleatoria. Además, los
hiperparámetros utilizados son los mismos que para el modelo 3 de red densa presentados en la tabla 4.2,
a excepción del número de épocas y el batch size que, debido al aumento de datos de entrenamiento y
al cambio en la estructura de la red, hemos modificado a 10 y 128 respectivamente. Y al igual que estos
modelos, la función sigmoide (ec. 3.3) ha sido utilizada en al capa densa. En cuanto a la estructura de la
red, esta es la siguiente:

17

4.4 Filtrado de ruido mediante la Transformada de Fourier Jorge Simón Aznar

Input (64, 64, 1)
Conv2D (64, 64, 8)

MaxPooling2D (32, 32, 8)
Conv2D (32, 32, 16)

MaxPooling2D (16, 16, 16)
Conv2D (16, 16, 32)

MaxPooling2D (8, 8, 32)
Conv2D (8, 8, 64)
Flatten (4096)
Dense (4096)
Output (64, 64, 1)

Tabla 4.3: Estructura red neuronal convolucional

Con la estructura ya presentada, procedemos a analizar los resultados:

(a) 400x400 (b) 64x64

Figura 4.10: Imagen filtrada por el modelo convolucional random

Observamos como los resultados son muy semejantes a los obtenidos mediante el modelo de
autoencoder dense random, siendo la diferencia entre estos prácticamente inapreciable.

4.4. Filtrado de ruido mediante la Transformada de Fourier

Finalmente, veremos como la Transformada de Fourier puede ser utilizada para el filtrado de nues-
tras imágenes de un modo similar al mostrado en el ejemplo 3.4. En este caso, nuestra transformada de
Fourier será una transformada bidimensional, por lo que la función en el espacio de frecuencias depen-
derá de dos variables, Kx y Ky. Para calcular la transformada de la matriz de pı́xeles que representa la
imagen hemos empleado la función proporcionada por la librerı́a numpy, numpy.fft.fft2. Una vez hallada
dicha transformada, en primer lugar hemos centrado las frecuencias, es decir, las frecuencias con ma-
yor amplitud han sido colocadas en el centro mediante la función numpy.fft.fftshift. De esta forma nos
resulta más sencillo aplicar un filtro. Por tanto, una vez tenemos la transformada centrada calculamos la
magnitud para ası́ poder visualizarla y hacernos una idea de cómo debe ser el filtro:

18

4.5 Comparación de resultados Jorge Simón Aznar

(a) Magnitud de la Transformada de Fourier (b) Filtro Paso-Bajo sobre la magnitud de la TF

Como vemos, las componentes frecuenciales con mayor amplitud se encuentran en el centro, aque-
llas que tienen un contenido frecuencial más significativo y que corresponden a la estructura espacial de
la red cristalina, por lo que aplicando un filtro circular que deje pasar las frecuencias que se encuentran
dentro de él deberá bastar para eliminar las frecuencias más altas, en este caso las del ruido. El filtro di-
señado tiene unas dimensiones de 280 pı́xeles de radio, aproximadamente lo que se aprecia a simple vista
que abarcan las frecuencias centrales. Recomponiendo la imagen tras haber aplicado el filtro obtenemos
los siguientes resultados:

(a) 400x400 (b) 64x64

Figura 4.12: Imagen filtrada mediante la Transformada de Fourier

Se observa como, efectivamente, el método de la Transformada de Fourier es eficaz para el fil-
trado de ruido. De hecho, fijándonos en la figura 4.12b se puede apreciar una suavidad en los contornos
similar a la generada por el modelo random del autoencoder dense, ası́ como de la red convolucional. Sin
embargo, las formas presentan cierta distorsión, haciéndose más apreciable al mirar un mayor número
de átomos, como en el caso de la figura 4.12a.

4.5. Comparación de resultados

A lo largo de esta sección hemos ido viendo los resultados que hemos generado mediante el uso de
las diferentes técnicas; SVD, autoencoder denso, red neuronal convolucional y transformada de Fourier.

19

4.5 Comparación de resultados Jorge Simón Aznar

Todos estos métodos pueden ser empleados para el filtrado de ruido o denoising, sin embargo, hemos
podido ver como algunos resultan ser más eficaces que otros. En este apartado vamos a comparar los
distintos modelos, observando recortes aleatorios de la imagen filtrada y calculando una métrica deno-
minada Peak Signal to Noise Ratio (PSNR) [23] para cuantificar de alguna manera el ruido eliminado
por cada método.

El término PSNR es una expresión que relaciona el valor máximo que puede tomar una imagen
con la distorsión producida por el ruido que afecta a la calidad de esta. Puesto que el rango dinámico
de valores de una imagen puede ser muy amplio, normalmente se expresa el valor en decibelios (dB),
significando que a mayor valor de dB, mayor eliminación de ruido, por lo que la expresión para calcularlo
es

PSNR = 10log10(
max2

MSE
) (4.3)

MSE =
1

NM

N−1

∑
0

M−1

∑
0

|| fi, j −gi, j||2 (4.4)

donde max es el valor máximo de la imagen sin ruido, en nuestro caso la imagen filtrada, N y M son las
dimensiones de nuestras imágenes (NxM) y fi, j y gi, j son los valores de los pı́xeles que componen las
matrices que representan la imágenes filtrada y original respectivamente. Es esta naturaleza logarı́tmica
la que nos permite diferenciar imágenes que varı́an ligeramente. Ahora veamos si este término coincide
con nuestra percepción:

Figura 4.13: Comparación de resultados con valores de PSNR (mirar cabecera)

Vemos como, efectivamente, los modelos random son aquellos que mayor valor de PSNR han
obtenido, algo que esperábamos ya que a simple vista se observa un mejor resultado. En cuanto al mo-
delo 5, aunque este identifica correctamente la estructura de la red cristalina y representa los distintos
átomos con gran precisión, no consigue eliminar del todo el ruido, además de la existencia de las marcas
de “costura” que comentamos al analizar sus resultados. La filtración realizada por el método SVD es

20

Jorge Simón Aznar

insuficiente, por lo que el valor obtenido es el más reducido y, por último, puesto que esta métrica cuanti-
fica la proporción de ruido eliminado, el modelo de la transformada de Fourier obtiene un resultado más
elevado que el modelo 5, a pesar de distorsionar levemente las formas de los átomos.

En la siguiente sección procederemos a analizar en detalle la imagen al completo, ası́ como el
resto de imágenes que nos han sido proporcionadas, en busca de dislocaciones e imperfecciones para
comprobar si la red es capaz de reconstruirlas también. Pero para ello es necesaria la elección de uno
de los modelos. En nuestro caso, debido a los valores de PSNR mostrados, nos hemos decantado por el
modelo de Autoencoder Dense Random, a pesar de que a la vista es prácticamente idéntico al modelo
de Red Convolucional Random. Es en este punto donde mayor importancia cobra el poder cuantificar el
ruido de una imagen, ya que hay ocasiones en las que determinar si una imagen conserva mejor calidad
que otra de forma subjetiva se vuelve una tarea complicada. Cabe comentar que el uso de este término no
siempre resulta favorable, ya que imágenes tan disparatadas como la generada por el modelo 4 4.6 da un
resultado mayor que el modelo SVD, a pesar de que es una imagen completamente ruidosa sin ningún
tipo de información.

5. Aplicación de los resultados

Al comienzo de este trabajo hemos introducido que una de las principales motivaciones era desa-
rrollar un modelo que eliminase el ruido de las imágenes generadas por STEM que tenemos a nuestra
disposición. Como hemos visto a lo largo del desarrollo de los modelos, todos los resultados expuestos
hasta el momento eran con respecto a la imagen 4.1a, la cual habı́amos tomado como referencia. Por
tanto, una cuestión importante es si el modelo que hemos generado es válido también para el resto de
imágenes y es en este capı́tulo donde vamos a comprobarlo.

En primer lugar, comenzamos analizando una imagen de la misma pelı́cula delgada, cuya estruc-
tura cristalina posee la misma orientación que la imagen de referencia, pero ha sido tomada en un punto
distinto.

(a) Original (b) Filtrada

Figura 5.1: Imagen filtrada mediante Autoencoder Dense Random

Como podemos observar, ocurre algo que llama la atención a simple vista y es que al representar

21

Jorge Simón Aznar

la imagen se cambian los colores, pasando de ser azul con tonalidades verdes a verde con tonalidades
azules. Este cambio se debe a que al realizar los recortes introducidos en la red Dense Random de manera
aleatoria, un pequeño segmento interior de imagen no fue recortado, por lo que a la hora de represen-
tarla la gama de colores cambia ya que hay unos pı́xels con valor nulo. Sin embargo, si representamos
zonas concretas, como sucede en 4.9, el color original se recupera. Fijándonos detenidamente en ambas
imágenes podemos apreciar que la red neuronal ha identificado la estructura a la perfección, presentan-
do de este modo las mismas “manchas”, cambios de intensidad, etc. Por lo tanto, podemos confirmar
que el modelo es válido para imágenes que presentan las mismas caracterı́sticas que nuestra imagen de
referencia 4.1a. Veamos si sucede lo mismo cuando la orientación de la estructura cristalina ha cambiado.

(a) Original (b) Filtrada

Figura 5.2: Imagen filtrada mediante Autoencoder Dense Random con orientación cristalina diferente

Como vemos, en este caso hemos podido evitar el cambio de color, debido a que ninguna zona
interior se ha visto afectada. Sin embargo, si nos aproximamos se puede apreciar como este filtrado no
es tan claro, ya que, a pesar de que no aparenta haber la robustosidad o pixelación que produce el ruido
en una imagen, las figuras se encuentran un tanto distorsionadas, siendo más complicado identificar los
átomos que en el caso de la orientación inicial, sobre todo en la parte inferior de la imagen.

(a) Original (b) Filtrada

Figura 5.3: Recorte 500x500 de la figura 5.2

22

Jorge Simón Aznar

Por tanto, aunque el hecho de que la estructura cristalina no sea la misma haga que el modelo
resulte menos efectivo, vemos como nuestra red trabaja correctamente con imágenes que no poseen
exactamente las mismas caracterı́sticas que nuestra imagen original, respetando de alguna manera la
disposición de los átomos en la red y aquellas zonas que presentan perturbaciones, como es el caso
de la esquina superior derecha de las figuras que acabamos de mostrar, donde se ve claramente una
imperfección y nuestro modelo la detecta y la recrea sin problema alguno.

Finalmente, volviendo a nuestra imagen de referencia 4.1a, hemos observado como la red recrea
los patrones de las imágenes perfectamente, sin embargo, no hemos comprobado qué sucede con estas
zonas de distorsión cuando nos acercamos. Veamos si podemos visualizar una de estas zonas y si nuestro
modelo nos permite especular sobre los posibles motivos. En concreto, vamos a observar la zona marcada
por el cuadro blanco:

(a) 4096x4096 Original (b) 700x700 Filtrada

Figura 5.4: Observación de distorsión en imagen filtrada por modelo Autoencoder Random

Se puede apreciar claramente la zona de transición entre la sección verde y la azul, además de la
borrosidad aparente del lı́mite en la zona enmarcada por el recuadro blanco. Este cambio en la tonalidad
de las imágenes se debe a que se trata de la imagen de una sección transversal de la muestra, es decir,
de la profundidad, y por ello podemos observar dos capas diferentes ya que se trata de un ferroeléctrico
sobre un buffer conductor. Por lo tanto, podemos observar como sı́ que es posible distinguir con precisión
las distintas zonas de la lámina e incluso los distintos átomos, como vemos en la figura 4.9b, por lo que
queda comprobada la utilidad de nuestra red para examinar detalladamente este tipo de imágenes.

23

Jorge Simón Aznar

6. Conclusiones

A lo largo de este trabajo se han visto distintas técnicas de Inteligencia Artificial, ası́ como métodos
clásicos para el tratamiento de imágenes. El reconocimiento de imágenes es uno de los campos más
populares hoy en dı́a y con mayor empleabilidad por la sociedad y hemos podido comprobar como el uso
de determinadas redes neuronales no demasiado complejas puede permitirnos realizar tareas en cuestión
de dos horas que antiguamente podı́a llevar dı́as.

Se han diseñado distintos modelos de RRNN que han sido capaces de reconocer la estructura
cristalina de las imágenes y de aprender la información subyacente a esta, eliminando la información
innecesaria, como por ejemplo el ruido, a pesar de que se trataba de una estructura con forma de retı́cula
y no presentaba contornos bien definidos, como serı́a el caso de los famosos dı́gitos del dataset MNIST.
Una prueba más de la efectividad de dichos modelos es el correcto resultado obtenido a pesar de las
limitaciones técnicas a la hora de desarrollar el trabajo, ya que la herramienta empleada ha sido mi orde-
nador portátil con un procesador Intel Core i5 y una gráfica GeForce GTX 1050, el cual nos ha permitido
entrenar las redes que han resultado ser más efectivas en 2 horas en el caso del dense autoencoder y 47
minutos en el caso de la red neuronal convolucional. Este hecho puede suponer una gran diferencia si
se entrenan las redes con un dataset de gran tamaño, por lo que, aunque en el trabajo hayamos escogi-
do la primera de las redes, no descartamos que el modelo convolucional pueda presentar unos mejores
resultados.

Sin embargo, durante el desarrollo del trabajo también hemos podido comprobar la dificultad a la
hora de medir y entender los resultados en el campo de la reducción de ruido mediante estos métodos.
Para cuantificar la bondad de los modelos obtenidos hemos usado el PSNR (ver ec. 4.3). Sin embargo,
no es menos cierto que también conviene basarse en factores algo más subjetivos, como es la evaluación
a ojo de las figuras filtradas. Por ejemplo, nótese que, dada una imagen ruidosa, otra imagen que fuera
casi idéntica a la misma cambiando solo el valor de un pı́xel tendrı́a un valor del PSNR enorme, mientras
que seguirı́a siendo igual de ruidosa que la imagen original. Por tanto, hemos tenido que usar el factor
humano, la subjetividad, para decidir finalmente qué resultados son más óptimos, ya que no hemos
podido encontrar una técnica que sea 100% efectiva. Hecho que nos lleva a concluir que el ojo sigue
siendo uno de los métodos más fiables a la hora de comparar resultados en el campo del reconocimiento
de imágenes ya que, aunque existen RRNN mejores que el ser humano a la hora de reconocer caras, estas
han sido entrenadas a partir de datos escogidos y etiquetados por personas.

Es innegable el potencial que la Inteligencia Artificial tiene, ya que tan solo en este trabajo hemos
podido observar lo poderosas que son las redes frente a las técnicas clásicas de tratamiento de señales y
como sus resultados nos facilitan enormemente el estudio de estas, pudiendo analizar de una forma más
profunda, en nuestro caso, lo que sucede en las láminas observadas. Y esta no es más que una diminuta
parte del verdadero poder de la IA, de lo que se ha descubierto y de lo que queda por descubrir.

24

Bibliografı́a

1W. S. McCulloch y W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, The bulletin
of mathematical biophysics 5, 115-133 (1943).

2F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the
brain.”, Psychological Review 65(6), 386-408 (1958).

3D. E. Rumelhart, G. E. Hinton y R. J. Williams, “Learning representations by back-propagating errors”,
Nature 323, 533-536 (1986).

4F. Chollet, Deep Learning with Python, second edition (Manning Publications Co., 2021).
5G. W. Stewart, “On the Early History of the Singular Value Decomposition”, SIAM Review 35,
551-566 (1993).

6L. Ruiz Fernández, “La transformada de Fourier. Aplicación al filtrado de imágenes”, Escuela Técnica
Superior de Ingenierı́a Geodésica, Cartográfica y Topográfica de la Universidad Politècnica de Valen-
cia.

7M. Nielsen, Neural Networks and Deep Learning (Determination Press San Francisco, 2015).
8D. A. Rosebrock, Deep Learning for Computer Vision with Python, Starter Bundle (PYIMAGESEARCH,
2019).

9L. Llano, A. Hoyos Palacio, F. Arias y J. Velásquez, “Comparación del Desempeño de Funciones de
Activación en Redes Feedforward para aproximar Funciones de Datos con y sin Ruido.”, RASI 4,
79-88 (2007).

10S. Ruder, “An overview of gradient descent optimization algorithms”, CoRR abs/1609.04747 (2016).
11L. Bottou, “Stochastic Gradient Learning in Neural Networks”, en Proceedings of Neuro-Nı̂mes 91

(1991).
12D. P. Kingma y J. Ba, “Adam: A Method for Stochastic Optimization”, (2017).
13D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison y G. E. Dahl, “On Empirical Comparisons of

Optimizers for Deep Learning”, CoRR abs/1910.05446 (2019).
14H. Zhang, L. Zhang e Y. Jiang, “Overfitting and Underfitting Analysis for Deep Learning Based End-

to-end Communication Systems”, en 2019 11th International Conference on Wireless Communications
and Signal Processing (WCSP) (2019), págs. 1-6.

15M. H. Sazlı, “A brief review of feed-forward neural networks”, Communications Faculty of Sciences
University of Ankara Series A2-A3 Physical Sciences and Engineering, 10 . 1501 / commua1 - 2 \
_0000000026 (2006).

16M. D. Zeiler y R. Fergus, “Visualizing and Understanding Convolutional Networks”, CoRR abs/1311.2901
(2013).

17Y. LeCun, K. Kavukcuoglu y C. Farabet, “Convolutional networks and applications in vision”, en
Proceedings of 2010 IEEE International Symposium on Circuits and Systems (2010), págs. 253-256.

18U. Michelucci, “An Introduction to Autoencoders”, CoRR abs/2201.03898 (2022).
19D. Bank, N. Koenigstein y R. Giryes, “Autoencoders”, CoRR abs/2003.05991 (2020).
20F. Charte, “Autoencoders ¿Qué son, para qué sirven y cómo funcionan?”, Universidad de Jaén (2021).

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1037/h0042519
https://doi.org/10.1137/1035134
https://doi.org/10.1137/1035134
http://arxiv.org/abs/1609.04747
http://leon.bottou.org/papers/bottou-91c
https://arxiv.org/abs/1412.6980v9
http://arxiv.org/abs/1910.05446
https://doi.org/10.1109/WCSP.2019.8927876
https://doi.org/10.1109/WCSP.2019.8927876
https://doi.org/10.1501/commua1-2_0000000026
https://doi.org/10.1501/commua1-2_0000000026
https://doi.org/10.1501/commua1-2_0000000026
https://doi.org/10.1501/commua1-2_0000000026
https://doi.org/10.1501/commua1-2_0000000026
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
https://doi.org/10.1109/ISCAS.2010.5537907
https://arxiv.org/abs/2201.03898
https://arxiv.org/abs/2003.05991

21H. C. Burger, C. J. Schuler y S. Harmeling, “Image denoising: Can plain neural networks compe-
te with BM3D?”, en 2012 IEEE Conference on Computer Vision and Pattern Recognition (2012),
págs. 2392-2399.

22L. Gondara, “Medical Image Denoising Using Convolutional Denoising Autoencoders”, en 2016 IEEE
16th International Conference on Data Mining Workshops (ICDMW) (dic. de 2016).

23O. S. Faragallah, H. El-Hoseny, W. El-Shafai, W. A. El-Rahman, H. S. El-Sayed, E.-S. M. El-Rabaie,
F. E. A. El-Samie y G. G. N. Geweid, “A Comprehensive Survey Analysis for Present Solutions of
Medical Image Fusion and Future Directions”, IEEE Access 9, 11358-11371 (2021).

https://doi.org/10.1109/CVPR.2012.6247952
https://doi.org/10.1109/icdmw.2016.0041
https://doi.org/10.1109/icdmw.2016.0041
https://doi.org/10.1109/ACCESS.2020.3048315

	Introducción
	Resumen
	Conceptos básicos
	Redes Neuronales
	Función de activación
	Función coste
	Algoritmos de Optimización
	Underfitting y Overfitting

	Redes densas y convolucionales
	Autoencoder
	Transformada de Fourier

	Resultados
	Singular Value Decomposition (SVD)
	Dense Autoencoder
	Redes Neuronales Convolucionales
	Filtrado de ruido mediante la Transformada de Fourier
	Comparación de resultados

	Aplicación de los resultados
	Conclusiones

