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Resumen

Esta tesis ha permitido encontrar compuestos de partida y procedimientos diferentes de
los ya conocidos para la preparacion de emisores fosforescentes de iridio(III) de la clase
[3b+3b+3b’], con disposiciones fac-N,N,N' y fac-C,C,C’. La utilizacién de ligandos
alquinilo como bloques de construccion ha permitido generar estructuras metalo-
aromaticas desconocidas, tales como: iridaimidazo[1,2-a]piridina e iridaoxazol. Ello ha
dado lugar al desarrollo de una familia de compuestos inéditos. Uno de sus miembros es
un emisor fosforescente saturado de color verde con aplicacion en dispositivos OLED
con especificaciones BT.2020. Adicionalmente, se ha generado una familia nueva de
emisores fosforescentes hidruro-iridio(Ill)-fosfina, con cinco clases diferentes de
ligandos pincer, empleado la habilidad de los derivados polihidruro de metales del grupo
del platino para promover reacciones de activacion de enlaces o, de moléculas organicas.
La versatilidad de los miembros de esta familia ha permitido descubrir que uno de ellos
es un fotocatalizador muy eficiente en reacciones, de acoplamiento carbono-carbono, de

a-amino arilacion C(sp*)-H, con derivados ciano aromaticos.
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t.a. Temperatura ambiente

Ti Estado excitado triplete de menor energia

‘Bu Tert-butilo

TD-DFT  Teoria del Funcional de la Densidad Dependiente del Tiempo / Time-
Dependent Density Functional Theory

THF Tetrahidrofurano

TOF Tiempo de vuelo / Time Of Flight

tt Ligando tetradentado con dos unidades bidentadas iguales

tt’ Ligando tetradentado con dos unidades bidentadas diferentes

UV-Vis Ultravioleta-Visible

A% Voltaje

vt Triplete virtual (RMN)

Rendimiento cuantico
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Los OLEDs (Organic Light-Emitting Diode) lideran los avances en las
tecnologias de iluminaciéon y visualizacion. Un modelo particular de este tipo de
dispositivos es el que utiliza emisores fosforescentes (PhOLEDs).! Debido a su superior
eficiencia energética, los PhAOLEDs se estdn imponiendo a los dispositivos que emplean
emisores fluorescentes.> El uso de complejos de metales de transicion 54 en estos
dispositivos ha sido crucial para su implementacion. El fuerte acoplamiento espin-6rbita
(SOC) de los elementos 5d del grupo del platino (Os, Ir y Pt) permite una transicion rapida
de los estados excitados singlete S a triplete T1 (ISC). Como consecuencia, los emisores
fosforescentes basados en complejos de estos metales pueden convertir todos los
excitones triplete (75%) y singlete (25%), generados eléctricamente en la capa emisora,
en fotones. De este modo, los dispositivos estan en disposicion de alcanzar eficiencias

cuanticas internas del 100%.>

La fabricacion de los PhOLEDs se basa mayoritariamente en la técnica de
deposicion de vapor. Como consecuencia, un requisito indispensable de los emisores
fosforescentes es poseer suficiente estabilidad térmica para permitir una sublimacion
accesible. Por esta razon, los emisores neutros son los mas demandados por las compaiiias

dedicadas a la comercializacion de estos dispositivos.*

Los emisores fosforescentes de iridio (III) se situan al frente de la fotoquimica
moderna.’ Aunque existen algunas excepciones,® la mayoria de los compuestos emisores
de iridio(IIT) son derivados mononucleares, que poseen ligandos iguales (complejos
homolépticos) o diferentes (complejos heterolépticos). Los emisores homolépticos mas
comunes son los que se estabilizan con tres ligandos bidentados idénticos, dadores de 3
electrones (3b). Un ejemplo representativo de estos compuestos es el derivado 1.1 (Figura
I.1), que contiene tres ligandos 2-fenilpiridina ortometalados.> Los complejos

heterolépticos tienen al menos dos ligandos diferentes.” Los més habituales son aquellos
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que contienen dos ligandos de tipo 2-arilpiridina ortometalados (3b) y un tercer ligando
N,C-, N,O- u O,0-dador (3b’). En el caso de que los ligandos de tipo 2-arilpridina sean
iguales, se habla de complejos bis(heterolépticos) ([3b+3b+3b’], 1.2 en la Figura 1.1),®
mientras que si estos ligandos son diferentes se denominan emisores tris(heterolépticos)

([3b+3b°'+3b" "], 1.3 en la Figura .1).°

B B
N~ N~
W | OO
|r KOS
NS
Ne U

I =

1.1 1.2

Figura I.1. Ejemplos de complejos homolépticos (I.1), bis(heterolépticos) (I.2) y
tris(heterolépticos) (1.3) fosforescentes de iridio(III).

EI HOMO de estos emisores se distribuye normalmente entre el metal y los grupos
ortometalados, mientras que el LUMO se centra en los heterociclos. Como consecuencia,
la diferencia de energia HOMO-LUMO depende del metal y de los ligandos que se
coordinan. Por tanto, en principio, parece posible disefiar emisores con propiedades
adaptadas a los requerimientos de una aplicacion especifica.'® Asi, los complejos
heterolépticos llaman especialmente la atencion, ya que permiten un mejor ajuste de las
caracteristicas del emisor.!! En este contexto, los mas adecuados son los emisores de tipo
[3b+3b’+3b’’]. Sin embargo, su preparacion y estabilizacion es un desafio enorme. Los
métodos de sintesis directa en un tinico paso conducen a mezclas complejas de productos,
que contienen un maximo del 33% de cada uno de ellos,'? mientras que el disefio racional
da lugar a procesos muy laboriosos formados por un nimero elevado de etapas.”!®
Ademas, lo emisores son generalmente poco estables; sufren procesos de redistribucion

estadistica de ligandos, que estdn favorecidos termodindmicamente, y experimentan

transformaciones estructurales que conducen a isomeros con propiedades fotofisicas



Introduccion 3

diferentes.!* Estos inconvenientes han llevado la atencion del campo a la busqueda de
familias de emisores bis(heterolépticos) del tipo [3b+3b+3b’], que presentan menos

problemas asociados.!”

I.1. Emisores bis(heterolépticos)

La preparacion de emisores fosforescentes estd enraizada a la sintesis orgénica.
Se han preparado una variedad de cromoforos interesantes y ligandos auxiliares, por
métodos puramente organicos, que posteriormente se han coordinado al centro metalico
5d apropiado mediante procedimientos convencionales. Las reacciones tipicamente
organometalicas normalmente implican la activacion de algun enlace ¢ del pre-ligando
organico y la coordinacion de alguno de sus heterodtomos.!'®!® Los emisores de iridio(I1I)
de la clase [3b+3b+3b’], formados por dos grupos de tipo 2-arilpiridina ortometalados
(3b) y un tercer ligando bidentado (3b’), generalmente se preparan a través de
procedimientos que se desarrollan en dos pasos (Esquema I.1). Parten de IrCl3 - 3H20,
que en el primer paso se transforma en un dimero de iridio (III) con puentes cloruro, trans-
[Ir(u-CI)(3b)2]2, mediante su reaccidon con la correspondiente molécula de tipo 2-
fenilpiridina, en 2-etoxietanol-agua, a reflujo. En el segundo paso, los puentes cloruro de

los dimeros se sustituyen por el ligando 3b’.!”

IrCl3-3H,0
2-etoxietanol

Esquema I.1. Sintesis general de emisores de tipo [3b+3b+3b’].
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Un método alternativo a la introduccion del ligando 3b’es su construccion, en la
esfera de coordinacion del metal, a través de reacciones multicomponente que implican
el acoplamiento entre varios ligandos o de algin ligando con moléculas externas
(Esquema 1.2).'32! El grupo de investigacién de Teets'® y, en menor medida, Kinzhalov,
Luzyanin y colaboradores' han utilizado arilisocianuros coordinados como bloques de
construcciéon. Sus reacciones con aminas generan una variedad de ligandos
arildiaminocarbeno, aciclicos, resultado de la adicion nucleofilica de la amina al atomo
de carbono C(sp) del isocianuro.'®!® En algunos casos, el sustituyente arilo del
diaminocarbeno monodentado resultante se ciclometala posteriormente para formar
emisores azul-verde heterolépticos tris-ciclometalados (¢ en el Esquema 1.2).'® Las
reacciones de precursores bis(arilisocianuro) con hidracina producen directamente
emisores relacionados donde el ligando 3b” es un carbeno "tipo Chugaev" (b en el

22 nuestro grupo

Esquema 1.2).2° Inspirados en estudios previos en la quimica del osmio,
de investigacion ha descrito una metodologia de sintesis que permite generar emisores
[3b+3b+3b’] con un ligando asimétrico f-diacetonato. El procedimiento implica la
adicion anti- del enlace O—H de un dimero de puentes dihidroxo, trans-[Ir(u-OH)(3b):2]z2,

al triple enlace C—C de alquinos activados y al doble enlace C—C de cetonas a.f-

insaturadas (c en el Esquema 1.2).2!
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Esquema L.2. Procedimientos descritos para la construccion de ligandos 3b’ en la esfera
de coordinacion del metal.

Una caracteristica estructural comun de los emisores obtenidos por estos
procedimientos es la disposicion trans de los grupos piridilo, con alguna rara excepcion
observada con ligandos fenilpiridina fluorados.?® La ausencia de diversidad estructural es
una consecuencia de la retencion de la estereoquimica de los fragmentos mononucleares
de los dimeros trans-[Ir(u-Cl)(3b)2]2, durante los procesos de introduccion o generacion

del ligando 3b’.

Los emisores homolépticos octaédricos de Ir(IIT) con tres ligandos ortometalados
de tipo 2-arilpiridina, dispuestos con los a&tomos dadores de los grupos piridilo en una de
las caras del octaedro y los de los grupos fenilo en la otra (fac), son mas emisivos que sus
isomeros con los atomos dadores de la misma naturaleza situados en posicion meridional

(mer). Para explicar esto se han argumentado razones relacionadas con la estructura
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electronica resultante de la geometria de estos compuestos. La mayor simetria de los
isémeros fac favorece una mejor superposicion entre los orbitales del metal y los ligandos,
lo que facilita las transiciones electronicas eficientes. Esto se traduce en estados excitados
con energias mas bajas, tiempos de vida mas largos, y menores velocidades de
desactivacion no radiativa.!”®?* La extrapolacion de las propiedades de estos emisores
homolépticos a los heterolépticos del tipo [3b+3b+3b’] ha inspirado numerosos intentos
de preparar dimeros cis-[Ir(pu-X)(3b)2]2, con una disposicion cis de los heterociclos de los
ligandos 3b. Solo recientemente, nuestro grupo de investigacion ha sido capaz de obtener

compuestos con esta estereoquimica (Esquema 1.3).%

X

P
N
.l\ II".,.I| ..‘\\\\CI
/ I /r
=N \ = tolueno = \CI‘H\N x
9 9
1.14

A X

P

N X AgOAc N
| O = CsOH | wClu

o y,, - 7 b il ey,

/'f\o/'lr CH,Cl, /'r\CI/ir
\ H N N

Esquema 1.3. Sintesis de dimeros cis-[Ir(u-X)(3b)2]2 (X = Cl, OH).

El uso de los dimeros I.15 e 1.16 presenta sin embargo limitaciones asociadas a la
baja solubilidad del derivado cloruro en los disolventes de reaccion habituales y la baja
estabilidad térmica, frente a la isomerizacion, del derivado hidroxilo. Como consecuencia,
no existe un método general para preparar emisores heterolépticos de iridio(III) de la clase
[3b+3b+3b’] con dos ligandos arilpiridina (3b) cuyos grupos piridilo estén en posicion

cis y un tercer ligando N,C-, N,O- u O,0-dador (3b’). La introduccion de cada tipo de
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ligando 3b’ requiere un método especifico, incluyendo un producto de partida diferente
(Esquema 1.4). La preparacion de compuestos con ligandos C,N-dadores (I.17) tiene lugar
mediante transmetalacion sobre el aducto 1.14. Por el contrario, el dimero con puentes
hidroxilo 1.16 es el mejor punto de partida cuando la molécula precursora del ligando 3b’
tiene un atomo de hidrogeno lo suficientemente 4cido para ser extraido por los grupos
hidroxilo basicos del doble puente. Asi, la reaccion de este dimero con acido picolinico
proporciona un emisor con un ligando 3b’ del tipo N,O-dador (I. 18 en el Esquema 1.4).
La sintesis de emisores con un ligando 3b’ de tipo O,0-dador se ha llevado a cabo
partiendo de ambos 1.14 e .16, pero en los dos casos se obtienen mezclas de los isémeros
cis- y trans-piridilo. Para el caso concreto del ligando acetilacetonato, se ha propuesto
que su coordinacion inicial a través del &tomo de carbono central C* genera un intermedio
«!-C*-(acac) pentacoordinado, que es capaz de suftir la reorganizacion de cis-piridilo a

trans-piridilo, antes de que se produzca el cambio de k!-C*-(acac) a k2O, O-(acac).

N \_ ¢ N
Il’ll"||r \\\\\ \Cl Li ! |r \\\\\ \
- y
SN [ Ncl—py_ A, THF ta <N" | N l
\ Nl/ 18 h y §
114 117

s Ir
<N | o | acetona ta. <N \5
\ H lN\ 14 h \
=

Esquema I.4. Métodos de sintesis de emisores [3b+3b+3b’] en funcion de la naturaleza
del ligando 3b’.
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I.2. Ligandos pincer

La utilizacién de dos ligandos tridentados diferentes es una alternativa atrayente
al uso de ligandos bidentados distintos. La coordinacion de ligandos pincer, uno de ellos
dador de 4 electrones (4t) y el otro dador de 5 electrones (5t”), al centro de iridio(III) da
lugar a complejos hexacoordinados que no presentan los problemas de isomeria y
redistribucion de ligandos que generan los complejos heterolépticos formados por grupos
bidentados basados en arilpiridinas ortometaladas.?> Aunque la rigidez impuesta por los
ligandos pincer podria en principio generar distorsiones en la estructura del emisor, que
provocarian una disminucion en la eficiencia de la emision, también es cierto que el
aumento de la fuerza de la unién metal-ligando desestabiliza los estados excitados
centrados en el metal °MC, que favorecen los procesos de relajacion no radiativos
térmicamente accesibles.!!'® Ademas, es de esperar que los complejos de tipo [4t+5t’]
posean mayor estabilidad térmica que los de la clase [3b+3b+3b’], lo que les deberia
permitir soportar mejor las altas temperaturas requeridas para la evaporacion térmica a

vacio del proceso de fabricacion del emisor.

Los armazones principales de los ligandos utilizados para la preparacion de
emisores fosforescentes de iridio(II1) de la clase [4t+5t’] son N-heterociclicos y carbenos
NHC. Estos armazones complementados con grupos arilo ortometalados conforman
configuraciones que permiten una sintonizacion precisa de las propiedades fotofisicas de

los complejos. 16325

Williams y colaboradores promovieron un avance significativo en la sintesis de
emisores de iridio(IlI) basados en ligandos pincer, en 2004.2° Este grupo sintetiz6 el
dimero de iridio(II) [IrCl(u-Cl){i>-N,C N-[py-CsHMez2-py]}]2 (I1.19), mediante la
reaccion de 1,3-di(2-piridil)-4,6-dimetilbenceno con IrCls - 3H20, en 2-etoxietanol

(Esquema 1.5). Este dimero [IrCl(pn-Cl)(5t)]2 ha sido el origen de una variedad de
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familias de emisores del tipo [4t+5t']*°%2527_ Sy reaccion con precursores de ligandos 4t,
tales como 2,6-difenilpiridina y 2,6-di-(2,4-difluorofenil)piridina, en presencia de sales

de plata ha permitido por ejemplo la obtencion de los emisores 1.20 ¢ 1.21.%8

2-etoxietanol
IrCl3-3H,0 + I

py py

R = H (1.20), F (1.21)

Esquema L.5. Preparacion de los emisores 1.20 e 1.21 a través del dimero de Williams.

Las propiedades electronicas particulares de los ligandos NHC hace a estos grupos
especialmente adecuados para preparar PhOLEDs de iridio(IIl), en la region de alta
energia.?’ Estos ligandos incrementan la energia del LUMO de los complejos debido a su
caracter o-dador, mientras que mejoran la estabilidad del HOMO como consecuencia de
su capacidad z-aceptora. El resultado es la obtencidon de dispositivos con emisiones mas
energéticas. En este contexto, nuestro grupo de investigacion ha desarrollado
recientemente una familia de emisores NHC del tipo [4t+5t’], remplazando el ligando 5t’
bis-piridilo de Williams y colaboradores, por un ligando bis-NHC. El procedimiento para
obtener el precursor dimérico [IrX(pn-X)(5t")]2 se inspir6d en estudios anteriores del propio
grupo.’® Asi, con el fin de promover la metalacion directa del cation 5-tert-butil-1,3-
bis(isopropilimidazolio)benceno, se empled el dimero de iridio(I) [Ir(x-OMe)(5*-COD)]2
en vez de IrCls - 3H20. En presencia de yoduro de potasio, la reaccion de este dimero con
el yoduro del imidazolio condujo al dimero de iridio(III) deseado 1.22 (Esquema 1.6).%!
Su reaccion con los pre-ligandos 2-(1H-imidazol-2-il)6-fenilpiridina y 2-(1H-
bencimidazol-2-il)6-fenilpiridina condujo finalmente a los emisores 1.23 e 1.24,

respectivamente.
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N
_ _ . /\ ~
Li = N
/N N\ S HN— N
QU M P =
H H N b —
{r(z-OMe)(COD)], — P iPr e » <N—ir
Kl ~ Na,CO4 N'ﬁ/"f\
2-etoxietanol N7 2-etoxietanol \ 1 /=N
120 °C E/N\< 120 °C ‘%/N _
- -2
1.22 1.23: imidazol

1.24: benzimidazol

Esquema 1.6. Preparacion de los complejos 1.23 e 1.24.

Chi y colaboradores han preparado los emisores 1.25 e 1.26, utilizando un
procedimiento de un paso que recuerda al de nuestro grupo, sin la necesidad de aislar un
dimero intermedio (Esquema 1.7).2*¢ Es de destacar que los ligandos de estos emisores

estan formados por tres unidades dadoras diferentes.

X F 1. NaOAc
| P CH3CN, reflujo

Decalina, 200 °C R = F (1.25), CF; (1.26)

Esquema 1.7. Preparacion de los emisores 1.25 e 1.26.

I.3. Ligandos tetra- y hexadentados

Una manera diferente de afrontar los problemas de los complejos [3b+3b+3b’]
asociados con las reacciones de isomerizacion y redistribucion de ligandos es enlazar los
de tipo 3b. Suunioén da lugar a ligandos tetradentados con dos unidades bidentadas iguales
(tt). A pesar de ser menos comunes que los ligandos monodentados, bidentados y
tridentados, estos ligandos estan demostrando una gran aplicabilidad en diversos campos,

en los tltimos afios.’! Los ligandos tetradentados aumentan la fuerza de la unién metal-
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ligando debido a la interaccion del centro metdlico con cuatro puntos dadores de
electrones, lo que se traduce en una mayor estabilidad y rigidez de los complejos en
comparacion con aquellos que coordinan ligandos tridentados. Por ello, no es
sorprendente que esta aproximacion se haya utilizado para mejorar la eficiencia de
emisores basados en iones d®>? en particular de aquellos con un acoplamiento espin-

orbita débil y estados excitados d-d centrados en el metal, accesibles térmicamente.*?

Los ligandos tetradentados tradicionales presentan como 4atomos dadores
nitrégeno, fosforo, arsénico, oxigeno y azufre, mientras que el carbono es mucho menos
frecuente.>* Sin embargo, se han desarrollado recientemente sistemas innovadores, que
incorporan uno o varios grupos C-dadores; principalmente arilo y NHC.*> La metalacion
de los grupos NHC requiere procedimientos especificos. En este contexto, la metalacion
directa de las sales de imidazolio o bencimidazolio se considera el método mas limpio.*®
La unién de dos grupos ciclometalados fenil-NHC, mediante una cadena flexible, a través
de los atomos de nitrégeno genera ligandos dianidnicos tetradentados C,C’,C’,C-dadores.
Estos ligandos han permitido la formacion de derivados heterolépticos fosforescentes de
iridio(I1I) de la clase [6tt+3b]. Nuestro grupo de investigacion ha observado que el dimero
[Tr(u-OMe)(5*-COD)]2 es capaz de metalar el cation de la sal diyoduro de 1,1’-difenil-
3,3’-butilendiimidazolio para generar 1.27, de acuerdo con la reaccion que resume el
Esquema 1.8. Esta especie se transforma facilmente en el complejo bis(acetonitrilo) 1.28,
que promueve la activacion heterolitica de un enlace orfo-CH del grupo fenilo de
diferentes moléculas de tipo 2-fenilpiridina para formar complejos [6tt+3b], que
presentan rendimientos cudnticos cercanos a la unidad, como es el caso del emisor 1.29.3°
Es de destacar que las unidades NHC del ligando tetradentado en estos compuestos estan

dispuestas en posicion cis.
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Esquema 1.8. Preparacion de emisores [6tt+3b].

Nuestro grupo y la compaiia Universal Display Coorpration (UDC) decidieron ir
mas alld diseflando y preparando nuevas moléculas organicas que pudieran ser
precursoras de ligandos tetradentados con dos unidades bidentadas diferentes (tt”). Una
de estas moléculas fue 2-fenil-6-(1-fenil-1-(piridin-2-il)etil)piridina. Sus reacciones con
el dimero [Ir(u-Cl)(5#*-COD)]> condujeron a emisores fosforescentes de las clases
[6tt’+1m+2m] o [6tt’+3b], dependiendo del alcohol usado como disolvente (Esquema
1.9).>7 En 2-etoxietanol, se obtuvo el emisor 1.30, debido a que los alcoholes primarios
carbonilan el centro metalico. Sin embargo, en alcoholes secundarios como 1-feniletanol,
que también tiene un punto de ebullicion suficientemente alto para promover la activacion
del enlace orto-CH de los grupos fenilo del pre-ligando, la reaccion condujo al intermedio
sintético 1.31. Este dimero permiti6 la preparacion del emisor deseado 1.32, mediante su
reaccion posterior con acetilacetonato de potasio. A diferencia de lo que se observa
generalmente en complejos con dos unidades arilpiridina ortometaladas, el nuevo ligando

impone una disposicion cis de los grupos piridilo.
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[Ir(z~CI)(COD)], + 1.30

1-feniletanol
=
140 °C

1.31 1.32

Esquema 1.9. Preparacion de los complejos 1.30 e 1.32, emisores en la region del verde.

El complejo 1.32 es un emisor de iridio tris(heteroléptico) formado por tres
unidades bidentadas diferentes: una 2-fenilpiridina ortometalada, una 2-bencilpiridina
ortometalada y un grupo acac. Con el fin de desplazar la emision hacia la region del rojo,
manteniendo la disposicion cis de los heterociclos, posteriormente se decidio sustituir la
unidad fenilpiridina por fenilisoquinolina; es bien conocido que un aumento de la
conjugacion del heterociclo produce dicho efecto.?!*® Asi, se prepard la molécula
organica  l-fenil-3-(1-fenil-1-(piridin-2-il)etil)isoquinolina, = que mediante un
procedimiento similar al de su analoga con piridina condujo al dimero L33 y

posteriormente al emisor disefiado 1.34 (Esquema 1.10).%

[Ir(—CIY(COE)], + 1-feniletanol K(acac)
140 °C THF
60 °C

Esquema I.10. Preparacion del complejo 1.34, emisor en la region del rojo.

El niimero de estereoisdOmeros sintéticamente accesibles aumenta dramaticamente

cuando el grupo acac de los emisores 1.32 o 1.34 se reemplaza por un ligando
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ortometalado de tipo 2-fenilpiridina. Para evitar este problema, se decidi6 subir un
escalon mas uniendo los tres fragmentos bidentados, lo que genera un ligando
hexadentado. En este contexto, nuevamente nuestro grupo de investigacion ha disefiado
recientemente moléculas organicas precursoras de ligandos hexadentados dadores de 9¢
(9h), que resultan formalmente de unir los ligandos bidentados C,N-dadores, de
complejos de las clases [3b+3b+3b’] y [3b+3b’+3b’’], con los heterociclos en disposicion
facial. La reaccion del dimero [Ir(u-Cl)(#*-COD)]2 con el pre-ligando 2-(1-fenil-1-
(piridin-2-il)etil)-6-(3-(1-fenil-1-(piridin-2-il)etil)fenil)piridina en 1-feniletanol conduce
al emisor 1.35, que presenta un ligando hexadentado-C,N,C’,N’,C,N formado por una
unidad fenilpiridina ortometalada y dos unidades bencilpiridinas ortometaladas.*® A
través de reacciones similares, el uso de los pre-ligandos 2-(2-fenil-2-(piridin-2-il)propil)-
6-(3-(2-fenil-2-(piridin-2-il)propil)fenil)piridina 'y  2-(2-metil-5-(2-fenil-2-(piridin-2-
il)propil)fenil)-6-(2-fenil-2-(piridin-2-il)propil)piridina ha permitido la preparacion de
los emisores 1.36 e 1.37, que muestran una disposicion facial de los heterociclos de tres
piridinas sustituidas metaladas diferentes: 2-fenilpiridina, 2-bencilpiridina y 2-etilpiridina

(Esquema 1.11).#!

- [Ir(z~CI)(COD)]2 -
1-feniletanol 1-feniletanol

200 °C 200 °C

1.35 R = H (1.36), Me (1.37)

Esquema I.11. Preparacion de emisores de iridio(Ill) tris(heterolépticos) de tipo
encapsulado con ligandos hexadentados-C,N,C’,N’,C,N (1.35) y -C,N,C’,N’,C"", N’ (1.36
e 1.37).
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I.4. Objetivos de la tesis

La investigacion recogida en esta memoria se ha realizado dentro de un proyecto,
financiado por la empresa Universal Display Cooporation (UDC), que ha incluido mi
contrato como investigadora de la Universidad de Zaragoza, durante los cuatro afios y
medio que ha durado el trabajo experimental responsable de las paginas que vienen a
continuacion. Al inicio del mismo nos planteamos tres objetivos: 1) encontrar compuestos
de partida y procedimientos, que permitiesen la preparacion de emisores fosforescentes
de iridio(III) de la clase [3b+3b+3b’], con disposiciones fac-N,N,N" y fac-C,C,C’; ii)
preparar emisores metaladiheteroaromaticos a través de los procedimientos y partiendo
de los precursores descubiertos y iii) explorar nuevos procedimientos y pre-ligandos
pincer para estabilizar emisores fosforescentes de iridio(III), que pudieran ser utilizados
como fotocatalizadores de reacciones de acoplamiento C-C. Los esfuerzos realizados para

alcanzar estos objetivos se resumen en los tres capitulos que se exponen seguidamente.

I.5. Estructura de la tesis

Los capitulos incluyen una breve introduccién, la discusion de los resultados
obtenidos y unas conclusiones parciales basadas en estos resultados. Tras el ultimo
capitulo, se exponen las conclusiones generales de la investigacion. A continuacion, la
parte experimental proporciona una descripcion detallada de las técnicas, materiales y
procedimientos utilizados para la sintesis y caracterizacion de los compuestos, asi como
la metodologia empleada en los calculos computacionales. Seguidamente, se presenta la
bibliografia con las referencias mas relevantes relacionadas con el trabajo. Finalmente, se

adjuntan los anexos que incluyen los espectros RMN de todos los compuestos
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sintetizados, los datos fotofisicos experimentales mas importantes, y los resultados de los

calculos teoricos a nivel DFT para los emisores.

El capitulo 1 consta de tres partes. La primera describe la sintesis de los nuevos
dimeros cis-[Ir(u’>-n>-C=CR)(3b)2]>, donde los ligandos alquinilo estabilizan la
disposicion cis de los heterociclos de los ligandos 3b, a diferencia del anion cloruro. En
la segunda, se muestra el uso de los ligandos acetiluro como bloques de construccion para
preparar una nueva familia de emisores fosforescentes de iridio(Ill), iridaimidazo[1,2-
aJpiridina, que poseen una estructura octaédrica basada en las disposiciones fac-N,N,N’
y fac-C,C,C’. La tercera parte muestra las propiedades fotofisicas de los emisores
descubiertos y describe la fabricacion y propiedades de un dispositivo PhOLED de
saturacion de color verde intenso, que pueden encontrar aplicacion en futuras pantallas

con especificacion BT.2020.

El capitulo 2 muestra la preparacion y propiedades fotofisicas de tres nuevas
familias de emisores fosforescentes de iridio(Il), que incluyen los primeros derivados
iridaoxazol, compuestos hidroxicarbeno y complejos N,C(sp?), C(sp?), O-tetradentados.
Los emisores descubiertos se han obtenido empleando los ligandos acetiluro de los

dimeros cis-[Ir(u?>-n>-C=CR)(3b):]2 y diferentes amidas como bloques de construccion.

El capitulo 3 se desarrolla en tres fases. La primera describe la preparacion de una
familia de emisores fosforescentes de iridio(IIl), trans-IrH(k>-L)(P'Pr3)2, mediante la
activacion de enlaces o (C-H, N-H, O-H) de moléculas organicas, que son pre-ligandos
pincer 4t. Las reacciones son promovidas por el complejo polihidruro IrHs(P'Pr3)2. En la
segunda se estudian las propiedades fotofisicas de los compuestos obtenidos, sugiriendo
las de dos de ellos una notable capacidad fotocatalitica. En la ultima, se evaltan
racionalmente sus actividades en reacciones de a-amino arilacion C(sp®)-H con derivados

clano aromaticos.
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Ligandos alquinilo como bloques de
construccion para la preparacion de emisores
fosforescentes de iridio(II): Precursores
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1.1. Introduccion

Una alternativa prometedora a los métodos comentados previamente para acabar
con la monotonia estructural impuesta por los dimeros de partida [Ir(u-Cl)(3b)2]2 es la
sustitucion de los puentes cloruro por ligandos de tipo alquinilo. Al igual que el cloruro,
estos ligandos se comportan como monodentados dadores de le” en compuestos
mononucleares, mientras que actuan como puentes dadores de 3e en especies
bimetélicas.*? Sin embargo, el enlace metal-alquinilo es significativamente mas versatil
que el enlace metal-cloruro. A diferencia del cloruro, el sistema 7 del triple enlace C-C
proporciona en principio una via para la deslocalizacion de la densidad electronica. Asi,
los aniones alquinilo (isoelectrénicos con el carbonilo) muestran una capacidad =-
aceptora moderada, lo que les permite participar en la retrodonacion metal-ligando.
Ademas, los sustituyentes del triple enlace C-C pueden controlar la contribucion de las
componentes c-ligando-metal, nt-metal-ligando y n-ligando-metal al enlace global metal-
alquinilo.* Dado que los enlaces metal-heterociclo y metal-arilo de los croméforos
quelato proporcionan una situacion de enlace asimétrica, tales modificaciones en la
interaccion metal-alquinilo podrian ser relevantes para estabilizar una disposicion
particular del croméforo. Ademads, un aumento en el tamafio del sustituyente deberia
desestabilizar la unidad bimetalica, dando fragmentos transitorios pentacoordinados que
podrian ofrecer rutas para cambiar la disposicion de los anillos y evitar la retencion de la
estereoquimica durante las reacciones de los dimeros. Una ventaja adicional de los
ligandos alquinilo es su potencial uso en sintesis organometalica como bloques de

construccion.**

Estas caracteristicas de los ligandos acetiluro fueron la razon de su eleccion para
abordar el primer objetivo de la Tesis y acabar de esta forma con la uniformidad

estructural impuesta por los dimeros trans-[Ir(u-CI)(3b)2]2. Asi, decidimos reemplazar



20 Capitulo 1

los ligandos puente cloruro de algunos de estos dimeros por acetiluros. Este capitulo
demuestra que, a diferencia del anién cloruro, los aniones acetiluro estabilizan los
dimeros cis-[Ir(n*-n>-C=CR)(3b)2]2 con los heterociclos de los ligandos 3b dispuestos en
posicion cis. Estos dimeros permiten preparar los emisores deseados de iridio(III)

[3b+3b+3b’], utilizando los puentes acetiluro como bloques de construccion (Esquema

1.1).
Trabajos previos Este capitulo
S D IR
R N _ R N . _
N N N N
bl s
I [ r« [ Ny
R | e
N N N [
R [ Z ] R \ \
= S * N
N 7
N
s
NS

Esquema 1.1. Contextualizacion del capitulo.

1.2. Preparacién de dimeros cis-[Ir(n?-n>-C=CR)(3b)2]2 con los heterociclos de los

ligandos 3b en posicion cis

El enlace C(sp)-H de un alquino terminal generalmente es mucho mas reactivo
que los enlaces C(sp’)-H e incluso que los enlaces C(sp?)-H. Asi, permite la formacion
de derivados hidruro-metal-alquinilo mediante su adiciéon oxidante a complejos de
metales de transicion insaturados,*> mientras que genera especies metal-alquinilo como

resultado de su activacion heterolitica promovida por compuestos hidroxilo saturados e
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insaturados, donde el grupo OH actlia como una base interna.*® La reactividad del enlace
C(sp)-H de los alquinos terminales y la capacidad del ligando hidroxilo para promover la
extraccion del &tomo de hidrégeno acetilénico, dando agua como tnico subproducto, nos
inspiraron a usar alquinos terminales y los dimeros con puentes hidroxilo trans-[Ir(p-
OH){x?-C,N-(CéHs—Isoqui)}2]2 (1) y trans-[Ir(u-OH){x>-C,N-(MeCsH3—py)}2]2 (2)
como moléculas precursoras para la preparacion de los respectivos dimeros con puentes
acetiluro. Ademas, la preparacion de estos dimeros con puentes hidroxilo es muy
sencilla®!' y su estabilidad es comparable a la de los respectivos dimeros con puentes
cloruro. La seleccion del ligando 1-fenilisoquinolina ortometalado del dimero 1 se realizo
con la finalidad de generar emisores en la region de baja energia. Por el contrario, el
cromoéforo 2-(p-tolil)piridina ortometalado del dimero 2 deberia producir emisores en

zonas de energias moderadamente altas.

El tratamiento de suspensiones del dimero 1, en tolueno, con 5.0 equiv de
fenilacetileno y el tratamiento por separado del dimero 2 con 5.0 equiv de fenilacetileno
y 5.0 equiv de tert-butilacetileno, a temperatura ambiente, durante 48 horas conduce a los
dimeros  trans-[Ir(p*>-n>-C=CPh) {x>-C,N-(CcHs—Isoqui)}2]2 (3) y trans-[Ir(u*n*-
C=CR){x*-C,N-(MeCsH3-py)}2]2 (R = Ph (4), ‘Bu (5)), como resultado de la activacion
heterolitica del enlace C(sp)-H de los respectivos alquinos terminales, promovida por los
grupos OH puente de los dimeros de partida (Esquema 1.2). El complejo 3 se obtuvo
como un soélido rojo, con un rendimiento del 69%, después de su purificacion mediante
cromatografia en columna de Al2O3, mientras que los dimeros andlogos de p-tolilpiridina
4y S se aislaron como s6lidos amarillos, analiticamente puros, con rendimientos del 96%
y 73%, respectivamente, sin necesidad de purificacion adicional. En este contexto, cabe
sefialar que Lalinde y colaboradores han preparado, con rendimientos de moderados a

buenos, los dimeros analogos con 2-fenilpiridina trans-[Ir(u?>-n?-C=CR){k>-C,N-(C¢Ha-
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py)}2]2 (R = p-MeCsHa, p-MeOC¢Ha, 1-Np, ‘Bu, SiMes3), mediante alquinilacion del
precursor con puentes cloruro trans-[Ir(u-Cl){k*-C,N-(C¢Ha-py)}2]2, con el
correspondiente LiC=CR, o mediante el desplazamiento del ligando acetonitrilo del

complejo solvato, catiénico, mononuclear [Ir{k*-C,N-(MeCsH3-py)}2(CH3CN)2]", con el

6d

acetiluro.

48 h

6 (76%)

@@
N™ ¢ N”
_Tolueno %

A
e,

Tolueno, ta. J " \r\(&/ i 72n,120°C N[ Neg” ‘N”
48 h ‘ N, ©N ‘ g
= R N

2 R Ph (4, 96%) R Ph (7, 53%)
='Bu (5, 76%) ='Bu (8, 87%)

Esquema 1.2. Preparacion de los complejos 3-8.

Los complejos 3 y 4 se caracterizaron mediante analisis de difraccion de rayos X.
Ambas estructuras demuestran el éxito de la activacion heterolitica del enlace C(sp)-H,
que tiene lugar con la retencion total de la estereoquimica de los dimeros precursores; los
centros metalicos conservan la disposicion cis de los grupos fenilo metalados y la
disposicion trans de los heterociclos, manteniendo los ligandos quelato perpendiculares
en dos grupos de planos paralelos. Calculos previos de DFT sobre el precursor con
puentes hidroxilo 1 han revelado que esta disposicién enantiomérica es ligeramente mas
estable que la forma meso.?' La Figura 1.1 muestra la estructura del dimero 3, mientras
que la Figura 1.2 presenta una vista del dimero 4. El poliedro alrededor de cada centro
metélico es el octaedro tipico de un ion d° hexacoordinado, con los ligandos puente

alquinilo unidos a través del atomo de carbono terminal a un centro metalico y por el
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triple enlace C-C al otro. Las distancias metal-alquinilo estan dentro del rango esperado
y son comparables con las reportadas para los compuestos de Lalinde,*! mientras que las
longitudes de enlace metal-fenilo sefialan la marcada diferencia existente entre la
influencia trans del &tomo de carbono terminal y del triple enlace del ligando alquinilo.
Asi, en ambas estructuras, las distancias Ir-C trans al triple enlace son aproximadamente
0.04 A mas cortas que las longitudes de enlace Ir-C trans al &tomo de carbono terminal.
Debido a la presencia de los ligandos alquinilo en estos complejos, sus espectros RMN
de *C{'H}, a temperatura ambiente, en diclorometano-d> contienen dos singletes, uno de
ellos entre 102 y 115 ppm y el otro entre 70 y 80 ppm, correspondientes a los atomos
C(sp): Ca 'y Cp, respectivamente. Ademas, cabe mencionar que los espectros RMN de 'H
y BC{'H} de los dimeros 4 y 5 también revelan que los centros de iridio intercambian los
atomos Cp de los ligandos alquinilo en disolucion. Asi, estos espectros muestran una inica
sefal para los dos pares no equivalentes de grupos metilo de los sustituyentes p-tolilo
ortometalados, alrededor de 1.9 ppm en el espectro de 'H y alrededor de 22 ppm en el

espectro *C{!H}.

Figura 1.1. Diagrama ORTEP del complejo 3. Por claridad, los 4tomos de hidréogeno han
sido omitidos. Distancias (A) y angulos (°) de enlace seleccionados: Ir(1)-N(1) =
2.041(4), Ir(1)-N(2) = 2.052(4), Ir(1)-C(17) = 2.007(4), Ir(1)-C(32) = 2.046(4), Ir(1)—
C(1) = 2.061(4), Ir(1)-C(9) = 2.445(4), Ir(1)-C(10) = 2.419(4), Ir(2)-N(3) = 2.046(4),
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Ir(2)-N(4) = 2.059(4), Ir(2)-C(47) = 2.001(4), Ir(2)-C(62) = 2.047(4), Ir(2)-C(9) =
2.097(4), Ir(2)~C(1) = 2.424(4), Tr(2)-C(2) = 2.464(4), C(1)-C(2) = 1.231(6), C(9)-C(10)
= 1.231(6), N(1)-Ir(1)-N(2) = 170.08(14), C(32)-Ir(1)-C(1) = 168.35(17), N(3)-Ir(2)-
N(4) = 169.36(14), C(62)-Ir(2)-C(9) = 170.67(17).

Figura 1.2. Diagrama ORTEP del complejo 4. Por claridad, los &tomos de hidrégeno han
sido omitidos. Distancias (A) y angulos (°) de enlace seleccionados: Ir(1)-N(1) =
2.048(3), Ir(1)-N(2) = 2.049(3), Ir(1)-C(17) = 2.015(4), Ir(1)-C(29) = 2.054(4), Ir(1)—
C(1) = 2.055(4), Ir(1)-C(9) = 2.435(4), Ir(1)-C(10) = 2.379(4), Ir(2)-N(3) = 2.057(3),
Ir(2)-N(4) = 2.051(3), Ir(2)-C(41) = 2.008(4), Ir(2)-C(53) = 2.054(4), Ir(2)-C(9) =
2.065(4), Ir(2)-C(1) =2.424(4), Ir(2)—C(2) = 2.363(4), C(1)-C(2) = 1.243(5), C(9)—C(10)
= 1.241(5), N(1)-Ir(1)-N(2) = 170.61(12), C(29)-Ir(1)-C(1) = 173.54(15), N(3)-Ir(2)—
N(4) =170.22(13), C(53)-Ir(2)-C(9) = 172.41(15).

Existen diferencias significativas de comportamiento entre los dimeros con
puentes acetiluro 3-5 y sus precursores con puentes hidroxilo 1 y 2, asi como con los
analogos cloruro. A diferencia de 1 y 2 y de los dimeros con puentes cloruro, los
fragmentos mononucleares de 3-5 isomerizan en tolueno a 120 °C, cambiando las
posiciones relativas de uno de los ligandos quelatos. La isomerizacion da lugar a los
dimeros deseados cis-[Ir(u?-n*-C=CPh){x*-C,N-(CsHa—Isoqui)}2]2 (6) y cis-[Ir(u*>n?>-
C=CR){x*-C,N-(MeCsH3-py)}2]2 (R = Ph (7), Bu (8)), donde los fragmentos

mononucleares coordinan heterociclos que estan dispuestos en posiciones cis (Esquema
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1.2). Después de 72 horas, la transformacioén es cuantitativa. Como resultado, los
complejos 6-8 se aislaron como sélidos analiticamente puros de color rojo anaranjado (6)
o amarillo (7 y 8) con rendimientos altos (53-87%). Las estructuras obtenidas de los
analisis de difraccion de rayos X de los compuestos 6 y 7 demuestran, sin lugar a dudas,
la isomerizacion y, por lo tanto, la existencia de los dimeros cis-[Ir(p-X)(3b)2]2 con una
disposicion cis de los heterociclos de los ligandos 3b, cuando el ligando puente X es un
grupo acetiluro. La Figura 1.3 muestra la estructura del derivado de isoquinolina 6,
mientras que la Figura 1.4 presenta la estructura del homdlogo de piridina 7. Al igual que
en los dimeros 3 y 4, los ligandos ortometalados se encuentran en dos grupos de planos
paralelos. Ademas de la disposicion trans de los grupos heterociclo y fenilo, en ambos
fragmentos mononucleares, la caracteristica mas notable de estas estructuras es la
disposicion de los puentes acetiluro. Ubicados en un plano perpendicular a la direccion
N-Ir-Crenilo, disponen el atomo de carbono terminal en posicion trans al heterociclo
restante, mientras que el triple enlace se encuentra en posicion frans al grupo fenilo. Las
distancias iridio-alquinilo, asi como las longitudes de enlace iridio-fenilo, son
comparables con las encontradas en los isomeros precursores. A diferencia de 3-5, las
estructuras de los dimeros 6-8 son rigidas en disolucion. De acuerdo con la Figura 1.4,
los espectros RMN de los dimeros 7 y 8, a temperatura ambiente, en diclorometano-dz
muestran dos singletes correspondientes a los grupos metilo de los fragmentos p-tolil:
alrededor de 1.9 y 2.3 ppm en el espectro de 'H, y entre 21 y 22 ppm en el espectro de
BC{'H}. Los espectros de *C{'H} también contienen las sefiales correspondientes a los
atomos C(sp): Cua y Cp de los puentes acetiluro, que se observan entre 103 y 92 ppm y

alrededor de 72 ppm, respectivamente.
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Figura 1.3. Diagrama ORTEP del complejo 6. Por claridad, los 4tomos de hidrogeno han
sido omitidos. Distancias (A) y d4ngulos (°) de enlace seleccionados: Ir-N(1) = 2.103(3),
Ir-N(2) =2.130(3), [Ir-C(9) = 2.015(3), [r-C(24) = 2.016(3), Ir—C(1) = 1.989(3), Ir—C(1)
=2.439(3), Ir-C(2) = 2.349(3), C(1)-C(2) = 1.229(5), C(1)-Ir-N(1) = 171.14(12), C(9)-
Ir-N(2) = 170.37(12).

Figura 1.4. Diagrama ORTEP del complejo 7. Por claridad, los &tomos de hidrégeno han
sido omitidos. Distancias (A) y angulos (°) de enlace seleccionados: Ir(1)-N(1) =
2.108(5), Ir(1)-N(2) = 2.158(5), Ir(1)-C(17) = 2.018(6), Ir(1)-C(29) = 2.012(7), Ir(1)—
C(1) = 1.989(7), Ir(1)-C(9) = 2.439(6), Ir(1)-C(10) = 2.370(7), Ir(2)-N(3) = 2.155(5),
Ir(2)-N(4) = 2.099(5), Ir(2)-C(41) = 2.012(7), Ir(2)—C(53) = 2.006(6), Ir(2)-C(9) =
1.980(6), Ir(2)-C(1) = 2.418(7), Ir(2)-C(2) = 2.366(7), C(1)-C(2) = 1.216(10), C(9)—
C(10) = 1.228(9), C(1)-Ir(1)-N(1) = 170.5(2), C(17)-Ir(1)-N(2) = 170.5(2), C(53)—
Ir(2)-N(3) = 171.5(2), C(9)-Ir(2)-N(4) =170.5(2).
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1.3. Los puentes alquinilo como bloques de construccion para la preparacion de

nuevos ligandos C,N-quelato

Razonamos que, en efecto, los dimeros 6-8 deberian ser la puerta de entrada a la
preparacion de nuevas familias de compuestos emisores con los heterociclos de los
cromoéforos dispuestos en cis, ya que la coordinacion de los aniones acetiluro a los centros
de iridio produce un aumento de la reactividad del triple enlace. Ademas, como
consecuencia de la transferencia de la nucleofilia del atomo Cq al Cs, el triple enlace C-C
es susceptible de adicionar electrofilos a Cp y nucledfilos a Ca. Asi, para validar esta idea,
decidimos estudiar las reacciones de los dimeros 6-8 con 2-aminopiridina, que tiene un

tautdmero imino: 2(1H)-piridinimina.*’

El tratamiento de disoluciones de los dimeros 6 y 7, en tolueno, con 1.5 equiv de
la amina, a 120 °C, durante 24 horas conduce a los derivados mononucleares Ir{x>-C,N-
[C(=CHPh)-NCsH4-NH]} {x*-C,N-(CsHs—Isoqui)}2 (9) e Ir{«>-C,N-[C(=CHPh)-NCsHa-
NH]} {k*-C,N-(MeCsH3-py)}2 (10). Estos compuestos son el resultado de la ruptura de
los puentes de los dimeros precursores, la adicion del enlace N-H del heterociclo del
tautomero imino al triple enlace C-C de los ligandos acetiluro y la coordinacion del grupo
imino exociclico a los centros de iridio. Los complejos 9 y 10 se aislaron como sélidos
de color rojo y naranja, con rendimientos del 68% y 76%, respectivamente (Esquema

1.3).
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Esquema 1.3. Preparacion de los complejos 9-12.

Ambos complejos se caracterizaron mediante andlisis de difraccion de rayos X.
La Figura 1.5 muestra la estructura del derivado de isoquinolina 9, mientras que la Figura
1.6 presenta la del complejo de piridina 10. Las estructuras demuestran la adicion del
tautomero 2(1H)-piridinimina a los triples enlaces de los dimeros precursores. Estas
reacciones dan lugar a un ligando estirilpiridinimina C,N-quelato de 3e". Asi, el poliedro
de coordinacién alrededor del centro metélico se puede describir como un octaedro
definido por tres ligandos C,N-quelatos con disposicion facial de los carbonos y
heteroatomos. La caracteristica mas remarcable del ligando generado es la estereoquimica
E del fragmento estirilo, con el atomo de hidrégeno apuntando hacia la nube electronica
del sustituyente ortometalado de uno de los heterociclos, y el fragmento metélico y el
grupo fenilo dispuestos en posicion trans respecto al doble enlace C-C. Los espectros
RMN de 'H y *C{'H}, a temperatura ambiente, en diclorometano-d> revelan que en
disolucion estos compuestos existen como una mezcla de los isémeros estirilo £y Z, en
relacion molar 3:2. Asi, los espectros de 'H muestran dos singletes anchos en torno a 5.8
y 5.4 ppm, debido al 4tomo de hidrogeno NH de la imina, mientras que las sefiales

correspondientes al &tomo de hidrégeno CHPh se observan a 6.43 (9) y 6.67 (10) ppm
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para un isémero y alrededor de 4.9 ppm para el otro. Asumimos que el isdmero E es el
mayoritario en ambos casos, ya que es el de menor impedimento estérico y la resonancia
correspondiente al &tomo de hidrogeno del grupo estirilo (CHPh) aparece en el espectro
de 'H a campo més alto, como consecuencia del efecto de la corriente del anillo aromatico
al que apunta. En los espectros de '*C{'H}, la resonancia debida al atomo de carbono
endociclico de la fraccion estirilo aparece alrededor de 150 ppm, para los dos isomeros

de ambos complejos.

Figura 1.5. Diagrama ORTEP del complejo 9. Por claridad, s6lo se muestran los atomos
de hidrégeno significativos. Distancias (A) y angulos (°) de enlace seleccionados: Ir—N(1)
= 2.113(3), Ir-N(3) = 2.117(3), Ir-N(4) = 2.110(3), Ir-C(1) = 2.008(4), Ir-C(14) =
2.014(4), Ir-C(29)=2.006(4), N(1)-C(13)=1.313(5), N(2)—-C(13) = 1.387(5), N(2)-C(1)
= 1.464(5).
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Figura 1.6. Diagrama ORTEP del complejo 10. Por claridad, s6lo se muestran los atomos
de hidrégeno significativos. Distancias (A) y angulos (°) de enlace seleccionados: Ir—N(1)
= 2.133(2), Ir=N(3) = 2.115(2), Ir-N(4) = 2.126(2), Ir—C(1) = 2.000(2), Ir-C(14) =
2.012(2), Ir=C(26) = 2.012(2), N(1)-C(29) = 1.308(3), N(2)-C(9) = 1.378(3), N(2)-C(1)
= 1.470(3), C(26)-Ir—N(1) = 171.54(9), C(1)-Ir—N(3) = 172.86(9), C(14)-Ir-N(4) =
173.58(9).

El ligando estirilpiridinimina de los compuestos 9 y 10 se reorganiza para formar
un biciclo iridaimidazo[1,2-a]piridina, en tolueno, a 120°C. La transformacion es lenta y
parcial. Asi, bajo dichas condiciones, los complejos 9 y 10 evolucionan hacia los
derivados iridaimidazopiridina Ir {x*-C,N-[C(CH2Ph)Npy]} {«*-C,N-(CsHa-Isoqui) }2 (11)
e Ir{x*-C,N-[C(CH2Ph)Npy]} {x*-C,N-(MeCsHs-py)}2 (12), para generar mezclas de
ambos isdmeros en relaciones molares de 7:3, al cabo de una semana (Esquema 1.3). Los
complejos 11 y 12 se separaron de las respectivas mezclas mediante cromatografia en

columna de gel de silice y se aislaron como sélidos de color naranja y amarillo,

respectivamente, con un rendimiento del 10% aproximadamente.

El derivado de isoquinolina 11 se caracterizé mediante analisis de difraccion de
rayos X. La estructura, que contiene dos moléculas quimicamente equivalentes, pero
cristalograficamente independientes, en la unidad asimétrica, demuestra la formacion del

biciclo iridaimidazo[ 1,2-a]piridina. Formalmente resulta de la adicion del grupo NH2 del
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tautomero amino de la 2-aminopiridina a los triples enlaces de los dimeros precursores.
Como se muestra en la molécula de la Figura 1.7, los 4&tomos dadores de los ligandos
definen un octaedro en torno al atomo de iridio, con disposiciones faciales de los atomos
de carbono y los heterodtomos, de manera similar a su isomero estirilpiridinimina. La
caracteristica mas remarcable de la estructura son las longitudes de enlace en el anillo
metalaimidazol de cinco miembros. Las distancias Ir-C(1) de 1.992(10) y 1.998(9) A,
C(1)-N(2) de 1.326(11) y 1.294(11) A, y N(2)-C(9) de 1.336(12) y 1.389(11) A, que son
intermedias entre enlaces sencillos y dobles, sugieren que hay deslocalizacion electronica
en la secuencia de enlace Ir(1)-C(1)-N(2).** Sin embargo, los valores de desplazamiento
quimico independiente del nucleo (NICS) calculados en el centro del anillo de cinco
miembros y fuera del plano, a 1 A por encima y por debajo del centro, (-1.7, -1.2 'y -1.4
ppm) son ligeramente negativos, lo que indica una aromaticidad pobre. Los espectros
RMN de 'H y BC{'H} de los complejos 11 y 12, a temperatura ambiente, en
diclorometano-d2 son consistentes con la estructura que muestra la Figura 1.7. El hecho
més destacable en los espectros de 'H es la ausencia de las sefiales correspondientes a los
atomos de hidrogeno NH y CHPh, y la presencia de un sistema de espin AB alrededor de
4.0 ppm, definido por Av = 44 Hz y Ja-s = 13 Hz, que es debido al sustituyente CH2Ph
del anillo generado de cinco miembros. De acuerdo con un carécter significativo de doble
enlace Ir-C, la sefial correspondiente al atomo de carbono metalado del anillo
metalaimidazol aparece a campo considerablemente bajo, alrededor de 228 ppm, en los

espectros de *C{!H}.
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Figura 1.7. Diagrama ORTEP del complejo 11. Por claridad, s6lo se muestran los atomos
de hidrogeno significativos. Distancias (A) y 4ngulos (°) de enlace seleccionados: Ir(1)—
N(1) = 2.126(7), 2.105(7); Ir(1)-N(@3) = 2.139(7), 2.151(7); Ir(1)-N(4) = 2.125(7),
2.150(7); Ir(1)~-C(1) = 1.992(10), 1.998(9); Ir(1)-C(14) =2.011(9), 2.038(9); Ir(1)-C(29)
= 2.020(8), 2.013(8); N(1)-C(9) = 1.398(13), 1.371(11); N(2)-C(9) = 1.336(12),
1.389(11); N(2)-C(1) = 1.326(11), 1.294(11); C(29)-Ir(1)-N(1) = 171.6(3), 169.5(3);
C(1)-Ir(1)-N(3) = 172.8(3), 170.2(3); C(14)-Ir(1)-N(4) = 168.9(3), 170.3(3).

El grupo tert-butilo desestabiliza el isomero alquenilpiridinimina, al tiempo que
disminuye la energia de activacion para la formacion del derivado iridaimidazopiridina.
Asi, a diferencia de 6 y 7, el tratamiento de suspensiones del dimero 8, en tolueno, con
1.5 equiv de 2-aminopiridina, a 120 °C, durante 24 horas conduce directamente a Ir {ic*-
C,N-[C(CH2'Bu)Npy]} {x*-C,N-(MeCsH3-py)}2 (13), sin detectarse durante el proceso de
formacion ningun isémero alquenilpiridinimina (Esquema 1.4). EI complejo 13 se aislo
como un solido amarillo con un rendimiento del 55%. Al igual que para los compuestos
11y 12, su espectro RMN de 'H, en diclorometano-d-, a temperatura ambiente muestra a
2.66 ppm un sistema de espin AB, definido por Av = 36 Hz y Ja.s = 14.8 Hz, mientras
que en el espectro de 3C{'H} se puede ver el singlete esperado a 234.5 ppm. Estas dos

seflales caracteristicas demuestran, sin sombra de duda, la formacién del biciclo

iridaimidazo[ 1,2-a]piridina.
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Esquema 1.4. Preparacion del complejo 13.

1.4. Propiedades fotofisicas y electroquimicas de los derivados iridaimidazopiridina

La Tabla 1.1 recoge una seleccion de las absorciones mas representativas de los
espectros UV-Vis de disoluciones 10° M de los complejos 11-13, en 2-
metiltetrahidrofurano (2-MeTHF), a temperatura ambiente (Figuras AI.26-Al.28). Para
asignar las bandas a las transiciones que las generan, llevamos a cabo calculos DFT
dependientes del tiempo (B3LYP-D3//SDD(f)/6-31G**), considerando el
tetrahidrofurano como disolvente. El anexo I contiene una representacion de los orbitales
de los compuestos 11-13 (Figuras AI.29-Al.31). Los espectros se pueden analizar
dividiéndolos en tres regiones diferentes: < 350, 350-450 y > 450 nm. Las absorciones
observadas a energias superiores a 350 nm son el resultado de transiciones 'n—n" intra- e
interligando. Las bandas entre 350-450 nm corresponden a transiciones permitidas por
espin, que implican transferencia de carga del metal al ligando combinadas con
transferencia de carga intraligando y ligando-ligando. Las colas de absorcion débiles
posteriores a 450 nm son debidas a transiciones formalmente prohibidas por el espin,
principalmente HOMO-LUMO, producidas por el fuerte acoplamiento espin-orbita
inducido por el centro de iridio. En estos complejos, el HOMO se encuentra distribuido
entre el centro metélico (41-47%) y los ligandos 3b (49-51%) y 3b” (6-8%), mientras que

el LUMO se centra principalmente en los ligandos 3b (91-96%).
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Tabla 1.1. Absorciones UV-Vis seleccionadas para los complejos 11-13 en 2-MeTHF y
energias de excitacion verticales TD-DFT calculadas en THF.

Aexp £ Ene.r gi? d ¢ Fue.r za del . ., Caracter de la
i) (M em) exc(:il:)lon 0sc11;dor, Transicion transicién
Complejo 11
280 44100 268 0.0538  HOMO-6 — LUMO+2 (74%) (3b” — 3b’)
456 4500 471 (S1) 0.0373  HOMO — LUMO (95%) (Ir + 3b — 3b)
554 900 554 (Ty) 0 HOMO — LUMO (59%) (Ir +3b — 3b)
Complejo 12
275 186950 262 0.0394  HOMO-3 — LUMO+4 (71%) (3b — 3b)
355 63950 343 0.0550 HOMO-2 — LUMO (84%) (Ir+3b” — 3b)
399 3425 395 (Sh) 0.0245 HOMO — LUMO (85%) (Ir+3b — 3b)
HOMO — LUMO (37%)
466 3300 452 (Th) 0 HOMO — LUMO-1 (26%) (Ir +3b — 3b)
Complejo 13
277 177680 288 0.1694 HOMO-5 -LUMO++1 (62%) (3b — 3b)
358 58720 348 0.0896  HOMO-2 — LUMO (86%) (Ir+3b” — 3b)
401 33040 397 (S1) 0.0181  HOMO — LUMO (95%) (Ir +3b — 3b)
HOMO — LUMO (36%)
465 3960 450 (Ty) 0 HOMO-1 — LUMO (22%) (Ir + 3b — 3b)

HOMO-1 — LUMO++1 (12%)

Las propiedades redox de los complejos 11-13 se estudiaron mediante voltametria
ciclica, con el fin de obtener informacion adicional sobre sus orbitales frontera. Los
experimentos se realizaron en diclorometano, bajo atmoésfera de argon, utilizando
BusNPFes como electrolito soporte (0.1 M). La Tabla 1.2 recopila los potenciales medidos,
referenciados frente al par Fc'/Fc, mientras que la Figura AI.33 muestra los respectivos
voltamogramas. La Tabla 1.2 también incluye los niveles de energia HOMO obtenidos a
partir de los potenciales de oxidacion, y los niveles de energia HOMO y LUMO
calculados mediante DFT. El complejo 11 tiene dos oxidaciones irreversibles a 0.51 y
1.02 V, mientras que se observan dos oxidaciones cuasi-reversibles en los voltamogramas
de los derivados de piridina 12 y 13, entre 0.30 y 0.95 V. Como era de esperar, la
diferencia de energia HOMO-LUMO es significativamente mas pequeia para el derivado

de isoquinolina 11 que para las especies de p-tolilpiridina 12 y 13.
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Tabla 1.2. Potenciales de oxidacion y energias DFT de los orbitales moleculares para los
complejos 11-13.

obs (eV) calced (eV)
Complejo 172 V)
HOMO? HOMO LUMO HLG"
11 0.51¢, 1.02¢ -5.31 -5.17 -1.85 3.32
12 0.38, 0.87 -5.18 -5.13 -1.24 3.89
13 0.35,0.93 -5.15 -5.15 -1.27 3.88

*HOMO = -[E™ vs Fc'/Fc + 4.8] eV. "HGL = LUMO — HOMO. °E**

Los complejos 11-13 son los primeros miembros de una nueva familia, de
complejos iridaimidazopiridina de iridio(IIl), que son emisores fosforescentes. Estos
compuestos emiten bajo fotoexcitacion en peliculas de poli(metacrilato de metilo)
(PMMA) dopado al 5% en peso, a temperatura ambiente, y en 2-MeTHF, a temperatura
ambiente y 77 K. La Tabla 1.3 recopila las principales caracteristicas fotofisicas. Los
valores estimados para la diferencia de energia, en THF, entre los estados optimizados 71
y So son practicamente iguales a las emisiones obtenidas experimentalmente, como cabe

esperar para emisiones procedentes de los estados excitados 71.

Tabla 1.3. Datos fotofisicos para los complejos 11-13.

calc Aem

(m) Medio (T/K) Aem (nm) 7 (us) () kP (sY k(s

Complejo 11
2.0 (0.64, 16.8%;
2.26, 83.2%)

635 3.8 (1.13, 7.1%;
2-MeTHF (298) 594, 625 4,00, 92.2%)

2-MeTHF (77) 572,619 74

PMMA (298) 632 0.12 67x10* 49x10° 0.1

0.14 39x10* 24x10° 02

Complejo 12

1.5 (0.56, 26.9%;

3 5
1.82, 73.1%) 0.75 58x10° 1.9x10° 3.1

PMMA (298) 489, 514

207 2-MeTHF (298) 490, 514 2.3 076 33x10° 1.0x10° 33
2-MeTHF (77) 473, 507 4.2
Complejo 13
PMMA (298) 497, 513 1.9 ~1 53x10°
480 2-MeTHF (298) 493, 517 22 ~1  45x%x10°
2-MeTHF (77) 473, 509 3.5

?En 1 de segundo orden se utiliza la vida media promedio ponderada en funcion de la amplitud relativa,
que se dan entre paréntesis. "Calculado de acuerdo a k, = /7y kyy = (1 — D)/T
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El complejo de isoquinolina 11 es un emisor naranja (572-632 nm), que presenta
tiempos de vida en el rango 2.0-7.4us y rendimientos cuanticos moderados de alrededor
de 0.13. Por otra parte, los andlogos de p-tolilpiridina 12 y 13 son emisores verdes (473-
517 nm), como era de esperar debido a que presentan una diferencia de energia HOMO-
LUMO mas grande, muy eficientes. Estos compuestos exhiben vidas medias mas cortas,
en el rango 1.5-4.2 ps, y rendimientos cudnticos superiores a 0.75. Cabe destacar el
rendimiento cuantico del emisor 13, cercano a la unidad tanto en film de PMMA al 5%
en peso como en disoluciéon de 2-MeTHF, a temperatura ambiente. Otra caracteristica
remarcable de los complejos 12 y 13, en comparacion con 11, es la mayor pureza de color
de sus emisiones, como lo revelan sus bandas mas estrechas (Figura 1.8). Este hecho
indica una menor diferencia entre las estructuras del estado excitado y el estado
fundamental en el caso de los derivados de p-tolilpiridina. Los espectros de los tres
compuestos muestran bandas sin estructura a temperatura ambiente, que se convierten en
estructuras vibronicas finas en 2-MeTHF a 77 K. Este hecho, comin en emisores de

3

iridio(III), es debido a una significativa contribucion de las transiciones “n—n , centradas

en el ligando, al estado excitado.!4231231:3049
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Figura 1.8. Espectro de emision de los complejos 11, 12 y 13 en: (a) film de PMMA
dopados al 5 % en peso, a 298 K. (b) 2-MeTHF, a 298 K. (c) 2-MeTHF, a 77 K.

1.5. Propiedades electroluminiscentes de dispositivos OLED basados en el complejo

13
Hemos probado el complejo 13, como un ejemplo de emisor fosforescente verde
saturado, en la fabricacion de dispositivos OLED de emision inferior, con el fin de

respaldar la aplicacion de la metodologia sintética desarrollada. La Figura 1.9 muestra la
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estructura esquematica de los dispositivos e indica ademés los niveles de energia, el

grosor de las capas y los materiales utilizados.

HIL HTL EML BL ETL

1.5 - 100A 400A 300A 5S0A 400A
2.5 1
— 35
>
A
w 4.5
[e]
551815
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<< %
6.5 4
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|
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N
HATCN
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Figura 1.9. Estructura del dispositivo OLED, niveles de energia (eV) y estructuras
moleculares de los materiales usados.

Se fabricaron tres dispositivos, dopados con el 6%, el 9% y el 12% de complejo
13, mediante evaporacion térmica a alto vacio (<107 Torr). Inmediatamente después de
su fabricacion, se encapsularon dentro de una caja seca (< 1 ppm de H20 y O2). Antes del
cierre de la capsula, se incorpord un absorbente de humedad. La capsula se cerrd con una
tapa de vidrio y posteriormente se selld con una resina epoxi. El &nodo de los dispositivos
estuvo formado por una capa de oxido de indio y estafio (ITO) de 750 A de espesor,
mientras que el catodo estaba compuesto por una capa de fluoruro de litio (LiF) de 10 A
de espesor, seguida de 1000 A de aluminio (Al). La pila organica consto, secuencialmente

desde el 4nodo hasta el catodo, de las siguientes capas: 100 A de dipiracino[2,3-£:2°,3’-
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h]-quinoxalino-2,3,6,7,10,11-hexacarbonitrilo (HATCN) como inyector de huecos
(HIL), 400 A de N N’-bis(naftalen-1-il)-N,N -bis(fenil)bencidina (NPD) como
transportador de huecos (HTL), 300 A de 4-(3-(trifenilen-2-il)fenil)dibenzo[b,d]tiofeno
(H1), dopado con el complejo 13 en diferentes concentraciones dependiendo del
dispositivo, como capa emisora (EML) verde, 50 A del bloqueador de huecos 2-(3-(6-
([1,1°-bifenil]-4-il)dibenzo[ b, d]tiofen-4-il)fenil)-4,6-difenil-1,3,5-triacina (BL), y 400 A

de tris(8-hidroxiquinolinato) de aluminio (Alqs) como transportador de electrones (ETL).

El funcionamiento de los dispositivos se resume en la Tabla 1.4. Los espectros de
electroluminiscencia (EL) se muestran en la Figura 1.10, mientras que la Figura 1.11
representa las curvas de eficiencia cudntica externa (EQE) frente a la luminancia y las

gréaficas de densidad de corriente frente al voltaje.

Tabla 1.4. Comportamiento de los dispositivos basados en el complejo 13.

. 1931 CIE a 1000 cd/m?
Emisor .
(%] X A max FWHM Voltaje LE EQE PE
[nm] [nm] [V] [ed/A] [%] [Im/W]
6 0.234 0.569 499 68 7.7 169 5.6 6.9
9 0.237 0.582 500 68 7.4 263 8.5 11.2

12 0.239 0.585 500 69 7.3 30,7 9.9 132
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Figura 1.10. Espectros de electroluminiscencia (EL) de los dispositivos medidos a 10
mA/cm?,
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Figura 1.11. Gréfico de correlacion EQE frente a luminancia. En pequeio, grafico de
densidad de corriente frente al voltaje del dispositivo.

Los espectros de electroluminiscencia de los dispositivos fabricados revelaron que
el complejo 13 proporcionaba una emision verde muy saturada con el maximo a 500 nm,
una anchura total a media altura del méximo (FWHM) de 68 nm y un offset de emision
aproximado de 470 nm (Figura 1.10). Esto corresponde a una energia de emision del
triplete de mas de 2.6 eV. Por otro lado, se observaron eficiencias cudnticas externas
maximas ligeramente superiores al 12%, lo cual es bajo para dispositivos fosforescentes
de esta clase que deberian tener alta eficiencia. La razon parece estar relacionada con la
baja energia del triplete del material NPD de la capa transportadora de huecos, ya que se
requieren capas de materiales con tripletes de energia superiores para confinar de forma
eficiente los excitones de alta energia del emisor. En este contexto, cabe destacar la
presencia clara de un hombro en la emision, alrededor de 430-440 nm, en el espectro de
electroluminiscencia del dispositivo dopado con el 6% de emisor (ver expansion en la
Figura 1.10). Se origina en la capa transportadora de huecos y apoya firmemente la fuga
de excitones de la capa emisiva a la capa transportadora de huecos, y la extincion de

excitones y huecos debido a la baja energia del triplete de NPD.
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Una forma de mejorar el funcionamiento del dispositivo es aumentar la
concentracion del emisor. El aumento deberia desplazar la zona de recombinacion lejos
de la interfaz entre la capa transportadora de huecos y la capa emisiva. El desplazamiento
deberia minimizar la extincion, mejorando la eficiencia del dispositivo. Esto es
precisamente lo que se observa. El aumento de la concentracion del emisor del 6% al 9%,
y al 12% mejora significativamente la eficiencia cuantica externa del dispositivo,
especialmente a niveles de luminancia mas altos (Tabla 1.4 y Figura 1.11), y reduce la
cantidad de la emision no deseada en el espectro de electroluminiscencia (ver expansion
en la Figura 1.10), que se genera en la capa de NPD. Sin embargo, un aumento de la
concentracion del emisor por encima del 12% provoca la extincion de la emision por

saturacion, lo que conlleva una disminucion de la eficiencia del dispositivo.

1.6. Conclusiones

Los aniones acetiluro han recibido una atencidon considerable como ligandos
auxiliares, en relacion con el disefio de emisores fosforescentes de metales de
transicion.'®%? Su caricter de ligando de campo fuerte crea una fuerte interaccion metal-
ligando a través de un solapamiento pn—dn, que contribuye a elevar la energia de los
estados d—d centrados en el metal. El estudio llevado a cabo en este capitulo revela que
son mucho mas. Ademés de mejorar las propiedades fotofisicas de los emisores, han
demostrado una utilidad sintética extraordinaria. Los aniones acetiluro estabilizan
estructuras que son elusivas con otros ligandos dadores de 3e. Asi, el uso de dicha
capacidad nos permite disefiar precursores sintéticos alternativos a los empleados
actualmente para la preparacion de emisores fosforescentes. Como resultado, se pueden
sintetizar facilmente emisores con estereoquimicas inusuales y estudiar sus propiedades.

Ademas, la coordinacion del grupo acetiluro a un centro metdlico modifica y aumenta la
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reactividad de los atomos de carbono del triple enlace, convirtiéndolo en un bloque de
construccion interesante, capaz de generar nuevos tipos de ligandos en la esfera de

coordinacion del metal, que dan lugar a nuevas familias de emisores.

Los dimeros 6-8, con una disposicion cis de los heterociclos, y su transformacion
primero en derivados de estirilpiridinimina (9 y 10) y después en los emisores de
iridaimidazo[ 1,2-a]piridina (11-13), con una estructura octaédrica y una disposicion fac
de los atomos de carbono y nitrégeno, son pruebas evidentes de lo argumentado
anteriormente. Ademads, desde el punto de vista de las propiedades fotofisicas, deben
sefalarse los rendimientos cudnticos cercanos al 100% alcanzados por el emisor verde

13, tanto en film de PMMA como en 2-MeTHF a temperatura ambiente.

La ruta de sintesis disefiada va mas alld de una mejora conceptual; tiene
aplicabilidad préctica, como se demuestra con la fabricacion de dispositivos OLED
basados en el complejo 13. En este contexto, cabe mencionar que dicho emisor tiene una
emision verde muy saturada, en una longitud de onda maxima de 500 nm, con una
eficiencia cudntica externa superior al 12% y una eficacia luminosa de 30.7 cd/A.
Emisores fosforescentes saturados de color verde profundo como éste pueden encontrar

aplicacion en futuros dispositivos OLED con especificaciones BT.2020.

Hemos dejado abierta la puerta con el desarrollo de una nueva metodologia
sintética. Con ello se espera la preparacion de nuevas familias de emisores en un futuro

ce€rcano.
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Acetiluros para la preparacion de emisores
fosforescentes de iridio(IlI): Iridaoxazoles y
su transformacion en hidroxicarbenos Yy
ligandos tetradentados-N,C(sp?),C(sp?),0
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2.1. Introduccion

El nimero de moléculas organicas heteroaromaticas que en principio pueden
utilizarse como parte de los cromoforos o ligandos auxiliares de los emisores
fosforescentes de iridio(III) es extremadamente grande.’' La sustitucion formal de una
unidad CH en una molécula de este tipo por un fragmento metalico formado por un metal
de transicion y sus ligandos asociados genera derivados metalaheteroaromaticos. Estos
compuestos tienen un interés conceptual enorme, ya que el fragmento metélico afiade
propiedades metalicas y reactividad organometélica al heterociclo aromatico.>? Aunque
el enlace iridio-piridina impide la plena aromaticidad del biciclo, la unidad
iridaimidazo[ 1,2-a]piridina de los emisores 11-13 son ejemplos de este tipo de
situaciones. En este contexto debe mencionarse que estudios previos al descrito en el
capitulo anterior habian revelado la existencia de algunos derivados metalacarbociclicos

aromaticos fosforescentes de iridio(I1I).>?

Los compuestos metalaheteroaromaticos son especies mono- y policiclicas que
poseen un heteroatomo de un grupo principal. Los monociclos de esta clase con dos
heteroatomos de los grupos principales se descubrieron en 2021. Son derivados de
osmaoxazol, resultado de la desprotonacion de sales de osmaoxazolio. Dichas sales se
prepararon a través de intermedios amidato; especies transitorias que se generaron
mediante la adicion del grupo hidroxido del cation [OsH(OH)(=CPh)(IPr)(PiPr3)]" (IPr =
1,3-bis(2,6-diisopropilfenil)imidazolilo) a un nitrilo externo o directamente por
desplazamiento del grupo hidréxido con un anidén amidato. Una vez generado el amidato,
¢éste expande el metalaciclo con el ligando alquilidino, para generar un anillo de cinco

miembros (Esquema 2.1).54
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Esquema 2.1. Preparacion de los derivados osmaoxazol.

El proceso de formacion de los osmaoxazoles recuerda a la ciclacion que da lugar
a los derivados iridaimidazo[1,2-a]piridina 11-13. En ambos casos, un atomo de
nitrogeno nucleofilico, doblemente desprotonado, de un grupo NH> se adiciona al &tomo
o de un ligando C-dador. Esta similitud nos llev6 a investigar la adicion de amidas a los
dimeros cis-[Ir(u?>-n?-C=CR){k>-C,N-(MeCsH3-py)}2]2 (R = ‘Bu, Ph), en la blisqueda de
nuevas familias de emisores de iridio(III). Este capitulo describe la preparacion y el
estudio de las propiedades fotofisicas de tres familias diferentes e inéditas de compuestos
fosforescentes de iridio(II) de los tipos [3b+3b+3b’], [3b+3b+2m+1m’] y [6tt+3b],
incluyendo los primeros derivados iridaoxazol, compuestos hidroxicarbeno y complejos
con un ligando tetradentado-N,C,C’,0. Las sintesis que se muestran ilustran
procedimientos sintéticos alternativos a los previamente descritos para la preparacion de
emisores fosforescentes. Ademas, resaltan nuevamente la utilidad de los ligandos

alquinilo como bloques de construccion en sintesis organometalica.



Capitulo 2 47

2.2. Derivados iridaoxazol

El tratamiento de suspensiones del dimero 8, en tolueno, con 2-3 equiv de
benzamida, acetamida, fenilacetamida y trifluoroacetamida, a 120°C conduce a los
respectivos derivados iridaoxazol Ir{x*-C,O-[C(CH2'Bu)NC(R)O]} {i*>-C,N-(MeC¢H3-
py)}2 (R = Ph (14), Me (15), CH2Ph (16), CF3 (17)). Estos compuestos son el resultado
de la ruptura de los puentes acetiluro del dimero 8 y la adicion del grupo NH2 de la amida
al triple enlace C-C del ligando alquinilo. La adicion muy probablemente ocurre por
etapas (Esquema 2.2). Como hemos comentado en el capitulo anterior, la coordinacion
de un grupo alquinilo a un metal del final de las series de transicion produce una
transferencia de la nucleofilia entre los atomos Cq y Cp del triple enlace, de tal manera
que el grupo NH2 de la amida puede ser desprotonado por el &tomo Cp basico del ligando
alquinilo, generando inicialmente los intermedios (k!-O-amidato)-iridio-vinilideno
a.**>3 Asi, el ataque posterior del 4tomo de nitrégeno, nucleofilico, del amidato formado
al atomo Co, electrofilico, del vinilideno, podria dar b. Finalmente, el desplazamiento 1,3
de hidrogeno desde el atomo de nitrogeno del anillo de cinco miembros al doble enlace

C-C exociclico conduciria a los derivados iridaoxazol.
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Esquema 2.2. Formacion de los derivados iridaoxazol.

Los complejos 14-17 se aislaron como so6lidos rojo-anaranjados con rendimientos
entre 30 y 60%, después de 24 horas de reaccion y la correspondiente purificacion del
crudo mediante cromatografia en columna. La formacién del diheterometalaciclo se
confirmo6 mediante el andlisis de difraccion de rayos X de un monocristal del complejo
14. La Figura 2.1a muestra la estructura. La adiciéon de la amida a la unidad metal-
acetiluro ocurre con retencion de la estereoquimica alrededor del centro de iridio. Asi, el
poliedro de coordinacion alrededor del metal se puede describir como un octaedro
definido por tres ligandos quelato C,N-dadores, con disposicién facial de carbonos y
heteroatomos. El anillo iridaoxazol es plano. La desviacion maxima del plano ideal
definido por las posiciones de los atomos Ir, C(1), N(3), C(7) y O(1) es de 0.0275(11) A
e involucra a C(1). Las longitudes de enlace en la secuencia C(1)-N(3)-C(7)-O(1) de
1.343(3), 1.360(3) y 1.263(3) A son intermedias entre las esperadas para enlaces simples
y dobles, como corresponde a una contribucion significativa de las formas resonantes fi
y 13 a la estructura (Figura 2.1b), y comparan bien con las publicadas para los derivados

osmaoxazol OsX {«?-C,0-[C(Ph)NC(R)O]} (IPr)(P'Pr3) (X = H; R = CH2Ph. X = C=CPh;
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R = Me).>* A pesar de su planaridad y los valores de las longitudes de enlace, el anillo
iridaoxazol es solo ligeramente aromatico, como revelan los valores de NICSz; de +17.8,
-3.0 y -3.2 ppm; ligeramente negativos algunos de ellos. Estos valores se calcularon en el
centro del anillo y fuera del plano, a 1 A por encima y por debajo, respectivamente. La
baja aromaticidad de estos iridaoxazoles se confirm6 ademas mediante una curva de
barrido NICS (Figura AIL.23) y el método de la anisotropia de la densidad de la corriente
inducida (AICD), que muestra claramente la falta de una corriente diatropica dentro del
anillo (Figura AIl.24). La principal diferencia entre los iridaoxazoles sintetizados aqui y
los osmaoxazoles previamente descritos parece estar en el enlace M-C del
diheterometalaciclo. Este enlace parece tener una componente de retrodonacion M-C mas
débil en los primeros que en los segundos. De acuerdo con esto, el anélisis comparativo
NBO 7.0 del derivado de osmio OsH{k*-C,O-[C(Ph)NC(CH3)O]}(IPr)(P'Pr3) y su
homologo de iridio 15 (Figura All.25a) revelod que el indice de enlace de Wiberg del
enlace M-C del anillo de cinco miembros es 1.28 para el osmaoxazol, mientras que para
el iridaoxazol tiene un valor de solo 0.84. De acuerdo con esto, los orbitales NBO & de
los anillos metalaoxazol de cinco miembros (Figura AIL.25b) indican que la forma
resonante fi es la contribucion principal a la estructura osmaoxazol, mientras que la forma
resonante f> es la mas relevante para la estructura iridaoxazol. Como consecuencia de la
débil retrodonacion, el &tomo de carbono metalado del anillo iridaoxazol de los complejos
14-17 parece experimentar una deficiencia electronica notable en comparacion con el
atomo andlogo de los osmaoxazoles. En este contexto, cabe destacar que la senal
correspondiente al atomo de carbono metalado del diheterometalaciclo en los espectros
RMN de *C{'H} de los compuestos 14-17 aparece en el rango 267-280 ppm, desplazada
aproximadamente 40 ppm a campo bajo respecto a las resonancias observadas en los

espectros de los derivados osmaoxazol.
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Figura 2.1. (a) Diagrama ORTEP del complejo 14. Por claridad, s6lo se muestran los
dtomos de hidrégeno significativos. Distancias (A) y 4ngulos (°) de enlace seleccionados:
Ir-N(1) = 2.1466(18), Ir-N(2) = 2.1131(18), Ir-O(1) = 2.1616(15), Ir-C(1) = 1.942(2),
Ir—-C(14) = 2.017(2), Ir-C(26) = 2.002(2), N(3)-C(1) = 1.343(3), N(3)-C(7) = 1.360(3),
O(1)-C(7) = 1.263(3), C(1)-Ir-N(1) = 171.86(8), C(26)-Ir—O(1) = 171.80(7), C(14)-Ir—

N(2) =173.45(8). (b) Forma candnica que describe la situacion de enlace del metalaciclo.

2.3. Compuestos hidroxicarbeno

La hidrolisis del enlace Co-N de los complejos 15-17 en disolventes relativamente
polares, como 2-metiltetrahidrofurano (2-MeTHF) y diclorometano, a temperatura
ambiente confirma la deficiencia electronica del atomo de carbono metalado del anillo
iridaoxazol. Este proceso ocurre con pequefias cantidades de agua, < 10 equiv, y genera

un ligando hidroxicarbeno y un amidato. Este Gltimo deberia coordinarse inicialmente de
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manera «'-O, formando intermedios c. Posteriormente, el grupo amidato de este
intermedio intercambiaria el &tomo dador para dar los productos de hidrolisis: Ir {x!-N-
[NHC(R)O]} {k*-C,N-(MeCsH3-py)}2{=C(CH2'Bu)OH} (R = Me (18), CH2Ph (19), CF3
(20)). El intercambio probablemente ocurre a través de un proceso de disociacion-
coordinacion, o bien mediante el deslizamiento del centro metéalico a lo largo de la
secuencia O-C-N (Esquema 2.3). A pesar de la baja estabilidad que generalmente
presentan los grupos hidroxicarbeno, dada su tendencia a sufrir desprotonacion para dar
derivados acilo,’® los complejos 18-20 son sorprendentemente estables. Como
consecuencia de su elevada estabilidad, se aislaron como soélidos amarillos con
rendimientos del 40-70%, después de 24 horas de reaccion.

X A t
| cH,'Bu CH,Bu | J CHpBu
N~/ N /
m, 1Ly H,0 . /C\OH |_~C—oH

Ir- — r

- B /I
I Lo )
R

R= Me (15) c R= Me (18, 52%)
CH,Ph (16) CH,Ph (19, 47%)
CF5 (17) CF5 (20, 66%)

Esquema 2.3. Formacion de los derivados hidroxicarbeno.

La formacion de estas inusuales especies se confirm6 mediante analisis de
difraccion de rayos X de monocristales de los complejos 19 y 20. Las Figuras 2.2a y
2.2b%7 muestran las respectivas estructuras. En ambos casos, la hidrolisis ocurre
manteniendo la estereoquimica del centro metalico. Asi, en una disposicion octaédrica de
atomos dadores, semejante a la descrita para el complejo 14, el ligando hidroxicarbeno se
posiciona trans al grupo piridilo de uno de los ligandos quelato tolilpiridina (C(1)-Ir-N(2)
= 169.03(17)° (19), 170.1(3)° y 171.7(3)° (20)), mientras que el anién amidato se
encuentra trans al grupo tolilo metalado del otro quelato (N(3)-Ir-C(15) = 164.99(16)°

(19), 165.3(4)° y 179.0(3)° (20)). De acuerdo con el caracter del hidroxicarbeno del
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ligando monodentado C-dador, los dngulos alrededor del &tomo C(1) estan en el rango
112-129°. La presencia de un ligando hidroxicarbeno en los compuestos 18-20 también
esta fuertemente respaldada por los espectros RMN de '*C{'H} de estos compuestos, a
temperatura ambiente, en diclorometano-d2, que muestran un singlete alrededor de 230

ppm correspondiente al 4tomo C(sp?).

Figura 2.2. (a) Diagrama ORTEP del complejo 19. Por claridad, sélo se muestran los
dtomos de hidrogeno significativos. Distancias (A) y 4ngulos (°) de enlace seleccionados:
Ir-N(1) =2.129(4), Ir-N(2) = 2.127(4), Ir-N(3) = 2.171(3), Ir—C(1) = 1.984(5), Ir-C(15)
=1.994(4), [-C(27) = 2.016(4), N(3)-C(7) = 1.265(6), O(1)-C(1) = 1.323(6), O(2)—C(7)
= 1.238(6), C(1)-Ir-N(2) = 169.03(17), C(27)-Ir-N(1) = 169.89(15), C(15)-Ir-N(3) =
164.99(16), O(1)-C(1)-Ir=118.1(3), C(2)-C(1)-Ir = 128.8(3). (b) Diagrama ORTEP del
complejo 20. Por claridad, s6lo se muestran los atomos de hidrégeno significativos.
Distancias (A) y 4ngulos (°) de enlace seleccionados: Ir(1)-N(1) = 2.137(8), 2.119(8);
Ir(1)-N(2) = 2.121(8), 2.141(7); Ir(1)-N(3) = 2.212(5), 2.198(5); Ir(1)-C(1) = 1.971(8),
1.979(7); Ir(1)-C(15) = 2.002(6), 2.024(9); Ir(1)-C(21) = 2.020(8), 1.987(7); N(3)—-C(7)
=1.267(8), 1.287(6); O(1)-C(1) =1.302(10), 1.339(9); O(2)—-C(7) = 1.199(8), 1.212(10);
C(1)-Ir(1)-N(2) = 170.1(3), 171.7(3); C(21)-Ir(1)-N(1) = 170.1(3), 170.8(3); C(15)—
Ir(1)-N(3) = 165.3(4), 179.0(3); O(1)-C(1)-Ir(1) = 119.8(5), 116.3(5); C(2)-C(1)-Ir(1)
=127.3(5), 129.3(5).
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Una vista ampliada de las estructuras (Figura 2.3) revela que dos moléculas se
asocian mediante puentes de hidrogeno formando dimeros. Esta interaccion
intermolecular implica al 4&tomo de hidrogeno del ligando hidroxicarbeno de una de las
moléculas y el atomo de oxigeno del grupo amidato de la otra. La asociacion tiene lugar
entre moléculas idénticas en el caso del complejo 19, mientras que en el compuesto 20 se
asocian dos conférmeros diferentes. Estos conférmeros son el resultado de la rotacion del
grupo amidato alrededor del enlace Ir-N. Ademads del enlace de hidrégeno intermolecular,
también se observan interacciones intramoleculares oxigeno-hidrogeno, aunque existen
diferencias significativas entre los complejos. Para el compuesto 19 (Figura 2.3a), s6lo se
observa en la molécula aceptora de hidrogeno e implica al &tomo de hidrogeno del ligando
hidroxicarbeno y al 4&tomo de oxigeno del grupo amidato. Ademas de ésta, el complejo
20 muestra una segunda interaccidn intramolecular, que ocurre en la molécula dadora de
hidrogeno, e implica al &tomo de hidrogeno del grupo amidato y al &tomo de oxigeno del
ligando hidroxicarbeno (Figura 2.3b). Esta segunda interaccion es consecuencia de la
disposicion del atomo de hidrogeno NH en el conférmero involucrado, que apunta hacia
el atomo de oxigeno del ligando hidroxicarbeno. Como resultado de estas interacciones,
las separaciones entre los atomos implicados estan en el rango 2.092-2.196 A, valores
significativamente mas pequeios que la suma de los radios de van der Waals de hidrogeno
y oxigeno (rvaw(H) = 1.20 A, rvaw(O) = 1.52 A).%® Ademis, los dngulos O-H-O son

cercanos a la linealidad, con valores entre 146°y 163°.
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(b)

Figura 2.3. Vista ampliada de las estructuras de los complejos 19 (a) y 20 (b).

La asociacion se rompe en diclorometano-d2, a temperatura ambiente. Los
experimentos 'H-DOSY demuestran la disociacion. El método de RMN de secuencia de
gradiente de pulso (PFG) permite medir la velocidad de difusion de las moléculas, en
disolucién, que depende de su tamafio y volumen hidrodindmico.’® Los coeficientes de
difusion obtenidos para los complejos 19 y 20, en diclorometano-d2, a 303 K son 1.48 x
10°m?s'y 1.06 x 1071 m? 57!, respectivamente. Estos valores permiten calcular radios
hidrodindmicos de 5.32 A y 3.81 A, respectivamente, que son similares a los obtenidos a
partir de las estructuras de anélisis de difraccion de rayos X de los monémeros, 5.81 A

para 19y 3.72 A para 20.
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El sustituyente en el 4tomo de carbono situado entre los heterodtomos del ciclo de
iridaoxazol tiene una influencia notable en la estabilidad del anillo de cinco miembros
frente a la hidrdlisis. A diferencia de los grupos alquilo, un sustituyente fenilo evita la
reaccion con agua, probablemente como consecuencia de su capacidad de estabilizacion
mediante hiperconjugacién.®® Por esta razon, el complejo 14 no experimenta hidrélisis, a

diferencia de los compuestos 15-17.

2.4. Complejos con ligandos tetradentados N,C,C’°,0

El sustituyente de los puentes acetiluro de los dimeros cis-[Ir(u>*-n>-C=CR){x*-
C,N-(MeCe¢Hs-py)}2]2 determina la funcion sintética que los atomos de carbono del triple
enlace desarrollan y el papel que juega el acetiluro como bloque de construccion. Bajo
las mismas condiciones que las mencionadas previamente para la formacion de los
complejos 14-17, el tratamiento del derivado fenilacetiluro cis-[Ir(u?-n*>-C=CPh) {x*-C,N-
(MeCsHs-py)}2]2 (7), en tolueno, con benzamida y acetamida conduce a los complejos
Ir{x*-N,C,C’,0-[py-MeCsH3-C(CH2-CsHa)NHC(R)O]} {x*-C,N-(MeCsH3-py)}(R = Ph

(21), Me (22)), a diferencia de lo observado para su homologo de fert-butilacetiluro 8.

El puente fenilacetiluro del dimero 7 experimenta un acoplamiento de tres
componentes, que involucra al &tomo de nitrégeno de la amida, al &tomo Cq del puente y
al atomo de carbono metalado de una de las tolilpiridinas ciclometaladas. El acoplamiento
puede racionalizarse como la insercion migratoria de un doble enlace Ir-C, pobre en
densidad electronica, de un intermedio iridaoxazol d, en uno de los grupos arilo
ciclometalados de los cromodforos. El menor requerimiento estérico y la menor capacidad
electro-dadora del grupo fenilo, en comparacion con el sustituyente tert-butilo, parece

desestabilizar el iridaoxazol, favoreciendo la migracion de uno de los grupos tolilo
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metalados desde el centro metalico hasta el 4&tomo de carbono del enlace Ir-C del
iridaoxazol. El triple acoplamiento, que da e, y la posterior orto-metalacion del grupo
bencilo generan un ligando tetradentado asimétrico, dador de 6e’, de tipo
N,C(sp?),C(sp?),0, que forma dos anillos de cinco miembros diferentes y otro de seis
miembros (Esquema 2.5). La metalacion del grupo bencilo requiere la coordinacion
previa de modo agodstico de uno de los enlaces Corto-H de la unidad fenilo e implica la
transferencia de hidrogeno desde el atomo Corto hasta el atomo N del azol. El proceso se
puede describir como una activacion C-H heterolitica intermolecular promovida por una

base externa (iridadihidrooxazol).

i il
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Esquema 2.5. Formacion de los complejos 21 y 22.

Los emisores de iridio(III) con ligandos tetradentados no planos son poco

3061 particularmente  aquellos que llevan diferentes fragmentos

comunes,
bidentados,*’**? en particular cuando los 4tomos dadores de dichos fragmentos son

diferentes en identidad y naturaleza, como sucede en los compuestos 21 y 22. Ademas,

debe notarse que a diferencia de los descubiertos ahora, los ligandos tetradentados
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anteriormente descritos se generan a partir de la coordinacion de moléculas orgéanicas

previamente preparadas.

Los complejos 21 y 22 se pueden describir como especies pseudo-
tris(heterolépicas), ya que contienen tres unidades bidentadas diferentes dadoras de 3e".
Los emisores de iridio(IIT) de la clase [3b+3b'+3b"] son ciertamente los mas interesantes,
ya que permiten un ajuste mas fino de las propiedades fotofisicas, pero también son los
més dificiles de preparar.'>!*!* Los complejos 21 y 22 se aislaron como solidos amarillos
analiticamente puros en bajo rendimiento (9-14%), después de la purificacion
correspondiente del crudo de reaccion, que contenia varias especies no identificadas,
mediante cromatografia en columna. La formacion del nuevo fragmento tetradentado se
confirmo6 mediante el analisis de difraccion de rayos X de un monocristal del compuesto
22. La Figura 2.4 muestra una vista de la molécula. La coordinacién alrededor del centro
de iridio se puede idealizar como un octaedro con los dadores piridilo y bencilo del
ligando tetradentado dispuestos mutuamente trans (N(1)-Ir-C(6) = 167.47(14)°). El plano
perpendicular estd definido por la unidad iridadihidrooxazol y el quelato tolilpiridina
metalado. El 4tomo de carbono C(sp?) del ligando tetradentado estd dispuesto trans al
grupo piridilo (C(1)-Ir-N(2) = 172.18(14)°), mientras que el atomo de oxigeno se
encuentra en posicion trans al &tomo de carbono metalado del grupo tolilo (O(1)-Ir-C(23)
= 178.46(15)°). Las resonancias mas caracteristicas de los complejos 21 y 22 en los
espectros RMN de estos compuestos, en diclorometano-d2, a temperatura ambiente son
dos dobletes (°J =15.4 Hz) alrededor de 4.1 y 3.2 ppm en el 'H, debidos a la unidad CH:
del grupo bencilo del ligando tetradentado, y un singlete alrededor de 54 ppm en el

BC{H}, correspondiente al 4&tomo C(sp*) que une las unidades dadoras, C(1).
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Figura 2.4. Diagrama ORTEP del complejo 22. Por claridad, s6lo se muestran los atomos
de hidrégeno significativos. Distancias (A) y angulos (°) de enlace seleccionados: Ir—N(1)
= 2.149(3); Ir-N(2) = 2.115(3); Ir-O(1) = 2.218(3); Ir—C(1) = 2.064(4); Ir—C(6) =
2.020(4); Ir-C(23) = 2.004(4); O(1)-C(2) = 1.264(5); N(3)-C(2) = 1.324(5); N(3)—C(1)
= 1.502(5); C(1)-Ir-N(2) = 172.19(14); C(6)-Ir-N(1) = 167.47(14); C(23)-Ir-O(1) =
178.46(15).

2.5. Propiedades fotofisicas y electroquimicas de los emisores generados

Las figuras AII.26-AlI1.33 presentan los espectros UV-Vis de disoluciones 10> M
de los complejos 14-16 y 18-22, en 2-MeTHF o tolueno, a temperatura ambiente, mientras
que la Tabla 2.1 recoge una seleccion de las absorciones mdas representativas. Los
espectros muestran el patron tipico de especies de iridio(III), con las tres regiones
habituales de energia: <300, 350-450 y >450 nm. De acuerdo con los céalculos DFT
dependientes del tiempo (B3LYP-D3//SDD(f)/6-31G**), considerando THF como
disolvente, las bandas de mayor energia (<300 nm) corresponden a transiciones 'm-m*
intra- e interligando, mientras que las transiciones permitidas por espin que implican
transferencia de carga metal-ligando combinadas con ligando-ligando o intraligando

aparecen en la region de energia intermedia (350-450 nm). Las absorciones muy débiles
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observadas a energias mas bajas que 450 nm son debidas a transiciones formalmente
prohibidas por espin, que resultan del fuerte acoplamiento espin-orbita inducido por el
centro de iridio. Estas tltimas transiciones son principalmente HOMO-LUMO para los
complejos 14-20 y HOMO-LUMO combinadas con HOMO-LUMO+1 (= 60% : 30%)
para los compuestos 21 y 22. En este contexto, cabe destacar la marcada contribucion del
anillo de iridaoxazol al LUMO de 14-17, que aumenta en la secuencia 15 <16 <14 =17,
conforme el sustituyente metilo del compuesto 15 cambia a CH2Ph, Phy CFsen 16, 14 y
17. Al mismo tiempo, la diferencia de energia HOMO-LUMO disminuye; mientras que
es de aproximadamente 3.9 eV para los complejos 15 (Me) y 16 (CH2Ph), se encuentra
en el rango de 3.4-3.5 eV para los compuestos 14 (Ph) y 17 (CF3). El gap HOMO-LUMO
para los complejos [3b+3b+2m+1m’] 18-20 es similar al de 15 y 16 (Tabla 2.2). Las

Figuras AIl.34-AlIl.42 muestran los orbitales moleculares de estos emisores.

Tabla 2.1. Absorciones UV-Vis seleccionadas para los complejos 15 y 16 en tolueno y
14, 18-22 en 2-MeTHF y energias de excitacion verticales TD-DFT calculadas en THF.

Aexp ‘ 2::;5‘3;; I:Jlslce;j:i(()llil Transicion Carécte.r.(?e la
(nm) (M emt) (nm) f transicién
Complejo 14
250 125400 250 0.0311  HOMO-5 — LUMO+4 (81%)  (3b+3b’ — 3b)
362 52200 364 0.1503  HOMO-1 — LUMO+2 (65%)  (Ir + 3b — 3b)
432 11700 457 (S)) 0.0181 HOMO-1 — LUMO (93%) (Ir + 3b — 3b”)
485 3000 500 (T)) 0 HOMO — LUMO (85%) (I + 3b — 3b")
Complejo 15
293 133500 296 0.0970  HOMO-3 — LUMO+1 (64%)  (3b +3b’ — 3b)
372 42000 367 0.0818  HOMO-1 — LUMO+1 (61%)  (Ir + 3b — 3b)
400 30000 405(S)  0.0320 Egﬁg - Egﬁggsg’g)% ) glé; 3b—3b+
470 2000 464 (T) 0 HOMO — LUMO (64%) (Ir + 3b — 3b)
Complejo 16
285 183000 287 0.0599  HOMO-5 — LUMO+2 (75%)  (3b+3b’ — 3b)
372 54000 368 0.0841  HOMO-1 — LUMO+2 (85%)  (Ir + 3b — 3b)
402 34800 402(S)  0.0377 Egﬁg - Egﬁgt;@%) glg; 3b—3b+
463 6900 461 (T)) 0 HOMO — LUMO (52%) (Ir +3b — 3b +

3b”)
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Complejo 18
278 173000 273 0.0601  HOMO-4 — LUMO+2 (76%)  (3b—> 3b)
375 30500 384 00669  HOMO-1 —LUMO (97%)  (Ir+ 3b — 3b)
399 22000 394(S) 00316  HOMO — LUMO+ (92%)  (Ir+ 3b — 3b)
457 7500 455(T) 0 HOMO — LUMO+1 (71%)  (Ir+ 3b — 3b)
Complejo 19
275 121500 274 00500  HOMO-4— LUMO+2 (74%)  (3b — 3b)
376 23500 385 00631  HOMO-1 — LUMO (96%)  (Ir+ 3b — 3b)
407 14200 392(S) 00298  HOMO — LUMO+ (91%)  (Ir+ 3b — 3b)
456 2600 453(T) 0 HOMO — LUMO+1 (72%)  (Ir+ 3b — 3b)
Complejo 20
273 182300 270 0.0302  HOMO-2 — LUMO+3 (58%)  (3b— 3b + 2m)
359 38700 359 0.0430  HOMO-1 — LUMO (89%)  (Ir+3b — 3b)
400 22300 385(S) 00231 HOMO — LUMO (72%) (Ir + 3b —> 3b)
449 2800 47(T) 0 HOMO — LUMO+1 (62%)  (Ir + 3b — 3b)
Complejo 21
+ b b
277 1448000 273 0.0373  HOMO-3 — LUMO+4 (66%) (+313)b) ot — 6tt
395 27900 400 0.0488  HOMO — LUMO+2 (92%) gtrt; 3bro —
+3b + 6tt°
459 15900 457(S) 00596  HOMO — LUMO (87%) gtrt,) 3b+ 6t —
HOMO — LUMO (59%) (Ir + 3b + 6t —
S04 8300 494 () 0 HOMO — LUMO+1 (27%) 3b + 6tt)
Complejo 22
+ b
277 172700 272 0.1766  HOMO-3 — LUMO+3 (57%) fztt,f“ —3b
49 17800 431 00410  HOMO — LUMO+1 (84%) glg; b+ ot —
+3b + 6tt”
456 15800 457(S) 00564  HOMO — LUMO (86 %) gtrt,) 3+ 6t —
HOMO — LUMO (56%) (It + 3b + 6t —
502 9300 494 (M) 0 HOMO — LUMO+1 (33%) 3b + 6tt")

Los niveles de energia HOMO calculados por DFT para los emisores 14 y 18-22
concuerdan bien con aquellos obtenidos experimentalmente a través del estudio
electroquimico de estos compuestos. La Figura All.44 muestra los voltamogramas, en
disolucion de CH2Clz, bajo atmosfera de argon, utilizando [BusN]PFs (0.1 M) como
electrolito de soporte. Todos los compuestos tienen oxidaciones reversibles de Ir(IIl) a
Ir(IV), y de Ir(IV) a Ir(V), entre 0.00 y 1.05 V (Tabla 2.2). No se detectaron reducciones

entre-1.5y 1.5 V.
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Tabla 2.2. Potenciales de oxidacion y energias DFT de los orbitales moleculares para los
complejos 14-22.

obs (eV) caled (eV)
Complejo 172 (V)

HOMO? HOMO LUMO HLG"
14 0.44, 1.05 -5.24 -5.18 -1.75 343
15 - - -5.18 -1.30 3.88
16 - - -5.18 -1.36 3.82
17 - - -5.36 -1.82 3.54
18 0.37,0.86 -5.17 -5.08 -1.24 3.84
19 0.37,0.87 -5.17 -5.08 -1.23 3.85
20 0.50, 0.83 -5.30 -5.29 -1.34 3.95
21 0.01, 0.79 -4.81 -4.65 -1.26 3.39
22 0.00, 0.73 -4.80 -4.64 -1.25 3.39

*HOMO = -[ E$%, vs Fc'/Fc + 4.8] eV. PHGL = LUMO — HOMO.

La Tabla 2.3 recopila las principales caracteristicas de las emisiones tras la
fotoexcitacion de los derivados iridaoxazol 14-16, los compuestos hidroxicarbeno 18-20
y los complejos tetradentados 21 y 22. Las medidas se llevaron a cabo en un film de poli-
(metil metacrilato) (PMMA) dopado al 5% en peso, a temperatura ambiente, y en 2-
MeTHF (14 y 18-22) o tolueno (15 y 16), a temperatura ambiente y a 77 K. La Figura 2.5
muestra los espectros de las tres clases de emisores bajo las condiciones experimentales
mencionadas anteriormente. Las emisiones tienen lugar desde los respectivos estados
excitados 77, tal y como sugiere la buena concordancia existente entre las longitudes de
onda experimentales y las calculadas a partir de la diferencia de energia entre los estados

optimizados 77y So, considerando THF como disolvente.
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Tabla 2.3. Datos fotofisicos para los complejos 14-16 y 18-22.

calc Aem

(nm) Medio (T/K) Aem (nM) 7 (us) () kb (s kn® sV kilknr
Complejo 14
3.0 (0.49, 13.1%; 4 5
PMMA (298) 627 337, 86.9%) 004 1.6x10* 3.8x10 0.04
1.2 (0.34, 46.0%;

2 - ’ ’ . . 4 . 6 .
627 2-MeTHF (298) 628 1.90, 54.0%) 001 1.1x10* 1.1x10 0.01
1.7 (0.74, 26.8%;

2-MeTHF (77) 600, 639 2.00, 73.2%)
Complejo 15
1.8 (0.51, 37.3%; 4 .
PMMA (298) 581 2,62, 62.7%) 0.08 57x10* 6.6x10 0.09
0o/ .
536 2-MeTHF (298) 590 0'40(8'9339’ 3?/3)4 0.07 1.8x10° 23x10° 0.08
99,9,
4.1 (0.74, 26.8%;
2-MeTHF (77) 578 2,00, 73.2%)
Complejo 16
1.1 (0.41, 49.8%; 4 p
PMMA (298) 592 1.69, 50.2%) 0.08 8.9x10 1.0 x 10 0.09
o/ .
553 2-MeTHF (298) 600 0'42((6)'3381’ zf/'l)é’ 0.06 1.5x10° 24x10% 0.06
.05, 1.9
3.9(0.63, 1.6%;
2-MeTHF (77) 584 3.96, 98.4%)
Complejo 18
1.5 (0.55, 17.9%; S 5
PMMA (298) 492,516 1,70, 82.1%) 029 21x10° 51x10 0.41
500 i 1.3 (0.33, 90.3%; 4 s
2-MeTHF (298) 497, 520 0.99.9.7%) 0.10 83 x 10 7.5%x 10 0.11
478, 513,
2-MeTHF (77) 555 43
Complejo 19
1.6 (0.53, 11.6%; 5 .
PMMA (298) 490, 515 1,78, 88.4%) 044 29x10° 3.7x10 0.78
1.0 (1.88, 18.8%; 5 5
504 2-MeTHF (298) 492, 515 0.74. 81.2%) 0.12 1.0x10° 73x10 0.14
477,512,  4.5(6.70, 9.4%;
2-MeTHE (77) 542 4.27, 90.6%)
Complejo 20
483,511, 1.7(0.37,9.7%; 4 5
PMMA (298) 553 1.86. 90.3%) 0.11 73x10* 59x10 0.12
1.7 (2.10, 60.9%;
440 - ’ ’ . . 4 . 5 .
2-MeTHF (298) 490, 515 1.03,39.1%) 0.07 39x10* 52x10 0.08
476,509, 4.9 (6.40,21.1%;
2-MeTHF (77) 548 4.46, 78.9%)
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Complejo 21

0.8 (0.27, 20.6%;
0.97, 79.4%)

0.3 (0.21, 92.0%;
0.96, 8.0%)

7.2 (8.40, 58.7%;
5.56,41.3%)

PMMA (298) 540 0.50 7.1x10° 7.1x10° 1.00

542 2-MeTHF (298) 544 0.04 2.0x10° 48x10° 0.04

2-MeTHF (77) 520, 556

Complejo 22

1.6 (0.58, 16.5%;
1.82, 86.5%)

0.7 (2.90, 1.4%;
0.69, 98.6%)

8.6 (11.7, 25.3%;
7.61, 74.7%)

PMMA (298) 546 045 3.0x10° 3.7x10° 081

540 2-MeTHF (298) 546 0.12 1.5x10° 1.1x10° 0.14

2-MeTHF (77) 523,558

2En t de segundo orden se utiliza la vida media promedio ponderada en funcién de la amplitud relativa,
que se dan entre paréntesis. "Calculado de acuerdo a k. = @/zy k,, = (1 — D)/t
Los derivados iridaoxazol 14-16 son emisores débiles de color naranja (578-639
nm), que muestran bajos rendimientos cudnticos (< 10). La hidrolisis que causa la
apertura de anillo del iridaoxazol provoca un desplazamiento de la emision hacia el azul
y un aumento significativo de los rendimientos cudnticos. Asi, los compuestos
hidroxicarbeno 18-20 son emisores verdes (476-556 nm), que brillan con una eficiencia
moderada; especialmente en el caso del complejo 19. Los rendimientos cudnticos de este
ultimo alcanzan valores de 0.44 en PMMA y 0.12 en 2-MeTHF. Los derivados
tetradentados 21 y 22 son emisores amarillos (520-558 nm), que muestran rendimientos
cuanticos de 0.50 en PMMA; superiores a los de los compuestos 18-20. Al igual que en
los compuestos hidroxicarbeno, los rendimientos cuanticos disminuyen en disolucion.
Esta reduccion estd asociada con un aumento de la constante no radiativa, lo que sugiere
una fuerte disipacion de energia a través de procesos mecanicos. Los tiempos de vida son

cortos y se encuentran en el rango de 0.3 a 8.6 ps.
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Figura 2.5. Espectro de emision de los complejos 14-16 y 18-22 en: (a) film de PMMA
dopado al 5 % en peso, a 298 K. (b) 2-MeTHF para 14, 18-22 y tolueno para 15-16, a 298
K. (c) 2-MeTHF para 14, 18-22 y tolueno para 15-16, a 77 K.

2.6. Conclusiones

El estudio llevado a cabo en este capitulo revela que los ligandos alquinilo de los
dimeros cis-[Ir(u*>-n>-C=CR){x*-C,N-MeCsH3-py)}2]2 (R = ‘Bu, Ph) son bloques de
construccion capaces de formar anillos de iridaoxazol, fragmentos hidroxicarbeno y

novedosos ligandos tetradentados N,C(sp?), C(sp?), O dadores de 6¢".
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Una clase de compuestos metalaheteroaromaticos monociclicos con dos
heterodtomos de los grupos principales se conocian hasta ahora, los osmaoxazoles; su
formacion a partir de un amidato y un ligando alquilidino se publicé en 2021.>* Ahora se
ha generado una nueva familia de metalaoxazoles: los iridaoxazoles. Para su sintesis se
ha utilizado un ligando amida y un ligando alquinilo en lugar de un amidato y una unidad
alquilidino. Ademas, se demuestra que el fragmento LaM del anillo de cinco miembros
tiene una marcada influencia en el grado de aromaticidad del ciclo y su estabilidad frente
a la hidrolisis. Los resultados que se muestran aqui indican que los fragmentos LnM con
una baja capacidad de retrodonacion crean una deficiencia electronica significativa en el
atomo de carbono del enlace M-C, lo que reduce la aromaticidad del anillo de cinco
miembros y polariza el enlace C-N adyacente. Este incremento en la diferencia de carga
entre los atomos de dicho enlace aumenta su afinidad por la molécula de agua, lo que
promueve la ruptura del enlace C-N para formar derivados amidato-iridio(III)-
hidroxicarbeno. Los sustituyentes en los dtomos de carbono del iridaoxazol también
tienen una importancia crucial en la estabilidad del anillo de cinco miembros. A diferencia
de los grupos alquilo, un sustituyente fenilo situado en el 4&tomo de carbono entre los

heteroatomos del ciclo previene la hidrdlisis.

El anillo de iridaoxazol es el punto de partida no solo para la formacion de
fragmentos hidroxicarbeno, sino también para la generacion de ligandos tetradentados
N,C(sp?),C(sp?),0. Una reduccion significativa en el volumen del grupo CH2R, generado
en el proceso de construccion del anillo de cinco miembros, desprotege el atomo de
carbono metalado frente al ataque de uno de los grupos tolilo coordinados a los centros
de iridio. La migracion es el inicio del proceso que da lugar a los ligandos tetradentados,
que ocurre cuando la unidad R de CH: es un grupo fenilo, susceptible de sufrir una

activacion Coro-H heterolitica intermolecular. Estos ligandos tetradentados son, por lo
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tanto, el resultado de un acoplamiento triple (un ligando alquinilo, una amida y un grupo
arilo coordinado) y una activacién C-H en la esfera de coordinacion del metal. Ademas,
debemos sefalar el papel decisivo del sustituyente alquinilo de los dimeros iniciales en el

modo de actuacion del triple enlace C-C como bloque de construccion.

Los compuestos preparados mediante estos novedosos procedimientos
representan nuevas familias de emisores fosforescentes heterolépticos de iridio(III) en la
region naranja-verde del espectro de emision, los cuales muestran rendimientos cuanticos

entre bajos y moderados, y vidas medias cortas.

Podemos decir, en resumen, que el uso de los dimeros cis-[Ir(p>-n>-C=CR) {1
C,N-(MeCsHs-py)}2]2 (R = '‘Bu, Ph) como productos de partida permite desarrollar
procedimientos sintéticos originales, lo que conduce a clases de emisores fosforescentes

de iridio(IIT) diferentes a los conocidos previamente.
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Activaciones de enlace C—H, N-H, y O-H
para preparar emisores hidruro-iridio(III)-
fosfina fosforescentes con comportamiento
catalitico en reacciones de acoplamiento C-C
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3.1. Introduccion

Una manera de evitar en parte la distorsion de la estructura octaédrica de los
emisores fosforescentes de iridio(IIl) impuesta por la coordinacion de dos ligandos pincer
al centro metalico es liberar los 4&tomos dadores del ligando de 5¢". En este contexto, la
sustitucion de dicho ligando por dos grupos fosfina basicos, dispuestos en trans, y un
ligando hidruro parece en principio una alternativa interesante. La presencia de tales
ligandos provoca un fuerte desdoblamiento del campo de los ligandos. Esta situacion
desestabiliza los estados excitados dd centrados en el metal, que guian los procesos de
desactivacion no radiativos.®> Ademas, la diferencia de energia HOMO-LUMO aumenta,
lo que produce un desplazamiento de la emision hacia energias mas altas. Los valores
altos de Ao también previenen las disociaciones de los ligandos, disminuyendo las
posibles vias de descomposicién quimica del emisor.** De hecho, recientemente se han
descrito emisores cuya esfera de coordinacion estd formada por un ligando pincer dador
de 4e’, dos fosfinas y un hidruro. Estos compuestos son miembros particularmente

eficientes® de una pequefia familia de emisores derivados de fosfina.’!1b:66

Las moléculas en el estado excitado son agentes oxidantes y reductores mas
fuertes que en su estado fundamental. Como consecuencia, la fotoexcitacion de un emisor
fosforescente en su estado fundamental So genera un estado excitado Ti, que puede
aceptar un electron de una molécula orgéanica o donarselo. Después de este proceso inicial
de transferencia fotoinducida de un electron, la respectiva forma reducida u oxidada del
emisor puede realizar un nuevo proceso de transferencia de un electron con otro reactivo
organico. Esta segunda reaccion redox conduce a un radical organico con carga opuesta
a la del anterior, ademas de devolver al emisor a su estado fundamental So, cerrando un
ciclo fotoredox. Al mismo tiempo, el acoplamiento de los radicales da lugar a una nueva

molécula organica neutra.%’
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Los emisores fosforescentes de iridio(IIT) no son una excepcion®® y promueven
reacciones organicas desafiantes.”” Se han descrito procesos interesantes de
funcionalizacion C—H que son fotoinducidos en presencia de complejos de este tipo, que
contienen tres ligandos bidentados.” En 2011, MacMillan y colaboradores observaron
que el emisor homoléptico Ir{x*-C,N-[2-CsHa-py]}3 cataliza el acoplamiento de
cianobencenos y aminas alifticas, en presencia de base, bajo fotoexcitacion.”! Houk,
Mayer, Ellman y colaboradores han publicado recientemente una version
diastereoselectiva de la reaccion.”? Los acoplamientos generan bencilaminas importantes.
El mecanismo propuesto para estas a-amino arilaciones C(sp*)-H (Esquema 3.1) ocurre
a través de un ciclo que involucra especies de Ir(IIl) e [Ir(IV)]". La fotoexcitacion del
estado fundamental del catalizador, S°Ir(IlI), genera un estado excitado T'Ir(IIl), que
reduce los cianobencenos a los radicales anidnicos correspondientes, proporcionando el
cation oxidante de Ir(IV). Entonces, las aminas transfieren un electron a este ultimo,
formando radicales amina cationicos y regenerando S°Ir(III). Los enlaces a-C—H de estos
radicales cationicos son extremadamente acidos y susceptibles de sufrir fAcilmente una
desprotonacion. La extraccion del proton conduce a un radical neutro a-amino. El
acoplamiento de este ultimo con el radical cianobenceno, seguido de la pérdida de un

anidn cianuro, genera el producto o-arilado.”!
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Esquema 3.1. Mecanismo propuesto para la o-amino arilacion fotoredox C(sp*)-H con

cianobencenos catalizada por Ir {x*-C,N-[2-CsHs-py]} 3.

Los complejos polihidruro de metales del grupo del platino son especialmente
ttiles para promover la activacion de enlaces 6.°%° Relacionada con esta habilidad esté su
relevancia en catélisis’® y su uso para la preparacion de complejos organometalicos con
interesantes propiedades fotoluminiscentes.''® El complejo pentahidruro de iridio
IrHs(P'Pr3)2 (23) es un miembro de esta familia de compuestos, que posee dichas
cualidades.”3>7* En la busqueda de los primeros emisores fosforescentes de iridio(I11)
basados en la unidad trans-IrH(P'Pr3)2, con actividad fotocatalitica, hemos estudiado la
reactividad de dicho polihidruro con los compuestos organicos pre-ligandos pincer que
recopila la Figura 3.1. Este capitulo presenta los miembros de una familia de emisores
fosforescentes de iridio(IIl), trans-IrH(ic>-L)(P'Pr3)2, resultado de las reacciones llevadas
a cabo. La familia incluye un fotocatalizador para las reacciones de a-amino arilacion

C(sp®)—H racionalizadas en el Esquema 3.1.
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Figura 3.1. Pre-ligandos pincer utilizados en este estudio.

3.2. Reacciones de activacion de enlaces o: Preparacion de los emisores

El Esquema 3.2 recoge los compuestos de la familia IrH(i*>-L)(P'Pr3)2, que se han
preparado en este capitulo: IrH {x*-C,N,C-[CsHa-isoqui-O-CsHa]} (P'Pr3)2 (24), IrH {x°-
N,N,C-[NBzim-py-CsHa]} (P'Pr3)2  (25), IrH{x’-N,N,C-[Ind-py-Ce¢H4]}(P'Pr3)2 (26),
IrH {#-C,N,O-[CsHa-py-CsH4O]} (P'Pr3)2 (27), IrH {1°-C,C,0-[ CsHa-Im-CsH4O] } (P'Pr3)2
(28), e IrH{x*-N,C,C-[py-CsHMe2-CsH3N]} (P'Pr3)2 (29). Por su parte, la Tabla 3.1 recoge
sus resonancias mas caracteristicas en los respectivos espectros de RMN. Ademas de los
tripletes debidos a los 4tomos de carbono metalados de los ligandos pincer, en los
espectros de 3C{'H}, las sefiales destacables son: un triplete correspondiente al ligando
hidruro, en la region de campo alto de los espectros de 'H, y un singlete ocasionado por
los ligandos fosfina equivalentes, en los espectros de *'P{!H}. Este singlete se convierte
en un doblete, en condiciones de off-resonance. Los nuevos complejos estan estabilizados
por cinco clases diferentes de ligandos pincer: C,N,C’; N,N',C; C,N,O; C,C’,0;y N,C,C".
Con la excepcidn del ligando pincer del complejo 29, los ligandos pincer generados son

el resultado de la activacion secuencial de un enlace o de los sustituyentes, en posiciones
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adyacentes al atomo dador de 2e’, de heterociclos tales como isoquinolina, piridina e
imidazolideno, y de la coordinaciéon de dicho 4&tomo dador del anillo central. El ligando
pincer del complejo 29 tiene las posiciones del heterociclo dador de 2e” y uno de los
grupos activados intercambiadas. De acuerdo con la activacion secuencial de los enlaces
o, se detectaron espectroscopicamente y se caracterizaron los siguientes intermedios
dihidruro: IrHz{x2-C,N-[CsHs-isoqui-O-CsHs]} (P'Pr3)2 (24d), IrH2 {ix?>-N,N-[NBzim-py-
CeHs]}(P'Pr3)2 (25d), IrH2{k*-N,N-[Ind-py-CsHs]}(P'Pr3)2 (26d), e IrH2{x>-N,C-[py-
CsHMe:z-py]} (P'Pr3)2 (29d). Sus hidruros inequivalentes generan dos dobletes de tripletes
en los espectros RMN de 'H, mientras que los ligandos fosfina equivalentes dan lugar a
un singlete en los espectros de *'P{!H}, que se convierte en un triplete bajo condiciones

de off-resonance (Tabla 3.2).

Tabla 3.1. Datos espectroscopicos Tabla 3.2. Datos espectroscopicos
seleccionados de los espectros RMN de seleccionados de los espectros RMN
BC{'H}, 'Hy*'P{'H} de los complejos 24- de 'H y 3'P{'H} de los intermedios
29, en CeDs, a 298 K.2 24d-26d y 29d y del complejo 30, en

CsDs, a 298 K.2

13C{1H} qH 31P{1H} TH-NMR 31P{1H}
Complejo 6 Ir-C o Ir-H 5 Ir-P Complejo ) R
CJcr) CJur) OIr-H “Jur “Jun OIr-P
171.8 (8.8) -18.37 -12.55  20.6
24 23 24 4 .
131.0 (9.4) (19.5) d -21.82 183 3 30.3
-14.86 -2035 17.1
2 146.3 (6.4 . . .
5 6.3 (6.4) (19.4) 5.0 25d 2318 184 7.0 20.7
-14.83 -11.59 16.0
b
26 147.4 (7.8) (19.7) 4.4 26d 1264 190 6.8 459
-16.4 -12. .
27 146.9 (7.3) (12 2? 13.9 29d° ;3 ;‘1‘ ilg 2 4.4 21.8
177.9 (4.5 -8.02 -14. .
28 124.7 E7 0; (20.4) 219 30 EI (3)_;) 5(9) 3 43 284
29 195.0 (4.3) -8.17 2.7 «$ en ppm y J en Hercios. ?En tolueno.

138.0 (9.4) (22.8)
4% en ppm y J en Hercios.
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Esquema 3.2. Sintesis de los complejos IrH(ic>-L)(P'Pr3)2 (24-29).

La activaciéon de un enlace o de una molécula organica, promovida por un
fragmento metalico insaturado, ocurre en dos pasos: coordinacion del enlace ¢ y su
posterior ruptura.”> Asi, la energia de activacion necesaria para la escision del enlace
depende de dos factores: la estabilidad del intermedio ¢ formado y la fortaleza del enlace

coordinado.”® La ruptura del enlace 6 coordinado puede ser homolitica o heterolitica,
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dependiendo de la naturaleza electronica del centro metalico involucrado. Los centros
basicos promueven la ruptura homolitica, mientras que los centros 4cidos favorecen la
ruptura heterolitica con la ayuda de una base interna o externa.’*“”’” Ademas, debe
mencionarse que la activacion de los enlaces ¢ de moléculas orgénicas sustituidas con
grupos coordinantes puede ser asistida por efectos quelato o dirigida por un atomo
director. En el primer caso, la ruptura del enlace ¢ ocurre antes de la coordinacion del

atomo dador asistente,’*>7

mientras que en el segundo la secuencia es la inversa, es decir,
el grupo director se coordina primero.'*>” El complejo 23 es una especie saturada que,
mediante la eliminacion reductora de una molécula de hidrégeno, produce el trihidruro
insaturado IrH3(P'Pr3)2 (A). Esta especie es la responsable de iniciar los procesos de
activacion de enlaces o, promovidos por el pentahidruro 23. El Esquema 3.3 racionaliza
de manera general los productos formados en las reacciones recogidas en el Esquema 3.2.
La coordinacion de uno de los enlaces o de los pro-ligandos al centro acido de iridio(III)
de la especie A conduciria inicialmente a los intermedios ¢ B. Asi, la ruptura heterolitica
del enlace coordinado utilizando un hidruro basico podria dar las especies dihidruro-
iridio(IIl)-dihidrogeno C, que generarian los dihidruros D mediante la sustitucion de la
molécula de hidrégeno coordinada por el grupo dador de 2e” del pro-ligando mono-
activado. Estos intermedios dihidruro vuelven a ser saturados. Asi, necesitan eliminar
reductivamente hidrégeno molecular para formar los derivados de iridio(I) E, que
contintian con el proceso. Una vez formados, el centro metalico béasico de estas especies
deberia promover la adicion oxidante homolitica del segundo enlace o activado,
generando los complejos IrH(x>-L)(P'Pr3)2, a través de los intermedios o©
pentacoordinados F. En otras palabras, la primera activaciéon implica una ruptura

heterolitica asistida por quelatacion, mientras que la segunda ruptura es una adicion

oxidante homolitica dirigida por un 4&tomo coordinante.
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Esquema 3.3. Racionalizacion de la formacién de los complejos IrH(x-L)(PPr3)s.

El proceso de formacion del compuesto 24 es lento. En tolueno, a reflujo, tarda
una semana en completarse, y al final de la reaccion se observa un grado de
descomposicion significativo. Como resultado, el complejo 24 se aislé como un so6lido
naranja, con un rendimiento moderado (32%), después de purificar el crudo de reaccion
mediante cromatografia en columna de gel de silice, desactivada con EtsN. Cuando la
reaccion se detuvo, al cabo de 24 horas, se obtuvo una mezcla de 23, 24d y 24, en una
proporcion molar aproximada de 15:54:31. De esta mezcla se obtuvieron cristales
incoloros de 24d, que fueron aptos para realizar un analisis de difraccion de rayos X. La
Figura 3.2 exhibe una vista de la estructura, que demuestra la activacion del enlace C-H
del grupo fenilo y la naturaleza libre del sustituyente fendxido. El poliedro de
coordinacion alrededor del centro de iridio(IIl) se puede describir como un octaedro
distorsionado, con los ligandos fosfina dispuestos en posicion trans (P(1)-Ir—P(2) =
161.42(2)°), mientras que el quelato resultante de la activacion se sitia trans a los
ligandos hidruro, no equivalentes (C(1)-Ir—-H(01) = 174.9(10) y N(1)-Ir-H(02) =

173.7(10)), en un plano perpendicular a la direccién P—Ir—P. La distorsion observada
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respecto al octaedro ideal se debe principalmente al pequefio angulo de mordedura C(1)—

Ir-N(1) del quelato, 77.21(9)°.

Figura 3.2. Diagrama ORTEP del complejo 24d. Por claridad, s6lo se muestran los
dtomos de hidrogeno significativos. Distancias (A) y 4ngulos (°) de enlace seleccionados:
Ir-C(1)=2.078(2), Ir-N(1) =2.208(2), Ir—P(1) =2.2985(11), [r—P(2) =2.3043(12), P(1)—
Ir-P(2) = 161.42(2), C(1)-Ir-H(01) = 174.9(10), N(1)-Ir—H(02) = 173.7(10), C(1)-Ir—
N(1)=77.21(9).

La activacion selectiva de un enlace C—H particular en una molécula organica
aromatica depende cinéticamente de la estabilidad del intermedio o-(MCH), dado que la
fuerza de los diferentes enlaces C—H es similar. Por tanto, estd controlada por factores
estéricos. Primero se activan los enlaces C—H situados en posiciones con menor
impedimento estérico. En principio, la formacion del complejo 24 a través del intermedio
24d podria parecer sorprendente, ya que este ultimo es el resultado de la activacion C—H
del sustituyente fenilo de la 3-fenoxi-1-fenilisoquinolina, en presencia de un grupo
fenoxido expuesto a un menor impedimento estérico. Sin embargo, cabe sefialar que la
activacion C—H del sustituyente fenilo esta favorecida termodindmicamente respecto a la

activacion C—H del grupo fendxido, principalmente debido a que la primera genera una

especie mas entropica que la tltima.
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Las reacciones del polihidruro 23 con 2-(1H-bencimidazol-2-il)-6-fenilpiridina y
2-(1H-indol-2-il)-6-fenilpiridina para formar los derivados 25 y 26, respectivamente, son
significativamente mas rapidas que la reaccion de 23 con 3-fenoxi-1-fenilisoquinolina.
Asi, los monohidruros correspondientes se pudieron aislar con buenos rendimientos (69-
77%), después de 24 horas en tolueno, a reflujo, como so6lidos amarillos. Cuando la
reaccion de 23 con 2-(1H-bencimidazol-2-il)-6-fenilpiridina se detuvo al cabo de 10
horas, se obtuvo una mezcla de 25d y 25 en una proporcién molar aproximada de 80:20.
Por su parte, la reaccion de 23 con 2-(1H-indol-2-il)-6-fenilpiridina gener6 una mezcla
de 23, 26d y 26 en una proporcién molar aproximada de 10:42:48, al cabo de 3 horas.
Los espectros RMN de 'H de las mezclas revelan la ausencia de una resonancia NH en
cualquier especie metalica. Este hecho indica que la activacion N-H del sustituyente
biciclico del pro-ligando precede a la activacion C-H del grupo fenilo, en ambos casos,
como recoge el Esquema 3.2. La activacion inicial del enlace N—H del biciclo era
esperable, dada la mayor polaridad del enlace N-H respecto al enlace orfo-CH del
sustituyente fenilo y a la naturaleza heterolitica de la primera activacion del pro-ligando.
El complejo 25 se caracteriz6 mediante andlisis de difraccion de rayos X. La estructura
(Figura 3.3) demuestra la formacion del pincer N,N',C. Los atomos dadores alrededor del
centro metéalico forman un octaedro distorsionado con los ligandos fosfina dispuestos en
posicion trans (P(1)-Ir-P(2) = 160.39(4)°). El pincer actia con un dngulo de mordedura
C(1)-Ir-N(2) de 156.14(14)°, en un plano perpendicular a la direccién P-Ir-P, y situa el
anillo central de piridina en posiciéon trans al ligando hidruro (H(01)-Ir—N(1)) =

176.2(13)°).
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Figura 3.3. Diagrama ORTEP del complejo 25. Por claridad, s6lo se muestran los atomos
de hidrégeno significativos. Distancias (A) y angulos (°) de enlace seleccionados: Ir—C(1)
= 2.038(3), Ir=N(1) = 2.068(3), I[r-N(2) = 2.162(2) Ir—P(1) = 2.3507(7), Ir—P(2)
2.3451(9), P(1)-Ir-P(2) = 160.39(4), N(1)-Ir-H(01) = 176.2(13), C(1)-Ir-N(2)
156.14(14), C(1)-Ir—N(1) = 79.46(13), N(1)-Ir-N(2) = 76.68(10).

La sustitucion del biciclo, en 2-(1H-bencimidazol-2-il)-6-fenilpiridina y 2-(1H-
indol-2-il)-6-fenilpiridina, por un grupo 2-hidroxifenilo provoca un aumento adicional en
la velocidad de formacién del pincer. En tolueno, a reflujo, la reaccion del pentahidruro
23 con 2-(2-hidroxifenil)-6-fenilpiridina se completa en 16 horas, aproximadamente 8
horas menos que el tiempo necesario para la formacion de los pincers N,N',C de los
complejos 25 y 26. El compuesto 27, que contiene un pincer C,N,O, se aislé6 como un
solido amarillo, con un rendimiento del 70%, y se caracterizd mediante andlisis de
difraccion de rayos X. La Figura 3.4 ofrece una vista de la molécula. El poliedro de
coordinacion alrededor del centro metélico es el octaedro esperado, donde el pincer se
sitia en el plano perpendicular a la direccion P-Ir—P (P(1)-Ir—P(2) = 158.58(1)°), con el
grupo piridilo en disposicion trans al ligando hidruro (N(1)-Ir—H(01)) = 178.5(8)°). Lo
mas destacable de este octaedro es el angulo de mordedura del pincer, 170.93(6)° ((C(1)—

Ir-O(1)), aproximadamente 15° mayor que el encontrado para el complejo 25,
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acercandose al valor ideal de 180°. En este caso, no se detectd un intermedio dihidruro de
tipo D. Esto indica que la ruptura del primer enlace ¢ es mas lenta que la escision del
segundo. Por tanto, la primera activacion deberia ser la del enlace C—H del grupo fenilo.
Dado que la energia de disociacion del enlace O—H debe ser menor que la del enlace C—
H, el intermedio ¢ M(n>~C—H) debe ser mas estable que el intermedio implicado en la
activacion O-H. También debe notarse que la activacion O-H podria generar un
intermedio dihidruro geométricamente mas confortable que la activacion C—H. Esto es
debido a que la activacion O—H genera un anillo de seis miembros, con un angulo O(1)—
Ir-N(1) casi ideal de 90.25(5)°. En este contexto, se debe mencionar que la activacion del
sustituyente fenol no requiere la eliminacién reductora de hidrégeno molecular del
correspondiente intermedio D del Esquema 3.3. El fenol es suficientemente acido para
protonar uno de los ligandos hidruros de D, generando de este modo una especie hidruro-
iridio(III)-dihidrégeno, donde la molécula de hidrogeno coordinada podria ser desplazada

por el atomo de oxigeno del fenolato resultante.

Figura 3.4. Diagrama ORTEP del complejo 27. Por claridad, s6lo se muestran los atomos
de hidrogeno significativos. Distancias (A) y angulos (°) de enlace seleccionados: Ir—C(1)
=2.0144(15), Ir—O(1) = 2.1172(12), Ir-N(1) = 2.1285(13), Ir—P(1) = 2.3381(4), [r—P(2)
= 2.3427(4), P(1)-Ir-P(2) = 158.58(1), N(1)-Ir—H(01) = 178.5(8), C(1)-Ir—O(1) =
170.93(6), O(1)-Ir-N(1) = 90.25(5), C(1)-Ir-N(1) = 80.86(6).
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El 4&tomo de oxigeno del sustituyente 2-hidroxifenilo juega un papel crucial en la
formacién de los ligandos pincer de tipo C.X,0 (X = N, C), desde un punto de vista
termodinamico. Esto resulta evidente cuando se comparan las reacciones de 23 con las
sales triflato de los cationes N-(2-hidroxifenil)-N'-fenilimidazolio y N,N-
difenilimidazolio. En tolueno, a reflujo, el primero produce rapidamente al compuesto 28,
que se aisla como un so6lido blanco, con un rendimiento del 66%, mientras que, en
presencia de trietilamina, la sal del cation N,N'-difenilimidazolio conduce al dihidruro
IrH2 {x3-C,C,-[CéH4-Im-CsHs]} (P'Pr3)2 (30 en el Esquema 3.4) después de 1 hora, como
un so6lido blanco, con un rendimiento aislado del 40%. A diferencia de los intermedios
24d-26d y 29d, el complejo 30 es estable y no forma el pincer C,C’,C correspondiente,
incluso en decalina, a reflujo, durante dias. La marcada estabilidad de 30 también es una
evidencia a favor de una rapida activacion O—H del sustituyente 2-hidroxifenilo, en los

intermedios dihidruro de tipo D.
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Esquema 3.4. Preparacion del complejo 30.

El complejo 30 se caracterizo mediante andlisis de difraccion de rayos X. La
estructura (Figura 3.5) demuestra la activacion orto-CH de solo uno de los sustituyentes
fenilo. La caracteristica mas destacable del octaedro formado por los atomos dadores
alrededor del centro de iridio, es la fuerte distorsion originada por el pequeno valor del
angulo de mordedura C(1)-Ir-C(5) del quelato, 77.82(10)°. Las resonancias

correspondientes a los ligandos hidruro en los espectros RMN de 'H (Tabla 3.2) son
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consistentes con esta estructura, y con las resonancias de campo alto observadas en los

espectros de 'H de los complejos dihidruro que recoge el Esquema 3.2.

Figura 3.5. Diagrama ORTEP del complejo 30. Por claridad, s6lo se muestran los atomos
de hidrogeno significativos. Distancias (A) y angulos (°) de enlace seleccionados: Ir—C(1)
=2.050(2), Ir—C(5) = 2.136(3), Ir-P(1) = 2.3037(7), Ir-P(2) = 2.2922(7), P(1)-Ir-P(2) =
160.50(3), C(1)-Ir-H(01) = 173.3(12), C(5)-Ir-H(02) = 174.3(12), C(1)-Ir—C(5) =
77.82(10).

La molécula 1,3-di(2-piridil)-4,6-dimetilbenceno es generalmente el precursor de
un interesante ligando pincer N,C,N, dador de 5S¢, que resulta de la activacion del enlace
C—H en la posicion 2 del grupo fenilo central, y la coordinacion mer de sus sustituyentes
piridilo.?%® Este ligando ha desempefiado un papel relevante en el desarrollo de emisores
fosforescentes heterolépticos de iridio(IIl), basados en la coordinacion de dos ligandos
pincer diferentes.?>¢2% El complejo 29 es un caso inusual de activacion C—H de tipo
rollover®® de uno de los grupos piridilo de este pro-ligando, que genera un ligando pincer
N,C,C" dador de 4e". Su formacion requiere al menos 2 dias y ocurre con un grado elevado

de descomposicion. Como consecuencia, se aislo como un so6lido amarillo, con un

rendimiento bajo (12%), después de una tediosa purificacion del crudo de reaccion. Esta
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implic6 una cromatografia en columna de silice desactivada y varios lavados del residuo
obtenido con dietil éter. La activacion del enlace CH de tipo rollover en uno de los grupos
piridilo se confirmé mediante andlisis de difraccion de rayos X. La Figura 3.6 presenta
una vista de la estructura octaédrica del monohidruro 29, que recuerda a la de los demas

miembros de la familia. En este caso, el &ngulo de mordedura C(1)-Ir—N(1) es 157.90(9)°.

Figura 3.6. Diagrama ORTEP del complejo 29. Por claridad, s6lo se muestran los atomos
de hidrogeno significativos. Distancias (A) y angulos (°) de enlace seleccionados: Ir—C(1)
= 2.053(2), Ir=C(7) = 2.014(3), Ir=N(1) = 2.135(2), Ir—P(1) = 2.3355(6), Ir—P(2)
2.3415(6), P(1)-Ir-P(2) = 157.72(2), C(1)-Ir—N(1) = 157.90(9), C(7)-Ir-H(01)
179.4(10).

La activacion de tipo rollover del enlace C—H del grupo piridilo, que parece ser la
ultima etapa del proceso de formacion del pincer, merece algunos comentarios
adicionales. La eliminacion reductora del hidrogeno molecular de 29d deberia dar lugar
a un intermedio N,C,N, de iridio(I), Ir {x*-N,C,N-[py-CsHMe2-py]} (P'Pr3)2. En principio,
este intermedio tendria que ser mas estable que la especie plano cuadrada correspondiente
de tipo E. La estabilizacion deberia surgir de la coordinacion del grupo piridilo libre, dada

la marcada habilidad de las especies de Ir(I) para formar derivados pentacoordinados. De
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acuerdo con esto, después de 24 horas, el espectro RMN de *'P{'H} de la disolucién de
reaccion contiene un singlete a 36.3 ppm que, a diferencia de las sefiales correspondientes
a 29 y 29d, no se desdobla en condiciones de off-resonance (Figura AIIL.30). Existen
precedentes de transformaciones similares; por ejemplo, el complejo de osmio(Il)
OsH {i*-N,N',C-[Mepz-py-CsH4]} (P'Pr3)2 es inestable en disolucién y evoluciona hacia
su isémero de osmio(IV) OsHz{x’-C,N,C"-[CsNNMe-py-Ce¢Ha4]}(P'Pr3) mediante la

activaciéon C—H, de tipo rollover, del grupo pirazolilo.?!

3.3. Propiedades fotofisicas y electroquimicas de los complejos 24-29

Hemos estudiado las caracteristicas espectroscopicas de absorcion y emision, asi
como las propiedades electroquimicas, de los complejos preparados en este capitulo. El
objetivo del estudio era conocer su capacidad para actuar como emisores fosforescentes
con potencial aplicacion como fotocatalizadores. En esta seccion damos los resultados

obtenidos.

La Tabla 3.3 recoge las absorciones mas significativas de los complejos 24-29.
Los espectros UV-Vis de estos compuestos, en 2-MeTHF, a temperatura ambiente
exhiben bandas cuya intensidad varia segun su posicion (Figuras AIIL.43-AlI1.48). Se
observan absorciones muy intensas (¢ = 69000-10000 M! cm™) por debajo de 300 nm,
bandas fuertes (e = 27000-5000 M! cm™) en la regién de 300-430 nm (330-500 nm para
24), y absorciones débiles (¢ < 3000 M™! cm™) a energias inferiores a 430 nm (510 nm
para 24). Los espectros se racionalizaron con la ayuda de calculos TD-DFT (B3LYP-
D3//SDD(f)/6-31G**), considerando THF como disolvente (Figuras AIIl.43-AIIL.48).
Las Figuras AIIl.49-Alll.54 muestran una representacion grafica de los orbitales de los

compuestos, mientras que su distribucion se recoge en las tablas AIIL7-AIIl.12. Las
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bandas de mayor energia se deben principalmente a transiciones intrapincer 'n-n". Las
absorciones observadas en la region de energia intermedia corresponden a transferencias
de carga, permitidas por espin, desde el centro de iridio al ligando pincer, combinadas
con transiciones intrapincer. Las absorciones débiles implican transiciones HOMO-
LUMO formalmente prohibidas por espin, combinadas con transiciones HOMO-1-
LUMO u HOMO-LUMO+1, que resultan del fuerte acoplamiento espin-6rbita inducido
por el centro de iridio. El HOMO de todos los compuestos se distribuye entre el metal
(17-37%) y uno de los grupos activados (40-73%), mientras que el LUMO se extiende
por el grupo dador de 2e (60-80%) y el otro grupo activado (17-31%), excepto para el
complejo 28, en el que se distribuye de manera similar entre los tres grupos del ligando

pincer.

Tabla 3.3. Absorciones UV-Vis seleccionadas de los complejos 24-29, en 2-MeTHF, y
energias de excitacion verticales TD-DFT calculadas en THF.

Aexp £ Ene-r gl% d ¢ Fue.r za del . ., Caracter de la
— excitacion oscilador, Transicion transicién
(nm) M' em™) (nm) f
Complejo 24
291 24000 284 0.0348 HOMO-7 — LUMO (76%) (L—>1L)
429 9000 443 0.0659 HOMO-1 — LUMO (74%) (Ir+L—>1L)
517 300 509 0 HOMO — LUMO (91%) (Ir+L—1L)
Complejo 25
260 52000 274 0.0253 HOMO-5 — LUMO (91%) (L—>L)
330 27300 326 0.2957 HOMO-3 — LUMO (68%) (Ir+L—>L)
370 17400 377 0.0377 HOMO — LUMO +1 (80%) ((Ir+L—L)
) 4 HOMO-1 — LUMO (52%)
430 500 33 0 HOMO — LUMO + 1 (25%) (Ir+L—>1L)
Complejo 26
240 68100 270 0.0513 HOMO-5 — LUMO (85%) (L—>1L)
HOMO-3 — LUMO++I1 (49%)
+
340 18900 323 0.2495 HOMO-3 — LUMO (37%) (Ir+L—-1L)
396 16700 383 0.1974 HOMO-1 — LUMO (85%) (Ir+L—-1L)
HOMO-1 — LUMO (55%)
432 2900 442 0 (Ir+L—-1L)

HOMO — LUMO (25%)
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Complejo 27
278 16690 274 0.0545 HOMO-4 — LUMO+1 (70%) (L — L)
322 9120 313 0.1077 HOMO-3 —» LUMO+1 (84%) (Ir+L—1L)
366 6720 366 0.0819 HOMO-1 — LUMO (67%) (Ir+L—>1L)
N 0
480 330 491 0 381114/18 N I]:[lﬁ/l/[gﬂs(g?%) (Ir+L —>1L)
Complejo 28
238 38584 230 0.2884 HOMO-4 — LUMO (53%) (L—>L)
339 6957 320 0.0577 HOMO — LUMO + 1 (95%) (Ir+L—>1L)
362 5768 340 0.0382 HOMO — LUMO (95%) (Ir+L—>1L)
387 1465 401 0 Egﬁg : Eﬁﬁgfﬁ@% | (Ir+L—1L)
Complejo 29
300 10910 299 0.1822 HOMO-4 — LUMO (66%) (L—>L)
370 4400 383 0.0818 HOMO-1 — LUMO (73%) (Ir+L—1L)
408 5740 402 0.1429 HOMO — LUMO (85%) (Ir+L—>1L)
490 380 472 0 HOMO — LUMO (65%) (Ir+L—>1L)

La diferencia de energia HOMO-LUMO varia entre 4.35y 3.25 eV, disminuyendo
en la secuencia 28 > 25 > 29 > 27 > 26 > 24. Los valores estimados, mediante calculos
DFT, para los niveles de energia HOMO de los seis compuestos son comparables con
aquellos obtenidos experimentalmente a partir de los respectivos potenciales de la
primera oxidacion, referenciados frente al par Fc'/Fc (Tabla 3.4). En este contexto, es
importante destacar la profundidad del HOMO del complejo 25, cuyo nivel de energia de
-5.20 eV esta entre 0.4 y 0.5 eV por debajo del resto. La Figura AIIL.55 muestra los
correspondientes voltamogramas, medidos en diclorometano, bajo atmdsfera de argén,
utilizando [BusN]PFs (0.1 M) como electrolito de soporte. Los complejos 24 y 26
muestran tres oxidaciones (Ir(ILD)/Ir(IV), Ir(IV)/Ir(V) e Ir(V)/Ir(VI)) entre -0.10 y 1.03 V,
mientras que para los complejos 25 y 27-29 solo se observan dos (Ir(III)/Ir(IV) e
Ir(IV)/Ir(V)) entre -0.06 y 0.88 V. Estos procesos son reversibles, a excepcion de la
segunda oxidacion del complejo 24 y la primera del compuesto 29, que aparecen a 0.20

y 0.03 V, respectivamente.
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Tabla 3.4. Potenciales de oxidacion y energias DFT de los orbitales moleculares para los
complejos 24-29.

obs (eV) caled (eV)
Complejo 172 (V)

HOMO? HOMO LUMO HLG"
24 -0.10, 0.20¢, 0.84 -4.70 -4.92 -1.67 3.25
25 0.40, 0.88 -5.20 -5.01 -1.24 3.75
26 -0.01, 0.21, 1.03 -4.79 -4.64 -1.10 3.54
27 0.05, 0.59 -4.85 -4.66 -1.07 3.59
28 -0.06, 0.21 -4.74 -4.56 -0.21 4.35
29 0.03¢,0.40 -4.83 -4.82 -1.14 3.68

*HOMO = -[ E$%, vs Fc'/Fe +4.8] eV. "HGL = LUMO — HOMO. °E**

Los complejos 25 y 27 son emisores eficientes en la region del verde (498-572
nm). Sin embargo, los compuestos 24, 26 y 29 son emisores pobres en las regiones del
rojo, naranja y verde, respectivamente, mientras que el derivado NHC 28 no es emisivo.
Las medidas se realizaron bajo fotoexcitacion en tres condiciones diferentes: en film de
PMMA dopado con un 5% en peso de la muestra, a temperatura ambiente; en 2-MeTHF,
a temperatura ambiente, y en 2-MeTHF, a 77 K. La Tabla 3.5 reune las longitudes de
onda experimentales y calculadas, los tiempos de vida media observados, los
rendimientos cuanticos y las constantes de velocidad radiativa y no radiativa de todos
ellos. La Figura 3.7 muestra los espectros de emision de los complejos 25 y 27, mientras
que la Figura AIIL.57 recoge los espectros de todos los emisores (24-27 y 29). Las
emisiones ocurren desde los respectivos estados excitados Ti, como sugiere la buena
concordancia existente entre las longitudes de onda experimentales, en 2-MeTHF, y
aquellas calculadas a partir de la diferencia de energia entre los estados optimizados T1y

So, en THF.



88

Capitulo 3

Tabla 3.5. Datos fotofisicos para los complejos 24-27 y 29.

“zf n’l“)‘“ Medio (T/K) Aem (nm) ™ (ps) ® k(Y k(Y Kk
Complejo 24
632,679, 3.6 (0.4,7.7%; , S
PMMA (298) a1 30,0050 007 19X10° 26x10° 008
657  2-MeTHF (298) 634, 682 48 004 83x10° 20x10°5 0.04
620,635,  8.9(9.7,82.1%;
ZMeTHE(T7) 76 736 5.3, 17.9%)
Complejo 25
11.3 (13.0,
PMMA (298) 530 70.4%; 7.5, 090 8.0x10* 89x10° 9.00
29.6%)
527 2-MeTHF (298) 530 17.3 067 39x10* 19x10* 2.03
498,528, 21.3 (24.4, 65.9%;
2-MeTHF (77) 572 15.4, 34.1%)
Complejo 26
13.4 (21.9, 32.3%; y .
PMMA (298) 568, 612 036770 015 LIX10' 63x10° 018
597 2-MeTHF (298) 5766’8%24’ 36.5 009 25x10° 25x10* 0.10
552, 602,
2-MeTHF (77) Py 95.0
Complejo 27
5.9(0.5, 2.1%; S )
PMMA (298) 534 60,9700 066 LIx10° 58x10° 194
554 2. MeTHF (298) 539 9.6 065 6.8x10* 3.7x10* 186
470, 507,
2-MeTHF (77) i 13.6
Complejo 29
2.0 (0.4, 18.7%; y S
PMMA (298) 540 24 81300 003 15x10 49x10° 003
2.0 (4.0, 18.8%;
523 - ’ ; 4 s
2-MeTHF (298) 535 19,8120 003 10x10* 33x10° 003
487,501, 4.1 (5.1, 68.0%;
2-MeTHE (77) 524 2.0, 32.0%)

2En t de segundo orden se utiliza la vida media promedio ponderada en funcién de la amplitud relativa,
que se dan entre paréntesis. "Calculado de acuerdo a k. = @/zy k,, = (1 — D)/t
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Los perfiles de las bandas de emision de los emisores verdes mas eficientes, 25 y
27, son muy similares. Ambos exhiben bandas sin estructura a temperatura ambiente, con
valores de ancho de banda a media altura (FWHM) en el rango de 83-88 nm, tanto en
PMMA como en 2-MeTHF. Sin embargo, estas bandas se convierten en estructuras
vibronicas finas en 2-MeTHF, a 77 K. Esto confirma una contribucion relevante de una
componente intraligando n-n* a la emision, que involucra al ligando pincer. Los tiempos
de vida del compuesto 25 son relativamente largos, oscilando entre 11.3 y 21.3 ps,
aproximadamente el doble de los del complejo 27, que se encuentran entre 5.9 y 13.6 ps.
El rendimiento cuantico del emisor 25 en 2-MeTHF es alto, alcanzando 0.67, y aumenta
a 0.90 en film de PMMA. El descenso del rendimiento cuantico en disolucion esta
asociado con el aumento de la constante de velocidad no radiativa. De acuerdo con esto,
se observa una reduccion significativa de la constante de velocidad no radiativa (knr) en
film de PMMA en comparacion con la calculada para la disolucion en 2-MeTHF (8.9 x
10° s vs 1.9 x 10*s™!). Ademas, la constante de velocidad radiativa (k) en film de PMMA
es aproximadamente el doble que en disolucion, en 2-MeTHF. Los rendimientos
cuanticos del compuesto 27 en PMMA y 2-MeTHF son altos y practicamente idénticos:

0.66 y 0.65, respectivamente.
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(a) Film de PMMA
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(b) 2-MeTHF (278 K)
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Figura 3.7. Espectro de emision de los complejos 25 y 27 en: (a) film de PMMA dopado
al 5 % en peso, a 298 K. (b) 2-MeTHF, a 298 K. (c) 2-MeTHF, a 77 K.

Los rendimientos cudnticos bajos se han asociado a la presencia de estados
excitados tripletes, térmicamente accesibles, centrados en el metal, que generan vias de
relajaciéon a So no radiativas.”*® Sin embargo, esto no parece ser la causa del bajo
rendimiento cudntico de las emisiones de los complejos 24, 26 y 29, ya que no existen

diferencias significativas entre la distribucion de densidad de espin calculada para sus
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estados tripletes T1 optimizados, y la calculada para los estados tripletes T1 optimizados
de los compuestos 25 y 27; en todos los casos esta principalmente centrada en el ligando
pincer (Figura 3.8). Por el contrario, se observa que la constante de velocidad no radiativa
es uno o dos 6rdenes de magnitud mayor que la constante de velocidad radiativa para los

tres emisores (24, 26 y 29), tanto en film de PMMA como en disolucioén en 2-MeTHF.

Figura 3.8. Densidades de espin de los tripletes T1 optimizados de los complejos 24-26
y 29 (valor de contorno 0.002).

3.4. Comportamiento fotocatalitico de los compuestos 25y 27 en la a-amino arilacion

C(sp’>)-H

La mayoria de los complejos de iridio(IIl) que tienen aplicaciones fotocataliticas
son especies con dos o tres ligandos ciclometalados. Sin embargo, no se conocen
fotocatalizadores de iridio(IIl) que contengan tres ligandos monodentados, incluyendo
fragmentos IrH(PR3)2. A pesar de ello, los complejos 25 y 27, especialmente 25, exhiben

caracteristicas congruentes con una capacidad notable como fotocatalizadores.®> Ambos
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complejos poseen una buena absorcion en un amplio rango de longitudes de onda. Sus
emisiones muestran un rendimiento cuantico alto en disolucion, y por ello el rendimiento
de formacion de los respectivos estados excitados reactivos deberia ser alto,
aproximadamente un 70%. Ademads, estos estados excitados permanecerian el tiempo
suficiente para reaccionar con el sustrato, ya que poseen tiempos de vida suficientemente
largos (10-17 ps). Los complejos 25 y 27 muestran un comportamiento electroquimico
reversible. En este contexto, debe mencionarse que el valor de Ei2(Ir**/Ir*") referenciado
respecto al par Fc'/Fc para el complejo 25 (0.40 V) es similar al del compuesto Ir{ik*-
C,N-[2-CsHa-py]}s (0.36 V), el fotocatalizador prototipo para las a-amino arilaciones

C(sp*)-H con derivados ciano.”!"?

El potencial Ei2(Ird"/T'Ir*") del estado excitado para un fotocatalizador de
iridio(III) pueden determinarse mediante la ecuaciéon 1, donde Ei(Ir*'/Ir*") es el
potencial de reduccion para la oxidacion de Ir** a Ir**, y Eo.o es la energia libre del estado
excitado.®® Los valores de Eo-o se han determinado de diferentes maneras.®®® Dada la
divergencia observada, decidimos estimar los de los emisores 25 y 27 utilizando diversos
métodos, que incluyen: calculos DFT utilizando N,N-dimetilacetamida, un disolvente
tipico para reacciones de o-amino arilacion C(sp*)-H; a partir de la intersecciéon de los
espectros de absorcion y emision, en 2-MeTHF, a temperatura ambiente y 77 K, y a partir
del maximo de emision en los espectros, en 2-MeTHF, a temperatura ambiente y 77 K.
Con los valores de Eo-o obtenidos por estos métodos y utilizando la ecuacién 1, obtuvimos

4+/T 1 Ir3+

valores para los potenciales Ei.(Ir ) en el rango entre -2.24 y -1.88 V, para el

complejo 25, y entre -2.66 y -2.11 V, para el compuesto 27 (Tabla 3.6).

Eip(Ir** /M) = Ep(If*/1r%h) — Eo-o (1)
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Tabla 3.6. Datos electroquimicos necesarios para evaluar la viabilidad de las reacciones
fotocataliticas.

Eip E Eip Eip Epn AEy® (V) AEJ (V)
Compuesto (Ir**/Ir*") (ei',") Ir*/MIr¥)? (NCb/NCb)¢ (am*/am) 14-  4- Ph- Ph-
(\4) (\4) V) W) DCB NCpy NMe: piperidina
2.28¢ -1.88 0.39 032
2.68" -2.28 0.79 0.72
25 0.40 2.64 -2.24 0.75  0.68 0.10 0.10
2.34 -1.94 0.45 0.38
2.49% -2.09 0.60 0.53
2.168 -2.11 0.62  0.55
2.57" -2.52 1.03  0.96
27 0.05 2.71¢ -2.66 1.17 1.10 -0.25 -0.25
232 -2.27 0.78 0.71
2.64% -2.59 1.10 1.03
1,4-DCB -1.49
4-NCpy -1.56
Ph-NMe: 0.30
Ph-
piperidin 0.30

a

“Valores de la Tabla 3.4. *De acuerdo a la ecuacién 1. E12 en CH2Cl2 vs Fc*Fe. “Mitad del pico del potencial en
CH:Cl2 vs Fc"Fe. *De acuerdo a la ecuacion 2./De acuerdo a la ecuacion 3. éEstimado mediante calculos DFT en N,N-
dimetilacetamida como la diferencia de energia singlete-triplete (AGst). “Estimado de la interseccion de los espectros
de absorcion y emision en 2-MeTHF a temperatura ambiente. ‘Estimado de la interseccion de los espectros de absorcion
y emisién en 2-MeTHF a 77 K. /Estimado de Amax en 2-MeTHF a temperatura ambiente. “Estimado del Amax en 2-
MeTHF a 77 K.

Los valores en ambos rangos son mas negativos que el potencial de reduccion
registrado para la reduccion de 1,4-dicianobenceno (1,4-DCB), -1,20 V vs F¢'/Fc. Para
confirmarlo, estudiamos las propiedades electroquimicas de 1,4-dicianobenceno y 4-
cianopiridina (4-NCpy) bajo las condiciones previamente utilizadas para obtener los
potenciales recogidos en la Tabla 3.4. En nuestras manos, la reduccion reversible de estos
derivados ciano (NCb) a sus radicales anionicos correspondientes ocurre a potenciales de
reduccion (E12(NCb/NCbY)) de -1,49 y -1,56 V vs Fc'/Fc, respectivamente (Tabla 3.6).
Estos valores son menos negativos que los obtenidos para la oxidacion en el estado
excitado de los emisores 25 y 27 a las respectivas especies de iridio(IV). Por lo tanto, la
reaccion redox b del ciclo expuesto en el Esquema 3.1 es un proceso termodinamico
posible (AEb > 0), para ambos derivados ciano y para ambos emisores, de acuerdo a la

ecuacion 2.
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AEb = E1n(NCb/NCb) — E1(Ir* /M) ()

Una vez confirmada la viabilidad de la reduccion de los derivados ciano a sus
radicales anionicos correspondientes, seleccionamos dimetilfenilamina y fenilpiperidina
como aminas modelo (am) para arilar, y estudiamos sus caracteristicas electroquimicas
bajo las mismas condiciones mencionadas anteriormente. Ambas aminas muestran una
oxidacion irreversible a sus respectivos radicales cationicos. Se ha esgrimido que el pico
de los potenciales sobreestima el potencial redox real, en muchos casos, siendo el
potencial a mitad del pico, Ep2, un valor més adecuado; es decir, el valor del potencial en
la mitad del méaximo, en el voltamograma ciclico.’® Para ambas aminas, el valor de
Ep2(am™/am) es 0,30 V vs Fc'/Fc (Tabla 3.6); menos positivo que el valor de Ei2(Ir*/Ir*")
para el complejo 25, pero mas positivo que el del compuesto 27. Asi, de acuerdo con la
ecuacion 3, la oxidacion de ambas aminas, representada por la reaccion redox ¢ en el ciclo
que exhibe el Esquema 3.1, es termodinamicamente posible (AEc > 0) para el primero,

pero no para el segundo (AEc < 0).
AE: = E1p(It*/1r*") — Epp(am*/am) (3)

Una vez visto que el compuesto 25 puede llevar a cabo el ciclo propuesto en el
Esquema 3.1, decidimos estudiar su comportamiento como fotocatalizador en la a-amino
arilacién C(sp®)-H. Utilizamos un exceso de amina, dado que AE, < AE», y la oxidacion
de la amina podria ser més lenta que la reduccion del derivado ciano. Asi, a temperatura
ambiente, irradiamos con LEDs azules disoluciones, en N,N-dimetilacetamida, que
contenian ambos, los compuestos ciano (0.25 M) y las aminas (0.75 M), en presencia de
2% mol del emisor 25 y acetato de sodio (0.5 M) (ver la parte experimental). Como era
de esperar, después de 24 horas, tuvo lugar la formacion de los productos deseados. Se
observo la arilacion cuantitativa de ambas aminas con 1,4-dicianobenceno y de

dimetilfenilamina con 4-cianopiridina, mientras que la reaccion de arilacion de
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fenilpiperidina con 4-cianopiridina necesitd 3% mol de fotocatalizador, para completarse

solo al 60%. Los rendimientos aislados se dan en el Esquema 3.5.

R
25 (2 % mol)
RON"R + Ar—CN R/\N)\Ar
| LED azul
Ph
Ph NaOAc
24 h, ta.
>N N N X N A
| I .
Ph cN  Ph CcN Ph Ph
80% 82% 78% 56%"

“Condiciones de reaccion: derivado ciano (0.5 mmol), amina
(1.5 mmol), 25 (7.8 mg, 0.01 mmol, 2% mol), and NaOAc (82
mg, 1 mmol) in N,N-dimethylacetamide (2 mL) a temperatura
ambiente. 23% mol de 25.

Esquema 3.5. Reacciones de a-amino arilaciéon C(sp®)-H fotocatalizadas por 25.

3.5. Conclusiones

El estudio descrito en este capitulo demuestra que el complejo pentahidruro de
iridio IrHs(P'Pr3)2 activa selectivamente un enlace ¢ (C—H, N-H y O-H) de cada uno de
los sustituyentes, en posiciones adyacentes al &tomo dador de 2e’, de heterociclos tales
como isoquinolina, piridina e imidazolilideno. Las activaciones conducen a complejos
IrH(x-L)(P'Pr3)2 con cinco clases diferentes de ligandos pincer L: C,N,C"; N,N',C;
C,N,0; C,C’,0; y N,C,C'. Estas activaciones son secuenciales, siendo la segunda
generalmente la mas lenta. Asi, se han detectado y caracterizado espectroscdpicamente

los correspondientes intermedios dihidruro.

Dos de los nuevos complejos preparados por este método, 25 y 27, son emisores
fosforescentes verdes, bajo fotoexcitacion, que exhiben propiedades congruentes con una
capacidad notable para actuar como fotocatalizadores, tales como: buena absorcion en un

amplio rango de longitudes de onda, altos rendimientos cudnticos de emision en
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disolucion (aproximadamente 0.70), tiempos de vida suficientemente largos (10-17 us) y
comportamiento electroquimico reversible. En particular, el complejo 25 es un ejemplo
inusual de fotocatalizador hidruro-metal-fosfina, eficiente en la a-amino arilacion C(sp*)—

H con derivados ciano aromaticos, bajo irradiacion de luz azul.

Podemos concluir que la capacidad de los complejos polihidruro de metales del
grupo del platino para promover reacciones de activacion de enlaces ¢ puede utilizarse
para desarrollar nuevos tipos de fotocatalizadores para reacciones organicas, incluida la
formacion de enlaces C—C. Esto representa una nueva evidencia de la utilidad de los

derivados polihidruro.
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Este estudio revela hitos relacionados con los emisores fosforescentes de
iridio(Ill). De acuerdo con los objetivos planteados al inicio de la Tesis, hemos
desarrollado métodos de sintesis originales para la preparacion directa de tales emisores
de la clase [3b+3b+3b’], con disposiciones fac-N,N,N’y fac-C,C,C’. Los métodos parten
de precursores alternativos, distintos a los existentes, de tipo cis-[Ir(u>-n>-C=CR)(3b)2]2.
La utilizacion de ligandos alquinilo como bloques de construccidon proporciona la
posibilidad de formar estructuras metalo-aromaticas, que no son accesibles con otros
ligandos puente. Los ligandos alquinilo han demostrado ser precursores de unidades
iridaimidazo[ 1,2-a]piridina e iridaoxazol. Las reacciones de construccion de estos
metalaheterociclos han conducido a la preparacion de los primeros miembros de estas
familias. Ademas, el anillo iridaoxazol ha resultado ser un buen punto de partida para la
formacion de fragmentos hidroxicarbeno y la generacion de ligandos tetradentados
N,C,C’,0-dadores, desconocidos hasta ahora. Todo ello ha dado lugar a linajes inéditos.
Es de destacar que uno de los complejos de la estirpe iridaimidazo[1,2-a]piridina es un
emisor fosforescente saturado de color verde profundo con potencial aplicacion en
dispositivos OLED con especificaciones BT.2020. Adicionalmente, la habilidad de los
derivados polihidruro de metales del grupo del platino para activar enlaces o, nos ha
permitido llevar a cabo reacciones selectivas y secuenciales de activacion de enlaces
C-H, N-H y O-H en moléculas organicas, precursoras de ligandos pincer, que han
desembocado en la generacion de emisores fosforescentes hidruro-metal-fosfina, IrH(x>-
L)(P'Pr3)2, con cinco clases diferentes de ligandos pincer L: C.N,C"; N,N',C; C,N,O;
C,C',0; y N,C,C'. Uno de los miembros de esta familia se ha revelado como un
fotocatalizador muy eficiente en reacciones, de acoplamiento C-C, de a-amino arilacién

C(sp*)-H, con derivados ciano aromaticos.
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Los resultados obtenidos no solo han cumplido con los objetivos iniciales, sino
que han superado las expectativas, al abrir nuevas lineas de investigacion en quimica
inorganica, organica y organometalica. Ademads, es de resaltar que algunos de los
compuestos descubiertos presentan potencial aplicacion en ciencia de los materiales y

catalisis.
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E.1. Analisis, técnicas experimentales y equipos

Los andlisis elementales de hidrogeno, carbono y nitrogeno se realizaron

utilizando un microanalizador PERKIN.ELMER 2400 CHNS/O.

Los espectros de infrarrojo (IR) se registraron en estado solido en el rango de
400 y 4000 cm™! usando un espectrofotdometro PERKINS-ELMER SPECTRUM 100 FT-

IR, equipado con un accesoria ATR. Todos los valores se expresan en cm™.

Los espectros de masa por electrospray de alta resolucion se midieron con un

espectrometro BRUKER MicroTOF-Q, que cuenta con analizado hibrido Q-TOF.

Los espectros de resonancia magnética nuclear (RMN) se midieron en
espectrometros BRUKER ARX 300 y BRUKER Avance 300 0 400 MHZ. Las constantes
de acoplamiento, J y N, se expresan en hercios (Hz), y los desplazamientos quimicos, 9,
en partes por millon (ppm). Los desplazamientos quimicos de '"H 'y *C{H} se referencian
frente a las sefales residuales de los disolventes deuterados utilizados, los de "F{H}
frente a la sefial de CFCl3, y los de *'P{H} frente a la sefial de 4cido fosférico (H3POs,
85%). Se emplearon experimentos 2D de RMN como 'H-'H COSY, 'H-'*C HSQC y 'H-

13C HMBC para ayudar en la elucidacion de las estructuras.

Durante los estudios fotofisicos, todos los complejos organometalicos se
manipularon bajo estricta exclusion de aire y agua. Los espectros UV-Visible se
midieron con un espectrometro EVOLUTION 600. Los espectros de fotoluminiscencia
(emision y excitacion) en estado estacionario se registraron en un espectrofluorimetro
Jobin-Yvon Horiba Fluorolog FL-3-11 con un detector de fuente de energia TBX-PS o
con un espectrofotometro PicoQuant FluoTime 300. El software utilizado para el
tratamiento de datos fue HORIBA JOBIN IBON DAS6.v6.1. Los tiempos de vida se

midieron utilizando ldmparas de nanosegundos coaxiales IBH 5000F o con el
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espectrofotometro PicoQuant FluoTime 300. Los datos se ajustaron a funciones mono- o
biexponenciales. Los rendimientos cudnticos se determinaron con una esfera
integradora HAMAMATSU ABSOLUTE PL QUANTUM YIELD MEASUREMENT
SYSTEM C11347-11. La adquisicion de los espectros de electroluminiscencia de los
dispositivos OLED fue realizada por los técnicos de la empresa Universal Display

Corporation.

Las voltametrias ciclicas se realizaron con un potenciostato VOLTALAB
PST050, empleando un hilo de platino como electrodo de trabajo, otro hilo de platino
como electrodo auxiliar, y un electrodo de calomelanos saturado como referencia. Los
experimentos se realizaron bajo atmosfera de argon en soluciones de diclorometano,
usando BusNPFs como electrolito de soporte (0.1 M) y con una velocidad de escaneo de
100 mV s!. Los potenciales redox se referenciaron frente a la pareja ferrocinio/ferroceno

(Fc'/Fe).

E.2. Materiales

Todas las reacciones se llevaron a cabo bajo atmosfera de argon, haciendo uso de

técnicas de Schlenk o caja seca.

Los disolventes se secaron mediante técnicas convencionales y se destilaron bajo
atmosfera inerte o se obtuvieron secos de un sistema de purificacion de disolventes

MBRAUN SPS-800.

Los reactivos se compraron a proveedores comerciales y se utilizaron sin

purificacion adicional.
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Los compuestos de partida trans-[Ir(u-OH){x*-C,N-(CsHs-Isoqui)}2]2 (1),
trans-[Ir(n-OH) {x?-C,N-(MeCsHs-py)}2]2 (2)*! e IrHs(P'Pr3): (23)® se prepararon de

acuerdo a los métodos descritos en la bibliografia.

E.3. Analisis de rayos X

Se analizaron los cristales de los distintos compuestos utilizando los
difractometros Bruker Smart APEX CCD, DUO CCD, o D8 Venture, equipados con un
detector de area. Los instrumentos constaban de un foco normal o fino, con una fuente de
2.4 kW (radiacion del molibdeno A = 0.71073 A). Los cristales se mantuvieron frios con
un flujo de nitrogeno liquido (Oxford Cryosystems). Los datos se corrigieron para
eliminar los efectos de Lorentz y de polarizacion, y se ajusté la absorcién usando métodos
semiempiricos con el programa SADABS (basado en el método de Blessing).®” Las
estructuras se determinaron mediante el método de Patterson, o métodos directos,
seguidos de procedimientos de Fourier, y se refinaron mediante minimos cuadrados
utilizando la matriz completa en F?> con el paquete de programas SHELXTL2016 y
SHELX1.2019.38 Se aplicaron parametros de desplazamiento térmico anisotropos para los
atomos diferentes al hidrogeno. Los atomos de hidrégeno no enlazados directamente a
atomos metalicos se localizaron en los mapas de diferencias de Fourier o se posicionaron
mediante calculos geométricos apropiados, incluyéndolos en las etapas finales del
refinamiento estructural. Todos los parametros completos de refinamiento para cada

cristal estan disponibles en la web:

https://pubs.acs.org/doi/10.1021/acs.inorgchem.2¢00197 (Capitulo 1),

https://pubs.acs.org/doi/10.1021/acs.inorgchem.2¢03522 (Capitulo 2) y

https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00115 (Capitulo 3).
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E.4. Calculos computacionales

Loa célculos fueron realizados por el Dr. Enrique Onate usando la teoria funcional
de la densidad (DFT) con los funcionales B3LYPP,% complementados con la correccion
de dispersion D3 de Grimme,” implementada en el programa Gaussian09.”! Para
describir los electrones mdas internos de los 4atomos de iridio se utilizaron
pseudopotenciales SDD,”? mientras que para los electrones externos se empled su base
doble-{ asociada, complementada con un conjunto de funciones de polarizacion £.* Los
demdas atomos se describieron mediante las bases 6-31G**.°* Todas las geometrias
optimizadas se caracterizaron como minimos a través de un analisis de sus frecuencias de
infrarrojo. Las optimizaciones se realizaron en THF (¢ = 7.4257) utilizando el modelo
SMD.” Los calculos TD-DFT se llevaron a cabo al mismo nivel de teoria en THF,
calculando las 50 excitaciones singlete-singlete mas bajas desde el estado fundamental
So. Cabe destacar que las intensidades de las absorciones singlete-triplete calculadas por
Gaussian(9 son cero, ya que no se considera el acoplamiento espin-orbita. Los espectros
de absorcion UV-Vis se obtuvieron analizando los datos TD-DFT con el programa
GaussSum 3.%° Las emisiones de los espectros de fosforescencia se calcularon a partir de
las diferencias de energia (zpe) entre las geometrias optimizadas de los estados Soy T1 en

THF.
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E.S. Sintesis y caracterizacion de los compuestos

e Preparacion de trans-[Ir(p2-n2-C=CPh){k>-C,N-(CcHs—Isoqui)}2]2 (3).

A una suspension de 1 (2000 mg, 1.619 mmol) en tolueno (60
mL) se le afadi6 fenilacetileno (890 pL, 8.094 mmol), y la
mezcla se agitd a temperatura ambiente durante 48 h. La

suspension marron resultante se llevo a sequedad a vacio y el

crudo se purificod mediante cromatografia de columna (Al203
basica, grado de actividad V) usando diclorometano como eluyente, obteniendo una
fraccion roja. Esta fraccion se seco a vacio para dar un so6lido rojo. Rendimiento: 1570
mg (69 %). Se obtuvieron cristales de 3 aptos para su analisis por difraccion de rayos X
mediante la evaporacion lenta de una disolucion concentrada del sélido en diclorometano

a temperatura ambiente.
Analisis elemental para C76Hsolr2Ng:
Calculado: C, 65.03; H, 3.59; N, 3.99.
Encontrado: C, 65.32; H, 3.73; N, 3.87.

HRMS (electrospray, m/z) calculado para CrsHsiIr2N4 [M + H]™: 1405.3367,
encontrado: 1405.3424. Calculado para C3sHasIrN2 [M/2 + H]": 703.1720; encontrado:

703.1660.
IR (cm™): v(C=C) 1991.

RMN de 'H (300 MHz, CD2Clz, 298 K): § 9.28 (d, *Ji-n = 6.5, 4H, CH isoqui),
8.78 (d, *Ju_n = 8.3, 4H, CH Ph-isoqui), 8.00 (d, *Ji_u = 8.1, 4H, CH Ph-acetileno), 7.82-
7.67 (m, 12H, CH Ph-isoqui), 6.78-6.72 (m, 6H, CH Ph-acetileno), 6.57-6.47 (m, 12H,

CH isoqui), 6.14 (d, *Ju_n = 8.2, 4H, CH isoqui), 6.02 (d, *Ji_n = 7.6, 4H, CH isoqui).
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RMN de B*C{'H} (75 MHz, CD2Clz, 298 K): 5 169.4 (s, C-N isoqui), 164.0,
145.4 (ambos s, C Ph-isoqui), 144.2 (s, N—CH isoqui), 137.0 (s, C isoqui), 131.0 (s, CH
isoqui), 130.9 (s, CH Ph-isoqui), 130.6 (s, CH isoqui), 130.0 (s, CH o-Ph-acetylene),
129.6 (s, CH isoqui), 127.9, 127.7, 127.6, 127.4 (todos s, CH Ph-isoqui), 127.3 (s, CH
isoqui), 127.2 (s, C Ph-isoqui), 125.0 (s, CH p-Ph-isoqui), 120.7 (s, CH m-Ph-isoqui),

119.6 (s, CH isoqui), 103.8 (s, I—-C=C—Ph), 79.3 (s, Ir—C=C—Ph).

e Preparacion de trans-[Ir(n2-n2-C=CPh){k>-C,N-(MeCsH3-py)}2]2 (4).

A una suspension de 2 (2000 mg, 1.833 mmol) en tolueno
(80 mL) se le anadio fenilacetileno (1 mL, 9.163 mmol), y la

mezcla se agitd a temperatura ambiente durante 48 h. La

suspension amarilla resultante se dejo decantar. El solido
amarillo obtenido se lavo con pentano (3 x 5 mL) y se seco a vacio. Rendimiento: 2220
mg (96 %). Se obtuvieron cristales de 4 aptos para su analisis por difraccion de rayos X
por difusion lenta de MeOH en una disolucion concentrada del compuesto en tolueno a 4

°C.
Analisis elemental para CesHsolr2Ng:
Calculado: C, 61.03; H, 4.00; N, 4.45.
Encontrado: C, 61.31; H, 4.36; N, 4.15.

HRMS (electrospray, m/z) calculado para CesHsolr2NaNa [M + Na]™: 1283.3186;
encontrado: 1283.3072. Calculado para C32H2sIrN2 [M/2 + Na]": 653.1539; encontrado:

653.1477.

IR (cm) v(C=C): 1911.
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RMN de 'H (300 MHz, CD2Clz, 298 K): § 9.34 (dd, *Ju_1 = 5.9, “Ju_n = 0.8, 4H,
CH py), 7.73 (d, 3Ju_u = 8.2, 4H, CH py), 7.63 (ddd, *Ju-u = 8.2, Ju_n = 7.7, *Jun =
1.6, 4H, CH py), 7.29 (d, *Ju-u = 7.9, 4H, CH MeC¢Hs—py), 6.77-6.69 (m, 6H, CH py,
CH p-Ph-acetileno), 6.60 (t, *Ju_u = 7.9, 4H, CH m-Ph-acetileno), 6.52 (d, *Ju_u = 7.9,
4H, CH MeCsH3—py), 6.13 (dd, *Ji-n = 7.9, “Ju_n = 1.2, 4H, CH o-Ph-acetileno), 5.68

(s, 4H, CH MeCsHs—py), 1.91, (s, 12H, CHs MeCsHs—py).

RMN de BC{'H} (75 MHz, CD2Cl2, 298 K): & 169.3 (s, C-N py), 161.0 (s, C-Ir
MeCsHs—py), 151.5 (s, N-CH py), 141.5, 139.8 (ambos s, C MeCsH3—py), 136.2 (s, CH
py), 131.4 (s, CH MeCsH3—py), 130.6 (s, CH, o-Ph—acetileno), 127.8 (s, C Ph—acetileno),
127.1 (s, CH m-Ph-acetileno), 124.8 (s, CH p-Ph—acetileno), 124.0, 122.1 (ambos s, CH
MeCsHs—py), 121.5, 119.1 (ambos s, CH py), 102.5 (s, Ir-C=C-Ph), 79.0 (s,

Ir—-C=C-Ph), 22.0 (s, CHs MeCsHs—py).

e Preparacion de trans-[Ir(p2-n2-C=C'Bu){k>-C,N-(MeCsH3-py)}2]2 (5).

A una suspension de 2 (2000 mg, 1.833 mmol) en tolueno

7/ \ 'Bu |
| —
T G T (80 mL) se le afiadi6 tert-butilacetileno (1 mL, 8.120 mmol),
\C§C/Ill y la mezcla se agit6 a temperatura ambiente durante 48 h. La
L]
Bu

suspension amarilla resultante se separ6 por decantacion. El
solido amarillo obtenido se lavé con pentano (3 x 10 mL) y se seco a vacio. Rendimiento:

1630 mg (73 %).

Analisis elemental para CesHsolr2Ng:

Calculado: C, 59.09; H, 4.79; N, 4.59.

Encontrado: C, 59.36; H, 4.45; N, 4.21.
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HRMS (electrospray, m/z) calculado para CeoHssIr2Na [M]": 1220.3915;
encontrado: 1220.3921. Calculado para C3oH2sIrN2 [M/2 - H]": 609.1876; encontrado:

609.1876.
IR (cm™): v(C=C) 1942.

RMN de 'H (300 MHz, CD>Cl2, 298 K): § 9.14 (dd, *Ju_n = 5.9, *Jii_n = 0.9, 4H,
CH py), 7.78 (d,*Jii_u = 8.2, 4H, CH py), 7.57 (ddd, *Ju-n = 8.2, *Ji-u1 = 7.3, “Jun = 1.6,
4H, CH py), 7.51 (d, *Ju_u = 7.9, 4H, CH MeCsH3—py), 6.64 (dd, *Jun = 7.9, *Ju_n =
1.1, 4H, CH MeCsH3—py), 6.58 (ddd, *Ju_u = 7.3, *Ju_u = 5.9, “Ju_u = 1.5, 4H, CH py),

5.79 (s, 4H, CH MeCsH3—py), 1.95 (s, 12H, CHs MeCsHz—py), 0.40 (s, 18H, '‘Bu).

RMN de *C{'H} (75 MHz, CD2Clz, 298 K):  169.6 (s, N-C py), 161.5 (s, Ir-C
MeCsHs—py), 151.6 (s, N-CH py), 142.1, 139.0 (ambos s, C MeCsH3—py), 135.8 (s, CH
py), 132.9,123.7, 121.8 (todos s, CH MeCsH3—py), 121.0, 118.5 (ambos s, CH py), 114.6
(s, -C=C-'Bu), 71.1 (s, Ir-C=C-'Bu), 32.3 (s, CH3 '‘Bu), 32.3 (s, C 'Bu, inferido del

espectro HMBC), 21.9 (s, CH3s MeCsHs—y).

e Isomerizacion de trans-[Ir(p2-n2-C=CPh){k>-C,N-(CsHs—Isoqui)}2]2 (3) a cis-[Ir(p2-
N?-C=CPh){x*-C,N-(CsHs—Isoqui)}2]2 (6).

Una suspension de 3 (500 mg, 0.356 mmol) en tolueno

(30 mL) se agit6 en una ampolla con tapon de rosca de

provocando la aparicion de un sélido. El s6lido rojo anaranjado obtenido se lavd con

diclorometano (3 x 1 mL) y se sec6 a vacio. Rendimiento: 380 mg (76 %). Se obtuvieron
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cristales de 6 aptos para su analisis por difraccion de rayos X mediante la evaporacion

lenta de una disolucidon concentrada del solido en diclorometano a temperatura ambiente.
Analisis elemental para C76Hsolr2Ng:
Calculado: C, 65.03; H, 3.59; N, 3.99.
Encontrado: C, 65.41; H, 3.86; N, 3.76.

HRMS (electrospray, m/z) calculado para C76Hsolr2NaNa [M + Na]™: 1427.3186;
encontrado: 1427.3172. Calculado para CssHasIrN2 [M/2 + H]™: 703.1720; encontrado:

703.1805.
IR (cm™): v(C=C) 1982, 2015.

RMN de 'H (300 MHz, CD2Cl2, 298 K): § 9.10-9.07 (m, 2H, CH arom), 8.89 (d,
3Ju-n = 6.53, 4H, CH arom), 8.57 (d, *Ju_u = 8.32, 2H, CH arom), 8.24 (d, *Ju_n = 7.98,
2H, CH arom), 8.09-8.05 (m, 2H, CH arom), 7.86-7.81 (m, 4H, CH arom), 7.50-7.35 (m,
8H, CH arom), 7.25-7.19 (m, 4H, CH arom), 6.90-6.84 (m, 2H, CH arom), 6.62-6.60 (m,
4H, CH arom), 6.50 (d, *Ju-u = 6.14, 2H, CH arom), 6.38-6.27 (m, 10H, CH arom), 6.21-
6.15 (m, 2H, CH arom), 6.10, (d, *Ju_x = 5.91, 2H, CH arom). La baja solubilidad del

s6lido impidi6 la obtencion del espectro de RMN de *C{'H} de 6.

e Isomerizacion de trans-[Ir(p2-n2-C=CPh){k?-C,N-(MeCcH3-py)}2]2 (4) a cis-[Ir(p2-
N?-C=CPh){k*-C,N-(MeCsH3-py)}2l2 (7).

Una suspension de 4 (1000 mg, 0.794 mmol) en tolueno
(80 mL) se agitd en una ampolla con tapén de rosca de

teflon a 120 °C durante 72 h. Después de este tiempo, el

volumen se redujo a | mL aproximadamente,
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provocando la aparicion de un so6lido. El s6lido amarillo obtenido se lavd con tolueno (2
x 1 mL) y pentano (3 x 3 mL) y se seco a vacio. Rendimiento: 531 mg (53 %). Se
obtuvieron cristales de 7 aptos para su andlisis por difraccion de rayos X mediante la
evaporacion lenta de una disolucion concentrada del soélido en diclorometano a

temperatura ambiente.
Analisis elemental para CesHsolr2Ng:
Calculado: C, 61.03; H, 4.00; N, 4.45.
Encontrado: C, 60.91; H, 3.65; N, 4.20.

HRMS (electrospray, m/z) calculado para CssHsolr2N4Na [M + Na]™: 1283.3186;

encontrado: 1283.3196.
IR (cm™):v (C=C) 2022, 1928.

RMN de 'H (300 MHz, CD2Clz, 298 K): § 9.01 (dd, *Ju_u = 5.6, *Ji_n = 0.94,
2H, CH py), 8.41 (s, 2H, CH MeCsHs—py), 7.95 (d, 3Ju_u = 8.1, 2H, CH py), 7.68-7.62
(m, 2H, CH py), 7.59 (d, *Ju_u = 8.0, 2H, CH MeCsH3—py), 7.39 (d, *Ju_n = 8.0, 2H, CH
MeCsH3—py), 7.18 (d, *Ji_n = 8.1, 2H, CH py), 7.03-6.98 (m, 4H, CH py), 6.95 (dd, ,
3 = 7.9, %uu = 1.3, 2H, CH MeCsHs—py), 6.73-6.59 (m, 10H, CH Ph—acetileno, CH
py, CH MeCsH3—py), 6.44 (s, 2H, CH MeCsHs—py), 6.34-6.28 (m, 6H, CH Ph—acetileno,
CH py), 6.24-6.20 (m, 2H, CH py), 2.32 (s, 6H, CHs MeCsH3—py), 1.91 (s, 6H, CH3

MeCeHs—py).

RMN de BC{'H} (75 MHz, CD2Clz2, 298 K): & 167.1, 166.4 (ambos s, N-C py),
156.7, 151.5 (ambos s, C MeCsHs—py), 147.8, 145.8 (ambos s, N-CH py), 141.6, 141.5
(ambos s, Ir-C MeCsHs—py), 140.7 (s, CH MeCsHs—py), 140.0, 139.2 (ambos s, C

MeCsHs—py), 137.6 (s, CH MeCeHs—py), 137.2, 135.4 (ambos s, CH py), 130.6 (s, CH
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Ph—acetileno), 127.4 (s, C Ph—acetileno), 127.3, 124.7 (ambos s, CH Ph—acetileno), 123.9,
123.8, 123.2 (todos s, CH MeCsH3—py), 122.3 (s, CH py), 122.0 (s, CH MeCsH3—py),
120.6, 119.3, 118.3 (todos s, CH py), 92.5 (s, Ir—=C=C-Ph), 72.8 (s, [Ir—-C=C-Ph), 22.1,

21.8 (ambos s, CH3z MeCsHs—py).

e Isomerizacion de trans-[Ir(p2-1>-C=C'Bu){k*-C,N-(MeCsH3-py)}2]2 (5) a cis-[Ir(u2-
N2-C=C'Bu){k?-C,N-(MeCsH3-py)}2]2 (8).

Una suspension de 5 (1000 mg, 0.820 mmol) en tolueno
(80 mL) se agit6 en una ampolla con tapon de rosca de

teflon a 120 °C durante 72 h. Después de este tiempo, el

volumen se redujo a 3 mL aproximadamente, provocando
la aparicion de un solido amarillo que se lavo con tolueno (2 x 2 mL) y pentano (3 x 3

mL) y se seco a vacio. Rendimiento: 873 mg (87 %).
Analisis elemental para CgoHsslr2Ng:
Calculado: C, 59.09; H, 4.79; N, 4.59.
Encontrado: C, 58.91; H, 4.63; N, 4.76.

HRMS (electrospray, m/z) calculado para CeoHssIr2Na [M]": 1220.3915;

encontrado: 1220.3928.
IR (cm™):v (C=C) 1942.

RMN de 'H (300 MHz, CD2Clz, 298 K): 8 8.64 (ddd, *Ji_n = 5.54, “Juu = 1.66,
ST = 0.75, 2H, CH py), 8.49 (s, 2H, CH MeCsHs—py), 7.86 (d, 3Jin = 8.15, 2H, CH
py), 7.73 (d, 3Ju_n = 8.18, 2H, CH py), 7.59-7.55 (m, 6H. 2H CH py, 4H CH MeCsHs—

py), 7.35 (ddd,Jin = 8.18, 3w = 7.28, “Ju_n = 1.58, 2H, CH py), 6.91 (dd, 3 u =
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7.87, *Ju_u = 1.20, 2H, CH MeCsH3—py), 6.84 (ddd, *Ju-n = 5.77, *Ju_n = 1.55, *Ju_n =
0.74, 2H, CH py), 6.67 (dd, *Ju_n = 7.87, “Ju_u = 1.08, 2H, CH MeCsHs—py), 6.55-6.44
(m, 4H, CH py), 6.31 (s, 2H, CH MeCsHs—py), 2.30 (s, 6H, CH3 MeCsHs—py), 1.95 (s,

6H, CHs MeCsHs—py), 0.42 (s, 18H, 'Bu).

RMN de BC{'H} (75 MHz, CD2Clz2, 298 K): & 168.2, 166.0 (ambos s, N-C py),
157.4, 155.8 (ambos s, C MeCsHs—py), 147.4, 147.2 (ambos s, N-CH py), 141.0, 140.6
(ambos s, Ir—-C MeCsHs—py), 139.9 (s, CH MeCsHs—py), 138.8, 138.4 (ambos s, C
MeCsHs—py), 136.9 (s, CH MeCsHs—py), 136.1, 135.4 (ambos s, CH py), 123.1, 122.9,
122.0 (todos s, CH MeCsHs—py), 121.3 (s, CH py), 120.5 (s, CH MeCsHs—py), 119.4,
118.2, 117.6 (todos s, CH py), 102.4 (s, -C=C-'Bu), 71.9 (s, [r-C=C—'Bu), 32.2 (s, CH3

‘Bu), 32.0 (s, C 'Bu), 21.1, 21.0 (ambos s, CH3; MeCsH3—py).

e Preparacion de Ir{k>-C,N-|C(=CHPh)-py-NH]}{k?-C,N-(CsHs—Isoqui)}2 (9).

A una suspension de 6 (300 mg, 0.214 mmol) en tolueno (15 mL)
metida en una ampolla con tapon de rosca de teflon, se le afiadid
2-aminopiridina (60 mg, 0.641 mmol). La mezcla se calentd

durante 24 h a 120 °C. Pasado este tiempo, la disolucion se

concentr6 hasta 1 mL aproximadamente y se afiadi® pentano para provocar la
precipitacion. El sélido rojo obtenido se lavéd con pentano (3 x 3 mL) y se seco a vacio.
Rendimiento: 231 mg (68 %). Se obtuvieron cristales de 9 aptos para su analisis por
difraccion de rayos X por difusion lenta de MeOH en una disolucién concentrada del

compuesto en tolueno a 4 °C.
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Analisis elemental para Cs3Hs1IrNg:
Calculado: C, 64.89; H, 3.93; N, 7.04.
Encontrado: C, 64.76; H, 3.89, N, 6.87.

HRMS (electrospray, m/z) calculado para CssHz2IrNs [M + H]": 797.2251;

encontrado: 797.2262.
IR (cm™): v(N=H) 3352, 3333.

Los espectros de RMN de 'H y '3C{'H} muestran la formacion de dos isdbmeros

en una proporcion 60:40.

RMN de 'H (500 MHz, CD2Clz, 298 K): 8 9.00-8.93 (m, 1.6H, CH arom ambos
isdmeros), 8.55 (d, *Ji-u = 6.1, 0.6H, CH arom isémero E), 8.36 (d, *Ju_u = 6.1, 0.4H,
CH arom isémero Z), 8.28-8.19 (m, 2.0H, CH arom ambos isémeros), 7.97 (dd, *Ju-n =
7.4, *Jun = 1.2, 0.4H, CH arom isémero Z), 7.92-7.90 (m, 0.6H, CH arom isémero E),
7.88-7.87 (m, 0.6H, CH arom isomero E), 7.85-7.82 (m, 0.8H, CH arom isémero Z), 7.73-
7.54 (m, 5.4H, CH arom ambos isémeros), 7.52 (d, *Ju-u = 6.1, 0.6H, CH arom isémero
E), 7.43-7.41 (m, 0.8H, CH arom isomero Z), 7.33-731 (m, 1.2H, CH arom ambos
isémeros), 7.13-6.82 (m, 7.0H, CH arom ambos isémeros), 6.75-6.72 (m, 1.8H, CH arom
ambos isomeros), 6.61-6.53 (m, 0.8H, CH arom isomero Z), 6.48-6.37 (m, 3.8H, CH arom
ambos isémeros + =CHPh isémero Z, inferido del espectro HMBC), 5.98 (ddd, *Ju-_n =
7.3, 3Ju-n = 6.3, *Ju-n = 1.3, 0.4H, CH py isomero Z), 5.78 (s, 0.5H, NH isémero E), 5.58
(ddd, *Jun = 7.2, *Jun = 6.4, “Ju_u = 1.3, 0.6H, CH py isémero E), 5.49 (s, 0.3H, NH

isémero Z), 4.92 (s, 0.6H, =CHPh isomero E).

RMN de BC{'H} (101 MHz, CD2Cl2, 298 K): & 168.8, 168.6, 168.6, 168.4, 167.9,

166.6, 165.0, 164.8 (todos s, C arom), 163.2, 162.0 (ambos s, C py), 158.8 (s, C arom),
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149.7 (s, Ir—C—N isémero E), 149.1 (s, I—C—N isémero Z), 146.6, 146.4, 146.1 (todos s,
C arom), 141.6, 141.4 (ambos s, CH arom), 141.0 (s, C arom), 140.8 (s, CH arom), 139.1
(s, C arom), 138.1, 137.8, 137.6, 137.6 (todos s, CH arom), 137.5, 137.2, 137.2, 137.1
(todos s, C arom), 136.6, 136.4, 136.1, 133.6, 130.9, 130.7, 130.6, 130.5, 130.4, 130.0,
129.6, 129.5, 129.5, 129.0, 128.8, 128.4, 128.1, 128.0, 127.9, 127.8, 127.8, 127.5, 127.4,
127.0, 127.0 (todos s, CH arom), 126.8, 126.7, 126.4 (todos s, C arom), 126.2, 124.6,
124.0, 123.4, 120.7, 119.9, 119.8, 119.8, 119.7, 119.6, 119.4, 118.9, 118.1, 117.0 (todos

s, CH arom), 106.1, 104.0 (ambos s, CH py).

e Preparacion de Ir{k?-C,N-[C(=CHPh)-py-NH]} {k>-C,N-(MeCsH3-py)}2 (10).

N Ig| A una suspension de 7 (300 mg, 0.214 mmol) en tolueno (15 mL)
J  &~Ph

\ \C// metida en una ampolla con tapon de rosca de teflon, se le afiadio
ATTINT

/ Ir\ A e
[“ N 2-aminopiridina (70 mg, 0.744 mmol). La mezcla se calentd
N P g

durante 24 h a 120 °C. Pasado este tiempo, la disolucion se
concentr6 hasta 1 mL aproximadamente y se afadid6 pentano para provocar la
precipitacion de un sélido naranja, el cual se lavd con pentano (3 x 3 mL) y se seco a
vacio. Rendimiento: 262 mg (76 %). Se obtuvieron cristales de 10 aptos para su analisis
por difraccion de rayos X por difusion lenta de MeOH en una disolucién concentrada del

compuesto en tolueno a 4 °C.

Analisis elemental para C37H31IrNg:

Calculado: C, 61.39; H, 4.32; N, 7.74.

Encontrado: C, 61.00; H, 4.17; N, 7.56.
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HRMS (electrospray, m/z) calculado para C37Hs2IrNs [M + H]": 797.2251;

encontrado: 797.2262.
IR (cm™): v(N=H) 3374, 3352.

Los espectros de RMN de 'H y '3C{'H} muestran la formacién de dos isémeros

en una proporcion 60:40.

RMN de 'H (300 MHz, CD:Cl2, 298 K): & 8.56 (ddd, *Ju-n = 5.5, “Ju_n = 1.7,
SJu-n = 0.8, 0.6H, CH py isémero E), 8.41 (ddd, *Ju-u = 5.5, “Ju_u = 1.7, *Ju_u = 0.8,
0.3H, CH py isémero Z), 7.93-7.90 (m, 0.6H, CH arom isémero E), 7.86 (ddd, *Ji-n =
7.0, *Ju_u = 1.5, °Ju_n = 0.8, 0.4H, CH py isémero Z), 7.79-7.68 (m, 1.8H, CH arom
ambos isomeros), 7.63-6.60 (m, 0.6H, CH arom isoémero E), 7.58-7.47 (m, 4.0H, CH arom
ambos isémeros), 7.45-7.42 (m, 0.8H, CH arom isémero Z), 7.34 (ddd, *Ji-u = 7.1, *Ju_n
= 1.6, °Ju_n = 0.8, 0.6H, CH arom isémero E), 7.30 (ddd, *Ju_n = 5.6, “Jun = 1.7, >Ju_n
= 0.8, 0.4H, CH arom isémero Z), 7.12 (ddd, *Ju-n = 7.1, *Ju-u = 5.5 *Ju_u = 1.3, 0.6H,
CH arom isoémero E), 7.06-7.00 (m, 2.2H, CH arom ambos isémeros), 6.98-6.95 (m, 0.4H,
CH arom isoémero Z), 6.91-6.85 (m, 0.6H, CH arom isémero E), 6.84-6.76 (m, 2.8H, CH
arom ambos isémeros), 6.73-6.68 (m, 0.6H, CH arom isomero E), 6.67-6.58 (m, 1.6H,
CH arom ambos isomeros + =CHPh isomero Z, inferido del espectro HMBC), 6.54 (m,
0.6H, CH MeCsH3—py isomero E), 6.51-6.45 (m, 1.0H, CH arom ambos isémeros), 6.42-
6.35 (m, 1.4H, CH arom ambos isomeros), 6.21 (m, 0.3H, CH MeCsHs—py isomero Z),
5.99 (ddd, *Ju-n = 7.1, *Jun = 6.4, “Ju_u = 1.4, 0.4H, CH py isémero Z), 5.77 (s, 0.6H,
NH isémero E), 5.58 (ddd, *Ju_u = 7.1, *Ju-u = 6.4, “Ju_u = 1.4, 0.3H, CH py isdmero
E), 5.44 (s, 0.4H, NH isémero Z), 4.93 (s, 0.6H, =CHPh isomero E), 2.34 (s, 1.2H, CH3
MeCesHs—py isémero Z), 2.27 (s, 1.8H, CH3 MeCsH3—py isomero E), 2.06 (s, 1.8H, CH3

MeCsHs—py isémero E), 1.91 (s, 1.2H, CH3 MeCsH3s—py isomero Z).
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RMN de BC{'H} (75 MHz, CD2Cl2, 298 K): § 167.9, 167.8, 167.7, 167.2, 164.2
(s, Carom), 163.3 (s, 2C, C py), 161.8, 161.1, 161.0 (s, C arom), 150.0 (s, [—-C—N isomero
E), 149.8 (s, I—=C—-N isomero Z), 148.8, 148.4, 148.2, 148.0 (s, CH arom), 142.4, 142.4,
142.1, 142.0, 141.2, 140.4, 140.2, 139.5, 139.3 (s, C arom), 138.6 (s, CH arom), 138.3 (s,
C arom), 138.1, 138.0, 137.7, 136.9, 136.6, 136.4, 136.3, 136.3, 136.1, 136.0. 133.8,
129.6, 129.2, 129.0, 128.7, 128.4, 126.3, 124.6, 124.4, 124.3, 124.3, 124.3, 124.2, 123.8,
121.8,121.6, 121.4, (s, CH arom), 121.2 (s, CH), 121.1, 121.0, 120.9 (s, CH arom), 119.5
(s, CH), 119.1, 118.5, 118.4, 118.3, 118.1, 117.0 (s, CH arom), 105.9 (s, CH py isomero
Z), 103.8 (s, CH py isoémero E), 22.1 (s, CH3 isdbmero Z), 22.0 (s, CH3 isémero E), 21.9

(s, CHs isémero F), 21.9 (s, CH3 isomero Z).

e Isomerizacién de Ir{k*-C,N-|C(=CHPh)-py-NH]}{k>-C,N-(CsHs—Isoqui)}> (9) a
Ir {k?-C,N-[C(CH2Ph)Npy]} {k*-C,N-(CsHs—Isoqui)}> (11).

Una suspension de 9 (100 mg, 0.126 mmol) en tolueno (7 mL) se

calent6 a 120 °C en una ampolla con tapon de rosca de teflon durante

! N

¢ /N 7 dias. Después de este tiempo, el crudo de reaccion se llevo a
SNy i o
O O sequedad y se purific6 por columna cromatografica de silice

(desactivada con Et3N), usando diclorometano como eluyente para obtener el compuesto
9 y después usando acetona para obtener 11 como un sélido naranja. Rendimiento: 12 mg
(12 %). Se obtuvieron cristales de 11 aptos para su andlisis por difraccion de rayos X por

difusion lenta de pentano en una disolucidon concentrada del compuesto en tolueno a 4 °C.
Analisis elemental para Cs3H31IrNg:
Calculado: C, 64.89; H, 3.93; N, 7.04.

Encontrado: C, 64.59; H, 6.51; N, 7.18.
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HRMS (electrospray, m/z) calculado para CssHz2IrNs [M + H]": 797.2251;

encontrado: 797.2262.

RMN de 'H (300 MHz, CD2Cl2, 298 K): & 8.93-8.88 (m, 1H, CH Ph-isoqui), 8.73
(d, *Ju_n = 8.7, 1H, CH Ph-isoqui), 8.20-8.16 (m, 1H, CH Ph-isoqui), 7.95 (d, *Ju-n =
7.9, 1H, CH Ph-isoqui), 7.82 (dd, *Ju-u = 7.9, “Ju_n = 1.5, 1H, CH Ph-isoqui), 7.76-7.60
(m, 2H, CH py + 5H, CH Ph-isoqui), 7.41-7.38 (m, 1H, CH Ph-isoqui), 7.30 (q, *Ji-n =
7.3, 2H, CH Ph-isoqui), 7.20 (ddd, *Ju_u = 5.5, “Ju_u = 1.8, *Ju_u = 0.9, 1H, CH py),
7.15-6.98 (m, 5H, CH Ph-isoqui), 6.92 (ddd, *Ju-u = 7.9, *Ju_n = 7.1, “Ju_n = 1.6, 1H,
CH Ph-isoqui), 6.83 (ddd, *Ju_u = 7.3, Ju-n = 7.3, *Ju_u = 1.4, 1H, CH Ph-isoqui), 6.73
(ddd, *Ju-n = 7.1, *Jun = 5.5, “Ju_u = 1.6, 1H, CH py), 6.62-6.46 (m, 5H, CH CsHs),

4.02 (sistema de spin AB, Av =41, Ja = 13.5, 2H, CH>).

RMN de BC{'H} (75 MHz, CD:Cla, 298 K):  228.2 (s, Ir-C=N), 171.6 (s, C
py), 169.4,167.9, 167.1, 162.9, 162.5, 150.8, 147.0 (todos s, C Ph-isoqui), 145.8 (s, CH
py), 145.4 (s, C Ph-isoqui), 140.4, 139.2 (ambos s, CH Ph-isoqui), 138.7 (s, CH py), 138.6
(s, CH Ph-isoqui), 138.5 (s, C CeéHs), 137.7 (s, CH Ph-isoqui), 137.4 (s, C Ph-isoqui),
131.2, 131.1, 131.0, 130.9, 130.6, 130.0 (todos s, CH Ph-isoqui), 129.5 (s, CH C¢Hs),
128.4, 128.2, 128.1, 128.0, 127.6, 127.5 (todos s, CH Ph-isoqui), 127.3 (s, CH C¢Hs),
126.8, 126.7 (ambos s, C Ph-isoqui), 125.1 (s, CH CeHs), 121.1, 120.9, 120.7, 120.6

(todos s, CH Ph-isoqui), 119.2, 118.9 (ambos s, CH py), 54.9 (s, CH2).
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e Isomerizacion de Ir{k?*-C,N-[C(=CHPh)-py-NH]|}{k?*-C,N-(MeCsH3-py)}> (10) a
Ir{x?-C,N-|C(CH,Ph)Npy]|}{k*-C,N-(MeCsH3-py)}2 (12).

l XNy Ph Una suspension de 10 (100 mg, 0.138 mmol) en tolueno (7 mL) se

/

N~ CH2

, \/(‘3 calentdo a 120 °C en una ampolla con tapon de rosca de teflon
i, - \\N

[‘l \r\@ durante 7 dias. Después de este tiempo, el crudo de reaccion se
N

llevo a sequedad y se purifico por columna cromatografica de silice

(desactivada con Et3N), usando diclorometano como eluyente para obtener el compuesto

10 y después usando acetona para obtener 12 como un sélido amarillo. Rendimiento: 30

mg (10 %).
Analisis elemental para C37H31IrNa:
Calculado: C, 61.39; H, 4.32; N, 7.74.
Encontrado: C, 61.47; H, 4.65, N, 7.87.

HRMS (electrospray, m/z) calculado para C37Hs2IrNs [M + H]": 797.2251;

encontrado: 797.2262.

RMN de 'H (400 MHz, CD2Cl2, 298 K): 8 7.83 (d, *Ju_u = 8.2, 1H, CH py), 7.69-
7.52 (m, 6H, CH C¢Hs, py y MeCsHs—py), 7.35-7.33 (m, 2H, CH py), 7.27 (d, *Jun =
7.8, 1H, MeCsH3—py), 7.19 (ddd, *Ju_u = 5.5, “Ju_n = 1.5, Ju_u = 0.7, 1H, CH py), 7.01
(s, IH, CH MeC¢Hs—py), 6.88-6.76 (m, 7H, CéHs, py y MeCecHs—py), 6.71-6.69 (m, 2H,
CH MeCsHs—py), 6.49 (d, *Ju_n = 7.3, 2H, CH CsHs), 4.04 (sistema de spin AB, Av =

47, Jas = 13.1, 2H, CH2), 2.29 (s, 3H, CHs MeCsHs—py), 2.13 (s, 3H, CH3s MeCoHs—

py)

RMN de BC{!H} (75 MHz, CD2Cla, 298 K): & 228.9 (s, [r-C=N), 171.0, 167.1,

166.1 (s, N—C py), 158.8 (s, C MeCsH3—py, inferido del espectro HMBC), 158.3 (s, C
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MeCsHs—py, inferido del espectro HMBC), 148.1, 146.7, 145.6 (todos s, CH arom),
143.0, 141.2 (ambos s, [-C MeCsH3—py), 140.9, 139.8 (ambos s, C MeCsH3—py), 139.1
(s, CH MeCsH3—py), 138.6 (s, CH arom), 138.2 (s, CH MeCsH3—py), 137.8 (s, C CeHs,
inferido del espectro HMBC), 137.1, 136.9 (ambos s, CH arom), 129.8 (s, 2C, CH C¢H5),
127.6 (s, 2C, CH CeHs), 125.1, 124.6, 124.4, 122.3, 122.2, 122.1, 122.0, 119.3, 119.1,

118.7 (todos s, CH arom), 55.0 (s, CH2), 22.1, 22.0 (ambos s, CH3 MeCsH3—py).

e Preparacion de Ir{k2-C,N-[C(CH,'Bu)Npy]} {k>*-C,N-(MeCsHz-py)}2 (13).

durante 24 h a 120 °C. Pasado este tiempo, la disolucion naranja se
concentrd hasta 2 mL aproximadamente y se afiadié pentano provovando la precipitacion
de un so6lido amarillo, el cual se lavo con pentano (3 x 3 mL) y se secod a vacio.

Rendimiento: 385 mg (55 %).
Analisis elemental para CisH3sIrNg:
Calculado: C, 59.72; H, 5.01; N, 7.96.
Encontrado: C, 59.63; H, 4.75; N, 7.97.

HRMS (electrospray, m/z) calculado para C3sHssIrNsa [M + H]": 705.2564;

encontrado: 705.2565.

RMN de 'H (300 MHz, CD2Clz, 298 K): § 7.90 (d, 3Ju_n = 8.2, 1H, CH py), 7.81
(d, *Jin = 8.2, 2H, CH py), 7.69 (ddd, *Jin = 8.2, 3Jun = 7.4, “Jin = 1.65, 1H, CH

py), 7.61-7.52 (m, 5H, CH py + CH MeCeHs—py), 7.45 (d, *Jin = 5.5, IH, CH py), 7.31
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(ddd, *Ju_n = 5.5, “Ju-n = 1.2, *Ju_n = 1.2, 1H, CH py), 7.22 (d, *Ju_u = 5.2, 1H, CH py),
7.04 (s, 1H, CH MeCsHs—py), 6.95 (ddd, *Ju-n = 7.1, *Ju_n = 5.5, “un = 1.3, 1H, CH
py), 6.84 (ddd, *Ju_n = 7.0, *Ju_n = 5.2, “Ju_u = 1.3, 1H, CH py), 6.79-6.71 (m, 3H, CH
py + CH MeCsH3—py), 6.68 (s, 1H, CH MeCsHs—py), 2.66 (sistema de spin AB, Av =36,
Jas = 14.8, 2H, CH2), 2.28 (s, 3H, CH3 MeCsH3—py), 2.09 (s, 3H, CHs MeCsHs—py),

0.69 (s, 9H, ‘Bu).

RMN de *C{'H} (75 MHz, CD:CL, 298 K): & 234.5 (s, Ir-C=N), 172.4, 167.6,
166.1 (todos s, N—C py), 162.6, 159.2 (ambos s, C MeCcHs—py), 148.4, 146.7, 145.3
(todos s, CH py), 142.3, 141.2 (ambos s, [r-C MeCsH3—py), 140.7, 139.9 (ambos s, C
MeCeHs—py), 139.0 (s, CH MeCeHs—py), 138.4 (s, CH py), 138.2 (s, CH MeCsHs—py),
137.2, 137.0 (ambos s, CH py), 124.5, 124.3 (ambos s, CH MeCsH3—py), 122.3 (s, CH
py), 122.1, 122.0 (ambos s, CH MeCsHs—py), 119.3, 119.0, 118.4, 118.2 (todos s, CH

py), 59.9 (s, CH2), 32.9 (s, C 'Bu), 30.5 (s, CHs 'Bu), 22.1, 22.0 (ambos s, CH3 MeCsH3—

py)

e Preparacion de Ir{k2-C,0-|C(CH2'Bu)NC(Ph)O]}{k*-C,N-(MeCsH3-py)}2 (14).

N A una suspension de 8 (300 mg, 0.246 mmol) en tolueno (20 mL)

2 u

|N CH,'B

) \/C/\ contenida en una ampolla con tapén de rosca de teflon se le afiadid

e, Ir Zo N

/ |

= . r

“ N \o’//‘kF>h benzamida (60 mg, 0.492 mmol). La mezcla se calent6 durante 24
h a 120 °C. Pasado este tiempo, la disolucioén roja se enfrid a

temperatura ambiente y se llevo a sequedad. El crudo de reaccion se purificd por columna

cromatografica de silice (desactivada con EtsN) usando tolueno como eluyente,

obteniendo una fraccion roja. Esta fraccion se llevo a sequedad, se lavo con pentano (3 x

5 mL) y se secd a vacio, obteniendo un sélido rojo. Rendimiento: 164 mg (46 %). Se
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obtuvieron cristales de 14 aptos para su analisis por difraccion de rayos X por difusion
lenta de pentano en una disolucién concentrada del compuesto en diclorometano a

temperatura ambiente dentro de la caja seca.
Analisis elemental para C37H36IrN3;O:
Calculado: C, 60.80; H, 4.96; N, 5.75.
Encontrado: C, 60.41; H, 4,81; N, 5.54.

HRMS (electrospray, m/z) calculado para C37H37IrN3O [M + H]": 732.2562;

encontrado: 732.2587.
IR (cm™): (CO) 1600 (m), v(C=N) 1585 (m).

RMN de 'H (400 MHz, CD2Cl2, 298 K): § 8.46 (dd, *Ju-u = 8.2, “Jun = 1.2, 2H,
CH Ph), 8.13 (ddd, *Jun = 5.5, “Jun = 1.7, >Ju-n = 0.9, 1H, CH py), 7.90 (d, *Ju-u = 8.3,
1H, CH py), 7.82 (d, *Ju.u = 8.3, 1H, CH py), 7.76 (ddd, *Juu = 8.3, *Jun = 7.3, “Jun =
1.7, 1H, CH py), 7.62-7.50 (m, 4H, 2H CH MeCsH3-py + CH py + CH Ph), 7.49-7.41 (m,
2H, CH Ph), 7.19-7.08 (m, 2H, CH py), 6.92 (s, 1H, CH MeC¢H3-py), 6.88-6.80 (m, 2H,
CH MeCsHs-py + CH py), 6.72 (dd, Juu = 8.2, “Jun = 1.2, 1H, CH MeCeHs-py), 6.65
(s, IH, CH MeCeHs-py), 2.89 (d, 2Ju-n = 14.6, 1H, CH2-'Bu), 2.43 (d, 2Ju-u = 14.6, 1H,

CH2-"Bu), 2.29 (s, 3H, CHs MeC¢Hs-py), 2.10 (s, 3H, CH3 MeCsHs-py), 0.75 (s, 9H, '‘Bu).

RMN de 3C{'H} (101 MHz, CD2Cla, 253 K): 4 267.1 (s, Ir-C=N), 190.3 (s, Ir-
0=C), 166.0, 165.0 (ambos s, N-C py), 158.3, 151.8 (ambos s, C MeCsH3-py), 149.1,
146.6 (ambos s, CH py), 141.6, 141.2, 140.8, 140.0 (todos s, C MeCsH3-py), 139.1 (s,
CH MeCesHs-py), 137.9 (s, CH py), 137.6 (s, CH MeCsHs-py), 137.3 (s, CH py), 134.1 (s,
CPh), 132.8 (s, CH Ph), 131.5 (s, 2C, CH Ph), 128.6 (s, 2C, CH Ph), 124.2, 124.0, 122.6

(todos s, CH MeCeHs-py), 122.4 (s, CH py), 122.2 (s, CH MeC¢H3-py), 121.8, 119.0,
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118.7 (todos s, CH py), 62.1 (s, CHz2), 32.9 (s, C 'Bu), 30.3 (s, CH3 'Bu), 21.9, 21.8 (ambos

s, CH3z MeCesH3-py).

e Preparacion de Ir{k2-C,0-[C(CH,'Bu)NC(CH3)O0]}{k>-C,N-(MeCsH3-py)}2 (15).

N A una suspension de 8 (300 mg, 0.246 mmol) en tolueno (15 mL)
’ P ChzBu
o C/\ contenida en una ampolla con tapdn de rosca de teflon se le anadiod

Z / Ir< JN
N o8 acetamida (44 mg, 0.745 mmol). La mezcla se calent6 durante 24
N Me

h a 120 °C. Pasado este tiempo, la disolucion se enfrio a
temperatura ambiente, se filtrd a través de Celite y se llevo a sequedad. El crudo de
reaccion se purifico mediante cromatografia de columna (Al2O3; basica, grado de
actividad V) usando tolueno como eluyente para eliminar una impureza y después
acetonitrilo para obtener la fraccion con el compuesto 15. Esta fraccion se llevo a

sequedad, obteniendo un s6lido naranja. Rendimiento: 105 mg (32 %).
Analisis elemental para C;:Hz4IrN;O:
Calculado: C, 57.46; H, 5.12; N, 6.28.
Encontrado: C, 57.48; H, 5.46; N, 6.32.

HRMS (electrospray, m/z) calculado para C32H3sIrN3O [M + H]': 670.2392;

encontrado: 670.2395.
IR (cm™): ¥(CO) 1600 (m), v(C=N) 1589 (m).

RMN de 'H (400 MHz, CD2Clz, 298 K): & 8.14 (d, 3Ju_n = 5.5, 1H, CH py), 7.90
(d, 3Juu = 8.3, 1H, CH py), 7.82-7.75 (m, 2H, CH py), 7.57 (d, *Ji_u = 8.3, 2H, CH py,

CH MeC¢Hs—py), 7.50 (d, *Ju_u = 7.9, 1H, CH MeCsHs—py), 7.23 (ddd, *Ju_u = 7.0,
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3Ju-n = 5.5, “Ju-n = 1.3, 1H, CH py), 7.02 (d, *Ju-u = 5.5, 1H, CH py), 6.88-6.86 (m, 2H,
CH MeCsH3-py), 6.80 (ddd, *Ju_n = 7.0, *Ju_u = 5.5, *Ju_u = 1.2, 1H, CH py), 6.69 (d,
3Ju-n = 7.9, 1H, CH MeCeHs-py), 6.61 (s, 1H, CH MeCsHs-py), 3.00 (d, 2Ju-u = 13.3,
1H, CH>-'Bu), 2.60 (s, 3H, CH3 acetamida), 2.33 (s, 3H, CHs MeCsHs-py), 2.23 (d, 2Ju-n

=13.3, 1H, CH>-Bu) 2.08 (s, 3H, CHs MeCsHs-py), 0.58 (s, 9H, ‘Bu).

RMN de BC{'H} (101 MHz, CD2Clz, 253 K): & 268.7 (s, [r-C=N), 197.5 (s, Ir—
0=C), 166.1, 164.9 (ambos s, N-C py), 158.1, 152.0 (ambos s, C MeCsH3-py), 149.0,
146.4 (ambos s, CH py), 141.6, 141.0, 140.8 (todos s, C MeCsHs-py), 140.0, 139.0
(ambos s, CH MeCsHs-py), 137.9 (s, CH py), 137.6 (s, CH MeCsH3-py), 137.2 (s, CH
py), 124.2, 124.0 (ambos s, CH MeCsH3-py), 122.6 (s, CH py), 122.4, 122.2 (ambos s,
CH MeCsHs-py), 121.8, 119.1, 118.7 (todos s, CH py), 61.2 (s, CH2), 32.9 (s, C ‘Bu),

30.2 (s, CHs 'Bu), 23.7 (s, CH3 acetamida), 21.8, 21.7 (ambos s, CH3 MeCsH3-py).

e Preparacién de Ir{k?-C,0-[C(CH;'Bu)NC(CH,Ph)O]} {k?-C,N-(MeCcHs-py)}2 (16).

Este compuesto se obtuvo de forma anéaloga a 15 partiendo de

| J cHyBu
"\‘ C/ ’ 8 (300 mg, 0.246 mmol) y fenilacetamida (47 mg, 0.492
_ )'Ir/\/ *JN o ’
N - mmol). El crudo se purificé por columna cromatogréfica de
U O™ “CH,Ph

silice (desactivada con Et3N) usando diclorometano:pentano
(2:1) como eluyente para obtener la fraccion con el compuesto 16. Esta fraccion se llevo

a sequedad, obteniendo un sélido naranja. Rendimiento: 196 mg (53 %).

Analisis elemental para C3sH3sIrN;O:

Calculado: C, 61.27; H, 5.14; N, 5.64.

Encontrado: C, 60.90; H, 5.49; N, 5.75.
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HRMS (electrospray, m/z) calculado para C3sH3oIrN3O [M + H]": 746.2719,

encontrado: 746.2736.
IR (cm™): v(CO) 1601 (m), v(C=N) 1589 (m).

RMN de 'H (400 MHz, CD2Cl2, 298 K): & 7.83 (d, *Ju-ui = 8.2, 1H, CH py), 7.78
(d, *Jun = 8.2, 1H, CH py), 7.69 (dd, *Junt = 3/ 'un = 7.5, 1H, CH py), 7.62-7.51 (m, 3H,
2H, CH py + CH MeCsHs-py), 7.46 (d, *Ju-u = 7.9, 1H, MeCsHs-py), 7.35 (d, *Juu =
7.1, 2H, CH Ph), 7.33-7.21 (m, 3H, CH Ph) 6.96 (d, *Jin = 5.4, 1H, CH py), 6.94-6.85
(m, 3H, 2H, CH MeCsH3-py + CH py), 6.77 (dd, *Juu = 3 un = 6.4, 1H, CH py), 6.68
(d, *Jun = 7.9, 1H, CH MeCsHs-py), 6.62 (s, 1H, CH MeCsH3-py), 4.34 (d, 2Jin = 13.2,
1H, CH>Ph), 3.97 (d, 2Ju-1 = 13.2, 1H, CH2Ph), 2.98 (d, 2Ju = 13.6, 1H, CH>-Bu), 2.33
(s, 3H, CH3z MeCsH3-py), 2.25 (d, 2Ji-u = 13.6, 1H, CH>-'Bu), 2.07 (s, 3H, CH3 MeCsHs-

py), 0.57 (s, 9H, ‘Bu).

RMN de BC{'H} (101 MHz, CD2Clz, 253 K): 4 270.3 (s, Ir-C=N), 198.3 (s, Ir-
0=C), 165.9, 164.8 (ambos s, N-C py), 157.9, 151.6 (ambos s, C MeCsH3-py), 148.8,
146.5 (ambos s, CH py), 141.6, 141.0, 140.8, 140.0 (todos s, C MeCesH3-py), 139.3 (s,
CH MeCsHs-py), 137.9 (s, CPh), 137.7 (s, CH py), 137.6 (s, CH MeCesH3-py), 137.3 (s,
CH py), 129.6 (s, 2C, CH Ph), 128.7 (s, 2C, CH Ph), 126.9 (s, CH Ph), 124.2, 123.9,
122.7,122.2 (todos s, CH MeCsH3-py), 122.1, 121.8, 119.0, 118.6 (todos s, CH py), 61.5
(s, CH2-'Bu), 43.7 (s, CH2Ph), 33.1 (s, C 'Bu), 30.2 (s, CH3 '‘Bu), 21.8, 21.7 (ambos s, CH3

MeCeHs-py).
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e Preparacion de Ir{k?-C,0-[C(CH2'Bu)NC(CF3)O0]}{x*-C,N-(MeCsH3-py)}2 (17).

SN Este compuesto se obtuvo de forma andloga a 15 partiendo de 8

N CH,'Bu

(300 mg, 0.246 mmol) y trifluoroacetamida (56 mg, 0.492
- _

i N \OVKCF:’ mmol). La adicién de 10 mL de pentano al crudo de reaccion

causo la precipitacion de un solido rosa-rojizo, el cual fue lavado

con pentano (5 x 5 mL) y secado a vacio. Rendimiento: 212 mg (60 %).
Analisis elemental para C3;H31F3IrN3;O:
Calculado: C, 53.17; H, 4.32; N, 5.81.
Encontrado: C, 53.47; H, 4,64; N, 6.03.

HRMS (electrospray, m/z) calculado para C32H32F3IrN3O [M + H]": 724.2123,

encontrado: 724.2126.
IR (cm™): v(CO) 1603 (m), v(C=N) 1588 (m), v(CF3) 1175, 1144 (f).

RMN de 'H (400 MHz, CD2Cl2,298 K): § 8.04 (ddd, *Ju-1 = 5.6, *Jun = 1.7, °Ju-
1 = 1.0, 1H, CH py), 7.93 (ddd, *Ju-u = 8.4, “Ju-u = “J’un = 1.3, 1H, CH py), 7.87-7.78
(m, 2H, CH py), 7.63-7.57 (m, 2H, CH MeCsHs-py + CH py), 7.53 (d, *Ju-u = 7.9, 1H,
CH MeCsHs-py), 7.26 (ddd, *Jun = 7.2, 3Jun = 5.6, “Jun = 1.3, 1H, CH py), 6.98 (ddd,
3= 5.6, *Jun = 1.7, Jun = 1.0, 1H, CH py), 6.91 (ddd, *Jun = 7.9, “Jun = 1.8, Jun
= 0.8, 1H, CH MeCsHs-py), 6.85 (ddd, *Jun = 7.2, *Jun = 5.6, “Juu = 1.3, 1H, CH py),
6.76 (ddd, *Jun = 7.9, “Jun = 1.8, *Jun = 0.8, 1H, CH MeCsH3-py), 6.70 (s, 1H, CH
MeCsHs-py), 6.63 (s, 1H, CH MeCeHs-py), 3.18 (d, 2Ju-u = 13.2, 1H, CH>-'Bu), 2.31 (s,
3H, CH3s MeCsHs-py), 2.20 (d, /i1 = 13.2, 1H, CH2-'Bu), 2.10 (s, 3H, CH3 MeCsHs-py),

0.62 (s, 9H, 'Bu).



128 Parte experimental

RMN de *C{'H} (101 MHz, CD2Cl2, 253 K): § 280.4 (s, Ir-C=N), 179.5 (q, *Jc
F = 34.6, Ir-O=CCF3), 165.7, 164.4 (ambos s, N-C py), 155.7 (s, C MeCsH3-py), 149.4 (s,
CH py), 148.0 (s, C MeCsHs-py), 146.3 (s, CH py), 141.5 (s, 2C MeCesHs-py), 140.8,
140.6 (s, C MeCeH3-py), 139.3 (s, CH MeCsHs-py), 138.8, 138.0 (ambos s, CH py),
137.4, 124.4, 124.1, 123.7, 123.3 (todos s, CH MeCsHs-py), 123.1, 122.1, 119.6, 119.0
(todos s, CH py), 117.7 (q, 'Jcr = 281.4, C-CF3), 63.6 (s, CH2), 33.5 (s, C '‘Bu), 30.3 (s,

CHs-'Bu), 21.8, 21.7 (ambos s, CH3 MeCsH3-py).

RMN de °F (376.5 MHz, CD>Cls, 298 K): § -71.9 (s, CF3).

e Preparacion de Ir{k'-N-[NHC(CH3)O0]}{k*-C,N-(MeCsH3-py)}2{=C(CH:'Bu)OH}
a8).

CH - A una disolucion de 15 (50 mg, 0.075 mmol) en diclorometano
2
/C\OH (5 mL) se le anadi6 agua desoxigenada (15 pL, 0.833 mmol) y se

/ \
Q\é\ \< agito durante 24 h a temperatura ambiente. Una vez transcurrido

este tiempo, se llevo a sequedad. La adicion de pentano causo la
aparicion de un solido amarillo que se lavo con pentano (3 x 5 mL) y se seco a vacio.

Rendimiento: 27 mg (52 %).
Analisis elemental para C3;H36IrN3Oz:
Calculado: C, 55.96; H, 5.28; N, 6.12.
Encontrado: C, 56.14; H, 5.02; N, 5.98.

HRMS (electrospray, m/z) calculado para C3oH31IrN20 [M - acetamida]’:

628.2060; encontrado: 628.2031.

IR (cm!): w(OH) 3347, w(NH) 3033, w(CO) 1587 ().
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RMN de 'H (300 MHz, CD2Clz, 298 K): § 13.18 (s ancho, 1H, OH), 8.94 (ddd,
3Ji-n = 5.5, “Jnen = 1.7, %Jun = 0.9, 1H, CH py + s ancho, 1H, NH), 7.97 (d, *Ju-n =
8.2, 1H, CH py), 7.85 (ddd, *Ju_n = 8.2, *Ju_u = 7.4, “Ju_u = 1.7, 1H, CH py), 7.71 (d,
3Ju-n = 8.2, 1H, CH py), 7.56-7.47 (m, 3H, CH py + CH MeCsHs—py), 7.43 (s, 1H, CH
MeCsH3—py), 7.31 (ddd, *Ju_n = 7.4, *Jun = 5.5, “Ju_u = 1.3, 1H, CH py), 7.08 (ddd,
3Ji-n = 5.6, *Jun = 1.5, °Ju-n = 0.7, 1H, CH py), 6.88 (dd, 3Ju-n = 7.9, “Jin = 1.2, 1H,
CH MeCsHs—py), 6.73 (ddd, *Ji-u = 7.1, *Ju_u = 5.6, *Ju_u = 1.3, 1H, CH py), 6.64 (dd,
3 = 7.9, “un = 1.2, 1H, CH MeCsH3—py), 6.37 (s, 1H, CH MeCsHs—py), 2.42 (s,
3H, CH3), 1.99 (s, 3H, CH3), 1.87 (AB spin system, Av =33, Ja_s = 15.0, 2H, CH>), 1.61

(s, 3H, CH3), 0.59 (s, 9H, ‘Bu).

RMN de BC{'H} (75 MHz, CD2Clz, 298 K): 6 229.0 (s, Ir=C), 179.5 (s, C=0),
166.4, 165.9 (ambos s, N—C py), 159.9 (s, C MeCcH3—py), 148.8 (s, CH py), 148.4 (s, C
MeCsHs—py), 147.2 (s, CH py), 142.2,141.9, 140.0, 139.3 (todos s, C MeCsH3—py), 138.3
(s, CH MeCsH3s—py), 138.0 (s, CH py), 137.9 (s, CH MeCsHs—py), 137.3 (s, CH py),
124.5, 124.4, 122.3, 122.3 (todos s, CH MeCsHs—py), 122.2, 121.1, 119.1, 118.2 (todos
s, CH py), 58.0 (s, CH2), 31.8 (s, C '‘Bu), 30.6 (s, CHs '‘Bu), 25.8 (s, CH3 acetamida), 22.1,

21.7 (ambos s, CH3 MeCsH3—py).

) Preparacion de Ir{k!-N-[NHC(CH>Ph)O]}{x*-C,N-(MeCsH3-
py)}2{=C(CH:'Bu)OH} (19).

CH By Este compuesto se obtuvo de forma andloga a 18 partiendo de
2
/C\OH 16 (150 mg, 0.201 mmol) y agua desoxigenada (40 pL, 2.220

_ N /Ir
\ H\( mmol). Se obtuvo como un sélido amarillo. Rendimiento: 72
CHzPh . . ..

mg (47 %). Se obtuvieron cristales de 19 aptos para su analisis
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por difraccioén de rayos X por difusion lenta de pentano en una disolucion concentrada

del compuesto en diclorometano a temperatura ambiente.
Analisis elemental para C3gsH40IrN3Oz:
Calculado: C, 59.82; H, 5.28; N, 5.51.
Encontrado: C, 59.65; H, 4.97; N, 5.33.

HRMS (electrospray, m/z) calculado para C3sHaolrN3NaO2 [M + Na]": 786.2642,

encontrado: 786.2632.
IR (cm™): v(NH) 3379, v(OH) 3339, v(CO) 1584 (f).

RMN de 'H (300 MHz, CD2Cl2,298 K):  12.92 (s ancho, 1H, OH), 8.86 (s ancho,
1H, NH), 8.38 (d, *Juu = 5.1, 1H, CH py), 7.91 (d, *Ju-u = 8.2, 1H, CH py), 7.77 (dd,
3Jun = 'un = 7.7, 1H, CH py), 7.70 (d, *Jun = 8.1, 1H, CH py),7.58-7.46 (m, 3H, 2H
CH py + CH MeCsHs-py), 7.43 (s, 1H, CH MeCeHs-py), 7.16-7.02 (m, 4H, 3H CH Ph +
CH py), 6.93-6.82 (m, 4H, 2H CH Ph + CH py + CH MeCsHs-py), 6.70 (dd, *Ji-n = >J 1
u=6.3, IH, CH py), 6.63 (d, *Ju-u = 7.8, 1H, CH MeCeHs-py), 6.37 (s, IH, CH MeC¢H3-
py), 3.23 (AB system, Av = 34.1, Ja-s = 14.7, 2H, CH2Ph), 2.43 (s, 3H, CH3), 1.99 (s,

3H, CH3), 1.83 (AB system, Av=137.4, Ja 8 = 15.0, 2H, CH>-'Bu), 0.56 (s, 9H, CH3-'Bu).

RMN de 3C{'H} (75 MHz, CD2Cla, 298 K): § 229.2 (s, Ir=C), 178.8 (s, C=0),
166.3, 165.8 (ambos s, N-C py), 159.6 (s, C MeC¢Hs-py), 148.5 (s, CH py), 148.3 (s, C
MeCeHs-py), 147.2 (s, CH py), 142.2, 141.8, 140.0 (todos s, C MeCsHs-py), 139.4 (s, C
Ph), 139.3 (s, C MeCsHs-py), 138.3, 137.9 (ambos s, CH MeCsHs-py), 137.9, 137.3
(ambos s, CH py), 129.8 (s, 2C, CH Ph), 128.3 (s, 2C, CH Ph), 125.8 (s, CH Ph), 124.5

(s, CH MeCeHs-py), 124.4 (s, CH MeCsHs-py), 122.3(s, 2C CH MeCsHs-py), 122.0,
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121.1, 119.0, 118.3 (todos s, CH py), 57.9 (s, CH2-Bu), 46.3 (s, CH2Ph), 31.8 (s, C ‘Bu),

30.6 (s, CHs 'Bu), 22.2, 21.7 (ambos s, CH3 MeCsH3—py).

e Preparacion de Ir{k'-N-[NHC(CF3)O0]}{k*-C,N-(MeCsH3-py)}2{=C(CH:'Bu)OH}
(20).

™ chi Este compuesto se obtuvo de forma andloga a 18 partiendo de 17
P 2bu
N~/
", \¢C\OH (150 mg, 0.208 mmol) y agua desoxigenada (40 pL, 2.220
Zlr
- \N 0

N\
Q\é\H\( mmol). Se obtuvo como un sélido amarillo. Rendimiento: 102
CF
’ mg (66 %). Se obtuvieron cristales de 20 aptos para su analisis

por difraccioén de rayos X por difusion lenta de pentano en una disolucion concentrada

del compuesto en diclorometano a temperatura ambiente.
Analisis elemental para C3;H33F3IrN;O::
Calculado: C, 51.88; H, 4.49; N, 5.67.
Encontrado: C, 51.53; H, 4.36; N, 5.75.

HRMS (electrospray, m/z) calculado para C3H3sF3IrN3NaO [M + Na]™:

764.2046, encontrado: 764.2065.
IR (cm™): v(NH) 3385, v(OH) 3381, v(CO) 1681 (f), v(CF3) 1200, 1131.

RMN de 'H (300 MHz, CD>Clz, 298 K): & 11.08 (s ancho, 1H, OH), 8.84-8.70
(m, 2H, CH py + NH), 7.99 (d, 3Jun = 8.2, 1H, CH py), 7.88 (ddd, *Jin = 8.2, 3Jun =
7.5, %Juwn = 1.6, 1H, CH py), 7.73 (d, *Jin = 8.1, 1H, CH py), 7.62-7.48 (m, 3H, 2H CH
MeCeHs-py + CH py), 7.38-7.29 (m, 2H, CH MeCeHs-py + CH py), 7.11 (ddd, Jin =
5.6, % = 1.5, SJinn = 0.9, 1H, CH py), 6.93 (dd, Jin = 7.9, “Jun = 2.3, 1H, CH

MeCeHs-py), 6.75 (ddd, *Ju-u = 7.1, 3Jin = 5.6, “Jun = 1.5, 1H, CH py), 6.69 (dd, *Jun
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=7.9, “Jin = 2.5, 1H, CH MeCsHs-py), 6.41 (s, 1H, CH MeCeHs-py), 2.43 (s, 3H, CH3),

2.10 (m, 2H, CH>-'Bu), 2.02 (s, 3H, CHs), 0.65 (s, 9H, CH: 'Bu).

RMN de 3C{'H} (75 MHz, CD2Cly, 298 K): & 231.8 (s, Ir=C), 166.5, 165.5
(ambos s, N-C py), 162.6 (q, Jcr = 35.2, C-COCF3), 157.6 (s, C MeCsHs-py), 148.5,
147.5 (ambos s, CH py), 145.2, 142.6, 141.6, 140.4, 139.9 (todos s, C MeCsHs-py), 138.5
(s, CH py), 138.0, 137.7 (ambos s, CH MeCsH3-py), 137.6 (s, CH py), 124.6, 124.4,
123.1, 123.0 (todos s, CH MeCeH3-py), 122.7, 121.2, 119.4, 118.4 (todos s, CH py), 116.6
(q, 'Jor = 292.9, CF3), 58.0 (s, CH2-'Bu), 32.1 (s, C ‘Bu), 30.7 (s, CHs ‘Bu), 22.2, 21.8

(ambos s, CH3 MeCsH3-py).

RMN de F (376.5 MHz, CD2Cl2,298 K): 8 -76.1 (s, CF3).

e Preparacion de Ir{k*-N,C,C’,0-[py-MeCsH3-C(CH,-CcH4)NHC(Ph)O]} {x>-C,N-
(MeCeHz-py)} (21).

A una suspension de 7 (300 mg, 0.238 mmol) en tolueno (20 mL)
contenida en una ampolla con tapdn de rosca de teflon se le afiadiod

benzamida (58 mg, 0.476 mmol). La mezcla se calentd durante 24

h a 120 °C. Pasado este tiempo, la disolucion se enfrio a
temperatura ambiente y se llevo a sequedad. El crudo se purifico mediante cromatografia
de columna (Al2O3 neutra, grado de actividad V) usando tolueno como eluyente,
obteniendo una fraccion amarilla. Esta fraccion se llevo a sequedad y la adicion de
pentano causo la precipitacion de un solido amarillo, el cual lavé con pentano varias veces

y se seco a vacio. Rendimiento: 31 mg (9 %).
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Analisis elemental para C3oH3:IrN;O:
Calculado: C, 62.38; H, 4.30; N, 5.60.
Encontrado: C, 62.53; H, 4.00; N, 5.27.

HRMS (electrospray, m/z) calculado para CsoH33IrN3O [M + H]": 752.2247,

encontrado: 752.2212.
IR (cm™): v(NH2) 3325 (m), v(CO) 1596 (f).

RMN de 'H (400 MHz, CD:Cl>,298 K): 6 9.49 (d, *Ju-u = 5.4, 1H, CH py), 8.63
(d, *Jun = 4.8, 1H, CH py tetra), 7.99 (s, 1H, CH MeCesH3-py tetra), 7.89 (d, *Ju-n = 7.9,
1H, CH py), 7.83 (ddd, *Ju-u = 3J s = 7.9, “Jun = 1.9, 1H, CH py), 7.56 (ddd, 3Jiu =
3w =18, “Jun = 1.8, 1H, CH py tetra), 7.53-7.47 (m, 3H, CH py tetra + 2 CH COPh),
7.44-7.35 (m, 3H, CH py + CH COPh + CH MeCeHs-py), 7.33 (d, *Ju-u = 7.8, 1H, CH
MeCsH3-py tetra), 7.27 (t, *Jun = 7.7, 2H, CH COPh), 7.21 (d, *Ju-u = 7.8, 1H, CH
MeCesHs-py tetra), 7.00 (s, 1H, NH), 6.98-6.92 (m, 2H, CH py tetra + CH CH2Ph tetra),
6.54 (t, >Ju-n = 7.3, 1H, CH CH2Ph tetra), 6.46 (d, *Jun = 7.8, 1H, CH MeCsH3-py), 6.42-
6.35 (m, 2H, CH MeCsH3-py + CH CH2Ph tetra), 5.93 (d, 3Juu = 7.3, 1H, CH CH2Ph
tetra), 4.20 (d, 2Jn-u = 15.4, 1H, CH2), 3.29 (d, 2Ju-u = 15.4, 1H, CH2), 2.61 (s, 3H, CH3

MeCesHs-py), 1.90 (s, 3H, CH3z MeCsH3s-py).

RMN de B¥C{'H} (101 MHz, CD2Cl2,298 K): 8 173.4 (s, Ir-O=C), 167.7 (s, N-C
py), 159.5 (s, N-C py tetra), 155.6 (s, Ir-C CH2Ph tetra), 151.2 (s, CH py tetra), 150.5 (s,
Ir-C MeCsHs-py), 150.2 (s, CH py), 149.7 (s, C MeCesHs-py tetra), 145.8 (s, C CH2Ph
tetra), 142.6 (s, C MeCsH3s-py), 140.2 (s, C MeCsHs-py tetra), 139.3 (s, CH MeCsH3-py),
139.0 (s, C MeCsHs-py), 136.9 (s, C MeCsHs-py tetra), 136.7 (s, 2C, CH py + CH py
tetra), 132.9 (s, CH MeCsHs-py tetra), 132.7 (s, CH CH2zPh tetra), 132.1 (s, CH MeCsH3-

py), 131.4 (s, C COPh), 129.0 (s, 2C, CH COPh), 127.7 (s, 2C, CH COPh), 127.0, 126.9
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(ambos s, CH MeCesHs-py tetra), 125.0 (s, CH py tetra), 124.0 (s, CH COPh), 123.6 (s,
CH CH2Ph tetra), 122.9 (s, CH py tetra), 122.2 (s, CH py), 121.6, 121.3 (ambos s, CH
CH2Ph tetra), 120.4, 118.7 (ambos s, CH py), 55.8 (s, CH2Ph), 54.4 (s, CIr-C-NH), 21.9

(s, CH3s MeCsHs—py tetra), 21.5 (s, CH3 MeCsH3s—py).

e Preparacion de Ir{k*-N,C,C’,0-[py-MeC¢H;3-C(CH,-CcHs)NHC(CH3)O0]} {k>-C,N-
(MeCesH3-py)} (22).

Este compuesto se obtuvo de forma analoga a 21 partiendo de 7

(300 mg, 0.238 mmol) y acetamida (28 mg, 0.476 mmol). Se

g\ \O><NH obtuvo como un sélido amarillo. Rendimiento: 47 mg (14 %). Se
gj/ CH;

obtuvieron cristales de 22 aptos para su andlisis por difraccion de
rayos X por difusion lenta de pentano en una disolucién concentrada del compuesto en

diclorometano a temperatura ambiente dentro de la caja seca.
Analisis elemental para C34H30IrN;O:
Calculado: C, 59.28; H, 4.39; N, 6.10.
Encontrado: C, 59.61; H, 4.16; N, 6.45.

HRMS (electrospray, m/z) calculado para CssHzolrN3O [M]": 689.2013,

encontrado: 689.2010.
IR (cm™): v(NH2) 3335 (m), w(CO) 1586 (f).

RMN de 'H (400 MHz, CD2Cl>, 298 K): § 9.32 (d, *Jun = 5.4, 1H, CH py), 8.54
(d, *Juu = 5.5, 1H, CH py), 7.92-7.83 (m, 2H, CH MeCsHs-py + CH MeCsHs-py), 7.80
(ddd, *Jun =S = 7.7, Yun = 1.8, 1H, CH py), 7.65 (ddd, *Jun =3 '5n = 7.8, “Jun

= 1.8, 1H, CH py), 7.57 (d, *Jux = 7.8, 1H, CH py), 7.41-7.29 (m, 3H, CH py + CH
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MeCsHz-py + CH MeCsHz-py), 7.19 (d, *Ju-u = 7.8, 1H, CH MeCeHs-py), 7.00-6.89 (m,
2H, CH py + CH Ph), 6.55 (ddd, *Ju-ur = *J’u-u = 7.3, “Jun = 1.4, 1H, CH Ph), 6.43 (dd,
3Jun = 7.7, *Jun = 1.8, 1H, CH py), 6.41-6.29 (m, 3H, CH MeCsHs-py + CH Ph + NH),
5.87 (d, *Juu = 7.3, 1H, CH Ph), 4.08 (d, Jun = 15.3, 1H, CH), 3.13 (d, “Jun = 15.3,
1H, CH2), 2.58 (s, 3H, CH3 MeCsHs-py), 1.87 (s, 3H, CH3s MeCsHs-py), 1.67 (s, 3H,

COCH;).

RMN de BC{'H} (101 MHz, CD2Cl2, 253 K): 8 176.0 (s, Ir-O=C), 167.6, 159.5
(ambos s, N-C py), 155.8 (s, C Ph), 151.2 (s, CH py), 150.3 (s, C MeCsH3-py), 150.2 (s,
CH py), 149.8 (s, C MeCsHs-py), 145.9 (s, C Ph), 142.5 (s, C MeCesHs-py), 140.2 (s, C
MeCsHs-py), 139.3 (s, CH MeCsHs-py), 139.0, 136.8 (ambos s, C MeCsH3-py), 136.7,
136.6 (ambos s, CH py), 132.9 (s, CH MeC¢Hs-py), 132.7 (s, CH Ph), 126.9, 126.7
(ambos s, CH MeCsHs-py), 125.0 (s, CH py), 124.0, 123.6 (ambos s, CH Ph), 123.0,
122.2 (ambos s, CH py), 121.6, 121.3 (ambos s, CH Ph), 120.3 (s, CH py), 118.6 (s, CH
MeCeHs-py), 55.5 (s, CH2Ph), 53.9 (s, CIr-C-NH), 21.8 (s, CH3s MeCsH3—py tetra), 21.5

(s, CH3 MeCsH3—py). 19.7 (s, COCH3).

e Preparacion de IrH{x3-C,N, C-(C¢Hs-isoqui-OCsHy)} (P'Pr3): (24).

PP, Una disoluciéon de 23 (300 mg, 0.58 mmol) y 3-fenoxi-1-

@ fenilisoquinolina (207 mg, 0.70 mmol) en tolueno (15 mL) se

N
K

JIr
i / ‘\ calentd a reflujo durante una semana. Transcurrido este tiempo, se

|
SN,

P'Prs llev6 a sequedad. El crudo de reaccion se purifico mediante columna
cromatografica de silice (desactivada con Et;N) usando diclorometano:pentano (1:4)
como eluyente para obtener una fraccion naranja. El disolvente se evapor6d a vacio,

obteniendo un solido naranja. Rendimiento: 148 mg (32 %).
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Analisis elemental para C3oHssIrNOP;:
Calculado: C, 57.90; H, 6.98; N, 1.73.
Encontrado: C, 58.27; H, 6.86; N, 1.89.

HRMS (electrospray, m/z) calculado para C3oHssIrNOP> [M]™: 809.3461;

encontrado: 809.3463.
IR (cm™): w(IrH) 2194 (d).

RMN de 'H (300 MHz, CsDs, 298 K): § 8.86 (d, *Ji_u = 8.9, 1H, CH arom), 8.43-
8.36 (2H, CH arom), 8.17, (d, *Ju_u = 8.2, 1H, CH arom), 7.43 (dd, *Ju_u = 7.9, *Ju_u =
1.4, 1H, CH arom), 7.37 (d, *Ju-u = 8.0, 1H, CH arom), 7.17-7.04 (6H, CH arom), 6.95
(ddd, 3Jin = 7.2, *Juon = 7.2, “Juon = 1.4, 1H, CH arom), 1.85 (m, 6H, PCH), 0.96 (dvt,
N=13.2,3uu = 6.4, 18H, PCHCH3), 0.71 (dvt, N = 13.0, *Ju_u = 6.5, 18H, PCHCH;),

-18.37 (t, Yp = 19.5, 1H, IrH).

RMN de 3'P{'H} (121.5 MHz, C¢Ds, 298 K): & 2.3 (s, d bajo condiciones de off

resonance).

RMN de *C{'H} (75.5 MHz, CsDs, 298 K): § 171.8 (t, 2Jc_p = 8.8, IrC), 171.4,
157.0, 154.3 (todos s, C), 149.7 (s, CH arom), 148.3 (s, C), 144.2 (s, CH arom), 140.3 (s,
C), 131.8 (s CH arom), 131.0 (t, 2Jc_r = 9.4, IrC), 129.7, 126.7, 124.8 (todos s, CH arom),
123.6 (s, C), 122.9, 122.7, 120.0, 115.6, 103.6 (s, CH arom), 25.9 (vt, N = 26.6, PCH),

19.9, 19.3 (ambos s, PCHCH3).
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e Reaccion de 23 con 3-fenoxi-1-fenilisoquinolina: Deteccion espectroscopica de

IrH:{x*-C,N,-(CcHs-isoqui-OCsHs)} (P'Pr3), (24d).

pip Una disolucion de 23 (300 mg, 0.58 mmol) y 3-fenoxi-1-
rs

@ fenilisoquinolina (207 mg, 0.70 mmol) en tolueno (15 mL) se calentd

,,

L e l‘r\H a reflujo durante 24 h. Transcurrido este tiempo, el espectro de RMN

P'Pry del crudo de reaccion en CesDe¢ mostraba la presencia del
monohidruro 24, el dihidruro 24d y el complejo de partida 23 en una relacion molar
15:54:31. Se obtuvo una pequena cantidad de cristales de 24d aptos para su analisis por
difraccion de rayos X en una disolucion concentrada de la mezcla en pentano a -18 °C.

Los datos RMN de 24d son los siguientes:

RMN de "H (300 MHz, CsDs, 298 K): & 8.85 (d, *Ju_u = 7.9, 1H, CH arom), 8.67
(d, *Ju-n = 6.9, 1H, CH arom), 8.34 (dd, *Ju_u = 7.3, “Ju_u = 1.8, 1H, CH arom), 7.43
(dd, *Ju-u = 7.9, “Jin = 1.4, 1H, CH arom), 7.37 (d, *Ju_u = 7.7, 1H, CH arom), 7.30 (d,
3Ju-n = 8.3, 1H, CH arom), 7.28-7.04 (8H, CH arom), 2.04 (m, 6H, PCH), 1.05 (dvt, N=
13.4, 3Ju_n = 7.0, 18H, PCHCH3), 1.01 (dvt, N = 12.7, *Ju_u = 6.9, 18H, PCHCH;), -
12.55 (tdd, 2Ju-p = 20.6, 2Jin = 5.4, “Ju_n = 1.4 1H, IrH), -21.82 (td, 2Ju_r = 18.3, 2Ji_n

= 5.4, 1H, IrH).

RMN de 3'P{'H} (121.5 MHz, CsDs, 298 K): & 30.3 (s, t bajo condiciones de off-

resonance).

RMN de *C{'H} (75.5 MHz, CsDs, 298 K): 5 185.0 (t, 2Jc_p = 6.8, IrC), 174.2,
161.7, 155.4, 149.4 (todos s, C), 144.9 (s, CH arom), 139.6 (s, C), 130.6, 130.5, 129.9,
128.8, 127.94, 126.8, 125.4, 124.0 (todos s, CH arom), 123.7 (s, C), 121.5, 120.7, 104.6

(todos s, CH arom), 26.7 (vt, N=27.1, PCH), 20.4, 19.9 (ambos s, PCHCH3).
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e Preparacion de IrH{x3-N,N, C-[NBzim-py-CsH4]}(P'Pr3): (25).

pipr A una disolucién incolora de 23 (100 mg, 0.193 mmol) en 10 mL de
3

%’@ tolueno se le afiadi6 2-(1H-bencimidazol-2-il)-6-fenilpiridina
y /I‘r\

\
W

H  (HNbzim-py-Ce¢Hs) (52 mg, 0.193 mmol) y se calentdé a reflujo
@ or durante 24 h. Se llevo a sequedad y se afladié metanol para provocar
la precipitacion de un s6lido amarillo, el cual se lavo con metanol a - 78 °C y se seco a
vacio. Rendimiento: 104 mg (69%). De forma alternativa, la reaccion también se puede
llevar a cabo en p-xileno a reflujo durante 5 h. Se obtuvieron cristales de 25 aptos para su
analisis por difraccion de rayos X en una disolucion concentrada del sélido en benceno-

de a temperatura ambiente.
Analisis elemental para C3sHssIrNs;P»:
Calculado: C, 55.15; H, 7.07; N, 5.36.
Encontrado: C, 55.01; H, 7.14; N, 5.26.

HRMS (electrospray, m/z) calculado para CisHssIrN3P2 [M]" 784.3497;

encontrado: 784.3507.
IR (cm™): w(IrH) 2168 (d).

RMN de 'H (300 MHz, CsDe, 298 K): § 8.39 (dd, *Jun = 7.3, “Ju = 1.5, 1H, H
py), 8.17 (m, 1H, CéHa), 7.75-7.62 (2H arom), 7.43 (dd, *Ju-u = 7.1, *Jur = 2.2, 1H bzim),
7.30 —7.07 (4H arom), 7.01-6.89 (2H arom), 1.69 (m, 6H, PCH), 0.70 (dvt, N=13.1, *Ju-
1 =6.5, 18H, PCHCHj3), 0.64 (dvt, N=13.37, *Ju.u = 6.7, 18H, PCHCH?3), -14.86 (t, *Ju-

rp=19.4, 1H, IrH).

RMN de 3'P{'H} (121.5 MHz, CsDs, 298 K): 6 5.0 (s, d bajo condiciones de off-

resonance).
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RMN de ¥C{'H} (75.5 MHz, CéDs): 6 165.9 (s, C py), 164.9 (s, NCN), 155.7 (s,
C py), 148.4 (s, C CsHa), 148.1 (s, C bzim), 147.6 (s, C bzim), 146.3 (t, 2Jc-p = 6.4, IrC),
141.0 (s, CH arom), 137.0 (s, CH py), 129.7, 124.4, 121.1, 121.0, 120.9, 120.7 (todos s,
CH arom), 116.9 (s, CH py), 115.7 (s, CH arom), 114.7 (s, CH py), 25.3 (vt, N=26.7 Hz,

PCH), 19.3, 18.9 (ambos s, PCHCH3).

e Reaccion de 23 con 2-(1H-bencimidazol-2-il)-6-fenilpiridina: Deteccion
espectroscopica de IrH;{k?-N,N-[NBzim-py-C¢Hs]}(PPr3); (25d).

A una disolucion incolora de 23 (100 mg, 0.193 mmol) en 10 mL de
?N/Ph tolueno se le afiadi6 2-(1H-bencimidazol-2-il)-6-fenilpiridina
H (HNbzim-py-CsHs) (52 mg, 0.193 mmol) y se calent6 a reflujo. Tras
Prs 10 h, el espectro RMN de *'P{'H} de una alicuota de la reaccion

mostrd la presencia de una mezcla que contenia a 25d y 25, en una relaciéon molar de

80:20. Los datos de RMN de 25d son los siguientes:

RMN de 'H (300 MHz, CsDs, 298 K): § 9.07 (dd, *Ju- = 7.9, “Jun = 1.6, 1H, py,
8.31 (m, 1H, bzim), 7.78 (m, 1H, bzim), 7.70 (m, 2H Ph), 7.35 (m, 2H, bzim), 7.23-7.14
(m, 3H Ph), 7.11 (dd, *Ju-e = 7.9, *Juu = 7.5, 1H py), 6.80 (dd, *Jun = 7.5, “Jun = 1.6,
1H bzim), 1.98 (m, 6H, PCH), 0.86 (dvt, N=13.2, *Ji.u = 6.6, 18 H, PCHCH3), 0.60 (dvt,
N=12.9, *Jun = 6.6, 18 H, PCHCH?3), -20.35 (td, 2Ju-p = 17.1, 2Jun = 7.0, 1H, IrH), -

23.18 (td, 2Jup = 18.4, 2Jun = 7.0, 1H, IrH).

RMN de 3'P{'H} (121.5 MHz, CsDs, 298 K): 6 20.7 (s, t bajo condiciones de off-

resonance).

RMN de “C{'H} (75.5 MHz, CeDe): 6 163.3 (s, NCN bzim), 162.5 (s, C py),

158.8 (s, C py), 148.6 (s, C py), 146.6 (s, C py), 143.1 (s, C Ph), 136.4 (s, CH py), 130.8
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(s, 2CH Ph), 128.5 (s, CH Ph), 127.0 (s, 2CH Ph), 124.3 (s, CH py), 122.4 (s, CH py),
120.9 (s, CH bzim), 120.7 (s, CH bzim), 120.6 (s, CH bzim), 116.5 (s, CH bzim), 27.1

(vt, N=26.2 Hz, PCH), 19.8, 18.9 (ambos s, PCHCH3).

e Preparacion de IrH{k>*-N,N, C-[Ind-py-CcH4]}(P'Pr3): (26).

Este compuesto se obtuvo de una forma andloga a 25 partiendo de 23

P'Pry
< e “@ (200 mg, 0.386 mmol) y 2-(1H-indol-2-il)-6-fenilpiridina (104 mg,
e
>N ‘\H 0.386 mmol). La adiciéon de metanol al crudo de reaccion provoco la
P'Prs

precipitacion de un sélido amarillo, el cual se lavd con metanol a - 78

°Cy se seco a vacio. Rendimiento: 250 mg (77%).
Analisis elemental para C3;7Hs¢IrN2P>:
Calculado: C, 56.75; H, 7.21; N, 3.58.
Encontrado: C, 56.65; H, 7.05; N, 3.7.

HRMS (electrospray, m/z) calculado para Cs7HssIrN2P2 [M]" 783.3543;

encontrado: 783.3517.
IR (cm™): w(IrH) 2154 (d).

RMN de 'H (300 MHz, CsDs, 298 K): § 7.97 (d, *Jun = 7.2, 1H, H arom), 7.87
(m, 1H arom), 7.72 (d, m, 1H arom), 7.57 (m, 1H arom), 7.43 (dd, *Juu = 7.4, *Jun =
1.1, 1H arom), 7.37 (m, 1H arom), 7.34 (m, 1H arom), 7.25-7.14 (3H arom), 7.09-7.00
(2H arom), 1.81 (m, 6H, PCH), 0.82 (dvt, N = 13.2, *Ju.u = 6.5, 18 H, PCHCH3), 0.77

(dvt, N=13.3, 3Jiuu = 6.5, 18 H, PCHCH3), -14.83 (t, 2Ju-p = 19.7, 1H, IrH).
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RMN de 3'P{'H} (121.5MHz, CsDs, 298 K): § 4.4 (s, d bajo condiciones de off-

resonance).

RMN de BC{H} (75.5 MHz, CsDs¢): J 165.5 (s, C), 158.8 (s, C), 151.5 (s, C),
149.0 (s, C), 148.6 (s, C), 147.4 (t, 2Jcp = 7.8, IrC), 141.5, 136.0 (ambos s, CH arom),
131.6 (s, C), 129.2, 124.4, 122.2, 120.7, 120.6, 117.7, 117.2, 113.8, 112.3, 103.5 (todos

s, CH Ar), 25.5 (vt, N = 26.3 Hz, PCH), 19.5, 19.1 (ambos s, PCHCH3).

¢ Reaccion de 23 con 2-(1H-indol-2-il)-6-fenilpiridina: Deteccion espectroscopica de

IrH2{k?-N,N-[NBzim-py-CsHs]} (P'Pr3); (26d).
PPr, A una disolucion incolora de 23 (200 mg, 0.386 mmol) en 10 mL de
tolueno se le afiadié 2-(1H-indol-2-il)-6-fenilpiridina (104 mg, 0.386
H  mmol) y se calent6 a reflujo. Tras 3 h, el espectro RMN de *'P{'H} de
una alicuota de la reaccién mostrd la presencia de una mezcla que
contenia a 23, 25d y 25, en una relacion molar de 10:42:48. Los datos de RMN

seleccionados de 26d son los siguientes:

RMN de 'H (300 MHz, tolueno, 298 K): § -11.59 (td, 2Jur = 16.0, Jun = 6.8,

1H, IrH), -12.64 (td, Ju-p = 19.0, /a1 = 6.8, 1H, IrH).

RMN de 3'P{'H} (121.5 MHz, tolueno, 298 K): 5 45.9 (s).

e Preparacion de IrH{x3-C,N,0-(CsHs-py-CsH40)} (P'Pr3)2 (27).

P'Prs

Una disolucion de 23 (300 mg, 0.58 mmol) y 2-(2-hidroxifenil)-6-

fenilpiridina (172 mg, 0.70 mmol) en tolueno (15 mL) se calento6 a

reflujo durante 16 h. Transcurrido este tiempo, se llevo a sequedad.
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La adicion de pentano causoé la precipitacion de un sélido amarillo, el cual se lavo con
pentano (2 x 3 mL) y secado a vacio. Rendimiento: 148 mg (32 %). Se obtuvieron cristales
de 27 aptos para su analisis por difraccion de rayos X en una disolucién concentrada del

solido en pentano a -18 °C.
Analisis elemental para C3sHs4IrNOP>:
Calculado: C, 55.39; H, 7.17; N, 1.85.
Encontrado: C, 55.78; H, 7.00; N, 2.04.

HRMS (electrospray, m/z) calculado para C3sHssI'INOP2 [M + H]™: 760.3383;

encontrado: 760.3385.
IR (cm™): w(IrH) 2188 (d).

RMN de 'H (300 MHz, C¢De, 298 K): & 7.81 (dd, *Ji-u = 8.2, “Jun = 1.7, 1H,
CH OPh), 7.68 (d, *Ju_n = 7.5, 1H, CH Ph), 7.60 (d, *Ju_u = 8.3, 1H, CH OPh), 7.59 (dd,
3Jven = 7.4, “Ju_u = 1.6, 1H, CH Ph), 7.48 (dd, *Jii_n = 8.0, *Jui_u = 1.2, 1H, CH py), 7.31
(dd, 3Ju_u = 8.0; 8.0, 1H, CH py), 7.26 (ddd, 3Ju_u = 8.3, 3Jiu = 6.5, “Ju_u = 1.7, 1H,
CH OPh), 7.17 (dd, *Ju-n = 8.0, “Ju_n = 1.2, 1H, CH py), 7.07 (ddd, *Ju-u = 8.8, *Ju_u =
7.4, *Juu = 1.6, 1H, CH Ph), 7.00 (ddd, *Ju-u = 8.8, *Ju-u = 7.5, “Ju_u = 1.6, 1H, CH
Ph), 6.64 (ddd, *Ju-n = 8.2, *Ju_n = 6.5, “Ju_n = 1.6, 1H, CH OPh), 2.15 (m, 6H, PCH),
0.99 (dvt, N=13.1,Ju_n = 6.9, 18H, PCHCH3), 0.87 (dvt, N=12.9, *Ji_u = 6.9, 18H,

PCHCH;), -16.49 (t, Jip = 18.2, 1H, IrH).
RMN de *'P{'H} (121.5 MHz, CsDs, 298 K): & 13.9 (s).

RMN de 3C{'H} (75.5 MHz, CsDs, 298 K): § 168.1 (s, C OPh), 166.7 (s, C py).

156.9 (s, C OPh), 146.9 (t, 2Jc_p = 7.3, IrC Ph), 146.8 (s, C Ph), 141.0 (s, CH Ph), 134.7
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(s CH py), 131.4, 130.7 (ambos s, CH OPh), 129.1 (s, CH Ph), 125.9 (s, CH py), 125.6
(s, C py), 123.7, 119.6 (ambos s, CH Ph), 118.0 (s, CH OPh), 114.9 (s, CH py), 113.5 (s,

CH OPh), 23.8 (vt, N=25.5, PCH), 19.0, 18.7 (ambos s, PCHCH3).

e Preparacion de IrH{x3-C,C,0-(CsHs-Im-CsH40)} (P'Pr3); (28).

P'Pry A una disoluciéon de 23 (100 mg, 0.19 mmol) y triflato de N-(2-

,,

reflujo durante 15 min. Transcurrido este tiempo, se llevo a sequedad. La adicion de 2
mL de metanol causo la precipitacion de un sélido blanco, el cual se lavo con metanol (1

x 2 mL) y se seco a vacio. Rendimiento: 95 mg (66 %).
Analisis elemental para C3;;Hs3IrN,OP;:
Calculado: C, 52.99; H, 7.14; N, 3.75.
Encontrado: C, 52.73; H, 7.30; N, 3.90.

HRMS (electrospray, m/z) calculado para C33HsaIrN2OP2 [M + H]": 749.3335;

encontrado: 749.3337.
IR (cm™): w(IrH) 2014 (d).

RMN de 'H (300 MHz, CsDs, 298 K): & 7.51 (d, 3Ju_u = 7.5, 1H, CH Ph), 7.30
(d, *Jin = 2.1, 1H, CH im), 7.24 (dd, *Jin = 8.2, “Ju_n = 1.7, 1H, CH OPh), 7.21 (dd,
3 = 8.3, 4 = 1.7, 1H, CH OPh) 7.13 (ddd, 3Jin = 8.2, *Jin = 6.8, “Jim = 1.7,
1H, CH OPh), 7.02 (d, 3Ji_ir = 2.1, 1H, CH im), 6.99-6.88 (3H, CH Ph), 6.58 (ddd, Ji_u

= 8.3, %10 = 6.8, “Ju_n = 1.7, 1H, CH OPh), 2.11 (m, 6H, PCH), 1.07 (dvt, N =13.3,
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3Ju-n = 7.0, 18H, PCHCH3), 0.85 (dvt, N = 13.2,*Ju_u = 7.0, 18H, PCHCH3), -8.02 (t,

2Jip = 20.4, 1H, IrH).

RMN de *'P{'H} (121.5 MHz, CsDs, 298 K): 5 21.9 (s).

RMN de *C{'H} (75.5 MHz, CsDs, 298 K): 8 177.9 (t, 2Jc_p = 4.5, IrC im), 158.4
(s, C OPh), 148.2 (s, C Ph), 142.0 (s. CH Ph), 129.0 (s, C OPh), 127.0, 126.0 (ambos s,
CH OPh), 124.7 (t, 2Jc_p = 7.0, IrC Ph), 124.5, 120.4 (ambos s, CH Ph), 117.8 (s, CH
OPh), 114.8, 113.0 (ambos s, CH im), 111.9 (s, CH OPh), 110.2 (s, CH Ph), 23.5 (vt, N

=26.5, PCH), 18.8, 18.6 (ambos s, PCHCH3).

e Preparacion de IrH{k>*-N,C,C-[py-CsHMe;-CsH3N|}(PiPr3); (29).

PPry Una disolucion de 23 (300 mg, 0.58 mmol) y 1,3-di(2-piridil)-4,6-

%
5 I® dimetilbenceno (181 mg, 0.70 mmol) en tolueno (15 mL) se calento
I
~
| H

pip a reflujo durante 2 dias. Transcurrido este tiempo, se llevd a
I3

sequedad. El crudo de reaccién se purifico por columna cromatografica de silice
(desactivada con Et3N) usando diclorometano:pentano (1:4) como eluyente para eliminar
una impureza, y luego éter para obtener 29 como un sélido amarillo tras llevarlo a
sequedad. Rendimiento: 54 mg (12 %). Se obtuvieron cristales de 29 aptos para su analisis

por difraccion de rayos X en una disolucion concentrada del s6lido en MeOH a 4 °C.
Analisis elemental para CisHs7IrN;P»:
Calculado: C, 56.01; H, 7.44; N, 3.63.

Encontrado: C, 56.33; H, 7.32; N, 3.92.
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HRMS (electrospray, m/z) calculado para CisHssIrN2P2 [M + H]™: 773.3699;

encontrado: 73.3701.
IR (cm™): v(IrH) 1951 (d).

RMN de 'H (300 MHz, CsDs, 298 K): § 8.86 (dd, *Ju-n = 5.7, “Ju_u = 0.9, 1H,
CH py), 8.69 (dd, *Ju_n = 4.6, *Ju_u = 0.9, 1H, CH CsH3N), 7.96 (d, *Ju_u = 7.1, 1H, CH
py), 7.94 (dd, *Ju_u = 7.4, *Ju_u = 0.9, 1H, CH CsH3N), 7.11 (ddd, *Ju-n = 7.1, *Jun =
7.1, % = 0.9, 1H, py), 7.01 (s, 1H, CeH(CH3)2), 6.77 (dd, *Ju-n = 7.4, *Ju_n = 4.6, 1H,
CH CsH3N), 6.37 (ddd, *Ju-n = 7.1, *Ju_n = 5.7, *Ju_u = 1.3, 1H, CH py), 3.52, 2.69 (both
s, 3H each, CeH(CH3)2), 1.79 (m, 6H, PCH), 0.86 (m, 36H, PCHCH?3), -8.17 (t, 2Ji_p =

22.8, 1H, IrH).
RMN de 3'P{'H}(121.5 MHz, C¢Ds, 298 K): & 8.7 (s).

RMN de “C{'H} (75.5 MHz, CsDs, 298 K): & 195.0 (t, 2Jcr = 4.3, IrC
CsH(CH3)2), 180.3 (s, C CsHsN), 172.7 (s, C py), 156.6 (s, CH py), 149.7 (s, C
CsH(CH3)2), 146.5, 141.3 (ambos s, CH CsHzN), 138.0 (t, 2Jc—p = 9.4, IrC CsH3N), 135.9
(s, C C¢H(CHs)2), 134.6 (s, CH py), 132.4 (s, C CcH(CHa3)2), 130.4 (s, CH CsH(CH3)2),
122.4 (s, CH py), 119.3 (s, CH CsH3N), 119.2 (s, CH py), 25.0 (vt, N=26.9, PCH), 23.8,

21.8 (ambos s, CcH(CH?3)2), 18.9, 18.7 (ambos s, PCHCH3).

e Reaccion de 23 con 1,3-di(2-piridil)-4,6-dimetilbenceno: Deteccion espectroscopica

de IrH,{x*-N, C-[py-CsHMez-py]} (PiPr3)2 (29d).
Una disolucion de 23 (100 mg, 0.19 mmol) y 1,3-di(2-piridil)-4,6-

dimetilbenceno (60 mg, 0.23 mmol) en tolueno (5 mL) se calent6 a

reflujo. Tras 24 h, el espectro RMN de *'P{'H} de una alicuota de la
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reaccion mostro la presencia de una mezcla que contenia el monohidruro 29 y el dihidruro
29d, ademds de otras especies. Los datos de RMN seleccionados para 29d son los

siguientes:

RMN de 'H (300 MHz, tolueno, 298 K): & -12.74 (td, 2 = 21.5, 2Jun = 4.4,

1H, IrH), -20.91 (td, 2/i.p = 18.5, 2Jin = 4.4, 1H, IrH).

RMN de 3'P{'H} (121.5 MHz, tolueno, 298 K): 6 21.8 (s, t bajo condiciones de

off-resonance).

e Preparacion de IrH{x*-C,C-(C¢Hs-Im-CcHs)}(P'Pr3): (30).

PiPr, A una disolucion de 23 (100 mg, 0.19 mmol) y triflato de N,N’-

/N J‘{/‘ ‘@ difenilimidazolio (75 mg, 0.19 mmol), en tolueno (5 mL), se le afiadio

‘

Ph/ H/I‘F\H NEt3 (27 uL, 0.19 mmol) y la mezcla se calento a reflujo durante 1 h.

PPrs Transcurrido este tiempo, se llevd a sequedad. La adicién de 2 mL de
metanol causo la precipitacion de un solido blanco, el cual se lavo con metanol (1 x 2
mL) y se seco a vacio. Rendimiento: 57 mg (40 %). Se obtuvieron cristales de 30 aptos

para su analisis por difraccion de rayos X en una disolucioén concentrada del sélido en

MeOH a 4 °C.
Analisis elemental para C33HssIrN:P»:
Calculado: C, 54.00; H, 7.55; N, 3.82.
Encontrado: C, 54.15; H, 7.73; N, 3.88.

HRMS (electrospray, m/z) calculado para C33Hs4IrN2P2 [M — H]™: 733.3386;

encontrado: 733.3388.
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IR (cm™): w(IrH) 2069, 2041 (d).

RMN de 'H (300 MHz, CsDs, 298 K): & 8.36 (m, 1H, CH arom), 8.09-8.05 (2H,
CH arom), 7.23-7.17 (6H, CH im + CH arom), 7.06 (m, 1H, CH arom), 6.73 (d, *Ju-u =
2.1, 1H, CH im), 1.95 (m, 6H, PCH), 1.03 (dvt, N = 13.4, *Ju_u = 7.0, 18H, PCHCH:),
0.85 (dvt, N=12.6, *Ju_u = 7.0, 18H, PCHCH3), -14.03 (td, 2Ju_pr = 20.6, 2Ju_u = 4.3,

1H, IrH), -14.31 (tdd, 2Ju_pr = 19.7, 2Ji_u = 4.3, *Ju_u = 1.0, 1H, IrH).
RMN de *'P{'H} (121.5 MHz, CsDs, 298 K): & 28.4 (s).

RMN de BC{'H} (75.5 MHz, CsDs, 298 K): & 180.9 (t, ZJc—p = 6.2, IrC im),
152.0 (t, 2Jc_p = 7.2, IrC CsH4), 149.0 (s, C), 145.3 (s, CH arom), 141.9 (s, C), 126.6,
125.2, 124.8, 120.3 (todos s, CH arom), 119.2, 116.0 (ambos s, CH im), 110.6 (s, CH

arom), 27.6 (vt, N=28.4, PCH), 20.3, 19.4 (ambos s, PCHCH3).

e Procedimiento General para la a-Arilacion de Aminas.

Las reacciones se llevaron a cabo en schlenk bajo atmoésfera de argén a temperatura
ambiente. Al schlenk, equipado con un agitador magnético, se le afiadio el complejo 25
(0.01 0 0.015 mmol, 2 o 3 mol%), el correspondiente compuesto ciano aromatico (0.5
mmol), acetato de sodio (82 mg, 1.0 mmol; previamente secado a vacio a 100 °C durante
12 h), 2 mL de N,N-dimetilacetamida, y la amina correspondiente (1.5 mmol). El schlenk
se coloco dentro de un fotorreactor casero: la irradiacion azul se realizd con una tira de
luz LED Anmossi (2.5 m de tira LED azul (465 nm) de 24 V; 40 LEDs, salida maxima
1.2 W aprox.) atada alrededor de un recipiente blanco de polipropileno de 9 cm de
diametro. El reactor se instald en la parte superior de una placa de agitacion y la parte

superior del recipiente se cubrid con papel de aluminio. Después de 24 h, la reaccion se
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diluy6 con acetato de etilo (20 mL) y se afiadié a un embudo de decantacién que contenia
25 mL de una disolucion acuosa saturada de Na2COs. Las fases se separaron y la fase
acuosa se extrajo con mas EtOAc (3 x 10 mL). Los extractos organicos combinados se
lavaron con salmuera, se secaron (MgSO4) y se concentraron al vacio. La purificacion del
crudo se llevd a cabo por cromatografia en columna flash de silice, utilizando los

disolventes indicados para la obtencion de la amina a-arilada deseada.
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ESPECTROS RMN DE LOS COMPUESTOS 3-13
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Figura AL1. Espectro RMN de 'H (300 MHz, CD2Cl3, 298 K) del complejo 3.
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Figura AL2. Espectro RMN de *C{'H}-APT (75 MHz, CD2Clz, 298 K) del complejo 3.
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Figura AL3. Espectro RMN de 'H (300 MHz, CD2Cl3, 298 K) del complejo 4.
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Figura AL4. Espectro RMN de *C{'H}-APT (75 MHz, CD2Cl2, 298 K) del complejo 4.
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Figura ALS. Espectro RMN de 'H (300 MHz, CD2Cl3, 298 K) del complejo 5.
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Figura AL6. Espectro RMN de *C{'H}-APT (75 MHz, CD2Cl2, 298 K) del complejo 5.
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Figura AL19. Espectro RMN de 'H (300 MHz, CD2Cl3, 298 K) del complejo 11.
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Figura AL21. Espectro RMN de 'H (400 MHz, CD2Cl3, 298 K) del complejo 12.
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Figura AL24. Espectro RMN de 'H (300 MHz, CD2Cl3, 298 K) del complejo 13.
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ESPECTROS DE ABSORCION UV-VIS DE LOS COMPLEJOS 11-13

60000

F0.10

50000

40000

@Z
w
3
o
o
=}
o
@

30000

F 0.06

20000

Oscillator strength

F0.04

10000

10000 4

Coeficiente de extincion molar
(L/mol-cm)

F0.02

0

250 350 450 550
| 0.00

LongItUd de Onda (nm) 200 Z%D 300 35;0 400 45;0 560 55;0 600
Wavelength (nm)

Figura AI26. Espectro de absorcion del complejo 11 observado en 2-MeTHF (10 M)
y calculado (B3LYP(GD3)//SDD()/6-31G**) en THF.
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Figura AL.27. Espectro de absorcion del complejo 12 observado en 2-MeTHF (107 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.

200000 Y JBu 50000 Fo.16
| /
= CH2
N™ T o.14
160000 /I\ 4’C\\N 40000 -
= N/ r\N/ Fo.12
C \
120000 S NG p—

Oscillator strength

Coeficiente de extincién molar
(L/mol-cm)

80000 13 20000 4

0.06
40000
10000 - [ 0.04
O ” 0.02
250 350 450 550 ] | ||| I | , R 0.00
200 250 300 350 400 450 500 550 800
Longitud de onda (nm) Wavelength (nm)

Figura AL28. Espectro de absorcion del complejo 13 observado en 2-MeTHF (107 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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ANALISIS DE LOS ESPECTROS DE EMISION UV/VIS CALCULADOS PARA

LOS COMPLEJOS 11-13

En las tablas AIl.1-Al3 se muestran las principales transiciones de los espectros

de UV-Vis calculados, las fuerzas del oscilador y las principales contribuciones.

Tabla Al.1. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo

11 en THF.

A (nm)

554

471
447

401
345
333

318

283

272

268

Fuerza del
oscilador

0.0373
0.0828

0.0634
0.0831
0.1097

0.0706

0.0678

0.0638

0.0538

Simetria

T-A

S-A
S-A

S-A
S-A
S-A

S-A

S-A

Contribuciones
mayoritarias

H-4->LUMO (10%),
HOMO->LUMO (59%)

HOMO->LUMO (95%)
H-1->LUMO (66%),
HOMO->L+1 (30%)

H-2->LUMO (88%)

H-4->LUMO (87%)
H-3->L+1 (56%),
H-2->L42 (22%)

H-6->LUMO (12%),
H-5->L+1 (38%),
H-1->L+3 (14%),

HOMO->L+4 (16%)

H-2->L+5 (64%)

H-13->LUMO (34%),
H-10->L+1 (10%),
H-3->L+3 (20%)

H-6->L+2 (74%),
H-5->L+2 (15%)

Contribuciones
minoritarias
H-3->L+1 (9%),
H-2->L+1 (8%),
H-1->L+1 (5%)
H-1->LUMO (2%)

H-2->L+1 (4%),
H-1->L+1 (3%)
H-5->LUMO (6%)
H-2->L+1 (3%),
HOMO->L+3 (8%)

H-4->L+1 (5%),
HOMO->L+3 (4%)

H-11->LUMO (3%),
H-10->L+1 (3%),
H-9->L+1 (2%),
H-4->L+2 (2%),

HOMO->L+6 (9%)
H-12->L+1 (4%),
H-11->L+1 (4%),
H-1->L+6 (6%),
H-1->L+7 2%),

HOMO->L+6 (7%)
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Tabla AL.2. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo

12 en THF.
Fuerza del ] , Contribuciones Contribuciones
A (nm) . Simetria o . C
oscilador mayoritarias minoritarias
H-3->LUMO (4%),
H-3->L+1 (6%),
> 0
452 0 T-A Hggﬁ o L:ilr[lo( 2(207/?) H-2->L+1 (3%),
° H-1->L+1 (5%),
HOMO->L+2 (4%)
H-1->LUMO (8%),
. -A HOMO->LUM 9
395 0.0245 S OMO->LUMO (85%) HOMO->L+2 (4%)
H-1->LUMO (54%),
H-1->L+1 (3%),
381 0.0364 S-A H-1->L+2 (13%),
HOMO->LUMO (59
HOMO->L+1 (19%) OMO->LUMO (5%)
H-1->L+1 (71%), H-1->L+2 (6%),
365 0.0371 S-A HOMO->L+1 (13%) HOMO->L+3 (2%)
H-1->L+2 (6%),
- D> 0
343 0.055 S-A H-2->LUMO (84%) HOMO->L+3 (2%)
H-2->L+1 (72%),
.061 -A HOMO->L+3 (29
335 0.0613 S H-2->142 (16%) OMO 3 (2%)
H-5->LUMO (4%),
B3>0+ 0
297 0.1414 S-A I:I ?2 >Ii+13 ((61620//0))’ H-3->L+2 (3%),
° H-2->L+4 (8%)
H-5->L+1 (7%),
H-4->LUMO (3%,
- D>+ o
284 0.1714 S-A H-2->L+4 (67%) H-3->L+1 (4%),
H-2->L+5 (3%)
H-8->LUMO (3%)),
H-8->L+1 (3%),
262 0.394 S-A H-3->L+4 (71%) H-6->L+1 (3%),

H-4->L+4 (3%),
HOMO->L+8 (2%)
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Tabla AL.3. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo

13 en THF.
Fuerza del . i Contribuciones Contribuciones
A (nm) . Simetria . e .
oscilador mayoritarias minoritarias
H-5->LUMO (3%),
H-1->LUMO (22%), H-3->LUMO (5%),
450 0 T-A H-1->L+1 (12%), H-3->L+1 (3%),
HOMO->LUMO (36%) H-2->LUMO (2%),
H-2->L+1 (2%)
397 0.0181 S-A HOMO->LUMO (95%) -
H-1->LUMO (70%), H-1->L+2 (3%),
384 0.0428 S-A HOMO->L+1 (20%) HOMO->L+2 (4%)
H-2->L+2 (2%),
365 0.0385 S-A H-1->L+1 (83%) H-1->L+2 (9%)
H-2->L+1 (2%),
348 0.0896 S-A H-2->LUMO (86%) H-2->L+2 (2%),
H-1->L+3 (2%)
H-2->L+3 (36%), H-3->LUMO (7%),
309 0.037 S-A HOMO->L+5 (47%) H-2->L+2 (4%)
H-5->LUMO (43%),
296 0.1255 S-A H-4->LUMO (12%), H-3->L+1 (3%)
H-2->L+4 (31%)
H-5->LUMO (3%),
288 0.1694 S-A I:IS;LLE‘ ((6121(;//‘;)) Hed->L+1 (9%),
H-4->L+3 (3%)
H-5->L+2 (15%),
282 0.1265 S-A H-3->L+2 (17%), H-2->1L+4 (3%)
H-2->L+5 (56%)
H-8->L+1 (4%),
H-8->LUMO (11%), H-6->LUMO (5%),
259 0.1028 S-A H-7->L+1 (28%), H-6->L+2 (6%),

H-4->L+4 (21%)

H-3->L+4 (8%),
HOMO->L+8 (3%)
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ORBITALES MOLECULARES DE LOS COMPLEJOS 11-13

Los orbitales moleculares, las energias y el analisis de densidad (%) de los
complejos 11-13 se muestran en las tablas Al.4-Al.6, mientras que en las figuras Al.4-

AL6 se recopilan los orbitales moleculares de los mismos.

Tabla AL4. Composicion de los orbitales moleculares del complejo 11.

oM E (eV) Iridio Ph-isoqui (1) Ph-isoqui (2) Metalaciclo
L+9 0.23 66 8 4 21
L+8 0.13 14 1 16 69
L+7 -0.10 2 33 61 4
L+6 -0.16 3 63 32 2
L+5 -0.49 3 3 1 93
L+4 -0.72 2 39 57 1
L+3 -0.81 3 56 37 4
L+2 -1.10 8 2 5 86
L+1 -1.67 3 45 51 1
LUMO -1.85 2 52 44 2
HOMO -5.17 43 16 34 7

H-1 -5.29 42 35 17 6
H-2 -5.56 39 11 22 28
H-3 -5.90 12 24 50 15
H-4 -5.96 7 56 21 16
H-5 -6.15 15 16 9 60
H-6 -6.37 6 5 6 84
H-7 -6.45 4 2 17 77
H-8 -6.67 21 34 22 24
H-9 -6.69 16 4 20 60
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H-8

Figura AIL.29. Orbitales moleculares del complejo 11 (valor de contorno 0.03 a.u.).
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Tabla ALS. Composicion de los orbitales moleculares del complejo 12.

oM E (eV) Iridio Ph-py (1) Ph-py (2) Metalaciclo
L+9 0.52 8 75 10 7
L+8 0.27 5 1 1 93
L+7 0.20 84 2 3 11
L+6 0.10 9 1 14 76
L+5 -0.46 3 9 0 88
L+4 -0.59 3 34 58 5
L+3 -0.78 4 52 35 9
L+2 -1.07 8 5 9 79
L+1 -1.14 5 44 51 1
LUMO -1.24 2 51 40 7
HOMO -5.13 41 10 41 8
H-1 -5.20 43 39 11 7
H-2 -5.58 43 11 11 36
H-3 -5.89 10 13 65 12
H-4 -5.97 7 73 12 8
H-5 -6.10 16 13 6 65
H-6 -6.38 6 3 2 90
H-7 -6.53 4 2 10 84
H-8 -6.65 17 20 9 53

H-9 -6.71 25 19 29 27
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H-7 H-8

Figura AL30. Orbitales moleculares del complejo 12 (valor de contorno 0.03 a.u.).
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Tabla AIL.6. Composicion de los orbitales moleculares del complejo 13.

oM E (eV) Iridio Ph-py (1) Ph-py (2) Metalaciclo
L+9 1.01 9 42 45 4
L+8 0.61 6 53 41 1
L+7 0.47 6 39 54 1
L+6 0.17 94 1 1 3
L+5 -0.42 4 7 0 89
L+4 -0.61 3 50 43 4
L+3 -0.81 5 38 48 10
L+2 -1.03 9 4 11 77
L+1 -1.15 5 68 27 1
LUMO -1.27 2 27 64 7
HOMO -5.15 47 31 16 6
H-1 -5.19 41 17 35 7
H-2 -5.52 40 11 9 40
H-3 -5.92 9 13 46 32
H-4 -5.93 10 62 3 25
H-5 -6.03 14 24 42 20
H-6 -6.53 25 8 8 58
H-7 -6.68 25 32 32 12
H-8 -6.80 25 26 34 15

H-9 -6.93 14 23 42 21
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H-6

Figura AL31. Orbitales moleculares del complejo 13 (valor de contorno 0.03 a.u.).
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DENSIDADES DE ESPIN DE

LOS COMPLEJOS 11-13

11

12

Figura AL32. Distribuciones de densidades de espin del triplete 71 optimizado de los
complejos 11-13 (valor de contorno 0.002 a.u.).

VOLTAMOGRAMAS CiCLICOS DE LOS COMPLEJOS 11-13
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Figura AI33. Voltamogramas ciclicos de los complejos 11-13 en DCM (102 M)
utilizando BusNPFs como electrolito de soporte (0.1 M) y usando una velocidad de

barrido de 250 mV s

ferrocinio/ferroceno (Fc¢'/Fc).

Los potenciales

se referenciaron respecto al par
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ESPECTROS DE EXCITACION Y EMISION DE LOS COMPLEJOS 11-13
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Figura Al.34. Espectros de excitacion y emision normalizados del complejo 11 en film
de PMMA (5% peso) a 298 K.
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Figura AI.35. Espectros de excitacion y emision normalizados del complejo 11 en una
disolucion 10> M de 2-MeTHF a 298 K.
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Figura AI.36. Espectros de excitacién y emision normalizados del complejo 11 en una
disolucion 10> M de 2-MeTHF a 77 K.
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Figura AI.37. Espectros de excitacion y emision normalizados del complejo 12 en film
de PMMA (5% peso) a 298 K.
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Figura AI.38. Espectros de excitacion y emision normalizados del complejo 12 en una
disolucion 10> M de 2-MeTHF a 298 K.
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Figura AI.39. Espectros de excitacién y emision normalizados del complejo 12 en una
disolucion 10> M de 2-MeTHF a 77 K.



A30 Anexo [

=
[N)

[

©
©
(0]
N
g 0,8
2 06 o
o Excitacion
B 04 L
é —— Emision
:g 0,2

0

280 380 480 580

Longitud de onda (nm)

Figura AI.40. Espectros de excitacion y emision normalizados del complejo 13 en film
de PMMA (5% peso) a 298 K.
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Figura Al.41. Espectros de excitacion y emision normalizados del complejo 13 en una
disolucién 10> M de 2-MeTHF a 298 K.
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Figura Al.42. Espectros de excitacion y emision normalizados del complejo 13 en una
disolucion 10> M de 2-MeTHF a 77 K.
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DISMINUCION DE LA INTENSIDAD DE LA FOTOLUMINISCENCIA TRAS
LA EXCITACION EN FUNCION DEL TIEMPO DE LOS COMPLEJOS 11-13

10000
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T
a
2 100
S
3 MBB-98-FILM [XS)=1.037409] _(of x|
The fitted paramsters ave: J
SHIFT = 0 ch
TL = &ZB_2e0Z ch; &.406311E-07 sec §.Dewv = 1. 4066Z23E-08 sec
10 TZ = 1865.778 ch; Z.ZE009BE-06 sec §.Dev = 1.157752ZE-08 sec
A = 233.8147 §.Dav = 0.461546
El = 1134.582 [ 16.78 Rel.impl][ 0.4Z Alpha)] S.Dev = 5.020367
EZ = 1E35_Z17 [ 83.2Z Rel Mmpl][ 058 Alpha] 2. Dev = Z. 748638
Average Life Time = 1. 587001E-0& sec
CHIZQ = 1.037409 [ 6399 degrees of freedom ]
1 I 1 I 1 I I I 1 1 1 1 1 1
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Figura Al.43. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 11 en film de PMMA (5% peso) a 298 K (Aexe =
390 nm, Aem = 632 nm), parametros de ajuste y limites de confianza.
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Figura Al.44. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 11 en una disolucién 10 M de 2-MeTHF a 298 K
(Aexe = 390 nm, Aem = 625 nm), parametros de ajuste y limites de confianza.
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Figura AlL.45. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacién en funcion del tiempo de 11 en una disolucién 10° M de 2-MeTHF a 77 K
(Aexe = 390 nm, Aem = 572 nm), parametros de ajuste y limites de confianza.
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SHIFT = 0 ch
TL = 460.3035 ch; 5.575854E-07 sec S.Dewv = 5.493014E-03 sec
Tz = 1498.632 ch; L1.815358E-06 sec S.Dev = 6.175868E-03 sec
A = 678.6376 5. Dew = 05321832
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Figura Al.46. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 12 en film de PMMA (5% peso) a 298 K (Aexec =
370 nm, Aem = 514 nm), parametros de ajuste y limites de confianza.
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Figura Al.47. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 12 en una disolucion 10° M de 2-MeTHF a 298 K
(Aexe = 295 nm, Aem = 490 nm), parametros de ajuste y limites de confianza.
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Figura Al.48. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacién en funcion del tiempo de 12 en una disolucién 10° M de 2-MeTHF a 77 K
(Aexe = 295 nm, Aem = 473 nm), parametros de ajuste y limites de confianza.
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Figura AlL.49. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 13 en film de PMMA (5% peso) a 298 K (Aexec =
295 nm, Aem = 497 nm), parametros de ajuste y limites de confianza.
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Figura AL50. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 13 en una disolucion 10> M de 2-MeTHF a 298 K
(Aexe = 295 nm, Aem = 493 nm), parametros de ajuste y limites de confianza.
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Figura AL51. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 13 en una disolucion 10 M de 2-MeTHF a 77 K

(Aexe = 295 nm, Aem = 473 nm), parametros de ajuste y limites de confianza.
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Espectros RMN y datos fotofisicos y
electroquimicos de los compuestos 14-22






A39

ESPECTROS RMN DE LOS COMPUESTOS 14-22
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Figura AIl.24. Grafico ACID del complejo 14 con un valor de contorno de 0.03 a.u.



AS2

Anexo 11

a)

Wiberg bond index

Nbo charges s’
Bond lengths
{DFT, A)
Lﬁ
128  +0.263 1,25 ¢
1.923 (A) 1.389 {A)
-0.035 » -
o, 1.329 {A)
0.23 L
- +0.661 9’""
-0.685 | ™
1.278 {A) <
1.37

NICS:

y ¢ 0+0.77

1-1-21,-1.8

#0277 4 4

1.338 {A)

0.84
1.977 (A)

-0.652
+0.595
1.368 (A)

1.26
2,197 {A) ey
0.23 +0.714
-0.631  1.268(A)

1.46
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ESPECTROS DE ABSORCION UV-VIS DE LOS COMPLEJOS 14-16 Y 18-22
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Figura AIL26. Espectro de absorcion del complejo 14 observado en 2-MeTHF (107 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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Figura AIL27. Espectro de absorcion del complejo 15 observado en tolueno (10° M) y
calculado (B3LYP(GD3)//SDD(f)/6-31G**) en tolueno.
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Figura AIL28. Espectro de absorcion del complejo 16 observado en tolueno (10° M) y
calculado (B3LYP(GD3)//SDD(f)/6-31G**) en tolueno.



A54 Anexo 11

200000

r0.175

160000

|
120000 X 0]

80000 [ 0100
20000 A
r 0.075
40000
10000 1 f 0.050
0
250 350 450 550 | oo
o
Longitud de onda (nm) } , . 0,000

200 250 300 350 400 450 500 550 60
Wavelength (nm)

r 0.150

o
"
N
w

Oscillator strength

Coeficiente de extincién molar
(L/mol-cm)
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y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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Figura AIL31. Espectro de absorcion del complejo 20 observado en 2-MeTHF (107 M)
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Figura AIL33. Espectro de absorcion del complejo 22 observado en 2-MeTHF (107 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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ANALISIS DE LOS ESPECTROS DE EMISION UV/VIS CALCULADOS PARA
LOS COMPLEJOS 14-16 y 18-22

En las tablas AIIL.1-AIL.8 se muestran las principales transiciones de los espectros

de UV-Vis calculados, las fuerzas del oscilador y las principales contribuciones.

Tabla AII.1. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo
14 en THF.

Fuerza del . B Contribuciones Contribuciones
A (nm) . Simetria . e
oscilador mayoritarias minoritarias
H-3->LUMO (2%,
500 0 T-A HOMO->LUMO (85%) H-1->LUMO (6%)
457 0.0181 S-A H-1->LUMO (93%) H-2->LUMO (4%)
395 0.0454 S-A HOMO->L+1 (95%) -

o H-5->LUMO (2%,
364 0.1503 S-A Héfgﬁo(gf/s) H-4->LUMO (8%),
HOMO->L+2 (8%)
H-4->LUMO (11%), H-5->LUMO (4%),
358 0.0999 S-A H-2->LUMO (57%), H-1->LUMO (3%,
H-1->L+2 (17%) HOMO->L+2 (3%)

H-5->L+1 (6%),

H-5->L+2 (11%), H-4->L+1 (2%),

292 02126 S-A H-3->L+2 (62%) H-3->L+1 (4%),

H-2->L+2 (3%)
H-9->LUMO (3%,
H-7->LUMO (4%),

H-5->L+2 (3%),

H-8->LUMO (15%), H-4->L+1 (5%),

278 01484 S-A H-2->L+3 (47%) H-4->L+2 (3%),

H-4->L+3 (5%),

H-3->L+3 (2%),

H-2->L+4 (3%)

H-4->L+1 (3%),

H-4->L+4 (5%),

269 0.1910 S-A H-2->L+4 (70%) H-3->L43 (6%).

H-3->L+4 (2%)

H-7->L+1 (2%),

250 0.0311 S-A H-5->L+4 (81%) H-1->L+8 (4%),

HOMO->L+8 (2%)
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Tabla AIL2. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo
15 en tolueno.

A (nm)

464

405

367

348
326

300

296

262

Fuerza del
oscilador

0.0320

0.0818

0.0255
0.1017

0.0910

0.0970

0.0371

Simetria

S-A

S-A

S-A

S-A

Contribuciones
mayoritarias

HOMO->LUMO (64%)

HOMO->LUMO (55%),
HOMO->L+2 (29%)

H-1->L+1 (61%),
H-1->L+2 (20%)

HOMO->L+3 (83%)
H-2->LUMO (57%),
HOMO->L+4 (25%)

H-5->LUMO (61%)

H-3->L+1 (64%)

H-3->L+4 (55%),
H-1->L+5 (17%)

Contribuciones
minoritarias
H-5->LUMO (2%),
H-2->LUMO (7%),
H-1->LUMO (7%),
HOMO->L+1 (6%)
H-1->LUMO (2%),
HOMO->L+1 (8%),
HOMO->L+3 (2%)
HOMO->L+1 (9%),
HOMO->L+2 (3%),
HOMO->L+3 (2%)
H-4->LUMO (8%),
H-4->L+2 (2%)
H-4->LUMO (2%),
H-3->LUMO (5%),
H-3->L+1 (7%),
H-3->L+2 (9%),
H-2->L+3 (9%)
H-5->LUMO (4%),
H-5->L+1 (3%),
H-5->L+2 (2%),
H-4->LUMO (4%),
H-4->L+1 (2%),
H-4->1L+2 (7%),
H-3->L+2 (5%)
H-6->LUMO (5%),
H-6->L+1 (7%)
H-2->L+4 (3%)
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Tabla AIL3. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo
16 en tolueno.

Fuerza del . B Contribuciones Contribuciones
A (nm) . Simetria o . C e
oscilador mayoritarias minoritarias
H-2->LUMO (3%,
H-2->L+1 (4%),
HOMO->LUMO (529
461 0 T-A HOMO >II{+ ) (1( 40/?)’ H-1->LUMO (5%),
’ H-1->L+1 (4%),
H-1->L+2 (2%)
HOMO->LUMO (34%),
402 . -A -
0 0.0377 S HOMO->L+1 (62%)
H-1->LUMO (35%),
386 0.0370 S-A H-1->L4 (62%) -
HOMO->L+2 (8%),
. - -1->L+ 9
368 0.0841 S-A H-1->L+2 (85%) HOMO->L+3 (2%)
344 0.0305 S-A HOMO->L+3 (92%) -
H-5->LUMO (79
H-4->LUMO (19%), (7%),
328 0.1182 S-A H-2->LUMO (61%) H-5->L+1 (2%),
° H-2->L+1 (2%)
H-5->L+2 (5%),
H-3->L+2 (669
295 0.2458 S-A Ho >L+2(( 1 20//0))’ H-4->L+1 (3%),
° H-4->L+2 (3%)
H-4->1L+2 (9%),
287 0.0599 S-A H-5->L+2 (75%) H-3->L+2 (6%),
H-2->L+3 (3%)
H-4->L+1 (9%),
H-4->L+2 (2%),
281 0.1673 S-A H-2->L+3 (59%) H-4->L+3 (8%),
H-3->L+3 (4%),
H-2->L+4 (3%)
-3- 0 A 0
271 0.1825 S-A H-3->L+3 (41%), H-4->L+1 (2%),

H-2->L+4 (39%)

H-4->L+4 (3%)
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Tabla AIL4. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo

18 en THF.
Fuerza del . B Contribuciones Contribuciones
A (nm) . Simetria e . e e .
oscilador mayoritarias minoritarias
H-4->L+1 (10%),
4 T-A HOMO->LUMO (6%
>3 0 HOMO->L+1 (71%) (6%)
H-1->L+1 (2%),
- >T + 0
394 0.0316 S-A HOMO->L+1 (92%) HOMO->LUMO (3%)
384 0.0669 S-A H-1->LUMO (97%) -
369 0.0403 S-A H-1->L+1 (94%) -
316 0.0263 S-A H-1->L+3 (95%) -
H-4->LUMO (3%),
H-5->LUMO (17%), H-3->L+1 (5%),
2 A -A
o7 0.1077 S H-4->L+1 (56%) H-3->L+2 (7%),
H-2->L+2 (4%)
H-5->LUMO (5%),
H-4->L+1 (6%),
- 5>+ 9
290 0.0875 S-A H-5->L+1 (72%) HOMO->L+4 (2%).
HOMO->L+5 (4%)
H-5->LUMO (8%,
H-5->L+3 (2%),
275 0.1864 S-A H-3->L+3 (68%) H-4->L+3 (5%),
H-3->L+2 (2%),
H-2->L+3 (3%)
H-5->L+2 (5%),
273 0.0601 S-A H-4->L+2 (76%) H-4->L+3 (2%),
H-3->L+2 (6%)
H-8->L+1 (9%),
1>+ 0
250 0.1486 S-A H-1->L+6 (49%), H-7->LUMO (3%),

H-1->L+8 (18%)

H-7->L+1 (3%)
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Tabla AILS. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo
19 en THF.

Fuerza del . B Contribuciones Contribuciones
A (nm) . Simetria L. L.
oscilador mayoritarias minoritarias

H-4->L+1 (11%),

4 T-A HOMO->LUMO (3%
53 0 HOMO->L+1 (72%) OMO->LUMO (3%)
H-1->L+1 2%),
- >T + 0
392 0.0298 S-A HOMO->L+1 (01%) 01 UMO (4%)
385 0.0631 S-A H-1->LUMO (96%) -
370 0.0345 S-A H-1->L+1 (94%) HOMO->L+1 (2%)
317 0.0241 S-A H-1->L+3 (95%) -
H-5->LUMO (3%),
H-5->L+1 (2%),
. A H-4->L+1 (72°
298 0.1745 S (72%) H3oLAL (7%),
H-2->L+2 (3%)
H-5->L+2 (2%),
H-4->L+1 (29
274 0.0500 S-A H-4->L+2 (74%) (2%),

H-4->L+3 (5%),
H-3->L+2 (7%)
H-5->L+2 (3%),
263 0.0296 S-A H-4->L+3 (75%) H-4->1L+2 (5%),
H-3->L+3 (6%)
H-8->LUMO (3%),
H-3->L+5 (4%),
H-3->L+6 (6%),
H-3->L+7 (5%),
H-1->L+8 (8%),
H-1->L+9 (3%),
H-1->L+10 (6%),
HOMO->L+9 (4%)

249 0.0472 S-A H-8->L+1 (42%)
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Tabla AIL6. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo

20 en THF.
Fuerza del . B Contribuciones Contribuciones
A (nm) . Simetria e . e e .
oscilador mayoritarias minoritarias
H-2->L+1 (13%),
44 T-A H-1->L+1 (9%
! 0 HOMO->L+1 (62%) ©%)
HOMO->LUMO (72%),
385 0.0231 S-A HOMO->L+1 (25%) -
359 0.0430 S-A H-1->LUMO (89%) H-1->L+1 (3%)
H-4->L+1 (4%),
H-3->LUMO (35%), HAeLi] E 4(;;
297 0.1124 S-A H-2->L+1 (19%), o
H-1->L+4 (23%) H-2->LUMO (#%),
H-1->L+3 (4%)
H-4->L+1 (8%),
H-3->L+1 (7%),
H-4->LUMO (459
289 0.2895 S-A Ho3~LUM o(( X 8({/")) H-3->L+2 (2%),
’ H-1->L+3 (2%),
H-1->L+4 (7%)
H-4->L+3 (5%),
H-3->L+2 (3%),
H-3->L+3 (8%),
2 .0302 -A H-2->1L+ 9
70 0.030 S 3 (58%) H-2>L42 (5%).
H-2->L+4 (6%),
H-1->L+3 (4%)
H-6->LUMO (4%),
H-7->LUMO (49%), H-4->L+2 (3%),
258 0.0493 S-A HOMO->L+6 (27%) H-4->L+3 (2%),
HOMO->L+7 (4%)
H-8->LUMO (4%),
H-7->L+1 (2%),
H-5->1L42 (449
247 0.0252 S-A > (44%), H-6->L+3 (3%),

H-1->L+6 (24%)

H-4->L+4 (4%),
HOMO->L+8 (7%)
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Tabla AIL7. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo

21 en THF.
Fuerza del . B Contribuciones Contribuciones
A (nm) . Simetria o . C e
oscilador mayoritarias minoritarias
494 0 TA HOMO->LUMO (59%), H-3->L+1 (4%),
HOMO->L+1 (27%) HOMO->L+2 (2%)
HOMO->LUMO (87%),
457 0.0596 S-A HOMO->L+1 (10%) -
HOMO->LUMO (11%),
0.0374 S-A -
430 HOMO->L+1 (85%)
HOMO->L+1 (2%),
.04 -A HOMO->L+2 (929
400 0.0488 S OMO (92%) HOMO->L+3 (3%)
H-2->LUMO (25%),
359 0.0559 S-A H-2->L+1 (10%), HOMO->L+4 (7%)
H-1->L+1 (52%)
H-2->L+1 (71%),
4 . -A H-2->L+2 (49
347 0.0330 S H-1->L4 (16%) (4%)
H-4->1L+1 (12%), H-5->L+1 (5%),
279 0.1247 S-A H-3->L+3 (10%), H-5->L+2 (3%),
HOMO->L+8 (49%) HOMO->L+9 (3%)
H-6->L+1 (3%),
H-6->L+2 (2%),
- 3>+ 9
273 0.0373 S-A H-3->L+4 (66%) H-1->L+6 (9%),
HOMO->L+10 (5%)
H-7->LUMO (34%),
3>+ 9
272 0.2051 S-A H-1->L+5 (12%), H-3->17+4 (7%),

H-1->L+6 (28%)

HOMO->L+11 (2%)
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Tabla AILS8. Transiciones seleccionadas del espectro UV-Vis calculado para el complejo
22 en THF.

Fuerza del . B Contribuciones Contribuciones
A (nm) . Simetria e . e e .
oscilador mayoritarias minoritarias
HOMO->LUMO (569
494 0 T-A v (56%), H-3->L+1 (4%)

HOMO->L+1 (33%)
HOMO->LUMO (86%),

457 0.0564 S-A HOMO=L11 (12%) ]
HOMO->LUMO (13%),
431 0.0410 S-A oMo _
-1- o
383 0.0258 S-A H-1->LUMO (77%), _

HOMO->L+2 (19%)
H-2->LUMO (24%),
360 0.0550 S-A H-2->L+1 (14%), HOMO->L+3 (7%)
H-1->L+1 (51%)
H-2->L+1 (73%),

4 042 -A -
348 0.0427 S H-1->L+1 (19%)
H-4->LUMO (15%),
H-3->L+1 (40%),
. A H-5->LUMO (69
307 0.0757 S H.2-5143 (16%) 5->LUMO (6%)
H-1->L+3 (17%)
H-6->L+1 (3%),
> 0
272 0.1766 S-A H-7->LUMO (19%), H-1->L+4 (4%),

H-3->L+3 (57%) HOMO->L+8 (3%)
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ORBITALES MOLECULARES DE LOS COMPLEJOS 14-22

Los orbitales moleculares, las energias y el analisis de densidad (%) de los
complejos 14-22 se muestran en las tablas AIL.9-AIl.17, mientras que en las figuras

AL 12-AII1.20 se recopilan los orbitales moleculares de los mismos.

Tabla AIL9. Composicion de los orbitales moleculares del complejo 14.

OM E (eV) Iridio Ph-py (1) Ph-py (2) Metalaciclo
L+9 0.53 7 54 38 1
L+8 0.44 9 35 53 3
L+7 0.22 14 1 2 83
L+6 0.12 84 3 2 11
L+5 -0.09 1 0 0 98
L+4 -0.61 2 72 26 0
L+3 -0.82 3 25 71 1
L+2 -1.17 5 80 14 1
L+1 -1.28 3 15 80 1
LUMO -1.75 7 1 2 90
HOMO -5.18 43 12 38 6
H-1 -5.26 41 43 11 5
H-2 -5.86 29 25 34 12
H-3 -6 12 65 9 13
H-4 -6.09 34 5 39 22
H-5 -6.16 15 10 22 52
H-6 -6.7 14 40 6 40
H-7 -6.83 20 16 52 11
H-8 -6.89 1 1 1 96

H-9 -7.04 15 28 36 21
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Figura AIl.34. Orbitales moleculares del complejo 14 (valor de contorno 0.03 a.u.).
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Tabla AIL10. Composicion de los orbitales moleculares del complejo 15.

oM E (eV) Iridio Ph-py (1) Ph-py (2) Metalaciclo
L+9 1.2 22 51 25 2
L+8 1.04 8 23 69 1
L+7 0.64 7 62 29 1
L+6 0.52 8 28 63 1
L+5 0.12 94 2 2 3
L+4 -0.6 2 80 17 1
L+3 -0.83 4 17 73 6
L+2 -1.07 9 15 10 66
L+1 -1.14 5 74 11 10
LUMO -1.3 2 8 83 6
HOMO -5.09 44 13 37 6
H-1 -5.17 40 44 12 4
H-2 -5.79 28 28 32 12
H-3 -5.91 10 58 10 21
H-4 -6.04 37 15 13 35
H-5 -6.05 16 7 52 26
H-6 -6.73 22 13 54 11
H-7 -6.78 31 56 6 7
H-8 -6.94 15 26 36 23

H-9 -7.23 19 32 29 21
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Figura AII.35. Orbitales moleculares del complejo 15 (valor de contorno 0.03 a.u.).
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Tabla AIL11. Composicion de los orbitales moleculares del complejo 16.

oM E (eV) Iridio Ph-py (1) Ph-py (2) Metalaciclo
L+9 0.65 8 61 30 1
L+8 0.55 9 28 62 1
L+7 0.21 93 3 1 3
L+6 0.03 3 0 2 96
L+5 -0.07 1 0 0 98
L+4 -0.58 2 73 25 1
L+3 -0.79 3 25 71 1
L+2 -1.12 5 86 8 1
L+1 -1.18 9 3 47 42
LUMO -1.3 4 8 43 45
HOMO -5.07 44 16 35 5
H-1 -5.15 40 41 15 5
H-2 -5.79 23 34 34 10
H-3 -5.91 11 57 18 15
H-4 -6.02 40 7 38 15
H-5 -6.07 16 11 16 57
H-6 -6.55 3 8 7 82
H-7 -6.73 22 17 41 19
H-8 -6.78 9 8 14 69

H-9 -6.81 25 40 5 30




Anexo 11 A69

Figura AIL.36. Orbitales moleculares del complejo 16 (valor de contorno 0.03 a.u.).
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Tabla AIL12. Composicion de los orbitales moleculares del complejo 17.

OM E (eV) Iridio Ph-py (1) Ph-py (2) Metalaciclo
L+9 1.05 17 43 37 3
L+8 0.89 12 26 61 1
L+7 0.43 9 54 36 1
L+6 0.32 13 31 56 1
L+5 0.09 90 5 3 2
L+4 -0.68 2 75 23 0
L+3 -0.9 3 22 74 1
L+2 -1.27 5 87 7 1
L+1 -1.38 4 8 87 1
LUMO -1.82 11 2 4 84
HOMO -5.39 39 17 40 4
H-1 -5.46 35 46 16 3
H-2 -6.01 15 51 31 3
H-3 -6.14 10 36 50 4
H-4 -6.37 50 11 21 18
H-5 -6.51 14 14 4 68
H-6 -6.99 27 16 50 7
H-7 -7.08 36 50 8 6
H-8 -7.23 15 39 31 14

H-9 -7.56 17 16 38

[\
O
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Figura AIL.37. Orbitales moleculares del complejo 17 (valor de contorno 0.03 a.u.).
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Tabla AIL13. Composicion de los orbitales moleculares del complejo 18.

oM E (eV) Iridio Ph-py (1) Ph-py (2) Carbeno Amida
L+9 1.04 7 67 24 1 2
L+8 0.66 12 33 24 1 30
L+7 0.57 6 15 67 0 12
L+6 0.44 7 53 1 0 39
L+5 0.27 29 1 3 65 2
L+4 0.03 80 1 2 15 3
L+3 -0.6 2 35 62 0 0
L+2 -0.81 4 61 34 1 1
L+1 -1.16 4 7 87 1 1
LUMO -1.24 4 88 8 0 0
HOMO -5.08 46 6 45 1 3
H-1 -5.2 41 45 5 4 4
H-2 -5.61 13 3 11 66 6
H-3 -5.76 52 28 12 8 1
H-4 -5.9 16 4 76 2 1
H-5 -6.03 20 66 10 4 1
H-6 -6.62 16 29 34 1 20
H-7 -6.77 27 37 29 5 2
H-8 -6.96 17 35 39 2 7
H-9 -7.21 18 41 27 1 13
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Figura AII.38. Orbitales moleculares del complejo 18 (valor de contorno 0.03 a.u.).
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Tabla AIL14. Composicion de los orbitales moleculares del complejo 19.

OM E (eV) Iridio Ph-py (1) Ph-py (2) Carbeno Amida
L+9 0.59 11 7 69 1 12
L+8 0.48 10 60 3 1 26
L+7 0.29 36 1 4 49 11
L+6 0.1 64 2 3 28 3
L+5 -0.09 2 1 7 1 89
L+4 -0.11 1 0 2 1 96
L+3 -0.61 2 40 51 0 6
L+2 -0.81 3 56 36 1 3
L+1 -1.15 3 5 88 1 2
LUMO -1.23 4 90 6 0 0
HOMO -5.08 46 6 44 1 3
H-1 -5.18 42 44 4 5 5
H-2 -5.64 13 3 11 65 7
H-3 -5.76 51 27 12 8 1
H-4 -5.87 16 4 77 2 2
H-5 -6.02 20 66 8 4 2
H-6 -6.51 8 24 22 1 45
H-7 -6.68 11 7 27 2 53
H-8 -6.78 11 22 5 2 60
H-9 -6.81 12 14 19 2 52
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Figura AIL.39. Orbitales moleculares del complejo 19 (valor de contorno 0.03 a.u.).
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Tabla AIL15. Composicion de los orbitales moleculares del complejo 20.

oM E (eV) Iridio Ph-py (1) Ph-py (2) Carbeno Amida
L+9 0.95 7 52 40 1 0
L+8 0.47 6 39 47 0 7
L+7 0.37 5 42 47 0 5
L+6 0.22 7 14 1 1 79
L+5 0.14 93 1 1 2 3
L+4 -0.62 8 33 37 22 0
L+3 -0.78 12 16 20 52 0
L+2 -0.88 3 53 43 0 0
L+1 -1.31 3 0 92 4 1
LUMO -1.34 2 92 2 3 0
HOMO -5.29 44 16 32 1 7
H-1 -5.51 32 46 20 1 0
H-2 -6.04 11 14 72 0 3
H-3 -6.11 10 71 14 2 3
H-4 -6.34 62 18 9 10 1
H-5 -6.51 7 14 39 6 35
H-6 -6.87 11 1 18 40 29
H-7 -6.96 25 47 13 8 7
H-8 -7.17 23 31 32 2 11
H-9 -7.45 20 34 34 3 9
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Figura AIL40. Orbitales moleculares del complejo 20 (valor de contorno 0.03 a.u.).
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Tabla AIL16. Composicion de los orbitales moleculares del complejo 21.

Ph-py CH:-Ph  Amiduro

oM E (eV) Iridio Ph-py 6tt") (6tt") (6tt") Cq (6tt%)
L+9 0.59 7 68 2 20 2 0
L+8 0.46 4 2 72 20 1 1
L+7 0.21 88 1 9 1 1 0
L+6 -0.04 12 2 80 2 4 1
L+5 -0.22 1 0 0 0 99 0
L+4 -0.56 3 67 29 1 0 0
L+3 -0.75 2 29 64 0 4 0
L+2 -0.96 2 12 5 1 81 0
L+1 -1.07 4 65 20 1 10 0
LUMO -1.26 2 19 76 1 2 0
HOMO -4.65 47 25 3 23 2 0
H-1 -5.29 70 12 11 5 0 2
H-2 -5.46 78 8 3 6 2 2
H-3 -5.66 2 57 1 37 1 1
H-4 -5.95 9 43 11 34 1 2
H-5 -6.01 11 6 21 51 6 5
H-6 -6.07 6 32 23 29 6 4
H-7 -6.37 3 4 81 5 4 4
H-8 -6.82 12 4 34 33 17 1
H-9 -6.86 4 11 5 6 74 1
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Figura AIl.41. Orbitales moleculares del complejo 21 (valor de contorno 0.03 a.u.).
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Tabla AIL17. Composicion de los orbitales moleculares del complejo 22.

Ph-py CH:-Ph  Amiduro

oM E (eV) Iridio Ph-py 6tt") (6tt") (6tt") Cq (6tt%)
L+9 0.72 9 18 2 35 36 0
L+8 0.63 5 11 24 58 2 0
L+7 0.51 7 25 32 12 23 0
L+6 0.45 4 13 44 19 18 1
L+5 0.15 84 1 9 1 5 0
L+4 -0.09 14 2 73 2 8 0
L+3 -0.55 3 66 29 1 0 0
L+2 -0.76 3 30 66 0 1 0
L+1 -1.05 5 77 17 1 0 0
LUMO -1.25 2 17 80 1 0 0
HOMO -4.64 48 25 3 23 1 0
H-1 -5.28 71 12 10 5 0 2
H-2 -5.44 80 8 3 5 2 2
H-3 -5.65 2 57 1 38 1 0
H-4 -5.95 9 44 11 33 1 2
H-5 -6.02 9 8 18 58 4 4
H-6 -6.07 7 29 30 22 7 5
H-7 -6.37 3 4 80 5 4 4
H-8 -6.78 13 8 28 29 21 2
H-9 -6.9 12 28 18 23 10 9
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Figura AIL.42. Orbitales moleculares del complejo 22 (valor de contorno 0.03 a.u.).
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DENSIDADES DE ESPIN DE LOS COMPLEJOS 14-22

20 21 22

Figura AIlL.43. Distribuciones de densidades de espin del triplete 71 optimizado de los
complejos 14-22 (valor de contorno 0.002 a.u.).
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VOLTAMOGRAMAS CiCLICOS DE LOS COMPLEJOS 14 Y 18-22

Potencial vs Fc*/Fc (V)
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Figura AIlL44. Voltamogramas ciclicos de los complejos 14, 18-22 en DCM (107 M)
utilizando BusNPF¢ como electrolito de soporte (0.1 M) y usando una velocidad de
barrido de 250 mV s'. Los potenciales
ferrocinio/ferroceno (Fc'/Fc).

se referenciaron respecto al par
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ESPECTROS DE EXCITACION Y EMISION DE LOS COMPLEJOS 14-16 Y
18-22
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Figura AIL45. Espectros de excitacion y emision normalizados del complejo 14 en film
de PMMA (5% peso) a 298 K.
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Figura AIl.46. Espectros de excitacion y emision normalizados del complejo 14 en una
disolucion 10> M de 2-MeTHF a 298 K.
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Figura AIl.47. Espectros de excitacion y emision normalizados del complejo 14 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AIl.48. Espectros de excitacion y emision normalizados del complejo 15 en film
de PMMA (5% peso) a 298 K.
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Figura AIl.49. Espectros de excitacion y emision normalizados del complejo 15 en una
disolucién 10> M de tolueno a 298 K.
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Figura AILS50. Espectros de excitacion y emision normalizados del complejo 15 en una
disolucién 10> M de tolueno a 77 K.
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Figura AIL51. Espectros de excitacion y emision normalizados del complejo 16 en film
de PMMA (5% peso) a 298 K.
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Figura AILS52. Espectros de excitacion y emision normalizados del complejo 16 en una
disolucién 10> M de tolueno a 298 K.
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Figura AILS3. Espectros de excitacion y emision normalizados del complejo 16 en una
disolucién 10> M de tolueno a 77 K.
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Figura AIl.54. Espectros de excitacion y emision normalizados del complejo 18 en film
de PMMA (5% peso) a 298 K.
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Figura AILSS. Espectros de excitacion y emision normalizados del complejo 18 en una
disolucién 10> M de 2-MeTHF a 298 K.
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Figura AILS56. Espectros de excitacion y emision normalizados del complejo 18 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AIL.57. Espectros de excitacion y emision normalizados del complejo 19 en film
de PMMA (5% peso) a 298 K.
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Figura AILS8. Espectros de excitacion y emision normalizados del complejo 19 en una
disolucién 10> M de 2-MeTHF a 298 K.
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Figura AILS59. Espectros de excitacion y emision normalizados del complejo 19 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AIL.60. Espectros de excitacion y emision normalizados del complejo 20 en film
de PMMA (5% peso) a 298 K.
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Figura AII.61. Espectros de excitacion y emision normalizados del complejo 20 en una
disolucién 10> M de 2-MeTHF a 298 K.
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Figura AIIL.62. Espectros de excitacion y emision normalizados del complejo 20 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AII.63. Espectros de excitacion y emision normalizados del complejo 21 en film
de PMMA (5% peso) a 298 K.
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Figura AII.64. Espectros de excitacion y emision normalizados del complejo 21 en una
disolucién 10> M de 2-MeTHF a 298 K.
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Figura AII.65. Espectros de excitacion y emision normalizados del complejo 21 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AIL.66. Espectros de excitacion y emision normalizados del complejo 22 en film
de PMMA (5% peso) a 298 K.
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Figura AIL67. Espectros de excitacion y emision normalizados del complejo 22 en una
disolucién 10> M de 2-MeTHF a 298 K.
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Figura AIL.68. Espectros de excitacion y emision normalizados del complejo 22 en una
disolucién 10> M de 2-MeTHF a 77 K.
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DISMINUCION DE LA INTENSIDAD DE LA FOTOLUMINISCENCIA TRAS

LA EXCITACION EN FUNCION DEL TIEMPO DE LOS COMPLEJOS 14-16 y
18-22
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Figura AIL.69. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 14 en film de PMMA (5% peso) a 298 K (Aexc =
390 nm, Aem = 627 nm), parametros de ajuste y limites de confianza.
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Figura AIL.70. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 14 en una disolucién 10 M de 2-MeTHF a 298 K
(Aexe = 390 nm, Aem = 628 nm), parametros de ajuste y limites de confianza.
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Figura AIL71. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacién en funcion del tiempo de 14 en una disolucién 10° M de 2-MeTHF a 77 K

(Xexc 390 nm, 7Lem

600 nm), parametros de ajuste y limites de confianza.
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Figura AIL.72. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 15 en film de PMMA (5% peso) a 298 K (Aexe =
390 nm, Aem = 581 nm), parametros de ajuste y limites de confianza.
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Figura AIIL.73. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacién en funcion del tiempo de 15 en una disolucién 10° M de tolueno a 298 K
(Aexe =370 nm, Aem = 590 nm), parametros de ajuste y limites de confianza.
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Figura AIL.74. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 15 en una disolucién 10 M de tolueno a 77 K (Aexc

=370 nm, Aem = 578 nm), parametros de aju

ste y limites de confianza.
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Figura AIL75. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 16 en film de PMMA (5% peso) a 298 K (Aexe =

370 nm, Aem = 592 nm), parametros de ajuste

y limites de confianza.
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Figura AIL.76. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 16 en una disolucion 10° M de tolueno a 298 K
(Aexe =370 nm, Aem = 600 nm), parametros de ajuste y limites de confianza.
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Figura AIL77. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 16 en una disolucién 10 M de tolueno a 77 K (Aexc
=370 nm, Aem = 584 nm), parametros de ajuste y limites de confianza.
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Figura AIL.78. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 18 en film de PMMA (5% peso) a 298 K (Aexe =
370 nm, Aem = 492 nm), parametros de ajuste y limites de confianza.
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Figura AIIL.79. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 18 en una disolucién 10 M de 2-MeTHF a 298 K
(Aexe = 370 nm, Aem = 497 nm), parametros de ajuste y limites de confianza.
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Figura AIL80. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 18 en una disolucion 10° M de 2-MeTHF a 77 K
(Aexe = 370 nm, Aem = 478 nm), parametros de ajuste y limites de confianza.
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10 Bz = 2E01.6Z21 [ 28.36 Rel.Aupl]([ 0.63 Alphal S.Dev = 7.40686Z
Bwverage Life Time = 1_398313E-06 sec
CHISQ = 1.083&86 [ 2956 degrees of freedom ]
1 I I 1 I 1 1 I 1 I I 1 I 1 1 I
200 400 00 =i} 1000 1200 1400 1600 1800 2000 2200 2400 2600 i 3000
Channels
4
2
i
f=amnlil AV T Ly ! MR Iy WL g P 1k A
= i b LA i R I . i } !
A
-2
-4
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Figura AIL81. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 19 en film de PMMA (5% peso) a 298 K (Aexe =
370 nm, Aem = 490 nm), pardmetros de ajuste y limites de confianza.
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Parameter Value A
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A[KCnts/Chnl] 6.79 +0.13
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Figura AIL82. Izquierda: Disminucién de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 19 en 2-MeTHF a 298 K (Aexc

=378 nm, Aem = 504 nm). Derecha: Parametros de ajuste y limites de confianza.
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Figura AIlL83. Izquierda: Disminuciéon de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 19 en 2-MeTHF a 77 K (Aexc =
378 nm, hem = 479 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Figura AIL.84. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 20 en film de PMMA (5% peso) a 298 K (Aexc =
370 nm, Aem = 483 nm), parametros de ajuste y limites de confianza.
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Figura AILS8S5. Izquierda: Disminuciéon de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 20 en 2-MeTHF a 298 K (Aexc
=378 nm, Aem = 484 nm). Derecha: Parametros de ajuste y limites de confianza.
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Figura AIlL.86. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 20 en 2-MeTHF a 77 K (Rexc =
378 nm, Aem = 479 nm). Derecha: Parametros de ajuste y limites de confianza.
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Figura AIL87. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 21 en film de PMMA (5% peso) a 298 K (Aexe =

390 nm, Aem = 540 nm), parametros de ajuste y limites de confianza.
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Figura AIL.88. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 21 en una disolucién 10> M de 2-MeTHF a 298 K
(Aexe = 390 nm, Aem = 544 nm), parametros de ajuste y limites de confianza.
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Figura AIlL.89. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 21 en 2-MeTHF a 77 K (Aexe =
378 nm, Aem = 519 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Figura AIL.90. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 22 en film de PMMA (5% peso) a 298 K (Aexe =
390 nm, Aem = 540 nm), parametros de ajuste y limites de confianza.

10° F

Xovat =
7 x’bn‘ = 1.1100
AR
f N
HEEsEs
5
\'\
- 10
.
% : e TR ARl whmtiot, pnl
g 102 L
i=
10" L
Parameter Value A
A4[kCnts/Chnl] 0.80 +0.13
1o 11[ns] 2900 +1 400
l1[kCnts] 114 +43
A2kCnts/Chnl] 5523 +0.23
é T2[ns] 686.0 +32
© I2[kCnts] 1895 +15
Bkgrpec[kCnts] 0.205 +0.072
75 9.0 10.5
time[us] Tavint[ns] 810 +94

Figura AIL91. Izquierda: Disminuciéon de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 22 en 2-MeTHF a 298 K (Rexc
=378 nm, Aem = 546 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Figura AIlL.92. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 22 en 2-MeTHF a 77 K (Rexc =
378 nm, Aem = 524 nm). Derecha: Parametros de ajuste y limites de confianza.
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Espectros RMN de los compuestos 24-30 y los
reactivos organicos y datos fotofisicos y
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Figura AIIL1. Espectro RMN de 'H (300 MHz, CsDs, 298 K) del complejo 24.
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Figura AIIL.2. Espectro RMN de 3C{'H}-APT (75 MHz, CsDs, 298 K) del complejo

24.
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Figura AIIL3. Espectro RMN de *'P{'H} (121.5 MHz, CsDs, 298 K) del complejo 24.
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Figura AIIL4. Zona de hidruros del espectro RMN de 'H (300 MHz, CsDs, 298 K) del

crudo de reaccion de 23 con 3-fenoxi-1-fenilisoquinolina, después de 24 h a reflujo en
tolueno.
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Figura AIILS5. Espectro RMN de 3'P{'H} (121.5 MHz, CsDs, 298 K) del crudo de
reaccion de 23 con 3-fenoxi-1-fenilisoquinolina, después de 24 h a reflujo en tolueno.
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Figura AIIL6. Espectro RMN de *'P acoplado a 'H (121.5 MHz, CsDs, 298 K) del crudo
de reaccion de 23 con 3-fenoxi-1-fenilisoquinolina, después de 24 h a reflujo en tolueno.
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Figura AIIL7. Espectro RMN de 'H (300 MHz, CsDs, 298 K) del complejo 25.
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Figura AIIL9. Espectro RMN de *'P{'H} (121.5 MHz, CsDs, 298 K) del complejo 25.
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Figura AIIL10. Zona de hidruros del espectro RMN de 'H (300 MHz, CsDs, 298 K) del
crudo de reaccion de 23 con 2-(1H-bencimidazol-2-il)-6-fenilpiridina, después de 10 h a
reflujo en tolueno.
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Figura AIIL11. Espectro RMN de *'P{'H} (121.5 MHz, tolueno, 298 K) del crudo de
reaccion de 23 con 2-(1H-bencimidazol-2-il)-6-fenilpiridina, después de 10 h a reflujo.
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crudo de reaccion de 23 con 2-(1H-bencimidazol-2-il)-6-fenilpiridina, después de 10 h a

reflujo.

Figura AIIIL12. Espectro RMN de 3'P acoplado a 'H (121.5 MHz, tolueno, 298 K) del

Anexo II1
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Figura AIIL13. Espectro RMN de 'H (300 MHz, CsDs, 298 K) del complejo 26.
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Figura AIIL.14. Espectro RMN de *C{'H}-APT (75 MHz, CsDs, 298 K) del complejo
26.
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Figura AIIL15. Espectro RMN de *'P{'H} (121.5 MHz, CsDs, 298 K) del complejo 26.
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Figura AIIL.16.

Espectro RMN de *'P acoplado a 'H (121.5 MHz, CsDs, 298 K) del

complejo 26.
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Figura AIIL17. Zona de hidruros del espectro RMN de 'H (300 MHz, tolueno, 298 K)
del crudo de reaccion de 23 con 2-(1H-indol-2-il)-6-fenilpiridina, después de 3 h a reflujo.
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Figura AIIL18. Espectro RMN de *'P{'H} (121.5 MHz, tolueno, 298 K) del crudo de

by
\“\

N,

P'Prs

27

—=F o1

E6E°8T

de 23 con 2-(1H-indol-2-il)-6-fenilpiridina, después de 10 h a reflujo.
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Figura AIIL19. Espectro RMN de 'H (300 MHz, CsDs, 298 K) del complejo 27.
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Figura AIIL.20. Espectro RMN de *C{'H}-APT (75 MHz, CsDs, 298 K) del complejo
27.
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Figura AIIL21. Espectro RMN de *'P{'H} (121.5 MHz, CsDs, 298 K) del complejo 27.
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Figura AIIL24. Espectro RMN de *'P{'H} (121.5 MHz, CsDs, 298 K) del complejo 28.
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Figura AIIL25. Espectro RMN de *'P acoplado a 'H (121.5 MHz, CsDs, 298 K) del
complejo 28.
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Figura AIIL28. Espectro RMN de *'P{'H} (121.5 MHz, CsDs, 298 K) del complejo 29.
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Figura AIIL29. Zona de hidruros del espectro RMN de 'H (300 MHz, tolueno, 298 K)
del crudo de reaccion de 23 con 1,3-di(2-piridil)-4,6-dimetilbenceno, después de 24 h a
reflujo.
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Figura AIIL.30. Espectro RMN de *'P acoplado a 'H (121.5 MHz, tolueno, 298 K) del
crudo de reaccion de 23 con 1,3-di(2-piridil)-4,6-dimetilbenceno, después de 24 h a
reflujo.
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8.5

P61

€0¢
LT \

9Lt
8'/C /

9°0TT ~
091t
z6IT
m.oﬁ%
8Tt
[ATARNE
9921~

6'TPT
m.mvﬁﬂ
0'6vT
6°TST
o.Nmﬁv
T'est

8'08T
m.owﬁv
0T8T

Nk

170 160 150 140 130 120 110 100
f1 (ppm)

180

Figura AIIL32. Espectro RMN de *C{'H}-APT (75 MHz, CsDs, 298 K) del complejo

30.



Al24 Anexo III

28.4

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
f1 (ppm)

Figura AIIL33. Espectro RMN de *'P{'H} (121.5 MHz, CsDs, 298 K) del complejo 30.
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Figura AIIL34. Espectro RMN de *'P acoplado a 'H (121.5 MHz, CsDs, 298 K) del
complejo 30.
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Figura AIIL35. Espectro RMN de 'H (300 MHz, CsDs, 298 K) de 4-
((metil(fenil)amino)metil)benzonitrilo.
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Figura AIIL36. Espectro RMN de “C{'H}-APT (75.5 MHz, CsDs, 298 K) de 4-
((metil(fenil)amino)metil)benzonitrilo.
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Figura AIIL39. Espectro RMN de 'H (300 MHz, CeDs,
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Figura AIIL41. Espectro RMN de 'H (300 MHz, CsDs, 298 K) de 4-(1-fenilpiperidin-2-
il)piridina.
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Figura AIIL42. Espectro RMN de *C{'H}-APT (75.5 MHz, CsDs, 298 K) de 4-(1-
fenilpiperidin-2-il)piridina.

ESPECTROS DE ABSORCION UV-VIS DE LOS COMPLEJOS 24-29
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Figura AIIL.43. Espectro de absorciéon del complejo 24 observado en 2-MeTHF (10 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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Figura AIII.44. Espectro de absorcion del complejo 25 observado en 2-MeTHF (10 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.

140000
120000
100000

r0.25
40000

30000 -

80000
60000
40000

* 20000 -

Oscillator strength

20000

10000 4

Coeficiente de extincidon molar
(L/mol-cm)

0

200 300 400 500 600 “l

0

T ‘ ‘ 1 0.00

T T T T T
200 250 300 350 400 450 500 550 600
Wavelength (nm)

Longitud de onda (nm)

Figura AIIL45. Espectro de absorciéon del complejo 26 observado en 2-MeTHF (10 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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Figura AIIL.46. Espectro de absorciéon del complejo 27 observado en 2-MeTHF (10 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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Figura AIIL.47. Espectro de absorcion del complejo 28 observado en 2-MeTHF (10 M)
y calculado (B3LYP(GD3)//SDD(f)/6-31G**) en THF.
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Figura AIIL48. Espectro de absorcion del complejo 29 observado en 2-MeTHF (10 M)
y calculado (B3LYP(GD3)//SDD()/6-31G**) en THF.
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ANALISIS DE LOS ESPECTROS DE EMISION UV/VIS CALCULADOS PARA
LOS COMPLEJOS 24-29

En las tablas AIIL.1-AIll.6 se muestran las principales transiciones de los

espectros de UV-Vis calculados, las fuerzas del oscilador y las principales contribuciones.

Tabla AIIL.1. Transiciones seleccionadas del espectro UV-Vis calculado para el
complejo 24 en THF.

Fuerza del . ; Contribuciones Contribuciones
A (nm) . Simetria o . o
oscilador mayoritarias minoritarias
H-1->LUMO (52%), 0
581 0 T-A H-3->LUMO (19%), Eﬁﬁéﬂdﬁ ((733))’
H-2->LUMO (19%) °
509 0 T-A HOMO->LUMO (91%) H-1->LUMO (3%)
481 0.0011 S-A HOMO->LUMO (96%) H-1->LUMO (2%)
H-1->LUMO (74%),
443 0.0659 S-A H-2->LUMO (23%) -
H-2->LUMO (54%),
411 0.1121 S-A H-3->LUMO (25%), -
H-1->LUMO (18%)
H-3->LUMO (71%), o
384 0.0673 S-A H-2->LUMO (21%) H-1->LUMO (4%)
H-1->L+1 (67%),
- D>+ o
307 0.0873 S-A H-6->LUMO (21%) H-2->L+1 (8%)
HOMO->-L+2 (6%)),
H-11->LUMO (4%),
- -)- —+ Y
293 0.103 S-A H-2->L+1 (78%) H-6->LUMO (2%).
H-1->L+1 (3%)
298 0.0564 S-A H-5->LUMO (93%) -
H-1->L+2 (7%),
H-3->L+1 (58%), H-11->LUMO (4%),
285 0.2153 S-A HOMO->L+2 (22%) H-6->LUMO (3%),
H-2->L+1 (2%)
H-7->LUMO (76%), o
284 0.0348 S-A H-1->L42 (13%) H-2->L+1 (2%)
H-4->L+1 (9%),
H-5->L+1 (25%), HOMO->L+5 (8%),
2>+ 0 3->L+ 9
247 0.2895 SA H-2->L+4 (12%), H-3->L+3 (3%),

H-1->L+4 (10%),
H-11->LUMO (10%)

H-3->L+4 (3%),
H-1->L+7 (3%),
H-2->L+3 (2%)
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Tabla AIIL2. Transiciones seleccionadas del espectro UV-Vis calculado para el
complejo 25 en THF.

Fuerza del ) ; Contribuciones Contribuciones
A (nm) . Simetria C . C
oscilador mayoritarias minoritarias
HOMO->LUMO (58%
464 0 T-A © (58%),  y4sLumO (3%)

HOMO->L+1 (27%)
H-1->LUMO (52%),

433 0 T-A HOMO->L+1 (25%), H-3->L+1 (2%)
HOMO->LUMO (11%)
411 0.0122 S-A HOMO->LUMO (88%)  HOMO->L+1 (9%)

H-3->LUMO (2%),
H-1->LUMO (5%),

. - >+ V.
377 0.0377 S-A HOMO->L+1 (80%) H-1->L+1 (3%),
HOMO->LUMO (7%)
H-2->LUMO (2%),
H-3->LUMO (689
326 0.2957 S-A v (68%), H-1->LUMO (2%)),

H-3->L+1 (20%) H-1->L+1 (3%)

300 0.0592 SA H-4->L+1 (90%) H-1->L+1 (3%)

274 0.0253 S-A H-5->LUMO (91%) H-d->L+1 (2%)
_5_ 0

267 0.0726 S-A H-5->L+1 (57%), ]

HOMO->L+3 (31%)

Tabla AIIL3. Transiciones seleccionadas del espectro UV-Vis calculado para el
complejo 26 en THF.

A Fuerza del Simetria Contribuciones Contribuciones
(nm) oscilador mayoritarias minoritarias
HOMO->LUMO

H-1->LUMO (2%),

535 0 T-A (44%), H-1->L+1 (6%)

HOMO->L+1 (40%)

- o
H-1->LUMO (55%), HOMO->L+1 (8%),

442 0 T-A ) H-1->L+1 (3%),
HOMO->LUMO (25%) 3511 (2%)
430 0.0088 S-A HOMO->LUMO (90%)  H-1->LUMO (7%)
409 0.0267 S-A HOMO->L+1 (93%) H-1->LUMO (4%)
HOMO->LUMO (8¢
383 0.1974 S-A H-1->LUMO (85%) OMO->LUMO (8%),

HOMO->L+1 (3%)
H-4->LUMO (2%),
357 0.1351 S-A H-1->L+1 (84%) H-3->LUMO (7%),
H-3->L+1 (5%)

H-3->LUMO (37%),

. - H-1->L+1 (9°
323 0.2495 S-A H3 oL (49%) (9%)
H-4->L+1 (3%),

- 4> 0
313 0.0446 S-A H-4->LUMO (89%) H 1141 (2%)
H-5->L+1 (4%),
270 0.0513 S-A H-5->LUMO (85%) (4%)

HOMO->L+3 (2%)
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Tabla AIIL4. Transiciones seleccionadas del espectro UV-Vis calculado para el

complejo 27 en THF.
Fuerza del ) , Contribuciones Contribuciones
A (nm) . Simetria C . C
oscilador mayoritarias minoritarias

491 0 TA HOMO->LUMO (15%),  H-3->LUMO (2%),

HOMO->L+1 (67%) H-1->L+1 (6%)

426 0.0048 S-A HOMO->LUMO (97%) -

410 0.0447 S-A HOMO->L+1 (95%) H-1->LUMO (3%)

H-1->LUMO (67%), H-3->L+1 (3%),

366 0.0819 S-A H-2->LUMO (19%), H-2->L+1 (5%)

330 0.0601 S-A H-3->LUMO (93%) -
H-4->LUMO (5%),
- 3>+ 0

313 0.1077 S-A H-3->L+1 (84%) H-1->LUMO (4%)

H-4->L+1 (4%),

2>+ 0

H-4->LUMO (19%)), g ? >i+: 8; ;’

284 0.0756 S-A HOMO->L+3 (16%), 00’
HOMO->L+5 (33%) HOMO->L+2 (2%),
HOMO->L+6 (3%),
HOMO->L+7 (6%)

-4-> )/ -3->L+ 0
274 0.0545 S A H-4->LUMO (14%), H-3->L+1 (2%),

H-4->L+1 (70%)

HOMO->L+3 (7%)

Tabla AIILS. Transiciones seleccionadas del espectro UV-Vis calculado para el

complejo 28 en THF.
Fuerza del ) ; Contribuciones Contribuciones
A (nm) . Simetria C . C
oscilador mayoritarias minoritarias
HOMO->LUMO (65%),
T-A HOMO->L+5 (39
401 0 HOMO->L+1 (25%) OMO 5 (3%)
340 0.0382 S-A HOMO->LUMO (95%) HOMO->L+1 (3%)
320 0.0577 S-A HOMO->L+1 (95%) -
H-1->LUMO (3%),
- o 0
290 0.0381 S-A H-2->LUMO (80%) H-1->L44 (7%)
H-3->LUMO (33%),
HOMO->L+3 (6Y
272 0.0797 S-A H-2->L+1 (26%), H(())M(()) o145 (( 60//0))’
H-1->L+4 (18%) ’
H-2->L+1 (62%), H-2->LUMO (5%),
270 0.0802 S-A H-3->LUMO (10%), H-1->L+1 (3%),
H-1->L+4 (11%) HOMO->L+3 (3%)
H-5->L+1 (3%),
H-4->L+1 (2%),
H-3->L+3 (4%),
A o
230 0.2844 S-A H-4->LUMO (53%), H-2->1+43 (6%),

H-6->LUMO (10%)

H-2->L+5 (4%),
HOMO->L+7 (7%),
HOMO->L+8 (2%)
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Tabla AIIL.6. Transiciones seleccionadas del espectro UV-Vis calculado para el

complejo 29 en THF.
Fuerza del ) ; Contribuciones Contribuciones
A (nm) . Simetria . e e .
oscilador mayoritarias minoritarias
H-4->LUMO (4%),
H-4->L+1 (2%),
1> 0
" HOMO->L+1 (5%),
HOMO->L+2 (4%)
H-1->LUMO (13%),
402 0.1429 S-A HOMO->LUMO (85%) -
H-2->LUMO (11%),
383 0.0384 S-A H-1->LUMO (73%), -
HOMO->LUMO (11%)
352 0.0191 S-A HOMO->L+1 (92%) H-1->L+1 (5%)
H-3->L+1 (24%), H-6->LUMO (4%),
1 .0494 -A
30 0.049 S H-1->L+2 (61%) H-4->LUMO (2%)
H-1->L+2 (11%),
299 0.1822 S-A H-4->LUMO (66%) H-2->L+2 (8%),
H-1->L+1 (3%)
H-4->LUMO (5%),
- _6-> 0
288 0.0808 S-A H-6->LUMO (83%) H-1->142 (5%)
H-5->LUMO (9%),
H-5->L+1 (48
270 0.0017 S-A (48%), H-3->L+2 (7%),

H-5->L42 (26%)

H-2->L+4 (4%)
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ORBITALES MOLECULARES DE LOS COMPLEJOS 24-29

Los orbitales moleculares, las energias y el analisis de densidad (%) de los
complejos 24-29 se muestran en las tablas AIIL.7-AlIll. 12, mientras que en las figuras

AIIL.49-AlI1.54 se recopilan los orbitales moleculares de los mismos.

Tabla AIIL7. Composicion de los orbitales moleculares del complejo 24.

oM E (eV) Iridio PPr;(1) PPr;(2) H L(Ph) L (Isoqui) L (PhO)

L+9 1.39 13 4 5 0 32 39 6
L+8 1.28 49 11 11 0 9 9 11
L+7 0.95 42 15 15 4 9 5 12
L+6 0.86 23 4 5 0 9 9 50
L+5 0.61 3 2 1 0 24 6 64
L+4 0.38 7 2 2 0 50 1 39
L+3 0.22 88 3 4 0 3 1 1
L+2 -0.05 3 1 1 0 35 58 3
L+1 -0.47 1 0 1 0 4 85 10
LUMO -1.67 2 1 1 0 20 76 0
HOMO  -4.92 37 3 4 0 11 4 40
H-1 -5.11 20 4 3 0 27 27 18
H-2 -5.36 46 1 2 0 15 18 18
H-3 -5.48 47 9 10 0 12 21 1
H-4 -5.97 27 3 3 0 21 3 43
H-5 -6.06 12 4 3 0 23 3 55
H-6 -6.29 17 3 3 0 41 10 25
H-7 -6.68 6 3 3 0 38 40 9
H-8 -6.85 17 27 28 0 5 6 17
H-9 -6.99 28 13 10 1 28 3 17
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Figura AIIIL.49. Orbitales moleculares del complejo 24 (valor de contorno 0.03 a.u.).
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Tabla AIIL.8. Composicion de los orbitales moleculares del complejo 25.
- P'Pr; i .

oM E (eV) Iridio ) PPr;(2) H L (Ph) L Isoqui) L (PhO)
L+9 1.61 93 4 7 2 0 0 -3
L+8 1.1 1 1 1 0 1 1 95
L+7 0.98 54 15 15 2 5 6 4
L+6 0.96 10 2 1 0 35 24 27
L+5 0.73 38 23 23 1 9 0 5
L+4 0.53 5 1 1 0 62 12 19
L+3 0.31 4 1 1 0 41 14 40
L+2 0.21 88 5 6 0 1 0 0
L+1 -1.13 1 1 1 0 33 58 7

LUMO -1.24 3 1 1 0 4 63 27

HOMO  -5.01 30 2 2 0 18 7 41
H-1 -5.3 17 7 7 0 6 11 51
H-2 -5.55 76 2 1 0 10 2 9
H-3 -5.58 18 7 8 0 19 9 39
H-4 -5.86 23 3 3 0 19 11 41
H-5 -6.32 7 3 3 0 57 15 15
H-6 -6.77 31 22 22 0 12 2 11
H-7 -6.98 5 1 0 0 11 1 82
H-8 -7.08 21 19 19 0 33 2 6
H-9 -7.11 18 10 9 32 2 29 1
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H-6 H-8

Figura AIIIL.50. Orbitales moleculares del complejo 25 (valor de contorno 0.03 a.u.).
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Tabla AIIL.9. Composicion de los orbitales moleculares del complejo 26.

OM E(V) Iridio (Il’)r S PPr;@ H L(Ph) L(soqui) L (PhO)
L+9 1.66 92 5 5 2 -1 0 -1
L+8 1.28 2 1 1 0 1 0 95
L+7 1.07 7 0 0 0 35 26 31
L+6 1.02 61 15 15 1 2 4 1
L+5 0.82 38 23 23 2 9 0 5
L+4 0.61 4 1 1 0 54 17 24
L+3 0.39 4 1 1 0 53 11 31
L+2 0.22 89 6 6 0 0 0 0
L+1 -1.04 1 1 1 0 20 56 22
LUMO -1.1 3 2 2 0 17 64 13
HOMO -4.64 17 3 3 0 3 1 73
H-1 -5 13 2 2 0 14 19 51
H-2 -5.45 77 1 2 0 10 1 9
H-3 -5.47 24 11 11 0 25 7 23
H-4 -5.71 32 5 5 0 17 12 30
H-5 -6.25 7 3 3 0 57 17 13
H-6 -6.68 28 19 19 0 16 3 17
H-7 -6.99 16 20 20 0 22 2 21
H-8 -7.02 17 9 9 32 1 30 1
H-9 -7.21 23 2 5 0 43 1 26
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H-6 H-8

Figura AIIL.51. Orbitales moleculares del complejo 26 (valor de contorno 0.03 a.u.).
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Tabla AIIL.10. Composicion de los orbitales moleculares del complejo 27.

OM E(V) Iridio (Il’)r S PPr;@ H L(Ph) L(soqui) L (PhO)
L+9 1.57 99 0 5 0 -1 0 0
L+8 1.44 9 3 2 0 25 27 34
L+7 1.13 38 8 8 0 17 9 20
L+6 0.92 44 12 10 2 7 6 19
L+5 0.81 26 17 15 1 17 5 19
L+4 0.6 3 1 2 0 44 6 44
L+3 0.38 7 1 1 0 48 15 29
L+2 0.21 91 4 4 0 1 0 1
L+1 -0.96 1 1 0 0 4 61 33
LUMO -1.07 2 1 1 0 31 62 1
HOMO -4.66 21 3 3 0 4 5 63
H-1 -5.13 31 7 7 0 38 12 6
H-2 -5.26 61 1 1 0 7 2 27
H-3 -5.56 45 11 11 0 7 15 11
H-4 -5.98 6 2 1 0 34 20 36
H-5 -6.43 5 6 5 0 31 7 46
H-6 -6.68 29 14 13 0 24 3 17
H-7 -6.81 26 6 10 4 12 8 34
H-8 -7.01 22 19 13 7 27 9 2
H-9 -7.09 17 9 15 17 19 17 5
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Figura AIIL.52. Orbitales moleculares del complejo 27 (valor de contorno 0.03 a.u.).
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Tabla AIIL.11. Composicion de los orbitales moleculares del complejo 28.

OM E(V) Iridio (11’;3 PPr;(2) H L(Ph) L(Isoqui) L (PhO)
L+9 1.64 68 4 4 0 3 9 11
L+8 1.57 85 1 0 0 1 10 2
L+7 1.55 23 1 1 0 12 47 15
L+6 1.27 89 5 4 0 0 1 1
L+5 0.82 3 1 1 0 3 5 87
L+4 0.67 39 21 21 1 8 0 9
L+3 0.47 6 1 1 0 88 1 2
L+2 0.20 90 4 5 0 1 0 0
L+1 -0.05 0 1 0 0 25 35 38
LUMO -0.21 5 1 1 0 37 28 28
HOMO -4.56 17 4 4 0 2 9 64
H-1 -5.23 61 2 1 1 9 3 24
H-2 -5.23 32 6 6 0 41 7 7
H-3 -5.47 23 5 5 0 18 31 19
H-4 -6.09 5 2 1 0 32 10 50
H-5 -6.41 15 13 14 3 16 13 26
H-6 -6.43 20 8 7 33 2 25 3
H-7 -6.79 18 10 10 0 32 9 20
H-8 -6.99 30 21 21 0 24 3 1
H-9 -7.10 29 2 3 1 17 2 44
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L+7
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L+2
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Figura AIIL.53. Orbitales moleculares del complejo 28 (valor de contorno 0.03 a.u.).
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Tabla AIIL.12. Composicion de los orbitales moleculares del complejo 29.

OM E(V) Iridio (Il’)r S PPr;@ H L(Ph) L(soqui) L (PhO)
L+9 1.64 13 2 6 0 28 37 14
L+8 1.45 105 0 -1 0 0 2 -5
L+7 1.35 93 1 4 0 0 1 1
L+6 1.14 6 1 1 0 5 75 12
L+5 0.86 38 23 24 2 8 0 5
L+4 0.44 5 2 1 0 84 6 1
L+3 0.18 90 4 5 0 1 0 0
L+2 -0.19 3 1 1 0 45 20 30
L+1 -0.65 2 1 1 0 11 15 69
LUMO -1.14 3 1 1 0 5 28 62
HOMO -4.82 26 4 4 0 20 42 4
H-1 -5.01 31 6 6 0 26 25 6
H-2 -5.19 79 1 2 0 9 3 6
H-3 -5.52 15 5 4 31 3 41 1
H-4 -5.84 18 4 4 0 14 45 16
H-5 -6 7 1 0 1 83 5 3
H-6 -6.11 26 13 13 0 14 19 14
H-7 -6.8 32 24 27 0 11 3 3
H-8 -7.09 6 3 4 0 46 35 6
H-9 -7.23 15 12 12 0 51 8 2
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H-6

Figura AIIL.54. Orbitales moleculares del complejo 29 (valor de contorno 0.03 a.u.).
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VOLTAMOGRAMAS CICLICOS DE
REACTIVOS ORGANICOS
80
__ 60
<
2
S 40t
S
2 2
2
£
0
-20
0.5 0 0.5 1 15
Potencial vs Fc/Fc* (V)
24
45 -
_35
<
2
525+
S
215
2
= 5
.5 1 J
0.5 0.0 0.5 1.0 15
Potencial vs Fc/Fc* (V)
26
10
< 55 f
2
©
b
2 1
2
=
35
0.7 04 0.0 0.4 0.7
Potencial vs Fc/Fc* (V)
28

LOS COMPLEJOS 24-29 Y LOS

15 |
< L
510
-}
©
3 5
"
c
[
]
£ o0
-5 J
05 0.0 0.5 1.0 15
Potencial vs Fc/Fc* (V)
40
__ 30t
<
2
S 20 f
©
=2
2 10 t
[
g
£
0
-10
0.5 0.0 0.5 1.0 15
Potencial vs Fc/Fc* (V)
8
_ 6
<
2
3 4
©
3
2 2
[
]
£
0
2
0.5 0 0.5 1 15
Potencial vs Fc/Fc* (V)

Figura AIILSS. Voltamogramas ciclicos de los complejos 24-29 en DCM (107 M)
utilizando BusNPFs como electrolito de soporte (0.1 M) y usando una velocidad de

barrido de 250 mV s
ferrocinio/ferroceno (Fc¢*/Fc).

Los potenciales

se referenciaron respecto al par
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Figura AIIL56. Voltamogramas ciclicos de los reactivos organicos en DCM (107 M)
utilizando BusNPFs como electrolito de soporte (0.1 M) y usando una velocidad de
barrido de 250 mV s'. Los potenciales se referenciaron respecto al par
ferrocinio/ferroceno (Fc'/Fc).
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ESPECTROS DE EMISION NORMALIZADOS DE LOS COMPLEJOS 24-27 Y

29
(a) Film de PMMA
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(b) 2-MeTHF (278 K)
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(c) 2-MeTHF (77 K)
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Figura AIILS57. (a) Espectro de emision de 24-27 y 29 en films de PMMA dopados al 5
% en peso a 298 K. (b) Espectros de emision de 24-27 y 29 en 2-MeTHF a 298 K. (c)
Espectros de emision de 24-27 y 29 en 2-MeTHF a 77 K.
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ESPECTROS DE EXCITACION Y EMISION DE LOS COMPLEJOS 24-27 Y 29
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Figura AIIL.58. Espectros de excitacion y emision normalizados del complejo 24 en film
de PMMA (5% peso) a 298 K.
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Figura AIIL.59. Espectros de excitacion y emision normalizados del complejo 24 en una
disoluciéon 10> M de 2-MeTHF a 298 K.
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Figura AIIL.60. Espectros de excitacion y emision normalizados del complejo 24 en una
disolucion 10> M de 2-MeTHF a 77 K.
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Figura AIIL.61. Espectros de excitacion y emision normalizados del complejo 25 en film
de PMMA (5% peso) a 298 K.
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Figura AIIL.62. Espectros de excitacion y emision normalizados del complejo 25 en una

disolucion 10> M de 2-MeTHF a 298 K.
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Figura AIIL.63. Espectros de excitacion y emision normalizados del complejo 25 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AIIL.64. Espectros de excitacion y emision normalizados del complejo 26 en film
de PMMA (5% peso) a 298 K.
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Figura AIIL65. Espectros de excitacion y emision normalizados del complejo 26 en una
disolucion 10> M de 2-MeTHF a 298 K.
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Figura AIIL.66. Espectros de excitacion y emision normalizados del complejo 26 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AIIL.67. Espectros de excitacion y emision normalizados del complejo 27 en film
de PMMA (5% peso) a 298 K.
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Figura AIIL.68. Espectros de excitacion y emision normalizados del complejo 27 en una
disolucion 10> M de 2-MeTHF a 298 K.
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Figura AIIL.69. Espectros de excitacion y emision normalizados del complejo 27 en una
disolucién 10> M de 2-MeTHF a 77 K.
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Figura AIIL.70. Espectros de excitacion y emision normalizados del complejo 29 en film
de PMMA (5% peso) a 298 K.
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Figura AIIL.71. Espectros de excitacion y emision normalizados del complejo 29 en una
disolucion 10> M de 2-MeTHF a 298 K.
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Figura AIIL.72. Espectros de excitacion y emision normalizados del complejo 29 en una
disolucién 10> M de 2-MeTHF a 77 K.
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DISMINUCION DE LA INTENSIDAD DE LA FOTOLUMINISCENCIA TRAS
LA EXCITACION EN FUNCION DEL TIEMPO DE LOS COMPLEJOS 24-27 Y
29

10000
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MBB190 [X5Q=1.086573] P [=] |
= |
The fitted parameters are:
SHIFT = 0 ch
Tl = 155.4431 ch; 3.765898E-07 sec $.Dev = 6.36062Z5E-09 sec
10 TZ = 1600.224 ch; 3.87684E-06 sec $.Dev = 2.801311E-08 sec
A = 411.4197 $.Dev = 1.030887
Bl = 1514.656 [ 7.71 Rel.Ampl][ 0.46 Alpha) S.Dev = 7.655586
BZ = 1761.222 [ 92.29 Rel.Ampl] [ 0.54 Alpha) S.Dev = 3.07962§5
Average Life Time = 2.258442E-06 sec
CHISQ = 1.086573 [ 3585 degrees of freedom )
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Figura AIIL.73. Disminucion de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcion del tiempo de 24 en film de PMMA (5% peso) a 298 K (Aexc =
390 nm, Aem = 640 nm), parametros de ajuste y limites de confianza.
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Figura AIIL.74. Izquierda: Disminuciéon de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 24 en 2-MeTHF a 298 K (hexc
=452 nm, Aem = 627 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Parameter Value A
A4[kCnts/Chnl] 7.84 +0.57
T1[ns] 9710 +160
l1[kCnts] 476 +27
Az[kCnts/Chnl] 1.71 +0.59
T2[ns] 5320 +640
I2[kCnts] 57 +28
Bkgrpec[kCnts] 0.0036 +0.0015
Tavint[NS] 9238 +45

Figura AIIL7S. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 24 en 2-MeTHF a 77 K (Aexc =
452 nm, Aem = 617 nm). Derecha: Parametros de ajuste y limites de confianza.
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Parameter Value A
A4[kCnts/Chnl] 6.67 +0.68
14[ns] 12970 +310
I1[kCnts] 541 +41
Ay[kCnts/Chnl] 2.81 +0.66
12[ns] 7 500 +790
Io[kCnts] 132 +42
Bkgrpec[kCnts] 0.0014 +0.0015
Tavint[ns] 11893 +33
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Figura AIIL.76. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 25 en film de PMMA (5%
peso) a 298 K (Aexe = 378 nm, Aem = 529 nm). Derecha: Parametros de ajuste y limites de

confianza.
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Parameter Value A
A1[kCnts/Chnl] 9.055 +0.014
T1[ns] 17 282 +19
11[kCnts] 488.98 +0.77
Bkgrpec[kCnts] 0.0086 +0.0008
Tavint[ns) 17 282 +19

Figura AIIL.77. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcidn del tiempo de 25 en 2-MeTHF a 298 K (Rexc
=378 nm, Aem = 534 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Parameter Value A
A4[kCnts/Chnl] 54 +2.3
T1[ns] 24 400 +3 000
11[kCnts] 410 +140
A[kCnts/Chnl] 2.8 2.3
T2[ns] 15400 +2 800
I2[kCnts] 140 +150
Bkgrpec[kCnts] 0.0022 +0.0032
Tavint[NS] 22170 +240

Figura AIIL.78. Izquierda: Disminuciéon de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 25 en 2-MeTHF a 77 K (hexc =
378 nm, Aem = 529 nm). Derecha: Parametros de ajuste y limites de confianza.
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A1[kCnts/Chnl] 2.95 +0.16
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Figure AIIL79. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 26 en film de PMMA (5%
peso) a 298 K (Aexc = 405 nm, Aem = 565 nm). Derecha: Pardmetros de ajuste y limites de
confianza.
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Parameter Value A

A1[kCnts/Chnl] 8.4313 +0.0089
T1[ns] 36 477 +43
11[kCnts] 480.54 +0.55
Bkgrpec[kCnts] 0.0103 +0.0005
Tavint[nS] 36 477 +43
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Figura AIIL.80. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 26 en 2-MeTHF a 298 K (Aexc
=405 nm, Aem = 575 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Parameter Value A

A1[kCnts/Chnl] 9.089 +0.016
T1[ns] 95 030 +200
11[kCnts] 337.36 +0.47
Bkgrpec[kCnts] 0.0072 +0.0006
Tavint[NS] 95 030 +200

Figura AIIL81. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 26 en 2-MeTHF a 77 K (Aexe =
405 nm, Aem = 555 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Figura AIIL.82. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 27 en film de PMMA (5% peso) a 298 K (Aexe =
390 nm, Aem = 540 nm), parametros de ajuste y limites de confianza.
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Parameter Value A
A4[kCnts/Chnl] 9.450 +0.025
T1[ns] 9626 15
11[kCnts] 568.48 +0.85
Bkgrpec[kCnts] 0.0014 +0.0003
Tavim(NS] 9626 +15

Figura AIIL.83. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 27 en 2-MeTHF a 298 K (Rexc
=378 nm, Aem = 534 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Figura AIIL.84. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 27 en 2-MeTHF a 77 K (Aexc =

378 nm, Aem = 514 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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Figura AIIL.85. Disminucién de la intensidad de la fotoluminiscencia (experimental) tras
la excitacion en funcién del tiempo de 29 en film de PMMA (5% peso) a 298 K (Aexec =

390 nm, Aem = 540 nm), pardmetros de ajuste y limites de confianza

‘ X’puﬁ —
N A
10°
S
2 102 | —
]
s
c
10'}
I Parameter Value A
A4[kCnts/Chnl] 2.06 +0.50
T4[ns] 4010 +340
0
10°¢ I1[KCnts] 103 +19
30 T A,[kCnts/Chnl] 5.25 +0.46
4 F 12[ns] 1950 +110
E ‘ J ‘ I2[kCnts] 128 +19
| | I | BKgrpec[kCnts] 0.0065|  +0.0016
28 32 36 40 Tavin{ns] 2 866 +29

time[ps]



A166 Anexo III

Figura AIIL.86. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 29 en 2-MeTHF a 298 K (Aexc
=405 nm, Aem = 530 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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A1[kCnts/Chnl] 5.08 +0.20
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11[kCnts] 325.3 .7
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I2[kCnts] 59.2 7.9

Bkgrpec[kCnts] 0.0075 +0.0010

Tavint[NS] 4644 +14

Figura AIIL.87. Izquierda: Disminucion de la intensidad de la fotoluminiscencia
(experimental) tras la excitacion en funcion del tiempo de 29 en 2-MeTHF a 77 K (Aexc =
405 nm, Aem = 485 nm). Derecha: Pardmetros de ajuste y limites de confianza.
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