La maquina de Turing: un modelo para la
computacion

macultad de Ciencias
Universidad Zaragoza

a2s Universidad
18 Zaragoza

1542

Mayte Maeso Bayo
Trabajo de fin de grado de Matematicas

Director del trabajo: José Carlos Ciria Cosculluela
5 de julio de 2023

I

“It is one of the great ironies of scientific history that Turing invented computers in order to show
that there are things that computers are fundamentally incapable of doing —that some problems are
inherently undecidable”. Wooldridge, M. (2021). A brief history of artificial intelligence: what it is,
where we are, and where we are going. Flatiron Books.

Summary

In 1936 Alan Turing wrote an article called “On computable numbers, with an application to the
Entscheidungsproblem” where he gave an answer to the decision problem proposed by David Hilbert.
This problem was about the foundation of mathematics and, specifically, about the notion of decidability.
This means, if we are able to decide, given a mathematical sentence, whether it is provable or not. To
give an answer to this problem, Turing devised the celebrated Turing machines.

In this final degree project we will analyze in depth Turing’s article. First we will give an historical
context about the decision problem and we will explain it through an example. We will talk a little about
Godel results which are closely related to this subject and then we will focus on the resolution of the
Entscheidungsproblem.

We will introduce the notion of Turing machines. What they are, what elements compose them and
how they work. Simultaneously we will give examples of Turing machines, both its operation and its
python implementation. Once understood these concept we will explain the Universal Turing machine, a
machine able to simulate any other machine. After that we will get in to some theoretical results necessary
to approach to the decision problem and finally, in the last chapter, we will give a negative response to
the Entscheidungsproblem.

II1

Indice general

Summary

1. Introduccion

2. Maquinas de Turing

2.1.
2.2.
2.3.
24.

Introduccién a las maquinasde Turing
Definicién formal de las miquinas de Turing
Ejemplos e e e
Tablasesqueleto L e

3. Maquina universal de Turing

3.1.

3.2.

Miquina Universal de Turing L
3.1.1. Codificacién de las instruccioneso
3.1.2. Funcionamiento de la maquina universal
Resultados tedricos oL

4. El problema de la decisiéon

4.1. Elproblemadeladecisién
Bibliografia
Anexo
.1. Estados mdquina que escribe un ndmero irracional
A1 Explicacion e e e e
A2 Diagrama Lo e e e
d300 Codigo e e e
2. Estados médquina que invierte un nUmMero e e e e
2.1 Explicacidno e e
22, Diagrama e e
2300 COdigo e
.3. Estados méquina que suma dos nimeros en bianrio
3.1 Explicacidn e e
3200 COdigo e
4. Estados Maquina Universal de Turing, .

111

10
13

19
19

25

Capitulo 1

Introduccion

En 1936 Alan Turing publicé “On computable numbers, with an application to the Entscheidungspro-
blem”, un articulo de caricter cientifico en el que daba respuesta al Entscheidungsproblem o problema
de la decision. Para ello ide6 un nuevo sistema conceptual dotado de reglas propias que sirvid no solo
para resolver el problema, sino que también sent6 las bases de lo que hoy conocemos como teoria de la
computacion. Para poner en contexto el articulo recordaremos brevemente en qué consiste el problema
de la decision.

En 1928 David Hilbert propone, en su obra Principios de la l6gica Matemaética, escrita junto con
Wilhelm Ackermann, [1] su vision sobre la fundamentacidén de las matematicas. Todas las ramas de las
matemadticas se basan en un conjunto de axiomas que, junto con una serie de reglas de inferencia, permi-
ten construir teoremas. Seguin Hilbert dicho sistema debe cumplir ciertas propiedades que enumeraremos
a continuacién. Pero antes, las ilustraremos tomando como ejemplo la aritmética. En ella podemos escri-
bir férmulas como

F=Vnxy2))(n>2&x>1&y>1&z>1) = xX"+y"#7")

donde x,n,y,z son nimeros naturales. La férmula F es el enunciado del dltimo teorema de Fermat. La
negacion de F es

F=3nx,y,2)(n>2&x>1&y>1&z>1&x"+y"'=7")
Las propiedades que, segtin Hilbert, debe cumplir el sistema axiomatico son las siguientes:

» Independencia: los axiomas deben ser independientes entre si.

» Consistencia: del sistema de axiomas no se deben seguir contradicciones, es decir, no pueden
deducirse ambas F y F.

= Completitud: los axiomas comprenden todo lo que se puede decir de la rama en cuestién. Para
toda férmula F o bien F o bien F se siguen de los axiomas. O dicho de otro modo, si afiadimos un
nuevo axioma no deducible de los anteriores, el sistema resultante es inconsistente.

» Decidibilidad: para toda férmula F (y por tanto también para F) debe existir un procedimiento
finito que permita decidir si ésta se sigue de los axiomas, es decir, si es demostrable a partir de los
axiomas.

Si la aritmética fuese consistente y completa sabriamos que, para toda férmula F, o bien F o bien F es
demostrable a partir de los axiomas. Si ademds fuese decidible sabriamos cudl de las dos es demostrable.
La cuestion sobre la decidibilidad del sistema axiomadtico es lo que se conoce como Entscheidungs-
problem o problema de la decisién. Concretamente, el problema de la decision estd formulado en el
capitulo /11 del libro y Hilbert se refiere a él como “el principal problema de la l6gica matemdtica”.

2 Capitulo 1. Introduccién

También es interesante notar que este problema ya aparece apuntado entre sus célebres 23 problemas
propuestos en el Congreso Internacional de Matematicos de 1900. En particular, el décimo problema fue
el de determinar si una ecuacién diofantica es resoluble: “dada una ecuacion diofdntica con cualquier
niimero de incognitas y con coeficientes enteros, establecer un proceso segtin el cual pueda determinarse,
siguiendo un niimero finito de operaciones, si la ecuacion tiene solucion.”[1]

En 1929, en su tesis doctoral, Godel demuestra que la légica de primer orden es completa. Este
resultado, conocido como el Teorema de Completitud de Godel, no satisface las aspiraciones de Hilbert.
La légica matemética no existe en el vacio. Buena parte de su interés reside en que proporciona un marco
y unos fundamentos para otras ramas de la matemadtica, como la aritmética, y aun quedan preguntas sin
responder tales como si la l6gica de primer orden sigue siendo completa si se le afiaden los axiomas
necesarios para definir la teorfa de ntimeros.

Un afio més tarde, en 1930, Godel presenta su Primer Teorema de Incompletitud. En el sostiene que
si a la 16gica de primer orden se le afladen los axiomas necesarios para derivar la aritmética entonces el
sistema resultante es incompleto. Es decir, podemos garantizar que existe una férmula G tal que ni G
ni su negacién pueden deducirse de los axiomas [2]. De su primer Teorema de Incompletitud se deduce
el segundo Teorema de Incompletitud de Godel: una teoria consistente no puede demostrar su propia
consistencia.

Sin embargo, los teoremas de incompletitud de Godel no cierran el problema de la decisién. No
descartan que, al menos, sea posible decidir si una férmula es demostrable a partir de los axiomas.

De esto ultimo se encarga Alan Turing en su articulo. En primer lugar caracteriza formalmente la
idea de algoritmo como un método finito que se ejecuta automaticamente. Para ello define sus maquinas
(que conoceremos como maquinas de Turing). A continuacién disefia una maquina de propdsito general
capaz de ejecutar cualquier algoritmo almacenado en memoria (la Maquina Universal de Turing) y de-
muestra que existen problemas que no pueden resolverse algoritmicamente, es decir, mediante maquinas
de Turing. Por tltimo, propone una férmula U sobre la que no es posible decidir, usando maquinas de
Turing, si es demostrable, con lo que da una respuesta negativa al Entscheidungsproblem.

Al final del articulo hay un apéndice que hace referencia al trabajo de Alonzo Church. Alonzo fue un
matematico estadounidense que, con unos pocos meses de antelacién, habia conseguido dar respuesta al
problema de la decisién a través de medios totalmente distintos. Ambos habian enviado sus respuestas a
Max Newman y, a pesar de que el trabajo de Church estaba en prensa, Newman consideré que el trabajo
de Turing era tan original y brillante que recomendé su publicacion junto con un apéndice donde se
nombrasen los resultados de Church.

Capitulo 2

Maquinas de Turing

2.1. Introduccion a las maquinas de Turing

Una méquina es un objeto creado con el objetivo de facilitar o realizar una tarea. En el caso de las
madquinas de Turing, estas fueron disefladas para computar secuencias de simbolos de forma automética.
A pesar de que las nociones sobre qué es una maquina o qué es un proceso automatico eran intuitivas,
Turing se encontrd con la dificultad de dar una formulacion rigurosa y precisa que reflejase esa intuicion.
Para facilitar la comprension de estos conceptos, Turing establecié una similitud entre lo que por entonces
se conocia como computador humano (persona que realiza calculos como sumas y multiplicaciones) y
su idea de cdmo debia ser un “proceso mecdnico que se ejecutase automdticamente”. Para realizar esta
comparativa Turing tuvo en cuenta todos los elementos necesarios a la hora de realizar un cémputo tales
como el papel en el que se escribe, los simbolos que se emplean o las normas que se siguen, y los
transformo para crear, a partir de ellos, las maquinas de Turing.

Un contable o computador humano necesita de un papel para realizar sus cuentas. El papel puede ser
cuadriculado y el contable puede disponer de una cantidad ilimitada de papel. La dimensién del papel no
es esencial para el modelo, es decir, si queremos realizar una suma de dos nimeros podemos escribir uno
encima del otro o podemos poner ambos nimeros seguidos en una tnica linea. Por tanto, sin pérdida de
generalidad, podemos suponer que el papel es una cinta unidimensional infinita y dividida en secciones
o “celdas”, en cada una de las cuales se escribe un tnico simbolo.

El conjunto de simbolos empleados por el contable debe ser finito ya que si no lo fuese tendriamos
tantos simbolos que algunos serian tan similares que podriamos confundirlos. Al conjunto de simbolos
empleados lo llam¢ alfabeto y lo determiné con el simbolo Y. Turing diferencié dos tipos de simbolos,
los de primer tipo y los de segundo. Los de primer tipo eran aquellos con los que se operaba. Por ejemplo,
en el caso de una suma de dos nimeros enteros los simbolos de primer tipo serian los digitos del 0 al 9,
mientras que los simbolos de segundo tipo serian los empleados para marcar qué digitos de los sumandos
hemos considerado ya, apuntar las llevadas...

Dado que el contable realiza las cuentas en una cinta, si por ejemplo estd sumando dos nimeros
muy grandes, este no puede observar de un tnico vistazo toda la cinta, es decir, un lector sélo puede ver
simultdneamente una parte limitada del papel. Por tanto Turing supuso que, en cada instante de tiempo,
la maquina solo puede leer una celda. Ademds, el contable no puede realizar grandes movimientos entre
las celdas ya que al ser una cinta unidimensional muy larga podria equivocarse de celda. Por tanto, la
madquina ird avanzando celda a celda hasta encontrar la casilla que busque en cada momento.

El contable debe seguir una serie de normas fijas. Segtin Turing, “no tiene autoridad para desviarse
de ellas en ningiin momento”. En el caso de la suma de dos nimeros el contable debe seguir unos pasos
tales como buscar el primer digito del primer ndmero, después buscar el primer digito del segundo nu-
mero, luego anotar el resultado de sumar dos digitos. ... Turing modelizé este comportamiento mediante
lo que llamé “estados mentales” Como ocurre con los simbolos, los estados mentales deben ser finitos
ya que, en otro caso, habria estados arbitrariamente proximos y seria imposible distinguirlos. Y segun el
estado y el simbolo que esté observando el contable, este realizard una instruccion u otra. A este dltimo

4 Capitulo 2. Mdquinas de Turing

proceso Turing lo denominé “transicién”. Cuando un contable estd realizando una suma, una vez que
tiene los dos digitos a sumar, sabe que tiene que desplazar su mano hasta la derecha del papel y escribir
el resultado de la suma. Sin embargo, si solo tiene uno de los digitos tendrd que ir en busca del segundo.
Es decir, en funcién del momento del proceso en que se encuentre el contable y del simbolo que haya
leido realizard un movimiento u otro. Y lo mismo hard la miquina en funcién del estado mental en el
que se encuentre y del simbolo que lea.

Por tanto, una maquina estd compuesta por una cinta infinita dividida en celdas, un cabezal de lectura
y escritura que apunta a una Unica celda, un alfabeto finito y un conjunto de estados que, en funcién
del estado en el que se encuentre la maquina y el simbolo que esté leyendo el cabezal, realizard unos
determinados movimientos.

Demos ahora una definicién formal de mdquina de Turing:

2.2. Definicion formal de las maquinas de Turing
Definicion 1. Una mdquina de Turing es una 5-tupla (Q, ¥, 8, qo, F) donde
1. Q es un conjunto finito de estados
2. Y es un conjunto finito de simbolos llamado alfabeto.
3. 6:0xY — Y xX{L,R,N} x Q es la funcién transicion.
4. qo € Q es el estado inicial.

5. F C Q es el conjunto de estados finales.

A lo largo de este trabajo consideraremos la base binaria: los simbolos de primer tipo serdn {0, 1}.
Ademais, deberemos diferenciar las celdas pares de las impares. En las pares irdn los simbolos de primer
tipo (la secuencia a computar) y en las impares los simbolos auxiliares.

El dominio de la funcién transicién 8 es el par (Q,Y"). A cada elemento del producto cartesiano Q x Y
le llamaremos configuracién. Esto es lo que determina el movimiento de la maquina en cada instante.
En cada momento estaremos en un estado concreto y leyendo un simbolo determinado, y en funcién de
ellos la maquina escribird un nuevo simbolo, realizard un Gnico movimiento (es decir, se desplazard una
posicion a la izquierda, L, a la derecha, R, o no se moverd, N) y pasard a un estado nuevo.

El conjunto F de estados finales puede estar vacio. Un estado final determina cudndo la méquina deja
de moverse, es decir, cudndo deja de realizar un cémputo.

Turing distinguié dos tipos de maquinas: las circulares y las no circulares. Las maquinas circulares
son aquellas que no escriben mds de un niimero finito de simbolos del primer tipo mientras que las no
circulares escriben infinitos. Por ello el conjunto de estados finales de una maquina no circular es el
vacio. A partir de esta caracterizacién de las maquinas definimos los siguientes conceptos:

Definicion 2. Una secuencia se dice computable si puede ser calculada por una maquina no circular. Los
digitos de dicha secuencia se interpretan como la parte decimal, escrita en binario, de un nimero.

Y de aqui se deduce lo siguiente:

Definicion 3. Un nimero es computable si existe una maquina de Turing no circular capaz de generar
sus infinitos decimales.

La mdquina de Turing - Un modelo para la computacion 5

2.3. Ejemplos

Veamos el ejemplo més sencillo de una maquina de Turing. Computemos la secuencia 010101010101...
Esta secuencia es computable ya que existe una maquina no circular que la calcula y su expresién decimal
es el nimero 1/3. Por tanto 1/3 es un nimero computable.

Para disefiar la mdquina de Turing que compute dicha secuencia tenemos que definir todos los ele-
mentos que la componen. Por un lado tendremos el alfabeto que estard compuesto por los simbolos de
primer tipo 0, 1. En este caso no serdn necesarios simbolos de segundo tipo o auxiliares. Tendremos cua-
tro estados ¢1,¢2,¢3,q4 y tendremos cuatro instrucciones que indicardn los movimientos de la maquina
para cada configuracién. Como queremos que la miquina no se detenga no tendremos estados finales.

Tendremos un estado inicial que serd ¢;. La cinta inicialmente estard vacia y el cabezal senalard a
la primera celda, por tanto la configuracion inicial serd el par (g, celda vacia). Como la secuencia que
queremos escribir comienza con un 0 le pediremos a la maquina que escriba un 0 y que a continuacién se
desplace una posicién a la derecha. Una vez realizados estos movimientos la maquina pasard al siguiente
estado que serd g;. Es decir, dada la configuracion inicial (g;, celda vacia) la funcién transicién nos ha
indicado qué elemento escribir, qué movimiento realizar y a qué estado pasar.

Ahora nos encontramos en la configuracién (g, celda vacia). Como tenemos que respetar las celdas
pares e impares la maquina no va a escribir ningiin simbolo, se va a desplazar una posicién a la derecha y
pasard al siguiente estado, ¢3. Ahora realizard la misma operacién que al principio solo que escribiendo
un 1 en lugar de un O y pasard al estado g4. Por dltimo, al estar en el estado g4 y estar leyendo una
celda vacia, como el cabezal se encuentra apuntando a una celda impar, la maquina no escribird nada, se
desplazard una posicion a la derecha y pasard de nuevo al estado g .

Podemos representar graficamente el funcionamiento de la maquina con el siguiente diagrama: !

Instrucciones

o
e} o PO R Oz f N
0z o P R (o
@ ‘' PL R qs
R

g ' P R o
— @

Configuracion

Como podemos observar se trata de un bucle a partir del cual, con cuatro estados, hemos conseguido
computar la secuencia 0101010101... de la cual podriamos escribir infinitas cifras. Es decir, hemos creado
un algoritmo o médquina de Turing no circular que nos computa una secuencia determinada.

La cinta tendrfa el siguiente aspecto: 2

0 1 0 1 0 1 0

PO se describe como “print 0, P como “print espacio en blanco”, P1 como “print 1” y R como “desplazarse una posicién
a la derecha”.

2 Al inicio de la cinta se suelen escribir dos simbolos consecutivos “@”. Son para denotar el comienzo de la secuencia.
Como la cinta inicialmente siempre estd vacia tenemos que introducirlas nosotros. Para ello tenemos que crear un estado ¢’ que
escriba las dos “@” y que luego pase al estado ¢0. En este caso lo hemos omitido para facilitar la comprensién del problema.

6 Capitulo 2. Mdquinas de Turing

El cédigo realizado en python es el siguiente:

def qi(cinta, i):
cintali] = °0°
i = __R__(cinta,i)

return i, g2

def q2(cinta, i):
i = __R__(cinta,i)
return i, q3

def g3(cinta, i):
cintali] = °1°
i = __R__(cinta,i)
return i, q4

def g4(cinta, i):
i = __R__(cinta,i)

return i, qi

Cada funcién tiene dos parametros y modeliza un estado. Cada vez que se invoca una funcién se
ejecuta una transicidn y segtn el estado y el simbolo leido se realizaran distintas acciones. Por ejemplo,
en gl y en g3 se sobre escribe el contenido de la celda mientras que en g2 y en g4 el cabezal solo se
desplaza una posicién a la derecha. Cada funcion devuelve el indice de la siguiente celda a leer y el nuevo
estado.

La funcién __R__ mueve el cabezal de lectura una posicién a la derecha ampliando, si es preciso, el
tamaiio de la cinta. (A diferencia de en una méaquina de Turing, la cinta de nuestro programa tiene una
longitud inicial finita. Si es necesario la vamos ampliando).

En el apéndice del trabajo podemos encontrar tanto la descripcién como el cédigo y los diagramas de
una maquina de Turing que computa un ndmero irracional, de otra miquina que invierte una secuencia
en binario y otra que suma dos nimeros en binario.

2.4. Tablas esqueleto

El ejemplo que acabamos de ver es bastante sencillo. Sin embargo, es facil intuir que para maquinas
mads complejas habrd procesos mds complicados y puede que estos se repitan varias veces a lo largo de
la ejecucién. Por ejemplo podemos pedirle a una maquina que compare secuencias, que encuentre un
determinado simbolo todas las veces que aparezca en la cinta o que borre determinados elementos. Para
no tener que reescribir cada una de estas 6rdenes cada vez que las necesitemos, recurrimos a las tablas
esqueleto. Las tablas esqueleto no son mas que abreviaciones de un determinado proceso que nos van a
ayudar a simplificar la programacién de una maquina evitando un trabajo repetitivo. Ademds funcionan
como generadoras de estados. Veamos un ejemplo de tabla esqueleto:

Supongamos que tenemos una méaquina que ha escrito un nimero de simbolos tanto de primer tipo
como de segundo. En un determinado momento queremos que nos encuentre en la cinta el simbolo a
situado mds a la izquierda. Si lo encuentra la maquina pasard al estado € y si no pasara a ‘8. Por tanto
tenemos un simbolo y dos estados. Para ello crearemos una tabla esqueleto que se llame buscaprimero y
que tenga tres argumentos en los que pondremos &, B y a. La tabla serd la siguiente:

La mdquina de Turing - Un modelo para la computacion 7

buscaprimero(a,B,)

f(e,%,co{@ Lo AGBq)
not @ L f(€,B,a)

a ¢
fi(€Ba)< nota R f1(€,B,a)
None R £(€,B,a)

a ¢
H(C,Ba)d nota R f1(€,8,a)
None R B

Notar que buscaprimero ha generado tres estados distintos.

Veamos su funcionamiento asi como un diagrama y su implementacién en python:

Comienza en el estado f(€,B,a). Como estamos buscando la primera aparicién de a el cabezal de
lectura se desplazard hacia la izquierda hasta encontrar el simbolo que indica el inicio de la cinta. Una
vez ahi la maquina recorrerd la cinta de izquierda a derecha buscando el simbolo a. Si lo encuentra pasara
al estado €. Si no lo hace, llegard un momento en el que encuentre dos espacios vacios consecutivos, lo
que indica el final de la cinta escrita y que el cardcter buscado no aparece en ella. Por tanto pasard al
estado ‘B.

Ahora supongamos que en la misma médquina queremos volver a realizar este proceso pero ahora
queremos que nos busque el simbolo b situado mds a la izquierda y que si lo encuentra pase al estado €y
si no lo encuentra que pase a ©. Lo tinico que tendriamos que hacer es llamar a buscaprimero(®, €, b).

Podemos entender la tabla esqueleto como un subalgoritmo: una sucesion de estados que realizan
una funcién bésica. O dicho de otro modo, como un generador de estados donde, en este caso, para cada
posible combinacion (€,B, a), genera tres estados distintos.

Es necesario recalcar la importancia de las tablas esqueleto ya que nos van a facilitar mucho la
programacién de cualquier miquina. En el siguiente capitulo veremos como estas son fundamentales
para construir la Maquina Universal de Turing, la cual serd imprescindible para dar respuesta al problema
de la decisién.

El diagrama de la tabla esqueleto seria el siguiente:

no a'R

. f1 ”R
”;L | f/‘ K‘
no a;R

o

O
<&

<&

8 Capitulo 2. Mdquinas de Turing

El cédigo implementado en python es este:

def buscaPrimero(C, B, a):
def f(cinta, i):
if cintali] == ’@’:

i=1i-1
q=f1
else:
i=1i-1
q=1

return i, q

def fi(cinta, 1i):

if cintali] == a:
q=20C

elif cintali] ==’ 7:
i = __R__(cinta, 1)
q = f2

else:
i = __R__(cinta, 1)
q = f1

return i, q

def f2(cinta, 1i):

if cintali] == a:
q=20C

elif cintali] ==’ 7:
i = __R__(cinta, 1)
q=28B

else:
i = __R__(cinta, 1)
q = f1

return i, q

return f

Capitulo 3

Maquina universal de Turing

Cada una de las mdquinas de Turing que hemos visto hasta ahora realiza una funcién concreta (genera
un ndmero, invierte una cadena de 0 y 1, realiza una suma...). Es decir, cada maquina representa un
algoritmo. Sin embargo Turing fue més alld y propuso una maquina de uso general, la maquina universal
de Turing, capaz de ejecutar cualquier miquina. Con esto anticipd la existencia de los ordenadores,
maquinas universales que ejecutan cualquier algoritmo que se cargue en la memoria.

En este capitulo nos centraremos en entender cémo funciona la maquina Universal de Turing y qué
elementos la componen. Presentaremos las tablas esqueleto a partir de las cuales se generan los estados
que determinan el comportamiento de la maquina universal y como paso previo veremos cémo se codifica
una maquina M para introducirla en la cinta (la memoria) de la Maquina Universal.

3.1. Maquina Universal de Turing

3.1.1. Codificacion de las instrucciones

Tomemos el ejemplo visto en el capitulo anterior. En él hemos generado una méquina de Turing
que computa la secuencia 01010101... (a la que llamaremos maquina M) y lo hemos hecho a través de
ciertas instrucciones. Esas instrucciones son las que determinan a una maquina de Turing. Por tanto, esto
serd lo que tengamos que introducir en la maquina universal. Pero como hemos dicho antes tendremos
que traducirlas a un lenguaje que la miquina entienda. Para ello Turing ideé el siguiente sistema de
codificacion:

Para denotar un estado g; tendremos que escribir una D seguida de la letra A repetida i veces. Por
ejemplo, si tenemos el estado g; lo traduciremos como DA, y si tenemos el estado ¢, lo traduciremos
como DAA. Los simbolos los denoté de la siguiente manera: espacio en blanco=D, 0=DC y 1=DCC. !
Y para los desplazamientos denot6 izquierda=L, derecha=R y no desplazarse=N.

Por tanto, en el ejemplo de la mdquina que computa la secuencia 0101010101... tenfamos cuatro
bloques de instrucciones. Si los escribimos de forma consecutiva separandolos por puntos y comas ten-
drifamos la siguiente secuencia, donde hemos denotado como _ a los espacios en blanco:

:91_0Rg2;q>_ _Rq3:93, _1Rqa3q4_ _Rq)
Ahora si sustituimos cada elemento por su correspondiente codificacién obtendremos lo siguiente:
;DADDCRDAA;DAADDRDAAA;DAAADDCCRDAAAA;DAAAADDRDA

A esto se le llama descripcion estandar de una maquina y lo denotaremos por DE(M). Esta es la
informacién codificada que se introduce en la maquina universal.

I'Turing emple6 una notacién auxiliar donde al espacio en blanco lo denoté por Sp, al simbolo 0 por S} y al 1 por S5. A partir
del siguiente capitulo haremos uso de esta notacion.

10 Capitulo 3. Mdquina universal de Turing

Ademas, si intercambiamos cada A por un 1, cada C por un 2, cada D por un 3, cada L por un 4, cada
R por un 5, cada N por un 6 y cada ; por un 7 obtendremos el siguiente niimero:

31332531173113353111731113322531111 731111335317

A este nimero se le llama ndmero de descripcion de la maquina de Turing M y lo denotaremos por
ND(M).

Este resultado es muy importante ya que de esta forma somos capaces de asociar a cada maquina
de Turing un dnico entero positivo, lo cual nos serd muy 1til a la hora de demostrar varios resultados
tedricos.

3.1.2. Funcionamiento de la maquina universal

Ahora que sabemos cdmo debemos introducir la informacién en la miquina Universal veamos como
funciona. Para ello nos apoyaremos en el ejemplo de la mdquina que computa la secuencia 0101010101...

Como hemos dicho antes la méquina universal estd compuesta por distintas tablas esqueleto, en con-
creto por 9 tablas principales que se apoyan en otras tablas esqueleto auxiliares, lo que genera una gran
cantidad de estados y configuraciones. En este capitulo nombraremos las 9 tablas principales, explica-
remos qué hace cada una ellas y omitiremos las tablas auxiliares. En el apéndice se puede encontrar la
programacién completa de la mdquina universal en Python.

b: escribe la configuracion completa inicial

l

> anf: marca la configuracion actual

l

fom: encuentra la siguiente instruccion

l

fmp: compara configuraciones

¢Las configuraciones son iguales?

Si

sim: marca instrucciones

l

mf: marca la configuracion completa

l

sh: muestra la salida

l

inst: escribe la nueva configuracion completa

l

ov: borra las marcas

La mdquina de Turing - Un modelo para la computacion 11

Como acabamos de ver a la maquina universal debemos introducirle la descripcion estdndar de la
maquina que queremos simular. Una vez introducida la tabla esqueleto b se encarga de escribir *:” al
final de la descripcién estdndar y a continuacién escribe los simbolos DAD que corresponden con la
configuraciéon completa inicial. Esto es obvio ya que la configuracién inicial de cualquier mdquina va a
ser el estado inicial g;=DA junto con un espacio en blanco=D ya que inicialmente la cinta estd vacia.
Una vez realizados estos movimientos pasa a la siguiente tabla esqueleto.

-[o] [a] [a] Ja] [a] Jo| |of [r] Jo| Ja] =] [:] Jo] [a] Jo] |

anf se encarga de marcar la configuracion actual con y. Entenderemos por marcar un simbolo por
ejemplo con y a escribir en la celda impar situada a su derecha una y. Y por configuracién actual enten-
deremos aquella situada a la derecha de los dltimos dos puntos.

~[o] [a] [a| [a] [a] [o] [o] [#] Jof [a] =] |:] [ofv]alv]o]y] |

Una vez marcada la configuracién actual la maquina tiene que encontrar aquel bloque de instruc-
ciones que tenga la misma configuracion. Para ello hay que revisar todas las instrucciones. De esto se
encarga fom. Esta tabla esqueleto busca, de izquierda a derecha, la primera instruccion no marcada (al
inicio todos estardn sin marcar). Como estdn separados por ; escribe después del ; una z para marcar la
instruccién que va a estudiar, marca su configuracion con una X y pasa al proceso de comparacion.

A]A

i[2]o[x[a]x[a]x[a[x]a[x]o] o] [r] [o [a] [=] [:] [o[v]-

En este caso ha marcado la primera instruccién que ha encontrado ya que no estaba marcada.

Ahora la tabla fmp se encarga de comparar la configuracién que ha marcado fom con la configuracién
marcada inicialmente. Si no son iguales borra todas las x e y y pasa de nuevo a la tabla anf para buscar el
siguiente bloque de instrucciones no marcado. Notar que la z no se borra para indicar las instrucciones
que ya hemos revisado. Si las configuraciones son iguales hemos encontrado el bloque de instrucciones
a ejecutar y pasamos a la siguiente tabla.

~alilz[o]x[al<[a]<[a][<[a][<[o] [o] |.[«] [:] [o]v[a]v]o[v] |

\ / %/—/
N

En el caso de la maquina que estamos estudiando, como la primera vez que ejecutamos fmp las con-
figuraciones a comprar son distintas, borraremos las x, dejaremos la z e iremos en busca de la siguiente
instruccién. En concreto en este caso repetiremos el procedimiento hasta llegar a la primera instruccién
donde encontraremos la misma configuracién. Esto tiene sentido ya que la primera vez que ejecutamos
la méaquina realizamos las instrucciones del estado inicial y este estd al inicio de la cinta.

2|o[x[a]x[o[x]o] [c] |r] [o] [a] Ja] J[=] [:] [ofv]alv]o]y]]

\ J \ J
Y Y

lele]

sim se va a encargar de marcar la configuracién actual de la instruccién con espacios en blanco, es
decir, borra las x. Ademds, va a marcar la instruccién a realizar (que comprende el simbolo a escribir y
el movimiento a realizar) con u y el estado final con y.

12 Capitulo 3. Mdquina universal de Turing

lele[:] [o] [a] [o] [ofefcfulrfulolv[a]v][afv].[=] [:] [ofv]afv]o]v] |

Una vez realizado esto ml se encarga de volver a la dltima configuracién completa (que encontra-
remos después del dltimo ’:”) y marca el simbolo inmediatamente anterior al estado g; con una X, los
simbolos anteriores con una v y los posteriores al estado y al simbolo con una w. Ademd4s pone ’:’ al
final de la configuracién completa. En este caso no tenemos simbolos que marcar ya que la configuracién
completa inicial consta de muy pocos elementos.

-[o] [a] Jo| |ofufcfufrfufo]v[a[v]afv].[=] [:] Jo[v]a]y[o]y] |:] |

Una vez marcada la configuracién completa sh se encarga de examinar la instruccién marcada para
ver si la mdquina realiza alguna salida. Si esta lo hace, es decir, si la instruccién ordena escribir un 0 o
un 1 sh se encarga de escribirlo al final de la cinta, después de los dos puntos que marcan el final de la
ultima configuracion completa.

~[o] Jojufclufrfufolvalv[afv].[=] [:] [ofy[a[v]o[v] [:] [o] [:] |

Ahora inst se encarga de escribir la nueva configuracion completa al final de la cinta, después de los
ultimos ’:’. La nueva configuracién completa incluird los simbolos escritos en la cinta, el nuevo estado
y el simbolo que estemos leyendo en la celda actual. Notar que en funcién de si la instruccién indica
desplazarse una posicién a la derecha, izquierda o no moverse se leera un simbolo distinto.

w [l [l Jofvlafvlofy] [+ Jof [:] [of [c] [of Ja[Ja] [0

Por dltimo, ov se encarga de borrar todas las marcas que queden en la cinta y vuelve al estado anf
para volver a repetir el proceso.
La salida completa tras varias iteraciones seria la siguiente:

lele|;[[o] [a] [o] |of |c] [R] [o] |a[[A] [i] [o] [a[[A] |
(o] Iof [R] [p] [a] Ja[[a] [;] [o] |a[[A] [A] [o] [pfujc]u]
[clulr[[o]y[aly[aly|a[y|aly[;] [o] |a[[A] [A] [a] |o[|D] |
[RI_Io] [A] [::] [:] |of [Aa] o] [:] Jof [:] [p] [c] |of [A] |
(Al Iof] [:] [p] [c] |of [o] [a] [a] |a[[o] [:] [1] [:[|o] |
lc] Iof [o] [c] [c| |of [a] [a] [a] |a[[o] [:] [o] [c[|p] |
(o] Ic| [c]| [p] [o] Ja[[o] [:] Jo] |:[[o] [c] [o] |pf |c] |
lc] Iof [o] [c] [o] Ja[[a] [o] [:] |of [c] [po] [o] Jc[|c] |
(o] Iof [c| [o] [o] Ja[[a] [a] [o] [:f [s] [:] [o] |c[[p] |
(o] Ic| [c]| [po] [o] [cf [o] [po] [c] |c[[o] [a] [a] [a[[A] |
o] |:] [o] fc] [o] |of |c] [c] o] |of [c] [p] [o] |cf |c] |
(o] Iof [a] o] [:] Jof [:] [p] Jc] |of [o] [c] [c] |of |p] |
lc] Iof Jo] fc] [c] |of fo] fc| o] |af [a] [o] [:] |of |c] |

Interpretar esta salida puede ser un poco confuso asi que vamos a desglosarla para entenderla mejor.
Reescribiremos el cédigo en funcién de los estados g1,¢2,¢3,q94 (DA, DAADAAA,DAAAA respectiva-
mente) y de los simbolos * >,’0’,’1” (D,DC,DCC). Ademds omitiremos las celdas impares para tener mas
espacio.

La mdquina de Turing - Un modelo para la computacion 13

La cinta inicialmente contiene los dos simbolos “@”, la descripcion estdndar de la maquina que se
va a ejecutar (en este caso sus cuatro instrucciones) y la configuracién inicial:

@ @

;191 O R g2

;g2 R g3

;193 1 R g4

; (g4 R iql| :
ql

A continuacién la Méaquina Universal va generando configuraciones completas. Las once primeras
tienen el siguiente aspecto:

@ @
; 1l 0 R|g2
;142 R a3
;193 1 R|qg4d
; 1g4 R (gl ::‘
gl 0
0|qg2
o| a3 1]
0 1]q4
o| |1] |a 0|
0 1 0 q2
ol [1] |o| |a3 1]
0 1 0 1|q4
0 1 0 1] [q1 0|
0 1 0 1 0 |q2
ol [1] Jo| |1]| Jo| Ja3] |:]1]

3.2. Resultados teoricos

Para dar respuesta el Entscheidungsproblem Turing necesité demostrar previamente algunos resulta-
dos tedricos y lo hizo apoydndose en el sistema conceptual que habia creado. En este apartado veremos
estos resultados y los completaremos.

En primer lugar vamos a introducir un resultado en el que nos apoyaremos para demostrar el primer
teorema:

Teorema 3.1. Sea B un conjunto no vacio. B es numerable si existe una inyeccion entre By los niimeros
naturales.[7]

A partir de este teorema demostramos lo siguiente:
Teorema 3.2. Los niimeros computables son numerables. Ademds, son infinitos.

Demostracion. Para probar que los nimeros computables son numerables demostraremos que existe una
aplicacion inyectiva entre el conjunto de los nimeros computables y los naturales.

14 Capitulo 3. Mdquina universal de Turing

Sea ¢ un nimero computable. ¢ estard generado por, al menos, una miquina de Turing (en gene-
ral habrd varias maquinas distintas que generen el mismo nimero). Sea entonces M, el conjunto de
mdquinas de Turing que generan ¢, M, = {M| M genera c}. Toda maquina M € M, tiene un nime-
ro de descripcién. Tomemos N, como el menor nimero de descripcién de entre las maquinas de M.,
NC = minMeMﬂ (ND(M))

La funcién f: ¢ — N,, que a cada nimero computable le asocia el menor nimero de descripcién de
todas las mdquinas que lo computan, es la aplicaciéon que buscdbamos. En efecto es una funcién con do-
minio el conjunto de los nimeros computables y recorrido N. Ademas, si ¢ y d son niimeros computables,
f(c) = f(d) = ¢ =d ya que si dos mdquinas de Turing tienen el mismo nimero de descripcién entonces
tendrdn las mimas instrucciones y generaran el mismo nimero.Por tanto la aplicacion f es inyectiva.

Por otro lado veamos que son infinitos. Para todo n € N el nimero racional 27" es computable ya
que es sencillo construir una méquina de Turing no circular que lo calcule: basta con escribir n-1 ceros
seguidos de un 1 y posteriormente infinitos ceros. Por tanto hemos encontrado un conjunto infinito de
nimeros computables.

O

De este resultado se deduce que podemos escribir los nimeros computables como una secuencia.
Sea pues A la secuencia de los nimeros computables y sea ¢, el n-ésimo nimero de dicha secuencia.
Definimos la funcién ¢, (0;,) como el m-ésimo digito de o, y definimos el nimero 8 como ¢,(8) =
1 — ¢, (0,). Tenemos el siguiente resultado:

Teorema 3.3. 3 no es computable.

Demostracion. Para todo n se cumple que ¢,(B) y ¢,(a,) son distintos. Es decir, B no estd incluido en
la secuencia de niimeros computables. O

Del resultado anterior se sigue el siguiente teorema:

Teorema 3.4. No existe un algoritmo, es decir, una mdquina de Turing tal que dado un niimero natural
m determine si este es el niimero de descripcion de una mdquina de Turing no circular.

Vamos a ver dos demostraciones distintas de este teorema: una de ellas mediante la construccién de
B y otra mediante la construccion de 3/, cuyo n-ésimo digito es ¢,(,). En ambos casos y en los resul-
tados siguientes utilizaremos el método de reduccién al absurdo para probar los teoremas. Ademads de
ello, haremos uso del método de reduccién. Una reduccién consiste en transformar un problema en otro
de forma que una solucién al segundo problema sea vélida para resolver el primero. Si somos capaces de
demostrar que dos problemas son equivalentes, es decir, que el primero se reduce al segundo, y podemos
dar una solucidn al segundo problema entonces tendremos una respuesta para el primero. [6]

Demostracion 1: Probaremos que si existe dicha mdquina entonces podriamos computar 3.

Supongamos que existe una miquina de Turing, llamémosla D, tal que, al introducirle un entero
positivo m, es capaz de determinar si dicho nimero es el nimero de descripcién de una maquina de
Turing no circular. Si lo es, D(m) devuelve un 1 y sino devuelve un 0. Entonces a partir de ella podemos
crear un algoritmo para calcular . El algoritmo tendria un funcionamiento similar al siguiente:

= Inicializamos dos contadores m=0 y n=0 que recorran los nimeros naturales.

= Introducimos el nimero m en la miquina D y esta decidird si m es el nimero de descripcién de
una maquina no circular.

* Si D(m) == 1 introducimos dicho nimero en la Mdquina Universal de Turing (U), ejecuta-
mos dicha maquina y calculamos la secuencia que computa. Tomamos el n-ésimo digito y
calculamos ¢, (), el n-ésimo digito de f3. Por ltimo, afiadimos una unidad a m y a n.

* Si D(m) == 0 anadimos una unidad a m.

La mdquina de Turing - Un modelo para la computacion 15

Gréficamente el algoritmo se veria asi:

m=
n=0

false true

A 4

* Computa U(m)
hasta el n-ésimo
digito y asigna

$a(B) 1-y(m)

* n=n+l

v

Fy

m=m+1

Por tanto podriamos construir una maquina de Turing que computase 3. Esto contradice el teorema
3.3 ya que hemos visto que 8 no es computable, por tanto no existe dicha maquina.

O]

Demostracion 2: Supongamos de nuevo que existe la maquina D. Combinando las maquinas D'y U
construimos una nueva maquina a la que llamamos H y que computa la secuencia 8’. Recordemos que
B’ se define como ¢, (B’) = ¢,(0t,). Probaremos que si existe D, H es una maquina no circular.

El funcionamiento de la maquina H es andlogo al de la presentada en la demostracién anterior. Se
trata de un proceso iterativo donde cada iteracion se realiza en un tiempo finito. En primer lugar la
maquina D, que por hipétesis existe, evalia cada entero positivo m y devuelve su resultado en un tiempo
finito. Si D(m) == 0 la iteracion ha terminado. Si D(m) == 1 entonces m es el nimero de descripcion
de una miquina no circular, m se introduce en U y esta calcula los n primeros digitos en un tiempo finito.

Supongamos que llevamos escritos los n primeros digitos de 8, es decir, hemos encontrado n ma-
quinas de Turing no circulares. Como existen infinitas maquinas no circulares (recordemos que hemos
probado que los nimeros computables son infinitos, por tanto habra infinitas maquinas de Turing) siem-
pre existird un m’>m tal que m’ sea el ndmero de descripcién de una médquina no circular. Alcanzar m’
y computar su n+1 digito (el n+1 digito de) tomara un tiempo finito. Siempre vamos a ser capaces de
escribir el siguiente digito. Por tanto, H es no circular.

Sea ahora K el nimero de descripciéon de H y ny el nimero de digitos de 3 calculados. Al llegar
a la K-ésima iteracion D(K) devolverd un 1 ya que H es una mdquina no circular y U ejecutard la
madaquina H para calcular sus digitos. Esto es, volveremos a empezar el proceso de estudiar todos los
nimeros naturales m a partir de 0. Al llegar a m=K, U volverd a ejecutar la maquina H desde el inicio.
La maquina H se invoca a si misma recursivamente cada vez que llega a m=k y nunca llegard a calcular
el digito nx + 1, luego H es una mdquina circular. Esto nos lleva a una contradiccién. Esta proviene de
suponer que la hipétesis de partida (la existencia de D) es cierta, luego no existe una maquina D capaz
de determinar si un nimero natural es el nimero de descripcidn de una médquina no circular.

16 Capitulo 3. Mdquina universal de Turing

O

El resultado que acabamos de probar es fundamental para demostrar el siguiente teorema el cual
tiene una aplicacidn directa a la hora de dar una respuesta al problema de la decision.

Teorema 3.5. No existe una mdquina € tal que, dado un niimero de descripcion m de una mdquina
cualquiera M, determine si M escribe alguna vez un determinado simbolo, por ejemplo un 0.

Para abordar esta demostracion primero veremos que si existe dicha miquina € entonces existird un
método de determinar si una maquina M escribe un nimero infinito de 0 y veremos como esto nos lleva
a una contradiccion.

Demostracion. Supongamos que existe la maquina € y sea M una mdaquina cualquiera. Si M escribe
alguna vez un 0 entonces €(M) devuelve un 1 y si M no escribe nunca un un 0 entonces €(M) devuelve
un 0. Definimos M| como la maquina que computa la misma secuencia que M excepto en la posicién
donde aparece el primer 0, donde M escribird un 0. Por ejemplo, si M computa la secuencia

ABAO1AABOO10AB...

M, computard la secuencia
ABAO1AABOO10AB...

Definimos del mismo modo M, como la madquina que escribe la misma secuencia que M excepto en
las dos primeras posiciones donde aparece un 0. En este caso la secuencia que escribe M, sera

ABAO1AABOO10AB...

y asi sucesivamente con M;.

Sea F una méquina tal que, al introducirle la descripcion estdndar de M devuelva M. Usaremos
F para ir generando consecutivamente las descripciones estdndar de las maquinas M, M,.... M| =
F(M),M, = F(M,) = F(F(M))... Si combinamos F con € obtenemos una maquina G que funciona
de la siguiente forma: supongamos que tenemos la descripcidn estdndar de nuestra maquina M. € se en-
carga de testearla y si (M) == 1 es cierto eso quiere decir que M escribe alguna vez un 0. En ese caso
no realizamos ningiin cambio en la cinta y le pedimos a F que nos genere la descripcioén estdndar de M,
y volvemos a repetir el proceso. Por otro lado si €(M) == 1 es falso, eso quiere decir que M no escribe
ningtn 0. En ese caso escribimos un 0 en la cinta. Notar que si M; no escribe ningtin 0 entonces M; con
j>1Vi, j € N tampoco va a escribir ningtin 0, por tanto no es necesario seguir con el proceso. Veamos una
representacion de G:

Print ‘0’ M=F(M) |—

Ahora usemos la miquina € para comprobar la maquina G. Si € detecta que G nunca escribe un 0
quiere decir que M escribe infinitos 0 y Vi, M; va a escribir algtin 0. En caso contrario, si G escribe algtin

La mdquina de Turing - Un modelo para la computacion 17

0 quiere decir que hay algtn i tal que M; deja de escribir 0 y por tanto M va a escribir un nimero finito
de 0. Es decir, hemos encontrado un método para determinar si M escribe infinitos O o no.

Del mismo modo podemos comprobar si M escribe un nimero infinito de 1, y combinando ambos
procesos hemos encontrado una forma de saber si una maquina escribe un nimero infinito de simbolos
de primer tipo. Y esto es equivalente a haber encontrado un método para determinar si, a partir de su
nimero de descripcién, una maquina es no circular, lo cual contradice el teorema anterior. Por tanto no
existe la médquina €.

O

De este resultado es deducible el siguiente teorema:

Teorema 3.6. No existe un algoritmo capaz de determinar si una mdquina escribe infinitos 0.

18

Capitulo 3. Mdquina universal de Turing

Capitulo 4

El problema de la decision

Una vez entendida la teoria introducida por Turing y vistos los resultados tedricos tenemos las herra-
mientas suficientes para dar respuesta al problema de la decisién. Sin embargo, antes debemos familiari-
zarnos con ciertas nociones de la l6gica proposicional.

La l6gica proposicional es un sistema formal formado por proposiciones y operadores que, combi-
nados, forman proposiciones mas complejas. Emplearemos las siguientes propiedades:

Lema 1. Expresiones légicas.

1. (X = Z) = (X&Y — Z&Y)

2. [(X = V&Y = 2)] = (X — 2Z)

3. X — (Y = Z) equivalea (X = Y) = (X — Z)
4. (X = Z) = (X&Y — Z)

Recordemos que el operador 16gico & significa “y”, v significa “0” y — nos indica, para cada propo-
sicién, un antecedente y un consecuente.

4.1. El problema de la decision

Si recordamos el programa de Hilbert, este comprendia las propiedades de independencia, consisten-
cia, completitud y decidibilidad. Godel demostré que existen proposiciones il tales que ni 41 ni -4l son
demostrables, lo que supuso la imposibilidad de dar una prueba de la completitud del sistema formado
por la légica de primer orden junto a los axiomas de la aritmética. Turing sin embargo fue mds alld y
demostré que no existe un método general que nos diga si dada una férmula $(esta es demostrable en
dicho sistema. Y lo hizo de la siguiente forma:

Para cada maquina M construiremos una férmula 16gica $l,,(M) y veremos que decidir si dicha fér-
mula es demostrable o no se reduce a decidir si la maquina M escribe un 0 alguna vez. Y como el segundo
problema no es decidible el primero tampoco lo seré.

Antes de definir la férmula $,(M) introduzcamos algunas nociones necesarias:

Por un lado necesitaremos las siguientes funciones proposicionales:

= Rg(x,y): en la configuraciéon completa x el simbolo en la celda y es S

= I(x,y): en la configuracién completa x la celda escaneada es y

K, (x): en la configuracién completa x el estado es gy,

F(x,y):y es el sucesor inmediato de x

19

20 Capitulo 4. El problema de la decision

Ademads, definiremos también las siguientes funciones:

s r(n,m): indice del m-ésimo simbolo de la n-ésima configuracién completa
= i(n): nimero de celda leida en la n-ésima configuracién

» k(n): indice del estado de la n-ésima configuracién
A partir de ellas generaremos la siguiente expresion ldgica,
(6, 3, Y){ K (0) & (x, y) &Rs (x, y) &F (x,x") &F (¥, y) —

Ky (x)&I (¥,)&Rs, (¥, y) &(2)[F (¥, 2)v(Rs; (x,2) = Rs;(x',2))]) }

la cual abreviaremos por Inst{¢;S;SxLq;} y cuya interpretacion es la siguiente:

para todo x, y, X’, y’, si en la x-ésima configuracién completa el estado es g;, ademds en esa misma
configuracién estamos leyendo la celda y-€sima y el cardcter leido es S; y X’ es el sucesor inmediato de
x e y es el sucesor inmediato de y’ entonces en la configuracion completa x’ ocurrird lo siguiente:

= Estaremos en el estado ¢;

» La celda escaneada serd y’

= En la celda y-ésima aparecera el simbolo Sy

= para toda celda z distinta de y el simbolo en la siguiente configuracién completa es el mismo.

De la misma forma se construyen Inst{¢;S;SxRq; } y Inst{¢;S;SkNq;}.

Ahora dada una maquina M transformaremos todas sus instrucciones en expresiones de la forma
Inst{q;S;SkRq; }, Inst{q;S jSkLq; } o Inst{q;S;SNg;} y tomaremos su suma légica, que no es mas que su
conjuncién. A la expresion resultante la llamaremos Des(M).

Abhora si, la férmula 4, (M) propuesta por Turing serd la siguiente:

(Ju) [N(u)&(x)(N(x) = (3x')F (x,x')) & (v,2) (F (y,2) = N(y)&N(z))
&(y)Rs, (u,y) &I (u,u)&K,,
&Des(M))

— (35)(F1)[N(s)&N(t) &Ry, (s,1)]

Abreviaremos [N (u)&...&Des(M)] por A(M).

En esta formula 4, (M) el antecedente A(M) consta de tres bloques principales: por un lado, la con-
juncién de los axiomas de Peano (primera linea) que permiten definir los nimeros naturales. N es una
funcién proposicional. N(x) devuelve “true” si x es un entero y “false” en caso de que no lo sea. u es
el primer nimero natural, en nuestro caso el 0, a partir del cual se construyen los demas aplicando la
funcién F. Notar que falta la nocién de unicidad. Esto es una errata del articulo de Turing pero que no
impide el correcto desarrollo del problema. Después, en la segunda linea, estd la configuracién inicial
de la mdquina M. Por dltimo, en la tercera, estd la descripcion de la miquina M (la conjuncién de sus
instrucciones). El consecuente, situado a la derecha del operador — significa: en alguna configuracién
completa de la maquina M aparece un O en la cinta.

Ahora nuestro cometido es ver si somos capaces de determinar si ii,,(M) es demostrable. Como
hemos mencionado en el capitulo anterior, la reduccién nos permite obtener la solucion a un problema a

La mdquina de Turing - Un modelo para la computacion 21

través de otro. En nuestro caso vamos a reducir nuestro problema de determinar si l,(M) es demostrable
al problema de determinar si el simbolo O aparece en la cinta en alguna configuracién de la maquina M.
Como en el capitulo anterior hemos dado una respuesta a este segundo problema tendremos una respuesta
directa al Enstcheidungsproblem.

Veamos pues que ambos enunciados son equivalentes, es decir:

= Si 0 aparece en la cinta en alguna configuracién completa de M entonces I,,(M) es demostrable.

» Si il,(M) es demostrable entonces 0 aparece en la cinta en alguna configuracién completa de M.

Lema 2. Si 0 aparece en la cinta en alguna configuracién completa de M entonces 41, (M) es demostrable.

Demostracion. Supongamos que estamos en la n-ésima configuracion de la maquina M. Los simbolos
de las celdas de la cinta serdn S,(, 0),S,(n,1)sSr(n,2)---Sr(n,n) S€guUidos de infinitos espacios en blanco ya
que como estamos en la configuracién n-ésima como mucho habremos llegado hasta la celda n. Sea i(n)
la celda escaneada y gy, el estado en el que nos encontremos. Entonces podemos formar la siguiente
proposicién que describe la n-ésima configuracion completa y que abreviaremos por CCy,:

Rsr(mo)(u("),u)&RSrw)(u("),u’)&RSr(n_z)(u("),u”)&...&Rg (u™ u)

r(n,n)

&l (u", ”(i(n)))&KQk(n>

&) (F (v, 0/)WF (u,y)vF (,y)v..vF (u" y)vRg, (u™, y))

Tomamos u como el elemento inicial de forma que «’ es el sucesor inmediato de u, u” es el sucesor in-
mediato de ' y asi sucesivamente hasta F ("), u(")). Abreviaremos F (u,u')&F (' ,u") &...&F ("~ u("))
por F("). Lo que vamos a probar a continuacion es que la proposicién AM)&F (") — CC, es demostrable
y la denotaremos por CF,,. Lo haremos por el método de induccién.

Sea n=0. Entonces la expresion CCj se traduce en
() Rs, (1, y) &l (u, u) &K,

que quiere decir que toda celda y en la configuracién completa inicial u estd vacia, que estamos
mirando la primera celda y que nos encontramos en la configuracién inicial g;. Esto no es otra cosa
que la descripcion inicial de la formula L(,(M) descrita en A(M). Por otro lado, como estamos en la
configuracién inicial tenemos el primer elemento u pero no tenemos su siguiente y podemos omitir F°.
Por tanto, A(M) — CC es cierto y CFj es demostrable.

Supongamos entonces que la férmula es cierta hasta n y veamos si se cumple para n+1. Es decir,
tenemos que ver que CF,, — CF,,1. Como tenemos distintos casos a tener en cuenta vamos a suponer
que en la configuracién que vamos a estudiar la maquina se va a desplazar a la izquierda.

Supongamos que tenemos los siguientes valores de los indices b = r(n,i(n)), d = r(n+1,i(n+1)),
a = k(n), c =k(n+1). Entonces Des(M) debera incluir la siguiente instruccién Inst{q,S»SsLq.}. Por
tanto es obvio que

Des(M) — Inst{q.SpSaLq.}

y como Des(M) estd incluido en A(M) es claro que

A(M) — Des(M) — Inst{q,SpSisLq.}

22 Capitulo 4. El problema de la decision

y aplicando la expresion l6gica 1.1 del lema 1 tenemos

AM)&F ") = Inst{q,SpSaLqc} &F "+ (4.1)

Pero ademas, la instruccién Inst{q,S,SsLq.} construye la configuracién completa CC, a partir de
la configuraciéon CC, ya que partiendo del estado de la configuracidon n-ésima y del simbolo que esté
leyendo nos indica qué simbolo escribir, qué movimiento realizar y a qué estado pasar. Por tanto si
afiadimos F("*1) a la instruccién tendremos que

Inst{q.SpSqLq.}&F "V — (CC, — CCyy1) (4.2)

es demostrable y aplicando la expresion légica 1.2 a (4.1) y (4.2) tenemos que

AM)&F ") 5 (CC, — CCpy1) (4.3)

es demostrable, y aplicando 1.3 a (4.3) obtenemos que

AM)&F"™ 5 CC,) — (AM)&F ") — CCpy) (4.4)
Abhora por hipétesis de induccion se cumple que A(M)&F) - CC,, y por la expresion logica 1.4

AM)&FW&F (u™,u") = CC,

que es lo mismo que

AM)&F"Y = cc, (4.5)

Y por tltimo, aplicando del lema 1 la expresién 1.2 a la hipétesis de induccién, a (4.5) y a (4.4)
tenemos que si

(AM)&F"™ — CC,) — (AM)&F ") = CC,)

(AM)&F "+ = CC,)) — (AM)&F ") — CCpy 1)
entonces
(AM)&F"™ — CC,) — (AM)&F") — CCpy1)
que es lo mismo que

CF, — CFps, (4.6)

Es decir, CF;, es demostrable para todo n.

Ahora recordemos que por hipétesis estamos suponiendo que el 0 aparece en la cinta en alguna
configuracién completa. Es decir, existen dos enteros N y K para los que CCy tendrd como uno de

La mdquina de Turing - Un modelo para la computacion 23

sus simbolos Rg, (u™),u®)). Si recordamos, CCy contiene la descripcién de la N-ésima configuracién
completa, incluyendo el simbolo que hay en cada una de las celdas. Es decir, CCy — Rg, (u(N), u(K)).
Ademds acabamos de demostrar que CF, = A(M)&F ") — CC, es demostrable, por tanto

AM)&F™N) — ccy 4.7

Notar que como estamos en la configuracion N-ésima como mucho habremos llegado hasta la celda
N luego K < N.
Ademds, tenemos que

(Ju)AM) — (Gu)(3u)...Fu) (AM)&FN)

luego
(Bu)A(M) — (3u)(3d)...(3u")Rs, (u™) 1K)
por tanto
(Fu)AM) — (Fu™) (3uF)Rs, ™), uX))
es decir,

(Fu)A(M) — (3s)(3t)Rs, (s,1)

y 4,(M) es demostrable.

Veamos ahora el segundo lema:

Lema 3. Si 4,(M) es demostrable entonces 0 aparece en la cinta en alguna configuraciéon completa de
M.

Demostracion. Si transformamos las sentencias proposicionales de la férmula 4, (M) obtendremos una
proposicion verdadera. Por tanto si l,,(M) es demostrable entonces S| aparecerd en alguna configuracion
completa de la maquina M. O

Por tanto hemos probado la equivalencia de los lemas y estamos en condiciones de dar una respuesta
al problema de la decision.

Supongamos que el Entscheidungsproblem tiene solucion. Entonces existird un proceso mecdnico
capaz de determinar si la férmula $(,(M) es demostrable. Pero por la equivalencia de los lemas hemos
visto que determinar si 4(,(M) es demostrable es lo mismo que determinar si el 0 aparece en alguna
configuracién completa de la maquina M. Sin embargo, por el teorema 3.4 visto en el capitulo anterior,
sabemos que esto no es posible y llegamos a una contradiccién. Por tanto, el problema de la decisién no
tiene solucidn.

Bibliografia

[1]

(2]

(3]

[4]
[5]

[6]

[7]

[8]

DAVID HILBERT AND WILHELM ACKERMANN, Principles of Mathematical Logic, 2.* ed., ISBN.
0821820249, Chelsea Publishing Company, 1950.

KURT GODEL, Uber formal unentscheidbare Siitze der Principia Mathematica und verwandter
Systeme I, Monatshefte fiir mathematik und physik journal, volume 38, pages 173-198, Springer,
1931.

ALONZO CHURCH, An unsolvable problem of elementary number theory, American journal of
mathematics, volume 58, number 2, pages 345-363, JSTOR, 1936.

Hilbert’s Tenth Problem page, https://logic.pdmi.ras.ru/Hilbert10/

ALAN TURING, On computable numbers, with an application to the entscheidungsproblem, J. of
math, 1936

MICHAEL SIPSER, Introduction to the Theory of computation, segunda edicién, ISBN 0-534-
95097-3, PWS Publishing, 2006

JAMES R. MUNKRES, Topology, segunda edicién, ISBN 10: 1-292-02362-7, Pearson Education
Limited, 2014

MARK PRIESTLY, A science of Operations, ISBN 978-1-84882-555-0, Springer, 2011

25

