vas Universidad

[]
101 Zaragoza

1542

A

B

Trabajo Fin de Grado

Desarrollo de aplicacion movil multiplataforma:
Gestion de ordenes de trabajo en construcciones

Autor/es

Alejandro Catalan Tejedor

Director/es

Miguel Angel Aranda Alcafiiz
Jesus Gallardo Casero

Escuela Universitaria Politécnica de Teruel
2023

Resumen

Este Trabajo de Fin de Grado consiste en el desarrollo y la documentacién de una aplicacién movil
multiplataforma. El objetivo de este proyecto ha sido crear una herramienta para facilitar la gestion
del trabajo en construcciones. Esta herramienta se utilizard para la creacién y edicién de partes de
trabajo sobre una orden de trabajo. Ademas, otro propdsito de este proyecto es servir de guia para
aquellas personas interesadas en el aprendizaje del desarrollo de aplicaciones mdviles
multiplataforma, utilizando el framework Flutter, o para las que ya saben y quieren mejorar sus
habilidades aprendiendo nuevos conceptos.

Abstract

This Final Degree Project consists of the development and documentation of a multiplatform mobile
application. The objective of this project has been to create a tool to facilitate the management of
construction work. This tool is accelerated for the creation and editing of work tickets on a work order.
In addition, another purpose of this project is to serve as a guide for those people interested in learning
how to develop cross-platform mobile applications, using the Flutter framework, or for those who
already know and want to improve their skills by learning new concepts.

pg. 1

Agradecimientos

Quiero expresar mi mas sincero agradecimiento a todas aquellas personas que han contribuido de
manera directa o indirecta en la realizacion de mi Trabajo de Fin de Grado.

Agradezco en primer lugar a mi tutor Miguel Angel, por su orientacién, su apoyo y su comprension
durante todo el proceso.

También deseo expresar mi gratitud a los docentes de la Escuela Universitaria Politécnica de Teruel
por brindarme una educacidn de calidad, que me ha permitido obtener todos los conocimientos que
poseo hoy en dia.

Ademas, les doy las gracias a mis amigos por darme mucho animo durante mis afios de estudio.
Vuestras palabras de aliento siempre me ayudaron a superar aquellos obstdculos que surgieron
durante el camino.

Por ultimo, no puedo dejar de mencionar a mi familia, quienes han sido mi mayor fuente de apoyo y
motivacion. Habéis sido mi pilar durante todos estos afios. Gracias por siempre creer en miy por estar
a mi lado cuando lo he necesitado, sin vosotros todo esto nunca hubiera sido posible.

A todas estas personas, gracias por vuestro tiempo, paciencia y contribucién en la realizacién de este
Trabajo de Fin de Grado y en la del resto de mi grado universitario. Vuestro apoyo ha sido crucial

durante todo el recorrido.

iMuchas gracias a todos!

pg. 2

INDICE

O [{'o Yo [V ool o o PP PUPPPP PP 6
1.2, MOTIVACION....uiiiiiieeeieitieee ettt e e e e s st e e e e e e s s eabbaeeeas 6
R Y T oo e [-] o =] o TP PPPPPPPPRE 7
G T XU Lo [1= ol - FO PO P PP PP PPPPN 7
R S N T To o [l o 10 o] [To= T o F PP PPPPPPPPRE 8
1.5. Plataforma de publicacion.............uueieiieiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 8
1.6. Tecnologia de desarrollO..........uueeeiiiieiiiiiiiiiiiiiiiiieeeeerrereeeeeeeeeeeeeereeeeeree. 9
1.7. Eleccion del motor de base de datos........ccceveevvieieiriieeeeiiicee e 10
1.8. Definiciones, acronimos y abreviaturas............uuvvvvvvveeeereeeeeeeeeeeennnennnnn. 10

D 0 LYol oo Yol o o I ==Y a = - | PP PPPPPPPPRE 11
2.1. Perspectiva del productocccceeeeeiiiiiiiiiic 11

2.1.1. Interfaces de SiStemMa......ccovcvereiiiieieiiiiee e 11
2.1.2. Interfaces de USUAriocccovcviererriiiieee it 11
2.1.3. Interfaces SOftWAre.......ceiiiviieieiiieee e 11
2.1.4. Interfaces de COMUNICACIONES........eeeerireeieiiiieeee e 11
2.1.5. Restricciones de Memoria y Almacenamiento...........ccccvvvvvevnns 11
2.1.6. Mo0dos de OPEracCiONeeeeveeerreeerererrereeereererreeerererreerrr——.. 12
2.1.7. Necesidades de infraestructura (para el alojamiento u operacién) 12
2.2. Funcionalidad del Producto...........ccovvuieiiiiiiiieiiiieee e 12
2.3, RESTIICCIONES. . euiiiiiiiiiii s 13
23,1, AUAITONA coeieeee e 13
2.3.2. Protocolos de comuniCaCioNes........ccovvveeeeriieererniiiieeeeniieeeenae 13
2.3.3. Fiabilidad.....ccoiiiiiieeeeee e 13
D T Y <Y~ ¥ 4 o F- [« IR PPPPPPPPRt 14
2.4. Asunciones y dependenCiasccceeeeeeeeeeiuuunnceeee s 14

3. ReqUISItOS ESPECITICOS...uuiiiiiiiiiiiiiiiiiiiiiiieeeeee et eeeeeeeeeeeeeeeeeereeeeeeeessssesesseesereraeararees 15

3.1, Interfaces eXLEINOSovii ittt 15
3.1.1. Interfaces de USUAriocccovcuueieeiiiieee it 15
3.1.2. Interfaces SOftWare........cooiriiiieiiiiee et 15
3.1.3. Interfaces de COMUNICACIONES........ceeeriuuieieriiiiieee e 15

3.2. Caracteristicas del SiSteMa......cccovcuieeeiiiiiiiiiieee e 15
3.2.1. Arranque / Paradaeeeeeeeeieciiieeeeee e 16
3.2.2. EveNntos PeriOdiCOoS.......uuuuiierireiieeiieieiiireeereeeeeeeseeeeeesseeesseereeeeeees 17
3.2.3. Escenarios asociados @l USUAIIOceeerrrierrieerieeeeiiiiieeeeeeennn 17

pg. 3

4.

5.

3.3. Requisitos de Persistencia......ccccceeeiiiiiii 21
3.4. Restricciones de disefio de la interfaz de usuariocccccceevveverernnnee. 21
3.5. Restricciones de disefio arquitectdnicocccoeevveiiii, 21
B[] 4T B PP P PP UPPPPPPPUPUPP 22
T 0= T-Yo E o [T U T-Yo B U TUP P PP PPPPOPPP 23
4.2. Diagramas de clases.......cccciiiiiiiiiii 24
4.2.1. Diagramade clases del cliente........cccccceeeiiiiiii, 24
4.2.1. Diagrama de clases del servidor..........cccccceeiiiiiii, 24

4.3. Diagramas de actividades.........ccccceviiiiiiiii 25
4.3.1. Diagrama de actividades Arranque e Inicio de Sesion............... 25
4.3.2. Diagrama de actividades Menu Lateraleeeee. 25
4.3.3. Diagrama de actividades Listado de Partes 25
4.3.4. Diagrama de actividades Creacion de Parteooeee. 25
4.3.5. Diagrama de actividades Visualizacién/Ediciéon/Cierre de Partes25

4.4, Diagramas de SECUBNCIA......ccceiiiiiiiiiiiiii e, 26
4.4.1. Diagrama de secuencia Arranque e Inicio de Sesién................. 26
4.4.2. Diagrama de secuencia Refrescar...........cccccceeeviiii, 26
4.4.1. Diagrama de secuencia Visualizar detalle de orden y maestros 27
4.4.2. Diagrama de secuencia Creacidn de Parte.....................oooe. 27
4.4.3. Diagrama de secuencia Cierre de Parte...............cccceeeeeeeee. 27

4.5. Pruebas que realizarcccccoiiiiiii 28
4.5.1. Pruebas deinterfaz........ccccccoriieieiiiiieeinee e 28
4.5.2. Pruebas de funcionalidad..........ccccoeueeeeiniiiiiniceen 28
4.5.3. Pruebasdeintegracion...........cccccceiiiiii 28
4.5.4. Pruebas de rendimientocccceeeriiiiiiiiiiiie i 28
4.5.5. Pruebasdeseguridad............c.ooeiiiii 29
4.5.6. Pruebas de USOeeeiiiiiiiiiiiiiee e 29
4.5.7. Pruebasderegresion.........cccccceeeeiiiiiii 29
DESAITONI0. ..ttt 30
5.1, ESTrUCTUNa o, 30
5.2, IMOAEIO ..t e 32
5.2.1. Base de datosccccuuieirieeiiiiiiiiieeieee e 32
5.2.2. DTOS uutttieiiittee ettt ettt ettt e e st e e s e e e e nreee e 34
5.2.30 DADS ettt ettt ettt e e naee e e 38

5.3 BIOCS ittt e e e e e e e e 40
5.3.1. BlOCSEAtE ..eveeeieeeieiiiteeeee e 41

L 0 N D

T T =] o Yol Y=Y o} T 42

LT 75 TR 21 T ol PP PPPPPPPPPRE 43

D VISt e 44
I B B o V=41 o = PP PPPPPPPPRE 44

5.4.2. COmMPONENtes ENEIICOSuuurrrrrrrrrrrerrrrrrreerreerrrerrrerereerrrrrrerenne a7

5.5, ORrOS it 48
CONCIUSIONES ...ttt ettt e ettt e e e e s st b bt e e e e e e s saabreeeeeaeeeas 49
RETEIENCIAS. . eeeiitieee ettt e 50
Anexo 1 — llustraciones de [a interfaz.........cccccoveieeeiiiiii i 51
ANEXO 2 = DIagIramas...cceeieeiiiiiiiieeeeeieeiiiiiee s e e e e eeetiaiss s e e eeeeesssaaasesseeeaeessnnnnesseanans 65

pg. 5

1. Introduccion

Este proyecto consiste en la creacidon y documentacién de una aplicaciéon mévil multiplataforma,
llamada GestorTareas, con la finalidad de facilitar la gestién de 6rdenes trabajo a empresas situadas
en el sector de la construccidn.

La aplicacidn se utilizard para la creacion y edicion de partes de trabajo sobre una orden de trabajo.
La finalidad es facilitar el registro y gestién del trabajo realizado y de los recursos empleados en una
construccion.

Se listaran todas las érdenes de trabajo abiertas, y seleccionando una de ellas se podran ver las
indicaciones y los recursos a emplear. Estas instrucciones -o indicaciones- seran tenidas en cuenta por
el operario a cargo del manejo del dispositivo con la aplicacién instalada. Este creara partes de trabajo
registrando cdmo se ha repartido el trabajo; registrando el trabajo realizado y los recursos utilizados.

1.1.

Motivacion

La industria de la construccion es una parte elemental en la sociedad. Las casas en las que
vivimos, los edificios donde trabajamos, los caminos que recorremos, todo es el resultado
de esta industria. Por esto mismo las empresas dedicadas a la construccidn se enfrentan
a numerosos obstdculos. Organizar todo el trabajo que hay que realizar y el ya realizado,
puede llegar a ser bastante problematico si no se posee la herramienta adecuada.
Ademas, si a causa de una mala organizacién se pierde informacién, podria suponer una
gran pérdida para la empresa.

Fue entonces cuando me di cuenta de que habia una necesidad clara de una solucién que
facilitara el trabajo a las empresas constructoras y a sus empleados. Asi naci6 la idea de
crear una aplicacion movil que pusiera fin al caos y brindara una herramienta eficiente y
centralizada para gestionar drdenes y partes de trabajo.

Mi objetivo con esta aplicacidn es hacer que la vida de las empresas constructoras sea mas
sencilla. Desde la creacidn y asignacidn de tareas hasta el seguimiento del progreso del
proyecto, la aplicacién proporcionard una plataforma facil de usar que simplificard y
agilizara los procesos.

Ademas, esta aplicacion también beneficiard a los trabajadores de campo. Dado que
podran ver a tiempo real todas las tareas demandadas y podran gestionar el trabajo
realizado de forma sencilla y eficiente.

Por otro lado, otra de las razones que me llevaron a desarrollar este proyecto, fue que, en
mi empresa actual, Inycom, soy la Unica persona con conocimientos del framework
Flutter. Esto es debido a que cuando me incorporé a la empresa surgié un proyecto
demandado por un cliente, este cliente deseaba que utilizdramos Flutter como medio de
desarrollo. Como en el equipo de desarrollo movil (del que formo parte) mis compafieros
s6lo poseian conocimientos centrados en Android 0 i0S, se me encomendaé investigar esta
tecnologia y desarrollar la aplicacion. Después de esto segui trabajando casi
exclusivamente con Flutter. Como actualmente sigo siendo el Unico desarrollador con
estos conocimientos, que han ido evolucionado durante todo este tiempo, pensé que
podia ser buena idea aplicar en un proyecto todos los conocimientos adquiridos hasta el
dia de hoy.

pg. 6

1.2.

1.3.

Por este motivo el documento desarrollado, principalmente los requisitos especificos y el
disefio, es lo mads técnico posible, para que mis companeros puedan ver el proceso real
del desarrollo de una aplicacién en Flutter, y consultar este documento siempre que lo
necesiten.

Marco de trabajo

Para el desarrollo de esta aplicacién moévil multiplataforma, se ha seleccionado un marco
de trabajo que se basa en el uso de las siguientes herramientas y tecnologias:

- Flutter: Se utilizard el framework Flutter como base para el desarrollo de la aplicacién.
Flutter es una tecnologia de cédigo abierto desarrollada por Google que permite crear
aplicaciones nativas para Android e iOS a partir de un tnico cédigo base. Es altamente
eficaz y personalizable, lo que lo convierte en la eleccién ideal para el proyecto. En el
apartado 1.6 se amplia el porqué de esta eleccion.

- Dart: Se utilizara el lenguaje de programacién Dart, que es el lenguaje principal
utilizado en el desarrollo con Flutter. Dart es un lenguaje que brinda una sintaxis clara
y concisa, asi como una gran cantidad de bibliotecas y herramientas para facilitar el
desarrollo de la aplicacion.

- SQlite: Se utilizarad SQLite como herramienta para la creacidn y gestion de la base de
datos. Se integrara en el cédigo importando el paquete de Flutter utilizado para ello.
En el apartado 1.7 se amplia el porqué de esta eleccién.

- Git: Se utilizard un sistema de control de versiones, como Git, para mantener un
registro de los cambios realizados en el cddigo. Esto permitira asegurar la integridad
del cddigo a lo largo del desarrollo del proyecto. El programa Fork se utilizara para
gestionar repositorios Git haciendo uso de su interfaz grafica. El repositorio sera
creado en Azure DevOps, debido a que es la herramienta utilizada en la empresa para
crear y almacenar repositorios.

Audiencia

La aplicacion moévil multiplataforma estd disefiada pensando en las empresas vy
profesionales involucrados en el sector de la construccién. Estd especialmente dirigida a
las constructoras, porque les brinda una herramienta eficiente para agilizar y simplificar
la gestion de las érdenes de trabajo. La aplicacion les permitird llevar un seguimiento
organizado de las tareas y recursos asignados en cada proyecto. La empresa en si es la
mas interesada, dado que con esta herramienta se podran evitar pérdidas de informacién
gue perjudiquen el beneficio de la empresa. Ademas, los trabajadores de la empresa
también se veran beneficiados con el uso de la aplicacién:

- Gerentes y supervisores de proyectos: Los gerentes y supervisores de proyectos en el
sector de la construccion seran los usuarios clave de la aplicacion. Podran utilizarla
para supervisar el progreso de las érdenes de trabajo, asegurandose de que se
cumplan las indicaciones y se utilicen los recursos de manera eficiente. Ademas,
podran acceder a los datos actualizados en tiempo real, lo que les permitira tomar
decisiones informadas y realizar ajustes segln sea necesario.

- Operarios y técnicos de construccion: La aplicacion también estd disefiada para
facilitar el trabajo diario de los operarios y técnicos que llevan a cabo las tareas en el
sitio de construccidn. Podran acceder a las drdenes de trabajo asignadas, consultar las

pg. 7

1.4.

1.5.

instrucciones detalladas y los recursos requeridos, y registrar de forma sencilla el
trabajo realizado y los recursos utilizados. Esto permitird un seguimiento preciso del
progreso de las tareas y asegurara una comunicacién fluida entre el equipo de trabajo.

Por otra parte, el documento va dirigido a todos aquellos interesados en su lectura, si bien
sean académicos, alumnos, compafieros de empresa en Inycom, etc. Y, sobre todo, va
dirigido a aquellos clientes interesados en comprar la aplicacidn para su uso.

Tipo de publicacidn
La aplicacidn va dirigida a empresas constructoras. Podria ser publica o privada.

Por un lado, si fuese publica, habria un desarrollo unificado, no adaptado para cada
empresa. No seria necesario hacer cambios pronunciados en la aplicacién (ni en la
funcionalidad, ni en el disefio). Tampoco seria necesario un mantenimiento y supervisién
intensivo. Pero, a no ser que se decidiese afiadir publicidad integrada, la empresa
desarrolladora no obtendria beneficio del proyecto.

Por el otro lado, si fuese privada, aunque requiriese mas esfuerzo, se adaptaria mucho
mejor a las necesidades de cada empresa. Si se necesitase hacer algin cambio, de diseio
o funcionalidad, se haria sin problema. Si surgiese algln inconveniente, la empresa
desarrolladora podria arreglarlo inmediatamente. Tanto a las empresas constructoras que
deseen utilizar la aplicacidn y garantizar la seguridad del sistema, como a la empresa
desarrolladora que desee obtener beneficio del proyecto, les interesa que sea privada.

Es por esto por lo que se ha decidido que la aplicacion sea de uso privado.

Plataforma de publicacion

Dado que esta aplicacioén sera privada y sera vendida a empresas que deseen comprarla
para su uso interno. No serd publica, por lo que no se publicard en ninguna plataforma
convencional de acceso universal, como Google Play Store o Apple Store.

La plataforma habitualmente utilizada en Inycom es AppCenter. Como el autor conoce
esta herramienta, también se utilizara para este proyecto.

Esta plataforma pertenece a Microsoft y es de uso privado. Estd disefiada para
desarrolladores de aplicaciones mdéviles. Esta herramienta permite construir, probar y
distribuir aplicaciones tanto para Android como para iOS. Algunas de las caracteristicas
son:

- Compilacién automatizada: Permite a los desarrolladores compilar automaticamente
las aplicaciones.

- Pruebas: Permite a los desarrolladores ejecutar pruebas automatizadas en
dispositivos reales sin la necesidad de tener uno fisicamente.

- Distribucidn de versiones: Se pueden distribuir las aplicaciones a los usuarios de forma
sencilla. Ademds, AppCenter permite crear grupos de usuarios, por ejemplo, un grupo
de testers donde no se incluya a los usuarios finales, para probar ciertas caracteristicas
de una versiéon que todavia no esta preparada para que use el cliente.

- Monitoreo y andlisis: Existen herramientas dentro de AppCenter que permiten
monitorear y analizar datos en tiempo real, lo que permite a los desarrolladores
obtener informacidn sobre el rendimiento de la aplicacién.

pg. 8

1.6.

Tecnologia de desarrollo

Como se menciona en los apartados anteriores, se ha escogido Flutter como framework
para desarrollar la aplicacion, utilizando Dart como lenguaje de programacion.

Flutter es un framework desarrollado por Google. Cuando lo desarrollé la compaiiia,
tenian pensado hacer un uso interno de él, pero viendo el gran potencial que tenia,
decidieron sacarlo como un framework de cddigo abierto.

Este framework posee una gran cantidad de ventajas respecto a las tecnologias que
existian hasta el momento. Primero de todo, sirve para desarrollar tanto en Android como
en i0S, es decir, para el desarrollo de aplicaciones multiplataforma. Compila el cédigo de
forma nativa, lo que lo hace tremendamente rapido, siendo posible ver los cambios
realizados en el cédigo a tiempo real, utilizando la llamada hot reload, sin necesidad de
compilar o ejecutar el proyecto de nuevo. Contiene una gran cantidad de librerias por si
mismo y también existen miles de paquetes para afiadir al proyecto si se desea. Afiadir
paquetes al proyecto es muy sencillo, basta con ejecutar un comando en la terminal del
entorno de programacion (VS Code en el caso de este proyecto), también se puede afiadir
amano indicando el nombre y la version del paquete en el archivo destinado para ello. Es
muy adaptable graficamente, se pueden combinar los elementos de numerosas formas. A
diferencia de otros lenguajes de programacion utilizados en el desarrollo de aplicaciones
moviles como Objetive-C, el lenguaje de programacion que utiliza, Dart, es sencillo de
aprender, siendo similar a otros lenguajes de programacién orientados a objetos. El propio
Dart es utilizado para crear los elementos graficos de la aplicacidn, no es necesario utilizar
otros lenguajes como en el caso de la programacion Android, donde se suele utilizar Java
haciendo uso de XML para la interfaz grafica. Ademas, cuenta con una extensa
documentacién y comunidad, todavia menor que otras comunidades de desarrollo de
aplicaciones mdviles, como la de React (también utilizada para desarrollo
multiplataforma), pero lo suficientemente grande como para esclarecer las posibles dudas
qgue le surgiesen al programador. Otra ventaja que cabe mencionar es que permite la
integracion de cddigo nativo en el propio proyecto.

Como se puede observar son multiples las ventajas de Flutter sobre el resto de
frameworks o tecnologias empleadas en el desarrollo de aplicaciones mdéviles. Sin
embargo, también existe alguna desventaja, aunque en menor medida. Una de ellas es
gue los tamafios de las aplicaciones suelen ser mds grandes que las aplicaciones nativas.
A parte de esto, la mayor desventaja que puede tener Flutter es la curva de aprendizaje,
si bien es cierto que la sintaxis es parecida a Java y otros lenguajes de programacién
similares, Dart cuenta con conceptos de programacién avanzados y dificiles de aprender.
Uno de estos conceptos avanzados es el uso del patron BLoC (Bussiness Logic Component)
como arquitectura de la aplicaciéon para la gestidon de eventos y la generacion de estados
a partir de estos eventos, el cual tiene una curva de aprendizaje muy pronunciada. Aunque
es cierto que se pueden crear aplicaciones en Flutter sin utilizar este concepto, utilizando
patrones como el MVVM (Model View View-Model), surgen dos inconvenientes: el
primero es que el patron BLoC ofrece una gran cantidad de ventajas y prestaciones al
utilizarlo, asi que no hacer uso de él, hace que el cédigo sea menos dptimo (en el punto
5.2 se ve el por qué); la segunda es que existen otros conceptos avanzados en Dart,
ademas del patrén BLoC, que hay que aprender igual, como los Futures, async/awaits,

pg. 9

1.7.

1.8.

Providers, etc. Ademas, Dart cuenta con multitud de elementos graficos complejos que
un programador de front-end debe saber utilizar.

Dado que el autor tiene una extensa experiencia con este framework y que la desventaja
principal, la curva de aprendizaje, no aplica en este caso, se mantiene la elecciéon de
desarrollar la aplicacion con Flutter.

Eleccion del motor de base de datos

Para la base de datos del proyecto se ha decidido utilizar SQLite. El autor habia trabajado
previamente con el framework Drift (Moor) que permitia crear y gestionar bases de datos
utilizando Dart para realizar consultas, en lugar de SQL. Sin embargo, al utilizar archivos
autogenerados para conseguir lidiar con la base de datos usando Dart, habia que utilizar
comandos de generacion de cédigo, lo que provocaba que muchas veces se perdiese mas
tiempo del que se ganaba. Ademas, cada cambio en la estructura de la base de datos
requeria aumentar la version de ésta y obligaba a tener que borrarla y crearla de nuevo.
Aungue en la documentacion se especificase que si es posible crear tablas surgidas de la
relacidn de otras tablas, no funcionaban correctamente las claves ajenas. Por todos estos
motivos se decidié usar la herramienta mas extendida para la creacion de bases de datos
relacionales, SQLite. SQLite es muy rapida, intuitiva y trabaja con el lenguaje SQL, con el
gue el autor habia tratado extensamente a lo largo del grado universitario.

Definiciones, acronimos y abreviaturas

Término Descripcion

oT Orden de trabajo.

PT Parte de trabajo.

Maestros Recursos.

AWS Amazon Web Services.

Background En segundo plano.

App Aplicacién.

Tester Probador de aplicaciones.

Card Elemento grafico que se utiliza para representar alguna

informacién relacionada, por ejemplo, un album, una ubicacién
geografica, una comida, detalles de contacto, etc.

] Interfaz de usuario.

Framework Estructura de herramientas que facilita el desarrollo de
aplicaciones de software al proporcionar funcionalidades
predefinidas y una estructura organizada.

ListView Lista vertical de elementos en una aplicacion.

pg. 10

2. Descripcion general

2.1.

2.1.1.

2.1.2.

2.1.3.

2.1.4.

2.1.5.

Perspectiva del producto

Interfaces de sistema

GestorTareas deberd obtener las érdenes de trabajo y los recursos a través de la
API del servidor, asi como enviar los partes de trabajo para su almacenamiento.
El servidor serd interno, creado y gestionado por el equipo de la parte web.

Interfaces de usuario

La interfaz de usuario se encuentra en el Anexo 1.

Interfaces software

Se recibiran los datos enviados por la parte web a través de peticiones a una API
propia.

La aplicacidn ha de mantener datos almacenados de forma persistente. Para esto
se utilizara una base de datos integrada.

Interfaces de comunicaciones

GestorTareas es una aplicacion moévil que debera tener conexién online y conocer
la hora actual, por esto deberad utilizar las interfaces de comunicaciones
inalambricas del dispositivo: datos méviles y geolocalizacion.

Restricciones de Memoria y Almacenamiento

La aplicacion movil estard disponible para las plataformas Android y iOS. Por lo
tanto, se deben considerar los requisitos de memoria y almacenamiento
especificos de cada sistema operativo.

Para dispositivos moviles Android, se requerira un minimo de 4 GB de memoria
RAM y 16 GB de almacenamiento para un rendimiento 6ptimo. Se recomienda
gue los dispositivos utilicen Android 7.0 o superior.

Para dispositivos maviles iOS, se requerira un minimo de 2 GB de memoria RAM
y 16 GB de almacenamiento para un rendimiento éptimo. Se recomienda que los
dispositivos utilicen iOS 12 o superior.

Ademas, la aplicacién requerird permisos de cdmara para capturar imagenes
relacionadas con los partes de trabajo. Estos permisos deben solicitarse al usuario
al momento de la instalacién y deben ser compatibles con los sistemas operativos
Android y iOS.

Se utilizara una base de datos local donde se almacenara la informacion recibida
por la web, ademas de los partes de trabajo no sincronizados con la API. Por esto
mismo también se pediran al usuario permisos de almacenamiento.

pg. 11

2.1.6. Modos de Operacion

e Hay un Unico modo de operacidn: usuario estandar.

En el apartado 2.2 se detallard las caracteristicas de este modo de operacidn.

2.1.7. Necesidades de infraestructura (para el alojamiento u operacién)

e La aplicacion se distribuird a través de un archivo APK descargable en la
plataforma AppCenter de Microsoft. Los clientes podran acceder a la aplicacién a
través de esta plataforma.

e Al utilizar AppCenter, se garantiza que la aplicacién no estara disponible en
plataformas convencionales de acceso universal, como Google Play Store o Apple
App Store.

e la plataforma AppCenter también permite una facil gestién de versiones y
actualizaciones de la aplicacidn para los clientes.

e Sera necesario un servidor de donde se recojan y almacenen los datos.

e El servidor serd una instancia de AWS (pactado con el cliente), por lo que el
hardware serd una infraestructura externa.

2.2. Funcionalidad del Producto

Debido a que las credenciales seran generadas y otorgadas por la empresa compradora
de la aplicacidon, nicamente habra un tipo de usuario, capaz de iniciar sesién, pero no de
registrarse.

e Usuario
o Iniciar sesion.
= El usuario podra iniciar sesion con las credenciales otorgadas por
la compaiiia.
o Cerrar sesion.
= Se podrd cerrar sesion, si asi lo desea el usuario. Si bien es cierto
que cada usuario tendra su dispositivo personal.
o Refrescar datos.
= Se podran refrescar los datos manualmente. Cuando el usuario
disponga de conexién, podrd querer probar a refrescar los datos
manualmente para descargar las érdenes y recursos asociados a
las mismas.
o Visualizar lista OTs.
= El usuario podra ver la lista de érdenes de trabajo. Es la pantalla
principal al iniciar sesion.
o Seleccionar OT.
= Dentro de la lista de érdenes de trabajo, mencionada en el punto
anterior, se podra seleccionar la orden de la que se desee ver el
detalle.
= Visualizar maestros. Se podran visualizar los maestros (personal,
materiales y maquinaria) asociados a una orden, desde el detalle
de ésta.
o Visualizar lista PTs.

pg. 12

2.3.

= Desde unaorden de trabajo, se podran visualizar la lista de partes
de trabajo asociados a esa orden.
o Crear PT.
= Enla lista de partes de trabajo existird un botdn desde el cual se
podra crear un nuevo parte. Editando y afiadiendo sus campos y
recursos.
o Editar PT.
= Enlalista de partes también se podra seleccionar un parte para
ver y/o editar los campos de éste.
= Editar maestros. Ademads de editar los pardmetros también se
podran editar los maestros asociados a ese parte, tanto quitar,
como modificar, como afiadir nuevos recursos.
= Cerrar parte. Haciendo uso de un botdn, se podra cerrar el parte,
siendo asi enviado al servidor y no editable de nuevo.

Restricciones

2.3.1. Auditoria

Se le dard al comprador un mes de tiempo maximo para probar la aplicacién y notificar el
cambio de algun aspecto de disefio relacionado con la aplicacién. Esto permitira realizar
los ajustes necesarios para cumplir con las expectativas del usuario y mejorar la UX.

También, se dispondra de tres afios de garantia para poder corregir cualquier posible error
o vulnerabilidad identificada durante el uso de la aplicacién. Con esto se garantiza el
correcto funcionamiento, ademas del rendimiento y la seguridad.

2.3.2. Protocolos de comunicaciones

La aplicacién se comunicard con el servidor a través de una APl propia mediante el
protocolo HTTPS y datos en formato JSON.

2.3.3. Fiabilidad

Se contara con una base de datos interna para que no se pierdan datos si estos no se han
sincronizado correctamente. El propdsito es no perder absolutamente ninguna
informacién. Todos los datos creados se guardardn instantdneamente en la base de datos,
desde la creacion de un parte y sus recursos, hasta cada letra cambiada en alguno sus
campos. No se permitird al usuario guardar o borrar informacion manualmente.
Unicamente cuando los datos se hayan sincronizado correctamente con el servidor, y sélo
entonces, se eliminaran de la base de datos y dejard de ser visible para el usuario. La
fiabilidad en la persistencia de la informacién es crucial, puesto que la aplicacion sera
utilizada por empresas en el area de la construccidn, y cualquier pérdida de informacién
en el registro de sus actividades puede suponer un gran costo para la empresa.

pg. 13

2.3.4. Seguridad

Se otorgara un token al comprobar que las credenciales introducidas son validas para asi
verificar al usuarioy poder iniciar sesion. Este token serd un Bearer Token, el tipo de token
utilizado en el protocolo OAuth 2.0. Por lo tanto, sin un token vdlido, la aplicacién no
permitira intercambios de datos con la API. Este es el Gnico punto en la aplicacion mévil
que afecta a la seguridad, del resto la responsabilidad es responsabilidad del back-end.

2.4. Asunciones y dependencias

e Se asume que el modo offline no se selecciona manualmente, si no que, cuando
no exista una conexidon estable, se activard automaticamente. El usuario no
percibira ningn cambio.

e Seasume que la aplicacién no podra ser utilizada horizontalmente.

pg. 14

3. Requisitos especificos

3.1. Interfaces externos

3.1.1.

RQ 1.

RQ 2.

RQ 3.

3.1.2.
RQ 4.

RQ5.

RQ6.

3.1.3.

RQ7.

RQ8.

Interfaces de usuario

Los colores principal y secundario, asi como el logo, serdn indicados por la
empresa compradora. La aplicacion por defecto llevara los colores: rojo, blanco
y gris claro. Por defecto llevara el logo de Inycom.

El tamafo serd adaptable a las dimensiones del dispositivo. Siempre que se
encuentre en el rango de dimensiones de un celular estdndar, esto quiere decir
gue no esta disefado para tamafios de dispositivos tipo Tablet.

Cada pantalla (excepto la principal y la de inicio de sesidén) contara con una
flecha orientada hacia la izquierda en la esquina superior izquierda, ésta se
utilizara para regresar a la pantalla anterior.

Interfaces software

La aplicacion obtendra los datos de la API, asi como enviard los datos
correspondientes mediante un formato JSON.

Se utilizara la APl para toda comunicacidn con el servidor.

Se utilizard una base de datos integrada que guardard la informacion
pertinente.

Interfaces de comunicaciones

La comunicacion entre la aplicacion y el servidor serd a través de peticiones a la
AP| mediante el protocolo HTTP. El formato sera el mencionado en el RQ 8.

Las peticiones y respuestas seran métodos GET y POST. Seguiran el formato de
intercambio de datos JSON. Fécil de leer y escribir para los humanos, y de
parsear y generar para las maquinas.

3.2. Caracteristicas del sistema

La enumeracién de los requisitos funcionales de GestorTareas, va a organizarse a partir de
una serie de grupos de escenarios de utilizacion. Estos grupos son:

Arranque / Parada
Eventos periddicos

o Descarga de datos
o Envio de partes

Escenarios del usuario

pg. 15

Iniciar sesién
Cerrar sesion
Refrescar datos
Visualizar lista OTs
Seleccionar OT
Visualizar maestros de OT
Visualizar lista PTs
Crear PT
Visualizar/Editar PT
= Cerrar PT
o Visualizar/Editar maestros de PT

O O 0O O 0 0O O O O

* Nota: el escenario ‘Visualizar/Editar maestros de PT’ es comtn a los escenarios ‘Crear
PT’ y “Visualizar/Editar PT’, siendo una extension de éstos. Lo mismo ocurre con el
escenario ‘Visualizar maestros de OT’, es comun al escenario ‘Seleccionar OT’.

3.2.1. Arranque / Parada

ESC1. Arranque
e Proposito

El escenario de arranque es habitual (y necesario) en todos los sistemas informaticos.
Contiene toda esa serie de acciones que deben llevarse a cabo cuando se inicia la
ejecucion de la aplicacion (proceso de arranque/boot), de forma previa a que dicha
aplicacion esté en condiciones de ser utilizada por sus usuarios.

e RQs asociados

RQ9. En la fase de arranque se deberd comprobar el idioma en el que esta
configurado el dispositivo movil para asi utilizar los literales (textos) asociados
a este idioma.

RQ10. En la fase de arranque también se consultard la informacion de permisos
otorgados por el sistema. Dado que son necesarios varios permisos, como el
almacenamiento interno, se consultara si estan permitidos o no. Si no lo estén,
se preguntara al usuario si desea otorgar los permisos necesarios.

ESC2. Parada
e Propodsito

El escenario de parada también es necesario en toda aplicacién informatica. En él, la
aplicacion ya habra dejado de estar operativa para sus usuarios, pero todavia deberan
ejecutarse algunas acciones antes de que el sistema operativo pueda considerarla como
finalizada.

e RQs asociados

RQ11. Alcerrar laaplicacién se comprobara que todos los partes estén sincronizados,
en caso de no estar sincronizados saldra un popup de confirmacion con un titulo

pg. 16

RQ 12.

3.2.2.

ESC3.

RQ 13.

RQ 14.

ESC4.

RQ 15.

3.2.3.

ESCS.

RQ 16.

RQ 17.

RQ 18.

RQ 19.

RQ 20.

de alerta y un mensaje avisando que todavia existen partes no sincronizados y
si estd seguro de que desea cerrar la aplicacién.

Se cerrardn todas las vistas y se liberaran los recursos utilizados por la
aplicacion, excepto el almacenamiento utilizado por la base de datos.

Eventos periddicos

Descarga de datos

Cuando se pulse el botdn de refrescar, situado en el menu lateral (//ustracion
3), se llamara a la API para obtener todos los datos. Si no hay conexion, o aun si
habiendo conexién, no es estable, y no se consigue obtener los datos, se
realizard la Ilamada automaticamente cada 10 minutos.

Cuando se obtengan los datos correctamente se le notificard al usuario
mediante un popup, debido a que, si no se han conseguido obtener en el primer
intento, el usuario no sabra cuando se han descargado correctamente.

Envio de partes

Cuando se cierra un parte (/lustracion 15) se intenta enviar al servidor para que
lo almacene. Si cuando se intente cerrar el parte no se consigue debido a la
conexion, se tratara de enviar cada 10 minutos, notificandoselo asi al usuario
cuando se haya logrado enviar correctamente. Ocurre lo mismo que al
descargar datos ESC3.

Escenarios asociados al usuario

Iniciar sesion

Para iniciar sesidn se deberan introducir las credenciales en sus campos
correspondientes. Dado que las credenciales son creadas por la parte web,
éstas se le comunicaran personalmente al usuario y éste deberd introducirlas
para iniciar sesion. /lustracion 1.

Cada vez que caduque el token de inicio de sesién (TBD), se tendrd que volver
a iniciar sesion, debido a que, si no, no funcionaran las funciones relacionadas
con la transmision de datos.

La primera vez que se inicie sesion se almacenaran las credenciales y el token
para poder ser utilizados cuando no haya seial, o la sefial sea débil.

Para enviar las credenciales se debera pulsar el botdn continuar. /lustracidn 1.

Una vez se haya verificado el login correctamente, se redirigira
automaticamente a la pantalla que muestra la lista de érdenes de trabajo.
llustracidn 4.

pg. 17

ESC6.

RQ 21.

RQ 22.

ESC7.

RQ 23.

RQ 24.

RQ 25.

RQ 26.

ESCS.

RQ 27.

RQ 28.

RQ 29.

RQ 30.

RQ 31.

ESCO.

RQ 32.

RQ 33.

Cerrar Sesion

El cierre de sesion se realizara desde el menu lateral, pulsando el botén ‘Salir’.
llustracion 3.

Cuando se cierre sesidon se eliminardn automaticamente las credenciales y el
token del sistema para no quedar registrados al volver a iniciar sesion.

Refrescar datos

Se podran refrescar los datos desde el boton ‘Refrescar’ en el menu lateral.
llustracion 3.

Al refrescar los datos se esperard haber recibido correctamente las 6rdenes y
los datos maestros. En caso de ser asi, se borraran de la base de datos los datos
anteriores para sustituirlos por los nuevos.

El botdn refrescar también intentara enviar los partes no sincronizados. En caso
de que no se hayan sincronizado tampoco al darle al botdon manualmente, se
reiniciara el contador, probando envios automaticamente cada 10 minutos.

Las ejecuciones en segundo plano estan contempladas en el ESC3.
Visualizar lista de OTs

La pantalla con la lista de drdenes de trabajo se visualiza automaticamente al
ser redirigido desde el inicio de sesidn, cuando éste ha sido correcto. /lustracion
4.

Cada orden de la lista de érdenes se verd como un card, mostrando un pequefio
resumen que describa la orden. Se mostraran los campos con el nimero de la
orden (identificador), con la fecha de inicio y con el trabajo a realizar.

Estos cards se agruparan en una seccion deslizable de la pantalla, por si no
entrasen todas las érdenes en una vista.

Se podra buscar una o varias drdenes concretas en el buscador superior de
ordenes. Este buscador tendra en cuenta el nUmero de orden. Si se buscase
“10”, aparecerian la 10, la 100, la 1089, etc. /lustracion 5.

Se podra seleccionar una de esas érdenes para ver en detalle, lo que llevara al
ESC9. Ilustracion 6.

Seleccionar OT

Paraseleccionar una orden se deberd pulsar en una de las érdenes de la pantalla
donde se encuentran la lista de drdenes disponibles. llustracion 5.

Cuando se haya seleccionado una orden se redirigird a una pantalla que
muestre el detalle de dicha orden. En esta pantalla apareceran los campos:
‘Fecha de inicio, ‘Fecha de fin, ‘Tipo’, ‘Instalacién’, ‘Cédigo orden cliente’,
‘Observaciones’ y ‘Trabajo a realizar’. llustracion 6.

pg. 18

RQ 34.

RQ 35.

ESC10.

RQ 36.

ESC11.

RQ 37.

RQ 38.

RQ 39.

RQ 40.

RQ 41.

RQ 42.

RQ 43.

ESC12.

RQ 44.

RQ 45.

Ademas de los campos mencionados, apareceran tres botones secundarios con
los textos: ‘Personal’, ‘Materiales y ‘Maquinaria. Al pulsar cada uno de estos
botones, el usuario sera redirigido a la pantalla que muestre la respectiva
informacién de cada uno. /lustracion 7. ESC10.

Por ultimo, deberd aparecer un botdn principal que mostrard el texto ‘Ver
partes de trabajo’, este botdn redirigird a la pantalla con la lista de partes
asociados a la orden seleccionada actualmente. /lustracion 7.

Visualizar maestros de OT

Cada una de las tres pantallas mostrara una tabla con la columna ‘Descripcién’
y ‘Horas’ (o ‘Unidades’ para los materiales), donde apareceran los valores
pertinentes asociados a la orden de la que se viene. llustraciones 8, 9 y 10.

Visualizar lista de PTs

Se accedera a través de una orden de trabajo, se visualizardn los partes de
trabajo asociados a dicha orden. llustraciones 11y 12.

Se podra buscar uno o varios partes concretos en el buscador superior de
partes. Este buscador tendra en cuenta el nimero de parte. Si se buscase “10”,
aparecerian el 10, el 100, el 1089, etc. /lustracion 13.

Al igual que las érdenes, los partes se mostraran también en forma de cards,
mostrando un resumen del parte con los parametros: nimero de parte
(identificador) y fecha de inicio. llustracion 12.

Se distinguirdn los partes cerrados no sincronizados de varias formas. La
primera: se mostrara un tercer parametro en las cards de los partes de trabajo
ya cerrados. También, cambiara el color, aplicando una capa para darle un tono
desactivado. Por ultimo, no serdn pulsables. /lustracion 12.

Los partes cerrados y sincronizados no se mostraran, siendo asi eliminados de
la vista de partes y de la base de datos.

La lista de partes sera deslizable, para poder ver los que no se muestran a
primera vista.

Desde esta pantalla se podra crear un nuevo parte mediante un botén con el
simbolo mas, o visualizar uno ya existente. /llustraciones 11, 12 y 13. ESC12 y
ESC13.

Crear PT

Desde la pantalla de visualizacion de la lista de partes dada una orden
determinada, se podra crear un nuevo parte asociado a esta orden.
llustraciones 11, 12y 13.

Cuando se pulse el botén se creard el parte automaticamente en la base de
datos, para asi prevenir pérdidas de informacion si la aplicacién se cerrase
repentinamente.

pg. 19

RQ 46.

RQ 47.

RQ 48.

RQ 49.

ESC13.

RQ 50.

RQ51.

RQ 52.

RQ 53.

ESC14.

RQ 54.

RQ 55.

A este nuevo parte se le asignara automaticamente un id (niUmero de parte
Unico). También se afiadira automaticamente como parametro la fecha de inicio
actual. /lustracion 14.

El resto de los parametros (observaciones y trabajo realizado) se crearan en
blanco, pudiendo ser editados por el usuario. Cuando éstos se editen, se
modificaran también en la base de datos. /lustracion 14.

Desde esta pantalla de creacidn de parte de trabajo se contemplaran también
el ESC 13. /lustracion 14.

El parte se guardara automaticamente en todo momento, es decir, no es posible
eliminarlo. Esto se hard para evitar cualquier posible pérdida de informacion.
No existirdn botones para guardar o cancelar la creacion de un parte. Sus
campos si pueden ser modificados. Si se hubiese cometido un error se deberia
hablar con el responsable para solucionarlo desde la central. Esto es debido a
qgue, en una empresa de construccion, cualquier pérdida de datos puede
suponer una gran pérdida econémica.

Visualizar/Editar PT

Desde la pantalla de visualizar lista de partes dada una orden determinada se
podra editar un parte de trabajo asociado a una orden. /lustraciones 12y 13.

Se pulsara sobre el parte que se desee visualizar y/o editar. Cuando se realice
esta accion se mostrard la pantalla con el detalle del parte. Ahi se podran editar
o visualizar los parametros que se desee. /lustracion 15.

Desde esta pantalla de detalle de parte de trabajo se contemplardn también el
ESC 14. llustracidn 15.

Cerrar parte (ESC13.1). Si se ha acabado con un parte de trabajo, se podra
enviar al servidor pulsando el botdn de cerrar parte. Si se cuenta con conexion
y se recibe correctamente en el servidor, el parte se eliminara de la base de
datos y ya no se vera en la lista de partes. En caso de que no se haya podido
sincronizar, permanecera en la lista de partes, pero se mostrara con fecha de
fin, a diferencia del resto, y no sera pulsable. /lustracion 15.

Visualizar/Editar maestros de PT

Hay tres pantallas diferentes para los tres tipos de datos maestros. Estas
pantallas son: personal, materiales y maquinaria. Las tres pantallas son
practicamente iguales, eso si, con sus respectivos titulos y datos. /lustraciones
16-27.

Estas pantallas estaran organizadas por cards, al igual que los resimenes de
Ordenesy partes en sus respectivas listas. En esta card apareceran dos campos:
uno para las horas y otro para los minutos (un sélo campo en el caso de los
materiales). Cuando se cambie alguno de los valores de un elemento se podran
aplicar los cambios para guardar la informacion o resetear para dejarla como
estaba. /lustraciones 16-27.

pg. 20

3.3.

3.4.

3.5.

RQ 56.

Tanto en la pantalla de creacién de parte como en la de visualizacidén/edicidn,
se podran gestionar los datos maestros mediante tres botones, uno para cada
tipo de dato maestro. En la pantalla de creacién empezaran establecidos todos
a 0, pudiendo ser afiadidos o borrados. En la pantalla de visualizacién/edicion
apareceran como hayan sido editados. /lustraciones 14y 15.

Requisitos de Persistencia

RQ 57.

RQ 58.

Debera persistir toda la informacién almacenada en la base de datos.

Cuando se actualice versién deberia eliminarse la aplicacién entera, incluidos
todos los datos que deberian permanecer intactos de normal. Esto es debido a
gue, si en una nueva versién se actualizase la estructura de la base de datos,
daria problemas con la base ya existente.

Restricciones de diseno de la interfaz de usuario

RQ 59.

RQ 60.

Se disefiara la aplicacion siguiendo los patrones de estilo mencionados (colores,
titulos, botones, iconos, etc.). Pudiendo cambiar los colores y el logo a peticion
del cliente. Ademas de tamafios u otros retoques por usabilidad.

El disefio debe ser lo mas sencillo e intuitivo posible, esto es debido a que el
usuario promedio que utilizara la aplicacion tendra un perfil de conocimiento
tecnoldgico bajo. Por este motivo es por el que se han evitado otras formas de
acceso a pantallas como mendus laterales.

Restricciones de disefio arquitectdnico

RQ 61.

RQ 62.

RQ 63.

El disefo del software de la aplicacion se realiza bajo el principio de
programacion orientada al Ul.

El lenguaje que se va a utilizar, en coherencia con el requisito anterior, es Dart.
Se elige este lenguaje debido a que esta optimizado para la interfaz de usuario.

Se utilizara el patrén de disefio BLoC, patrén propio de Flutter. Es un patrén
muy similar al MVVM (Modelo-Vista-VistaModelo).

pg. 21

4. Diseno

Véase que, aunque este documento no recoja los requisitos y funcionalidad del servidor, se incluyen
los casos e interacciones (Unicamente los relacionados con la app mdvil) en la parte de disefio para un
mayor entendimiento del funcionamiento de la aplicacion.

Explicaciones, aclaraciones y suposiciones generales:

e Para mejorar la comprensién del lector, se ha optado por utilizar el término "maestro" como
una generalizacién para representar a las personas, materiales y maquinaria en todos los
diagramas. En lugar de repetir las clases, funciones, elementos, etc., para cada tipo de
maestro, se ha simplificado la representacion utilizando Unicamente el término "maestro".
Esto se ha hecho con el propdsito de evitar confusiones y reducir la complejidad visual de los
diagramas.

e Siempre que se borren los datos de la base de datos, bien sea en el inicio de sesién o al
refrescar, nunca se borrardn los partes no sincronizados con el servidor. Estos permaneceran
en la base de datos hasta que consigan sincronizarse.

e Siempre que se sincronice un parte de trabajo, se borrara automaticamente.

e Los IDs de todas las érdenes de trabajo, partes de trabajo y maestros se generaran siempre
automaticamente.

e Cuando se introduzca o extraiga un dato de la base de datos se debe supone que, mientras
los parametros sean correctos, siempre funcionara.

e las fechas se usaran siguiendo el formato ‘dd/MM/yyyy — hh/mm’.

e Se debe suponer que en todas las lamadas a la API se utilizara el bearer token como método
de comprobacioén.

pg. 22

4.1.

Casos de uso

Gestion Partes de Trabajo

Gestion de sesion

(] Cerrar sesicn >

—_ (Esce)

Obtencion de datos \

__I_rchiar sesi;n__h-_ﬁ) \

<-___EE'°‘_C5J___-—-’

|

(;"_ Crear PT (ESC12) “'>

— R

/,’;l'lsua lizar lista PTs)
___(ESC1)

<~ Editar PT (ESC13)
C itar PT {))

——— -

//,—Edltar Maestros de--)

//\» ___PT(ESC14) _

Us:il'c;.ﬂo kN

|~ Cerrar PT (ESC13.1)
L S

| —
— _/

o -
Refrescar datos >
_ (ESCT)

__(ESC8)

Selecclonar OT . S

. S

(Visuallzar lista OTs “““]

/{— Visuallzar maestmss

de QT (ESC10) >

_(ESCE)

-

Figure 1: Diagrama de Casos de Uso del Cliente 'GestorTareas'

Gestion de sesion
Description [

Relacionado con
ESCS

Servidar

Description AN

Relacionado con
ESC11

Almacenamiento de datos

\'\ e —_— Diescription [N
P]
C Envlar Materlales 3

Envio de datos

Description [

. Relacichado con
ESCSy ESCT

- Description [N

= . Relaciohado con
" Enviar Personal > ESCSy ESCT
e

Relacionado con
— _— ESCE y EBCT

relacionado con
ESCHy ESCT

Figure 2: Diagrama de Casos de Uso del Servidor 'GestorTareas'

pg. 23

4.2.

4.2.1.

Diagramas de clases

Diagrama de clases del cliente

Explicaciones, aclaraciones y suposiciones:

4.2.1.

Las clases OrdenTrabajo, ParteTrabajo y Maestro heredan de la clase
ObjectWithMap el parametro id y las funciones fromMap y toMap. Debido a que
las funciones se sobrescriben, se han representado de todas formas para cada
tabla. En cambio, los ids no lo hacen, por lo que se han omitido.

A diferencia del punto anterior, las clases OrdenMaestro y ParteMaestro no
extienden de ObjectWithMap debido a que su clave primaria estd compuesta por
las claves ajenas que conforman al objeto. Asi que no hereda el id, y las funciones
no se sobrescriben.

Las clases OrdenTrabajoDao, ParteTrabajoDao y MaestroDao heredan de
BaseDao las funciones CRUD badsicas y el atributo tableName.

A diferencia del punto anterior, las clases OrdenMaestroDao y ParteMaestroDao
no heredan de BaseDao. Por esto mismo, son los Unicos DAOs donde se han
representado los métodos CRUD, ademads de en BaseDao.

Se entiende que todo parte de trabajo debe estar asociado a una orden de trabajo,
es por ese motivo por el que se representa la relacién como una agregacion y no
como una asociacién, porque un parte no puede existir sin una orden.

Diagrama 1

Diagrama de clases del servidor

Explicaciones, aclaraciones y suposiciones:

El diagrama de clases del servidor es Unicamente orientativo y no debe seguir
estrictamente, pues como se ha mencionado en la parte del analisis, es
responsabilidad del equipo web encargado de disefiar la aplicacién del servidor.

Diagrama 2

pg. 24

4.3.

Diagramas de actividades

4.3.1. Diagrama de actividades Arranque e Inicio de Sesidn

En este diagrama de actividades se contempla el arranque y el inicio de sesién. ESC1,
ESC5 y ESCS.

Diagrama 3

4.3.2. Diagrama de actividades Menu Lateral

El diagrama contempla las posibles acciones del menu lateral. ESC3, ESC7 y ESC8.

Diagrama 4

4.3.3. Diagrama de actividades Listado de Partes

En este diagrama de actividades se parte de la pantalla con la lista de érdenes, debido a
que es la pantalla principal que se muestra después de haber iniciado sesién
exitosamente. Muestra las posibles actividades hasta llegar a mostrar el listado de
partes. ESC8, ESC9, ESC10y ESC11.

Diagrama 5

4.3.4. Diagrama de actividades Creacion de Parte

En este diagrama se parte del punto de salida al que se llega con el diagrama anterior,
la pantalla que muestra el listado de partes. Se contemplan las posibles acciones hasta
crear un parte. Con la accion “Editar campos del parte” no sdélo se incluyen sus
parametros propios si no también los maestros asociados al parte. ESC11, ESC12 y
ESC14.

Diagrama 6

4.3.5. Diagrama de actividades Visualizacidon/Edicion/Cierre de Partes

En este diagrama también se parte de la pantalla con la lista de partes de trabajo. Se
muestran las posibles acciones a realizar para visualizar en detalle un parte, o también
editarlo y/o cerrarlo. Con la accién “Editar campos del parte” no sélo se incluyen sus
parametros propios si no también los maestros asociados al parte. ESC4, ESC11, ESC13
y ESC14.

Diagrama 7

pg. 25

4.4. Diagramas de secuencia

Explicaciones, aclaraciones y suposiciones generales:

e Se debe suponer que todos los DTOs se parsean al obtenerlos del servidor y al
introducirlos en la base de datos. Se han omitido estas operaciones para aportar
mayor claridad.

e Cuando se selecciona una determinada orden o parte, no es necesario llamar a
ninguna funcion para ver su obtener el objeto porque se supone que se debe
utilizar el objeto ya existente en la lista.

4.4.1. Diagrama de secuencia Arranque e Inicio de Sesion

Este diagrama recoge la secuencia a realizar para el arranque de la aplicacién y el inicio de
sesion de un usuario hasta acabar en la lista de drdenes de trabajo. ESC1, ESC5 y ESCS.

Explicaciones, aclaraciones y suposiciones:

e Se supone que hay conexidn a internet.
e Se supone que las credenciales son correctas.

Diagrama 8

4.4.2. Diagrama de secuencia Refrescar
Este diagrama recoge la secuencia a realizar para refrescar los datos. ESC7 y ESC8.
Explicaciones, aclaraciones y suposiciones:

e Se supone que hay conexidn a internet.

Diagrama 9

pg. 26

4.4.1. Diagrama de secuencia Visualizar detalle de orden y maestros

Este diagrama recoge la secuencia a realizar para ver el detalle de una orden de trabajo
seleccionada y sus maestros. ESC8, ESC9 y ESC10.

Diagrama 10

4.4.2. Diagrama de secuencia Creacion de Parte

Este diagrama recoge la secuencia a realizar para crear un parte, asi como para editar este

parte en su creacion afnadiendo los campos y los maestros. ESC8, ESC9, ESC11, ESC12 y
ESC14.

Diagrama 11

4.4.3. Diagrama de secuencia Cierre de Parte

Este diagrama recoge la secuencia a realizar para editar un parte y cerrarlo, incluyendo la
edicidn de sus campos y maestros. ESC8, ESC9, ESC11, ESC13 y ESC14.

Explicaciones, aclaraciones y suposiciones:
e Se supone que hay conexion a internet.

Diagrama 12

pg. 27

4.5. Pruebas que realizar

4.5.1.

4.5.2.

4.5.3.

4.5.4.

Pruebas de interfaz

Se probara la usabilidad de la interfaz mediante técnicas de evaluacién de usuario,
como pruebas de tareas, para asegurar que los botones y elementos de la interfaz
estén correctamente etiquetados y sean faciles de entender para los usuarios.

Se realizardn pruebas de compatibilidad para comprobar que la aplicacion se
adapte correctamente a diferentes tamafios de pantalla, resoluciones y
dispositivos.

Se realizaran pruebas de usabilidad con usuarios no involucrados en el desarrollo
para recoger sus opiniones y sugerencias, se les dara una tarea especifica y se
observard como interactian con la interfaz, esto ayudara a detectar problemas
en la interfaz que los desarrolladores no han notado.

Pruebas de funcionalidad

Se realizardn pruebas unitarias y de integracion para asegurar que la aplicacion
cumple con todos los requisitos especificados en el documento de requisitos.

Se probard cada una de las funcionalidades de la aplicacién mediante casos de
prueba automatizados y manuales para asegurar su correcto funcionamiento.

Se comprobara que la aplicacion maneja correctamente los errores y excepciones
mediante pruebas de escenarios de fallo.

Pruebas de integracion

Se realizardn pruebas de integracién entre los diferentes componentes y modulos
de la aplicacion para asegurar que todo funciona correctamente juntos.

Se comprobara que la aplicacidn se integra correctamente con otros sistemas y
servicios externos si es necesario mediante pruebas de integracion.

Se comprobara que la aplicacion maneja correctamente las interacciones entre
componentes y servicios externos.

Pruebas de rendimiento

Se realizaran pruebas de rendimiento para medir el tiempo de respuesta de la
aplicacion y asegurar que cumpla con los requisitos de velocidad y capacidad.

Se comprobara que la aplicacidon no se sobrecarga y se mantiene estable incluso
bajo una alta carga de trabajo mediante pruebas de cargay stress.

Se comprobara que la aplicacion maneja correctamente la escalabilidad y el
rendimiento en diferentes entornos y configuraciones.

pg. 28

4.5.5.

4.5.6.

4.5.7.

Pruebas de seguridad

Se realizaran pruebas de seguridad para comprobar que la aplicacion estd
protegida contra posibles ataques y violaciones de seguridad mediante pruebas
de penetracion y escaneo de vulnerabilidades.

Se comprobara que la aplicacion cumple con los estandares y regulaciones de
seguridad aplicables, incluyendo el cumplimiento de normativas como PCI-DSS y
HIPAA.

Se realizaran pruebas de seguridad para verificar la proteccidn de la aplicacidn
contra ataques comunes como inyeccion SQL, XSS y CSRF.

Pruebas de uso

Se realizaran pruebas de uso para comprobar que la aplicacién es facil de usary
ofrece una experiencia de usuario satisfactoria para los usuarios mediante
pruebas de aceptacion y pruebas de usuario final.

Se recogeran comentarios y sugerencias de los usuarios para mejorar la
aplicacion.

Pruebas de regresion

Se realizaran pruebas de regresion para comprobar que las nuevas
funcionalidades y cambios no afectan negativamente al funcionamiento de las
funcionalidades existentes de la aplicacién mediante pruebas automatizadas y
manuales.

Se asegurara de que la aplicacidn sigue funcionando correctamente después de
cualquier cambio o actualizaciéon mediante pruebas de regresion.

Se compararan los resultados de las pruebas de regresidén con los resultados de
las pruebas originales para detectar cualquier cambio o desviacion mediante
herramientas de comparacion de resultados de pruebas.

pg. 29

5. Desarrollo

Notas previas:

La aplicacién se ha desarrollado sin servicios dado que se decidié que esto formaria parte de una
segunda fase de desarrollo en conjunto con un equipo encargado de desarrollar el back-end, junto
con otras nuevas funcionalidades.

Lo explicado en este apartado de desarrollo es sélo una pequefia muestra del cédigo, dado que
explicar todo seria imposible porque superaria el limite de paginas establecido para el documento. Se
han elegido partes sencillas para facilitar la comprensién de cualquier lector que no haya trabajado
con el framework Flutter. Ademas de lo explicado aqui, hay muchisimas caracteristicas que tiene el
proyecto. En este enlace se puede visualizar el proyecto entero. Se recomienda echar al menos un
vistazo, principalmente a la carpeta /ib, donde se encuentra la mayor parte del cédigo de la aplicacion,
para valorar el trabajo del autor.

5.1. Estructura

En el apartado 1.6 se ha mencionado el patrén arquitecténico BLoC. Este es un patrén
como cualquier otro utilizado en la programacion: MVC, MVVM, MVP, etc. La diferencia
es que BLoC es un patrén propio de Flutter, se creé por y para ser utilizado en este
framework. Aunque es cierto que se podria utilizar el patrén sin hacer uso de librerias
(escribiendo todo el cdédigo a mano) esta ampliamente extendido el uso de las librerias
bloc y flutter_bloc entre los programadores de Flutter. Esto es debido a que facilitan la
implementacion de clases Bloc sin perder recursos, como el tiempo de compilacién.

Como es dificil entender el concepto de BLoC sin tener conocimiento previo en este
campo, esta imagen del paquete oficial bloc ayudara a su entendimiento.

states request
o

data

Imaginemos que tenemos una pantalla donde se desea mostrar una lista de personas. En
nuestro Ul (interfaz) tenemos elementos para esto, como un ListView para agrupar
verticalmente y Cards para cada una de las personas en las que se mostraran algunos de
sus datos, como, por ejemplo: nombre, fecha de nacimiento y DNI. Esta lista en un
principio esta vacia, asi que lo que se puede hacer es, que cuando se avance de la pantalla
anterior (del login, por ejemplo), al principio del cédigo, se llama mediante un evento al
bloc. Dentro del manejador del evento en bloc se hace una request a la base de datos o al
servidor (lo que tenga la aplicacidn) para obtener la lista de personas. La base de datos o
el servidor envian la lista de personas al bloc. Una vez el bloc tiene esa lista de personas,

pg. 30

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo

hace que cambie el estado de la interfaz, (que actualmente se veia vacia porque la variable
con la lista de personas estaba vacia) haciendo que se vuelva a construir el ListView, esta
vez con la lista llena. Por lo que el estado de la interfaz cambia y ahora se muestra la lista
graficamente con todas las personas que se han obtenido de la base de datos o del
servidor.

Como se podrd suponer, esto no es tan simple como parece, hay que utilizar multiples
elementos para poder realizar este proceso. Primeramente, el bloc se divide en tres
elementos: el estado (BlocState), el evento (BlocEvent) y el propio bloc (Bloc). El BlocState
es una clase que contiene las variables que pueden cambiar en una vista a lo largo del
tiempo, en el ejemplo anterior seria la lista de personas. El BlocEvent es una clase que
define las funciones (eventos) que se llaman desde la vista. Y, por ultimo, el Bloc, es una
clase que maneja los eventos definidos en el BlocEvent, es la que implementa esas
funciones. Es la que se encargaria de llamar a la base de datos o al servidor para obtener
la lista de personas, y emitir el nuevo estado (cambiar los valores del BlocState). Todos
estos elementos forman parte de la libreria bloc, aunque, como se ha mencionado
anteriormente, se pueden implementar a mano, pero el resultado seria el mismo.

Ademas de estos elementos, también es conveniente utilizar los de la libreria flutter_bloc.
Todo lo mencionado estd muy bien, pero, cdmo es posible que cambiando el estado de
una variable del BlocState, automaticamente cambie también en la interfaz. Esto se hace
mediante varios elementos, en el ejemplo anterior se utilizaria el BlocBuilder. Este
elemento sirve para que se vuelva a construir un determinado widget cuando se cambie
el estado del BlocState que escucha. En este caso se envolveria el ListView en un
BlocBuilder, también se utilizaria una funcién llamada buildWhen para que sélo se volviera
a construir el ListView cuando cambiase el valor de la variable que contiene la lista de
personas. Esto es debido a que, si hubiera multiples variables en el BlocState, lo cual es lo
mas corriente, cada vez que se cambiase una de ellas el widget ListView se volveria a
construir, sin ningln cambio, y esto no es nada dptimo. Ademas del BlocBuilder existen
otros elementos utilizados para otras finalidades, como BlocListener, BlocProvider o
BlocSelector. Estos elementos se veran mds adelante ejemplificados cuando se explique
el codigo.

Entendiendo todo lo anterior, ahora se puede explicar la estructura del cédigo. Se divide
entres partes: la vista, los blocs y el modelo. En Flutter los elementos graficos de la interfaz
se denominan Widgets, son todos aquellos elementos como los ListView, Container, Text,
Button, TextField, y un largo etcétera. La vista se compone de todos estos widgets, y se
divide en dos partes: las pdginas y los componentes genéricos. Después estan los blocs,
explicados en este mismo apartado. Y por ultimo el modelo, basicamente se compone de
la base de datos, los DTOs y los DAOs. Tanto la vista, como los blocs, como el modelo se
explicaran aisladamente mas adelante.

En este enlace se puede ver la estructura del proyecto.

pg. 31

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib

5.2. Modelo

El modelo se compone de tres partes: la base de datos, las clases DTO y las clases DAO. La
base de datos es el componente donde se almacenan los datos persistentes de la
aplicacion. Los objetos DTO (Data Transfer Object) son estructuras de datos utilizadas para
transferir informacion. Los DAO (Data Access Object) son clases que facilitan la

manipulacion de los objetos DTO en la base de datos.

El modelo entero se encuentra en este enlace.

~ maestro_dao
magquina_dao.dart
material_dao.dart
persona_dao.dart
v orden_maestro_dao
orden_magquina_dao.dart
orden_material_dao.dart
orden_persona_dao.dart
~ parte_maestro_dao
parte_maquina_dao.dart
parte_material_dao.dart
parte_persona_dao.dart
base_dao.dart

orden_trabajo_dao.dart

parte_trabajo_dao.dart

~ database
my_database.dart
dels
maestro
maguina.dart
material.dart
persona.dart
v orden_maestro
orden_maguina.dart
orden_material.dart
orden_persona.dart
~ parte_maestro
parte_maquina.dart
parte_material.dart
parte_persona.dart
orden_trabajo.dart
parte_trabajo.dart

A continuacidn, se detallardn estos componentes, que en conjunto forman el modelo de

la aplicacion.

5.2.1. Base de datos

La base de datos se compone por una Unica clase: la clase MyDatabase. Es la que se
encarga de gestionar la base de datos utilizando la biblioteca sqflite. Su estructura es la

siguiente.

pg. 32

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/model

instance = My _init();

_initDB db').then((db) {
_database
_createDB(_database!, 1);

H;

Future<Database> database (o |
if (_database != null} retu _database!;

_database = await _initDB('my_data .db');
return _database!;

Future<Database> _initDB(String filePath) i
L documentsDirectory = it getApplicationDocumentsDirectory();
L path = join(documentsDirectory.path, filePath);

return it openDatabase
path,
version: 1,
onCreate: _createDB,

d> _createDB(
it db.execute('"’

echalnicio TEXT NOT NULL,
Fin TEX

El constructor privado MyDatabase._init() es el punto de entrada para inicializar la base
de datos. Este constructor privado (indicado con el guion bajo) llama al método _initDB
gue abre o crea la base de datos y se asigna a la variable privada _database una vez que
esté disponible. Ademds, se Ilama al método _createDB para crear las tablas necesarias
en caso de que no existan.

El método privado _initDB se encarga de abrir o crear la base de datos en una ubicacion
especifica del dispositivo. Utiliza la funcidon getApplicationDocumentsDirectory para
obtener el directorio de documentos de la aplicacion y luego se une al nombre del archivo
de la base de datos para formar la ruta completa. Luego, se utiliza la funcién
openDatabase para abrir la base de datos en la ruta especificada. Si la base de datos no
existe, se ejecuta el método _createDB para crear las tablas.

El método privado _createDB se encarga de crear las tablas en la base de datos utilizando
el objeto db pasado como argumento. Cada declaracion ‘CREATE TABLE IF NOT EXISTS’
verifica si la tabla ya existe y, si no, la crea.

Ademas de los métodos anteriores, existen otros métodos basicos para controlar la base
de datos, como clearDatabase o close que se encargan de limpiar las tablas de la base de
datos o cerrarla, respectivamente. En este enlace se puede ver la clase completa si se
desea.

Para ver la estructura de la base de datos y de la clase entera, pulsar en el enlace.

pg. 33

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/model/database/my_database.dart

5.2.2. DTOs

Todas las clases DTO tienen el siguiente aspecto.

[ithMap {
> fechalnicio;
7 fechaFin;
ring? tipo;
ring? observaciones;
L 5tring? trabajoARealizar;
ring codigoOrdenCliente;
ng? instalacion;

1T
ire this.fechaInicio,
.fechaFin,
.tipo,
.observaciones,
.trabajoARealizar,
ired this.codigoOrdenCliente,
.instalacion,
(id: null);

fechaInicio: DateTime.parse(map(['fechaInicio'l),
fechaFin
map [haFin'] != null
tipo: mapl ‘1,
observaciones: map(l'obse
trabajoARealizar: mapl['tr
codigoOrdenCliente: map[’
instalacion: map['instala
«oid = map['id

@override

: fechalnicio.toIso86@15tring(),
1 fechaFin?.toIsoB6015tring(),

observaciones,
trabajoARealizar,
't codigoOrdenCliente,
instalacion,

il
map['id'] = id.toString();

return map;

Para explicar la estructura de un DTO se va a utilizar OrdenTrabajo como ejemplo. Primero
de todo la clase contiene una serie de variables, que pueden ser nullables o no nullables
(nulas o no nulas), indicado con el simbolo de interrogacién de cierre seguidamente del
tipo de dato.

Después esta el constructor del objeto, se utiliza cada vez que se crea una nueva instancia.
Cuando se crea una instancia se han de especificar los pardmetros que van precedidos por
la palabra clave required. Como se puede observar, concuerda con los que no son
nullables, esto suele ser asi excepto en alguna excepcion que se verd en este mismo punto
en la explicaciéon de la clase ObjectWithMap. Las llaves del constructor envolviendo a los
parametros son una forma de hacer que al crear una nueva instancia del objeto utilizando

pg. 34

el constructor, se indiquen los nombres de los parametros seguidos de dos puntos. Si no
se pusieran estas llaves los pardmetros serian indicados por posicidn, y no por nombre.

Por dltimo, existen dos métodos: fromMap y toMap. Estos métodos se utilizan para
parsear la informacién. El método fromMap construye una instancia de un objeto
(indicado con la palabra clave factory) desde un mapa. El método toMap hace lo contrario,
convierte una instancia del objeto en un mapa. Son necesarios cuando se quiere introducir
un objeto en la base de datos o cuando se desea componer un objeto con los campos
provenientes de ella. Actualmente se utilizan para la base de datos, pero también se
puede utilizar estos métodos para recibir o enviar datos a través de una API.

Ademas, todos los DTOs menos los surgidos por una relacidn entre otras dos entidades,
extienden de ObjectWithMap. Es una clase que contiene un id y los métodos fromMap y
toMap.

En cuanto al uso del id en la clase OrdenTrabajo, hay varias consideraciones:

1. Elidesun atributo que actia como identificador para cada instancia de OrdenTrabajo
en la base de datos y se hereda como una propiedad de ObjectWithMap.

2. Seinicializa con el valor null. Esto se debe a que, cuando se crea una nueva instancia
de OrdenTrabajo, aun no se ha asignado un valor al id porque se genera
automaticamente cuando se inserta la instancia en la base de datos.

3. En el método fromMap de OrdenTrabajo, se le asigna el valor del id a la instancia de
OrdenTrabajo creada a partir del mapa. La asignacion se realiza mediante el operador
de cascada ("..") seguido de la asignacidn id = map['id']. Esto se hace después de haber
creado la instancia, ya que se asume que el valor del id se encuentra en el mapa de
datos proporcionado. De esta manera, se actualiza la propiedad id de la instancia de
OrdenTrabajo con el valor correspondiente del mapa.

4. En el método toMap de OrdenTrabajo, si el id no es nulo, se agrega al mapa. Sin
embargo, si el id es null, no se incluird en el mapa, lo que es util cuando se desea omitir
el id, en los casos donde se genera automaticamente.

pg. 35

Ademas de los anteriores, la clase ParteTrabajo tiene otros dos métodos, que no tienen
el resto de las clases:

fechaInicio: Da e.now(),
observaciones: '',;
trabajoRealizado: '',
identificaderDispositive: "',

ibajo copyWith(
t? ordenTrabajold,
ime? fechaInicio,
e? fechaFin,
ring? observaciones,
ring? trabajoRealizado,

ring? identificadorDispositivo,
ring? coordenadas,
id,

eturn ParteT jo
ordenTrabajoId: ordenTrabajoId ?? this.ordenTrabajolId,
Tfechalnicio: fechaInicio 7?7 this.fechalnicio,
fechaFin: fechaFin ?? this.fechaFin,
observaciones: observaciones 77 this.observaciones,
trabajoRealizado: trabajoRealizado 7t this.trabajoRealizado,
identificaderDispositivo:

identificaderDispositive 77 this.identificadorDispositive,
coordenadas: coordenadas 77 this.coordenadas,
id: id ?? this.id,

El método initial devuelve una instancia de ParteTrabajo. Es una forma de, al declarar una
variable de tipo ParteTrabajo, inicializarla con atributos predeterminados. Es por eso por
lo que en este caso se inicializa siempre con la fecha actual y con un id asociado de orden
de -1 (id no asociado a ninguna orden real).

Después, a medida que se van editando los campos del parte, se utiliza el método
copyWith. Este método funciona como un setter compuesto para todos los pardmetros
del objeto. Se pueden cambiar los valores individualmente o en conjunto. Por lo que,
teniendo un parte de trabajo determinado, al editar las observaciones se utiliza este
método cambiando los valores de la instancia para, posteriormente, actualizar el objeto
entero usando un update en la base de datos.

En el apartado 5.5 se vera el uso conjunto de ambos métodos.

pg. 36

Antes se ha mencionado que las entidades surgidas de la relacidon de otras entidades no
heredan de ObjectWithMap. Esto es debido a que esas entidades surgidas utilizan como
clave primaria la clave compuesta de las otras dos entidades. Por eso no requieren tener
una clave id identificatoria. Los métodos toMap y fromMap se implementan de la misma
forma, la Unica diferencia es que no se sobrescriben y que no tratan con el parametro id.

enPe

int ordenTrabajold;
L int personald;

ouble horas;

ordenTrabajold,
personald,
this.horas,

.fromMap(Map<String, dynamic> map) {
rn 0
ordenTrabajoId: mapl enTrabajold'],
personald: mapl[' d'l,
horas: map['horas

dynamic> toMap

old': ordenTrabajold,
: personald,

horas,

int? id;
ObjectWithMap({req

fromMap<T

W

Aungue en este caso el id es un atributo nullable, es obligatorio al construir el objeto. Esto
se hace para que las clases que extiendan de ObjectWithMap obligatoriamente tengan un
id, pero que inicialmente sea nulo, hasta que cuando se introduzca la instancia en la base
de datos, adquiera un valor.

En el siguiente enlace se pueden ver todos los DTOs. Y en este enlace la clase
ObjectWithMap (la clase se encuentra en la parte inferior).

pg. 37

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/model/models
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/model/daos/base_dao.dart

5.2.3. DAOs

Los DAOs se utilizan para manipular mediante las operaciones CRUD (creacidn, lectura,
actualizacién y eliminacion) conjuntos de datos, en este caso, los DTOs.

Unicamente se utilizan en los Bloc, donde se abstraen e introducen los DTOs de la base de
datos. No se utilizan en la vista debido a que romperia el patrén arquitecténico BLoC.

En el desarrollo de este cddigo se ha utilizado una clase abstracta llamada BaseDao que
define e implementa las operaciones CRUD, para que, al extenderla otra clase, no sea
necesario implementar estos métodos de nuevo. Esto funciona con todos los métodos
gue no necesitan devolver un objeto especifico, pero en el caso de los métodos get
(lectura), hay que implementarlos en cada DAO.

Jao<T extends ObjectWithMap> {
ing tableName;

ired this.tableName});

Future<T?> get(int id);

Future<List<T>> getAll();

re<int> update(T obj) a |
L db it MyD nstance.database;
db.update
tableName,
obj.toMap(),
where: 'id ’
whereArgs: [obj.id],

it MyD . instance.database;
db.delete

tableName,
whera: 'id P!,
whereArgs: [id],

nt> deleteAll
await MyDatabase.instance.database;
11t db.delete(tableName);

Como se puede observar la clase abstracta BaseDao toma como parametro el objeto T,
este objeto ha de ser una subclase de ObjectWithMap. Esto permite al DAO trabajar con
diferentes tipos de objetos que implementan esa clase.

El atributo tableName es un String que representa el nombre de la tabla de la base de
datos con la que el DAO interactua.

pg. 38

A continuacidn, se explica la estructura de una clase DAO utilizando el ejemplo de
ParteTrabajoDao.

instance => _instance;

tableName:

tableName,
where: 'id [
whereArgs: [id],

maps.isNotEmpty
ParteTrabajo. fromMap{maps.first);

= getAll() async {
)ase.instance.database;
fnamics> maps = it db.query(tableName) ;

return List.generate(maps.length, (i) {
rn ParteTrabajo.fromMap(maps[i]);

teTrabajo>> getAllPartesDe0rden(
nt ordenTrabajoId}) € {
ait B instance.database;
al List=Map ring, dynamic>> maps = t db.query
tableName,
where: ' enTrabajold = 7°,
whereArgs: [ordenTrabajoId],

List.generate (maps.length, (i) {
rn ParteTra . fromMap (maps [i])

ParteTrabajoDao contiene un constructor interno que crea una Unica instancia de la clase
cuando se llama desde el método get instance utilizando la variable privada instance. Esto
es exactamente igual en todos los DAOs.

Se puede observar que los métodos de creacidn, actualizacidn y eliminacidn no hace falta
sobrescribirlos, como se menciona al principio del apartado. Unicamente es preciso
sobrescribir los métodos de lectura (get). Ademas de los dos métodos get genéricos que
han de estar obligatoriamente en cada DAO: get y getAll; existen otros métodos
especificos en cada DAO. En la imagen anterior se puede ver uno llamado
getAllPartesDeOrden que devuelve todos los partes de trabajo asociados a un id de orden
determinado.

Si se desea ver en profundidad, en este enlace se encuentra la clase ParteTrabajoDao.

Como se puede observar, los métodos realizan consultas utilizando clausulas de SQL para
obtener los datos deseados.

pg. 39

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/model/daos/parte_trabajo_dao.dart

5.3.

En el caso de las clases DAO que trabajan con DTOs compuestos por dos clases, es decir,
las clases Orden-Maestro DAO y Parte-Maestro DAO (para cada uno de los tres maestros),
como no extienden de BaseDao, al utilizar ésta la clase ObjectWithMap, tienen
implementadas todas las funciones CRUD. Es decir, no sélo se implementan las de lectura,
sino también las de creacidn, actualizacién y eliminacién.

En el siguiente enlace se pueden ver los DAOs completos.

Blocs

Para la implementacién de los blocs se ha utilizado un paquete llamado freezed que se
utiliza para generar clases inmutables en Dart de manera sencilla. Las clases inmutables
son aquellas cuyos objetos no pueden cambiar una vez creados. Son Utiles cuando se
desea garantizar que los objetos sean inmutables para evitar cambios inesperados en el
estado de la aplicacion. No importa si se utiliza el paquete freezed o no, los Bloc tienen la
misma funcionalidad, pero cambia el aspecto de las tres clases, siendo mas sencillo de
implementar. Como el autor tiene experiencia creando Bloc de ambas maneras, ha optado
por utilizar el paquete, dado que facilita el trabajo. En el siguiente enlace se muestra la
diferencia de un Bloc sin freezed y con freezed.

En este proyecto existen dos Bloc: el que trabaja con las drdenes de trabajo y el que lo
hace con los partes de trabajo. Ambos Bloc no trabajan Unicamente con las érdenes y los
partes, si no con todo lo relacionado a las mismas. Es decir, el Bloc que controla la lista de
drdenes también es el que controla los maestros de una orden.

Como el Bloc relacionado con las érdenes de trabajo es similar al relacionado con los
partes de trabajo, pero con menor funcionalidad dada la estructura de la aplicacién, se va
a utilizar como ejemplo el Bloc que gestiona los partes de trabajo.

Dada la explicacién en el apartado 5.1 (el cual se recomienda ir revisando mientras se ven
los ejemplos), a continuacién, se va a ver un ejemplo real de un Bloc (de los tres
componentes que lo conforman). Notar que: en la primera linea del BlocState y del
BlocEvent se puede observar que forman parte de otra clase, dado que el estado y el
evento son dos de los tres elementos que lo componen: BlocState, BlocEvent y el propio
Bloc. A diferencia de en estas clases, en el propio Bloc aparecen las partes que lo
componen, y no que forma parte de otra clase. Estas partes son: el estado, el evento y el
Bloc (la clase autogenerada por freezed).

En este enlace se pueden ver los dos Bloc implementados en la aplicacién.

pg. 40

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/model/daos
https://ppantaleon.medium.com/flutter-bloc-freezed-write-less-code-e916d4e0d4cb
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/blocs

5.3.1. BlocState

El BlocState es el encargado de definir los parametros que escucha la vista.

@freezed
Li
ad te
l isLeoading,
L isError,
jo= listPartesTrabajo,
o lastParteCreated,
lastParteModified,
| isButtonEnabled,
| isParteClosed,

sona> listPartePersonas,
a> listPersonas,

l> listParteMateriales,
listMateriales,

na> listParteMaguinas,
listMaquinas,

isError: fals
listPartesTrabajo:
lastParteCreated:
lastParteModified:
isButtonEnabled: fa
isParteClosed: f
listPartePersonas:
listPersonas: f
listParteMateriales: o
listMateriales: o
listParteMaquinas: 0
listMaquinas: f

Como se puede observar existen dos constructores, el primero sirve para definir las
variables que va a contener el BlocState (en este caso llamado ListadoPartesState), el
segundo es otro constructor adicional que llama al primero asignando un valor a todas las
variables, es el utilizado desde fuera.

Todos estos parametros que contiene el BlocState son parametros que pueden ser
cambiados de valor al ser manipulados en un evento.

- Por ejemplo, el pardmetro isLoading se establece a verdadero cuando se esta realizando
algun evento donde el usuario debe esperar (como mientras carga la lista de partes de
trabajo). Después, en una pantalla se escucha este parametro mediante un BlocListener,
para que cuando se detecte que esta en verdadero, se muestre un widget circular en mitad
de la pantalla para indicar que esta cargando.

Por ejemplo, la lista de partes se inicializaria vacia (como el resto de los pardmetros), y
cuando el usuario se dirigiese a la pantalla que contiene la lista de partes, un evento
cambiaria el valor de la variable listPartesTrabajo en el BlocState, y después en la pantalla
se utilizaria un BlocBuilder para escuchar la variable y volver a pintar la lista llena.

pg. 41

5.3.2. BlocEvent

El BlocEvent es la clase que define las funciones que se van a utilizar desde la vista. Estas
funciones se Ilaman eventos. En el BlocEvent Unicamente se definen, no se implementan.
La implementacién se realiza en el Bloc, utilizando un controlador para cada evento.

L ar t]

t.onlLoadPartes() OnLoadPar

0 ent.onLoadPartesDe0rden(
t ordenTrabajold}) = OnLoadPar

stadoPartesEvent.onSearch(
q ring search}) = OnSearch;

:5Event.onUpdatePartel
ajo parteTrabajol) = OnU

ent.onChangeButtonState(

PartesEvent.onlLoadPersonasDeParte(
parteTrabajoId}) = OnLoadPe €

t.onLoadPersonasDePartePersonal) =

EH

sEvent.onSearchPersonal
abajold, requir ring search}) = OnSearchPer

PartesEvent.onUpdateHoursPartePersonal
parteTrabajold,
int personald,
7 hours,
7 mins}) = OnUpdateHoursParteP

Para definir una funciéon primero se pone el nombre del BlocEvent, en este caso
ListadoPartesEvent, y después de un punto, el nombre de la funcién. Después se iguala al
nombre que se desea dar al evento. Asi después, cuando se quiera definir el
funcionamiento utilizando un controlador del evento en el Bloc, se puede hacer mediante
el nombre. Al llamar a un evento desde la vista, se puede también hacer con el nombre
del evento, pero es preferible hacerlo con el nombre del BlocEvent y de la funcién. Asi, si
existiesen dos Blocs que tuvieran un evento con el mismo nombre (como OnSearch), al
llamarlo desde la vista no habria confusion, porque el nombre del BlocEvent seria distinto.

Cuando se especifica un parametro en la funcion, después desde el controlador del evento
en el Bloc se puede acceder a ese parametro. Esto se ve en el siguiente apartado.

En este siguiente enlace esta la clase entera.

pg. 42

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/blocs/listado_partes_bloc/listado_partes_event.dart

5.3.3. Bloc

El Bloc es el encargado de controlar los eventos a los que llama la vista y también de
cambiar el estado de los pardametros que escucha la vista.

La vista escucha el BlocState. Dadas determinadas acciones, como pulsar un botén o
inicializar una pantalla, la vista llama a un evento definido en el BlocEvent. El Bloc, desde
donde se controlan los eventos llamados por la vista, realiza las operaciones pertinentes,
como una consulta a la base de datos, y cambia el estado del BlocState. Al cambiar el
estado del BlocState y la vista estar escuchando ese BlocState, la vista cambia. Es
importante aclarar que la vista no tiene por qué cambiar siempre, en el ejemplo que
hemos visto anteriormente donde se utilizaba la variable isLoading del BlocState, la vista
no se reconstruye, sélo llama a una funcidn. Esto es porque en la vista se usa un
BlocListener y no un BlocBuilder. En el apartado 5.4 se ven ambos casos.

Los controladores del Bloc donde se implementa la funcionalidad del evento son funciones
llamadas on, es por eso por lo que a todos los eventos se les suele llamar ‘On..., aunque
esto es preferencia del programador que desarrolle el cédigo.

naDao _partePersonaDao rtePersonaDao.instance;
_personabDao = P nstance;

ao _parteMaterialDa MaterialDao.instance;
alD _materialDao = Materia stance;

uinaDao _parteMaguinaDao
_maguinaDao = Maquina

riListadoP ate.initial
ent>((event, emit) {});

on<0n artesDeOrden>((event, emit) nc {
emit(state.copyWith(islLoading: true, isParteClosed: f

<ParteTrabajo> partesTrabajo = it _parteTrabajoDao
.getAllPartesDe0rden(ordenTrabajold: event.ordenTrabajold);

emit(state.copyWith(isLoading: f e, listPartesTrabajo: partesTrabajo));
H;

Teniendo en cuenta lo anterior, aqui se puede ver qué ocurre cuando la vista llama al
evento OnlLoadPartes para obtener la lista de partes y mostrarla en una pantalla. Primero
se emite un estado haciendo uso de la funcién emit, la variable isLoading se pone a true.
Después, haciendo uso del DAO de los partes de trabajo, se guarda en una variable la lista
de todos los partes asociados a una determinada orden. Como se puede observar, al
llamar a la funcion del DAO que obtiene todos los partes de una orden, se le pasa como
parametro el id de la orden de la que se desean obtener los partes. Esto se logra indicando
el parametro ordenTrabajold en la definicién del evento en el BlocEvent. Cuando la vista
llama a este evento, le pasa el id de la orden (debido a que, al venir anteriormente de una
orden, tiene el objeto), y después se usa en el controlador. Después de haber obtenido
todos los partes, se vuelve a emitir otro estado que cambia el valor del parametro de
isLoading a false y cambia el parametro listPartesTrabajo con la lista llena de todos los
partes asociados a la orden del evento. En este enlace esta la clase entera.

pg. 43

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/blocs/listado_partes_bloc/listado_partes_bloc.dart

5.4.

Vista

La vista se compone de dos partes: las paginas y los componentes genéricos. Las paginas
son las pantallas que el usuario ve navegando por la interfaz. Los componentes genéricos
son elementos graficos reutilizados en las pantallas.

Tanto las pantallas, como los componentes genéricos, son formadas mediante widgets.
Los widgets son cualquier elemento visualizable en Flutter. Es por eso por lo que desde un
botdn hasta una pantalla entera estdn hechos mediante la combinacion de uno o varios
widgets.

Es recomendable ir visualizando las pantallas de la aplicacién, situadas en el anexo 1, al
mismo tiempo que se mencionan.

5.4.1. Paginas

Principalmente hay tres tipos de pantalla en este proyecto: las que agrupan una lista de
Ordenes y partes, las que muestran el detalle de una orden y parte, y las que muestran el
detalle de los maestros en una orden y en un parte. Ademds de estas pantallas hay otras
como el login. En el siguiente enlace se pueden ver todas.

Dado que para las érdenes y para los partes los tres tipos de pantalla estan construidos de
forma similar, a excepcidn de las que muestran el detalle de los maestros, las cuales son
mas complejas las de los partes, se ha decidido utilizar como ejemplo para los tres tipos
de pantalla las relacionadas con los partes, y no con las relacionadas con las érdenes.

Primera pantalla: lista de partes dada una determinada orden.

Dada que la vista es muy larga para insertar una captura, se recomienda verla en el
siguiente enlace.

Como se observa en el cddigo, la pagina de la lista de partes se compone de tres clases. La
primera clase es un widget estatico, es decir, que no puede variar o volver a construirse a
lo largo del tiempo. Esta clase obtiene el pardametro ordenTrabajo de la pantalla anterior.
Luego obtiene el Bloc de la lista de partes, creado en el main de la aplicacién, mediante el
uso de un BlocProvider, especificando el Bloc que se quiere obtener y pasandole el
contexto. Después, una vez ha recuperado el Bloc, llama a un evento del Bloc para obtener
la lista de partes de esa orden pasandole el id de la orden como argumento. Por ultimo,
devuelve la segunda clase. La segunda clase es un widget con estado. El método
createState es obligatorio y devuelve una instancia de _PartesTrabajoViewState, que es
una clase que extiende State y maneja el estado interno de PartesTrabajoView. La tercera
clase _ PartesTrabajoViewState es la implementacién del estado interno para
PartesTrabajoView. En la tercera clase es donde se encuentra el contenido que ve en la
pantalla el usuario.

La columna de esta pantalla es un Scaffold customizado, bdsicamente un Scaffold
(andamio en inglés) es un widget que permite crear distintos elementos en la pantalla
como una AppBar (barra superior con el titulo y el id de la orden), BottomBar (barra
inferior, en este caso no hay), FloatingActionButton (botdn flotante, en este caso para
crear un parte), etc; ademas del cuerpo. El cuerpo del Scaffold (body) es un BlocConsumer.
El BlocConsumer se compone de dos partes, la que escucha y la que construye (listenery

pg. 44

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/pages
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/lista_partes_trabajo/partes_trabajo_page.dart

builder). El listener estd escuchando cambios en las variables cargando y de la lista de
partes. Como se puede observar cuando la variable isLoading estd en verdadero llama a
una funciéon que muestra un circulo indicando que esta cargando en mitad de la pantalla.
El builder no escucha ninguna variable en este caso, porque se desea que se vuelva a
construir cada vez que cambie el estado del Bloc. El builder devuelve una vista deslizable
que contiene un cuadro de busqueda en la parte superior, para buscar el parte que se
desee. Cada vez que se escribe un nimero en este cuadro de busqueda, se llama al Bloc
del listado de partes para que actualice la lista de partes, mostrando sélo los que encajan
con la busqueda. Como ha cambiado una de las variables del BlocState y no se ha
especificado con qué variables se tiene que volver a construir, se construye
automaticamente. Asi que el listener deja de mostrar el cargando porque ya estd en false
y el builder vuelve a construir la pantalla con la nueva lista de partes que cumplen con la
busqueda. Esta lista de partes se muestra con un ListView.buidler, este widget es como un
ListView pero autogenera el nimero de elementos que indique el valor del parametro
itemCount. Cada parte se muestra en una card, donde al clickar en ella redirige al detalle
de ese parte.

Segunda pantalla: detalle de un parte.

Dada que la vista es muy larga para insertar una captura, se recomienda verla en el
siguiente enlace.

Como ya se ha explicado en la primera pantalla la estructura que tiene una pagina, ahora
se omite esta informacién, y se explica Unicamente el contenido.

En la funcidn initState (la cual se ejecuta al inicializar el widget una sola vez) se inicializa la
variable local _parteTrabajo con el parte de trabajo recibido de la pantalla anterior. Se
puede observar que esta vez no se ha hecho con una ruta. En la pantalla anterior se ha
utilizado una ruta y en esta se ha pasado como parametro a la clase para que el lector vea
las dos posibilidades, ambas igual de eficaces.

Este widget se compone encima de todo por un BloclListener. Con el parametro
listenWhen se indica que va a escuchar a la variable isParteClosed del BlocState de la lista
de partes. Cuando el listener detecta que el parte esta cerrado, viendo que la variable
isParteClosed esta en verdadero, se llama a una funcién que muestra un didlogo
notificando al usuario que se ha cerrado el parte correctamente.

Esta pantalla también es una pantalla compuesta por un widget deslizable. Aparecen
todos los parametros de un parte como textos, y las observaciones y el trabajo realizado
como campos de texto editables. Después de esto se encuentran los tres botones que
llevan a la pantalla donde se encuentran los maestros del parte. Por Ultimo, esta el botdn
de cerrar parte.

En el caso de esta pantalla hay tres llamadas a eventos, cuando se cambia el contenido de
las observaciones, cuando se cambia el contenido del trabajo realizado y cuando se pulsa
el botdn cerrar parte.

Cuando se edita un campo, se utiliza el método copyWith de ParteTrabajo, mencionado
en el apartado 5.2.2, para setear el pardmetro pertinente en la instancia del parte. Una
vez se ha hecho esto, se llama mediante un evento al Bloc. En el controlador de ese
evento, utilizando el DAO de parte de trabajo, se hace un update en la base de datos.

pg. 45

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/lista_partes_trabajo/detalle_parte_trabajo_page.dart

Después se obtiene el parte de la base de datos utilizando el id del parte, para asegurarse
de que se tiene el elemento sincronizado. Mas tarde, todo dentro del evento del Bloc, se
comprueba si tiene fecha de fin, en este caso, al editar un campo, no ha de tener. Sin
embargo, cuando se pulsa el botdn de cerrar parte, ocurre exactamente lo mismo,
excepto con la diferencia de que se le afiade la fecha actual como fecha fin usando el
método copyWith. Entonces en la légica del evento si entra en la condicién donde tiene
una fecha fin y cambia la variable isParteClosed del BlocState. El listener antes mencionado
escucha la variable y muestra el didlogo.

Tercera pantalla: personal de un parte.

Dada que la vista es muy larga para insertar una captura, se recomienda verla en el
siguiente enlace.

Como ya se ha explicado en la primera pantalla la estructura que tiene una pagina, ahora
se omite esta informacidn, y se explica Unicamente el contenido.

Se ha utilizado como ejemplo el personal, pero es muy similar la de los tres maestros.

Esta pantalla es la mas compleja de las mencionadas, la vista tiene varias clases (aunque
se podria hacer todo en una, pero en estos casos donde hay partes muy diferenciadas con
muchas lineas de cédigo, lo recomendable es modularizar), también tiene funciones y
multiples llamadas a eventos; ademas de cierta complejidad en la l6gica. Ademas de esto,
la légica de los eventos también es larga y compleja. Por estos motivos la siguiente
pantalla se comenta a grandes rasgos (en mayor medida que el resto del cddigo), sin
explicaciones exhaustivas que puedan entorpecer la comprensidn del lector.

Lo primero que ocurre en esta pantalla es que se llama a un evento del Bloc, llamado
OnlLoadPersonasDeParte. En este evento se obtienen todos los objetos PartePersona. El
DTO PartePersona esta compuesto por las claves del parte y de la persona, junto con la
cantidad de horas, pero no con la descripcidn de la persona. Es por esto por lo que después
se obtienen todas las personas de la base de datos. Luego se almacenan en una lista todos
los ids de persona de la lista de tipo PartePersona. Se hace lo mismo con los ids de la lista
de tipo Persona. Se ordenan ambas listas. Se comparan ambas listas. Si en la lista de las
personas de un parte falta algun id de la lista de personas, se crea un nuevo objeto
PartePersona y se introduce en la base de datos. Esto se hace utilizando el id del parte del
evento y el id de la persona faltante. Se repite todas las veces necesarias. Esto se hace
basicamente para que la primera vez que se entre a la vista de los maestros de un parte,
se creen todas las combinaciones posibles, y para que cuando se entre la segunda vez,
Unicamente se obtengan y no se creen de nuevo. Cuando se tienen ambas listas de objetos
PartePersona y de objetos Persona se emiten en un estado cambiando las dos variables.

Después de esto en la vista, cuando se escucha el nuevo estado emitido se pasan al
siguiente widget y se construye. Ademas del widget que muestra la lista de personas para
afadir al parte, hay un buscar en la parte superior de la pantalla, que funciona como el de
la primera pantalla.

En el segundo widget se crea una lista de mapas donde se agrupan los parametros de las
dos listas:

pg. 46

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/parte_maestros/parte_personas_page.dart

_datalist = widget.partePersonas
.map((partePersona) => {
! d': partePersona.parteTrabajold.te5String(),
partePersona. personald. toStrimg(),
: widget.personas.isNotEmpty
T widget.personas

FirstWhere(.id == partePersona.personald,
orElse: onal(descripcion: 'Sin descripcién'))

.descripcion
desc in'

toList();

Después se ordena esta lista. El resultado de esto es una lista ordenada por horas con los
ids de persona y del parte, con la descripcidn por parte de persona y con las horas por
parte de la entidad surgida de la relacién entre una persona y un parte (PartePersona).
Hay que considerar que mas tarde cada vez que se actualiza la cantidad de horas que ha
trabajado una persona en un parte, las listas cambian de valor, y se vuelve a construir el
widget y la lista de mapas. Por eso, aunque al principio todos los elementos de la lista de
mapas tengan un valor de horas igual a 0, después no es asi, por eso se ordena para que
el usuario pueda ver las personas con mayor numero de horas primero. También es
importante considerar que, aunque para la ldgica no fuese necesario traer ambas listas a
la vista mediante un estado, si lo es para el usuario, dado que necesita leer la descripcion
del personal.

El segundo widget se compone de dos botones en la parte superior y de un ListView en la
parte inferior. Uno de los botones sirve para deshacer los cambios no guardados al editar
las horas del personal. El otro botén sirve para guardar los cambios. El primer botén limpia
los controladores de las horas y los minutos de todas las personas, ademas llama a un
evento que pone a false el estado de los botones, para que aparezcan desactivados al
haber eliminado los cambios. El segundo botdn llama a un evento que actualiza la lista de
personas en un parte cambiando las horas, ademas también llama al evento que desactiva
los botones. El ListView estd formado por todas las personas. Para cada elemento se
muestra la descripcion de la persona y dos campos de texto, uno para escribir las horas y
otro para los minutos. Cabe mencionar que detras de esto existe mucha légica, como por
ejemplo adaptaciones en el formato de las horas, dado que el usuario las escribe por
separado y en la base de datos entran como un double, o validaciones de formato para no
poder poner mas de 59 minutos, y un largo etcétera.

5.4.2. Componentes genéricos

Se puede ver el cédigo de cada componente en este enlace, acompafiado de las
ilustraciones de la interfaz, ubicadas en el anexo 1.

pg. 47

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/generic_components

5.5. Otros

Ademas de todo lo mencionado anteriormente, la aplicacidon cuenta con mas pantallas,
blocs y componentes. Ademads, cuenta con un main, scripts y elementos para la traduccion
de idiomas, funciones utilizadas para los formatos, splash screen personalizada, un login,
estilos y fuentes personalizados, extensiones, recursos, paquetes, listas de literales, etc. Es
una aplicacion muy completa de mas de 15.000 lineas de cddigo. Se recomienda echar un
vistazo general a las diferentes carpetas y archivos del proyecto, dado que explicar todo
esto en este documento, seria inviable.

pg. 48

https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/main.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/scripts
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/utils/app_localizations.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/utils/utilities.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/pubspec.yaml
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/pages/login_page.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/lib/themes
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/lib/utils/extensions.dart
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/assets
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/blob/develop/tfg_ac_partes_trabajo/pubspec.yaml
https://github.com/alejandrocatalan/TFG-AC-Partes-Trabajo/tree/develop/tfg_ac_partes_trabajo/translations

6. Conclusiones

El Trabajo de Fin de Grado ha sido una experiencia enriquecedora que ha abarcado todas las etapas
de un proyecto, desde un estudio inicial, pasando por el desarrollo de la aplicacién, y hasta la
documentacion del proceso.

Durante su desarrollo, se ha puesto especial énfasis en la arquitectura y la claridad del cddigo fuente,
lo que lo convierte en una sélida base para futuros desarrollos tanto para mi como para otros
interesados.

En resumen, este proyecto ha logrado implementar con éxito una aplicacién mdvil que optimiza el
proceso de creacion y gestidn de partes de trabajo en el ambito de los proyectos de construccion. Su
arquitectura estructurada y su cddigo fuente claro proporcionan una base sdlida para futuros
desarrollos y la convierten en una herramienta valiosa para empresas privadas que buscan soluciones
eficientes de gestién de trabajo.

pg. 49

7. Referencias

e |EEE Recommended Practice for Software Requirements Specifications," in IEEE Std 830-1998,
vol., no., pp.1-40, 20 Oct. 1998

e [SO/IEC/IEEE International Standard - Systems and software engineering -- Life cycle processes --
Requirements engineering," in ISO/IEC/IEEE 29148:2018(E), vol., no., pp.1-104, 30 Nov. 2018

e https://docs.flutter.dev/

e https://bloclibrary.dev/

e https://learn.microsoft.com/es-es/appcenter/

e https://git-fork.com/

e https://docs.github.com/en

pg. 50

https://docs.flutter.dev/
https://bloclibrary.dev/
https://learn.microsoft.com/es-es/appcenter/
https://git-fork.com/
https://docs.github.com/en

8. Anexo 1 — llustraciones de la interfaz

® innovation
‘ Inycom technologies

innovation

i, Invcom technologles Gesto rTa rea S

o
=

GestorTareas &

el la no

g w e r t y u i
a s d f g h j k
$ z x ¢ v bnm &

123 @ espacio
Y

@

Ilustracion 2: Login con teclado
llustracion 1: Login

pg. 51

Men Lateral = Lista 6rdenes de trabajo

Orden 1
¢ Fecha de inicio: 24/05/2023 - 14:16

Configuracion
Reparacion de arquetas

Orden 2
Fecha de inicio: 24/05/2023 - 14:16
Reemplazo de tablas de madera en el paseo ...

Orden 3
Fecha de inicio: 24/05/2023 - 14:16

Montaje de duchas en la zona de bano

Orden 4
Fecha de inicio: 24/05/2023 - 14:16
Restauracion de escaleras de acceso a la playa

Orden 5
Fecha de inicio: 24/05/2023 - 14:16

Refrescar Ajuste y aseguramiento de postes de sombra

Orden 6
Fecha de inicio: 24/05/2023 - 14:16
Belleno y nivel AT =SRemeeT=Tona de juefo

llustracion 3: Menu lateral Ilustracion 4: Lista de drdenes de trabajo

pg. 52

Lista 6rdenes de trabajo Orden 5

Fecha de inicio: 24-05-2023 - 14:16
Fecha de fin: 27-05-2023 - 14:16
Orden 1

Fecha de inicio: 24/05/2023 - 14:16

Tipo: Obra

Instalacion: Playa de Denia - Alicante
Reparacion de arquetas

Cadigo orden cliente: DA-44327
Orden 10 Observaciones:
Fecha de inicio: 24/05/2023 - 14:16

i, e . Postes de sombra sueltos en el area de descanso
Instalacion de sefializacion accesible en la zona ...

Orden 11

Fecha de inicio: 24/05/2023 - 14:16

Reposicion de adoguines en el pasea maritimo
Trabajo a realizar:

Orden 12
Ajuste y aseguramiento de postes de sombra

Personal

Materiales

llustracion 5: Lista de drdenes de trabajo - Busqueda de llustracion 6: Detalle de orden de trabajo
orden

pg. 53

Personal en la orden 4

Codigo orden cliente: DA-44327

Descripcion Horas
Observaciones:

Manuel Herrera Paredes 61h 1Tm
Postes de sombra sueltos en el area de descanso

Laura Gonzélez Sanchez 60h 37Tm

Diego Castro Ortega A42h 43m

Antonio Torres Lopez 1h 56m
Trabajo a realizar:

Ajuste y aseguramiento de postes de sombra

Personal

Materiales

Maquinaria

Vier partes de trabajo

llustracién 7: Detalle de orden de trabajo - Parte inferior llustracion 8: Detalle de orden de trabajo - Detalle del
personal

pg. 54

Materiales en la orden 3 Maquinaria en la orden 6

Descripcion Unidades

Descripcion Horas
Codos de hierro fundido 18.02

Martillo neumatico 96h 43m
Tubos de cobre 47.76 Hidrolimpiadora 62h 15m

Juntas de goma

Compactadora de suelos 10h 48m

llustracion 9: Detalle de orden de trabajo - Detalle de los llustracién 10: Detalle de orden de trabajo - Detalle de la
materiales magquinaria

pg. 55

Lista partes de trabajo - 11 Lista partes de trabajo - 11

Fecha de inicio; 24/05/2023 - 17:03

Parte 10

Parte 18
Fecha de inicio: 24/05,/2023 - 17:04

Parte 19
Fecha de inicio: 24/05/2023 - 17:04

Parte 22
Fecha de inicio: 24/05/2023 - 1T:04

Parte 23
Fecha de inicio: 24/05/2023 - 17:05

llustracion 11: Lista de partes de trabajo - Vacia llustracion 12: Lista de partes de trabajo - Llena

pg. 56

Lista partes de trabajo - 11 Crear parte 27

Fecha de inicio: 24/05/2023 - 17:06

Observaciones:
Parte 22
Fecha de inicio: 24/05/2023 -

Parte 23
Fecha de inicio: 24/05/2023

Parte 24 Trabajo realizado:

Fecha de inicio: 24/05/2023

Instaladas baldosas en el primer segmc—ntol

Parte 25
Fecha de inicio: 24/05/2023

Personal

Materiales

Maquinaria

llustracion 13: Lista de partes de trabajo - Busqueda de Ilustracion 14: Creacidn de parte de trabajo
parte

pg. 57

Editar Parte 27

Personal en el parte 29

Fecha de inicio: 24/05/2023 - 17:06

Observaciones:

Alejandro Rodriguez Garcia

Marta Lopez Fernandez

Trabajo realizado:

Javier Pérez Martinez
Instaladas baldosas en el primer y segundo
segment

Laura Gonzalez Sanchez

Carlos Ramirez Romero

Personal

[Materiales]
[Maquinaria }

Carmen Torres Jiménez

Alberto Morales Vargas

Ana Bel Ruiz Medina

Diego Castro Ortega

llustracion 15: Edicidn de parte de trabajo Ilustracion 16: Detalle personal de parte de trabajo — Por
defecto

pg. 58

Personal en el parte 29

Personal en el parte 29

Resetear

Alejandro Rodriguez Garcia

Javier Pérez Martinez

Marta Lopez Fernandez

Alejandro Rodriguez Garcia

Javier Pérez Martinez

Marta Lopez Fernandez

Laura Gonzalez Sanchez

Laura Gonzalez Sanchez

Carlos Ramirez Romero

Carlos Ramirez Romero

Carmen Torres Jiménez

Alberto Morales Vargas

Ana Bel Ruiz Medina

Carmen Torres Jiménez

Alberto Morales Vargas

Ana Bel Ruiz Medina

Diego Castro Ortega

llustracion 17: Detalle personal de parte de trabajo - Con

cambios

Diego Castro Ortega

Cambios aplicados

llustracion 18: Detalle personal de parte de trabajo -

pg. 59

Personal en el parte 29 Materiales en el parte 29

Alejandro Rodriguez Garcia Bombas de achique

Alberto Morales Vargas Tubos de cobre

Ana Bel Ruiz Medina Juntas de goma

Antonio Torres Lopez Filtros de sedimentacion

AT Losas de piedra

q w e y u

Bloques de hormigan

a s d f g h

Manguitos de unién

$ zZz X ¢ v bnm @

123 @ espacio
9

@

Codos de hierro fundido

Selladores de silicona

llustracidn 19: Detalle personal de parte de trabajo - llustracion 20: Detalle materiales de parte de trabajo -
Busqueda de persona Por defecto

pg. 60

Materiales en el parte 29

Resetear

Bombas de achigue

Materiales en el parte 29

Tubos de cobre

Tubos de cobre

Bombas de achigue

Juntas de goma

Juntas de goma

Filtros de sedimentacian

Filtros de sedimentacian

Losas de piedra

Losas de piedra

Blogues de hormigan

Bloques de hormigan

Manguitos de unién

Codos de hierre fundido

Manguitos de unién

Codos de hierre fundido

Selladores de silicona

llustracion 21: Detalle materiales de parte de trabajo -

Con cambios

Selladores de silicona

Cambios aplicados

Ilustracion 22: Detalle materiales de parte de trabajo —

pg. 61

Materiales en el parte 29 Maquinas en el parte 29

Tubos de cobre Excavadora

Tuberias de PVC Retroexcavadora

Martillo neumatico

Compactadora de suelos

wtn Bomba de achique

q w e r t y u i Maquina de soldadura

a s d f g h j k

Hidrolimpiadora

$ z x ¢ v bnm @

123 @ espacio
Y

@

Vibroapisonadora

Carretilla elevadora

llustracién 23: Detalle materiales de parte de trabajo - llustracion 24: Detalle maquinaria de parte de trabajo -
Busqueda de material Por defecto

pg. 62

Maquinas en el parte 29

Resetear

Excavadora

Maquinas en el parte 29

Compactadora de suelos

Retroexcavadora

Martillo neumatico

Martillo neumatico

Compactadora de suelos

Excavadora

Bomba de achique

Hidrolimpiadora

Maquina de soldadura

Retroexcavadora

Hidrolimpiadora

Vibroapisonadora

Vibroapisonadora

Bomba de achigque

Maquina de soldadura

Carretilla elevadora

llustracion 25: Detalle maquinaria de parte de trabajo -

Con cambios

Carretilla elevadora

Cambios aplicados

llustracion 26: Detalle maquinaria de parte de trabajo -

pg. 63

Maquinas en el parte 29

Compactadora de suelos

Carretilla elevadora

a s d f
L zZ o x cC

123 @
®

llustracion 27: Detalle maquinaria de parte de trabajo -
Busqueda de mdquina

con

t y u

g h j

v b nm &

espacio aceptar

9

pg. 64

9. Anexo 2 — Diagramas

P
et ey
Tt crsm Tsbagid. siage, i echaace e, o el e 61, cbmmrcemen: s s Resbens rrg) G
« OrtanTrnapopn chwrces . n fchari o 0.7, 860 3Meg 011, ncbsarvocknes: w151, WeospoARowar v (1.1, Socgornchants . etasccn g o 1.1 T etz), s e .1, i il .1} s sy
+ Noiapin mag: Map-<Shirg, e CndenTaban e VoS00 | FataT e
o) Hopesng. o> S A
+ ottt oo Tt e et et c BT L o P p—pp————y

g, dmarc>|, OrdenMaesro -

+ Bombdopin mag: Wap<Sieg « o Stg, Omamic) Fatehtos
s IS, yrome ~xhdag Wap-Sreg Sane

« berblatie g MapeSing. Oars:) Wsstro
ek S, e

e
< mon
covesvros

< wteons
- ormMasi . M-, apor

rone ey e
P S——— - nemce PatebeaiOx m—
FrettseanCoo stemah) c

« prirmtmee(; rowsTrocan O
L D a Teegen O M0 1]

* Dty CreTaoan 11

© G aerin e gt CesenTater)

sesroOe e STt g Parebomst
SRy Py e e TGRS TR, 1 e TR Putaeers 0 1]
<o eomebgpars Greasrers) v

e et Crostboneho) Fitom *Lmrar et 11
B e e]

PR A R

PteTatets 11
o FareTrsp 71
3 g st) FaeTsen]

Bt ooy s
Gkt e Tiabap s 1 naesned

sy
- e taree
Mot rteman) P
P ——
<G
o) Wom

© el e Ten: sy aes
© eohsesrossym . e 1) e
MM et e

Diagrama 1: Diagrama Clases Cliente

pg. 65

g
Prosyhenisor

+ emverdrdenes). OrdenTrsto 1

+ andsritacatros(y Masstro 1|

+ OttansePana(n panETrabays PANaTIEba)

4 olpermstaPwlarli balaPartas. PateTrabao 'l

ity ; — Sartamio
©cheinicn - e
Leenafn e
“gn” sng
o, simg
pet
minaen oy « PaeTrabaoin cer i, nleges, i fechale date. n fchafin. dot 0. 1], ckmervcines. 674 in abaiesicada) C1
o = ¥omhdapiin mag: Mag<Sting, dynamic>). FarieTrakaj
« vl enmince e, i RN 9991911, 8B QD 1) g0, 11 ool [T ————y = aiagt) Map-cring Synamc-
« mapim . Map<Strg. ynaricet Onkenrsbeis
lcktag MapeSinng. dyramc-
+aascapein g
B ——— [T
+ Frmitapin map: apEerg, epnamc: Maases
it vlin denpre
v - L
+i0-mages
Py — o
+ b man: MapeSireg, i)
oty
[— et
Pty s
+ st | CrseapoioDon R —— + alance. PoteTrabok0s
TG nemt o - MaechoDo e @ PancTiabaDoo semsi o
+ penstanee oraeaesionan * geistaece(s MassroCan getmatance FteTapagoe
~ GHAN) CraenTabas 1 ety e 1
o el by ©
re———
~ Basessoin wienime g 0

= crealetn obi, QORCIWITIMED). Intect
+ 9etin k. blegerl. DoyectililMap 10.1]
=~ GeIAIN) CeyestViahblag [
sl W) ileger
neger

Diagrama 2: Diagrama Clases Servidor

pg. 66

Usuario :

App Serido:

Escuchar

— \ reintentar

/" credenciales

T

necesarios
[¢Archivos correctos?]

O

Mostrar mensaje
| de error de
ejecucion

| Lanzar aplicacion
Tl montada

i Comprobar
[| conexiona
internet

[¢.Hay conexion?]

O

Comprobar si i Solicitar
existen || credenciales al

credenciales usuario

almacenados ﬁi

Introducir
credenciales ‘\

J [(;Exlsten’f‘]l

[&Reimemar’?]\l/

[S']j <>[No]

Notificar
reintentar \
credenciales //

Escoger acclan

Obtener
credenciales

L — <>

&

Redirigir a
| pantalla de
inicio

Enviar
i al

Recibir

servidor)

Reclbir w,

comprobaclon

[¢ES un bearer token ?]J/

(=1

L N — o
Mostrar mensaje [LImplar base de
[] deemorde - datos
credenclales

b

! |

Comprobar
credenciales

[Credenciales valldos?]J’

INe] [<> Lrsn

Generar ~— Generar bearer
L J
[mensaje de = token
error
T 1
.r? | Envlar mensaje F?—] Envlar bearer
de error R token

Envlar datos

Sollcltar acclan Sollcltar datos
al usuarlo al servidor J

Reclbir dalosﬂl

-

'@

Diagrama 3: Diagrama Actividades Inicio de Sesion

pg. 67

Usuario :

App Cliente ©

App Servidor :

Mostrar lista de
érdenes

—_——————

[¢Seguir usando menu lateral 7]

151 <> No]

O

lateral

Pulsar meni

Pulsar en N
refrescar

Pulsar en

]

~,
cerrar sesion @

] Pulsar fuera
del menu

Ef

)

O

e

)

[eHay cunemn')]‘l’

&

o

X

Temporizador 10 minutos

Redirigir a pantalla
de inicio de sesian

\

Comprobar
conexlén

[No] O sn

[sn

;) Pedir datos al
i servidor

'/C] Reclblr datos

[Exitoso?]

|
g cllente
—>

u

/C- Envlar datos al

@

Diagrama 4: Diagrama Actividades Menu Lateral

pg. 68

Usuario : App Cliente - App Servidor :
Mostrar lista de
o ordenes
\:I Seleccionar orden Mostrar detalle de
. orden
-l Seleccionar ver e wer |\)
— maestros de orden — partes de orden |
e
A g (| Mostrar detalle de (| Mostrar llsta de
L — maestros de arden — partes de arden
[¢ Volver a'.r’ris"]\L [¢Cambiar de orden?] \L
m v (BT
J
Diagrama 5: Diagrama Actividades Visualizar Lista Partes
Usuario : App Cliente App Senidol

Mostrar lista de

[partes de la orden
seleccionada

—

[¢Crear nuevo parte?]

[s1 <> [No]

' Pulsar el botén

))

] Crear parte sobre

[orden iada y con
fecha actual

Mostrar pantalla

] Sallr & Edltar campos
— delparte

ﬁf%

L

[] detalle de parte
(moda creacién)
[(1 p—
P i i i
o ulsar en M Actuallzar lista _ Actuallzar ® Mostrar lista
|| botones de = de partes || campos de — de maestros
maestras parte
L L T T T
2 J J
b 7
Editar datosw J
J /‘47-‘ Actuallzar W
e de parte

-

®

Diagrama 6: Diagrama Actividades Creacion de Parte

pg. 69

Usuario

App Clisnte :

App Servidor

4[] partesdelaorden

Mostrar lista de

seleccionada

[¢ Visualizarieditaricerrar ctro parte?]

[s1 <> [Ne]
D

Mostrar detalle de
parte (modo edicion)

|

4

del parte

[C] Cerrar parte)] Volvera(n'isj [DEditﬁrcmpo

Pulsar en
botones de
maestros

)8

)

Actualizar () Mostrar lista
() campos de de maestros
parte

L

i

]
Actualizar Iisla}
de partes
S

iy

O
<
)

=)

maestros de
parte

)

N S

)
)
L

Actualizar valores
de maestros del

parte

[eHay cunenbﬂ"]L

[Ne] <> }[Sﬂ

X

Temporizador

- G
conexlén

D Envlar parte al
servidor

\ Escuchar
resultado

10 minutos

rC] Reglstrar parte
—

|

Notificar \

[/ Exitose?

[Noj

(51

resultado b
)

_— /

®

Diagrama 7: Diagrama Actividades Visualizacién/Edicién/Cierre de Parte

pg. 70

Comprobar archivos necesarios
Obtener idioma

return idioma

Obtener permises

de retum permisos

00 getinstance (}

[,

E 4 : ProxyCliente,
Introducir credenciales
00 enviarCredenciales ()
return response H

00 getinstance [}
880D

00 clearDB (}

01 obtenerOrdenes ()

return ordenes H

0() obtenerMaestros ()

0[) obtenerOrdenesMaestros ()
retumn ordeneshaestros ‘ |
00) enviarListaPartes ()
return response: H

01) getinstance ()
6 : OrdenTrabajoDao

00 ereateAllif}

return numFilasAfectadas

! createAll ()

01} getingtance ()
r9 - MaestroDao

return numFilasAfectadas

() getinstance ()

00 createAll ()

[=Iro: ordenmtaestronso

retum numFilasAfectadas

00) getall §

refurn ordenesTfabajo

Mostrar lista de érdenes

Diagrama 8: Diagrama Secuencias Inicio de Sesion

pg. 71

Pantalla menu lateral

Pulsar refrescar

00 getinstance ()
@ xyCliente

00 getinstance ()

00 clearDB () i

O() obtenerOrdenes ()

return ordenes 7—‘

0I) obtenerhMaestros () N
return maesiros —‘

1) obtenerOrdenesMaestros () o
return ordeneshaestros —‘

0} enviarListaPartes (} N
return response “

16 : OrdenTrabajoDao

O1) createalli{) i

return numFilasafectadas

0() getingtance ()
MaestroDao

(] createall

retum numFilasAfectadas J

0() getinstance ()
r10 : OrdenMaestroDao

00 createdll {)

retumn numFilasAfectadas

00 getall {1

return ordenesTiabajo

Mostrar lista de ¢rdenes.
-——

Diagrama 9: Diagrama Secuencias Refrescar

pg. 72

Fantalla lista de drdenes

¥

Seleccionar orden

Mostrar detalle de crden

Bl

Fulzar en maestros

0() getinstance ()
= % OrdenhMaestroDac

0() getalMaestrosDeOrden ()

P

retum ordenMaestros —‘

Mostrar maestros de orden

Diagrama 10: Diagrama Secuencias Visualizar Maestros de Orden

pg. 73

Pantalla lista de érdenes

Mostrar detalle de parte (mode creacion)

.
Seleccionar orden
-
Mastrar detalle de orden
i
Pulsar ver partes
-
0() getinstancs {)
ParteTrabajoDao,
0 getAllPartesDeOrden () :
-
return partesCeOrden |
Mastrar lista de partes
o
Pulsar crear parte
-
0f) create (}
>
return numFilasAfectadas]
00) getlastid)
-
return lastParteld ‘
01) getinstance ()
00) getall)

return maestros

1 = MaestroDao

01) getinstance ()

ParteMaestroDao

Escribir observaciones v trabajo realizade

Fulsar en maestros

Mosirar lista de maestros

Aftadir masstros al parte

01) createall)
relunn numFilasAlecladas ‘

01) getAliMaestrosDeParte ()

.
ratm parteMaestros ‘
01) update ()
refurn numFiasAfectadas J
[1urEéuh {parteMaestro in parteMaestrosEditados)]
00 update {)
retum numFilasAfectadas

Diagrama 11: Diagrama Secuencias Creacion de Parte

pg. 74

Pantalla lista de ordenes M
Seleccionar arden |
Mostrar detalle de orden
Pulsar ver partes N

0() getinstance (}
— r : ParteTrabajoDac

0() getallPartesCeOrden ()

return partesDeQOrden |

Mostrar lista de partes

Seleccionar parte

(1) getinstance ()

01) getAliMaestrosGeParte ()

retumn parteMaektros

Mostrar detalle de parts (modo edicion)

Editar observaciones y trabajo realizado

0() update ()
return numFilasAfectadas “
Pulsar en maestros.
»

Mostrar lista de maesiros

Editar maestros del parte

[!nfEéch {parteMaestro in parteMaestrosEditados)]

0() update [}

retum numFilasAfectadas

Pulsar cerrar parte

(1) getinstance {)
0() enviarParte ()
rstum response
01 delete [}
return numFilasAfectadas ‘
Mostrar mensaje de éxito
Cerrar mensaje

D) getAllPartesDeCrden (}

refurn paries ‘

Mostrar lista de partes

Diagrama 12: Diagrama Secuencias Cierre de Parte

pg. 75

	1. Introducción
	1.1. Motivación
	1.2. Marco de trabajo
	1.3. Audiencia
	1.4. Tipo de publicación
	1.5. Plataforma de publicación
	1.6. Tecnología de desarrollo
	1.7. Elección del motor de base de datos
	1.8. Definiciones, acrónimos y abreviaturas

	2. Descripción general
	2.1. Perspectiva del producto
	2.1.1. Interfaces de sistema
	2.1.2. Interfaces de usuario
	2.1.3. Interfaces software
	2.1.4. Interfaces de comunicaciones
	2.1.5. Restricciones de Memoria y Almacenamiento
	2.1.6. Modos de Operación
	2.1.7. Necesidades de infraestructura (para el alojamiento u operación)

	2.2. Funcionalidad del Producto
	2.3. Restricciones
	2.3.1. Auditoría
	2.3.2. Protocolos de comunicaciones
	2.3.3. Fiabilidad
	2.3.4. Seguridad

	2.4. Asunciones y dependencias

	3. Requisitos específicos
	3.1. Interfaces externos
	3.1.1. Interfaces de usuario
	3.1.2. Interfaces software
	3.1.3. Interfaces de comunicaciones

	3.2. Características del sistema
	3.2.1. Arranque / Parada
	3.2.2. Eventos periódicos
	3.2.3. Escenarios asociados al usuario

	3.3. Requisitos de Persistencia
	3.4. Restricciones de diseño de la interfaz de usuario
	3.5. Restricciones de diseño arquitectónico

	4. Diseño
	4.1. Casos de uso
	4.2. Diagramas de clases
	4.2.1. Diagrama de clases del cliente
	4.2.1. Diagrama de clases del servidor

	4.3. Diagramas de actividades
	4.3.1. Diagrama de actividades Arranque e Inicio de Sesión
	4.3.2. Diagrama de actividades Menú Lateral
	4.3.3. Diagrama de actividades Listado de Partes
	4.3.4. Diagrama de actividades Creación de Parte
	4.3.5. Diagrama de actividades Visualización/Edición/Cierre de Partes

	4.4. Diagramas de secuencia
	4.4.1. Diagrama de secuencia Arranque e Inicio de Sesión
	4.4.2. Diagrama de secuencia Refrescar
	4.4.1. Diagrama de secuencia Visualizar detalle de orden y maestros
	4.4.2. Diagrama de secuencia Creación de Parte
	4.4.3. Diagrama de secuencia Cierre de Parte

	4.5. Pruebas que realizar
	4.5.1. Pruebas de interfaz
	4.5.2. Pruebas de funcionalidad
	4.5.3. Pruebas de integración
	4.5.4. Pruebas de rendimiento
	4.5.5. Pruebas de seguridad
	4.5.6. Pruebas de uso
	4.5.7. Pruebas de regresión

	5. Desarrollo
	5.1. Estructura
	5.2. Modelo
	5.2.1. Base de datos
	5.2.2. DTOs
	5.2.3. DAOs

	5.3. Blocs
	5.3.1. BlocState
	5.3.2. BlocEvent
	5.3.3. Bloc

	5.4. Vista
	5.4.1. Páginas
	5.4.2. Componentes genéricos

	5.5. Otros

	6. Conclusiones
	7. Referencias
	8. Anexo 1 – Ilustraciones de la interfaz
	9. Anexo 2 – Diagramas

