
1

Trabajo Fin de Grado

Diseño e Implementación de redes LoRa malladas
Design and Implementation of LoRa Mesh Networks

Autor

Ángel Torre Tolosana

Directores

Francisco José Martínez Domínguez

Julio Alberto Sangüesa Escorihuela

Escuela Universitaria Politécnica de Teruel
Universidad de Zaragoza

2022

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

2

Contenido
ANEXOS .. 4

ANEXO 1. CONFIGURACIÓN DE TECNOLOGÍAS .. 4

1. CONFIGURACIÓN DEL ENTORNO ARDUINO ... 4

1.1. CONFIGURACIÓN NODO HELTEC WIFI LORA 32 EN ARDUINO 4

1.2. LIBRERÍAS .. 6

2. CONFIGURACIÓN NODO FINAL Y SENSOR BMP280 .. 11

3. CONFIGURACIÓN DE CHIRPSTACK ... 12

3.1. CREACIÓN DEL PERFIL DE SERVICIO .. 12

3.2. CREACIÓN DE UN APLICACIÓN ... 13

3.3. REGISTRO DE DISPOSITIVOS FINALES ... 14

REFERENCIAS BIBLIOGRÁFICAS .. 18

3

Índice de figuras
Figura 1. Configuración placa .. 4

Figura 2. Configuración de la placa .. 5

Figura 3. Configuración de la placa .. 5

Figura 4. Ejemplos de comunicación LoRa ... 6

Figura 5. Escritura de contenido en paquete LoRa ... 7

Figura 6. Define comportamiento de nodos al recibir paquete .. 7

Figura 7. Comparación señal RSSI y SNR [22] ... 8

Figura 8. Definición de claves de autenticación ... 9

Figura 9. Función para el envío de Uplinks... 10

Figura 10. Función para lectura de Downlinks ... 10

Figura 11. Escritura en memoria EEPROM ... 11

Figura 12. Diagrama de pines de la Placa WiFi LoRa 32(v2) [34] ... 11

Figura 13. Configuración pines sensor ... 12

Figura 14. Placa sensora .. 12

Figura 15. Creación de perfil de servicio .. 13

Figura 16. Visualización de aplicaciones .. 13

Figura 17. Generación aleatoria de DevEUI ... 15

Figura 18. Registro de dispositivos finales de la aplicación ... 15

Figura 19. Definición de claves de autenticación en dispositivo final 15

Figura 20. Registro de comunicaciones recibidas del dispositivo .. 16

Figura 21. Estado del dispositivo ... 16

Figura 22. Gráficas de datos recibidos ... 17

4

ANEXOS
ANEXO 1. CONFIGURACIÓN DE TECNOLOGÍAS
1. CONFIGURACIÓN DEL ENTORNO ARDUINO
Para el desarrollo de código que va a definir el comportamiento de los nodos, se utiliza el
ecosistema de Arduino en su versión 1.8.16. El lenguaje Arduino está basado en C y cuenta con
una gran variedad de librerías que facilitan las comunicaciones LoRa y el desarrollo de
proyectos de comunicación. Además, hay una gran cantidad de información sobre multitud de
aspectos, debido al gran soporte que recibe por parte de su comunidad.

Los módulos admiten el desarrollo de código sobre Arduino, pero el IDE necesita de una
configuración previa para cada dispositivo antes de poder cargar los programas.

1.1. CONFIGURACIÓN NODO HELTEC WIFI LORA 32 EN ARDUINO
Antes de empezar a con la programación de los nodos finales, debemos realizar unas
modificaciones sobre el entorno de Arduino con el que vamos a trabajar.

Se deberá instalar la librería básica Heltec_ESP32_Dev-Boards de comunicaciones para nuestra
placa WiFi LoRa 32.

De acuerdo a las instrucciones de la página oficial de Heltec [30], es necesario añadir la URL de
la librería en preferencias, dentro de del entorno Arduino y en el apartado de “Gestor de URLs
Adicionales”. La URL es la siguiente:

https://github.com/Heltec-Aaron-
Lee/WiFi_Kit_series/releases/download/0.0.6/package_heltec_esp32_index.json

Figura 1. Configuración placa

Después, en el apartado Herramientas -> Placa -> Gestor de tarjetas, se buscar la librería
Heltec ESP32 y se instala para poder trabajar con ella.

5

Figura 2. Configuración de la placa

Figura 3. Configuración de la placa

Ahora podemos utilizar las funciones de comunicación mediante LoRa que nos proporciona la
librería de Heltec para las placas WiFi LoRa 32. Podemos acceder a los distintos ejemplos que
nos facilita esta librería y cargar los programas básicos de envío y recepción de paquetes en las
placas.

6

Figura 4. Ejemplos de comunicación LoRa

1.2. LIBRERÍAS
Para poder llevar a cabo la implementación, se deben programar las funciones que permitan
las comunicaciones, tanto entre dispositivos LoRa como en la red LoRaWAN. Arduino presta un
servicio de búsqueda dentro de su IDE, mediante el cual, permite la implementación de
librerías que den distintas funcionalidades a los programas. En esta sección se van a describir
las librerías más relevantes y sus funciones básicas utilizadas a lo largo de este proyecto.

Heltec_ESP32_Dev-Boards
Biblioteca básica para las placas Heltec ESP32 o ESP32+LoRa, para el uso de las comunicaciones
entre dispositivos que utilicen la tecnología LoRa. Compatible con las placas: WiFi Kit 32, WiFi
LoRa 32, Wireless Stick, Wireless Shell, facilita la implementación de comunicaciones entre
nodos LoRa que trabajen bajo la misma frecuencia, mediante funciones de empaquetado,
envío y recepción de la información [31].

 Inicio de comunicaciones LoRa

Para el inicio de las comunicaciones LoRa entre dispositivos compatibles,
primeramente se debe definir la frecuencia en que se comunican, y como ya hemos
visto, la frecuencia europea es 868MHz. Se inicia la librería LoRa.h ->
LoRa.begin(frecuency)

Para saber si se ha iniciado de forma correcta y está listo para recibir o transmitir, esta
función devuelve 1 en caso de éxito y 0 si ha fallado.

7

 Finalización de comunicaciones LoRa -> LoRa.end()

 Envío de datos
Comienza la secuencia para envío de paquetes -> LoRa.beginPacket()
Después de esto, se escribirán los datos en el paquete, con una capacidad máxima de
hasta 255 bytes. Se dispone de una función write() que permite escribir de byte en
byte sobre el paquete o directamente un buffer de bytes, donde es necesaria una
especificación de tamaño de este buffer. Esta función devuelve el número de bytes
que se han escrito en el paquete.

Figura 5. Escritura de contenido en paquete LoRa

Una vez se ha acabado de escribir, se indica el final del paquete -> LoRa.endPacket()
Si es un éxito devuelve 1, o 0 en caso de error.

 Recepción de datos
Los dispositivos deben ponerse a comprobar si hay otros dispositivos intentando
comunicarse con ellos. La función LoRa.parsePacket() comprueba si se ha recibido un
paquete y devuelve el tamaño en bytes, siendo este 0 si no se ha recibido ninguno.
También da la opción de recibir paquetes con un tamaño de bytes esperado,
definiéndolo como parámetro en esta función.

La función onReceive() de la Figura 6 se utiliza junto a la anterior LoRa.parsePacket()
para definir el comportamiento del dispositivo cuando reciba un paquete y darle lógica
a los dispositivos.

Figura 6. Define comportamiento de nodos al recibir paquete

Finalmente, si se quiere poner a los dispositivos en un modo de recepción de datos
constante, se usa la función de LoRa.receive(). Si hemos definido la función
onReceive() esta será llamada cuando reciba un paquete.

 Lectura de paquetes recibidos
Una vez se ha recibido un paquete en un dispositivo, para la lectura de su contenido se
disponen de varias funciones. La función LoRa.read() va a leer el siguiente byte del
paquete y devuelve su valor, mientras que la función LoRa.available() devuelve el
número de bytes disponibles para leer. De esta forma puede leerse un paquete entero
ejecutando LoRa.read() siempre que LoRa.available() devuelva bytes disponibles para
leer.

8

Otros datos implícitos al recibir un paquete que nos ayudan a obtener información
sobre el remitente son las mediciones de RSSI y SNR.

El RSSI indica la potencia de la señal recibida en milivatios y medida en dB. Es un valor
negativo y son considerados una señal fuerte con -30dBm y débil con -120dBm, siendo
este el mínimo. Este valor puede obtenerse mediante la función LoRa.packetRssi()

El valor SNR es la relación señal/ruido, es decir, la relación entre la señal de potencia
recibida y el nivel de potencia del piso de ruido (Área de todas las fuentes de señales
interferentes). Este valor podemos obtenerlo mediante la función LoRa.packetSnr().

Para evaluar la comunicación entre dos dispositivos podemos hacer una relación de
valores entre el RSSI y el SNR como puede observarse en la Figura 7.

Figura 7. Comparación señal RSSI y SNR [22]

 Parámetros de radio
Se pueden modificar algunos aspectos de radio, como la potencia TX o potencia óptica
de transmisión de salida. La potencia por defecto es 17 dB. Mediante la siguiente
función, podemos indicarle la potencia de transmisión al dispositivo.
LoRa.setTxPower(txPower)

La frecuencia es otro aspecto que se puede cambiar. Como ya se ha mostrado, LoRa
trabaja con las frecuencias 433E6, 868E6 y 915E6 -> LoRa.setFrecuency()

También se puede modificar el factor de dispersión o SF (Spreading Factor), que en
términos de LoRa, es la cantidad de código de ensanchamiento aplicado a la señal de
datos original. Dispone de 6 niveles (SF7 hasta SF12), siendo el mayor número el que
se traduce en un mayor alcance de la señal.

9

LoRa.setSpreadingFactor(spreadingFactor)

Esta librería también da la posibilidad de establecer una palabra de sincronización de
la radio, que va a permitir filtrar las comunicaciones de aquellos nodos que no estén
utilizando la misma palabra de sincronización. El rango de la palabra va de 0 a 0xFF. ->
LoRa.setSyncWord(syncWord).

Esp Deep Sleep
La librería Heltec_ESP32_Dev-Boards también provee de otras funciones básicas para
dispositivos de esta clase. Dispone de funciones para ahorrar recursos, poniendo a dormir o en
suspensión a los módulos. En este caso se ha decidido usar la función esp_deep_sleep que
hará que el nodo se suspenda y no se realicen operaciones de CPU o WiFi, teniendo una
frecuencia de reloj reducida y un menor voltaje durante un periodo establecido. Mediante la
función esp_sleep_enable_timer_wakeup(time_in_us) estableceremos el tiempo que estará
suspendido el nodo y mediante esp_deep_sleep_start(), haremos que se ejecute la
hibernación del dispositivo.

Beelan-LoRaWAN
Esta librería permite implementar el protocolo LoRaWAN en un chip SX1276/SX1278 y cumple
con las propuestas del estándar, proporcionando funciones para la conexión con el servidor,
registro y autenticación del dispositivo, el envío de mensajes o la gestión de la ventana de
recepción [32].

 Inicialización de la librería LoRaWAN -> lora.init()

 Configuración de claves de autenticación:

Establece los métodos para definir las claves de autenticación, que van a ser
requeridas para realizar la conexión con el servidor LoRaWAN.

Figura 8. Definición de claves de autenticación

 Tipo de dispositivo final

Definimos el tipo de dispositivo final, en función de cómo va ser su capacidad para
recibir los mensajes DownLink (Clase A, B o C) -> lora.setDeviceClass(CLASS_A)

 Conexión con el servidor LoRaWAN
Una vez se haya dado de alta el dispositivo final y se hayan definido las claves
proporcionadas por el Servidor para su autenticación, el dispositivo podrá unirse y
comenzar las comunicaciones -> lora.join()

10

Tras haberse unido el dispositivo final a la red LoRaWAN, este podrá comunicarse con
el servidor mediante mensajes Uplink y recibir información mediante Downlinks.

 Uplink
Para enviar información desde el dispositivo final al servidor, se realiza mediante
Uplink que contienen la información cifrada del PHYPayload.

Figura 9. Función para el envío de Uplinks

 Downlink

Para recibir la información desde el servidor hasta el nodo, se dispone de la siguiente
función que recoge los Downlink y los guarda en un buffer suministrado en el
parámetro de la función.

Figura 10. Función para lectura de Downlinks

Adafruit BMP280 Library
Librería para los sensores BMP280 que nos facilita la obtención de datos captados por el
sensor BMP280. Es compatible con todas las arquitecturas [33].

 Inicialización de librería
Declaración de variable tipo Adafruit -> Adafruit_BMP280 bmp
Inicia la librería para utilizar sus funciones -> bmp.begin()

 Lectura del sensor
Temperatura -> bmp.readTemperature()
Presión -> bmp.readPressure()
Altitud: -> bmp.readAltitude()

EEPROM
La librería EEPROM nos permite leer y escribir desde la memoria flash del ESP32. Esta
biblioteca nos permite usar hasta 512 bytes en la memoria flash, es decir, 512 direcciones
diferentes que pueden tener un valor entre 0 y 255. Esto es útil para guardar aquellos valores
que no se quieren perder, en caso de que el dispositivo se apague accidental o
intencionadamente. Estos valores pueden ser estados del sistema, ajustes, o cualquier tipo de
dato que no quiera ser borrado. El único problema que presenta, es que el número de
escrituras en la memoria flash está limitado a 10^5 operaciones, después de esto no garantiza
su funcionamiento. Sin embargo, las operaciones de lectura no tienen límite.

11

 Inicialización de la EEPROM

Se llama a la función EEPROM.begin() y se establece el tamaño que se va a utilizar en
bytes.

 Escritura en memoria

Utilizaremos la función EEPROM.write() para escribir un valor de tamaño de un byte
en la posición de memoria indicada (address, value). Después de eso, ejecutaremos
EEPROM.commit() para guardar los cambios.

Figura 11. Escritura en memoria EEPROM

 Lectura de memoria
Con la función EEPROM.read(address) se obtiene el valor de tamaño byte que está
almacenado en la posición de la memoria indicada.

2. CONFIGURACIÓN NODO FINAL Y SENSOR BMP280
En la red mallada, como ya se ha explicado anteriormente, va a haber un tipo de nodo sensor,
el cual va a tener conectado el sensor BMP280 con el que va a obtener la temperatura, dato
que será empaquetado para su enrutamiento hacia el nodo destino.

Para su utilización requiere de la instalación de la librería Adafruit BMP280 Library, que
permitirá acceder a las funciones utilizadas para la obtención de datos de temperatura y
presión barométrica.

Para realizar las conexiones físicas entre el sensor BMP280 y el módulo LoRa, nos ayudaremos
con el diagrama de pines para saber hacer la conexión de forma correcta (Ver Figura 12).

Figura 12. Diagrama de pines de la Placa WiFi LoRa 32(v2) [34]

12

La tabla para la conexión de pines queda de la siguiente manera:

Figura 13. Configuración pines sensor

La implementación para este proyecto se ha realizado mediante una protoboard y siguiendo el
diagrama de pines explicado anteriormente. La imagen final de la placa sensora está
representada en la Figura 14.

Figura 14. Placa sensora

3. CONFIGURACIÓN DE CHIRPSTACK
Para la utilización del servidor en despliegue real, se han de realizar una serie de pasos previos
donde se debe registrar y activar los dispositivos que componen la red y habilitar las
comunicaciones entre ellos. En este proyecto se ha utilizado un servidor ChirpStack
proporcionado por el grupo de investigación iNiT de la Universidad de Zaragoza [35] y una
puerta de enlace ya registrada en este servidor, por lo que la configuración que se documenta
no parte desde cero.

3.1. CREACIÓN DEL PERFIL DE SERVICIO
Primeramente, se crea un perfil de servicio, donde se definen las funciones para el conjunto de
aplicaciones o usuarios que estén asociados a este perfil, además de definir la tasa de
mensajes máxima y mínima, a la que pueden transmitir a través de la red. Se definen los
siguientes campos:

13

 AddGWMetadata: Permite agregar los datos RSSI, SNR y geolocalización del Gateway.
 NwkGeoLoc: Permite la geolocalización por red de los dispositivos.
 DevStatusRewFreq: Número de solicitudes de estado del dispositivo final que se

permiten por día.
 ReportDevStatusBattery: Reporta el estado de batería del dispositivo final al servidor

de aplicación.
 ReportDevStatusmargin: Reporta el estado de margen del dispositivo final al servidor

de aplicación.
 DRMin: Establece una velocidad mínima de datos permitida.
 DRMax: Establece una velocidad máxima de datos permitida.

Figura 15. Creación de perfil de servicio

3.2. CREACIÓN DE UN APLICACIÓN
Los dispositivos se agrupan por aplicaciones, con la finalidad de organizarlos según la función
que desempeñen. Por ello, se crea una nueva aplicación, a la que añadiremos todos nuestros
nodos finales. Se debe dar un nombre legible a la aplicación y crear una nueva instancia del
dispositivo que se da de alta en ChirpStack, asociarlo con su perfil de dispositivo y junto con el
perfil de servicio creado anteriormente. En la Figura 16 se muestran todas las aplicaciones y el
perfil de servicio al que están asignadas.

Figura 16. Visualización de aplicaciones

14

3.3. REGISTRO DE DISPOSITIVOS FINALES
Para incluir los dispositivos que van a componer la red LoRaWAN, se deben dar de alta y
activar en ChirpStack. Como requisito, se debe saber la versión LoRaWAN MAC que
implementa el dispositivo que se quiere agregar al servidor y revisar sus parámetros
regionales.

CREACIÓN DE PERFIL DEL DISPOSITIVO
Al igual que al registrar el Gateway, aquí también se debe crear un perfil para el nodo final
antes de agregarlo a ChirpStack. En el perfil se configuran las capacidades del dispositivo:

 LoRaWAN MAC versión: El formato del paquete que se va a recibir y que viene definido
en la documentación oficial del dispositivo. En este caso para la placa WiFi LoRa 32
ejecuta el protocolo LoRaWAN 1.0.2.

 LoRaWAN Regional Parameters: Utiliza la versión “A”
 ADR algorithm: El algoritmo ADR (Adaptative Data Rate) va a permitir adaptar la

velocidad y potencia de las transmisiones.
 Uplink Interval: El intervalo esperado en segundos en el que el dispositivo envía

mensajes de enlace ascendente. Utilizado para determinar si un dispositivo está activo
o inactivo.

 OTAA/ABP: Son dos modos de activación de dispositivos finales para LoRaWAN. Se
recomienda el uso de OTAA (Over The Air Activated), ya que cuando un dispositivo
final se une a la red LoRaWAN, se le asigna una DevAddr dinámica y se utilizan las
claves raíz para crear claves de sesión. Este funcionamiento permite a los dispositivos
moverse a diferentes redes/clúster. Sin embargo, ABP utiliza un único DevAddr por lo
que solo puede funcionar correctamente en su red predefinida, e incluso aunque una
red le permitiese registrarse con valores DevAddr, diferentes, no se enrutaría el tráfico
de estos dispositivos a la red/clúster.

 Códec: Permite la codificación y decodificación de los mensajes recibidos (Uplink) o los
enviados (Downlink). Da opciones, como la implementación propia de funciones en
JavaScript o CayenneLPP, que ya trae definidas sus funciones de codificación y
decodificación de paquetes Cayenne. En este proyecto se ha desarrollado una serie de
funciones en JavaScript que permiten la decodificación del payload de los Uplinks
realizados por los dispositivos finales.

ALTA DEL DISPOSITIVO
Desde la aplicación creada, se le da al botón de “Crear” para añadir el dispositivo final. Aquí se
rellenan los datos relativos al nombre y descripción del dispositivo, se le asigna el perfil de
dispositivo al que va a estar asociado y finalmente la clave DevEUI. El DevEUI es un
identificador único para cada dispositivo que viene asignado por el fabricante, el cual debe
facilitarse cuando se adquiere el producto. En caso de no poseer este DevEUI, ChirpStack
puede generar uno en el momento de creación del dispositivo como se ve en la Figura 17.

15

Figura 17. Generación aleatoria de DevEUI

Una vez se ha creado el dispositivo, si pinchamos sobre este, se pueden visualizar las claves
OTAA y de Activación que vamos a necesitar incluir en el código que se carga sobre el
dispositivo:

 Application key (AppKey): Puede gestionarse en la pestaña CLAVES(OTAA). Los
dispositivos activados dinámicamente utilizan esta clave para derivar las dos claves de
sesión (NwSKey y AppSKey) durante el proceso de activación.

 Device address (DevAddr): Clave de activación dinámica en OTAA, cuando el
dispositivo se une a la red.

 Network sesión key (NwSKey): Es una clave de sesión utilizada en la interacción entre
el dispositivo final y el servidor de red. Valida la integridad de los mensajes mediante
MIC (Message Integrity Code), que tiene un funcionamiento similar a un checksum.

 Application sesion key (AppSKey): Clave de sesión que cifra y descifra la carga útil de
los paquetes. Dicha carga está encriptada entre el dispositivo final y el Servidor,
asegurando la confidencialidad del usuario.

Figura 18. Registro de dispositivos finales de la aplicación

Las claves de sesión son únicas de cada dispositivo por sesión, y si se ha activado el dispositivo
mediante OTAA, estas claves se vuelven a generar en cada activación.

Como paso final, se deben definir en el código que se carga sobre el dispositivo final, las claves
DevEUI y AppKey mediante las funciones de la librería LoRaWAN, para que el dispositivo pueda
autenticarse en el servidor de red (Ver Figura 19).

Figura 19. Definición de claves de autenticación en dispositivo final

16

VISUALIZACIÓN DE PAQUETES
Para comprobar que el dispositivo se ha dado de alta en el servidor de forma correcta, se carga
un programa que contiene las claves de autenticación vistas en la Figura 19, una función para
establecer conexión con el servidor y otra para el envío de mensajes Uplink. Estas tres
funciones van a componer un programa básico para la comunicación del dispositivo final con el
servidor ChirpStack.

ChirpStack nos ofrece una gran cantidad de herramientas para la monitorización de los datos
obtenidos por los elementos de la red LoRaWAN. En la aplicación creada en el punto anterior,
seleccionamos el dispositivo final del que se espera recibir datos, y en la sección Device Data
(Ver Figura 20) podremos ver las interacciones que está teniendo el dispositivo con el servidor
si se ha configurado todo correctamente. En la sección de detalles, también podemos
comprobar el estado del dispositivo (Ver Figura 21)., visualizar gráficas de datos recibidos,
comprobar posibles errores, métricas como RSSI y SNR, etc (Ver Figura 22).

Figura 20. Registro de comunicaciones recibidas del dispositivo

Figura 21. Estado del dispositivo

17

Figura 22. Gráficas de datos recibidos

18

REFERENCIAS BIBLIOGRÁFICAS

[30] Arduino configuration for Heltec´s nodes, Heltec, September 2022.

 https://docs.heltec.org/en/node/esp32/quick_start.html

[31] Heltec libraries for Esp32 and LoRa devices, Arduino, March 2014.

 https://www.arduinolibraries.info/libraries/heltec-esp32-dev-boards

[32] LoRaWAN library, ElectronicCats, 2018.

 https://github.com/ElectronicCats/Beelan-LoRaWAN

[33] Bmp280 sensor libraries, Adafruit, 2018.

 https://github.com/adafruit/Adafruit_BMP280_Library

[34] Pin map for Heltec wifi lora 32, The Hiveeyes community, February 2017.

 https://community.hiveeyes.org/t/heltec-wifi-lora-32/3125

[35] iNiT overview, Intelligent Networks and Information Technologies, 2022.

 http://init.unizar.es/

