.2s Universidad
Zaragoza

Trabajo Fin de Grado

Disefio e Implementacion de redes LLoRa malladas
Design and Implementation of LoRa Mesh Networks

Autor

Angel Torre Tolosana

Directores
Francisco José Martinez Dominguez

Julio Alberto Sangiiesa Escorihuela

Escuela Universitaria Politécnica de Teruel
Universidad de Zaragoza
2022

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Contenido

ANEXOS ...oovveeeeeeeeee et te ettt eaeee s esases et et et et st e s e te s et et e se s as st eses et et et et et eaeaeaes s e s e s s et e s eaeteteneaeenans 4
ANEXO 1. CONFIGURACION DE TECNOLOGIASveveveveeeececeeeeeeeeeeeeeeeeeeseseeseeeseseseseseseseaesenns 4
1. CONFIGURACION DEL ENTORNO ARDUINOoovvvererereececeeeeeeseseeese e eseesssesasenesenenens 4

1.1. CONFIGURACION NODO HELTEC WIFI LORA 32 EN ARDUINO.........cccevevrerrrrrrrerennn. 4

1.2, LIBRERIAS ...ttt ettt ettt ettt ae st eae st eas et et aeneane 6

2. CONFIGURACION NODO FINALY SENSOR BMP280........c.coeveveeerereeeeeeeeerereeesesesesesenenns 11
3. CONFIGURACION DE CHIRPSTACKvovvevevereeeteecereeeeesesesesesesesesesesesesessssssesesesesssssesens 12
3.1. CREACION DEL PERFIL DE SERVICIO......cocveveueeereececereseseseeeseseaeeesesessesssenesesennns 12

3.2. CREACION DE UN APLICACIONooovetieeieteece ettt et eneaenas 13

3.3. REGISTRO DE DISPOSITIVOS FINALESc.cveueereeeierereteeeeesesesesesseseseseseseseseseaesenns 14
REFERENCIAS BIBLIOGRAFICAS..........oveveveeeteeeteeeeeeceeseesesesesesese e sesesesssnssesesesesessssseaesesesnasananas 18

(ndice
Figura 1.
Figura 2.
Figura 3.
Figura 4.
Figura 5.
Figura 6.
Figura 7.
Figura 8.
Figura 9.

Figura 10.
Figura 11.
Figura 12.
Figura 13.
Figura 14.
Figura 15.
Figura 16.
Figura 17.
Figura 18.
Figura 19.
Figura 20.
Figura 21.
Figura 22.

de figuras

(000] 0} {T={V T [oi o] g W] F-Tor: HS PP U U U UN 4
Configuracion de 12 PlaCa.........eeeeeiiiiiiiiiiiiiiieeeeeeeee s eeee e 5
Configuracion de 12 PlaCa.........eeeeeiiiiiiiiiiiiiiieeeeeeeee s eeee e 5
Ejemplos de comunicacion LORAccoooiiiiiiiiie et e e e e 6
Escritura de contenido en paquete LOR@.......uuuuvieeiiiieeceiiiice e 7
Define comportamiento de nodos al recibir paqueteccccoevvveviiiicciieeee e, 7
Comparacion seNal RSSIY SNR [22]uuuiiiiiiiiiiiiiieeeirieeeeeeeeeeeeee e e eeeeeeeeaaaaeaaaaaeeeaeaaeens 8
Definicidn de claves de autenticacionccceieiiiieiiiiiiiee e 9
Funcidn para el envio de UplinKs..........ooooiiiiiiiiiicecrreee e 10

Funcidn para lectura de DOWNINKSuuveiiiiiiiiiiiiiiiieiiieeeeeeeeeeee e, 10
Escritura en memoria EEPROMeuuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeteee et 11
Diagrama de pines de la Placa WiFi LORa 32(V2) [34].....uvurrrirririiiiiieiieeeeeeeeeeeeeeeeeeen, 11
ConfigUracion PINES SENSONcceeeieeiieieeeecec e rr et rreeeeeseeeeeeseeesereaaaaaans 12
PlaCa SENSOMA.ciiiii ittt e e e et e e e e e s e e e e e e s ebee e e e e e s nrreeeaeens 12
Creacion de perfil de SEIVICIOooeeeeeeeececeeeee e e e e 13
Visualizacion de apliCaCioNesoeeeiiieieiiiiiiiieeeeee s 13
Generacion aleatoria de DEVEUIueiiiiiiiiiiiieeiee ettt 15
Registro de dispositivos finales de la aplicacion...........ccccccvvvvveiiniiveniiieeeeeeeeeeeeeeeee, 15
Definicion de claves de autenticacion en dispositivo finaleeeeeeeveeeeeeeiiiin.l. 15
Registro de comunicaciones recibidas del dispositivo............ucceeeeiiiiiiiiiiiiiiiiieeeeeen, 16
Estado del diSpOSItiVOcoceeuiiiiiiiee e e e 16

Graficas de datos FECIDIAOSevivvee ittt ettt ettt e e s s e e eeraneeees 17

ANEXOS
ANEXO 1. CONFIGURACION DE TECNOLOGIAS

1. CONFIGURACION DEL ENTORNO ARDUINO

Para el desarrollo de cddigo que va a definir el comportamiento de los nodos, se utiliza el
ecosistema de Arduino en su version 1.8.16. El lenguaje Arduino estd basado en C y cuenta con
una gran variedad de librerias que facilitan las comunicaciones LoRa y el desarrollo de
proyectos de comunicacion. Ademas, hay una gran cantidad de informacién sobre multitud de
aspectos, debido al gran soporte que recibe por parte de su comunidad.

Los mddulos admiten el desarrollo de cddigo sobre Arduino, pero el IDE necesita de una
configuracion previa para cada dispositivo antes de poder cargar los programas.

1.1. CONFIGURACION NODO HELTEC WIFI LORA 32 EN ARDUINO

Antes de empezar a con la programacion de los nodos finales, debemos realizar unas
modificaciones sobre el entorno de Arduino con el que vamos a trabajar.

Se deberd instalar la libreria basica Heltec_ESP32_Dev-Boards de comunicaciones para nuestra
placa WiFi LoRa 32.

De acuerdo a las instrucciones de la pagina oficial de Heltec [30], es necesario afiadir la URL de
la libreria en preferencias, dentro de del entorno Arduino y en el apartado de “Gestor de URLs
Adicionales”. La URL es la siguiente:

https://github.com/Heltec-Aaron-
Lee/WiFi Kit series/releases/download/0.0.6/package heltec esp32 index.ijson

Preferencias X

Ajustes Red

Localizacion de proyecto

CiiUsersiangel\Documentsi Arduing Explorar
Editor de idioma: Syskem Default | (requiere reiniciar Arduino)

Editor de Tamafio de Fuente: 1z

Escala Interfaz: Automatico | 100 3 % (requiere reiniciar Arduina)

Tema: Tema por defecto « | {requiere reiniciar Arduina)

Mostrar salida detallada mientras: [] Compilacion [Subir

Advertencias del compilador: Minguno e

[] Mostrar nimeros de linea [] Habilitar Plegade Cédiga

‘erificar codigo después de subir [usar editor externo

Comprabar actualizaciones al iniciar Guardar cuando se verifique o cargue

[use accessibility Features

Gestar de IURLs Adicionales de Tarjetas: |ub.comfHeltec-Aaron-Lee'WiFi_Kit_series/releases/download0.0.5/package_heltec_esp32_index.json ﬁ
M3s preferencias pueden ser editadas directamente en el fichera

CiUserstAngel AppDatallocallArduino 15 preferences, bt
{editar sdlo cuando Arduino no ests corriendo)

ok Cancelar

Figura 1. Configuracion placa

Después, en el apartado Herramientas -> Placa -> Gestor de tarjetas, se buscar la libreria
Heltec ESP32 y se instala para poder trabajar con ella.

a Herramientas Ayuda
Auto Formato Ctrl+T
Archivo de programa.

Reparar codificacién & Recargar.

' Administrar Bibliotecas... Ctrl +Mayus +1
' Monitor Serie Ctrl +Mayds +M
Serial Plotter Ctrl +Mayds +L
SE SE6
T WiFi101 / WiFiNINA Firmware Updater e
F Placa: "WiFi LoRa 32V2)" | Gestordetaretas.. |
Upload Speed: “921600" 3 Arduino AVR Boards >
i CPU Frequency: "240MHz (WiFi/BT)" 3 Heltec ESP32 Arduine > SaJ€
Core Debug Level: "Ninguno" >
o PSRAM: "Disabled" >
LoRaWan Region: "REGION_EUB68" >
LoRaWan Debug Level: "Ninguno" >[que hay en el historial rec
;; Puerto >
Obtén informacidén dela placa
ic
m Programador >
10 Quemar Bootloader f:12:02:B7:48"

Figura 2. Configuracion de la placa

@ Boards Manager

Type |All v||Heltec ESP32

Heltec ESP32 Series Dev-boards by Heltec Automation(TM)

Boards included in this package:

WiFi Kit 32, WiFi LoRa 32, WiFi LoRa 32(V2), Wirreless Stick Lite, Wireless Stick.
More Info

Figura 3. Configuracion de la placa

Ahora podemos utilizar las funciones de comunicacion mediante LoRa que nos proporciona la
libreria de Heltec para las placas WiFi LoRa 32. Podemos acceder a los distintos ejemplos que
nos facilita esta libreria y cargar los programas basicos de envio y recepcidn de paquetes en las
placas.

Archivo Editar Programa Herramientas Ayuda

Nuevo Ctrl+N
Abrir... Ctrl+0
Abrir Reciente ’
Proyecto >
Ejemplos 3 &
Cerrar Ctrl+W HTTPClient ’
Salvar Ctrl+S EITTRUpdate >5,915E6
Guardar Como... Ctrl+Mayds+S NetBIOS 2
Preferences >
- iqi i de nodos que tiene la red mesh antes
Configurar Pdgina Ctrl+Mayds+P SD{esp32) N nodos ‘que ‘tiene = =
iy Sk SD_MMC > hecos para historico de mensajes
Preferencias Ctrl+Coma SimpleBLE 2
SPI >
Salir Ctrl+Q SPIFFS >
int nunMsg; 4 Ticker >fes que hay en el historial reciente
long lastSendTime = 0; A Update >
int interval = 2000; Vi
WebServer >
//Declaramos las mac de todos L WiFi >
//En este caso cogemos el ultim WiFiClientSecure >
byte MAC_NODO[NUM_NODOS] = { Ox 4:CF:12:02:B7: 4 LoRaDumpRegisters
Ejemplos de Liberias Personalizadas LoRaMultipleCommunication
//l,mjttlguracmx.l el tmgr Adafruit BMP280 Library > LoRaMultipleCommunicationinterrupt
hw_timer_t * timer_ despierto = i :
POrtMUX_TYPE timerMux = portMUX Adafruit BuslO > LoRaReceiver
Adafruit Unified Sensor > LoRaReceiverinterrupt
//Estructura de los paquetes qu ArduinoJson > LoRaSender
struct loraPacket { ESPIITH | > LoRaSetS d
byte dst;//destino del paquet imetinfesTUpE ORaselprea
N PR TP DTN Heltec ESP32 Dev-Boards 3 ESP32 3 LoRaSetSyncWord
Painless Mesh 3 Factory_Test > OLED_LoRa_Receiver
RadioHead 3 LoRa b OLED_LoRa_Sender
TaskScheduler 3 Low_Power 0 3 e

¥ OLED >

Figura 4. Ejemplos de comunicacion LoRa

1.2. LIBRERIAS

Para poder llevar a cabo la implementacion, se deben programar las funciones que permitan
las comunicaciones, tanto entre dispositivos LoRa como en la red LoRaWAN. Arduino presta un
servicio de busqueda dentro de su IDE, mediante el cual, permite la implementacion de
librerias que den distintas funcionalidades a los programas. En esta seccién se van a describir
las librerias mas relevantes y sus funciones bdasicas utilizadas a lo largo de este proyecto.

Heltec ESP32 Dev-Boards

Biblioteca basica para las placas Heltec ESP32 o ESP32+LoRa, para el uso de las comunicaciones
entre dispositivos que utilicen la tecnologia LoRa. Compatible con las placas: WiFi Kit 32, WiFi
LoRa 32, Wireless Stick, Wireless Shell, facilita la implementacion de comunicaciones entre
nodos LoRa que trabajen bajo la misma frecuencia, mediante funciones de empaquetado,
envio y recepcion de la informacion [31].

e |nicio de comunicaciones LoRa

Para el inicio de las comunicaciones LoRa entre dispositivos compatibles,
primeramente se debe definir la frecuencia en que se comunican, y como ya hemos
visto, la frecuencia europea es 868MHz. Se inicia la libreria LoRa.h ->
LoRa.begin(frecuency)

Para saber si se ha iniciado de forma correcta y esta listo para recibir o transmitir, esta
funcién devuelve 1 en caso de éxito y O si ha fallado.

Finalizacion de comunicaciones LoRa -> LoRa.end()

Envio de datos

Comienza la secuencia para envio de paquetes -> LoRa.beginPacket()

Después de esto, se escribiran los datos en el paquete, con una capacidad maxima de
hasta 255 bytes. Se dispone de una funcién write() que permite escribir de byte en
byte sobre el paquete o directamente un buffer de bytes, donde es necesaria una
especificacion de tamafio de este buffer. Esta funciéon devuelve el nimero de bytes
gue se han escrito en el paquete.

LoRa.write(byte);

LoRa.write(buffer, length);

Figura 5. Escritura de contenido en paquete LoRa

Una vez se ha acabado de escribir, se indica el final del paquete -> LoRa.endPacket()
Si es un éxito devuelve 1, o 0 en caso de error.

Recepcion de datos

Los dispositivos deben ponerse a comprobar si hay otros dispositivos intentando
comunicarse con ellos. La funcion LoRa.parsePacket() comprueba si se ha recibido un
paquete y devuelve el tamafio en bytes, siendo este 0 si no se ha recibido ninguno.
También da la opcidén de recibir paquetes con un tamafio de bytes esperado,
definiéndolo como parametro en esta funcion.

La funcidn onReceive() de la Figura 6 se utiliza junto a la anterior LoRa.parsePacket()
para definir el comportamiento del dispositivo cuando reciba un paquete y darle légica
a los dispositivos.

LoRa.onReceive(onReceive);

void onReceive(int packetSize) {

y’ ,, ...

Figura 6. Define comportamiento de nodos al recibir paquete

Finalmente, si se quiere poner a los dispositivos en un modo de recepciéon de datos
constante, se usa la funcién de LoRa.receive(). Si hemos definido la funcién
onReceive() esta serd Ilamada cuando reciba un paquete.

Lectura de paquetes recibidos

Una vez se ha recibido un paquete en un dispositivo, para la lectura de su contenido se
disponen de varias funciones. La funcion LoRa.read() va a leer el siguiente byte del
paquete y devuelve su valor, mientras que la funcién LoRa.available() devuelve el
numero de bytes disponibles para leer. De esta forma puede leerse un paquete entero
ejecutando LoRa.read() siempre que LoRa.available() devuelva bytes disponibles para
leer.

Otros datos implicitos al recibir un paquete que nos ayudan a obtener informacion
sobre el remitente son las mediciones de RSSI y SNR.

El RSSI indica la potencia de la seiial recibida en milivatios y medida en dB. Es un valor
negativo y son considerados una sefial fuerte con -30dBm y débil con -120dBm, siendo
este el minimo. Este valor puede obtenerse mediante la funcién LoRa.packetRssi()

El valor SNR es la relacién sefial/ruido, es decir, la relacion entre la sefial de potencia
recibida y el nivel de potencia del piso de ruido (Area de todas las fuentes de sefiales
interferentes). Este valor podemos obtenerlo mediante la funcién LoRa.packetSnr().

Para evaluar la comunicacion entre dos dispositivos podemos hacer una relacion de
valores entre el RSSI y el SNR como puede observarse en la Figura 7.

Reference test (line of sight) :
= dist. Im = RSSI-30dB

+ dist. 2m = RSS1-40dB
v Dist. x2 = RS51—6dB

sin RF level is optimal to get a good
- . reception reliability
: .] I: E GOOD RF level is not optimal but must be
FAR AWAY environment A sufficient
STryto put device higher 1', .': = Try to improve your device
1‘\ / | .~ position if possible

= You will have to monitor the

i atie .- FAIR stability of the RF level
18 N — — .
Y i . NOISY environment
. S Tmmmeseees=s=TT 3Tryte put device out of
126 115 RSSI electromagnetic sources
RSSI: Received Signal Strength Indicator
LSNR: LoRa Signal Noise Rate RULES: m

O Sensor at least at 1 meters of the gateway antenna

O It always depends of the global environment

Figura 7. Comparacion seiial RSSI y SNR [22]

Parametros de radio

Se pueden modificar algunos aspectos de radio, como la potencia TX o potencia dptica
de transmision de salida. La potencia por defecto es 17 dB. Mediante la siguiente
funcién, podemos indicarle la potencia de transmision al dispositivo.
LoRa.setTxPower(txPower)

La frecuencia es otro aspecto que se puede cambiar. Como ya se ha mostrado, LoRa
trabaja con las frecuencias 433E6, 868E6 y 915E6 -> LoRa.setFrecuency()

También se puede modificar el factor de dispersién o SF (Spreading Factor), que en
términos de LoRa, es la cantidad de cddigo de ensanchamiento aplicado a la sefial de
datos original. Dispone de 6 niveles (SF7 hasta SF12), siendo el mayor niumero el que
se traduce en un mayor alcance de la sefial.

8

LoRa.setSpreadingFactor(spreadingFactor)

Esta libreria también da la posibilidad de establecer una palabra de sincronizacién de
la radio, que va a permitir filtrar las comunicaciones de aquellos nodos que no estén
utilizando la misma palabra de sincronizacidn. El rango de la palabra va de 0 a OxFF. ->
LoRa.setSyncWord(syncWord).

Esp Deep Sleep

La libreria Heltec_ESP32 Dev-Boards también provee de otras funciones basicas para
dispositivos de esta clase. Dispone de funciones para ahorrar recursos, poniendo a dormir o en
suspensidn a los mdédulos. En este caso se ha decidido usar la funciéon esp_deep_sleep que
hard que el nodo se suspenda y no se realicen operaciones de CPU o WiFi, teniendo una
frecuencia de reloj reducida y un menor voltaje durante un periodo establecido. Mediante la
funcion esp_sleep_enable_timer_wakeup(time_in_us) estableceremos el tiempo que estara
suspendido el nodo y mediante esp_deep_sleep_start(), haremos que se ejecute la
hibernacién del dispositivo.

Beelan-LoRaWAN

Esta libreria permite implementar el protocolo LoRaWAN en un chip SX1276/5SX1278 y cumple
con las propuestas del estandar, proporcionando funciones para la conexién con el servidor,
registro y autenticacion del dispositivo, el envio de mensajes o la gestién de la ventana de
recepcion [32].

¢ Inicializacidon de la libreria LoORaWAN -> lora.init()

e Configuracion de claves de autenticacion:

Establece los métodos para definir las claves de autenticacion, que van a ser
requeridas para realizar la conexidn con el servidor LoRaWAN.

void setDevAddr(unsigned char *devAddr_in);

id setAppSKey(unsi d char *ApskKey in);
*NwkKey_in);
*devEUI_in);
etAppEU st ar *apptEUI_in);
id setAppKey(const char *appKey in);

Figura 8. Definicion de claves de autenticacion

e Tipo de dispositivo final
Definimos el tipo de dispositivo final, en funcion de cédmo va ser su capacidad para
recibir los mensajes DownlLink (Clase A, B o C) -> lora.setDeviceClass(CLASS_A)

e Conexidn con el servidor LoRaWAN
Una vez se haya dado de alta el dispositivo final y se hayan definido las claves
proporcionadas por el Servidor para su autenticacion, el dispositivo podra unirse y
comenzar las comunicaciones -> lora.join()

Tras haberse unido el dispositivo final a la red LoRaWAN, este podra comunicarse con
el servidor mediante mensajes Uplink y recibir informacion mediante Downlinks.

e Uplink
Para enviar informacién desde el dispositivo final al servidor, se realiza mediante
Uplink que contienen la informacion cifrada del PHYPayload.

void sendUplink(unsigned char *data, unsigned int len, unsigned char confirm);

Figura 9. Funcion para el envio de Uplinks

e Downlink
Para recibir la informacion desde el servidor hasta el nodo, se dispone de la siguiente
funcién que recoge los Downlink y los guarda en un buffer suministrado en el
parametro de la funcion.

void readData(void);

Figura 10. Funcidn para lectura de Downlinks

Adafruit BMP280 Library

Libreria para los sensores BMP280 que nos facilita la obtencién de datos captados por el
sensor BMP280. Es compatible con todas las arquitecturas [33].

¢ Inicializaciéon de libreria
Declaracién de variable tipo Adafruit -> Adafruit_BMP280 bmp
Inicia la libreria para utilizar sus funciones -> bmp.begin()

e Lectura del sensor
Temperatura -> bmp.readTemperature()
Presiéon -> bmp.readPressure()
Altitud: -> bmp.readAltitude()

EEPROM

La libreria EEPROM nos permite leer y escribir desde la memoria flash del ESP32. Esta
biblioteca nos permite usar hasta 512 bytes en la memoria flash, es decir, 512 direcciones
diferentes que pueden tener un valor entre 0 y 255. Esto es util para guardar aquellos valores
gue no se quieren perder, en caso de que el dispositivo se apague accidental o
intencionadamente. Estos valores pueden ser estados del sistema, ajustes, o cualquier tipo de
dato que no quiera ser borrado. El Unico problema que presenta, es que el nimero de
escrituras en la memoria flash esta limitado a 1075 operaciones, después de esto no garantiza
su funcionamiento. Sin embargo, las operaciones de lectura no tienen limite.

10

e |Inicializacion de la EEPROM

Se llama a la funcién EEPROM.begin() y se establece el tamafio que se va a utilizar en
bytes.

e Escritura en memoria

Utilizaremos la funcion EEPROM.write() para escribir un valor de tamafio de un byte
en la posicién de memoria indicada (address, value). Después de eso, ejecutaremos
EEPROM.commit() para guardar los cambios.

EEPROM.write(address, value);

EEPROM.commit();

Figura 11. Escritura en memoria EEPROM

e Lectura de memoria
Con la funcién EEPROM.read(address) se obtiene el valor de tamafio byte que estd
almacenado en la posicién de la memoria indicada.

2. CONFIGURACION NODO FINAL Y SENSOR BMP280

En la red mallada, como ya se ha explicado anteriormente, va a haber un tipo de nodo sensor,
el cual va a tener conectado el sensor BMP280 con el que va a obtener la temperatura, dato
gue sera empaquetado para su enrutamiento hacia el nodo destino.

Para su utilizacién requiere de la instalacion de la libreria Adafruit BMP280 Library, que
permitird acceder a las funciones utilizadas para la obtencién de datos de temperatura y
presion barométrica.

Para realizar las conexiones fisicas entre el sensor BMP280 y el mddulo LoRa, nos ayudaremos
con el diagrama de pines para saber hacer la conexion de forma correcta (Ver Figura 12).

NIE . 29(\/2)\ PinA Niar - Tipe: . co
| LoRa 32(Pinout Diagra . it

0 T - oo
v | gﬂ ol @ust - noci ot A\, DAC
= O o—NEI cr7e {wci i W serial SPI 12C
= B O oI e Hwas) o i
O o—E- cP13o* - apca 3t Gk
| O o -hkile)- EDYTT .
O o—E M- xas2 - Gpro32 | Abcia - Touchs
O o—JEM- xa32 | 6P1033 - ADC15 | Touchs
O NI oz 4 HIBAE- e
O o BT - e RGO 4
O o M- wrion - ot - [ETETTTR 4
O —ETl- 014 | aocz 6 | Touchs —ETIN]
O —WETl- cPro12 — Abc2.5 — TOUCHS
j O o—FEI- cpro13 — abc2a - TPUCHA
L0 MW o eon v o TR

UO_RTS — V_SPIWP — GPIO22 — SCL
wers — vsere H oo -JECH—e
vseio - eero2s JETHN e

[g Lova_cs giERE]

L J Lora_scx QRECRTIICICN

Touch2 — HSPIWP — ADC2 2
’m Touch® — HSPI_HD — ADC2.@ - GPIO4
vz _no - 017 -JEN—e
[2 oteo_rsT gVICCRENTSOTRE 16 o)

Figura 12. Diagrama de pines de la Placa WiFi LoRa 32(v2) [34]

11

La tabla para la conexidn de pines queda de la siguiente manera:

VCC 3V3
GND GND
SCL GPIO 22
SDA GPIO 21
CsSB

SDO 3V3

Figura 13. Configuracion pines sensor

La implementacién para este proyecto se ha realizado mediante una protoboard y siguiendo el
diagrama de pines explicado anteriormente. La imagen final de la placa sensora estd
representada en la Figura 14.

Figura 14. Placa sensora

3. CONFIGURACION DE CHIRPSTACK

Para la utilizacién del servidor en despliegue real, se han de realizar una serie de pasos previos
donde se debe registrar y activar los dispositivos que componen la red y habilitar las
comunicaciones entre ellos. En este proyecto se ha utilizado un servidor ChirpStack
proporcionado por el grupo de investigacion iNiT de la Universidad de Zaragoza [35] y una
puerta de enlace ya registrada en este servidor, por lo que la configuracion que se documenta
no parte desde cero.

3.1. CREACION DEL PERFIL DE SERVICIO

Primeramente, se crea un perfil de servicio, donde se definen las funciones para el conjunto de
aplicaciones o usuarios que estén asociados a este perfil, ademas de definir la tasa de
mensajes maxima y minima, a la que pueden transmitir a través de la red. Se definen los
siguientes campos:

12

e AddGWMetadata: Permite agregar los datos RSSI, SNR y geolocalizacién del Gateway.

e NwkGeoloc: Permite la geolocalizacion por red de los dispositivos.

e DevStatusRewFreq: Numero de solicitudes de estado del dispositivo final que se
permiten por dia.

e ReportDevStatusBattery: Reporta el estado de bateria del dispositivo final al servidor
de aplicacion.

e ReportDevStatusmargin: Reporta el estado de margen del dispositivo final al servidor
de aplicacion.

e DRMin: Establece una velocidad minima de datos permitida.

e DRMax: Establece una velocidad maxima de datos permitida.

Q, Search organization, application, gateway or device

A ateway-profiles
B Organizations Service-profiles (+ CREATE

2 Allusers

Q" APl keys Name Network Server

GIRNI-FIEC-ESPOL -

A Org. dashboard Rows per page: 10 « 1-10f1

o 0Org. users

A, Org. APl keys

Service-profiles

Figura 15. Creacion de perfil de servicio

3.2. CREACION DE UN APLICACION

Los dispositivos se agrupan por aplicaciones, con la finalidad de organizarlos segun la funcidon
gue desempefien. Por ello, se crea una nueva aplicacién, a la que afiadiremos todos nuestros
nodos finales. Se debe dar un nombre legible a la aplicacidn y crear una nueva instancia del
dispositivo que se da de alta en ChirpStack, asociarlo con su perfil de dispositivo y junto con el
perfil de servicio creado anteriormente. En la Figura 16 se muestran todas las aplicaciones y el
perfil de servicio al que estan asignadas.

Applications + CREATE
D MName Service-profile Description
3 LoRaMeshApp LoRaMesh_Service-profile LoRa Mesh testing
4 init-agri init-service-profile INIT agri

Rows perpage: 10 = 1-2of2

Figura 16. Visualizacion de aplicaciones

13

3.3. REGISTRO DE DISPOSITIVOS FINALES

Para incluir los dispositivos que van a componer la red LoRaWAN, se deben dar de alta y
activar en ChirpStack. Como requisito, se debe saber la version LoRaWAN MAC que
implementa el dispositivo que se quiere agregar al servidor y revisar sus parametros
regionales.

CREACION DE PERFIL DEL DISPOSITIVO

Al igual que al registrar el Gateway, aqui también se debe crear un perfil para el nodo final
antes de agregarlo a ChirpStack. En el perfil se configuran las capacidades del dispositivo:

e LoRaWAN MAC version: El formato del paquete que se va a recibir y que viene definido
en la documentacién oficial del dispositivo. En este caso para la placa WiFi LoRa 32
ejecuta el protocolo LoRaWAN 1.0.2.

e LoRaWAN Regional Parameters: Utiliza la version “A”

e ADR algorithm: El algoritmo ADR (Adaptative Data Rate) va a permitir adaptar la
velocidad y potencia de las transmisiones.

e Uplink Interval: El intervalo esperado en segundos en el que el dispositivo envia
mensajes de enlace ascendente. Utilizado para determinar si un dispositivo esta activo
o inactivo.

e OTAA/ABP: Son dos modos de activacidon de dispositivos finales para LoRaWAN. Se
recomienda el uso de OTAA (Over The Air Activated), ya que cuando un dispositivo
final se une a la red LoRaWAN, se le asigna una DevAddr dindmica y se utilizan las
claves raiz para crear claves de sesién. Este funcionamiento permite a los dispositivos
moverse a diferentes redes/clister. Sin embargo, ABP utiliza un Unico DevAddr por lo
gue solo puede funcionar correctamente en su red predefinida, e incluso aunque una
red le permitiese registrarse con valores DevAddr, diferentes, no se enrutaria el trafico
de estos dispositivos a la red/cluster.

e (CdAdec: Permite la codificacion y decodificacion de los mensajes recibidos (Uplink) o los
enviados (Downlink). Da opciones, como la implementacién propia de funciones en
JavaScript o CayennelPP, que ya trae definidas sus funciones de codificacion vy
decodificaciéon de paquetes Cayenne. En este proyecto se ha desarrollado una serie de
funciones en JavaScript que permiten la decodificacion del payload de los Uplinks
realizados por los dispositivos finales.

ALTA DEL DISPOSITIVO

Desde la aplicacion creada, se le da al botdn de “Crear” para afiadir el dispositivo final. Aqui se
rellenan los datos relativos al nombre y descripcidon del dispositivo, se le asigna el perfil de
dispositivo al que va a estar asociado y finalmente la clave DevEUIl. El DevEUI es un
identificador Unico para cada dispositivo que viene asignado por el fabricante, el cual debe
facilitarse cuando se adquiere el producto. En caso de no poseer este DevEUI, ChirpStack
puede generar uno en el momento de creacion del dispositivo como se ve en la Figura 17.

14

Device EUI * MSB (¢

Figura 17. Generacion aleatoria de DevEUI

Una vez se ha creado el dispositivo, si pinchamos sobre este, se pueden visualizar las claves
OTAA y de Activacion que vamos a necesitar incluir en el cddigo que se carga sobre el
dispositivo:

e Application key (AppKey): Puede gestionarse en la pestafia CLAVES(OTAA). Los
dispositivos activados dindmicamente utilizan esta clave para derivar las dos claves de
sesion (NwSKey y AppSKey) durante el proceso de activacion.

e Device address (DevAddr): Clave de activacién dinamica en OTAA, cuando el
dispositivo se une a la red.

e Network sesion key (NwSKey): Es una clave de sesién utilizada en la interaccion entre
el dispositivo final y el servidor de red. Valida la integridad de los mensajes mediante
MIC (Message Integrity Code), que tiene un funcionamiento similar a un checksum.

e Application sesion key (AppSKey): Clave de sesidn que cifra y descifra la carga util de
los paquetes. Dicha carga estd encriptada entre el dispositivo final y el Servidor,
asegurando la confidencialidad del usuario.

Last seen Device name Device EUI Device profile Link margin Battery
O 2 days ago HLO3Cereza 05f6e1704e9b4b39 End-Device-L oRa_Mesh n/a n/a
0 na Prueba aaba611f3afgd0le End-Device-L oRa_Mesh n/a n/a

Rows per page: 10 « 1-20f2

Figura 18. Registro de dispositivos finales de la aplicacion

Las claves de sesién son Unicas de cada dispositivo por sesidn, y si se ha activado el dispositivo
mediante OTAA, estas claves se vuelven a generar en cada activacion.

Como paso final, se deben definir en el cddigo que se carga sobre el dispositivo final, las claves
DevEUI y AppKey mediante las funciones de la libreria LoRaWAN, para que el dispositivo pueda
autenticarse en el servidor de red (Ver Figura 19).

»onat char *devEui = "05fcel704=28kh4b345™
3d0dadfsSadabel £9=chh

™

o
[= 3]
[s]
[s1]
1]
[=)]
T

~onat char YappEey= "1l

[s]

m

5

Figura 19. Definicion de claves de autenticacién en dispositivo final

15

VISUALIZACION DE PAQUETES

Para comprobar que el dispositivo se ha dado de alta en el servidor de forma correcta, se carga
un programa que contiene las claves de autenticacion vistas en la Figura 19, una funcidn para
establecer conexién con el servidor y otra para el envio de mensajes Uplink. Estas tres
funciones van a componer un programa basico para la comunicacion del dispositivo final con el
servidor ChirpStack.

ChirpStack nos ofrece una gran cantidad de herramientas para la monitorizacién de los datos
obtenidos por los elementos de la red LoRaWAN. En la aplicacién creada en el punto anterior,
seleccionamos el dispositivo final del que se espera recibir datos, y en la seccién Device Data
(Ver Figura 20) podremos ver las interacciones que esta teniendo el dispositivo con el servidor
si se ha configurado todo correctamente. En la seccion de detalles, también podemos
comprobar el estado del dispositivo (Ver Figura 21)., visualizar graficas de datos recibidos,
comprobar posibles errores, métricas como RSSI y SNR, etc (Ver Figura 22).

DETAILS CONFIGURATION KEYS (OTAA) ACTIVATION DEVICE DATA LORAWAN FRAMES
® HELP Il PAUSE ¥ DOWNLOAD B CLEAR
Nov 14 1:19:10 PM up 868.1 MHz SF12 BW125 FCnt: 1 FPort: 1 Unconfirmed v
Nov 14 1:19:05 PM up 868.5 MHz SF12 BW125 FCnt: 0 FPort: 1 Unconfirmed v
Nov 141:19:05PM join DevAddr: 01e4f16b v
Nov 14 1:03:13 PM up 867.1 MHz SF12 BW125 FCnt: 0 FPort: 1 Unconfirmed v
Nov 14 1:03:13 PM join DevAddr: 01516934 v
Nov 14 1:02:34PM error v

Figura 20. Registro de comunicaciones recibidas del dispositivo

Status
Last seen at Nov 14,2022 1119 PM
State enabled

Figura 21. Estado del dispositivo

16

Received

& U

Lo gl AP N S T
&e"“e”@«\“‘-&‘??@e@@@‘gx@‘@g*@

o

LN N

Errors

W DATA_DOWN_GATEWAY NN OTAA

B Ay g B S BR d
PN N R P S PN

R

>
FELLSS

SNR

A

A~ A% B
FEIFSTF ST F oo des

L

-
&

RSSI
0
4 -10
20
-30
40 *
-50
-80
70
-80
-80 >
e RSN PSP PP S oS PODADION DD SO N DS
NGO O SELSIIIS IS o d o dddees

)

4

&

S

PRIDPT LD DD

Figura 22. Graficas de datos recibidos

17

REFERENCIAS BIBLIOGRAFICAS

(30]

(31]

(32]

(33]

(34]

(35]

Arduino configuration for Heltec’s nodes, Heltec, September 2022.

https://docs.heltec.org/en/node/esp32/quick start.html

Heltec libraries for Esp32 and LoRa devices, Arduino, March 2014.

https://www.arduinolibraries.info/libraries/heltec-esp32-dev-boards

LoRaWAN library, ElectronicCats, 2018.

https://github.com/ElectronicCats/Beelan-LoRaWAN

Bmp280 sensor libraries, Adafruit, 2018.

https://github.com/adafruit/Adafruit BMP280 Library

Pin map for Heltec wifi lora 32, The Hiveeyes community, February 2017.

https://community.hiveeyes.org/t/heltec-wifi-lora-32/3125

iNiT overview, Intelligent Networks and Information Technologies, 2022.

http://init.unizar.es/

18

