
Anexo

En este anexo mostraremos varios ejemplos de máquinas de Turing. Para cada una de ellas daremos
su diagrama de estados y una implementación en Python. Es recomendable ir observando el diagrama ya
que ayuda a comprender el funcionamiento de las máquinas.

En primer lugar notar que los estados por si solos no hacen nada. Es necesario tener un soporte
(una máquina) donde introducir los estados para poder ejecutarlos. A continuación incluiremos la clase
“Máquina de Turing” sobre la que hemos construido los estados para las distintas máquinas.

class MáquinaTuring():
def __init__(self, cintaInicial, estados, estadosFinales=[], intervaloT=[0,0],
pasoApaso=False) :

self.Cinta = cintaInicial

self.estados = estados
self.estadosFinales = estadosFinales
self.intervaloT = intervaloT
self.pasoApaso = pasoApaso
self.iActual = 0

self.ventana = soporteGráfico.Ventana(self)
self.ventana.muestraLista(self.Cinta)

self.evolución()

def evolución(self):
q0 = self.estados[0]
estadosSucesivos = [q0]
i = 0
i0 = 0
print(’evolución’, self.Cinta)

while q0 not in self.estadosFinales and i < 450:
if not (q0 in estadosSucesivos):

estadosSucesivos.append(q0)

print(q0.__name__, " ’",self.Cinta[i],"’ ",i,sep=’’)
i, q = q0(self.Cinta, i0)
self.iActual = i

27

28 Capítulo . Anexo

if q==q0:
tIntervalo = self.intervaloT[0]

else:
tIntervalo = self.intervaloT[1]

if (i>= i0):
self.ventana.completaLista(self.Cinta,i0)

if (i0 != i): self.ventana.pintaRectángulo(self.Cinta, i0, 0)
self.ventana.pintaRectángulo(self.Cinta, i, 1)

if self.pasoApaso:
time.sleep (tIntervalo)
self.ventana.master.update()

q0 = q
i0 = i

print(q0.__name__)
print (self.Cinta)
print (’# estados =’, len(estadosSucesivos))
self.ventana.mainloop()

.1. Estados máquina que escribe un número irracional

.1.1. Explicación

Vamos a ver el funcionamiento de la máquina que computa la secuencia 001011011101111... que
representa un número irracional. Este es el segundo ejemplo de máquina presentado por Turing en su
artículo. Al tratarse de una secuencia infinita estaremos ante una máquina no circular.

La máquina va a constar de cinco estados, q0,q1,q2,q3,q4, donde q0 va a ser el estado inicial y no
vamos a tener estado final ya que hemos visto que va a ser una máquina no circular. El estado q0 va a
escribir dos símbolos “@” consecutivos para marcar el inicio del cómputo y a continuación va a escribir
los dos primeros ceros de la secuencia. Una vez hecho esto va a pasar al estado q1. Lo que va a hacer este
estado es marcar con una x los 1 que haya en la cinta. Si no encuentra ningún 1 o ya ha marcado todos
pasa a q2. q2 va a recorrer la secuencia ya escrita de 0 y 1 hasta llegar al final, escribirá un 1 y pasará a
q3. q3 se va a encargar de comprobar si hay alguna x en la cinta recorriéndola de derecha a izquierda. Si
encuentra alguna pasará a q2 para escribir un 1 al final de la cinta y lo hará tantas veces como x haya,
y las irá eliminando. Una vez que no queden x y haya llegado al inicio de la cinta pasará a q4, y lo que
hará q4 será ir hasta el final de la cinta, escribir un 0 y pasar a q1 para volver a empezar el algoritmo.

.1.2. Diagrama

La máquina de Turing - Un modelo para la computación 29

.1.3. Código

def q0(cinta, i):
cinta[i] = ’a’
i = __R__(cinta,i)
cinta[i] = ’a’
i = __R__(cinta,i)
cinta[i] = ’0’
i = __R__(cinta,i)
i = __R__(cinta, i)
cinta[i] = ’0’
i = i-2
return i, q1

def q1(cinta, i):
if cinta[i] == ’1’:

i = i+1
cinta[i] = ’x’
i = i-3
return i, q1

else:
return i,q2

def q2(cinta, i):
if cinta[i] == ’1’ or cinta[i] == ’0’:

i = __R__(cinta, i)
i = __R__(cinta, i)
return i, q2

30 Capítulo . Anexo

else:
cinta[i] = ’1’
i = i-1
return i, q3

def q3(cinta, i):
if cinta[i] == ’x’:

cinta[i] = ’ ’
i = i+1
return i, q2

elif cinta[i] == ’a’:
i = i+1
return i, q4

else:
i= i-2
return i, q3

def q4(cinta, i):
if cinta[i] == ’0’ or cinta[i] == ’1’ or cinta[i] == ’x’ or cinta[i] == ’a’:

i = __R__(cinta, i)
i = __R__(cinta, i)
return i, q4

else:
cinta[i] = ’0’
i = i-2
return i, q1

.2. Estados máquina que invierte un número

.2.1. Explicación

Vamos a ver cuál sería el funcionamiento de una máquina de Turing que invierte un número. En
primer lugar notar que, a diferencia de los ejemplos vistos hasta ahora, la cinta no está inicialmente vacía
sino que contiene la secuencia que deseamos invertir. En este tipo de casos se escriben dos símbolos “@”
consecutivos para indicar el inicio del problema y a continuación se introduce el número que en este caso
vamos a invertir respetando las celdas pares e impares. La cinta se vería algo así:

Cabe destacar que para generar esta máquina hemos empleado distintas tablas esqueleto y hemos
condensado varios movimientos en un único estado para evitar estados redundantes. Se podría hacer
según la estructura de instrucciones vista a lo largo del trabajo (en función de un estado y el símbolo
leído se escribe un símbolo, se realiza un desplazamiento de una única posición y pasamos a otro estado)
pero el código sería muy largo y muy repetitivo y no sería óptimo. Ahora vamos a describir los pasos que
hemos seguido.

Una vez que hemos introducido el número a invertir la máquina empieza a trabajar. Notar que este
programa tiene un final ya que cuando hayamos invertido el número el proceso debe terminar, por tanto

La máquina de Turing - Un modelo para la computación 31

es una máquina circular y va a necesitar de, al menos, un estado final. En este caso hemos necesitado
solo uno que es q f inal. En el momento en que lleguemos a este estado el programa se detendrá.

Empezamos pues en el estado inicial que es q0. El cabezal de la máquina empezará situado en la
primera “@” y lo que hará q0 será avanzar dos posiciones a la derecha para situarse al principio del
número. Ua vez que se haya desplazado pasará al estado q_decisin_ f inal_1. Este estado es una mera
comporbación de que después de la segunda “@” tenemos un 0 o un 1. En caso de que haya un símbolo
disntinto (por ejemplo un espacio en blanco si no se ha respetado correctamente el orden de celdas pares
e impares) pasaríamos al estado q_ f inal y el programa se detendría. Como tenemos un 1 pasamos al
estado q1. El estado q1 lo que hará es encontrar el último dígito no marcado del número, donde por
dígito marcado entenderemos aquel que tenga una x situada a su derecha en la celda más próxima (celda
impar). Una vez que q1 encuentre ese dígito lo marcará y este será el primer número que vamos a cambiar
y pasará al estado q_decisin_ f inal_2. La cinta en este momento se vería así:

q_decisin_ f inal_2 sirve para comporbar si el programa debe finalizar ya. Si la celda que está en rojo
tuviese una x significaría que ya hemos finalizado la inversión y pasaría al estado final. Como no es el
caso nos desplazamos una posición a la derecha y pasamos a q2.

Ahora lo que tendremos que hacer es llevar nuestro dígito marcado a la izquierda y coger su co-
rrespondiente dígito y llevarlo a la derecha ya que una forma de invertir un número es intercambiando
las cifras que equidisten del dígito intermedio del número, como si fuesen parejas. Pero no es lo mismo
llevar a la izquierda un 0 o un 1 y eso es lo que hará q2: nos diferenciará si hemos marcado un 0 o un 1.
Una vez hecha esta diferencia, si lo que hemos marcado era un 0 pasaremos al estado llevaIzda(′0′) y si
era un 1 pasaremos a llevaIzda(′1′). En ambos casos lo que haremos será buscar el dígito situado más a
la izquierza que no esté marcado y una vez encontrado haremos lo siguiente:

Primero diferenciaremos si el dígito es un 0 o un 1.

Luego escribiremos el dígito que traíamos de antes, en este caso un 0.

Después de haber escrito el dígito marcaremos esa celda con una x para saber que ya hemos
realizado una inversión.

Por último iremos al estado llevaoDcha o lleva1Dcha en función de si antes había un 0 o un 1.

La cinta hasta este momento se vería así:

Ahora lo último que nos queda por hacer es llevar el dígito de la izquierda a la derecha. Como
en este caso había un 1 hemos pasado al estado lleva1Dcha y este lo que hará es buscar la x que le
indique dónde está la celda donde tiene que escribir ese 1. Una vez encontrada la celda escribiremos
el 1, marcaremos el siguiente dígito a invertir y pasaremos de nuevo al estado q_decisin_ f inal_2 para
realizar la comporbación de si ya hemos acabado, y si no es el caso volveremos a repetir el proceso hasta
finalizar.

Después de realizar el primer bucle de inversión la cinta se vería así:

Y el resultado final sería el siguiente:

32 Capítulo . Anexo

.2.2. Diagrama

.2.3. Código

def q0(cinta,i):
i = i+2
return i, q_decision_final_1

def q_decision_final_1(cinta,i):
if cinta[i] == ’ ’ or cinta[i] == ’x’:

return i, q_final
else:

return i, q1

def q_final(cinta,i):
return i, q_final

def q1(cinta,i):
if cinta[i] == ’1’ or cinta[i] == ’0’:

i = i+2
q = q1

else:
i=i-1
cinta[i] = ’x’

La máquina de Turing - Un modelo para la computación 33

i=i-2
q= q_decision_final_2

return i, q

def q_decision_final_2(cinta,i):
if cinta[i] == ’ ’:

i=i+1
return i, q2

else:
return i, q_final

def q2(cinta,i):
if cinta[i]== ’0’:

i = i-1
return i, q3

else:
i = i-1
return i, q4

def llevaDerecha(C, d):
def llevaDcha(cinta,i):

if cinta[i] == ’ ’:
i = i+2
return i, llevaDcha

else:
i = i-1
cinta[i] = d
i = i-1
cinta[i] = ’x’
i = i-2
return i, C

return llevaDcha

def llevaIzda (d):
def buscaPrimerDígito(cinta,i): #q3

if cinta[i] == ’ ’:
i = i-2
return i, buscaPrimerDígito

else:
i = i+1
return i, escribePrimerDígito

def escribePrimerDígito(cinta, i): #q33
if cinta[i] == ’0’:

cinta[i] = d
i = i+1
cinta[i] = ’x’
i = i+2
return i, lleva0Dcha

else:
cinta[i] = d

34 Capítulo . Anexo

i = i + 1
cinta[i] = ’x’
i = i + 2
return i, lleva1Dcha

return buscaPrimerDígito

q3 = llevaIzda(’0’)
q4 = llevaIzda(’1’)
lleva0Dcha = llevaDerecha(q_decision_final_2, ’0’)
lleva1Dcha = llevaDerecha(q_decision_final_2,’1’)

listaEstados=[q0]
estadosFinales=[q_final]

.3. Estados máquina que suma dos números en bianrio

.3.1. Explicación

No daremos una explicación detallada de esta máquina ya que sería bastante extensa pero sí explica-
remos a grandes rasgos su funcionamiento. En el código describiremos las tablas esqueleto empleadas en
esta máquina ya que dan una visión más intuitiva de su funcionamiento y después pondremos los estados
de forma detallada.

En la cinta tendremos dos números en binario separados por un signo ’+’ y después del último dígito
habrá un ’=’.

En primer lugar marcará con una x el primer número.

Después marcará con una y el segundo número.

Una vez marcados ambos números copiará el primero a la derecha del igual. Notar que lo copiará
invertido.

A continuación sumará el número situado a la izquierda del igual con el que hemos trasladado al
final de la lista.

Por último inveritá el número. Y esto sabemos como hacerlo ya que antes hemos creado una máquina
que invierte una cadena de símbolos en binario.

La máquina de Turing - Un modelo para la computación 35

.3.2. Código

Expresaremos el código de dos formas alternativas. En esta primera la ejecución se realiza paso a
paso y es más intuitiva.

Tablas esqueleto:

inv = inversion()
sumaY = suma (inv, mSumando=’y’, mSuma=’=’)
copiaX = copia (sumaY, marcaNumero=’x’, posicion=’=’)
marcaY = marca (copiaX, qFinal, letra=’y’,signo=’=’)
marcaX = marca (marcaY, qFinal, letra=’x’,signo=’+’)

En esta segunda se ejecuta todo en una única sentencia. Esto pone de relieve el caracter recursivo de
los estados de las máquinas de Turing.

marcaX = marca (marca (copia (suma (inversion(),
mSumando=’y’, mSuma=’=’),

marcaNumero=’x’, posicion=’=’
),

qFinal, letra=’y’,signo=’=’
),

qFinal, letra=’x’,signo=’+’
)

Estados:

def buscaÚltimo(C, B, **kwargs):
def f(cinta, i): # busca la primera aparición del carácter a

nonlocal C, B, kwargs
if cinta[i] == ’ ’:

q = f1
else:

q = f
i = __R__(cinta, i)
return i, q

def f1(cinta, i):
nonlocal C, B, kwargs
if cinta[i] == ’ ’:

q = f2
else:

q = f
return i, q

36 Capítulo . Anexo

def f2(cinta, i):
nonlocal C, B, kwargs
if cinta[i] == kwargs[’valorBuscado’]:

q = C
elif cinta[i] == ’@’:

q = B
else:

i = i - 1
q = f2

return i, q

mensaje = ’’
if ’valorBuscado’ in kwargs.keys():

mensaje = mensaje + ’busca=’ + kwargs[’valorBuscado’] + ’\t’
if ’valorGuardado’ in kwargs.keys():

mensaje = mensaje + ’lleva=’ + kwargs[’valorGuardado’]
f.__name__ = ’buscaÚltimo.’ + f.__name__ + ’(’ + mensaje + ’)’
f1.__name__ = ’buscaÚltimo.’ + f1.__name__ + ’(’ + mensaje + ’)’
f2.__name__ = ’buscaÚltimo.’ + f2.__name__ + ’(’ + mensaje + ’)’
return f

"""marca con una letra (kwargs[’letra’]) el segmento situado
inmediatamente a la izquierda del primer signo
indicado (kwargs[’signo’])"""
def marca (C, B, **kwargs):

def mueveIzda(cinta, i):
return i-2, decide

def decide(cinta, i):
if cinta[i] in [’0’,’1’]:

q = marca
i = __R__(cinta, i)

else:
q = C

return i, q
def marca (cinta, i):

nonlocal C, kwargs
cinta[i] = kwargs[’letra’]
return i-3, decide

bP = buscaPrimero (mueveIzda, B, kwargs[’signo’])
return bP

def marcaQZ(C,B,signo):
def D2 (cinta, i):

i = __R__(cinta, i)
return i, escribeQ

def escribeQ(cinta, i):
cinta[i] = ’Q’
i = __R__(cinta, i)
return i, añade0

def añade0(cinta, i):
cinta[i] = ’0’

La máquina de Turing - Un modelo para la computación 37

i = __R__(cinta, i)
return i, marcaZ

def marcaZ(cinta, i):
cinta[i] = ’z’
return i, C

return buscaPrimero (D2, B, signo)

""" Añade el número marcado con ’mSumando’ al número marcado con ’mSuma’ """
def suma (C, **kwargs):

def sumaLlevada(cinta, i):
if cinta[i] in [’ ’, ’0’]:

cinta[i] = ’1’
q = bPzFinal

else:
cinta[i] = ’0’
i = __R__(cinta, i)
i = __R__(cinta, i)
q = sumaLlevada

return i, q

def borraYL(cinta, i):
cinta[i] = ’ ’
return i - 1, iniciaSuma

def iniciaSuma(cinta, i):
if cinta[i] == ’0’:

q = bPz0
else:

q = bPz1
return i, q

def preSuma1(cinta, i):
return i - 1, suma1

def suma1(cinta, i):
if cinta[i] in [’ ’, ’0’]:

cinta[i] = ’1’
i = __R__(cinta, i)
q = avanzaDígito

else:
cinta[i] = ’0’
i = __R__(cinta, i)
i = __R__(cinta, i)
q = sumaLlevada

return i, q

def avanzaDígito(cinta, i): # Borra y devuelve C
cinta[i]=’ ’
return i+1, pon0

38 Capítulo . Anexo

def pon0 (cinta, i):
if cinta[i]==’ ’:

cinta[i]=’0’
i = __R__(cinta, i)
return i, añadeZ

def añadeZ (cinta, i):
cinta[i] =kwargs[’mSuma’]
return i, bU

def borraZ (cinta, i):
cinta[i] = ’ ’
return i-1, limpia0

def limpia0 (cinta, i):
if cinta[i] == ’0’:

cinta[i]=’ ’
i = i-2
q= limpia0

else:
q = C

return i, q

preborraZ = buscaÚltimo(borraZ, C, valorBuscado=kwargs[’mSuma’])
bPzFinal = buscaÚltimo(avanzaDígito, qFinal, valorBuscado=kwargs[’mSuma’])
bPz1 = buscaPrimero(preSuma1, qFinal, kwargs[’mSuma’])
bPz0 = buscaPrimero(avanzaDígito, qFinal, kwargs[’mSuma’])

bU = buscaÚltimo (borraYL, preborraZ, valorBuscado=kwargs[’mSumando’])

return bU

def invierte ():
Skeleton tables:
def llevaIzda(B, **kwargs):

def Left(cinta, i):
print(’\n\n\n\nLlevo’, kwargs[’letra’])
cinta[i] = ’ ’
return i - 1, escribe

def escribe(cinta, i):
if cinta[i] == ’0’:

q = llevaDcha0
else:

q = llevaDcha1
cinta[i] = kwargs[’letra’]
return i, q

bP = buscaPrimero(Left, B, kwargs[’signo’])
return bP

def llevaDcha(B, **kwargs):

La máquina de Turing - Un modelo para la computación 39

def Left(cinta, i):
cinta[i] = ’ ’
return i - 1, escribe

def escribe(cinta, i):
cinta[i] = kwargs[’letra’]
return i - 2, reinicia

def reinicia(cinta, i):
if cinta[i] == ’0’:

q = llevaIzda0
else:

q = llevaIzda1
return i, q

bP = buscaÚltimo(Left, B, valorBuscado=kwargs[’signo’])
return bP

#Estados
def Left (cinta, i):

return i-1, iniciaInversion
def iniciaInversion (cinta, i):

if cinta[i]==’0’:
q = llevaIzda0

else:
q = llevaIzda1

return i, q

llevaDcha0 = llevaDcha (qFinal, letra=’0’,signo=’x’)
llevaDcha1 = llevaDcha (qFinal, letra=’1’,signo=’x’)
llevaIzda0 = llevaIzda (qFinal, letra=’0’,signo=’x’)
llevaIzda1 = llevaIzda (qFinal, letra=’1’,signo=’x’)

bU = buscaÚltimo(Left, qFinal,valorBuscado= ’x’)

marcaX = marca(bU, qFinal, letra=’x’,signo=’F’)

return marcaX

Estados:
def qFinal(cinta, i):

return i, qFinal

Preparan el segundo sumando
def añadeZ (cinta, i):

i = __R__(cinta,i)
i = __R__(cinta, i)
return i, escribeZ

def escribeZ (cinta, i):
cinta[i] = ’z’

40 Capítulo . Anexo

return i, estadosSumaY
bUQ = buscaÚltimo (añadeZ, qFinal, valorBuscado=’Q’)
Dejan F final
def inversion():

def RR (cinta, i):
i = __R__(cinta,i)
i = __R__(cinta,i)
return i, marcaF

def marcaF (cinta, i):
cinta[i]=’F’
return i, invierte()

return RR

.4. Estados Máquina Universal de Turing

Recordemos que la Máquina Universal está compuesta por 9 tablas esqueleto principales y varias au-
xiliares. En primer lugar pondremos las tablas auxiliares y después las que definen la Máquina Universal.

Tanto la notación como la descripción de los estados los hemos sacado del propio artículo de Turing
[5] y del apéndice del libro A science of Operations [8].

def config (C, a):
def con(cinta, i):

if cinta[i] !=’A’:
i = __R__ (cinta,i)
i = __R__(cinta, i)
q = con

else:
i = i - 1
cinta[i] = a
i = __R__ (cinta, i)
q = con1

return i, q

def con1 (cinta, i):
if cinta[i]==’A’:

q = con1
else:

q = con2
i = __R__(cinta, i)
cinta[i] = a
i = __R__(cinta, i)
return i, q

def con2 (cinta, i):
if cinta[i]==’C’:

i = __R__(cinta, i)
cinta[i] = a
i = __R__(cinta, i)
q = con2

else:
i = __R__(cinta, i)

La máquina de Turing - Un modelo para la computación 41

i = __R__(cinta, i)
q = C

return i, q

return con

def buscaPrimero(C, B, a):
def f(cinta, i): # busca la primera aparición del carácter a

if cinta[i] == ’@’:
i = i - 1
q = f1

else:
i = i - 1
q = f

return i, q

def f1(cinta, i):
if cinta[i] == a:

q = C
elif cinta[i] == ’ ’:

i = __R__(cinta, i)
q = f2

else:
i = __R__(cinta, i)
q = f1

return i, q

def f2(cinta, i):
if cinta[i] == a:

q = C
elif cinta[i] == ’ ’:

i = __R__(cinta, i)
q = B

else:
i = __R__(cinta, i)
q = f1

return i, q

f.__name__ = ’buscaPrimero.’ + f.__name__ + "(’" + a + "’)"
f1.__name__ = ’buscaPrimero.’ + f1.__name__ + "(’" + a + "’)"
f2.__name__ = ’buscaPrimero.’ + f2.__name__ + "(’" + a + "’)"

return f

erase
def borra (C, B, alpha):

def e1(cinta, i):
print (’Borro’)
cinta[i] = ’ ’
return i, C

42 Capítulo . Anexo

return buscaPrimero (e1, B, alpha)

#e
def borraTodo (B, alpha):

def e (cinta, i):
return i, aux

aux = borra (e, B, alpha)
return e

pe
def escribeAlFinal (C, beta):

def pe (cinta, i):
return i, buscaPrimero (pe1, C, ’@’)

def pe1 (cinta, i):
if cinta[i]!= ’ ’:

i = __R__ (cinta, i)
i = __R__(cinta, i)
q = pe1

else:
cinta[i] = beta
q = C

return i, q

return pe

move left
def izquierda (C):

def mI (cinta, i):
i = i-1
return i, C

return mI

f’
def buscaMueveIzda (C, B, a):

def BMI (cinta, i):
return i, buscaPrimero(izquierda(C), B, a)

return BMI

copy
def copia (C, B, a):

def c(cinta, i):
return i, buscaMueveIzda(c1, B, a)

def c1(cinta, i):
return i, escribeAlFinal(C, cinta[i])

return c

La máquina de Turing - Un modelo para la computación 43

def copiaYBorra (C,B, a):
def c (cinta, i):

return i, copia(borra(C, B, a), B, a)
return c

copia y borra todo
def cbt (B, a):

def ce (cinta, i):
return i, copiaYBorra(cbt(B, a), B, a)

return ce

def borraYCopia5 (B, alpha, beta, gamma, delta, epsilon):
def ce5 (cinta, i):

return i, cbt (cbt(cbt (cbt(cbt (B, epsilon), delta), gamma), beta),alpha)
return ce5

cp
def compara (C,U,G,alpha, beta):

def te_cp2 (C, U, gamma):
def cp2 (cinta, i):

if cinta[i] == gamma:
q = C

else:
q = U

return i, q
return cp2

def cp1 (cinta, i):
cp2 = te_cp2 (C, U, cinta[i])
return i, buscaMueveIzda (cp2, U, beta)

return buscaMueveIzda (cp1,buscaPrimero(U,G,beta),alpha)

cpe (5 argumentos)
def comparaYBorra (C, U, G, alpha, beta):

def cpe (cinta, i):
return i, compara (borra(borra (C,C, beta), C, alpha), U, G, alpha, beta)

return cpe

cpe (4 argumentos)
def comparaYBorraTodo (U, G, alpha, beta):

def cpe (cinta, i):
return i, comparaYBorra (cpe, U, G, alpha, beta)

return cpe

def buscaFin (C):
def q(cinta,i):

if cinta[i] != ’ ’:
qDevuelto = q

else:

44 Capítulo . Anexo

qDevuelto = q1
i = __R__(cinta, i)
return i, qDevuelto

def q1(cinta, i):
if cinta[i] != ’ ’:

i = __R__(cinta, i)
qDevuelto = q

else:
qDevuelto = C

return i, qDevuelto

return q

q
def buscaÚltimo(C, a):

def q1bU (cinta, i):
if cinta[i]==a:

q = C
else:

i = i-1
q = q1bU

return i, q

return buscaFin(q1bU)

e
def borraMarcas (C):

def e(cinta, i):
if cinta[i] ==’@’:

i = __R__ (cinta,i)
q = e1

else:
i = i - 1
q = e

return i, q

def e1 (cinta, i):
if cinta[i] != ’ ’:

i = __R__(cinta, i)
cinta[i]= ’ ’
i = __R__(cinta, i)
q = e1

else:
i = __R__(cinta, i)
q = C

return i, q
return buscaÚltimo (e, ’@’)

Tablas Máquina Universal

La máquina de Turing - Un modelo para la computación 45

anf = buscaÚltimo (pcon, ’:’)
con = config(pfom, ’y’)

e = borraTodo(qFinal, ’y’)

fom
def buscaSiguienteInstrucción(cinta, i):

if cinta[i] == ’;’:
i = __R__(cinta, i)
cinta[i] = ’z’
i = i - 1
q = config (comparaConfiguraciones, ’x’)
#q = config(qFinal, ’x’)

elif cinta[i] == ’z’:
i = i-2
q = buscaSiguienteInstrucción

else:
i = i - 1
q = buscaSiguienteInstrucción

return i, q

fmp
def comparaConfiguraciones (cinta, i):

return i, comparaYBorraTodo(borraTodo(borraTodo(anf, ’x’), ’y’),
marcaInstrucción, ’x’, ’y’)

sim
def marcaInstrucción (cinta, i):

return i, buscaMueveIzda(sim1, sim1, ’z’)
def sim1 (cinta, i):

return i, config(sim2,’ ’)
def sim2 (cinta, i):

if cinta[i] == ’A’:
q = sim3

else:
i = i-1
cinta[i] = ’u’
i = __R__(cinta, i)
i = __R__(cinta, i)
i = __R__(cinta, i)
q = sim2

return i, q
def sim3 (cinta, i):

if cinta[i] == ’A’:
i = i - 1
cinta[i] = ’y’
i = __R__(cinta, i)
i = __R__(cinta, i)
i = __R__(cinta, i)

46 Capítulo . Anexo

q = sim3
else:

i = i-1
cinta[i] = ’y’
q = borraTodo (marcaConfiguraciónCompleta, ’z’)

return i, q

ml
def marcaConfiguraciónCompleta (cinta, i):

return i, buscaÚltimo(ml1, ’:’)
def ml1 (cinta, i):

if cinta[i] != ’A’:
i = __R__(cinta, i)
i = __R__(cinta, i)
q = ml1

else:
i = i - 4
q = ml2

return i, q
def ml2 (cinta, i):

if cinta[i]==’C’:
i = __R__(cinta, i)
cinta[i] = ’x’
i = i - 3
q = ml2

elif cinta[i] == ’:’:
q = ml4

else:
i = __R__(cinta, i)
cinta[i] = ’x’
i = i - 3
q = ml3

return i, q
def ml3 (cinta, i):

if cinta[i] != ’:’:
i = __R__(cinta, i)
cinta[i] = ’v’
i = i - 3
q = ml3

else:
q = ml4

return i, q
def ml4 (cinta, i):

return i, config(izquierda(izquierda(ml5)),’ ’)
def ml5 (cinta, i):

if cinta[i] != ’ ’:
i = __R__(cinta, i)
cinta[i] = ’w’
i = __R__(cinta, i)
q = ml5

else:

La máquina de Turing - Un modelo para la computación 47

cinta[i] = ’:’
q = muestraResultado

return i , q

sh
def muestraResultado (cinta, i):

return i, buscaPrimero(sh1, inst, ’u’)
def sh1 (cinta,i):

i = i - 3
return i,sh2

def sh2 (cinta, i):
if cinta[i]==’D’:

i = __R__(cinta, i)
i = __R__(cinta, i)
i = __R__(cinta, i)
i = __R__(cinta, i)
q = sh3

else:
q=inst

return i, q
def sh3 (cinta, i):

if cinta[i]==’C’:
i = __R__(cinta, i)
i = __R__(cinta, i)
q = sh4

else:
q=inst

return i, q
def sh4 (cinta, i):

if cinta[i] == ’C’:
i = __R__(cinta, i)
i = __R__(cinta, i)
q = sh5

else:
q = escribeAlFinal(escribeAlFinal (inst, ’:’), ’0’)

return i, q
def sh5 (cinta, i):

if cinta[i] == ’C’:
q = inst

else:
q = escribeAlFinal(escribeAlFinal (inst, ’:’), ’1’)

return i, q

inst
def inst (cinta, i):

return i, buscaÚltimo(izquierda(inst1), ’u’)
def inst1 (cinta, i):

if cinta[i]==’L’:
i = __R__(cinta, i)
cinta[i]=’ ’
q = borraYCopia5(ov, ’v’,’y’,’x’,’u’,’w’)

48 Capítulo . Anexo

elif cinta[i] ==’N’:
i = __R__(cinta, i)
cinta[i]=’ ’
q = borraYCopia5(ov, ’v’,’x’,’u’,’y’,’w’)

else:
i = __R__(cinta, i)
cinta[i]=’ ’
q = borraYCopia5(buscaÚltimo(inst2,’A’), ’v’,’x’,’u’,’y’,’w’)

return i, q
def inst2 (cinta, i):

i = __R__(cinta, i)
i = __R__(cinta, i)
return i, inst3

def inst3 (cinta, i):
if cinta[i] == ’ ’:

cinta[i]=’D’
return i, ov

#ov
def ov (cinta, i):

return i, borraMarcas(anf)

def marcaConfig(C):
anf = buscaÚltimo(config(C, ’y’), ’:’)
return anf

def configInicial (C):
def b1 (cinta, i):

i = __R__(cinta, i)
i = __R__(cinta, i)
cinta[i] = ’:’
i = __R__(cinta, i)
i = __R__(cinta, i)
cinta[i] = ’D’
i = __R__(cinta, i)
i = __R__(cinta, i)
cinta[i] = ’A’
i = __R__(cinta, i)
i = __R__(cinta, i)
cinta[i] = ’D’
return i, C

return buscaPrimero(b1, b1, ’::’)

bSI = buscaSiguienteInstrucción
mC = marcaConfig(bSI)

