Anexo

En este anexo mostraremos varios ejemplos de maquinas de Turing. Para cada una de ellas daremos
su diagrama de estados y una implementacién en Python. Es recomendable ir observando el diagrama ya
que ayuda a comprender el funcionamiento de las maquinas.

En primer lugar notar que los estados por si solos no hacen nada. Es necesario tener un soporte
(una maquina) donde introducir los estados para poder ejecutarlos. A continuacién incluiremos la clase
“Madquina de Turing” sobre la que hemos construido los estados para las distintas miquinas.

class MaquinaTuring():
def __init__(self, cintalnicial, estados, estadosFinales=[], intervaloT=[0,0],
pasoApaso=False)

self.Cinta = cintalnicial

self.estados = estados
self.estadosFinales = estadosFinales
self.intervaloT = intervaloT

self .pasoApaso = pasoApaso
self.ilctual 0

self.ventana = soporteGrafico.Ventana(self)
self.ventana.muestralista(self.Cinta)

self.evolucién()

def evolucidn(self):
q0 = self.estados[0]
estadosSucesivos = [q0]
i=0
i0 =0
print (’evolucién’, self.Cinta)

while qO not in self.estadosFinales and i < 450:
if not (g0 in estadosSucesivos):
estadosSucesivos.append(q0)

print(q0.__name__, " ’",self.Cintali],"’ ",i,sep=’’)
i, q = q0(self.Cinta, i0)
self.ilActual = i

27

28 Capitulo . Anexo

if gq==q0:

tIntervalo = self.intervaloT[0]
else:

tIntervalo = self.intervaloT[1]

if (i>= i0):
self.ventana.completalLista(self.Cinta,i0)

if (i0 != i): self.ventana.pintaRectangulo(self.Cinta, i0, 0)
self.ventana.pintaRectangulo(self.Cinta, i, 1)

if self.pasoApaso:
time.sleep (tIntervalo)
self .ventana.master.update()

q0 = q
i0 =1
print (q0.__name__)
print (self.Cinta)
print (’# estados =’, len(estadosSucesivos))
self.ventana.mainloop()

.1. Estados maquina que escribe un nimero irracional

.1.1. Explicacion

Vamos a ver el funcionamiento de la maquina que computa la secuencia 001011011101111... que
representa un nimero irracional. Este es el segundo ejemplo de miquina presentado por Turing en su
articulo. Al tratarse de una secuencia infinita estaremos ante una maquina no circular.

La mdquina va a constar de cinco estados, ¢0,q1, 42,43, g4, donde g0 va a ser el estado inicial y no
vamos a tener estado final ya que hemos visto que va a ser una maquina no circular. El estado ¢0 va a
escribir dos simbolos “@” consecutivos para marcar el inicio del cdmputo y a continuacién va a escribir
los dos primeros ceros de la secuencia. Una vez hecho esto va a pasar al estado g1. Lo que va a hacer este
estado es marcar con una x los 1 que haya en la cinta. Si no encuentra ningtin 1 o ya ha marcado todos
pasa a g2. g2 va a recorrer la secuencia ya escrita de 0 y 1 hasta llegar al final, escribird un 1 y pasard a
q3. ¢3 se va a encargar de comprobar si hay alguna x en la cinta recorriéndola de derecha a izquierda. Si
encuentra alguna pasard a g2 para escribir un 1 al final de la cinta y lo hara tantas veces como x haya,
y las ird eliminando. Una vez que no queden x y haya llegado al inicio de la cinta pasard a g4, y lo que
hard g4 serd ir hasta el final de la cinta, escribir un 0 y pasar a g1 para volver a empezar el algoritmo.

.1.2. Diagrama

La mdquina de Turing - Un modelo para la computacion

;POLL

OoloXo@;RR ‘e

1.3. Cédigo

def qO0(cinta, i):

cintali] = ’a’

i = __R__(cinta,i)
cintali] = ’a’

i = __R__(cinta,i)
cintal[i] = °0’

i = __R__(cinta,i)
i = __R__(cinta, 1)
cintali] = 0’
i=1i-2

return i, ql

def qi(cinta, i):

if cintali] == °1°:
i=i+1
cintali] = ’x’
i=1i-3
return i, qi

else:
return i,q2

def g2(cinta, i):

if cintal[i] == ’1’ or cintali] == ’0’:
i = __R__(cinta, 1)
i = __R__(cinta, 1)

return i, q2

1;R,PX,LLL

100;R,R

29

30 Capitulo . Anexo

else:
cintali] = 1’
i=i-1
return i, g3

def g3(cinta, i):
if cintali] == ’x’:
cintali] = *
i=i+1
return i, g2
elif cintali] == ’a’:
i=1i+1
return i, q4
else:
i= i-2
return i, q3

def g4(cinta, i):

if cintal[i] == ’0’ or cinta[i] == ’1’ or cintal[i] == ’x’ or cintali] == ’a’:
i = __R__(cinta, 1)
i = __R__(cinta, 1)
return i, q4
else:
cintal[i] = ’0’
i=1i-2

return i, qi

2. Estados maquina que invierte un nimero

.2.1. Explicacién

Vamos a ver cudl seria el funcionamiento de una maquina de Turing que invierte un nimero. En
primer lugar notar que, a diferencia de los ejemplos vistos hasta ahora, la cinta no esta inicialmente vacia
sino que contiene la secuencia que deseamos invertir. En este tipo de casos se escriben dos simbolos “@”
consecutivos para indicar el inicio del problema y a continuacion se introduce el nimero que en este caso
vamos a invertir respetando las celdas pares e impares. La cinta se veria algo asi:

@l@|1 0 1 1 0

Cabe destacar que para generar esta maquina hemos empleado distintas tablas esqueleto y hemos
condensado varios movimientos en un Unico estado para evitar estados redundantes. Se podria hacer
seguin la estructura de instrucciones vista a lo largo del trabajo (en funcién de un estado y el simbolo
leido se escribe un simbolo, se realiza un desplazamiento de una tinica posicién y pasamos a otro estado)
pero el codigo serfa muy largo y muy repetitivo y no serfa 6ptimo. Ahora vamos a describir los pasos que
hemos seguido.

Una vez que hemos introducido el nimero a invertir la maquina empieza a trabajar. Notar que este
programa tiene un final ya que cuando hayamos invertido el nimero el proceso debe terminar, por tanto

La mdquina de Turing - Un modelo para la computacion 31

es una miquina circular y va a necesitar de, al menos, un estado final. En este caso hemos necesitado
solo uno que es grinal. En el momento en que lleguemos a este estado el programa se detendra.

Empezamos pues en el estado inicial que es ¢g0. El cabezal de la maquina empezard situado en la
primera “@” y lo que hard g0 serd avanzar dos posiciones a la derecha para situarse al principio del
nimero. Ua vez que se haya desplazado pasard al estado g_decisin_final_1. Este estado es una mera
comporbacion de que después de la segunda “@” tenemos un 0 o un 1. En caso de que haya un simbolo
disntinto (por ejemplo un espacio en blanco si no se ha respetado correctamente el orden de celdas pares
e impares) pasarfamos al estado ¢g_final y el programa se detendria. Como tenemos un 1 pasamos al
estado gl. El estado g1 lo que hard es encontrar el dltimo digito no marcado del niimero, donde por
digito marcado entenderemos aquel que tenga una x situada a su derecha en la celda mas préxima (celda
impar). Una vez que g1 encuentre ese digito lo marcard y este serd el primer nlimero que vamos a cambiar
y pasard al estado g_decisin_final_2. La cinta en este momento se veria asi:

@ @|1 0 1 1 0|x

q_decisin_final_2 sirve para comporbar si el programa debe finalizar ya. Si la celda que esta en rojo
tuviese una x significaria que ya hemos finalizado la inversion y pasaria al estado final. Como no es el
caso nos desplazamos una posicion a la derecha y pasamos a g2.

Ahora lo que tendremos que hacer es llevar nuestro digito marcado a la izquierda y coger su co-
rrespondiente digito y llevarlo a la derecha ya que una forma de invertir un nimero es intercambiando
las cifras que equidisten del digito intermedio del nimero, como si fuesen parejas. Pero no es lo mismo
llevar a la izquierda un O o un 1 y eso es lo que hara ¢2: nos diferenciara si hemos marcado un 0 o un 1.
Una vez hecha esta diferencia, si lo que hemos marcado era un 0 pasaremos al estado llevalzda('0') y si
era un 1 pasaremos a llevalzda('1"). En ambos casos lo que haremos serd buscar el digito situado més a
la izquierza que no esté marcado y una vez encontrado haremos lo siguiente:

= Primero diferenciaremos si el digito es un O o un 1.
= Luego escribiremos el digito que traiamos de antes, en este caso un 0.

= Después de haber escrito el digito marcaremos esa celda con una x para saber que ya hemos
realizado una inversion.

= Por ultimo iremos al estado /levaoDcha o lleval Dcha en funcion de si antes habiaun O oun 1.

La cinta hasta este momento se veria asi:

@|@|[0|x]|0 1 1 0|x

Ahora lo ultimo que nos queda por hacer es llevar el digito de la izquierda a la derecha. Como
en este caso habfa un 1 hemos pasado al estado /levalDcha y este lo que hard es buscar la x que le
indique donde estd la celda donde tiene que escribir ese 1. Una vez encontrada la celda escribiremos
el 1, marcaremos el siguiente digito a invertir y pasaremos de nuevo al estado g_decisin_final_2 para
realizar la comporbacion de si ya hemos acabado, y si no es el caso volveremos a repetir el proceso hasta
finalizar.

Después de realizar el primer bucle de inversion la cinta se veria asi:

@@|{0|x|0 1 1|x|1]|x

Y el resultado final seria el siguiente:

32

.2.2. Diagrama

q_decisién |
final_1 &1 X

q_decision_
final_2

X;L,PO,L,PX,L,L

2.3. Codigo

def qO0(cinta,i):
i=1i+2
return i, q_decision_final_1

def q_decision_final_1(cinta,i):
if cintal[i]l == ’ ’ or cintal[i] == ’x’:
return i, q_final
else:
return i, qi

def g_final(cinta,i):
return i, q_final

def gqi(cinta,i):
if cintal[i] == ’1’ or cintali] == ’0°’:
i=1i+2
q=ql
else:
i=i-1
cintali] = ’x’

Capitulo . Anexo

X;L,PLLPXLL

La mdquina de Turing - Un modelo para la computacion

i=i-2
q= q_decision_final_2
return i, q

def q_decision_final_2(cinta,i):
if cintali] == > ’:
i=i+l
return i, g2
else:
return i, q_final

def g2(cinta,i):
if cintalil== °0’:

i=i-1

return i, g3
else:

i=i-1

return i, q4

def llevaDerecha(C, d):
def llevaDcha(cinta,i):
if cintali] == ’ ’:

i=i+2

return i, llevaDcha
else:

i=i-1

cintali] = d

i=i-1

cintali] = ’x’

i=1i-2

return i, C
return llevaDcha

def llevalzda (d):
def buscaPrimerDigito(cinta,i): #q3
if cintali] == > °:
i=1-2
return i, buscaPrimerDigito
else:
i=1+1
return i, escribePrimerDigito

def escribePrimerDigito(cinta, i): #g33

if cintali] == ’0’:
cintali] = d
i=i+1
cintali] = ’x’
i=1i+2

return i, llevaODcha
else:
cintal[i] = d

33

34 Capitulo . Anexo

i=1i+1
cintali] = ’x°
i=1i+2

return i, llevalDcha
return buscaPrimerDigito

g3 = llevaIzda(’0’)
g4 = 1llevalzda(’1’)
llevaODcha = llevaDerecha(q_decision_final_2, ’0’)
llevalDcha = llevaDerecha(q_decision_final_2,’1’)

listaEstados=[q0]
estadosFinales=[q_final]

3. Estados maquina que suma dos nimeros en bianrio

3.1. Explicacion

No daremos una explicacion detallada de esta médquina ya que seria bastante extensa pero si explica-
remos a grandes rasgos su funcionamiento. En el c6digo describiremos las tablas esqueleto empleadas en
esta maquina ya que dan una visién mas intuitiva de su funcionamiento y después pondremos los estados
de forma detallada.

En la cinta tendremos dos niimeros en binario separados por un signo '+’ y después del dltimo digito
habrd un ’=".

lelel [a] [a] Jof [+ Jaf Jaf Jaf J-F7 [[|

En primer lugar marcard con una x el primer niimero.

lele|l [al«xlafxfofxf+f [af Jaf Jaf J-F] [[|

Después marcard con una y el segundo nimero.

lelel [al«xlafxfofxf+] JaJylalyla]y]

Una vez marcados ambos nimeros copiard el primero a la derecha del igual. Notar que lo copiard
invertido.

lelel [a] [a] Jol [«] JTafylalylalyl=] Jof Ja] [1]

A continuacién sumard el ndimero situado a la izquierda del igual con el que hemos trasladado al
final de la lista.

lefel [af [sf Jol [«] Jaf Jaf Ja] [=JaJs] Jof [a] [1]

Por ltimo inveritd el nimero. Y esto sabemos como hacerlo ya que antes hemos creado una maquina
que invierte una cadena de simbolos en binario.

La mdquina de Turing - Un modelo para la computacion 35

lelel [af [af Jol [«] Jaf Jaf Jaf [0 Jaf Jaf Jof [a]

3.2. Codigo

Expresaremos el cddigo de dos formas alternativas. En esta primera la ejecucion se realiza paso a
paso y es mds intuitiva.

Tablas esqueleto:

inv = inversion()

sumaY = suma (inv, mSumando=’y’, mSuma=’=’)

copiaX = copia (sumaY, marcaNumero=’x’, posicion=’=’)
marcaY = marca (copiaX, gFinal, letra=’y’,signo=’=’)

marcaX marca (marcaY, gFinal, letra=’x’,signo=’+’)

En esta segunda se ejecuta todo en una tnica sentencia. Esto pone de relieve el caracter recursivo de
los estados de las mdquinas de Turing.

marcaX = marca (marca (copia (suma (inversion(),
mSumando=’y’, mSuma=’=’),
marcaNumero=’x’, posicion=’=’
),
gFinal, letra=’y’,signo=’=’
),

gFinal, letra=’x’,signo=’+’

Estados:

def buscaUltimo(C, B, **kwargs):
def f(cinta, i): # busca la primera aparicidén del caracter a
nonlocal C, B, kwargs
if cintali] == > ’:
q = f1
else:
q-=1f
i = __R__(cinta, 1)

return i, q

def fi(cinta, 1i):
nonlocal C, B, kwargs
if cintali] == > ’:
q = £f2
else:
q=1
return i, q

36 Capitulo

def f2(cinta, 1i):
nonlocal C, B, kwargs

if cintal[i] == kwargs[’valorBuscado’]:
q=2C
elif cintali] == ’@’:
q=8B
else:
i=1-1
q = £f2

return i, q

mensaje = ’’
if ’valorBuscado’ in kwargs.keys():

mensaje = mensaje + ’busca=’ + kwargs[’valorBuscado’] + ’\t’
if ’valorGuardado’ in kwargs.keys():

mensaje = mensaje + ’lleva=’ + kwargs[’valorGuardado’]

f.__name__ = ’buscaUltimo.’ + f.__name__ + ’(> + mensaje + ’)’
f1.__name__ = ’buscalltimo.’ + f1.__name__ + >(’ + mensaje + ’>)’
f2.__name__ = ’buscaUltimo.’ + f2.__name__ + ’(’ + mensaje + ’)’
return f

"""marca con una letra (kwargs[’letra’]) el segmento situado
inmediatamente a la izquierda del primer signo
indicado (kwargs[’signo’])"""
def marca (C, B, **kwargs):
def mueveIzda(cinta, i):
return i-2, decide
def decide(cinta, 1i):
if cintalil] in [’07,°1°]:

g = marca

i = __R__(cinta, 1)
else:

q=20C

return i, q

def marca (cinta, 1i):
nonlocal C, kwargs
cintali] = kwargs[’letra’]
return i-3, decide

bP = buscaPrimero (muevelzda, B, kwargs[’signo’])
return bP
def marcaQZ(C,B,signo):
def D2 (cinta, i):
i = __R__(cinta, 1)
return i, escribel
def escribeQ(cinta, 1i):
cintali] = °Q°
i = __R__(cinta, 1)
return i, afiadeO
def afiadeO(cinta, 1i):

cintali] = °0°

. Anexo

La mdquina de Turing - Un modelo para la computacion

def

i = __R__(cinta, 1)
return i, marcaZ

def marcaZ(cinta, i):
cintali] = ’z’
return i, C

return buscaPrimero (D2, B, signo)

Afiade el numero marcado con ’mSumando’ al nimero marcado con ’mSuma’ """
suma (C, *xkwargs):

def sumallevada(cinta, i):
if cintali] in [’ ?, °0°]:

cintali] = °1°
q = bPzFinal

else:
cintali] = 0’
i = __R__(cinta, 1)
i = __R__(cinta, i)
q = sumallevada

return i, q
def borraYL(cinta, i):
cintali] =’ ?

return i - 1, iniciaSuma

def iniciaSuma(cinta, 1i):

if cintali] == ’0’:
q = bPz0

else:
q = bPz1

return i, q

def preSumal(cinta, i):
return i - 1, sumal

def sumal(cinta, i):
if cintali] in [’ ’, °0°]:

cintali] = ’1°

i = __R__(cinta, 1)
q = avanzaDigito

else:

cintali] = °0’

i = __R__(cinta, 1)
i = __R__(cinta, i)
q = sumallevada

return i, q

def avanzaDigito(cinta, i): # Borra y devuelve C
cintali]=> >
return i+1, ponO

37

38 Capitulo . Anexo

def ponO (cinta, i):
if cintalil==’ ’:
cintali]=’0’

i = __R__(cinta, 1)

return i, afiadeZ

def afiadeZ (cinta, i):
cinta[i] =kwargs[’mSuma’]
return i, bU

def borraZ (cinta, i):
cintali] =’ ?
return i-1, limpia0

def limpia0O (cinta, 1i):
if cintali] == ’0’:
cintali]=> ?
i=1i-2
g= limpiaO
else:
q=2C
return i, q

preborraZ = buscalltimo(borraZ, C, valorBuscado=kwargs[’mSuma’])

bPzFinal = buscaUltimo(avanzaDigito, gFinal, valorBuscado=kwargs[’mSuma’])
bPz1 = buscaPrimero(preSumal, gFinal, kwargs[’mSuma’])

bPz0 = buscaPrimero(avanzaDigito, gFinal, kwargs[’mSuma’])

bU = buscalltimo (borraYL, preborraZ, valorBuscado=kwargs[’mSumando’])
return bU

def invierte ():
Skeleton tables:
def llevalzda(B, **kwargs):
def Left(cinta, i):
print (’\n\n\n\nLlevo’, kwargs[’letra’])
cintali] =’ ?
return i - 1, escribe

def escribe(cinta, 1i):
if cintali] == ’0’:
q = llevaDchaO
else:
q = llevaDchal
cintali] = kwargs[’letra’]
return i, q

bP = buscaPrimero(Left, B, kwargs[’signo’])
return bP
def llevaDcha(B, #**kwargs):

La mdquina de Turing - Un modelo para la computacion

def Left(cinta, 1i):
cintali] = 2
return i - 1, escribe

def escribe(cinta, i):
cintali] = kwargs[’letra’]
return i - 2, reinicia

def reinicia(cinta, i):
if cintali] == ’0’:
q = llevalzdaO
else:
q = llevalzdal
return i, q

bP = buscalltimo(Left, B, valorBuscado=kwargs[’signo’])
return bP

#Estados
def Left (cinta, i):
return i-1, inicialInversion
def inicialnversion (cinta, i):
if cintal[il==’0’:
q = llevalzdaO
else:
q = llevalzdal
return i, q

llevaDchaO = llevaDcha (qFinal, letra=’0’,signo=’x’)
llevaDchal = llevaDcha (gFinal, letra=’1’,signo=’x’)
llevalzdaO = llevalzda (qFinal, letra=’0’,signo=’x’)
llevalzdal = llevalzda (qFinal, letra=’1’,signo=’x’)

bU = buscalltimo(Left, gFinal,valorBuscado= ’x’)
marcaX = marca(bU, gFinal, letra=’x’,signo=’F’)
return marcaX

Estados:
def gFinal(cinta, i):
return i, gFinal

Preparan el segundo sumando
def afiadeZ (cinta, 1i):
i = __R__(cinta,i)
i = __R__(cinta, 1)
return i, escribeZ
def escribeZ (cinta, 1i):

cintali] = ’z’

39

40

return i, estadosSumaY

bUQ = buscaUltimo (afiadeZ, gFinal, valorBuscado=’Q’)

Dejan F final
def inversion():
def RR (cinta, 1i):

i = __R__(cinta,i)

i = __R__(cinta,i)
return i, marcaF

def marcaF (cinta, i):

cintal[i]="F’
return i, invierte()

return RR

4. Estados Maquina Universal de Turing

Capitulo . Anexo

Recordemos que la Mdquina Universal estd compuesta por 9 tablas esqueleto principales y varias au-
xiliares. En primer lugar pondremos las tablas auxiliares y después las que definen la Mdquina Universal.
Tanto la notacién como la descripcién de los estados los hemos sacado del propio articulo de Turing

[5] y del apéndice del libro A science of Operations [8].

def config (C, a):

def

def

def

con(cinta, i):

if cintali] !=’A’:
i = __R__ (cinta,i)
i = __R__(cinta, 1)
q = con

else:
i=1-1
cintali] = a
i = __R__ (cinta, 1)
q = conl

return i, q

conl (cinta, i):
if cintal[i]==’A":
q = conl

else:

q
i= R__(cinta, i)

cintal[i] = a
i = __R__(cinta, 1)

return i, q

con2

con2 (cinta, 1i):

if cintal[i]l==’C’:
i = __R__(cinta, 1)
cintal[i] = a
i = __R__(cinta, 1)
q = con2

else:

i = __R__(cinta, i)

La mdquina de Turing - Un modelo para la computacion

i = __R__(cinta, 1)
qQ=¢
return i, q

return con

def buscaPrimero(C, B, a):
def f(cinta, i): # busca la primera aparicién del caracter a

if cintali] == ’@’:
i=1i-1
q=f1

else:
i=1i-1
q=1

return i, q

def fi(cinta, i):

if cintal[i] == a:
q=20C

elif cintali] ==’ 7:
i = __R__(cinta, i)
q = f2

else:
i = __R__(cinta, 1)
q = f1

return i, q

def f2(cinta, i):

if cintali] == a:
q=20C

elif cintali] ==’ 7:
i = __R__(cinta, i)
q=28B

else:
i = __R__(cinta, 1)
q = f1

return i, q

f.__name__ = ’buscaPrimero.’ + f.__name__ + "(" + a + "2)"
f1.__name__ = ’buscaPrimero.’ + f1.__name__ + "(>" + a + "’)"
f2.__name__ = ’buscaPrimero.’ + f2.__name__ + "(" + a + ">)"
return f

erase

def borra (C, B, alpha):
def el(cinta, 1i):
print (’Borro’)
cintali] = * ?
return i, C

41

42

return buscaPrimero (el, B, alpha)

#e
def borraTodo (B, alpha):
def e (cinta, 1i):
return i, aux

aux = borra (e, B, alpha)
return e

pe
def escribeAlFinal (C, beta):
def pe (cinta, i):
return i, buscaPrimero (pel, C, ’Q@’)

def pel (cinta, i):

if cintalil!= > ’:
i = __R__ (cinta, i)
i = __R__(cinta, 1)
q = pel

else:
cinta[i] = beta
q=20C

return i, q
return pe

move left
def izquierda (C):
def mI (cinta, i):
i=i-1
return i, C
return mI

£
def buscaMuevelzda (C, B, a):
def BMI (cinta, i):

return i, buscaPrimero(izquierda(C), B, a)

return BMI

copy
def copia (C, B, a):
def c(cinta, 1i):
return i, buscaMuevelIzda(cl, B, a)

def ci(cinta, 1i):
return i, escribeAlFinal(C, cintali])

return ¢

Capitulo . Anexo

La mdquina de Turing - Un modelo para la computacion 43

def copiaYBorra (C,B, a):
def ¢ (cinta, 1i):
return i, copia(borra(C, B, a), B, a)
return c

copia y borra todo
def cbt (B, a):
def ce (cinta, 1i):
return i, copiaYBorra(cbt(B, a), B, a)
return ce

def borraYCopiab5 (B, alpha, beta, gamma, delta, epsilon):
def ce5 (cinta, 1i):
return i, cbt (cbt(cbt (cbt(cbt (B, epsilon), delta), gamma), beta),alpha)
return ceb

cp
def compara (C,U,G,alpha, beta):
def te_cp2 (C, U, gamma):
def cp2 (cinta, 1i):

if cintal[i]l == gamma:
q=2C

else:
q=10

return i, q
return cp2

def cpl (cinta, i):
cp2 = te_cp2 (C, U, cintalil)
return i, buscaMueveIzda (cp2, U, beta)

return buscaMuevelIzda (cpl,buscaPrimero(U,G,beta),alpha)

cpe (5 argumentos)
def comparaYBorra (C, U, G, alpha, beta):
def cpe (cinta, i):
return i, compara (borra(borra (C,C, beta), C, alpha), U, G, alpha, beta)
return cpe

cpe (4 argumentos)
def comparaYBorraTodo (U, G, alpha, beta):
def cpe (cinta, 1i):
return i, comparaYBorra (cpe, U, G, alpha, beta)
return cpe

def buscaFin (C):
def q(cinta,i):
if cintali] != * ?:
gDevuelto = q
else:

44 Capitulo . Anexo

gDevuelto = ql
i = __R__(cinta, i)

return i, gDevuelto

def qi(cinta, i):
if cintali] !'= > ’:
i = __R__(cinta, 1)
gDevuelto = q
else:
gDevuelto = C
return i, gDevuelto

return q

#q
def buscalltimo(C, a):
def q1bU (cinta, i):
if cintal[i]l==a:

q=2C
else:

i=i-1

q = qlbU

return i, q
return buscaFin(qlbU)
e

def borraMarcas (C):
def e(cinta, i):

if cintali] ==’@’:
i = __R__ (cinta,i)
q=-el
else:
i=1-1
q=-e

return i, q

def el (cinta, 1i):
if cintali] != > 7:

i = __R__(cinta, 1)
cintal[il= ’ ?
i = __R__(cinta, 1)
q=-el

else:
i = __R__(cinta, 1)
q=20C

return i, q
return buscaUltimo (e, ’@’°)

Tablas Mdquina Universal

La mdquina de Turing - Un modelo para la computacion

buscalltimo (pcon, ’:7)
config(pfom, ’y’)

anf

con

e = borraTodo(qFinal, ’y’)

fom
def buscaSiguienteInstruccidén(cinta, i):
if cintali] == ’;’:
i = __R__(cinta, i)
cintali] = ’z’
i=1-1
q = config (comparaConfiguraciones, ’x’)
#q = config(qFinal, ’x’)

elif cintali] == ’z’:

i=1-2

q = buscaSiguientelnstruccién
else:

i=1-1

q = buscaSiguientelnstruccién

return i, q

fmp

def comparaConfiguraciones (cinta, i):
return i, comparaYBorraTodo(borraTodo(borraTodo(anf, ’x’), ’y’),
marcalnstruccién, ’x’, ’y’)

sim
def marcalInstruccién (cinta, 1i):
return i, buscaMuevelzda(siml, simil, ’z’)
def siml (cinta, i):
return i, config(sim2,’ ?)
def sim2 (cinta, i):
if cintal[i] == ’A’:

q = sim3

else:
i=i-1
cintal[i] = ’u’
i = __R__(cinta, 1)
i = __R__(cinta, 1)
i = __R__(cinta, 1)
q = sim2

return i, q
def sim3 (cinta, i):

if cintal[i] == ’A’:
i=1-1
cintali] = ’y’
i = __R__(cinta, 1)
i = __R__(cinta, 1)

i = __R__(cinta, 1)

46

q = sim3

else:
i=1-1
cintali] = ’y’

q = borraTodo (marcaConfiguracidénCompleta, ’z’)

return i, q

ml
def marcaConfiguraciénCompleta (cinta, 1i):
return i, buscaUltimo(mll, ’:?)
def mll (cinta, 1i):
if cintali] != ’A’:
i = __R__(cinta, 1)
i = __R__(cinta, 1)
q = ml1l
else:

i=1-4
q = ml2
return i, q
def ml2 (cinta, 1i):
if cintal[i]==’C’:

i = __R__(cinta, i)
cintali] = ’x’
i=1-3
q = ml2

elif cintali] == 7:7:
q = ml4

else:
i = __R__(cinta, 1)
cintali] = ’x’
i=1i-3
q = ml3

return i, q
def ml3 (cinta, 1i):
if cintali] != ’:7:

i = __R__(cinta, 1)
cintali] = ’v?
i=1i-3
q = ml3

else:
q = ml4

return i, q
def ml4 (cinta, 1i):

return i, config(izquierda(izquierda(ml5)),’ ’)

def ml5 (cinta, 1i):
if cintali] != > 7:

i = __R__(cinta, 1)
cintali] = ’w’

i = __R__(cinta, 1)
q = mlb

else:

Capitulo . Anexo

La mdquina de Turing - Un modelo para la computacion

cintali] = ?:°
q = muestraResultado
return i , q

sh

def

muestraResultado (cinta, 1i):
return i, buscaPrimero(shl, inst, ’u’)

def shl (cinta,i):
i=1i-3
return i,sh2
def sh2 (cinta, 1i):
if cintal[i]l==’D’:
i = __R__(cinta, 1)
i = __R__(cinta, 1)
i = __R__(cinta, 1)
i = __R__(cinta, 1)
q = sh3
else:
g=inst
return i, q
def sh3 (cinta, 1i):
if cintali]l==’C’:
i = __R__(cinta, 1)
i = __R__(cinta, 1)
q = sh4
else:
g=inst
return i, q
def sh4 (cinta, 1i):
if cintali] == ’C’:
i = __R__(cinta, 1)
i = __R__(cinta, i)
q = shb
else:
q = escribeAlFinal(escribeAlFinal (inst, ’:’),
return i, q
def sh5 (cinta, 1i):
if cintali] == ’C’:
q = inst
else:
q = escribeAlFinal(escribeAlFinal (inst, ’:°),
return i, q
inst
def inst (cinta, i):
return i, buscaUltimo(izquierda(instl), ’u’)
def instl (cinta, 1i):

if cintal[i]=="L":
i = __R__(cinta, 1)

cintalil=’ ?
q = borraYCopiab(ov, ’v’,’y’,’x’,’u’,’w’)

707)

)1))

47

48

def

def

#ov
def

def

def

bSI = buscaSiguientelnstruccidn
marcaConfig(bSI)

mC

q = borraYCopia5(ov, ’v’,’x’,’u’,’y’,’w’)

elif cintali] ==’N’:
i = __R__(cinta, 1)
cintal[i]=’

else:
i = __R__(cinta, 1)
cintali]=’> ’

Capitulo . Anexo

q = borraYCopia5(buscaUltimo(inst2,’A’), ’v’,’x’,’u’,’y’,’w’)

return i, q

inst2 (cinta, 1i):
i = __R__(cinta, i)

i = __R__(cinta, 1)

return i, inst3

inst3 (cinta, 1i):

if cintali] ==’
cintal[i]=’D’
return i, ov

ov (cinta, i):

return i, borraMarcas(anf)

marcaConfig(C) :

).

anf = buscaUltimo(config(C, ’y’),

return anf

configInicial (C):
def bl (cinta, 1i):

i = __R__(cinta,
i = __R__(cinta,
cintali] = ’:°
i = __R__(cinta,
i = __R__(cinta,
cintal[i] = ’D’
i = __R__(cinta,
i = __R__(cinta,
cintal[i] = ’A?
i = __R__(cinta,
i = __R__(cinta,
cintali] = °’D’

return i, C

return buscaPrimero(bl, bil,

i)
i)
i)
i)
i)
i)
i)
i)

).

1)

)

1)

