

Trabajo Fin de Grado

Desarrollo de aplicación móvil multiplataforma:

Gestión de órdenes de trabajo en construcciones

Autor/es

Alejandro Catalán Tejedor

Director/es

Miguel Ángel Aranda Alcañiz

Jesús Gallardo Casero

Escuela Universitaria Politécnica de Teruel

2023

 pg. 1

Resumen

Este Trabajo de Fin de Grado consiste en el desarrollo y la documentación de una aplicación móvil

multiplataforma. El objetivo de este proyecto ha sido crear una herramienta para facilitar la gestión

del trabajo en construcciones. Esta herramienta se utilizará para la creación y edición de partes de

trabajo sobre una orden de trabajo. Además, otro propósito de este proyecto es servir de guía para

aquellas personas interesadas en el aprendizaje del desarrollo de aplicaciones móviles

multiplataforma, utilizando el framework Flutter, o para las que ya saben y quieren mejorar sus

habilidades aprendiendo nuevos conceptos.

Abstract

This Final Degree Project consists of the development and documentation of a multiplatform mobile

application. The objective of this project has been to create a tool to facilitate the management of

construction work. This tool is accelerated for the creation and editing of work tickets on a work order.

In addition, another purpose of this project is to serve as a guide for those people interested in learning

how to develop cross-platform mobile applications, using the Flutter framework, or for those who

already know and want to improve their skills by learning new concepts.

 pg. 2

Agradecimientos

Quiero expresar mi más sincero agradecimiento a todas aquellas personas que han contribuido de
manera directa o indirecta en la realización de mi Trabajo de Fin de Grado.

Agradezco en primer lugar a mi tutor Miguel Ángel, por su orientación, su apoyo y su comprensión
durante todo el proceso.

También deseo expresar mi gratitud a los docentes de la Escuela Universitaria Politécnica de Teruel
por brindarme una educación de calidad, que me ha permitido obtener todos los conocimientos que
poseo hoy en día.

Además, les doy las gracias a mis amigos por darme mucho ánimo durante mis años de estudio.
Vuestras palabras de aliento siempre me ayudaron a superar aquellos obstáculos que surgieron
durante el camino.

Por último, no puedo dejar de mencionar a mi familia, quienes han sido mi mayor fuente de apoyo y
motivación. Habéis sido mi pilar durante todos estos años. Gracias por siempre creer en mí y por estar
a mi lado cuando lo he necesitado, sin vosotros todo esto nunca hubiera sido posible.

A todas estas personas, gracias por vuestro tiempo, paciencia y contribución en la realización de este
Trabajo de Fin de Grado y en la del resto de mi grado universitario. Vuestro apoyo ha sido crucial
durante todo el recorrido.

¡Muchas gracias a todos!

 pg. 3

ÍNDICE

1. Introducción ... 6

1.1. Motivación... 6

1.2. Marco de trabajo ... 7

1.3. Audiencia ... 7

1.4. Tipo de publicación .. 8

1.5. Plataforma de publicación.. 8

1.6. Tecnología de desarrollo .. 9

1.7. Elección del motor de base de datos .. 10

1.8. Definiciones, acrónimos y abreviaturas .. 10

2. Descripción general .. 11

2.1. Perspectiva del producto ... 11

2.1.1. Interfaces de sistema ... 11

2.1.2. Interfaces de usuario ... 11

2.1.3. Interfaces software .. 11

2.1.4. Interfaces de comunicaciones .. 11

2.1.5. Restricciones de Memoria y Almacenamiento.......................... 11

2.1.6. Modos de Operación ... 12

2.1.7. Necesidades de infraestructura (para el alojamiento u operación) 12

2.2. Funcionalidad del Producto .. 12

2.3. Restricciones.. 13

2.3.1. Auditoría ... 13

2.3.2. Protocolos de comunicaciones ... 13

2.3.3. Fiabilidad ... 13

2.3.4. Seguridad .. 14

2.4. Asunciones y dependencias ... 14

3. Requisitos específicos ... 15

3.1. Interfaces externos .. 15

3.1.1. Interfaces de usuario ... 15

3.1.2. Interfaces software .. 15

3.1.3. Interfaces de comunicaciones .. 15

3.2. Características del sistema ... 15

3.2.1. Arranque / Parada ... 16

3.2.2. Eventos periódicos... 17

3.2.3. Escenarios asociados al usuario ... 17

 pg. 4

3.3. Requisitos de Persistencia .. 21

3.4. Restricciones de diseño de la interfaz de usuario 21

3.5. Restricciones de diseño arquitectónico .. 21

4. Diseño .. 22

4.1. Casos de uso .. 23

4.2. Diagramas de clases ... 24

4.2.1. Diagrama de clases del cliente ... 24

4.2.1. Diagrama de clases del servidor ... 24

4.3. Diagramas de actividades ... 25

4.3.1. Diagrama de actividades Arranque e Inicio de Sesión 25

4.3.2. Diagrama de actividades Menú Lateral 25

4.3.3. Diagrama de actividades Listado de Partes 25

4.3.4. Diagrama de actividades Creación de Parte 25

4.3.5. Diagrama de actividades Visualización/Edición/Cierre de Partes25

4.4. Diagramas de secuencia ... 26

4.4.1. Diagrama de secuencia Arranque e Inicio de Sesión 26

4.4.2. Diagrama de secuencia Refrescar... 26

4.4.1. Diagrama de secuencia Visualizar detalle de orden y maestros 27

4.4.2. Diagrama de secuencia Creación de Parte 27

4.4.3. Diagrama de secuencia Cierre de Parte 27

4.5. Pruebas que realizar .. 28

4.5.1. Pruebas de interfaz .. 28

4.5.2. Pruebas de funcionalidad... 28

4.5.3. Pruebas de integración .. 28

4.5.4. Pruebas de rendimiento .. 28

4.5.5. Pruebas de seguridad .. 29

4.5.6. Pruebas de uso .. 29

4.5.7. Pruebas de regresión ... 29

5. Desarrollo ... 30

5.1. Estructura .. 30

5.2. Modelo .. 32

5.2.1. Base de datos .. 32

5.2.2. DTOs.. 34

5.2.3. DAOs ... 38

5.3. Blocs .. 40

5.3.1. BlocState ... 41

 pg. 5

5.3.2. BlocEvent .. 42

5.3.3. Bloc ... 43

5.4. Vista .. 44

5.4.1. Páginas .. 44

5.4.2. Componentes genéricos .. 47

5.5. Otros ... 48

6. Conclusiones .. 49

7. Referencias... 50

8. Anexo 1 – Ilustraciones de la interfaz .. 51

9. Anexo 2 – Diagramas .. 65

 pg. 6

1. Introducción

Este proyecto consiste en la creación y documentación de una aplicación móvil multiplataforma,

llamada GestorTareas, con la finalidad de facilitar la gestión de órdenes trabajo a empresas situadas

en el sector de la construcción.

La aplicación se utilizará para la creación y edición de partes de trabajo sobre una orden de trabajo.

La finalidad es facilitar el registro y gestión del trabajo realizado y de los recursos empleados en una

construcción.

Se listarán todas las órdenes de trabajo abiertas, y seleccionando una de ellas se podrán ver las

indicaciones y los recursos a emplear. Estas instrucciones -o indicaciones- serán tenidas en cuenta por

el operario a cargo del manejo del dispositivo con la aplicación instalada. Éste creará partes de trabajo

registrando cómo se ha repartido el trabajo; registrando el trabajo realizado y los recursos utilizados.

1.1. Motivación

La industria de la construcción es una parte elemental en la sociedad. Las casas en las que

vivimos, los edificios donde trabajamos, los caminos que recorremos, todo es el resultado

de esta industria. Por esto mismo las empresas dedicadas a la construcción se enfrentan

a numerosos obstáculos. Organizar todo el trabajo que hay que realizar y el ya realizado,

puede llegar a ser bastante problemático si no se posee la herramienta adecuada.

Además, si a causa de una mala organización se pierde información, podría suponer una

gran pérdida para la empresa.

Fue entonces cuando me di cuenta de que había una necesidad clara de una solución que

facilitara el trabajo a las empresas constructoras y a sus empleados. Así nació la idea de

crear una aplicación móvil que pusiera fin al caos y brindara una herramienta eficiente y

centralizada para gestionar órdenes y partes de trabajo.

Mi objetivo con esta aplicación es hacer que la vida de las empresas constructoras sea más

sencilla. Desde la creación y asignación de tareas hasta el seguimiento del progreso del

proyecto, la aplicación proporcionará una plataforma fácil de usar que simplificará y

agilizará los procesos.

Además, esta aplicación también beneficiará a los trabajadores de campo. Dado que

podrán ver a tiempo real todas las tareas demandadas y podrán gestionar el trabajo

realizado de forma sencilla y eficiente.

Por otro lado, otra de las razones que me llevaron a desarrollar este proyecto, fue que, en

mi empresa actual, Inycom, soy la única persona con conocimientos del framework

Flutter. Esto es debido a que cuando me incorporé a la empresa surgió un proyecto

demandado por un cliente, este cliente deseaba que utilizáramos Flutter como medio de

desarrollo. Como en el equipo de desarrollo móvil (del que formo parte) mis compañeros

sólo poseían conocimientos centrados en Android o iOS, se me encomendó investigar esta

tecnología y desarrollar la aplicación. Después de esto seguí trabajando casi

exclusivamente con Flutter. Como actualmente sigo siendo el único desarrollador con

estos conocimientos, que han ido evolucionado durante todo este tiempo, pensé que

podía ser buena idea aplicar en un proyecto todos los conocimientos adquiridos hasta el

día de hoy.

 pg. 7

Por este motivo el documento desarrollado, principalmente los requisitos específicos y el

diseño, es lo más técnico posible, para que mis compañeros puedan ver el proceso real

del desarrollo de una aplicación en Flutter, y consultar este documento siempre que lo

necesiten.

1.2. Marco de trabajo

Para el desarrollo de esta aplicación móvil multiplataforma, se ha seleccionado un marco

de trabajo que se basa en el uso de las siguientes herramientas y tecnologías:

- Flutter: Se utilizará el framework Flutter como base para el desarrollo de la aplicación.

Flutter es una tecnología de código abierto desarrollada por Google que permite crear

aplicaciones nativas para Android e iOS a partir de un único código base. Es altamente

eficaz y personalizable, lo que lo convierte en la elección ideal para el proyecto. En el

apartado 1.6 se amplía el porqué de esta elección.

- Dart: Se utilizará el lenguaje de programación Dart, que es el lenguaje principal

utilizado en el desarrollo con Flutter. Dart es un lenguaje que brinda una sintaxis clara

y concisa, así como una gran cantidad de bibliotecas y herramientas para facilitar el

desarrollo de la aplicación.

- SQLite: Se utilizará SQLite como herramienta para la creación y gestión de la base de

datos. Se integrará en el código importando el paquete de Flutter utilizado para ello.

En el apartado 1.7 se amplía el porqué de esta elección.

- Git: Se utilizará un sistema de control de versiones, como Git, para mantener un

registro de los cambios realizados en el código. Esto permitirá asegurar la integridad

del código a lo largo del desarrollo del proyecto. El programa Fork se utilizará para

gestionar repositorios Git haciendo uso de su interfaz gráfica. El repositorio será

creado en Azure DevOps, debido a que es la herramienta utilizada en la empresa para

crear y almacenar repositorios.

1.3. Audiencia

La aplicación móvil multiplataforma está diseñada pensando en las empresas y

profesionales involucrados en el sector de la construcción. Está especialmente dirigida a

las constructoras, porque les brinda una herramienta eficiente para agilizar y simplificar

la gestión de las órdenes de trabajo. La aplicación les permitirá llevar un seguimiento

organizado de las tareas y recursos asignados en cada proyecto. La empresa en sí es la

más interesada, dado que con esta herramienta se podrán evitar pérdidas de información

que perjudiquen el beneficio de la empresa. Además, los trabajadores de la empresa

también se verán beneficiados con el uso de la aplicación:

- Gerentes y supervisores de proyectos: Los gerentes y supervisores de proyectos en el

sector de la construcción serán los usuarios clave de la aplicación. Podrán utilizarla

para supervisar el progreso de las órdenes de trabajo, asegurándose de que se

cumplan las indicaciones y se utilicen los recursos de manera eficiente. Además,

podrán acceder a los datos actualizados en tiempo real, lo que les permitirá tomar

decisiones informadas y realizar ajustes según sea necesario.

- Operarios y técnicos de construcción: La aplicación también está diseñada para

facilitar el trabajo diario de los operarios y técnicos que llevan a cabo las tareas en el

sitio de construcción. Podrán acceder a las órdenes de trabajo asignadas, consultar las

 pg. 8

instrucciones detalladas y los recursos requeridos, y registrar de forma sencilla el

trabajo realizado y los recursos utilizados. Esto permitirá un seguimiento preciso del

progreso de las tareas y asegurará una comunicación fluida entre el equipo de trabajo.

Por otra parte, el documento va dirigido a todos aquellos interesados en su lectura, si bien

sean académicos, alumnos, compañeros de empresa en Inycom, etc. Y, sobre todo, va

dirigido a aquellos clientes interesados en comprar la aplicación para su uso.

1.4. Tipo de publicación

La aplicación va dirigida a empresas constructoras. Podría ser pública o privada.

Por un lado, si fuese pública, habría un desarrollo unificado, no adaptado para cada

empresa. No sería necesario hacer cambios pronunciados en la aplicación (ni en la

funcionalidad, ni en el diseño). Tampoco sería necesario un mantenimiento y supervisión

intensivo. Pero, a no ser que se decidiese añadir publicidad integrada, la empresa

desarrolladora no obtendría beneficio del proyecto.

Por el otro lado, si fuese privada, aunque requiriese más esfuerzo, se adaptaría mucho

mejor a las necesidades de cada empresa. Si se necesitase hacer algún cambio, de diseño

o funcionalidad, se haría sin problema. Si surgiese algún inconveniente, la empresa

desarrolladora podría arreglarlo inmediatamente. Tanto a las empresas constructoras que

deseen utilizar la aplicación y garantizar la seguridad del sistema, como a la empresa

desarrolladora que desee obtener beneficio del proyecto, les interesa que sea privada.

Es por esto por lo que se ha decidido que la aplicación sea de uso privado.

1.5. Plataforma de publicación

Dado que esta aplicación será privada y será vendida a empresas que deseen comprarla

para su uso interno. No será pública, por lo que no se publicará en ninguna plataforma

convencional de acceso universal, como Google Play Store o Apple Store.

La plataforma habitualmente utilizada en Inycom es AppCenter. Como el autor conoce

esta herramienta, también se utilizará para este proyecto.

Esta plataforma pertenece a Microsoft y es de uso privado. Está diseñada para

desarrolladores de aplicaciones móviles. Esta herramienta permite construir, probar y

distribuir aplicaciones tanto para Android como para iOS. Algunas de las características

son:

- Compilación automatizada: Permite a los desarrolladores compilar automáticamente

las aplicaciones.

- Pruebas: Permite a los desarrolladores ejecutar pruebas automatizadas en

dispositivos reales sin la necesidad de tener uno físicamente.

- Distribución de versiones: Se pueden distribuir las aplicaciones a los usuarios de forma

sencilla. Además, AppCenter permite crear grupos de usuarios, por ejemplo, un grupo

de testers donde no se incluya a los usuarios finales, para probar ciertas características

de una versión que todavía no está preparada para que use el cliente.

- Monitoreo y análisis: Existen herramientas dentro de AppCenter que permiten

monitorear y analizar datos en tiempo real, lo que permite a los desarrolladores

obtener información sobre el rendimiento de la aplicación.

 pg. 9

1.6. Tecnología de desarrollo

Como se menciona en los apartados anteriores, se ha escogido Flutter como framework

para desarrollar la aplicación, utilizando Dart como lenguaje de programación.

Flutter es un framework desarrollado por Google. Cuando lo desarrolló la compañía,

tenían pensado hacer un uso interno de él, pero viendo el gran potencial que tenía,

decidieron sacarlo como un framework de código abierto.

Este framework posee una gran cantidad de ventajas respecto a las tecnologías que

existían hasta el momento. Primero de todo, sirve para desarrollar tanto en Android como

en iOS, es decir, para el desarrollo de aplicaciones multiplataforma. Compila el código de

forma nativa, lo que lo hace tremendamente rápido, siendo posible ver los cambios

realizados en el código a tiempo real, utilizando la llamada hot reload, sin necesidad de

compilar o ejecutar el proyecto de nuevo. Contiene una gran cantidad de librerías por sí

mismo y también existen miles de paquetes para añadir al proyecto si se desea. Añadir

paquetes al proyecto es muy sencillo, basta con ejecutar un comando en la terminal del

entorno de programación (VS Code en el caso de este proyecto), también se puede añadir

a mano indicando el nombre y la versión del paquete en el archivo destinado para ello. Es

muy adaptable gráficamente, se pueden combinar los elementos de numerosas formas. A

diferencia de otros lenguajes de programación utilizados en el desarrollo de aplicaciones

móviles como Objetive-C, el lenguaje de programación que utiliza, Dart, es sencillo de

aprender, siendo similar a otros lenguajes de programación orientados a objetos. El propio

Dart es utilizado para crear los elementos gráficos de la aplicación, no es necesario utilizar

otros lenguajes como en el caso de la programación Android, donde se suele utilizar Java

haciendo uso de XML para la interfaz gráfica. Además, cuenta con una extensa

documentación y comunidad, todavía menor que otras comunidades de desarrollo de

aplicaciones móviles, como la de React (también utilizada para desarrollo

multiplataforma), pero lo suficientemente grande como para esclarecer las posibles dudas

que le surgiesen al programador. Otra ventaja que cabe mencionar es que permite la

integración de código nativo en el propio proyecto.

Como se puede observar son múltiples las ventajas de Flutter sobre el resto de

frameworks o tecnologías empleadas en el desarrollo de aplicaciones móviles. Sin

embargo, también existe alguna desventaja, aunque en menor medida. Una de ellas es

que los tamaños de las aplicaciones suelen ser más grandes que las aplicaciones nativas.

A parte de esto, la mayor desventaja que puede tener Flutter es la curva de aprendizaje,

si bien es cierto que la sintaxis es parecida a Java y otros lenguajes de programación

similares, Dart cuenta con conceptos de programación avanzados y difíciles de aprender.

Uno de estos conceptos avanzados es el uso del patrón BLoC (Bussiness Logic Component)

como arquitectura de la aplicación para la gestión de eventos y la generación de estados

a partir de estos eventos, el cual tiene una curva de aprendizaje muy pronunciada. Aunque

es cierto que se pueden crear aplicaciones en Flutter sin utilizar este concepto, utilizando

patrones como el MVVM (Model View View-Model), surgen dos inconvenientes: el

primero es que el patrón BLoC ofrece una gran cantidad de ventajas y prestaciones al

utilizarlo, así que no hacer uso de él, hace que el código sea menos óptimo (en el punto

5.2 se ve el por qué); la segunda es que existen otros conceptos avanzados en Dart,

además del patrón BLoC, que hay que aprender igual, como los Futures, async/awaits,

 pg. 10

Providers, etc. Además, Dart cuenta con multitud de elementos gráficos complejos que

un programador de front-end debe saber utilizar.

Dado que el autor tiene una extensa experiencia con este framework y que la desventaja

principal, la curva de aprendizaje, no aplica en este caso, se mantiene la elección de

desarrollar la aplicación con Flutter.

1.7. Elección del motor de base de datos

Para la base de datos del proyecto se ha decidido utilizar SQLite. El autor había trabajado

previamente con el framework Drift (Moor) que permitía crear y gestionar bases de datos

utilizando Dart para realizar consultas, en lugar de SQL. Sin embargo, al utilizar archivos

autogenerados para conseguir lidiar con la base de datos usando Dart, había que utilizar

comandos de generación de código, lo que provocaba que muchas veces se perdiese más

tiempo del que se ganaba. Además, cada cambio en la estructura de la base de datos

requería aumentar la versión de ésta y obligaba a tener que borrarla y crearla de nuevo.

Aunque en la documentación se especificase que sí es posible crear tablas surgidas de la

relación de otras tablas, no funcionaban correctamente las claves ajenas. Por todos estos

motivos se decidió usar la herramienta más extendida para la creación de bases de datos

relacionales, SQLite. SQLite es muy rápida, intuitiva y trabaja con el lenguaje SQL, con el

que el autor había tratado extensamente a lo largo del grado universitario.

1.8. Definiciones, acrónimos y abreviaturas

Término Descripción

OT Orden de trabajo.

PT Parte de trabajo.

Maestros Recursos.

AWS Amazon Web Services.

Background En segundo plano.

App Aplicación.

Tester Probador de aplicaciones.

Card Elemento gráfico que se utiliza para representar alguna
información relacionada, por ejemplo, un álbum, una ubicación
geográfica, una comida, detalles de contacto, etc.

UI Interfaz de usuario.

Framework Estructura de herramientas que facilita el desarrollo de
aplicaciones de software al proporcionar funcionalidades
predefinidas y una estructura organizada.

ListView Lista vertical de elementos en una aplicación.

 pg. 11

2. Descripción general

2.1. Perspectiva del producto

2.1.1. Interfaces de sistema

 GestorTareas deberá obtener las órdenes de trabajo y los recursos a través de la

API del servidor, así como enviar los partes de trabajo para su almacenamiento.

 El servidor será interno, creado y gestionado por el equipo de la parte web.

2.1.2. Interfaces de usuario

 La interfaz de usuario se encuentra en el Anexo 1.

2.1.3. Interfaces software

 Se recibirán los datos enviados por la parte web a través de peticiones a una API

propia.

 La aplicación ha de mantener datos almacenados de forma persistente. Para esto

se utilizará una base de datos integrada.

2.1.4. Interfaces de comunicaciones

 GestorTareas es una aplicación móvil que deberá tener conexión online y conocer

la hora actual, por esto deberá utilizar las interfaces de comunicaciones

inalámbricas del dispositivo: datos móviles y geolocalización.

2.1.5. Restricciones de Memoria y Almacenamiento

 La aplicación móvil estará disponible para las plataformas Android y iOS. Por lo

tanto, se deben considerar los requisitos de memoria y almacenamiento

específicos de cada sistema operativo.

 Para dispositivos móviles Android, se requerirá un mínimo de 4 GB de memoria

RAM y 16 GB de almacenamiento para un rendimiento óptimo. Se recomienda

que los dispositivos utilicen Android 7.0 o superior.

 Para dispositivos móviles iOS, se requerirá un mínimo de 2 GB de memoria RAM

y 16 GB de almacenamiento para un rendimiento óptimo. Se recomienda que los

dispositivos utilicen iOS 12 o superior.

 Además, la aplicación requerirá permisos de cámara para capturar imágenes

relacionadas con los partes de trabajo. Estos permisos deben solicitarse al usuario

al momento de la instalación y deben ser compatibles con los sistemas operativos

Android y iOS.

 Se utilizará una base de datos local donde se almacenará la información recibida

por la web, además de los partes de trabajo no sincronizados con la API. Por esto

mismo también se pedirán al usuario permisos de almacenamiento.

 pg. 12

2.1.6. Modos de Operación

 Hay un único modo de operación: usuario estándar.

En el apartado 2.2 se detallará las características de este modo de operación.

2.1.7. Necesidades de infraestructura (para el alojamiento u operación)

 La aplicación se distribuirá a través de un archivo APK descargable en la

plataforma AppCenter de Microsoft. Los clientes podrán acceder a la aplicación a

través de esta plataforma.

 Al utilizar AppCenter, se garantiza que la aplicación no estará disponible en

plataformas convencionales de acceso universal, como Google Play Store o Apple

App Store.

 La plataforma AppCenter también permite una fácil gestión de versiones y

actualizaciones de la aplicación para los clientes.

 Será necesario un servidor de donde se recojan y almacenen los datos.

 El servidor será una instancia de AWS (pactado con el cliente), por lo que el

hardware será una infraestructura externa.

2.2. Funcionalidad del Producto

Debido a que las credenciales serán generadas y otorgadas por la empresa compradora

de la aplicación, únicamente habrá un tipo de usuario, capaz de iniciar sesión, pero no de

registrarse.

 Usuario

o Iniciar sesión.

 El usuario podrá iniciar sesión con las credenciales otorgadas por

la compañía.

o Cerrar sesión.

 Se podrá cerrar sesión, si así lo desea el usuario. Si bien es cierto

que cada usuario tendrá su dispositivo personal.

o Refrescar datos.

 Se podrán refrescar los datos manualmente. Cuando el usuario

disponga de conexión, podrá querer probar a refrescar los datos

manualmente para descargar las órdenes y recursos asociados a

las mismas.

o Visualizar lista OTs.

 El usuario podrá ver la lista de órdenes de trabajo. Es la pantalla

principal al iniciar sesión.

o Seleccionar OT.

 Dentro de la lista de órdenes de trabajo, mencionada en el punto

anterior, se podrá seleccionar la orden de la que se desee ver el

detalle.

 Visualizar maestros. Se podrán visualizar los maestros (personal,

materiales y maquinaria) asociados a una orden, desde el detalle

de ésta.

o Visualizar lista PTs.

 pg. 13

 Desde una orden de trabajo, se podrán visualizar la lista de partes

de trabajo asociados a esa orden.

o Crear PT.

 En la lista de partes de trabajo existirá un botón desde el cual se

podrá crear un nuevo parte. Editando y añadiendo sus campos y

recursos.

o Editar PT.

 En la lista de partes también se podrá seleccionar un parte para

ver y/o editar los campos de éste.

 Editar maestros. Además de editar los parámetros también se

podrán editar los maestros asociados a ese parte, tanto quitar,

como modificar, como añadir nuevos recursos.

 Cerrar parte. Haciendo uso de un botón, se podrá cerrar el parte,

siendo así enviado al servidor y no editable de nuevo.

2.3. Restricciones

2.3.1. Auditoría

Se le dará al comprador un mes de tiempo máximo para probar la aplicación y notificar el

cambio de algún aspecto de diseño relacionado con la aplicación. Esto permitirá realizar

los ajustes necesarios para cumplir con las expectativas del usuario y mejorar la UX.

También, se dispondrá de tres años de garantía para poder corregir cualquier posible error

o vulnerabilidad identificada durante el uso de la aplicación. Con esto se garantiza el

correcto funcionamiento, además del rendimiento y la seguridad.

2.3.2. Protocolos de comunicaciones

La aplicación se comunicará con el servidor a través de una API propia mediante el

protocolo HTTPS y datos en formato JSON.

2.3.3. Fiabilidad

Se contará con una base de datos interna para que no se pierdan datos si estos no se han

sincronizado correctamente. El propósito es no perder absolutamente ninguna

información. Todos los datos creados se guardarán instantáneamente en la base de datos,

desde la creación de un parte y sus recursos, hasta cada letra cambiada en alguno sus

campos. No se permitirá al usuario guardar o borrar información manualmente.

Únicamente cuando los datos se hayan sincronizado correctamente con el servidor, y sólo

entonces, se eliminarán de la base de datos y dejará de ser visible para el usuario. La

fiabilidad en la persistencia de la información es crucial, puesto que la aplicación será

utilizada por empresas en el área de la construcción, y cualquier pérdida de información

en el registro de sus actividades puede suponer un gran costo para la empresa.

 pg. 14

2.3.4. Seguridad

Se otorgará un token al comprobar que las credenciales introducidas son válidas para así

verificar al usuario y poder iniciar sesión. Este token será un Bearer Token, el tipo de token

utilizado en el protocolo OAuth 2.0. Por lo tanto, sin un token válido, la aplicación no

permitirá intercambios de datos con la API. Éste es el único punto en la aplicación móvil

que afecta a la seguridad, del resto la responsabilidad es responsabilidad del back-end.

2.4. Asunciones y dependencias

 Se asume que el modo offline no se selecciona manualmente, si no que, cuando

no exista una conexión estable, se activará automáticamente. El usuario no

percibirá ningún cambio.

 Se asume que la aplicación no podrá ser utilizada horizontalmente.

 pg. 15

3. Requisitos específicos

3.1. Interfaces externos

3.1.1. Interfaces de usuario

RQ 1. Los colores principal y secundario, así como el logo, serán indicados por la

empresa compradora. La aplicación por defecto llevará los colores: rojo, blanco

y gris claro. Por defecto llevará el logo de Inycom.

RQ 2. El tamaño será adaptable a las dimensiones del dispositivo. Siempre que se

encuentre en el rango de dimensiones de un celular estándar, esto quiere decir

que no está diseñado para tamaños de dispositivos tipo Tablet.

RQ 3. Cada pantalla (excepto la principal y la de inicio de sesión) contará con una

flecha orientada hacia la izquierda en la esquina superior izquierda, ésta se

utilizará para regresar a la pantalla anterior.

3.1.2. Interfaces software

RQ 4. La aplicación obtendrá los datos de la API, así como enviará los datos

correspondientes mediante un formato JSON.

RQ 5. Se utilizará la API para toda comunicación con el servidor.

RQ 6. Se utilizará una base de datos integrada que guardará la información

pertinente.

3.1.3. Interfaces de comunicaciones

RQ 7. La comunicación entre la aplicación y el servidor será a través de peticiones a la

API mediante el protocolo HTTP. El formato será el mencionado en el RQ 8.

RQ 8. Las peticiones y respuestas serán métodos GET y POST. Seguirán el formato de

intercambio de datos JSON. Fácil de leer y escribir para los humanos, y de

parsear y generar para las máquinas.

3.2. Características del sistema

La enumeración de los requisitos funcionales de GestorTareas, va a organizarse a partir de

una serie de grupos de escenarios de utilización. Estos grupos son:

 Arranque / Parada

 Eventos periódicos

o Descarga de datos

o Envío de partes

 Escenarios del usuario

 pg. 16

o Iniciar sesión

o Cerrar sesión

o Refrescar datos

o Visualizar lista OTs

o Seleccionar OT

o Visualizar maestros de OT

o Visualizar lista PTs

o Crear PT

o Visualizar/Editar PT

 Cerrar PT

o Visualizar/Editar maestros de PT

* Nota: el escenario ‘Visualizar/Editar maestros de PT’ es común a los escenarios ‘Crear

PT’ y ‘Visualizar/Editar PT’, siendo una extensión de éstos. Lo mismo ocurre con el

escenario ‘Visualizar maestros de OT’, es común al escenario ‘Seleccionar OT’.

3.2.1. Arranque / Parada

ESC1. Arranque

 Propósito

El escenario de arranque es habitual (y necesario) en todos los sistemas informáticos.

Contiene toda esa serie de acciones que deben llevarse a cabo cuando se inicia la

ejecución de la aplicación (proceso de arranque/boot), de forma previa a que dicha

aplicación esté en condiciones de ser utilizada por sus usuarios.

 RQs asociados

RQ 9. En la fase de arranque se deberá comprobar el idioma en el que está

configurado el dispositivo móvil para así utilizar los literales (textos) asociados

a este idioma.

RQ 10. En la fase de arranque también se consultará la información de permisos

otorgados por el sistema. Dado que son necesarios varios permisos, como el

almacenamiento interno, se consultará si están permitidos o no. Si no lo están,

se preguntará al usuario si desea otorgar los permisos necesarios.

ESC2. Parada

 Propósito

El escenario de parada también es necesario en toda aplicación informática. En él, la

aplicación ya habrá dejado de estar operativa para sus usuarios, pero todavía deberán

ejecutarse algunas acciones antes de que el sistema operativo pueda considerarla como

finalizada.

 RQs asociados

RQ 11. Al cerrar la aplicación se comprobará que todos los partes estén sincronizados,

en caso de no estar sincronizados saldrá un popup de confirmación con un título

 pg. 17

de alerta y un mensaje avisando que todavía existen partes no sincronizados y

si está seguro de que desea cerrar la aplicación.

RQ 12. Se cerrarán todas las vistas y se liberarán los recursos utilizados por la

aplicación, excepto el almacenamiento utilizado por la base de datos.

3.2.2. Eventos periódicos

ESC3. Descarga de datos

RQ 13. Cuando se pulse el botón de refrescar, situado en el menú lateral (Ilustración

3), se llamará a la API para obtener todos los datos. Si no hay conexión, o aun si

habiendo conexión, no es estable, y no se consigue obtener los datos, se

realizará la llamada automáticamente cada 10 minutos.

RQ 14. Cuando se obtengan los datos correctamente se le notificará al usuario

mediante un popup, debido a que, si no se han conseguido obtener en el primer

intento, el usuario no sabrá cuándo se han descargado correctamente.

ESC4. Envío de partes

RQ 15. Cuando se cierra un parte (Ilustración 15) se intenta enviar al servidor para que

lo almacene. Si cuando se intente cerrar el parte no se consigue debido a la

conexión, se tratará de enviar cada 10 minutos, notificándoselo así al usuario

cuando se haya logrado enviar correctamente. Ocurre lo mismo que al

descargar datos ESC3.

3.2.3. Escenarios asociados al usuario

ESC5. Iniciar sesión

RQ 16. Para iniciar sesión se deberán introducir las credenciales en sus campos

correspondientes. Dado que las credenciales son creadas por la parte web,

éstas se le comunicarán personalmente al usuario y éste deberá introducirlas

para iniciar sesión. Ilustración 1.

RQ 17. Cada vez que caduque el token de inicio de sesión (TBD), se tendrá que volver

a iniciar sesión, debido a que, si no, no funcionarán las funciones relacionadas

con la transmisión de datos.

RQ 18. La primera vez que se inicie sesión se almacenarán las credenciales y el token

para poder ser utilizados cuando no haya señal, o la señal sea débil.

RQ 19. Para enviar las credenciales se deberá pulsar el botón continuar. Ilustración 1.

RQ 20. Una vez se haya verificado el login correctamente, se redirigirá

automáticamente a la pantalla que muestra la lista de órdenes de trabajo.

Ilustración 4.

 pg. 18

ESC6. Cerrar Sesión

RQ 21. El cierre de sesión se realizará desde el menú lateral, pulsando el botón ‘Salir’.

Ilustración 3.

RQ 22. Cuando se cierre sesión se eliminarán automáticamente las credenciales y el

token del sistema para no quedar registrados al volver a iniciar sesión.

ESC7. Refrescar datos

RQ 23. Se podrán refrescar los datos desde el botón ‘Refrescar’ en el menú lateral.

Ilustración 3.

RQ 24. Al refrescar los datos se esperará haber recibido correctamente las órdenes y

los datos maestros. En caso de ser así, se borrarán de la base de datos los datos

anteriores para sustituirlos por los nuevos.

RQ 25. El botón refrescar también intentará enviar los partes no sincronizados. En caso

de que no se hayan sincronizado tampoco al darle al botón manualmente, se

reiniciará el contador, probando envíos automáticamente cada 10 minutos.

RQ 26. Las ejecuciones en segundo plano están contempladas en el ESC3.

ESC8. Visualizar lista de OTs

RQ 27. La pantalla con la lista de órdenes de trabajo se visualiza automáticamente al

ser redirigido desde el inicio de sesión, cuando éste ha sido correcto. Ilustración

4.

RQ 28. Cada orden de la lista de órdenes se verá como un card, mostrando un pequeño

resumen que describa la orden. Se mostrarán los campos con el número de la

orden (identificador), con la fecha de inicio y con el trabajo a realizar.

RQ 29. Estos cards se agruparán en una sección deslizable de la pantalla, por si no

entrasen todas las órdenes en una vista.

RQ 30. Se podrá buscar una o varias órdenes concretas en el buscador superior de

órdenes. Este buscador tendrá en cuenta el número de orden. Si se buscase

“10”, aparecerían la 10, la 100, la 1089, etc. Ilustración 5.

RQ 31. Se podrá seleccionar una de esas órdenes para ver en detalle, lo que llevará al

ESC 9. Ilustración 6.

ESC9. Seleccionar OT

RQ 32. Para seleccionar una orden se deberá pulsar en una de las órdenes de la pantalla

donde se encuentran la lista de órdenes disponibles. Ilustración 5.

RQ 33. Cuando se haya seleccionado una orden se redirigirá a una pantalla que

muestre el detalle de dicha orden. En esta pantalla aparecerán los campos:

‘Fecha de inicio, ‘Fecha de fin, ‘Tipo’, ‘Instalación’, ‘Código orden cliente’,

‘Observaciones’ y ‘Trabajo a realizar’. Ilustración 6.

 pg. 19

RQ 34. Además de los campos mencionados, aparecerán tres botones secundarios con

los textos: ‘Personal’, ‘Materiales y ‘Maquinaria. Al pulsar cada uno de estos

botones, el usuario será redirigido a la pantalla que muestre la respectiva

información de cada uno. Ilustración 7. ESC10.

RQ 35. Por último, deberá aparecer un botón principal que mostrará el texto ‘Ver

partes de trabajo’, este botón redirigirá a la pantalla con la lista de partes

asociados a la orden seleccionada actualmente. Ilustración 7.

ESC10. Visualizar maestros de OT

RQ 36. Cada una de las tres pantallas mostrará una tabla con la columna ‘Descripción’

y ‘Horas’ (o ‘Unidades’ para los materiales), donde aparecerán los valores

pertinentes asociados a la orden de la que se viene. Ilustraciones 8, 9 y 10.

ESC11. Visualizar lista de PTs

RQ 37. Se accederá a través de una orden de trabajo, se visualizarán los partes de

trabajo asociados a dicha orden. Ilustraciones 11 y 12.

RQ 38. Se podrá buscar uno o varios partes concretos en el buscador superior de

partes. Este buscador tendrá en cuenta el número de parte. Si se buscase “10”,

aparecerían el 10, el 100, el 1089, etc. Ilustración 13.

RQ 39. Al igual que las órdenes, los partes se mostrarán también en forma de cards,

mostrando un resumen del parte con los parámetros: número de parte

(identificador) y fecha de inicio. Ilustración 12.

RQ 40. Se distinguirán los partes cerrados no sincronizados de varias formas. La

primera: se mostrará un tercer parámetro en las cards de los partes de trabajo

ya cerrados. También, cambiará el color, aplicando una capa para darle un tono

desactivado. Por último, no serán pulsables. Ilustración 12.

RQ 41. Los partes cerrados y sincronizados no se mostrarán, siendo así eliminados de

la vista de partes y de la base de datos.

RQ 42. La lista de partes será deslizable, para poder ver los que no se muestran a

primera vista.

RQ 43. Desde esta pantalla se podrá crear un nuevo parte mediante un botón con el

símbolo más, o visualizar uno ya existente. Ilustraciones 11, 12 y 13. ESC12 y

ESC13.

ESC12. Crear PT

RQ 44. Desde la pantalla de visualización de la lista de partes dada una orden

determinada, se podrá crear un nuevo parte asociado a esta orden.

Ilustraciones 11, 12 y 13.

RQ 45. Cuando se pulse el botón se creará el parte automáticamente en la base de

datos, para así prevenir pérdidas de información si la aplicación se cerrase

repentinamente.

 pg. 20

RQ 46. A este nuevo parte se le asignará automáticamente un id (número de parte

único). También se añadirá automáticamente como parámetro la fecha de inicio

actual. Ilustración 14.

RQ 47. El resto de los parámetros (observaciones y trabajo realizado) se crearán en

blanco, pudiendo ser editados por el usuario. Cuando éstos se editen, se

modificarán también en la base de datos. Ilustración 14.

RQ 48. Desde esta pantalla de creación de parte de trabajo se contemplarán también

el ESC 13. Ilustración 14.

RQ 49. El parte se guardará automáticamente en todo momento, es decir, no es posible

eliminarlo. Esto se hará para evitar cualquier posible pérdida de información.

No existirán botones para guardar o cancelar la creación de un parte. Sus

campos si pueden ser modificados. Si se hubiese cometido un error se debería

hablar con el responsable para solucionarlo desde la central. Esto es debido a

que, en una empresa de construcción, cualquier pérdida de datos puede

suponer una gran pérdida económica.

ESC13. Visualizar/Editar PT

RQ 50. Desde la pantalla de visualizar lista de partes dada una orden determinada se

podrá editar un parte de trabajo asociado a una orden. Ilustraciones 12 y 13.

RQ 51. Se pulsará sobre el parte que se desee visualizar y/o editar. Cuando se realice

esta acción se mostrará la pantalla con el detalle del parte. Ahí se podrán editar

o visualizar los parámetros que se desee. Ilustración 15.

RQ 52. Desde esta pantalla de detalle de parte de trabajo se contemplarán también el

ESC 14. Ilustración 15.

RQ 53. Cerrar parte (ESC13.1). Si se ha acabado con un parte de trabajo, se podrá

enviar al servidor pulsando el botón de cerrar parte. Si se cuenta con conexión

y se recibe correctamente en el servidor, el parte se eliminará de la base de

datos y ya no se verá en la lista de partes. En caso de que no se haya podido

sincronizar, permanecerá en la lista de partes, pero se mostrará con fecha de

fin, a diferencia del resto, y no será pulsable. Ilustración 15.

ESC14. Visualizar/Editar maestros de PT

RQ 54. Hay tres pantallas diferentes para los tres tipos de datos maestros. Estas

pantallas son: personal, materiales y maquinaria. Las tres pantallas son

prácticamente iguales, eso sí, con sus respectivos títulos y datos. Ilustraciones

16-27.

RQ 55. Estas pantallas estarán organizadas por cards, al igual que los resúmenes de

órdenes y partes en sus respectivas listas. En esta card aparecerán dos campos:

uno para las horas y otro para los minutos (un sólo campo en el caso de los

materiales). Cuando se cambie alguno de los valores de un elemento se podrán

aplicar los cambios para guardar la información o resetear para dejarla como

estaba. Ilustraciones 16-27.

 pg. 21

RQ 56. Tanto en la pantalla de creación de parte como en la de visualización/edición,

se podrán gestionar los datos maestros mediante tres botones, uno para cada

tipo de dato maestro. En la pantalla de creación empezarán establecidos todos

a 0, pudiendo ser añadidos o borrados. En la pantalla de visualización/edición

aparecerán como hayan sido editados. Ilustraciones 14 y 15.

3.3. Requisitos de Persistencia

RQ 57. Deberá persistir toda la información almacenada en la base de datos.

RQ 58. Cuando se actualice versión debería eliminarse la aplicación entera, incluidos

todos los datos que deberían permanecer intactos de normal. Esto es debido a

que, si en una nueva versión se actualizase la estructura de la base de datos,

daría problemas con la base ya existente.

3.4. Restricciones de diseño de la interfaz de usuario

RQ 59. Se diseñará la aplicación siguiendo los patrones de estilo mencionados (colores,

títulos, botones, iconos, etc.). Pudiendo cambiar los colores y el logo a petición

del cliente. Además de tamaños u otros retoques por usabilidad.

RQ 60. El diseño debe ser lo más sencillo e intuitivo posible, esto es debido a que el

usuario promedio que utilizará la aplicación tendrá un perfil de conocimiento

tecnológico bajo. Por este motivo es por el que se han evitado otras formas de

acceso a pantallas como menús laterales.

3.5. Restricciones de diseño arquitectónico

RQ 61. El diseño del software de la aplicación se realiza bajo el principio de

programación orientada al UI.

RQ 62. El lenguaje que se va a utilizar, en coherencia con el requisito anterior, es Dart.

Se elige este lenguaje debido a que está optimizado para la interfaz de usuario.

RQ 63. Se utilizará el patrón de diseño BLoC, patrón propio de Flutter. Es un patrón

muy similar al MVVM (Modelo-Vista-VistaModelo).

 pg. 22

4. Diseño

Véase que, aunque este documento no recoja los requisitos y funcionalidad del servidor, se incluyen

los casos e interacciones (únicamente los relacionados con la app móvil) en la parte de diseño para un

mayor entendimiento del funcionamiento de la aplicación.

Explicaciones, aclaraciones y suposiciones generales:

 Para mejorar la comprensión del lector, se ha optado por utilizar el término "maestro" como

una generalización para representar a las personas, materiales y maquinaria en todos los

diagramas. En lugar de repetir las clases, funciones, elementos, etc., para cada tipo de

maestro, se ha simplificado la representación utilizando únicamente el término "maestro".

Esto se ha hecho con el propósito de evitar confusiones y reducir la complejidad visual de los

diagramas.

 Siempre que se borren los datos de la base de datos, bien sea en el inicio de sesión o al

refrescar, nunca se borrarán los partes no sincronizados con el servidor. Éstos permanecerán

en la base de datos hasta que consigan sincronizarse.

 Siempre que se sincronice un parte de trabajo, se borrará automáticamente.

 Los IDs de todas las órdenes de trabajo, partes de trabajo y maestros se generarán siempre

automáticamente.

 Cuando se introduzca o extraiga un dato de la base de datos se debe supone que, mientras

los parámetros sean correctos, siempre funcionará.

 Las fechas se usarán siguiendo el formato ‘dd/MM/yyyy – hh/mm’.

 Se debe suponer que en todas las llamadas a la API se utilizará el bearer token como método

de comprobación.

 pg. 23

4.1. Casos de uso

Figure 1: Diagrama de Casos de Uso del Cliente 'GestorTareas'

Figure 2: Diagrama de Casos de Uso del Servidor 'GestorTareas'

 pg. 24

4.2. Diagramas de clases

4.2.1. Diagrama de clases del cliente

Explicaciones, aclaraciones y suposiciones:

 Las clases OrdenTrabajo, ParteTrabajo y Maestro heredan de la clase

ObjectWithMap el parámetro id y las funciones fromMap y toMap. Debido a que

las funciones se sobrescriben, se han representado de todas formas para cada

tabla. En cambio, los ids no lo hacen, por lo que se han omitido.

 A diferencia del punto anterior, las clases OrdenMaestro y ParteMaestro no

extienden de ObjectWithMap debido a que su clave primaria está compuesta por

las claves ajenas que conforman al objeto. Así que no hereda el id, y las funciones

no se sobrescriben.

 Las clases OrdenTrabajoDao, ParteTrabajoDao y MaestroDao heredan de

BaseDao las funciones CRUD básicas y el atributo tableName.

 A diferencia del punto anterior, las clases OrdenMaestroDao y ParteMaestroDao

no heredan de BaseDao. Por esto mismo, son los únicos DAOs donde se han

representado los métodos CRUD, además de en BaseDao.

 Se entiende que todo parte de trabajo debe estar asociado a una orden de trabajo,

es por ese motivo por el que se representa la relación como una agregación y no

como una asociación, porque un parte no puede existir sin una orden.

Diagrama 1

4.2.1. Diagrama de clases del servidor

Explicaciones, aclaraciones y suposiciones:

 El diagrama de clases del servidor es únicamente orientativo y no debe seguir

estrictamente, pues como se ha mencionado en la parte del análisis, es

responsabilidad del equipo web encargado de diseñar la aplicación del servidor.

Diagrama 2

 pg. 25

4.3. Diagramas de actividades

4.3.1. Diagrama de actividades Arranque e Inicio de Sesión

En este diagrama de actividades se contempla el arranque y el inicio de sesión. ESC1,

ESC5 y ESC8.

Diagrama 3

4.3.2. Diagrama de actividades Menú Lateral

El diagrama contempla las posibles acciones del menú lateral. ESC3, ESC7 y ESC8.

Diagrama 4

4.3.3. Diagrama de actividades Listado de Partes

En este diagrama de actividades se parte de la pantalla con la lista de órdenes, debido a

que es la pantalla principal que se muestra después de haber iniciado sesión

exitosamente. Muestra las posibles actividades hasta llegar a mostrar el listado de

partes. ESC8, ESC9, ESC10 y ESC11.

Diagrama 5

4.3.4. Diagrama de actividades Creación de Parte

En este diagrama se parte del punto de salida al que se llega con el diagrama anterior,

la pantalla que muestra el listado de partes. Se contemplan las posibles acciones hasta

crear un parte. Con la acción “Editar campos del parte” no sólo se incluyen sus

parámetros propios si no también los maestros asociados al parte. ESC11, ESC12 y

ESC14.

Diagrama 6

4.3.5. Diagrama de actividades Visualización/Edición/Cierre de Partes

En este diagrama también se parte de la pantalla con la lista de partes de trabajo. Se

muestran las posibles acciones a realizar para visualizar en detalle un parte, o también

editarlo y/o cerrarlo. Con la acción “Editar campos del parte” no sólo se incluyen sus

parámetros propios si no también los maestros asociados al parte. ESC4, ESC11, ESC13

y ESC14.

Diagrama 7

 pg. 26

4.4. Diagramas de secuencia

Explicaciones, aclaraciones y suposiciones generales:

 Se debe suponer que todos los DTOs se parsean al obtenerlos del servidor y al

introducirlos en la base de datos. Se han omitido estas operaciones para aportar

mayor claridad.

 Cuando se selecciona una determinada orden o parte, no es necesario llamar a

ninguna función para ver su obtener el objeto porque se supone que se debe

utilizar el objeto ya existente en la lista.

4.4.1. Diagrama de secuencia Arranque e Inicio de Sesión

Este diagrama recoge la secuencia a realizar para el arranque de la aplicación y el inicio de

sesión de un usuario hasta acabar en la lista de órdenes de trabajo. ESC1, ESC5 y ESC8.

Explicaciones, aclaraciones y suposiciones:

 Se supone que hay conexión a internet.

 Se supone que las credenciales son correctas.

Diagrama 8

4.4.2. Diagrama de secuencia Refrescar

Este diagrama recoge la secuencia a realizar para refrescar los datos. ESC7 y ESC8.

Explicaciones, aclaraciones y suposiciones:

 Se supone que hay conexión a internet.

Diagrama 9

 pg. 27

4.4.1. Diagrama de secuencia Visualizar detalle de orden y maestros

Este diagrama recoge la secuencia a realizar para ver el detalle de una orden de trabajo

seleccionada y sus maestros. ESC8, ESC9 y ESC10.

Diagrama 10

4.4.2. Diagrama de secuencia Creación de Parte

Este diagrama recoge la secuencia a realizar para crear un parte, así como para editar este

parte en su creación añadiendo los campos y los maestros. ESC8, ESC9, ESC11, ESC12 y

ESC14.

Diagrama 11

4.4.3. Diagrama de secuencia Cierre de Parte

Este diagrama recoge la secuencia a realizar para editar un parte y cerrarlo, incluyendo la

edición de sus campos y maestros. ESC8, ESC9, ESC11, ESC13 y ESC14.

Explicaciones, aclaraciones y suposiciones:

 Se supone que hay conexión a internet.

Diagrama 12

 pg. 28

4.5. Pruebas que realizar

4.5.1. Pruebas de interfaz

 Se probará la usabilidad de la interfaz mediante técnicas de evaluación de usuario,

como pruebas de tareas, para asegurar que los botones y elementos de la interfaz

estén correctamente etiquetados y sean fáciles de entender para los usuarios.

 Se realizarán pruebas de compatibilidad para comprobar que la aplicación se

adapte correctamente a diferentes tamaños de pantalla, resoluciones y

dispositivos.

 Se realizarán pruebas de usabilidad con usuarios no involucrados en el desarrollo

para recoger sus opiniones y sugerencias, se les dará una tarea específica y se

observará cómo interactúan con la interfaz, esto ayudará a detectar problemas

en la interfaz que los desarrolladores no han notado.

4.5.2. Pruebas de funcionalidad

 Se realizarán pruebas unitarias y de integración para asegurar que la aplicación

cumple con todos los requisitos especificados en el documento de requisitos.

 Se probará cada una de las funcionalidades de la aplicación mediante casos de

prueba automatizados y manuales para asegurar su correcto funcionamiento.

 Se comprobará que la aplicación maneja correctamente los errores y excepciones

mediante pruebas de escenarios de fallo.

4.5.3. Pruebas de integración

 Se realizarán pruebas de integración entre los diferentes componentes y módulos

de la aplicación para asegurar que todo funciona correctamente juntos.

 Se comprobará que la aplicación se integra correctamente con otros sistemas y

servicios externos si es necesario mediante pruebas de integración.

 Se comprobará que la aplicación maneja correctamente las interacciones entre

componentes y servicios externos.

4.5.4. Pruebas de rendimiento

 Se realizarán pruebas de rendimiento para medir el tiempo de respuesta de la

aplicación y asegurar que cumpla con los requisitos de velocidad y capacidad.

 Se comprobará que la aplicación no se sobrecarga y se mantiene estable incluso

bajo una alta carga de trabajo mediante pruebas de carga y stress.

 Se comprobará que la aplicación maneja correctamente la escalabilidad y el

rendimiento en diferentes entornos y configuraciones.

 pg. 29

4.5.5. Pruebas de seguridad

 Se realizarán pruebas de seguridad para comprobar que la aplicación está

protegida contra posibles ataques y violaciones de seguridad mediante pruebas

de penetración y escaneo de vulnerabilidades.

 Se comprobará que la aplicación cumple con los estándares y regulaciones de

seguridad aplicables, incluyendo el cumplimiento de normativas como PCI-DSS y

HIPAA.

 Se realizarán pruebas de seguridad para verificar la protección de la aplicación

contra ataques comunes como inyección SQL, XSS y CSRF.

4.5.6. Pruebas de uso

 Se realizarán pruebas de uso para comprobar que la aplicación es fácil de usar y

ofrece una experiencia de usuario satisfactoria para los usuarios mediante

pruebas de aceptación y pruebas de usuario final.

 Se recogerán comentarios y sugerencias de los usuarios para mejorar la

aplicación.

4.5.7. Pruebas de regresión

 Se realizarán pruebas de regresión para comprobar que las nuevas

funcionalidades y cambios no afectan negativamente al funcionamiento de las

funcionalidades existentes de la aplicación mediante pruebas automatizadas y

manuales.

 Se asegurará de que la aplicación sigue funcionando correctamente después de

cualquier cambio o actualización mediante pruebas de regresión.

 Se compararán los resultados de las pruebas de regresión con los resultados de

las pruebas originales para detectar cualquier cambio o desviación mediante

herramientas de comparación de resultados de pruebas.

 pg. 30

5. Desarrollo

Notas previas:

La aplicación se ha desarrollado sin servicios dado que se decidió que esto formaría parte de una

segunda fase de desarrollo en conjunto con un equipo encargado de desarrollar el back-end, junto

con otras nuevas funcionalidades.

Lo explicado en este apartado de desarrollo es sólo una pequeña muestra del código, dado que

explicar todo sería imposible porque superaría el límite de páginas establecido para el documento. Se

han elegido partes sencillas para facilitar la comprensión de cualquier lector que no haya trabajado

con el framework Flutter. Además de lo explicado aquí, hay muchísimas características que tiene el

proyecto. En este enlace se puede visualizar el proyecto entero. Se recomienda echar al menos un

vistazo, principalmente a la carpeta lib, donde se encuentra la mayor parte del código de la aplicación,

para valorar el trabajo del autor.

5.1. Estructura

En el apartado 1.6 se ha mencionado el patrón arquitectónico BLoC. Éste es un patrón

como cualquier otro utilizado en la programación: MVC, MVVM, MVP, etc. La diferencia

es que BLoC es un patrón propio de Flutter, se creó por y para ser utilizado en este

framework. Aunque es cierto que se podría utilizar el patrón sin hacer uso de librerías

(escribiendo todo el código a mano) está ampliamente extendido el uso de las librerías

bloc y flutter_bloc entre los programadores de Flutter. Esto es debido a que facilitan la

implementación de clases Bloc sin perder recursos, como el tiempo de compilación.

Como es difícil entender el concepto de BLoC sin tener conocimiento previo en este

campo, esta imagen del paquete oficial bloc ayudará a su entendimiento.

Imaginemos que tenemos una pantalla donde se desea mostrar una lista de personas. En

nuestro UI (interfaz) tenemos elementos para esto, como un ListView para agrupar

verticalmente y Cards para cada una de las personas en las que se mostrarán algunos de

sus datos, como, por ejemplo: nombre, fecha de nacimiento y DNI. Esta lista en un

principio está vacía, así que lo que se puede hacer es, que cuando se avance de la pantalla

anterior (del login, por ejemplo), al principio del código, se llama mediante un evento al

bloc. Dentro del manejador del evento en bloc se hace una request a la base de datos o al

servidor (lo que tenga la aplicación) para obtener la lista de personas. La base de datos o

el servidor envían la lista de personas al bloc. Una vez el bloc tiene esa lista de personas,

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo

 pg. 31

hace que cambie el estado de la interfaz, (que actualmente se veía vacía porque la variable

con la lista de personas estaba vacía) haciendo que se vuelva a construir el ListView, esta

vez con la lista llena. Por lo que el estado de la interfaz cambia y ahora se muestra la lista

gráficamente con todas las personas que se han obtenido de la base de datos o del

servidor.

Como se podrá suponer, esto no es tan simple como parece, hay que utilizar múltiples

elementos para poder realizar este proceso. Primeramente, el bloc se divide en tres

elementos: el estado (BlocState), el evento (BlocEvent) y el propio bloc (Bloc). El BlocState

es una clase que contiene las variables que pueden cambiar en una vista a lo largo del

tiempo, en el ejemplo anterior sería la lista de personas. El BlocEvent es una clase que

define las funciones (eventos) que se llaman desde la vista. Y, por último, el Bloc, es una

clase que maneja los eventos definidos en el BlocEvent, es la que implementa esas

funciones. Es la que se encargaría de llamar a la base de datos o al servidor para obtener

la lista de personas, y emitir el nuevo estado (cambiar los valores del BlocState). Todos

estos elementos forman parte de la librería bloc, aunque, como se ha mencionado

anteriormente, se pueden implementar a mano, pero el resultado sería el mismo.

Además de estos elementos, también es conveniente utilizar los de la librería flutter_bloc.

Todo lo mencionado está muy bien, pero, cómo es posible que cambiando el estado de

una variable del BlocState, automáticamente cambie también en la interfaz. Esto se hace

mediante varios elementos, en el ejemplo anterior se utilizaría el BlocBuilder. Este

elemento sirve para que se vuelva a construir un determinado widget cuando se cambie

el estado del BlocState que escucha. En este caso se envolvería el ListView en un

BlocBuilder, también se utilizaría una función llamada buildWhen para que sólo se volviera

a construir el ListView cuando cambiase el valor de la variable que contiene la lista de

personas. Esto es debido a que, si hubiera múltiples variables en el BlocState, lo cual es lo

más corriente, cada vez que se cambiase una de ellas el widget ListView se volvería a

construir, sin ningún cambio, y esto no es nada óptimo. Además del BlocBuilder existen

otros elementos utilizados para otras finalidades, como BlocListener, BlocProvider o

BlocSelector. Estos elementos se verán más adelante ejemplificados cuando se explique

el código.

Entendiendo todo lo anterior, ahora se puede explicar la estructura del código. Se divide

en tres partes: la vista, los blocs y el modelo. En Flutter los elementos gráficos de la interfaz

se denominan Widgets, son todos aquellos elementos como los ListView, Container, Text,

Button, TextField, y un largo etcétera. La vista se compone de todos estos widgets, y se

divide en dos partes: las páginas y los componentes genéricos. Después están los blocs,

explicados en este mismo apartado. Y por último el modelo, básicamente se compone de

la base de datos, los DTOs y los DAOs. Tanto la vista, como los blocs, como el modelo se

explicarán aisladamente más adelante.

En este enlace se puede ver la estructura del proyecto.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib

 pg. 32

5.2. Modelo

El modelo se compone de tres partes: la base de datos, las clases DTO y las clases DAO. La

base de datos es el componente donde se almacenan los datos persistentes de la

aplicación. Los objetos DTO (Data Transfer Object) son estructuras de datos utilizadas para

transferir información. Los DAO (Data Access Object) son clases que facilitan la

manipulación de los objetos DTO en la base de datos.

El modelo entero se encuentra en este enlace.

A continuación, se detallarán estos componentes, que en conjunto forman el modelo de

la aplicación.

5.2.1. Base de datos

La base de datos se compone por una única clase: la clase MyDatabase. Es la que se

encarga de gestionar la base de datos utilizando la biblioteca sqflite. Su estructura es la

siguiente.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/model

 pg. 33

El constructor privado MyDatabase._init() es el punto de entrada para inicializar la base

de datos. Este constructor privado (indicado con el guion bajo) llama al método _initDB

que abre o crea la base de datos y se asigna a la variable privada _database una vez que

esté disponible. Además, se llama al método _createDB para crear las tablas necesarias

en caso de que no existan.

El método privado _initDB se encarga de abrir o crear la base de datos en una ubicación

específica del dispositivo. Utiliza la función getApplicationDocumentsDirectory para

obtener el directorio de documentos de la aplicación y luego se une al nombre del archivo

de la base de datos para formar la ruta completa. Luego, se utiliza la función

openDatabase para abrir la base de datos en la ruta especificada. Si la base de datos no

existe, se ejecuta el método _createDB para crear las tablas.

El método privado _createDB se encarga de crear las tablas en la base de datos utilizando

el objeto db pasado como argumento. Cada declaración ‘CREATE TABLE IF NOT EXISTS’

verifica si la tabla ya existe y, si no, la crea.

Además de los métodos anteriores, existen otros métodos básicos para controlar la base

de datos, como clearDatabase o close que se encargan de limpiar las tablas de la base de

datos o cerrarla, respectivamente. En este enlace se puede ver la clase completa si se

desea.

Para ver la estructura de la base de datos y de la clase entera, pulsar en el enlace.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/model/database/my_database.dart

 pg. 34

5.2.2. DTOs

Todas las clases DTO tienen el siguiente aspecto.

Para explicar la estructura de un DTO se va a utilizar OrdenTrabajo como ejemplo. Primero

de todo la clase contiene una serie de variables, que pueden ser nullables o no nullables

(nulas o no nulas), indicado con el símbolo de interrogación de cierre seguidamente del

tipo de dato.

Después está el constructor del objeto, se utiliza cada vez que se crea una nueva instancia.

Cuando se crea una instancia se han de especificar los parámetros que van precedidos por

la palabra clave required. Como se puede observar, concuerda con los que no son

nullables, esto suele ser así excepto en alguna excepción que se verá en este mismo punto

en la explicación de la clase ObjectWithMap. Las llaves del constructor envolviendo a los

parámetros son una forma de hacer que al crear una nueva instancia del objeto utilizando

 pg. 35

el constructor, se indiquen los nombres de los parámetros seguidos de dos puntos. Si no

se pusieran estas llaves los parámetros serían indicados por posición, y no por nombre.

Por último, existen dos métodos: fromMap y toMap. Estos métodos se utilizan para

parsear la información. El método fromMap construye una instancia de un objeto

(indicado con la palabra clave factory) desde un mapa. El método toMap hace lo contrario,

convierte una instancia del objeto en un mapa. Son necesarios cuando se quiere introducir

un objeto en la base de datos o cuando se desea componer un objeto con los campos

provenientes de ella. Actualmente se utilizan para la base de datos, pero también se

puede utilizar estos métodos para recibir o enviar datos a través de una API.

Además, todos los DTOs menos los surgidos por una relación entre otras dos entidades,

extienden de ObjectWithMap. Es una clase que contiene un id y los métodos fromMap y

toMap.

En cuanto al uso del id en la clase OrdenTrabajo, hay varias consideraciones:

1. El id es un atributo que actúa como identificador para cada instancia de OrdenTrabajo

en la base de datos y se hereda como una propiedad de ObjectWithMap.

2. Se inicializa con el valor null. Esto se debe a que, cuando se crea una nueva instancia

de OrdenTrabajo, aún no se ha asignado un valor al id porque se genera

automáticamente cuando se inserta la instancia en la base de datos.

3. En el método fromMap de OrdenTrabajo, se le asigna el valor del id a la instancia de

OrdenTrabajo creada a partir del mapa. La asignación se realiza mediante el operador

de cascada (`..`) seguido de la asignación id = map['id']. Esto se hace después de haber

creado la instancia, ya que se asume que el valor del id se encuentra en el mapa de

datos proporcionado. De esta manera, se actualiza la propiedad id de la instancia de

OrdenTrabajo con el valor correspondiente del mapa.

4. En el método toMap de OrdenTrabajo, si el id no es nulo, se agrega al mapa. Sin

embargo, si el id es null, no se incluirá en el mapa, lo que es útil cuando se desea omitir

el id, en los casos donde se genera automáticamente.

 pg. 36

Además de los anteriores, la clase ParteTrabajo tiene otros dos métodos, que no tienen

el resto de las clases:

El método initial devuelve una instancia de ParteTrabajo. Es una forma de, al declarar una

variable de tipo ParteTrabajo, inicializarla con atributos predeterminados. Es por eso por

lo que en este caso se inicializa siempre con la fecha actual y con un id asociado de orden

de -1 (id no asociado a ninguna orden real).

Después, a medida que se van editando los campos del parte, se utiliza el método

copyWith. Este método funciona como un setter compuesto para todos los parámetros

del objeto. Se pueden cambiar los valores individualmente o en conjunto. Por lo que,

teniendo un parte de trabajo determinado, al editar las observaciones se utiliza este

método cambiando los valores de la instancia para, posteriormente, actualizar el objeto

entero usando un update en la base de datos.

En el apartado 5.5 se verá el uso conjunto de ambos métodos.

 pg. 37

Antes se ha mencionado que las entidades surgidas de la relación de otras entidades no

heredan de ObjectWithMap. Esto es debido a que esas entidades surgidas utilizan como

clave primaria la clave compuesta de las otras dos entidades. Por eso no requieren tener

una clave id identificatoria. Los métodos toMap y fromMap se implementan de la misma

forma, la única diferencia es que no se sobrescriben y que no tratan con el parámetro id.

La clase ObjectWithMap tiene el siguiente aspecto:

Aunque en este caso el id es un atributo nullable, es obligatorio al construir el objeto. Esto

se hace para que las clases que extiendan de ObjectWithMap obligatoriamente tengan un

id, pero que inicialmente sea nulo, hasta que cuando se introduzca la instancia en la base

de datos, adquiera un valor.

En el siguiente enlace se pueden ver todos los DTOs. Y en este enlace la clase

ObjectWithMap (la clase se encuentra en la parte inferior).

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/model/models
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/model/daos/base_dao.dart

 pg. 38

5.2.3. DAOs

Los DAOs se utilizan para manipular mediante las operaciones CRUD (creación, lectura,

actualización y eliminación) conjuntos de datos, en este caso, los DTOs.

Únicamente se utilizan en los Bloc, donde se abstraen e introducen los DTOs de la base de

datos. No se utilizan en la vista debido a que rompería el patrón arquitectónico BLoC.

En el desarrollo de este código se ha utilizado una clase abstracta llamada BaseDao que

define e implementa las operaciones CRUD, para que, al extenderla otra clase, no sea

necesario implementar estos métodos de nuevo. Esto funciona con todos los métodos

que no necesitan devolver un objeto específico, pero en el caso de los métodos get

(lectura), hay que implementarlos en cada DAO.

Como se puede observar la clase abstracta BaseDao toma como parámetro el objeto T,

este objeto ha de ser una subclase de ObjectWithMap. Esto permite al DAO trabajar con

diferentes tipos de objetos que implementan esa clase.

El atributo tableName es un String que representa el nombre de la tabla de la base de

datos con la que el DAO interactúa.

 pg. 39

A continuación, se explica la estructura de una clase DAO utilizando el ejemplo de

ParteTrabajoDao.

ParteTrabajoDao contiene un constructor interno que crea una única instancia de la clase

cuando se llama desde el método get instance utilizando la variable privada instance. Esto

es exactamente igual en todos los DAOs.

Se puede observar que los métodos de creación, actualización y eliminación no hace falta

sobrescribirlos, como se menciona al principio del apartado. Únicamente es preciso

sobrescribir los métodos de lectura (get). Además de los dos métodos get genéricos que

han de estar obligatoriamente en cada DAO: get y getAll; existen otros métodos

específicos en cada DAO. En la imagen anterior se puede ver uno llamado

getAllPartesDeOrden que devuelve todos los partes de trabajo asociados a un id de orden

determinado.

Si se desea ver en profundidad, en este enlace se encuentra la clase ParteTrabajoDao.

Como se puede observar, los métodos realizan consultas utilizando cláusulas de SQL para

obtener los datos deseados.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/model/daos/parte_trabajo_dao.dart

 pg. 40

En el caso de las clases DAO que trabajan con DTOs compuestos por dos clases, es decir,

las clases Orden-Maestro DAO y Parte-Maestro DAO (para cada uno de los tres maestros),

como no extienden de BaseDao, al utilizar ésta la clase ObjectWithMap, tienen

implementadas todas las funciones CRUD. Es decir, no sólo se implementan las de lectura,

sino también las de creación, actualización y eliminación.

En el siguiente enlace se pueden ver los DAOs completos.

5.3. Blocs

Para la implementación de los blocs se ha utilizado un paquete llamado freezed que se

utiliza para generar clases inmutables en Dart de manera sencilla. Las clases inmutables

son aquellas cuyos objetos no pueden cambiar una vez creados. Son útiles cuando se

desea garantizar que los objetos sean inmutables para evitar cambios inesperados en el

estado de la aplicación. No importa si se utiliza el paquete freezed o no, los Bloc tienen la

misma funcionalidad, pero cambia el aspecto de las tres clases, siendo más sencillo de

implementar. Como el autor tiene experiencia creando Bloc de ambas maneras, ha optado

por utilizar el paquete, dado que facilita el trabajo. En el siguiente enlace se muestra la

diferencia de un Bloc sin freezed y con freezed.

En este proyecto existen dos Bloc: el que trabaja con las órdenes de trabajo y el que lo

hace con los partes de trabajo. Ambos Bloc no trabajan únicamente con las órdenes y los

partes, si no con todo lo relacionado a las mismas. Es decir, el Bloc que controla la lista de

órdenes también es el que controla los maestros de una orden.

Como el Bloc relacionado con las órdenes de trabajo es similar al relacionado con los

partes de trabajo, pero con menor funcionalidad dada la estructura de la aplicación, se va

a utilizar como ejemplo el Bloc que gestiona los partes de trabajo.

Dada la explicación en el apartado 5.1 (el cual se recomienda ir revisando mientras se ven

los ejemplos), a continuación, se va a ver un ejemplo real de un Bloc (de los tres

componentes que lo conforman). Notar que: en la primera línea del BlocState y del

BlocEvent se puede observar que forman parte de otra clase, dado que el estado y el

evento son dos de los tres elementos que lo componen: BlocState, BlocEvent y el propio

Bloc. A diferencia de en estas clases, en el propio Bloc aparecen las partes que lo

componen, y no que forma parte de otra clase. Estas partes son: el estado, el evento y el

Bloc (la clase autogenerada por freezed).

En este enlace se pueden ver los dos Bloc implementados en la aplicación.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/model/daos
https://ppantaleon.medium.com/flutter-bloc-freezed-write-less-code-e916d4e0d4cb
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/blocs

 pg. 41

5.3.1. BlocState

El BlocState es el encargado de definir los parámetros que escucha la vista.

Como se puede observar existen dos constructores, el primero sirve para definir las

variables que va a contener el BlocState (en este caso llamado ListadoPartesState), el

segundo es otro constructor adicional que llama al primero asignando un valor a todas las

variables, es el utilizado desde fuera.

Todos estos parámetros que contiene el BlocState son parámetros que pueden ser

cambiados de valor al ser manipulados en un evento.

- Por ejemplo, el parámetro isLoading se establece a verdadero cuando se está realizando

algún evento donde el usuario debe esperar (como mientras carga la lista de partes de

trabajo). Después, en una pantalla se escucha este parámetro mediante un BlocListener,

para que cuando se detecte que está en verdadero, se muestre un widget circular en mitad

de la pantalla para indicar que está cargando.

Por ejemplo, la lista de partes se inicializaría vacía (como el resto de los parámetros), y

cuando el usuario se dirigiese a la pantalla que contiene la lista de partes, un evento

cambiaría el valor de la variable listPartesTrabajo en el BlocState, y después en la pantalla

se utilizaría un BlocBuilder para escuchar la variable y volver a pintar la lista llena.

 pg. 42

5.3.2. BlocEvent

El BlocEvent es la clase que define las funciones que se van a utilizar desde la vista. Estas

funciones se llaman eventos. En el BlocEvent únicamente se definen, no se implementan.

La implementación se realiza en el Bloc, utilizando un controlador para cada evento.

Para definir una función primero se pone el nombre del BlocEvent, en este caso

ListadoPartesEvent, y después de un punto, el nombre de la función. Después se iguala al

nombre que se desea dar al evento. Así después, cuando se quiera definir el

funcionamiento utilizando un controlador del evento en el Bloc, se puede hacer mediante

el nombre. Al llamar a un evento desde la vista, se puede también hacer con el nombre

del evento, pero es preferible hacerlo con el nombre del BlocEvent y de la función. Así, si

existiesen dos Blocs que tuvieran un evento con el mismo nombre (como OnSearch), al

llamarlo desde la vista no habría confusión, porque el nombre del BlocEvent sería distinto.

Cuando se especifica un parámetro en la función, después desde el controlador del evento

en el Bloc se puede acceder a ese parámetro. Esto se ve en el siguiente apartado.

En este siguiente enlace está la clase entera.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/blocs/listado_partes_bloc/listado_partes_event.dart

 pg. 43

5.3.3. Bloc

El Bloc es el encargado de controlar los eventos a los que llama la vista y también de

cambiar el estado de los parámetros que escucha la vista.

La vista escucha el BlocState. Dadas determinadas acciones, como pulsar un botón o

inicializar una pantalla, la vista llama a un evento definido en el BlocEvent. El Bloc, desde

donde se controlan los eventos llamados por la vista, realiza las operaciones pertinentes,

como una consulta a la base de datos, y cambia el estado del BlocState. Al cambiar el

estado del BlocState y la vista estar escuchando ese BlocState, la vista cambia. Es

importante aclarar que la vista no tiene por qué cambiar siempre, en el ejemplo que

hemos visto anteriormente donde se utilizaba la variable isLoading del BlocState, la vista

no se reconstruye, sólo llama a una función. Esto es porque en la vista se usa un

BlocListener y no un BlocBuilder. En el apartado 5.4 se ven ambos casos.

Los controladores del Bloc donde se implementa la funcionalidad del evento son funciones

llamadas on, es por eso por lo que a todos los eventos se les suele llamar ‘On…’, aunque

esto es preferencia del programador que desarrolle el código.

Teniendo en cuenta lo anterior, aquí se puede ver qué ocurre cuando la vista llama al

evento OnLoadPartes para obtener la lista de partes y mostrarla en una pantalla. Primero

se emite un estado haciendo uso de la función emit, la variable isLoading se pone a true.

Después, haciendo uso del DAO de los partes de trabajo, se guarda en una variable la lista

de todos los partes asociados a una determinada orden. Como se puede observar, al

llamar a la función del DAO que obtiene todos los partes de una orden, se le pasa como

parámetro el id de la orden de la que se desean obtener los partes. Esto se logra indicando

el parámetro ordenTrabajoId en la definición del evento en el BlocEvent. Cuando la vista

llama a este evento, le pasa el id de la orden (debido a que, al venir anteriormente de una

orden, tiene el objeto), y después se usa en el controlador. Después de haber obtenido

todos los partes, se vuelve a emitir otro estado que cambia el valor del parámetro de

isLoading a false y cambia el parámetro listPartesTrabajo con la lista llena de todos los

partes asociados a la orden del evento. En este enlace está la clase entera.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/blocs/listado_partes_bloc/listado_partes_bloc.dart

 pg. 44

5.4. Vista

La vista se compone de dos partes: las páginas y los componentes genéricos. Las páginas

son las pantallas que el usuario ve navegando por la interfaz. Los componentes genéricos

son elementos gráficos reutilizados en las pantallas.

Tanto las pantallas, como los componentes genéricos, son formadas mediante widgets.

Los widgets son cualquier elemento visualizable en Flutter. Es por eso por lo que desde un

botón hasta una pantalla entera están hechos mediante la combinación de uno o varios

widgets.

Es recomendable ir visualizando las pantallas de la aplicación, situadas en el anexo 1, al

mismo tiempo que se mencionan.

5.4.1. Páginas

Principalmente hay tres tipos de pantalla en este proyecto: las que agrupan una lista de

órdenes y partes, las que muestran el detalle de una orden y parte, y las que muestran el

detalle de los maestros en una orden y en un parte. Además de estas pantallas hay otras

como el login. En el siguiente enlace se pueden ver todas.

Dado que para las órdenes y para los partes los tres tipos de pantalla están construidos de

forma similar, a excepción de las que muestran el detalle de los maestros, las cuales son

más complejas las de los partes, se ha decidido utilizar como ejemplo para los tres tipos

de pantalla las relacionadas con los partes, y no con las relacionadas con las órdenes.

Primera pantalla: lista de partes dada una determinada orden.

Dada que la vista es muy larga para insertar una captura, se recomienda verla en el

siguiente enlace.

Como se observa en el código, la página de la lista de partes se compone de tres clases. La

primera clase es un widget estático, es decir, que no puede variar o volver a construirse a

lo largo del tiempo. Esta clase obtiene el parámetro ordenTrabajo de la pantalla anterior.

Luego obtiene el Bloc de la lista de partes, creado en el main de la aplicación, mediante el

uso de un BlocProvider, especificando el Bloc que se quiere obtener y pasándole el

contexto. Después, una vez ha recuperado el Bloc, llama a un evento del Bloc para obtener

la lista de partes de esa orden pasándole el id de la orden como argumento. Por último,

devuelve la segunda clase. La segunda clase es un widget con estado. El método

createState es obligatorio y devuelve una instancia de _PartesTrabajoViewState, que es

una clase que extiende State y maneja el estado interno de PartesTrabajoView. La tercera

clase _PartesTrabajoViewState es la implementación del estado interno para

PartesTrabajoView. En la tercera clase es donde se encuentra el contenido que ve en la

pantalla el usuario.

La columna de esta pantalla es un Scaffold customizado, básicamente un Scaffold

(andamio en inglés) es un widget que permite crear distintos elementos en la pantalla

como una AppBar (barra superior con el título y el id de la orden), BottomBar (barra

inferior, en este caso no hay), FloatingActionButton (botón flotante, en este caso para

crear un parte), etc; además del cuerpo. El cuerpo del Scaffold (body) es un BlocConsumer.

El BlocConsumer se compone de dos partes, la que escucha y la que construye (listener y

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/pages
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/lista_partes_trabajo/partes_trabajo_page.dart

 pg. 45

builder). El listener está escuchando cambios en las variables cargando y de la lista de

partes. Como se puede observar cuando la variable isLoading está en verdadero llama a

una función que muestra un círculo indicando que está cargando en mitad de la pantalla.

El builder no escucha ninguna variable en este caso, porque se desea que se vuelva a

construir cada vez que cambie el estado del Bloc. El builder devuelve una vista deslizable

que contiene un cuadro de búsqueda en la parte superior, para buscar el parte que se

desee. Cada vez que se escribe un número en este cuadro de búsqueda, se llama al Bloc

del listado de partes para que actualice la lista de partes, mostrando sólo los que encajan

con la búsqueda. Como ha cambiado una de las variables del BlocState y no se ha

especificado con qué variables se tiene que volver a construir, se construye

automáticamente. Así que el listener deja de mostrar el cargando porque ya está en false

y el builder vuelve a construir la pantalla con la nueva lista de partes que cumplen con la

búsqueda. Esta lista de partes se muestra con un ListView.buidler, este widget es como un

ListView pero autogenera el número de elementos que indique el valor del parámetro

itemCount. Cada parte se muestra en una card, donde al clickar en ella redirige al detalle

de ese parte.

Segunda pantalla: detalle de un parte.

Dada que la vista es muy larga para insertar una captura, se recomienda verla en el

siguiente enlace.

Como ya se ha explicado en la primera pantalla la estructura que tiene una página, ahora

se omite esta información, y se explica únicamente el contenido.

En la función initState (la cual se ejecuta al inicializar el widget una sola vez) se inicializa la

variable local _parteTrabajo con el parte de trabajo recibido de la pantalla anterior. Se

puede observar que esta vez no se ha hecho con una ruta. En la pantalla anterior se ha

utilizado una ruta y en esta se ha pasado como parámetro a la clase para que el lector vea

las dos posibilidades, ambas igual de eficaces.

Este widget se compone encima de todo por un BlocListener. Con el parámetro

listenWhen se indica que va a escuchar a la variable isParteClosed del BlocState de la lista

de partes. Cuando el listener detecta que el parte está cerrado, viendo que la variable

isParteClosed está en verdadero, se llama a una función que muestra un diálogo

notificando al usuario que se ha cerrado el parte correctamente.

Esta pantalla también es una pantalla compuesta por un widget deslizable. Aparecen

todos los parámetros de un parte como textos, y las observaciones y el trabajo realizado

como campos de texto editables. Después de esto se encuentran los tres botones que

llevan a la pantalla donde se encuentran los maestros del parte. Por último, está el botón

de cerrar parte.

En el caso de esta pantalla hay tres llamadas a eventos, cuando se cambia el contenido de

las observaciones, cuando se cambia el contenido del trabajo realizado y cuando se pulsa

el botón cerrar parte.

Cuando se edita un campo, se utiliza el método copyWith de ParteTrabajo, mencionado

en el apartado 5.2.2, para setear el parámetro pertinente en la instancia del parte. Una

vez se ha hecho esto, se llama mediante un evento al Bloc. En el controlador de ese

evento, utilizando el DAO de parte de trabajo, se hace un update en la base de datos.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/lista_partes_trabajo/detalle_parte_trabajo_page.dart

 pg. 46

Después se obtiene el parte de la base de datos utilizando el id del parte, para asegurarse

de que se tiene el elemento sincronizado. Más tarde, todo dentro del evento del Bloc, se

comprueba si tiene fecha de fin, en este caso, al editar un campo, no ha de tener. Sin

embargo, cuando se pulsa el botón de cerrar parte, ocurre exactamente lo mismo,

excepto con la diferencia de que se le añade la fecha actual como fecha fin usando el

método copyWith. Entonces en la lógica del evento sí entra en la condición donde tiene

una fecha fin y cambia la variable isParteClosed del BlocState. El listener antes mencionado

escucha la variable y muestra el diálogo.

Tercera pantalla: personal de un parte.

Dada que la vista es muy larga para insertar una captura, se recomienda verla en el

siguiente enlace.

Como ya se ha explicado en la primera pantalla la estructura que tiene una página, ahora

se omite esta información, y se explica únicamente el contenido.

Se ha utilizado como ejemplo el personal, pero es muy similar la de los tres maestros.

Esta pantalla es la más compleja de las mencionadas, la vista tiene varias clases (aunque

se podría hacer todo en una, pero en estos casos donde hay partes muy diferenciadas con

muchas líneas de código, lo recomendable es modularizar), también tiene funciones y

múltiples llamadas a eventos; además de cierta complejidad en la lógica. Además de esto,

la lógica de los eventos también es larga y compleja. Por estos motivos la siguiente

pantalla se comenta a grandes rasgos (en mayor medida que el resto del código), sin

explicaciones exhaustivas que puedan entorpecer la comprensión del lector.

Lo primero que ocurre en esta pantalla es que se llama a un evento del Bloc, llamado

OnLoadPersonasDeParte. En este evento se obtienen todos los objetos PartePersona. El

DTO PartePersona está compuesto por las claves del parte y de la persona, junto con la

cantidad de horas, pero no con la descripción de la persona. Es por esto por lo que después

se obtienen todas las personas de la base de datos. Luego se almacenan en una lista todos

los ids de persona de la lista de tipo PartePersona. Se hace lo mismo con los ids de la lista

de tipo Persona. Se ordenan ambas listas. Se comparan ambas listas. Si en la lista de las

personas de un parte falta algún id de la lista de personas, se crea un nuevo objeto

PartePersona y se introduce en la base de datos. Esto se hace utilizando el id del parte del

evento y el id de la persona faltante. Se repite todas las veces necesarias. Esto se hace

básicamente para que la primera vez que se entre a la vista de los maestros de un parte,

se creen todas las combinaciones posibles, y para que cuando se entre la segunda vez,

únicamente se obtengan y no se creen de nuevo. Cuando se tienen ambas listas de objetos

PartePersona y de objetos Persona se emiten en un estado cambiando las dos variables.

Después de esto en la vista, cuando se escucha el nuevo estado emitido se pasan al

siguiente widget y se construye. Además del widget que muestra la lista de personas para

añadir al parte, hay un buscar en la parte superior de la pantalla, que funciona como el de

la primera pantalla.

En el segundo widget se crea una lista de mapas donde se agrupan los parámetros de las

dos listas:

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/parte_maestros/parte_personas_page.dart

 pg. 47

Después se ordena esta lista. El resultado de esto es una lista ordenada por horas con los

ids de persona y del parte, con la descripción por parte de persona y con las horas por

parte de la entidad surgida de la relación entre una persona y un parte (PartePersona).

Hay que considerar que más tarde cada vez que se actualiza la cantidad de horas que ha

trabajado una persona en un parte, las listas cambian de valor, y se vuelve a construir el

widget y la lista de mapas. Por eso, aunque al principio todos los elementos de la lista de

mapas tengan un valor de horas igual a 0, después no es así, por eso se ordena para que

el usuario pueda ver las personas con mayor número de horas primero. También es

importante considerar que, aunque para la lógica no fuese necesario traer ambas listas a

la vista mediante un estado, sí lo es para el usuario, dado que necesita leer la descripción

del personal.

El segundo widget se compone de dos botones en la parte superior y de un ListView en la

parte inferior. Uno de los botones sirve para deshacer los cambios no guardados al editar

las horas del personal. El otro botón sirve para guardar los cambios. El primer botón limpia

los controladores de las horas y los minutos de todas las personas, además llama a un

evento que pone a false el estado de los botones, para que aparezcan desactivados al

haber eliminado los cambios. El segundo botón llama a un evento que actualiza la lista de

personas en un parte cambiando las horas, además también llama al evento que desactiva

los botones. El ListView está formado por todas las personas. Para cada elemento se

muestra la descripción de la persona y dos campos de texto, uno para escribir las horas y

otro para los minutos. Cabe mencionar que detrás de esto existe mucha lógica, como por

ejemplo adaptaciones en el formato de las horas, dado que el usuario las escribe por

separado y en la base de datos entran como un double, o validaciones de formato para no

poder poner más de 59 minutos, y un largo etcétera.

5.4.2. Componentes genéricos

Se puede ver el código de cada componente en este enlace, acompañado de las

ilustraciones de la interfaz, ubicadas en el anexo 1.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/generic_components

 pg. 48

5.5. Otros

Además de todo lo mencionado anteriormente, la aplicación cuenta con más pantallas,

blocs y componentes. Además, cuenta con un main, scripts y elementos para la traducción

de idiomas, funciones utilizadas para los formatos, splash screen personalizada, un login,

estilos y fuentes personalizados, extensiones, recursos, paquetes, listas de literales, etc. Es

una aplicación muy completa de más de 15.000 líneas de código. Se recomienda echar un

vistazo general a las diferentes carpetas y archivos del proyecto, dado que explicar todo

esto en este documento, sería inviable.

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/main.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/scripts
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/utils/app_localizations.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/utils/utilities.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/pubspec.yaml
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/login_page.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/themes
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/utils/extensions.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/assets
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/pubspec.yaml
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/translations

 pg. 49

6. Conclusiones

El Trabajo de Fin de Grado ha sido una experiencia enriquecedora que ha abarcado todas las etapas

de un proyecto, desde un estudio inicial, pasando por el desarrollo de la aplicación, y hasta la

documentación del proceso.

Durante su desarrollo, se ha puesto especial énfasis en la arquitectura y la claridad del código fuente,

lo que lo convierte en una sólida base para futuros desarrollos tanto para mí como para otros

interesados.

En resumen, este proyecto ha logrado implementar con éxito una aplicación móvil que optimiza el

proceso de creación y gestión de partes de trabajo en el ámbito de los proyectos de construcción. Su

arquitectura estructurada y su código fuente claro proporcionan una base sólida para futuros

desarrollos y la convierten en una herramienta valiosa para empresas privadas que buscan soluciones

eficientes de gestión de trabajo.

 pg. 50

7. Referencias

 IEEE Recommended Practice for Software Requirements Specifications," in IEEE Std 830-1998,

vol., no., pp.1-40, 20 Oct. 1998

 ISO/IEC/IEEE International Standard - Systems and software engineering -- Life cycle processes --

Requirements engineering," in ISO/IEC/IEEE 29148:2018(E), vol., no., pp.1-104, 30 Nov. 2018

 https://docs.flutter.dev/

 https://bloclibrary.dev/

 https://learn.microsoft.com/es-es/appcenter/

 https://git-fork.com/

 https://docs.github.com/en

https://docs.flutter.dev/
https://bloclibrary.dev/
https://learn.microsoft.com/es-es/appcenter/
https://git-fork.com/
https://docs.github.com/en

 pg. 51

8. Anexo 1 – Ilustraciones de la interfaz

Ilustración 1: Login

Ilustración 2: Login con teclado

 pg. 52

Ilustración 3: Menú lateral

Ilustración 4: Lista de órdenes de trabajo

 pg. 53

Ilustración 5: Lista de órdenes de trabajo - Búsqueda de

orden

Ilustración 6: Detalle de orden de trabajo

 pg. 54

Ilustración 7: Detalle de orden de trabajo - Parte inferior

Ilustración 8: Detalle de orden de trabajo - Detalle del

personal

 pg. 55

Ilustración 9: Detalle de orden de trabajo - Detalle de los

materiales

Ilustración 10: Detalle de orden de trabajo - Detalle de la

maquinaria

 pg. 56

Ilustración 11: Lista de partes de trabajo - Vacía

Ilustración 12: Lista de partes de trabajo - Llena

 pg. 57

Ilustración 13: Lista de partes de trabajo - Búsqueda de

parte

Ilustración 14: Creación de parte de trabajo

 pg. 58

Ilustración 15: Edición de parte de trabajo

Ilustración 16: Detalle personal de parte de trabajo – Por

defecto

 pg. 59

Ilustración 17: Detalle personal de parte de trabajo - Con

cambios

Ilustración 18: Detalle personal de parte de trabajo -

Cambios aplicados

 pg. 60

Ilustración 19: Detalle personal de parte de trabajo -

Búsqueda de persona

Ilustración 20: Detalle materiales de parte de trabajo -

Por defecto

 pg. 61

Ilustración 21: Detalle materiales de parte de trabajo -

Con cambios

Ilustración 22: Detalle materiales de parte de trabajo –

Cambios aplicados

 pg. 62

Ilustración 23: Detalle materiales de parte de trabajo -

Búsqueda de material

Ilustración 24: Detalle maquinaria de parte de trabajo -

Por defecto

 pg. 63

Ilustración 25: Detalle maquinaria de parte de trabajo -

Con cambios

Ilustración 26: Detalle maquinaria de parte de trabajo -

Cambios aplicados

 pg. 64

Ilustración 27: Detalle maquinaria de parte de trabajo -

Búsqueda de máquina

 pg. 65

9. Anexo 2 – Diagramas

Diagrama 1: Diagrama Clases Cliente

 pg. 66

Diagrama 2: Diagrama Clases Servidor

 pg. 67

Diagrama 3: Diagrama Actividades Inicio de Sesión

 pg. 68

Diagrama 4: Diagrama Actividades Menú Lateral

 pg. 69

Diagrama 5: Diagrama Actividades Visualizar Lista Partes

Diagrama 6: Diagrama Actividades Creación de Parte

 pg. 70

Diagrama 7: Diagrama Actividades Visualización/Edición/Cierre de Parte

 pg. 71

Diagrama 8: Diagrama Secuencias Inicio de Sesión

 pg. 72

Diagrama 9: Diagrama Secuencias Refrescar

 pg. 73

Diagrama 10: Diagrama Secuencias Visualizar Maestros de Orden

 pg. 74

Diagrama 11: Diagrama Secuencias Creación de Parte

 pg. 75

Diagrama 12: Diagrama Secuencias Cierre de Parte

	1. Introducción
	1.1. Motivación
	1.2. Marco de trabajo
	1.3. Audiencia
	1.4. Tipo de publicación
	1.5. Plataforma de publicación
	1.6. Tecnología de desarrollo
	1.7. Elección del motor de base de datos
	1.8. Definiciones, acrónimos y abreviaturas

	2. Descripción general
	2.1. Perspectiva del producto
	2.1.1. Interfaces de sistema
	2.1.2. Interfaces de usuario
	2.1.3. Interfaces software
	2.1.4. Interfaces de comunicaciones
	2.1.5. Restricciones de Memoria y Almacenamiento
	2.1.6. Modos de Operación
	2.1.7. Necesidades de infraestructura (para el alojamiento u operación)

	2.2. Funcionalidad del Producto
	2.3. Restricciones
	2.3.1. Auditoría
	2.3.2. Protocolos de comunicaciones
	2.3.3. Fiabilidad
	2.3.4. Seguridad

	2.4. Asunciones y dependencias

	3. Requisitos específicos
	3.1. Interfaces externos
	3.1.1. Interfaces de usuario
	3.1.2. Interfaces software
	3.1.3. Interfaces de comunicaciones

	3.2. Características del sistema
	3.2.1. Arranque / Parada
	3.2.2. Eventos periódicos
	3.2.3. Escenarios asociados al usuario

	3.3. Requisitos de Persistencia
	3.4. Restricciones de diseño de la interfaz de usuario
	3.5. Restricciones de diseño arquitectónico

	4. Diseño
	4.1. Casos de uso
	4.2. Diagramas de clases
	4.2.1. Diagrama de clases del cliente
	4.2.1. Diagrama de clases del servidor

	4.3. Diagramas de actividades
	4.3.1. Diagrama de actividades Arranque e Inicio de Sesión
	4.3.2. Diagrama de actividades Menú Lateral
	4.3.3. Diagrama de actividades Listado de Partes
	4.3.4. Diagrama de actividades Creación de Parte
	4.3.5. Diagrama de actividades Visualización/Edición/Cierre de Partes

	4.4. Diagramas de secuencia
	4.4.1. Diagrama de secuencia Arranque e Inicio de Sesión
	4.4.2. Diagrama de secuencia Refrescar
	4.4.1. Diagrama de secuencia Visualizar detalle de orden y maestros
	4.4.2. Diagrama de secuencia Creación de Parte
	4.4.3. Diagrama de secuencia Cierre de Parte

	4.5. Pruebas que realizar
	4.5.1. Pruebas de interfaz
	4.5.2. Pruebas de funcionalidad
	4.5.3. Pruebas de integración
	4.5.4. Pruebas de rendimiento
	4.5.5. Pruebas de seguridad
	4.5.6. Pruebas de uso
	4.5.7. Pruebas de regresión

	5. Desarrollo
	5.1. Estructura
	5.2. Modelo
	5.2.1. Base de datos
	5.2.2. DTOs
	5.2.3. DAOs

	5.3. Blocs
	5.3.1. BlocState
	5.3.2. BlocEvent
	5.3.3. Bloc

	5.4. Vista
	5.4.1. Páginas
	5.4.2. Componentes genéricos

	5.5. Otros

	6. Conclusiones
	7. Referencias
	8. Anexo 1 – Ilustraciones de la interfaz
	9. Anexo 2 – Diagramas

