

I

“Formalización y desarrollo de un workflow de inferencia
filogenética basado en SaaS”

Resumen

Este trabajo aborda la formalización y desarrollo de un sistema de flujo de trabajo de inferencia filogenética

empleando el paradigma de Software como Servicio (SaaS). Dicho sistema se ha configurado y desplegado

sobre un entorno distribuido.

En primer lugar se ha llevado a cabo un estudio sobre entornos similares planteados en la literatura de

divulgación científica. Este estudio contiene una descripción de la situación reciente de sistemas similares

al planteado que se están desarrollando en la actualidad.

Finalizado el estudio previo, se ha llevado a cabo el análisis y posterior adaptación de un sistema de

inferencia filogenética existente. El análisis previo recoge la composición y el funcionamiento del flujo de

trabajo con el objetivo de conocer el tratamiento de la entrada y la salida del sistema. No obstante, no se

plantea la necesidad de conocer los detalles del procesamiento que implementa cada componente en

concreto.

A continuación, se ha realizado un análisis para identificar y definir los usuarios finales, además de

documentar y modelar los requisitos que debía satisfacer el sistema. Este análisis se ha realizado

empleando técnicas de Ingeniería del Software y en especial aquellas relacionadas con la Ingeniería de

Requisitos.

Una vez documentados y modelados los requisitos funcionales y no funcionales del sistema se ha realizado

el diseño de la arquitectura interna de cada uno de los componentes que constituyen el sistema. Finalizada

la fase de diseño, se ha implementado cada componente individual del sistema definiendo una interfaz de

entrada que permite exponer sus funcionalidades como un servicio Web. Cada componente interactúa con

el sistema previo como una caja negra, ejecutando los procesos ordenadamente y capturando la salida.

Seguidamente, se ha desarrollado un sistema que implementa un flujo de trabajo completo para la

inferencia filogenética de un árbol evolutivo sobre un conjunto de secuencias de ADN mitocondrial humano

y se ha expuesto dicho sistema como un servicio Web independiente, integrando todos los componentes

previos. Este sistema contiene la lógica de negocio relacionada con la forma de constituir el flujo de trabajo

completo para distintos tipos de secuencias biológicas.

Ambos sistemas han sido desplegados en la nube como alternativa para evaluar posibles beneficios en

cuanto a escalabilidad, disposición dinámica de recursos, alta disponibilidad de los servicios y reducción de

costes económicos. También se ha empleado un sistema de almacenamiento de información externo en la

nube para almacenar tanto las soluciones parciales como los resultados finales durante un periodo de

tiempo, permitiendo al usuario el acceso a dichos resultados a través de Internet. Por último, se ha

realizado un sistema de toma de decisiones mediante ficheros de log. Así se ha planteado un modelo de

mejora sencillo basado en el entrenamiento de árboles de decisión.

II

III

Índice general
Resumen .. I

1. Introducción .. 1

1.1. Contexto del proyecto ... 1

1.2. Objetivos ... 2

1.3. Metodología.. 2

1.4. Estructura de la memoria ... 3

2. Glosario ... 4

3. Estado del arte ... 5

4. Análisis .. 8

4.1. Sistema previo ... 8

4.1.1. Descripción ... 8

4.2. Análisis del sistema ... 10

4.2.1. Usuarios finales .. 10

4.2.2. Stakeholders ... 10

4.2.3. Requisitos ... 11

4.2.4. Casos de uso ... 12

4.2.5. Propuesta de solución ... 14

5. Diseño de la solución .. 15

5.1. Paradigma SaaS ... 15

5.2. Diseño de cada componente que constituye el flujo de trabajo ... 16

5.2.1. Presentación primaria ... 17

5.2.2. Relaciones y sus propiedades ... 17

5.3. Diseño del componente que representa el flujo de trabajo .. 19

5.3.1. Presentación primaria ... 19

5.3.2. Relaciones y sus propiedades ... 19

5.4. Arquitectura global del sistema ... 20

5.5. Interfaz pública de cada servicio ... 21

6. Implementación ... 22

6.1. Software y tecnologías empleadas... 22

6.2. Implementación de cada componente del flujo de trabajo .. 23

6.2.1. Implementación de la capa de negocio ... 23

6.2.2. Implementación sistema de almacenamiento externo .. 24

6.2.3. Implementación de los sistemas de compresión y notificación ... 25

6.2.4. Implementación del encapsulador e interfaz .. 25

6.2.5. Aspectos interesantes de la implementación .. 25

IV

6.3. Implementación del sistema flujo de trabajo .. 26

7. Despliegue y evaluación ... 27

7.1. Explicación de una traza completa de despliegue .. 27

7.2. Verificación y validación del sistema ... 28

7.3. Resultados de la evaluación .. 29

7.4. Sistema de toma de decisiones ... 30

8. Gestión del proyecto y conclusiones .. 31

8.1. Gestión del proyecto ... 31

8.1.1. Gestión de configuraciones .. 31

8.1.2. Diagrama de Gantt ... 32

8.1.3. Coste total del proyecto ... 33

8.2. Conclusiones ... 34

Bibliografía .. 35

Anexo I. Análisis ... 37

1. Formatos de entrada ... 37

2. Casos de uso .. 38

3. Descripción de los casos de uso ... 39

Anexo II. Diseño de la solución .. 53

1. API REST de cada componente que constituye el flujo de trabajo ... 53

2. Interfaz de cada servicio que forma parte de la capa middleware ... 61

3. API REST componente que representa el flujo de trabajo .. 64

4. Comunicación: estándares de intercambio .. 66

Anexo III. Implementación .. 69

1. Mapa de errores ... 69

Anexo IV. Despliegue y evaluación .. 71

1. Evaluación del sistema .. 71

2. Implementación de un sistema de toma de decisiones .. 73

Anexo V. Manual de usuario ... 77

1. Identificación del servicio.. 77

2. Servicios individuales .. 77

3. Servicio para un flujo de trabajo completo .. 79

1

1. Introducción

Este capítulo contiene una introducción con el contexto y los objetivos principales del proyecto, la

metodología empleada y, por último, se detalla la estructura del documento.

1.1. Contexto del proyecto
La filogenética es la ciencia encargada del estudio y clasificación de la relación evolutiva entre organismos.

En la actualidad los sistemas de inferencia filogenética tienen gran interés, ya que permiten no sólo hacer

estudios evolutivos del individuo sobre poblaciones sino también tratar cuestiones más especificas como la

detección de enfermedades raras a partir de secuencias de ADN mitocondrial humano. Concretamente, la

detección de enfermedades se basa en la ubicación de secuencias de ADN en el árbol inferido.

Recientemente se está abordando este tipo de análisis tan costosos computacionales aprovechando el

avance de las tecnologías en cuanto al aumento de prestaciones [1].

Como punto de partida, se dispone de un sistema de inferencia filogenética previo desarrollado por el

investigador Jorge Álvarez durante la realización de sus estudios de máster. Este sistema denominado

PhyloFlow [2] permite el estudio de modelos evolutivos en alineamientos de secuencias de ADN

mitocondrial. El sistema PhyloFlow [2] emplea métodos de selección de modelos evolutivos y de

construcción de superárboles. Este sistema se perfila en la Figura 1, y se detallará más adelante en la

sección 4.1.1. del documento (pág. 8).

Figura 1. Sistema de inferencia filogenética mediante flujos de trabajo

El sistema PhyloFlow [2] está desarrollado mediante flujos de trabajo que permiten una visión

conceptualmente sencilla del diseño del sistema. El flujo de trabajo está formado por cuatro componentes

que permiten la descarga, procesamiento biológico y evaluación de secuencias además de la generación de

superárboles. Cada componente del flujo de trabajo es independiente del resto, y la ejecución de un flujo

completo de trabajo implica la ejecución ordenada de todos los componentes que forman parte del

sistema.

Además este sistema emplea la herramienta HTCondor [3] basada también en flujos de trabajo que permite

la distribución de los trabajos en distintas máquinas. Sin embargo esta solución tiene asociados una serie

de problemas. En primer lugar, es un sistema acoplado en el que cada uno de los componentes depende un

planificador de tareas desarrollado con la herramienta DAGMan [4] que establece las dependencias entre

cada uno de los trabajos. En segundo lugar, el sistema no está distribuido y, por tanto, únicamente se

puede ejecutar en una máquina computacionalmente potente que albergue la instalación del sistema.

Además es un sistema que no es accesible remotamente y requiere la instalación del mismo para su

utilización. Otro problema encontrado se debe a que la interfaz de entrada de cada uno de los

componentes del flujo de trabajo no está suficientemente documentada.

2

Este trabajo aborda un análisis pormenorizado de las características detalladas del sistema PhyloFlow [2],

sin profundizar en aspectos metodológicos y procedurales del procesamiento biológico realizado por el

sistema para realizar el análisis filogenético. El objetivo del trabajo es desarrollar un sistema empleando el

paradigma SaaS para obtener una solución que permite desplegar el sistema en un entorno distribuido

reduciendo el acoplamiento y dando acceso al sistema de forma remota a través de un servicio Web. El

entorno distribuido sobre el cual se ha desplegado el sistema es una plataforma de computación escalable

en la nube que permite el aprovisionamiento de recursos dinámicamente.

1.2. Objetivos
El objetivo principal del proyecto ha sido el análisis y desarrollo de una colección de servicios basados en

tecnologías Web para la inferencia de árboles filogenéticos con la información biológica bajo el paradigma

de Software como Servicio (SaaS). Los objetivos concretos plantean la búsqueda de entornos similares en la

literatura científica, el análisis del sistema previo y los requisitos de una solución SaaS, el modelado bajo el

paradigma considerado y finalmente la implementación y evaluación de un prototipo del sistema mediante

un flujo de trabajo.

Desde el primer momento se tomó la decisión de emplear un modelo basado en SaaS para la publicación

de dichos servicios y emplear dicho modelo para conseguir una solución escalable que permite su

aplicación en un entorno distribuido.

El proyecto contempla también el desarrollo y despliegue del sistema en un entorno distribuido.

Concretamente, se optó por emplear una plataforma de computación elástica en la nube que permita

aumentar y disminuir los recursos dinámicamente para adaptarse a las exigencias computacionales.

Además se ha llevado a cabo la validación del sistema a partir de una batería de pruebas automáticas

desarrolladas durante el proyecto. Uno de los objetivos principales era validar el correcto funcionamiento

del sistema en un entorno distribuido y evaluar las prestaciones del mismo para determinar el equilibrio

entre el coste temporal y el coste económico.

Por último se ha desarrollado un sistema de ayuda a la toma de decisiones en base a los ficheros de log

obtenidos durante la validación y evaluación del sistema. De este modo se ha planteado un modelo de

mejora sencillo basado en aprendizaje que facilita la elaboración de estrategias sobre el tipo de

plataformas computacionales en las cuáles desplegar el sistema.

1.3. Metodología
La metodología utilizada establece una organización en fases del proyecto y sus correspondientes hitos

facilitando su seguimiento, identificación de carencias y retroalimentación del desarrollo, según un modelo

de ciclo de desarrollo en cascada. Se ha seguido un flujo de trabajo basado en las fases principales que se

consideran en Ingeniería del Software haciendo especial hincapié en aquellas relacionadas con la Ingeniería

de Requisitos. Esto ha proporcionado como resultado un análisis profundo de las dependencias,

características, necesidades y limitaciones de la solución.

3

1.4. Estructura de la memoria
La memoria está estructurada en nueves capítulos que corresponden esencialmente a las fases principales

del proyecto además de la gestión del proyecto y la bibliografía del trabajo.

El segundo capítulo (pág. 4) contiene un glosario con la definición de aquellos conceptos más importantes

relacionados con el trabajo.

El tercer capítulo (pág. 5) se corresponde al estado del arte. Este capítulo contiene la información más

relevante encontrada en la literatura científica con planteamientos de entornos similares al desarrollado.

El capítulo de análisis (pág. 8) contiene la información recogida del análisis del sistema previo. Esta sección

contiene una breve descripción del sistema que permite comprender suficientemente su funcionamiento y

la documentación que forma parte del análisis del sistema que ha sido desarrollado. Finalmente, contiene

la descripción de los usuarios finales del sistema, así como la documentación y modelado en casos de uso

de los requisitos funcionales y no funcionales del sistema.

En el capítulo de diseño de la solución (pág. 15) se describe el paradigma SaaS y se documenta el diseño de

la solución propuesta. La solución propuesta contiene la descripción, relaciones entre elementos y los

diagramas de la arquitectura diseñada.

El sexto capítulo (pág.22) contiene los aspectos más interesantes de la implementación del sistema y las

decisiones de implementación que se han tomado para el desarrollo del proyecto.

El capítulo de despliegue y evaluación (pág. 27) explica la configuración y despliegue del sistema en un

entorno distribuido, la nube comercial de Amazon Web Services (AWS). Además se documenta el proceso

de validación del sistema y la evaluación del sistema y los resultados obtenidos.

En el octavo capítulo (pág. 31) contiene la documentación relacionada con la gestión y planificación del

proyecto. Se explica la metodología utilizada y se muestra la planificación del proyecto a través de un

diagrama de Gantt. Finalmente se exponen las conclusiones finales del proyecto.

Por último, se encuentran las secciones de bibliografía (pág. 35) y de anexos (pág. 37).

4

2. Glosario

En este apartado de la memoria se encuentra la definición de aquellos conceptos de ambos que se han

considerado imprescindibles para la compresión del proyecto.

 ADN: ácido desoxirribonucleico. Es una macro molécula que forma parte de todas las células, y es usada

para su crecimiento y funcionamiento. En ella se encuentra toda la información genética y es, por tanto,

el componente responsable de transmisión hereditaria.

 ADN mitocondrial humano (ADNmt): en algunas células existen unos orgánulos denominados

mitocondrias. En estos orgánulos se produce la oxidación de las moléculas de glucosa sus funciones

internas. Este tipo de ADN es independiente del ADN celular.

 API (Application Programming Interface): especifica como un componente software debe interactuar

con otro sistema. Define una serie de funciones y procedimientos que pueden ser invocados.

 Árbol filogenético: estructura arborescente que refleja la relación evolutiva entre distintos organismos,

almacenados en sus hojas.

 AWS (Amazon Web Services): conjunto de servicios Web ofrecidos por la compañía Amazon para

emplear en la nube.

 Cloud computing: o computación en la nube es un paradigma de computación distribuida en red en el

que un programa o aplicación en un servidor o servidores conectados. Estos servidores físicos se

encuentran virtualizados, por tanto, se pueden configurar y dividir en varios servidores virtuales

independientes.

 Filogenética: es la ciencia encargada del estudio y clasificación de la relación evolutiva entre

organismos.

 GenBank: es una base de datos de secuencias de acceso abierto. Esta base de datos ha sido creada y

mantenida por el National Center of Biotechnology Information (NCBI). GenBank recibe secuencias

producidas en laboratorios de todo el mundo de más de 100.000 organismos distintos.

 Modelo evolutivo: modelo matemático que pretende ajustar la relación entre distintos organismos a la

evolución real. Se sustenta en una serie de parámetros como la frecuencia de cada nucleótido o

aminoácido de la secuencia y la tasa de mutaciones, entre otras.

 REST (Representational State Transfer): es un patrón de diseño o estilo de arquitectura para el

desarrollo de sistemas basados en servicios Web.

 SaaS (Software as a Service): es un modelo de software en el que el software está alojado en la nube de

los proveedores del software o proveedor de servicios de aplicaciones.

 SOAP (Simple Object Access Protocol): es un protocolo que define un conjunto de reglas para el

intercambio y procesamiento de mensajes estructurados en servicios Web.

 URI (Uniform Resource Identifier): identificador uniforme y universal de un recurso que permite

localizar y acceder al recurso.

5

3. Estado del arte

El objetivo principal del proyecto ZARAMIT era el de desarrollar un sistema capaz de inferir filogenias a

partir de secuencias de ADN mitocondrial humano [1]. Estás, a su vez serán usadas para llevar a cabo

estudios evolutivos y detectar mutaciones potencialmente dañinas.

Las mitocondrias son orgánulos que se encuentran en la mayoría de las células eucariotas y son los

responsables de la generación de la mayor parte de la energía química de la célula. Éstas poseen un

genoma independiente heredado y en segundo lugar, existen moléculas de ADN en un entorno reactivo,

donde las tasas de mutación son un orden de magnitud superior al de las de ADN nuclear. Por tanto, su

resolución permite distinguir individuos separados estrechamente relacionados. Por otra parte, las

mutaciones mitocondriales son una de las principales causas de enfermedades genéticas “raras”. El

objetivo de ZARAMIT era fusionar ambos enfoques.

El enfoque descrito anteriormente ha sido explotado en el trabajo de investigación “Análisis filogenético

molecular: Diseño e implementación de algoritmos escalables y fiables y verificación automática de

propiedades de una filogenia” [2]. Como resultado de dicho trabajo se desarrolló el sistema de inferencia

filogenéticas mediante flujos de trabajos denominado PhyloFlow [2].

Un sistema de flujo de trabajo científico es una forma especial de gestión de un sistema diseñado

especialmente para crear y ejecutar una serie de etapas computacionales o de manipulación de datos en

aplicaciones científicas. Un ejemplo de sistema de flujo de trabajo científico son los sistemas de tipo

bioinformático que están centrados en un dominio específico de la ciencia.

Anduril [5] es un entorno de flujos de trabajo de código abierto basado en componentes para el análisis de

datos científicos [6]. Anduril [5], desarrollado en el Laboratorio de Sistemas Computacionales de Biología

de la Universidad de Helsinki, fue diseñado para permitir el análisis de datos de manera sistemática, flexible

y eficiente en el campo de la investigación biomédica. El sistema de flujo de trabajo actual proporciona

componentes para distintos tipos de análisis como la secuenciación, expresión de genes, SNP (Single

Nucleotide Polymorphism), análisis de imágenes de células, etc.

En Anduril [5], las etapas de procesamiento están implementadas utilizando componentes, los cuales son

ejecutables, reutilizables y se puede escribir en cualquier lenguaje de programación. Los componentes

están conectados entre sí en el flujo de trabajo o en una red de componentes. Así, el motor de Anduril [5]

se encarga de ejecutarlos y se comunican a través de ficheros. El núcleo del motor Anduril [5] está

implementado en Java [7], sin embargo los componentes están implementados en una gran variedad de

lenguajes de programación como Perl [8], Python [9] o Matlab [10].

Galaxy [11] es una plataforma abierta, basada en la Web para datos de investigaciones biomédicas. Esta

plataforma es un flujo de trabajo científico para la integración y análisis de datos que tiene como objetivo

hacer accesible a los investigadores que no tiene experiencia en el campo de la programación. A pesar de

que fue desarrollado inicialmente para la investigación en genómica, actualmente es utilizado como un

sistema de gestión de flujos de trabajo en otras aplicaciones bioinformáticas. Galaxy [11] es también una

plataforma para la integración de datos biomédicos. Soporta la subida de información desde el ordenador

del usuario a través de una URL y otros recursos online.

Los sistemas descritos anteriormente ofrecen una gran variedad de posibilidades para realizar cálculos

relacionados con el análisis del genoma. Ambos sistemas son de código abierto y están implementados con

6

lenguajes de programación modernos facilitando a los desarrolladores su reutilización. Sin embargo su

utilización implica la instalación del sistema en una máquina con altas prestaciones debido a que los

procesos de análisis del genoma son computacionalmente costosos.

 Ninguno de ellos ofrece un servicio Web desde el que acceder a las funcionalidades de análisis que ofrecen

dificultando su integración en sistemas externos. En este trabajo se va a abordar dicho problema

empleando una aproximación bajo el paradigma SaaS y basada en la computación distribuida en la nube,

que permita al usuario final realizar un análisis filogenético sin requerir la instalación de ningún sistema.

Debido a la abundancia de secuenciaciones del genoma humano disponibles, la necesidad de almacenar y

procesar esta gran cantidad de datos y facilitar el acceso a herramientas de análisis biomédico está

suponiendo un reto complicado de alcanzar. A causa de la variabilidad del volumen de datos en los

resultados y las exigencias computacionales y de almacenamiento se está optando por realizar métodos

más fiables y dinámicos para realizar este tipo de análisis.

En la actualidad se han propuesto plataformas de flujos de trabajo basados en la nube que permitan la

realización de este tipo de análisis ofreciendo una ejecución fiable, escalable y totalmente automatizable

[12]. Para afrontar los problemas comentados anteriormente, se ha propuesto una plataforma que emplea

un flujo de trabajo bioinformático basado en la nube para el análisis a gran escala de datos denominados

NGS (Next Generation Sequencing). Esta plataforma integra Galaxy [11], Globus Provision [13], una

herramienta para desplegar clusters de computación en la nube, y un conjunto de herramientas y módulos

para ofrecer una solución a investigadores en el campo de la biomedicina.

En Galaxy [11], como en la mayoría de flujo de trabajos científicos relacionados con el genoma, los recursos

necesarios pueden variar drásticamente en tiempo de ejecución. A menudo es ineficiente en términos de la

utilización de recursos y coste, establecer un límite máximo de recursos. La computación en la nube ofrece

un modelo alternativo para adaptarse dinámicamente a la demanda de recursos de los flujos de trabajo.

Desplegar la plataforma en la nube ofrece una serie de beneficios como la configuración de recursos en

función de la demanda, un modelo de pago basado en la utilización de recursos y el aumento de la

velocidad de procesamiento de datos.

La integración de flujos de trabajos científicos y la computación en la nube permite disponer de forma
rápida de los recursos necesarios tanto a nivel computacional como a nivel de almacenamiento, dota a los
sistemas de escalabilidad y emplea un modelo de pago por recursos utilizados. Para afrontar la variabilidad
en el volumen de datos de los resultados y las exigencias computacionales y de almacenamiento han
empleado la herramienta HTCondor [3].

HTCondor [3] es una herramienta de computación de alto rendimiento sobre grandes colecciones de
recursos computacionales distribuidos. Mediante la integración de Galaxy [11] con el planificador de
recursos de HTCondor [3], los trabajos específicos son ejecutados en paralelo usando nodos de
computación distribuida. La estrategia propuesta dota de una escalabilidad automática, lo que permite
incrementar la utilización de recursos y la velocidad de procesamiento significativamente, especialmente
en herramientas intensivas en cálculo, como los análisis del genoma humano.

Debido a que la mayoría de los trabajos de las herramientas empleadas por Galaxy [11] son intensivos en

CPU y memoria, la capacidad computacional necesaria puede ser superior a la inicial en el despliegue del

sistema. Para incrementar las prestaciones del sistema bajo el punto de vista de la velocidad de cálculo y el

coste económico, han optado por integrar Galaxy [11] con la herramienta HTCondor [3], de tal forma, que

ciertos trabajos se pueden ejecutar a través de HTCondor [3] en clusters remotos con unas prestaciones

superiores. La Figura 2 muestra la arquitectura del sistema.

7

Figura 2. Arquitectura de un sistema de flujo de trabajo bioinformático basado en la nube (Galaxy [12])

En conclusión, ya existen sistemas de flujos de trabajos científicos desplegados en plataformas de

computación en la nube similares al trabajo que se desea realizar como Galaxy [11]. Sin embargo, este

sistema no ofrece sus funcionalidades a través de un servicio Web impidiendo su integración en sistemas

externos. La utilización de una plataforma de computación en la nube permite aprovisionar recursos de

forma dinámica para adaptarse a las exigencias computacionales del sistema y la variabilidad del volumen

de datos en los resultados.

8

4. Análisis

En este capítulo se ha documentado la fase de análisis previo que se ha realizado durante el desarrollo del

proyecto. Este capítulo contiene tanto en análisis del sistema existente como la captura, documentación y

modelado de los requisitos funcionales y no funcionales del sistema.

4.1. Sistema previo
Se ha realizado una fase de análisis del sistema previo para capturar información del tratamiento que

realiza este, tanto de la entrada como de la salida de datos. Durante esta fase, la información

proporcionada por el investigador Jorge Álvarez ha resultado esencial debido a que me ha facilitado la

compresión de PhyloFlow [2].

4.1.1. Descripción
En esta sección se describe el sistema previo y su composición. El sistema está formado por cuatro

componentes principales, cuya unión constituye el flujo de trabajo completo para la inferencia filogenética

de un árbol evolutivo sobre un conjunto de secuencias de ADN mitocondrial humano. La Figura 3 muestra

cada uno de los cuatros componentes y las relaciones que se establece entre cada uno de ellos.

Figura 3. Sistema de inferencia filogenética mediante flujos de trabajo

En la fase Fetch Sequences, las secuencias de ADN se almacenan en ficheros comprimidos. A continuación,

en la fase Sequences Processing dichos ficheros de secuencias se procesan utilizando métodos biológicos

quedando divididos en subconjuntos más pequeños. En la fase Sequences Evaluation se realiza la

evaluación de modelos evolutivos para cada fichero obtenido en la fase previa. En esta fase se generan

estructuras arborescentes que al igual que las secuencias son almacenadas en ficheros. Finalmente la fase

de Supertree Building genera un superárbol basado en las soluciones obtenidas en la fase anterior.

El sistema PhyloFlow [2] está compuesto por una serie de directorios donde se almacenan los resultados

de cada una de los componentes, y que a su vez sirven de entrada para el siguiente componente del flujo

de trabajo. Por tanto, es está estructura de directorios la que permite la comunicación de los resultados

entre cada uno de los componentes empleando identificadores de ficheros para seleccionar aquellos que

corresponden a los resultados parciales dentro del directorio.

El resultado producido por un componente puede ser la entrada para el siguiente componente del flujo de

trabajo, pero también puede ser una nueva entrada para el mismo componente. Este último caso permite

que un componente pueda realizar más de un procesamiento sobre una entrada. Por ejemplo, en el

segundo componente se podría realizar una primera fase de división por genes y a continuación realizar

una fase de alineamiento.

9

El sistema actualmente emplea secuencias de ADN mitocondrial humano para realizar el análisis

filogenético, sin embargo, también se dispone de secuencias sintéticas cuyo procesamiento es menos

intensivo en cálculo y permiten validar el funcionamiento del sistema.

El primer componente es el encargado de obtener los tipos de secuencias solicitados por el cliente. Si el
tipo de secuencia solicitada es de ADN mitocondrial se encarga de acceder a la base de datos GenBank,
seleccionar el tipo de secuencia que corresponde con el ADN mitocondrial humano, descargar la base de
datos y almacenar la descargar en un fichero comprimido. Por el contrario, si el tipo de secuencia
seleccionado es de tipo sintético se encarga de copiar dichos datos de un repositorio local del sistema y los
almacena comprimidos.

El segundo componente se encarga de realizar el procesamiento biológico sobre las secuencias de entrada

seleccionado por el usuario. Este procesamiento depende del tipo de secuencia de entrada. Actualmente

existen 4 tipos diferentes de procesamientos:

 División en 1D consiste en dividir el fichero de secuencia por filas o columnas.

 División en 2D consiste en dividir el fichero de secuencia por filas y columnas obteniendo ixj

ficheros, dónde i es el número total de divisiones por filas y j el número total de divisiones por

columnas.

 Alineamiento.

 PRD (Padded-Recursive-DCM3 Decomposition): división en sets con superposición.

La división por filas implica la división del fichero de secuencias en set o conjunto de secuencias (filas). La
división por columnas implica una reducción en la longitud de las secuencias. Este componente emplea
técnicas de map-reduce para reducir los costes temporales en base a procesar conjunto de datos más
pequeños.

El tercer componente se encarga de realizar una evaluación con modelos biológicos para cada fichero

obtenido en la fase previa, además opcionalmente se puede realizar un análisis estadístico. El

funcionamiento interno de este componente es el siguiente:

 Se evalúan 88 modelos y se selecciona el mejor de todos ellos en base a la puntuación del árbol

según Maximum Likelihood [14].

 Análisis estadístico mediante la técnica de bootstrapping que consiste en alterar el orden de las

columnas mediante el intercambio de columnas cercanas. Se generan un número de r muestras

distintas entre sí. Los biólogos aconsejan usar un número r entre 100 y 1000, pero según algunos

estudios a partir de 500 se obtiene un beneficio estadísticamente no significativo. Para cada

muestra generada se evalúa el mejor modelo del paso anterior y se obtiene un árbol por muestra.

 Generación de un único árbol consensuado a partir de los ficheros de salida para el mejor modelo

seleccionado aplicando conservación de ramas.

El componente número cuatro también denominado Supertree Building se encarga de construir un único

árbol filogenético que aglutina todas las soluciones parciales obtenidas como resultados de la ejecución de

los componentes anteriores en fases previas.

Por último cabe destacar que los ficheros de secuencia tanto de entrada como de salida emplean el

formato FASTA. Mientras que las estructuras arborescentes generadas como soluciones parciales y

resultados finales se almacenan en formato NEWICK. Ambos formatos se describen en detalle en la sección

número 1 de Anexo I. Análisis (pág. 37).

10

4.2. Análisis del sistema
Una vez realizado el estudio del sistema previo, se ha realizado un análisis sobre el sistema. Este análisis
contiene la descripción de los usuarios finales y los grupos de interés o stakeholders del sistema, la
documentación de los requisitos funcionales y no funcionales que debe satisfacer el sistema y el modelado
de estos en casos de uso.

4.2.1. Usuarios finales
Los usuarios finales del sistema son aquellos usuarios que van a interactuar directamente con él. Por tanto,

se han descrito tres tipos de usuarios finales posibles:

 Usuario administrador: es aquel usuario que realiza de intermediario entre el sistema y el biólogo

que desea obtener los resultados para proceder a realizar un análisis exhaustivo de los mismos.

Este tipo de usuario está familiarizado con el dominio tecnológico, pero por el contrario puede no

tener nociones del dominio de la aplicación.

 Biólogo: es aquel usuario que se encarga de proponer un experimento, determinando las

herramientas a usar en la ejecución del flujo de trabajo para luego interpretar los resultados

obtenidos por el sistema en base a sus conocimientos sobre el dominio de la aplicación.

 Otros sistemas externos o internos que integren componentes del flujo de trabajo.

4.2.2. Stakeholders
El grupo de interés o stakeholders son aquellas personas, sistemas o documentación que están

estrechamente relacionados con el sistema desarrollado pero puede que no sean los propios usuarios

finales del mismo. Los stakeholders pueden proporcionan información respecto del sistema a desarrollar o

interactuar directamente o indirectamente con él. Los stakeholders definidos para el sistema son:

 Usuario finales

 Sistema filogenético existente

 Documentación del sistema previo

11

4.2.3. Requisitos
En esta sección se han seleccionado aquellos requisitos funcionales y no funcionales que debe satisfacer el

sistema. La Tabla 1 contiene numerados los requisitos funcionales y la Tabla 2 contiene los requisitos no

funcionales del sistema.

Requisitos funcionales

RF-1 El sistema debe ofrecer una colección de servicios al usuario que permitan el análisis
del ADN mitocondrial humano.

RF-2 El sistema debe ofrecer un servicio de descarga de secuencias de ADN mitocondrial
humano.

RF-3 El sistema debe ofrecer un servicio de procesamiento de secuencias de ADN
mitocondrial humano.

RF-4 El sistema debe ofrecer un servicio de evaluación y construcción de soluciones
parciales.

RF-5 El sistema debe ofrecer un servicio de consenso e integración de soluciones
parciales.

RF-6 El sistema debe ofrecer un servicio de construcción de un único árbol filogenético a
partir de soluciones parciales.

RF-7 El sistema debe ofrecer un servicio que realice un flujo de trabajo completo que
integre el resto de servicios ofrecidos.

RF-8 El sistema debe ser capaz de almacenar resultados intermedios.

RF-9 El sistema debe ser capaz de notificar al usuario los resultados generados como
respuesta a su petición.

RF-10 El sistema debe capturar la salida de error del sistema de inferencia filogenética
existente.

Tabla 1. Requisitos funcionales del sistema

Requisitos no funcionales

RNF-1 El sistema debe integrar el sistema de inferencia filogenética existente.

RNF-2 El sistema debe ser capaz de interoperar con el sistema de inferencia filogenética
existente.

RNF-3 El sistema debe almacenar en un sistema de almacenamiento externo los resultados
intermedios que permita el acceso a los mismos.

RNF-4 El sistema debe emplear un protocolo de comunicación asíncrono debido al coste
computacional derivado del análisis del ADN mitocondrial.

RNF-4 El sistema debe notificar a los usuarios empleando el protocolo SMTP para el envío
de correos electrónicos.

RNF-5 El sistema será diseñado desde el punto de vista SaaS.

RNF-6 El sistema debe definir y emplear un formato de intercambio estándar.

RNF-7 El sistema debe ser robusto y realizar el tratamiento de excepciones pertinentes.

RNF-8 El sistema debe ser portable y flexible.
Tabla 2. Requisitos no funcionales del sistema

12

4.2.4. Casos de uso
Esta sección contiene el modelado de los requisitos descritos anteriormente en casos de uso. Los casos de

uso dan una visión gráfica de los pasos e interacciones entre los actores del sistema y el propio sistema

para lograr un objetivo. Los actores del sistema pueden ser personas humanos u otros sistemas externos.

Caso de uso: nivel 0

Los casos de uso de nivel cero sirven para mostrar las funcionalidades básicas del sistema y los pasos que se

han de seguir para obtener un objetivo concreto. La Figura 4 muestra el modelado en casos de uso de nivel

0 del sistema.

Figura 4. Diagrama de Casos de uso nivel 0

Este modelo muestra cinco casos de uso independientes entre sí que se corresponden a las principales

funcionalidades del sistema PhyloFlow [2]. El caso de uso Download DB permite al actor principal ofrecer

descargar secuencias de ADN mitocondrial humano de la base de datos de GenBank o recuperar bases de

datos de secuencias de ADN disponibles. El caso de uso denominado Map-reduce permite al actor principal

realizar un procesamiento biológico sobre secuencias de ADN.

El caso de uso denominado Evaluation permite al actor principal realizar una evaluación de modelos

evolutivos sobre secuencias de ADN y construcción de soluciones parciales. El caso de uso denominado

Consensus permite al actor principal realizar una fase de consenso e integración de soluciones parciales.

El caso de uso denominado Supertree permite al actor principal la construcción de un superárbol

filogenético a partir de resultados parciales.

El caso de uso denominado hmtDNAWorfklow es el encargado de realizar un flujo de trabajo completo para

datos de secuencia de ADN mitocondrial humano, por tanto, ha de incluir al resto de casos de uso para

llevar a cabo el análisis pertinente. El actor principal del sistema puede interactuar con los seis casos de

13

usos, debido a que puede realizar un flujo de trabajo completo o realizar fases individuales e

independientes. La sección número 3 de Anexo I. Análisis (pág. 38) contiene la descripción formal de los

casos de uso.

Casos de uso: nivel 1

Los casos de uso de nivel uno sirven para mostrar las funcionalidades básicas del sistema y los

funcionalidades subyacentes que emplean. La Figura 5 muestra el modelado en casos de uso de nivel 1 del

sistema para los biólogos. La sección número 2 de Anexo I. Análisis (pág. 38) contiene los casos de uso

centrados en el usuario administrador.

Figura 5. Diagrama de Casos de uso nivel 1 para el usuario biólogo

* Por simplificar el diagrama se han omitido el resto de casos de uso de los subsistemas Fetch Sequences, Sequences Processing y

Sequecences Evaluation. Éstos y sus relaciones son idénticos a las mostradas en el sistema que denominado Supertree Building.

A diferencia del diagrama de casos de uso de nivel cero, el diagrama de casos de uso de nivel uno está

formado por cinco subsistemas. El subsistema denominado Workflow System es el encargado de establecer

el flujo de trabajo integrando el resto de subsistemas, los cuáles equivalen a cada uno de los componentes

del sistema PhyloFlow [2]. El actor principal puede interactuar con cualquiera de ellos, por tanto, no sólo

puede obtener el resultado final de un flujo de trabajo completo, sino que también puede obtener

soluciones parciales interactuando con cada componente de forma individual.

Cada uno de los componentes está formado por uno o más casos de uso que representan la funcionalidad

que desempeña dentro del flujo de trabajo, y tres casos de uso más que representan funcionalidades

adicionales. El caso de uso denominado Business Logic Service representa el servicio que provee la

14

funcionalidad básica de la lógica de negocio. El caso de uso Store Service representa el servicio que provee

funcionalidades relacionadas con el almacenamiento y descarga de soluciones parciales y finales. Por

último, el caso de uso nombrado como Notification Service sería el encargado de proveer la funcionalidad

para notificar al actor los resultados obtenidos.

En el subsistema Workflow System, el caso de uso principal es el denominado hmtDNAWorkflow. Este caso

de uso emplea el denominado como Scheduler. Este último representa la funcionalidad encargada de

planificar los trabajos del flujo y solicitarlos a cada componente concreto. Por tanto, incluye los casos de

uso que representas las funcionalidades básicas del resto de subsistemas. Por último, el caso de uso

MailBox Service representa la funcionalidad asociada a la recepción de los resultados notificados por el

resto de subsistemas.

Cada uno de los subsistemas se ofrece como un servicio independiente bajo la visión SaaS. Por tanto, cada

subsistema ofrece sus funcionalidades como un servicio a cada uno de los actores del diagrama. Esto

permite que los subsistemas se encuentren totalmente distribuidos reduciendo el acoplamiento entre los

mismos. El actor accederá a cada unos de los servicios ofrecidos a través de Internet. La sección número 3

de Anexo I. Análisis (pág. 38) contiene la descripción formal de los casos de uso.

4.2.5. Propuesta de solución
La solución propuesta consiste en la división del sistema PhyloFlow [2] en cinco subsistemas

independientes y desacoplados. Cuatro de ellos representan los componentes individuales del flujo de

trabajo. El último es el encargado de realizar el flujo de trabajo completo integrando los anteriores

ordenadamente.

Cada una de las funcionalidades de los subsistemas será ofrecida como un servicio bajo el punto de vista

SaaS. En concreto, cada funcionalidad será ofrecida como un servicio Web accesible a través de internet.

Esta solución permite realizar un flujo completo de inferencia filogenética o realizar etapas individuales del

proceso que combinadas puedan dar lugar a nuevos flujos de trabajo. Como cada una de las

funcionalidades se ofrece como un servicio no sólo permite acceder al usuario final a ellas sino que

cualquier otro sistema externo puedan integrar dichas funcionalidades en su dominio de aplicación. La

Figura 6 muestra gráficamente la solución propuesta.

Figura 6. Distribución de los subsistemas que contienen los casos de uso

Debido a que los componentes se encuentran totalmente distribuidos se puede permitir el despliegue del

sistema en un entorno distribuido. Esta solución permite que el sistema sea escalable y robusto, ya que la

caída de un servicio no afectaría al resto, a excepción del que integra todos para realizar el flujo de trabajo

completo. Por tanto, todos los servicios ofrecen un punto de entrada al subsistema que representan.

15

5. Diseño de la solución

Este capítulo contiene la documentación generada durante la fase de diseño del sistema. Esta fase del

trabajo se ha realizado a partir de los objetivos que debe cubrir el sistema definidos en la fase de análisis. El

diseño se ha realizado bajo el paradigma de Software como Servicio con lo que el soporte lógico y los datos

se han de alojar en el servidor.

El objetivo principal ha sido realizar un diseño flexible que abstrajese mediante interfaces la

implementación concreta de cada uno de los servicios, y permitiendo que cada servicio interno pueda tener

una o más implementaciones concretas del mismo. Por tanto, el mayor esfuerzo invertido durante el

diseño del sistema se ha destinado a realizar una solución lo más abstracta posible que dotará al sistema de

flexibilidad y facilitará la reutilización de componentes.

5.1. Paradigma SaaS
El paradigma Software as a Service (SaaS) propone un modelo en el que el software es ofertado como

servicio al usuario final. El software está albergado en un servidor y los usuarios acceden al software

empleando un navegador Web [15]. La Figura 7 muestra la arquitectura de un sistema bajo la visión Saas.

Figura 7. Vista de alto nivel de un componente del sistema bajo el paradigma SaaS

La figura anterior muestra las tres capas principales que componen el diseño una solución basada en SaaS.

La capa denominada Interface es aquella capa del sistema que atiende las peticiones de los clientes que

envían a través de la API ofrecida por la misma. La siguiente capa es la denominada Wrapper, debido a que

encapsula el acceso a la lógica de negocio. Esta capa es la responsable de encapsular la comunicación entre

las peticiones entrantes y las reglas de negocio del sistema. La tercera y última capa denominada Business

Logic es la capa de negocio, es decir, aquella capa que contiene toda la lógica y reglas de negocio del

sistema.

El Instituto Nacional de Estándares y Tecnologías (NIST) define la computación en la nube a través de tres

modelo de servicios: Software como Servicio (SaaS), Plataforma como Servicio (PaaS) e Infraestructura

como Servicio (IaaS) [16].

16

Con el modelo SaaS, los proveedores ofrecen aplicaciones que están desplegadas en una plataforma en la

nube. El software se ejecuta en los servidores de la nube contratados por la empresa proveedora del

servicio. Por tanto, si se detecta un error en el software solucionarlo en el servidor puede ser más sencillo y

rápido, en lugar de distribuir y actualizarlo a todos los clientes [15]. Existen varios ejemplos de SaaS. Por

ejemplo, Google ofrece varias aplicaciones Web, como Gmail y Google Docs. Ambas aplicaciones son

ofrecidas como servicios online.

Los beneficios principales que aporta el modelo SaaS al cliente final son reducción de costes y tiempos. En

el modelo SaaS al contrario que en modelos tradicionales, el cliente no necesita contratar hardware

especifico donde albergar el software contratado ya que este reside en los servidores de la empresa

proveedora, por tanto, permite desplegar las aplicaciones de forma rápida y sencilla sin la necesidad de

instalar ni configurar el software contratado [17]. Además el mantenimiento como las actualizaciones del

software será gestionado por parte del proveedor de servicios. En general, el software desarrollado para

ser implementado como un servicio es más eficiente y provee de mejor funcionalidad y flexibilidad [16].

El modelo SaaS especifica aplicaciones que normalmente son diseñadas para operar en centros de datos

distribuidos. Tienen la ventaja de escalar tanto el servidor como el ancho de banda para proveer acceso a

más usuarios, aumentar el rendimiento y el tratamiento de información. No existe la necesidad de

rediseñar el software o de desplegarlo de nuevo. Esto significa que se tiene el mismo servicio

independientemente del número de usuarios y no se debe añadir más hardware o sistemas, ya que el

proveedor de la nube proporcionará dinámicamente la escala que necesites [16].

Por tanto, los principales beneficios que aporta SaaS respecto a otros modelos son seguridad, escalabilidad,

flexibilidad, disponibilidad y reducción de costes económicos y temporales. En el dominio de la aplicación

se han tenido en cuenta los aspectos relacionados con la escalabilidad y flexibilidad para adaptarse al

número de usuarios, aumentando o disminuyendo el número de recursos para ofrecer el servicio. También

esta solución reduce costes temporales al usuario final, ya que no debe instalar ni configurar el sistema. El

sistema ya se encuentra desplegado y accesible en una plataforma de computación en la nube.

Los centros de datos SaaS hoy en día garantizan que son altamente disponibles, esto implica generalmente

que el proveedor tenga una cierta tolerancia a fallos o recuperación de errores para garantizar la

disponibilidad en caso de producirse cualquier desastre. La elección de Amazon EC2 nos asegura la

disponibilidad del servicio aproximadamente el 99,9999% del tiempo.

5.2. Diseño de cada componente que constituye el flujo de trabajo
En primer lugar se ha llevado a cabo un diseño de alto nivel de cómo debía ser la estructura del sistema. Se

ha tomado la decisión de realizar un diseño por capas, de tal forma que las capas del sistema se encargan

de regir el comportamiento y dependencias del mismo. El sistema está formado por tres capas

fundamentales, y cada una de ellas depende únicamente de la capa inmediatamente inferior. Mediante la

arquitectura por capas se obtiene un diseño más flexible y reusable, ya que los cambios internos de una

capa sólo afectan a la propia capa, y el número de dependencias se disminuye.

17

5.2.1. Presentación primaria
La presentación primaria de los componentes que constituyen el flujo de trabajo se corresponde a la Figura

7 mostrada anteriormente que se corresponde al diseño de arquitectura de un sistema basado en SaaS.

El diseño de la solución está formado por tres capas independientes. La capa denominada Interface es

aquella capa de cada uno de los componentes encargada de atender las peticiones entrantes a través de la

API ofrecida.

La siguiente capa es la denominada Wrapper, debido a que encapsula el acceso a la lógica de negocio. Esta

capa es la responsable de encapsular la comunicación entre las peticiones entrantes y las reglas de negocio

del sistema. En el contexto de implementación, será la capa que encapsule toda la funcionalidad asociada al

lanzamiento de los scripts de cada una de los componentes del sistema inferencia filogenética y se

encargue del tratamiento de las salidas generadas, así como de la monitorización necesaria.

La tercera y última capa denominada Business Logic es la capa de negocio, es decir, aquella capa que

contiene toda la lógica y reglas de negocio del sistema. En este dominio de aplicación esta capa se

corresponde con el sistema PhyloFlow [2], debido a que él posee todas las funcionalidades necesarias para

la realización del análisis de filogenias de ADN mitocondrial humano.

Si se aumenta el nivel de detalle, se puede observar la aparición de una capa middleware compuesta por

varios elementos que ofrecen distintos servicios a través de sus interfaces. Esta capa añade un nivel más de

indirección entre la capa Wrapper y la capa que contiene la lógica de negocio.

La capa Wrapper se comunica con cada uno de ellos dotando al sistema de una funcionalidad completa en

base a las funcionalidades ofrecidas por cada uno de los servicios. Por tanto, será el elemento representado

como Business Logic Service el encargado de encapsular todas las llamas al sistema de inferencia

filogenética. La Figura 8 muestra el diseño del sistema a un nivel de abstracción inferior.

Figura 8. Vista con las capas de diseño de un componente genérico del flujo de trabajo

5.2.2. Relaciones y sus propiedades
La capa Interface se encarga de ofrecer los métodos del servicio que se pueden invocar remotamente. Para

ello se define y publica una API que indica las reglas para la invocación del servicio. Cada vez que recibe una

petición, la atiende y procesa. Para ello emplea el servicio denominado como XMLService que se encarga de

validar la petición, si es válida la capa invocará a la capa inferior. Dicha API está explicada y detallada en la

sección número 1 de Anexo II. Diseño de la solución (pág. 53).

La capa Wrapper o envoltorio es la que se encarga de encapsular el acceso a las reglas de negocio, y por

tanto se delega sobre esta capa la comunicación con la capa de negocio y el acceso al resto de servicios que

18

dotan al sistema de la funcionalidad completa localizados en la capa middleware. La comunicación entre

las capas Interface y Wrapper se rige en base a un lenguaje común previamente definido, y contendrá toda

la información necesaria para realizar cualquier operación ofrecida por la lógica de negocio.

Los servicios adicionales se encuentran en una capa adicional o middleware ubicada en un nivel inferior

respecto a la capa Wrapper. Esta capa de middleware contiene entre otros los servicios para acceder a la

capa de negocio, el almacenamiento de resultados y la notificación de los resultados al cliente.

Un sistema diseñado por capas solo permite que existan dependencias entre los componentes de una

misma capa y entre capas adyacentes. Sin embargo, todos los componentes de la capa middleware

diseñada son independientes entre sí aumentado la flexibilidad del sistema en base a reducir

dependencias.

La Figura 9 muestra las relaciones entre los elementos de cada una de las capas descritas anteriormente.

Figura 9. Vista de componentes y conectores de un componente genérico del flujo de trabajo

La capa middleware intermedia está compuesta por cuatro servicios:

 Business Logic Service: este servicio ofrece todas las operaciones relacionadas con la lógica de

negocio interna.

 Store Service: este servicio ofrece operaciones relacionadas con la utilización de un sistema de

almacenamiento externo.

 Notification Service: este servicio ofrece operaciones relacionadas con la notificación de

información a usuarios.

 Compression Service: este servicio ofrece operaciones relacionadas con la compresión y

descompresión de recursos.

El elemento Business Logic está formado por todos los scripts y librerías que componen cada una de los

componentes del sistema de inferencia filogenética. Se encarga de realizar la descarga de secuencias de la

base de datos GenBank, el procesamiento de las secuencias, generación de superárboles, etc. Todas las

salidas se almacenan comprimidas en su correspondiente directorio. La interfaz completa está descrita en

la sección número 2 de Anexo II. Diseño de la solución (pág. 61).

19

5.3. Diseño del componente que representa el flujo de trabajo
Una vez realizado el diseño de cada uno de los sistemas que representan cada una de los cuatro

componentes que constituyen el sistema PhyloFlow [2] se ha procedido a diseñar el sistema que debía

contener la lógica del funcionamiento del flujo de trabajo. El diseño del sistema de alto nivel es idéntico al

del sistema para cada componente del flujo de trabajo y, por tanto, también está dividió en tres capas que

dependen solamente de la capa inmediatamente inferior. La capa intermedia denominada anteriormente

como Wrapper en este contexto es denominada como Scheduler, ya que informa mejor de la funcionalidad

ofrecida por dicha capa.

5.3.1. Presentación primaria
La Figura 7 mostrada anteriormente revela el diseño del sistema que representa el flujo de trabajo. El nivel

de interfaz se encargaría de publicar como servicio el flujo completo de un análisis filogenético.

La capa intermedia la representaría el Scheduler o planificador de tareas que sería aquel componente

encargado de realizar las peticiones correspondientes a cada uno de los componentes del flujo de trabajo

en base a la información proporcionada por la lógica de negocio.

En este caso, la capa Workflow representa las reglas de negocio, y por tanto, contiene la secuencia y orden

de cada componente así como la operación y los parámetros que se ha de realizar.

Si aumentamos el nivel de detalle del diseño del sistema en este caso no aparece una capa de middleware

que ofrezca unos servicios complementarios. Sin embargo, se puede observar cómo dentro de la capa

intermedia aparece un componente denominado MailBox, el cual se encargará de recuperar las respuestas

recibidas por parte de los componentes como respuesta a las peticiones realizadas por el componente

Scheduler. La Figura 10 muestra el diseño del sistema a un nivel de abstracción inferior.

Figura 10. Vista con las capas de diseño del componente flujo de trabajo

5.3.2. Relaciones y sus propiedades
La capa Interface se encarga de ofrecer los métodos del servicio que se pueden invocar remotamente. Para

ello se define y publica una API que indica las reglas para la invocación del servicio. Cada vez que recibe una

petición, la atiende y procesa. Dicha API está explicada y detallada en la sección número 3 de Anexo II.

Diseño de la solución (pág. 64).

La capa intermedia es la encargada de planificar las tareas del flujo de trabajo. Para ello, se comunica con la

capa inferior para obtener la siguiente tarea a realizar dentro del flujo de trabajo actual y realizar la

petición al componente concreto que debe realizarla. Para enviar las peticiones de forma correcta emplea

el componente XMLService que se encarga de generar los mensajes en formato XML válidos en base al

lenguaje de comunicación definido.

20

Por último, realiza la petición con el mensaje generado al componente concreto para que se encargue de

procesarlo y realizar la tarea deseada. El componente MailBox será el encargado de comprobar si se ha

recibido una nueva notificación que contenga los resultados solicitados. Si es así, el componente Scheduler

recuperará los resultados y comenzará a preparar la siguiente tarea a realizar del flujo de trabajo.

La lógica de negocio está representada por el componente Workflow Service que ofrece una serie de

servicios para interactuar con el flujo de trabajo que permite a la capa superior obtener cuál es el la

siguiente tarea a realizar dentro del flujo de trabajo actual. La Figura 11 muestra las relaciones dentro del

sistema.

Figura 11. Vista de componentes y conectores del componente flujo de trabajo

5.4. Arquitectura global del sistema
Se ha descrito el diseño y arquitectura de cada uno de los componentes por separado. A continuación se

muestra la arquitectura global del sistema combinada con la vista de despliegue. Cada componente está

albergado en una máquina independiente formando una sistema totalmente distribuido. El medio de

comunicación entre cada uno de los componentes es el denominado como Message Broker. La Figura 12

muestra el despliegue y arquitectura global del sistema.

Figura 12. Vista de despliegue del sistema

21

5.5. Interfaz pública de cada servicio
La interfaz pública de cada servicio debe definir unas reglas de entrada y unas reglas de salida que permita

a cualquier persona o sistema externo interactuar con él. Se ha definido un lenguaje común para describir

tanto el estándar de entrada como de salida. De este modo, todos los componentes emplean el mismo

estándar para validar las peticiones de entrada el cual está definido y descrito empleando un esquema en

lenguaje XML. Tanto el lenguaje común como el esquema se muestran y explican en detalle en la sección

número 4 de Anexo II. Diseño de la solución (pág. 66).

Esto permite que cualquier sistema externo pueda utilizar los servicios ofrecidos individualmente por cada

uno de los componentes para integrarlos en el contexto en el que interopere, así como la integración

completa empleando los resultados proporcionados por el flujo de trabajo completo.

22

6. Implementación

Una vez finalizadas las fases anteriores se ha procedido a realizar la implementación del sistema. Se han

realizado sucesivas refactorizaciones del código generado durante la fase de implementación. Para la

gestión y control de versiones se ha empleado un repositorio privado de tipo Subversion.

Como se ha mencionado anteriormente, el sistema PhyloFlow [2] está formado por cuatro componentes

que se han implementado de forma independiente e individual. Además se ha desarrollado otro sistema

externo que contiene la lógica del flujo de trabajo. Todos los componentes ofrecen sus funcionalidades a

través de una interfaz pública, es decir, cada componente ofrece los servicios relacionados con su

funcionalidad específica y el último ofrece como servicio la ejecución de un flujo de trabajo completo

integrando los anteriores.

6.1. Software y tecnologías empleadas
Se han empleado las últimas versiones del sistema de análisis de filogenias denominado PhyloFlow [2]

proporcionado por el investigador Jorge Álvarez, así como las librerías necesarias por dicho sistema. Este

sistema está programado íntegramente con el lenguaje de programación Python [9] y emplea actualmente

la versión 2.7 de este. Además el sistema emplea dos librerías externas: la versión 1.63 de Biopython [18] y

la versión 3.8.1 de DendroPy [19].

DendroPy [19] es una librería de Python [9] para la computación filogenética. Provee clases y funciones

para la simulación, procesamiento y manipulación de árboles filogenéticos y matrices de caracteres.

Biopython [18] es un conjunto libre de herramientas para la computación biomédica desarrollado en

Python [9] por un equipo internacional de desarrolladores.

El sistema implementado está programando íntegramente en Java 1.7 [7] y se ha empleado la herramienta

Maven [20] para facilitar la gestión, configuración y creación del proyecto. La herramienta Maven [20]

permite describir las dependencias del proyecto y automatizando la descarga de los módulos.

Para el desarrollo de los servicios Web se ha empleado JAX-RS. La tecnología JAX-RS o Java API for RESTful

Web Services es una API del lenguaje de programación Java [7] que proporciona soporte en la creación de

servicios Web de acuerdo con el estilo arquitectural Representational State Transfer (REST). JAX-RS emplea

anotaciones para simplificar el desarrollo y despliegue de los servicios Web. Desde Java EE 6 es una

característica oficial l del lenguaje, por tanto, no es necesaria ninguna configuración para comenzar a

usarla.

Para poder trabajar de forma más cómoda se ha utilizado uno de los laboratorios de investigación del

Grupo de Ingeniería de Sistemas de Eventos Discretos (GISED), el L1.03B, en el que he dispuesto de un

espacio físico y de una máquina (astazu) durante el periodo comprendido desde el inicio a la finalización del

trabajo. La utilización de dicha máquina ha sido de gran utilidad en las fases tempranas del proyecto, ya

que no disponía de ninguna máquina con un sistema operativo de tipo UNIX.

 Para el desarrollo y despliegue del sistema en una plataforma en la nube se han empleado varios de los

servicios ofertados por la plataforma ofrecida por Amazon Web Services (AWS) de manera gratuita durante

un año con ciertas restricciones de prestaciones y recursos. En concreto el proyecto emplea el servicio de

almacenamiento S3 y el servicio EC2 de computación elástica en la nube.

23

Se optó por emplear una imagen de una máquina Ubuntu 14.04 proporcionada por defecto por el servicio

de Amazon sobre la cual instalar y configurar las tecnologías Web necesarias, el sistema previo y las

librerías de las que dependía. Una vez configurada se creó una instantánea de la misma, que permite

replicarla de forma transparente al usuario y sin la necesidad de realizar de nuevo todo el proceso de

instalación y configuración.

6.2. Implementación de cada componente del flujo de trabajo
La implementación completa de cada componente del flujo de trabajo se ha dividido en servicios. Una vez

implementado cada componente o servicio se ha realizado la integración de los mismos. Primero se han

implementado las capas inferiores del diseño y por último las capas superiores. La Figura 13 muestra la

vista de componentes del sistema implementado.

Figura 13. Vista de implementación de un componente genérico del flujo de trabajo.

6.2.1. Implementación de la capa de negocio
En primer lugar, se ha desarrollando un prototipo capaz de lanzar procesos encargados de la ejecución de

los distintos scripts en Python [9] que representan cada uno de los componentes del sistema PhyloFlow [2]

desde la máquina virtual de Java [7]. A partir de este prototipo y tras sucesivas refactorizaciones se ha

obtenido el servicio que se encarga de interoperar de forma transparente con el sistema PhyloFlow [2].

Este servicio se encarga de generar comandos cuya ejecución en el sistema PhyloFlow [2] equivale a la

funcionalidad solicitada y permite acceder a todas las funcionalidades ofrecidas por dicho sistema. De este

modo, este servicio es reutilizado por los cuatro sistemas que representan cada uno de los componentes

del flujo de trabajo.

Este servicio sigue el patrón Façade abstrayendo las interacciones necesarias con el sistema de análisis de

filogenias a través de una interfaz simple y reveladora con los servicios de la capa de negocio. El servicio

cuenta con una plantilla de comandos, cada uno de ellos representa una funcionalidad concreta del sistema

PhyloFlow [2]. El servicio se ha de encargar de rellenar el comando para cada funcionalidad solicitada con

los parámetros de entrada, creando una lista con todos los comandos que se deben ejecutar para

24

completar la ejecución. Una vez que se dispone de dichos comandos el sistema lanza un proceso por cada

uno de ellos empleando el shell de la máquina.

Los procesos o trabajos se lanzan en paralelo hasta alcanzar un número máximo de procesos en ejecución.

Se han tenido en cuenta todos los problemas derivados de la concurrencia de procesos y accesos en

exclusión mutua para evitar que se generen errores y excepciones. Con la paralelización de los trabajos se

obtienen mejores resultados. Se ha establecido un número máximo de procesos en ejecución para evitar

sobrecargar la carga de trabajo de la CPU. Este parámetro es configurable, y por tanto, se puede modificar

para adaptarse a la potencia y prestaciones ofrecidas por la máquina o instancia en la que se ejecute el

sistema.

6.2.2. Implementación sistema de almacenamiento externo
A continuación, se ha desarrollado un sistema para el almacenamiento de resultados parciales y finales que

permita acceder a ellos mediante una URI, en este caso una URL. Este servicio debe permitir además del

almacenamiento de los resultados la descarga de los mismos, ya que dichos resultados forman parte de la

entrada del próximo componente del flujo de trabajo.

Para el almacenamiento de estos resultados se optó por emplear un servicio de almacenamiento externo

que ofreciera las funcionalidades necesarias a través de un servicio Web, para facilitar su integración de

forma automática en el sistema. En concreto se ha decidido emplear un sistema de almacenamiento en la

nube que proporciona una alta disponibilidad y fiabilidad de los resultados almacenados, además permite

el acceso a los mismos mediante un identificador de recursos universal (URI) a través de cualquier

navegador.

Se ha empleado el servicio en la nube denominado S3 (Simple Storage System) que forma parte del

conjunto de servicios en la nube ofrecidos por Amazon Web Services. La implementación del servicio de

almacenamiento ha consistido en la utilización del SDK (Software Development Kit) ofrecido por Amazon S3

que se encarga de realizar las peticiones al servicio de forma transparente. Sin embargo, se ha definido una

interfaz común que posibilita emplear cualquier otro sistema de almacenamiento externo que implemente

dicha interfaz de forma transparente al usuario.

También se ha añadido una funcionalidad que permite la descarga de los archivos que corresponde a la

entrada de un componente debido a que algunos recursos puede que no estén ubicados en Amazon S3.

Esta solución se ha considerado necesaria, ya que cada resultado se almacena en Amazon S3 durante un

cierto periodo de tiempo, pasado ese periodo de tiempo se elimina del sistema de almacenamiento para

evitar almacenar una gran carga de datos. Los clientes puede descargar dichos resultados y dejarlos

accesibles remotamente para que el sistema pueda acceder a ellos independientemente de la ubicación de

los mismos.

Debido a que Amazon S3 no permite almacenar estructuras con un formato de sistemas de ficheros a

través de sus servicios Web se tomó la decisión de almacenar los resultados en único fichero comprimido.

http://en.wikipedia.org/wiki/Software_development_kit

25

6.2.3. Implementación de los sistemas de compresión y notificación
Se ha implementado un servicio compresor que emplea el formato zip [21] para comprimir y descomprimir

los resultados intermedios. Este servicio implementa una interfaz definida previamente, de tal forma, que

se puede extender empleando otros formatos de compresión. El sistema PhyloFlow [2] emplea tanto en la

entrada de datos como en la salida ficheros comprimidos en formato gzip [22], por tanto, se ha tomado la

decisión de que si el fichero pasado como entrada tiene este formato se considera una entrada válida para

PhyloFlow [2] y, por tanto, no se realiza la descompresión previa. Si el formato del fichero de entrada no es

ninguno de los anteriores se descarta la petición.

Seguidamente se ha realizado el servicio de notificación. Como el protocolo de comunicación debía ser

asíncrono, se ha empleado el protocolo SMTP [23] para notificar los resultados. Se ha utilizado el lenguaje

común definido previamente que contempla la posibilidad de que se haya producido un error, permitiendo

notificar al usuario del error que se ha producido y su causa.

6.2.4. Implementación del encapsulador e interfaz
Una vez implementados estos cuatros servicios, se ha desarrollado el encapsulador que se encarga de

invocar cada uno de ellos en el orden correcto para llevar a cabo el proceso completo definido. Primero se

debe de encargar de descargar los datos de entrada, si es necesario, seguidamente los ha de descomprimir,

invocar al sistema PhyloFlow [2], comprimir y almacenar los resultados. Por último, debe notificar dichos

resultados al usuario.

Para acceder al sistema se ha implementado la capa Interfaz. Debido a que los análisis de genoma humano,

en este caso, del ADN mitocondrial son problemas intensivos en calculo, todos los servicios debían ofrecer

un protocolo de comunicación asíncrono capaz de notificar los resultados una vez finalizado el proceso

solicitado. Esto obligo a realizar servicios asíncronos que se encargarían de lanzar procesos independientes

encargados de generar, almacenar y notificar los resultados a los clientes. Además se implementó un

servicio que debía validar y analizar la entrada en base al lenguaje común definido mediante un esquema

en lenguaje XML y generar mediante dicho lenguaje un fichero XML que contenga la respuesta.

6.2.5. Aspectos interesantes de la implementación
Para aumentar la flexibilidad del sistema y facilitar la configuración del mismo se han generado distintos

ficheros de propiedades que contienen propiedades del sistema así como de sus componentes. Estos

ficheros almacenan las credenciales de acceso a servicios externos como Amazon S3 o las cuentas de correo

electrónico de Gmail, así como ciertas propiedades de la máquina, sistema operativo, variables de entorno,

etc. Además se definió un espacio de trabajo que debía contener entre otros datos, los ficheros de log, las

peticiones de entrada recibidas y las respuestas, así como el sistema previo.

También se ha definido un mapa de errores que contiene todas las posibles excepciones que se pueden

generar durante la ejecución de un componente. El mapa de errores se encuentra descrito en la sección

número 1 de Anexo III. Implementación (pág. 69).

26

6.3. Implementación del sistema flujo de trabajo
Una vez finalizado los cuatro sistemas que representan cada uno de los componentes constituyentes del

flujo de trabajo se comenzó a realzar el sistema que debía planificar los trabajos del mismo para realizar un

flujo de trabajo completo. La Figura 14 muestra la vista de componentes del sistema implementado:

Figura 14. Vista de implementación del componente flujo de trabajo

Este servicio debía utilizar un protocolo de comunicación asíncrono debido a que el tiempo completo de

procesamiento de un flujo de trabajo completo es muy elevado. Se tomó la decisión de que este sistema no

empleará el protocolo SMTP [23], que permite el envió de correos electrónicos, a cambio de emplear el

protocolo IMAP [24], que permite la lectura de la bandeja de entrada. Este protocolo permite leer e

interpretar los mensajes de respuesta recibidos por parte de todos los componentes que integran el flujo

de trabajo y delega en el último componente del flujo de trabajo la tarea de enviar el mensaje con los

resultados al cliente final.

Para obtener un servicio asíncrono se genera un proceso independiente por cada petición recibida que es el

encargado de gestionar las peticiones a cada uno de los componentes que integran el workflow y de

recoger y analizar los resultados recibidos.

Para la implementación del componente MailBox, el cual es el encargado de acceder a la bandeja de

entrada, leer los mensajes nuevos y notificar al resto de procesos cuando haya un mensaje nuevo, se

empleo el patrón Singleton. Este patrón permite que haya una única instancia de la clase en ejecución, por

tanto, de esta forma se evitan problemas de concurrencia debido al acceso múltiple a la bandeja de correo

electrónicos.

27

7. Despliegue y evaluación

Una vez desarrollada la primera versión funcional del sistema se ha desplegado en un entorno distribuido.

Para el despliegue del sistema en la nube se han realizado unas tareas previas. Estas tareas han consistido

el lanzamiento de una instancia de una máquina Ubuntu 14.04 a partir de una imagen proporcionada por

Amazon. Para esta instancia se ha configurado el volumen persistente de la máquina, las reglas de

seguridad para acceder a la máquina y el centro de datos donde estará disponible (Irlanda). Una vez que la

instancia esta lanzada se ha accedido vía ssh mediante un fichero que contiene una clave privada, ya que al

instanciar una máquina se añade la clave publica al fichero que almacena las claves que tienen autorización

de acceso.

 La configuración ha consistido en instalar todas las librerías de las que depende el sistema PhyloFlow [2] así

como instalar un servidor Tomcat 7.0 sobre el que desplegar el sistema. Además se han copiada el sistema

utilizando el comando scp o la herramienta Filezilla, se han añadido las variables de entorno necesarias del

sistema PhyloFlow [2].

Una vez que se ha configurado completamente el entorno se ha creado un script que se encarga de lanzar

el servidor Tomcat en el arranque de la máquina, de tal forma, que siempre que la máquina se reinicia el

servidor quedará accesible. Po último, se ha realizado una instantánea de la máquina configurada. A partir

de esta instantánea se pueden crear nuevas instancias que se encuentran totalmente configuradas de

forma automática.

7.1. Explicación de una traza completa de despliegue
Una vez que se encuentran las instancias que corresponden a cada uno de los componentes del sistema en

ejecución y los servidores de aplicaciones se encuentran activos se puede realizar peticiones a los servicios

Web. A continuación se explican las etapas principales de una traza completa de despliegue de una

ejecución de un conjunto de secuencias de ADN mitocondrial.

En primer lugar se solicita al servicio Web del componente Workflow System la realización de una ejecución

completa para el análisis del ADN mitocondrial humano. El componente Workflow System valida la petición

recibida y en el caso de ser correcta comienza el proceso.

El planificador de tareas seleccionará el primer trabajo a realizar dentro del flujo de trabajo. A partir de

dicho trabajo generará una cadena de caracteres en formato XML que cumpla el estándar de entrada

definido con el método seleccionado y los parámetros de entrada necesarios. Enviará la petición al

componente correspondiente y se mantendrá a la espera de la respuesta.

Cuando reciba el mensaje con la respuesta descarga el fichero que la contiene. Analizara la respuesta

empleado el formato de salida definido para obtener los valores de la respuesta. Si no aparece ningún

bloque fault indicando un error durante el procesamiento selecciona el siguiente trabajo planificado.

Realiza estas etapas iterativamente hasta el último trabajo del flujo.

En la última etapa del flujo de trabajo, en lugar de emplear el correo electrónico propio introduce como

parámetro el correo del cliente para que sea este el que reciba el mensaje con la solución final a su

petición.

28

En el caso concreto del procesamiento del ADN mitocondrial humano el orden de las etapas es el siguiente:

1. Petición del cliente al componente Workflow System

2. Descarga de las secuencias de ADN mitocondrial humano

3. Procesamiento utilizando el método de haplogrupos

4. Procesamiento utilizando el método de genes

5. Evaluación de modelos evolutivos y generación de bootstraps

6. Consenso de las soluciones parciales antes de la fase de bootstraps

7. Consenso de las soluciones parciales tras la fase de bootstraps

8. Generación de un único superárbol

Las respuestas generadas por cada componente se notificarán al componente Workflow System a través de

correos electrónicos. El componente Workflow System accederá a la cuenta de correo electrónico

empleando el protocolo IMAP [24] y de esta forma recuperara las respuestas a sus peticiones. La Figura 15

muestra la traza completa de despliegue.

Figura 15. Traza de despliegue para un flujo completo de análisis filogenético de ADN mitocondrial

7.2. Verificación y validación del sistema
Para la validación y verificación del sistema se ha empleando la herramienta JUnit 4 que ha permitido

generar una batería de pruebas unitarias totalmente automáticas. Dichas pruebas se han realizado para

validar el comportamiento del sistema ante fallos derivados de la entrada, la ejecución completa de un flujo

de trabajo, el correcto funcionamiento del sistema de almacenamiento externo, etc.

Este tipo de pruebas son de gran utilidad para validar que la integración de nuevos componentes o los

cambios en el código no han implicado modificaciones en el comportamiento del sistema. En caso de

modificarse permite detectar el error en función de los test fallidos.

Además se han realizado pruebas del sistema en máquinas locales para verificar su correcto

funcionamiento antes de desplegar el sistema en la nube proporcionada por Amazon. En ella también se

han realizado pruebas para comprobar si permitía, entre otras coas, enviar correos electrónicos sin habilitar

los puertos correspondientes en las reglas de seguridad.

29

Para llevar a cabo la evaluación del sistema se ha creado una batería de pruebas para la realización de

flujos de trabajo completos con distintas métricas. Debido a las limitaciones computacionales de las

instancias micro proporcionadas de forma gratuita por la plataforma Amazon EC2, en lugar de emplear

secuencias de ADN mitocondrial se han empleado secuencias sintéticas o conjuntos de secuencias

reducidas de las primeras.

Los objetivos principales eran validar el comportamiento del sistema y evaluar el sobrecoste que supone

ofrecer como servicio las funcionalidades de cada componente individual del sistema PhyloFlow [2] así

como el sobrecoste total de un flujo de trabajo completo.

7.3. Resultados de la evaluación
La evaluación del sistema se encuentra detallada en la sección Anexo IV. Despliegue y evaluación (pág. 71).

Los resultados de la evaluación muestran que el sobrecoste que supone ofrecer cada componente como un

servicio en el cómputo global de un flujo de trabajo es ínfimo tanto para secuencias de ADN mitocondrial

como secuencias sintéticas. La Tabla 3 muestra el sobrecoste medio para cada uno de los componentes y el

total en función del tipo de secuencia.

Overhead medio en porcentaje

Sequence Fetch Sequences Sequences Processing Sequences Evaluation

hmtDNA 94% 0% 0%

synthetic 70% 1% 2%
Tabla 3. Sobrecoste medio en función del tipo de secuencia

El componente Supertree Building no ha sido evaluado debido a que su implementación final no está

finalizada. A pesar de que el sobrecoste sea elevado en el componente Fetch Sequences debido a que

representa un parte ínfima del total del tiempo a penas afecta al sobrecoste total. Como el procesamiento

de las secuencias sintéticas es menos costoso computacionalmente el sobrecoste es superior respecto a las

secuencias de ADN mitocondrial, pero aún así es despreciable.

A continuación la Figura 16 y la Figura 17 muestran dos gráficas comparativas de la evolución del

sobrecoste en función del número de conjuntos de secuencias a procesar. Estas gráficas permiten observar

además la diferencia que existe en cada operación entre el tiempo total y el tiempo de ejecución del

sistema PhyloFlow [2] y las operaciones que implican un mayor coste temporal dentro del flujo de trabajo.

Figura 16. Gráfica con los tiempos totales para 2 sets Figura 17. Gráfica con los tiempos totales para 16 sets

17%

79%

92%

90%

44%

Phylo Time

Total Time

4%

100%

100%

99%

96%

Phylo Time

Total Time

30

Cuando se aumenta el número de conjuntos de secuencias el porcentaje que supone el sobrecoste en el

tiempo total se reduce. Esto se debe a que el coste temporal del procesamiento de secuencias tiene mayor

complejidad, y por tanto, un coeficiente de crecimiento netamente superior.

El componente Sequences Processing realiza el procesamiento biológico con los métodos dactal y mafft. En

este tipo de flujo de trabajo la fase de mayor coste temporal, por tanto, es la de procesamiento biológico.

También se puede observar como la fase de recuperación o descarga de secuencias tiene el mayor

sobrecoste de todos. Esto se debe a que para las secuencias de ADN sintético no se realiza ninguna

descarga únicamente se recupera una base de datos disponible en el sistema de ficheros del sistema.

7.4. Sistema de toma de decisiones
A partir de la información recogida en los fichero de log en concreto los asociados a los servicios

relacionados con el sistema PhyloFlow [2] se ha decidió crear perfiles de ejecución que permitan mejorar el

aprovisionamiento de recursos. La información recogida de estos ficheros corresponde a tiempos de

ejecución, consumo de memoria, método de procesamiento, número de reintentos y número total de sets

y tipo de secuencias procesados.

Así se ha plantea un método de mejora sencillo basado en el entrenamiento de un árbol de decisión sobre

un conjunto de entrenamientos basado en tablas por cada uno de los componentes que constituyen el flujo

de trabajo del sistema PhyloFlow [2]. Por último, se ha escogido que tipo de instancia se adaptaría mejor

para cada prueba realizada considerando los costes económicos y temporales que implicaría su elección de

forma aproximada.

Este sistema ha permitido realizar una evaluación inicial del rendimiento del sistema estableciendo

estrategias sobre el tipo de plataforma computacional en la cual desplegar cada componente del sistema.

La implementación y conclusiones del sistema de toma de decisiones se encuentra detallada en la sección

Anexo IV. Despliegue y evaluación (pág. 73).

31

8. Gestión del proyecto y conclusiones

Este capítulo contiene toda la información relacionada con la gestión del proyecto y los procesos de

seguimiento y control del mismo. Por último se exponen las conclusiones técnicas y personales del trabajo

realizado.

8.1. Gestión del proyecto
La metodología utilizada para llevar a cabo una correcta gestión del proyecto ha sido la un modelo de ciclo

de desarrollo en cascada mejorado. Dicha metodología establece una organización en fases del proyecto y

sus correspondientes hitos facilitando su seguimiento, identificación de carencias y retroalimentación del

desarrollo.

Las fases principales del proyecto corresponden a la fase de captura de requisitos y análisis del sistema,

diseño de la solución, implementación y despliegue. Al final de cada una de las fases se ha realizado una

verificación de la misma proporcionando retroalimentación tanto para la fase actual como las fases previas.

Se ha seguido un flujo de trabajo basado en las fases principales que se consideran en Ingeniería del

Software haciendo especial hincapié en aquellas relacionadas con la Ingeniería de Requisitos. Esto ha

proporcionado como resultado un análisis profundo de las dependencias, características, necesidades y

limitaciones de la solución. La Figura 18 muestra gráficamente el modelo de desarrollo en cascada

mejorado.

Figura 18. Modelo en cascada mejorado con retroalimentación en cada una de las fases

8.1.1. Gestión de configuraciones
Para facilitar la comunicación con los directores del proyecto se ha empleado una carpeta compartida en la

plataforma Dropbox. Esta carpeta se ha empleado para almacenar la documentación generada a lo largo de

cada una de las fases del proyecto.

Se ha empleado un repositorio privado Subversion para almacenar y realizar el control de versiones del

código generado. Este repositorio ha sido de gran utilidad debido a que me ha permitido trabajar desde

distintos dispositivos con una gestión totalmente automatizada del código.

32

8.1.2. Diagrama de Gantt
La Figura 19 muestra el diagrama de Gantt con la planificación realizada del proyecto.

Figura 19. Diagrama de Gantt con la planificación final del proyecto

Observando el diagrama se puede concluir que se ha seguido de forma estricta el modelo de desarrollo en

cascada. También se puede observar como al final de cada fase se ha realizado una reunión de seguimiento

que ha generado una retroalimentación del proceso y las fases.

33

8.1.3. Coste total del proyecto
Se ha llevado una contabilización de los esfuerzos dedicados a cada actividad del proyecto empleando una

hoja de cálculo, cada punto de esfuerzo anotado sobre ella equivale a media hora de esfuerzo real. El coste

total del proyecto seccionado por actividades se muestra en la Tabla 4 y la Figura 20.

Actividades Esfuerzo total Porcentaje relativo

Formación 54,5 h. 15%

Análisis 43,5 h. 12%

Diseño 47 h. 13%

Implementación 88 h. 24%

Despliegue y validación 47,5 h. 13%

Documentación 54 h. 15%

Gestión de proyecto 30 h. 8%

 364,5 h. 100%
Tabla 4. Esfuerzos totales y porcentaje relativo por actividad

Figura 20. Gráfica con la división de los esfuerzos en actividades

Observando la gráfica cabe destacar que se ha realizado un gran esfuerzo en las fases principales de la

Ingeniería del Software desde la fase temprana de análisis hasta la validación y evaluación del sistema. La

actividad que más esfuerzo a requerido ha sido la de implementación del sistema

34

8.2. Conclusiones
Se ha desarrollado el proyecto siguiendo las fases principales de la Ingeniería del Software con el objetivo

de conseguir un buen análisis y diseño de la solución. La realización de este trabajo ha supuesto afrontar,

en lo personal, el trabajo de mayor envergadura hasta la fecha abordando todas las fases de desarrollo de

Software. Ha sido necesario aplicar técnicas aprendidas a lo largo de la especialidad de Ingeniería del

Software tanto para la gestión del proyecto como para el desarrollo del proyecto.

Las fases de análisis y diseño han requerido un gran esfuerzo debido a la importancia que tenía realizar un

sistema flexible y escalable que se pudiera ejecutar sobre distintas tipos de instancias. Para ello la

utilización de ficheros de propiedades configurables ha sido indispensable facilitando la reproducibilidad

del sistema sin la necesidad de modificar el código fuente.

La fase de validación y evaluación del sistema ha permitido comprobar el correcto funcionamiento del

sistema en una plataforma de computación en la nube. Por tanto, esta solución se podría aplicar sobre una

plataforma similar con el objetivo de reducir los costes temporales y económicos empleando las instancias

que mejor se adapten a cada componente.

Se han cumplido los objetivos planteados inicialmente y se ha introducido un sencillo sistema para la ayuda

a la toma de decisiones basado en árboles de decisiones. La utilización de estos árboles permitiría a un

componente intermedio lanzar el tipo de instancia indicada para realizar el procesamiento seleccionado.

El dominio de la aplicación ha sido novedoso, pero en general ha sido gratificante, debido a que en la

actualidad se está realizando un gran esfuerzo en esta materia. Además la ayuda proporcionada por el

investigador Jorge Álvarez en las fases iniciales del trabajo me permitió comprender la forma de operar con

el sistema PhyloFlow [2].

La introducción de un sistema de ayuda a la toma de decisiones ha permitido hacer una evaluación inicial

del rendimiento del sistema que, una vez en explotación permitiría generar estrategias sofisticadas de

planificación y asignación dinámica de recursos que incluso tuviera en cuenta cuestiones de coste

económico.

Personalmente deseaba que el trabajo de fin de grado que realizase me permitiría aprender y conocer

nuevas tecnologías Web, en concreto, aquellas relacionadas con los servicios Web. La realización de este

trabajo no sólo me ha permitido formarme en el diseño e implementación de servicio Web, sino que me ha

brindado la oportunidad de emplear una plataforma de computación en la nube.

Por último, la ayuda que me han proporcionado tanto Javier como Gregorio para desarrollar el proyecto ha

sido importantísima. Hemos realizado periódicamente reuniones de seguimiento del trabajo que me han

permitido obtener una retroalimentación constante por su parte.

35

Bibliografía

[1] Blanco et al. Rebooting the human mitochondrial phylogeny: an automated and scalable methodology
with expert knowledge. BMC Bioinformatics (12):174. 2011

[2] Jorge Álvarez. Análisis filogenético molecular: Diseño e implementación de algoritmos escalables y

fiables y verificación automática de propiedades de una filogenia.

[3] HTCondor. High Throughput Computing. URL: http://research.cs.wisc.edu/htcondor/

[4] DAGMan. Directed Acyclic Graph Manager.
 URL: http://research.cs.wisc.edu/htcondor/dagman/dagman.html

[5] Anduril. Component-based workflow framework. URL: http://www.anduril.org/anduril/site

[6] Ovaska et al. Large-scale data integration framework provides a comprehensive view on glioblastoma

multiforme. Genome Medicine 2010 2:65.

[7] Java. Java Programming Language. URL: http://java.com/es/

[8] Perl. The Perl Programming Language. URL: http://www.perl.org/

[9] Phyton. Python Programming Language. URL: https://www.python.org/

[10] Matlab. Matlab, the Language of Technical Computing.
 URL: http://www.mathworks.com/products/matlab/

[11] Galaxy. Web-based platform for biomedical research. URL: http://galaxyproject.org/

[12] Liu et al. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing
analyses. J BiomedInform (2014)

[13] Globus Provision. Globus Transfer System. URL: https://www.globus.org/

[14] Maximum Likelihood. URL: http://en.wikipedia.org/wiki/Maximum_likelihood

[15] Evert Duipmans. Business Process Management in the cloud: Business Process as a Service (BPaaS).
2012

[16] Don Jones. White paper: The Business Case for Software as a Service (SaaS). 2010

[17] Fujitsu. White paper: SaaS Business Enablement Services from Fujitsu. 2011

[18] BioPython. Tool for biological computation. URL: http://biopython.org/wiki/Main_Page

[19] DendroPy. Library for phylogenetic computing. URL: https://pythonhosted.org/DendroPy/

[20] Maven. Software project management. URL: http://maven.apache.org/

[21] ZIP. ZIP archive file format. URL: http://en.wikipedia.org/wiki/Zip_(file_format)

[22] GZIP. GZIP archive file format. URL: http://en.wikipedia.org/wiki/Gzip

[23] SMTP. Simple Mail Transfer Protocol.
 URL: http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

http://www.biomedcentral.com/1471-2105/12/174
http://www.biomedcentral.com/1471-2105/12/174
http://research.cs.wisc.edu/htcondor/
http://research.cs.wisc.edu/htcondor/dagman/dagman.html
http://www.anduril.org/anduril/site
http://java.com/es/
http://www.perl.org/
https://www.python.org/
http://www.mathworks.com/products/matlab/
http://galaxyproject.org/
https://www.globus.org/
http://en.wikipedia.org/wiki/Maximum_likelihood
http://biopython.org/wiki/Main_Page
https://pythonhosted.org/DendroPy/
http://maven.apache.org/
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

36

[24] IMAP. Internet Message Acces Protocol.
 URL: http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol

[25] KNIME. Konstanz Information Milner, data analytics, reporting and integration platform.
 URL: https://www.knime.org/

http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://www.knime.org/

37

Anexo I. Análisis

1. Formatos de entrada

Formato FASTA

Una secuencia bajo el formato FASTA comienza con una descripción en una única línea (línea de cabecera),

seguida por líneas de datos de secuencia. La línea de descripción se distingue de los datos de secuencia por

un símbolo '>' en la primera columna. A continuación, le siguen el identificador de la secuencia, y el resto

de la línea es la descripción (ambos son opcionales). Cada una de las líneas de la secuencia está compuesta

por 60 caracteres. La secuencia termina si aparece otra línea comenzando con el símbolo '>'; esto indica el

comienzo de otra secuencia. Un ejemplo simple de una secuencia sintética (SB.fasta) en el formato FASTA

es el siguiente:

>SB

GACTCCCGCGCGGTGGGCCACGCGGAGCCCGGTCATATACCCTATAACCGGCCGTTGCAC

GTTAGCCATACATTCCCTTCTAATGAATCTACGAGCTCGGCATTAGGATCAATAGGTGAG

CTAAGCCAGAATAGACTCTAATAGACTTTTCGTGTGCTCTATCCTGCTAGCTTGTTTATG

TCCCCATGTGGACAGCATGTAGCTGGGATTGCATATTTTCCGCGGTTATCCGACCAGCAG

CTGTGAACACGGCGAGAGCATCTGAAACATTCTGTAGAGTCAGGTTTAATTAGTCTTTAC

CTATAAGGTCATTATCTTATGTCGTCTATGACCGTTGGAACCTATCACTTATTCTAGCAG

AAACAGATTTCGAGTAATTTGCGTTTATGTGGTCAGGAATGAGAGTGTTGATTGAGCCGC

GGCTTTCGGGCAACAATTGATACGCTTGAAGGATAGATCCCTAAATACTTGAGTACGTGG

GAGAAAAAACTCCTAGGCGAAATTGTGGAAAGTAATTACATGTTAGTCCATAAGTACCAA

AGGGAATTGGGCCTGTCCAACACTCGTTAGGCAACACGTCGTATCCGCCGAACACTATTC

TAATGCCTGTGCCGCCATAGCTAAACTTCACACGACGGAACCTGACCAGATCAAGACGGC

TCGAAATGGAAAAATAGGTGACGTATACCGTGGTAGCCACAAGCCCATAGCCGGCCTGGG

TGACTCTCTCTCAGTTCGCGACCTTCGGCTCATTGGTGTAAGACCTAATTGGGCTATTTT

ATTCCAATGTTGCAAGCTAATAAGTAAGCGTGAGTCATTAGTTAATTTCGAACCTACGGT

CGTGGCGCAATTGAAACCAAGTACCTCATATTTATAAGTAGGCCGCTGAGGTCAAGCGTC

TAAACCTTAAATCCGCCGGGTACAATCACCGAGGGGTGTCCATGTGCCTGTACCACGCAG

TATCACTGCGCCGCCGAACGGAAAAGATGCGCCTCCGCGCCCCTAACCTCATTCGTCGGA

GGCGATCCGTTA

Formato NEWICK

En matemáticas, el formato de árboles Newick, la notación Newick o formato de árbol New Hampshire es

una manera de representar arboles de grafos teóricos con longitudes de las ramas empleando comas y

paréntesis. Fue adoptado por James Archie, William H. E. Day, Joseph Felsenstein, Wayne Maddison,

Christopher Meacham, F. James Rohlf, y David Swofford en dos reunión en 1986, la segunda de ellas tuvo

lugar en el restaurante Newick en Dover, New Hampshire, US. El formato adoptado es una generalización

del formato desarrollado por Meacham en 1984 para el primer programa de dibujo de un árbol en

Felsentein PHYLIP package. La representación es la siguiente:

Tree --> Subtree ";" | Branch ";"
 Subtree --> Leaf | Internal
 Leaf --> Name
 Internal --> "(" BranchSet ")" Name
 BranchSet --> Branch | BranchSet "," Branch
 Branch --> Subtree Length
 Name --> empty | string
 Length --> empty | ":" number

38

2. Casos de uso

Casos de uso: usuario administrado

La Figura 21 muestra los casos de uso de nivel 1 para los usuarios del sistema.

Figura 21. Diagrama de casos de uso de nivel 1 para los actores principales del sistema

* Por simplificar el diagrama se han omitido el resto de casos de uso de los subsistemas Fetch Sequences, Sequences Processing y

Sequecences Evaluation. Éstos y sus relaciones son idénticos a las mostradas en el sistema que denominado Supertree Building.

El actor principal, administrador, puede interactuar con el caso de uso Configuration que se encuentra en

los cuatro subsistemas que se corresponden a los componentes del sistema PhyloFlow [2]. Este caso de uso

permite al administrador configurar la máquina en la que reside el subsistema para poder desplegar y

lanzarlo correctamente.

39

3. Descripción de los casos de uso

DownloadDB

Pre: --
Post: Se descarga la última versión de la base de datos de Gen Bank y se almacena en un sistema de
almacenamiento externo posibilitando su acceso al usuario.
Descripción: El caso de uso comienza cuando el usuario desea obtener la última versión de la base de
datos de Gen Bank que contiene rodas las secuencias de ADN mitocondrial. El usuario envía la
petición al servicio y una vez finalizada la descarga será notificado. En el caso de que la petición sea
sintácticamente incorrecta el sistema le notificará inmediatamente. En caso contrario, procederá a
llevar a cabo la descarga de las secuencias de ADN mitocondrial humano de la base de datos de Gen
Bank. El sistema se encarga de solicitar al sistema PhyloFlow [2] que realice la descarga, recuperar los
resultados, almacenarlos en el sistema externo y notificar al usuario la ubicación del archivo que
contiene todas las secuencias de ADN mitocondrial humano albergadas en Gen Bank.

Flujo de eventos

Camino básico del caso de uso “DownloadDB”

Usuario Sistema

1. Envía la petición de descarga del ADN
mitocondrial

 2. Include Business Logic Service

 3. Include Store Service

 4. Include Notification Service

Camino alternativo

Evento 1. El usuario ha introducido algún error en la petición. El sistema responde
de forma síncrona informando del error al usuario.

Evento 2. Se produce un error interno del sistema PhyloFlow que impide realizar la
descargar. El sistema notifica al usuario el error producido de forma asíncrona.

Evento 3. Se produce un error al almacenar el resultado en el sistema de

almacenamiento externo. El sistema responde de forma síncrona informando del

error al usuario.

40

Map-reduce

Pre: El fichero de secuencias de ADN mitocondrial humano de entrada es válido.
Post: Se realiza el procedimiento biomédico solicitado sobre las secuencias de entrada de ADN
mitocondrial y se almacena en un sistema de almacenamiento externo accesible al usuario.
Descripción: El caso de uso comienza cuando el usuario desea realizar un procesamiento biológico
sobre las secuencias de ADN mitocondrial que posee. El usuario envía la petición al servicio y una vez
finalizado el procesamiento biomédico será notificado. En el caso de que la petición sea
sintácticamente incorrecta el sistema le notificará inmediatamente. En caso contrario, el sistema se
encarga de solicitar al sistema PhyloFlow [2] que realice el procesamiento solicitado sobre el fichero
de secuencias de entrada, recuperar los resultados, almacenarlos en el sistema externo y notificar al
usuario la ubicación del archivo que contiene los resultados obtenidos.

Flujo de eventos

Camino básico del caso de uso “Supertree”

Usuario Sistema

1. Envía la petición de descarga del ADN
mitocondrial incluye la URI que da acceso
al fichero de datos de secuencia

 2. Include Store Service

 3. Include Business Logic Service

 4. Include Store Service

 5. Include Notification Service

Camino alternativo

Evento 1. El usuario ha introducido algún error en la petición. El sistema responde
de forma síncrona informando del error al usuario.

Evento 2. Se produce un error al descargar el fichero de entrada. El sistema
responde de forma asíncrona informado del error al usuario.

Evento 3. Se produce un error interno del sistema PhyloFlow que impide realizar el
procedimiento biomédico solicitado. El sistema notifica al usuario el error producido
de forma asíncrona.

Evento 4. Se produce un error al almacenar el resultado en el sistema de

almacenamiento externo. El sistema responde de forma asíncrona informando del

error al usuario.

41

Evaluation

Pre: El fichero de secuencias de ADN mitocondrial humano de entrada es válido.
Post: Se realiza la evaluación en base a modelos biológicos solicitados sobre las secuencias de
entrada de ADN mitocondrial, creando de forma opcional fichero similares para realizar un análisis
estadístico de la solución parcial. Finalmente, se almacenan los resultados en un sistema de
almacenamiento externo accesible al usuario.
Descripción: El caso de uso comienza cuando el usuario desea realizar una evaluación mediante
modelos biológicos sobre las secuencias de ADN mitocondrial que posee. El usuario envía la petición
al servicio y una vez finalizado el procesamiento biomédico será notificado. En el caso de que la
petición sea sintácticamente incorrecta el sistema le notificará inmediatamente. En caso contrario, el
sistema se encarga de solicitar al sistema PhyloFlow [2] que realice la evaluación empleando los
modelos biológicos disponibles sobre el fichero de secuencias de entrada. Opcionalmente, si el
usuario los solicita, el sistema PhyloFlow [2] generará ficheros similares y evaluará el mejor modelo
sobre ellos. Por último, el sistema se encargará recupera los resultados, almacenarlos en el sistema
externo y notificar al usuario la ubicación del archivo que contiene los resultados obtenidos.

Flujo de eventos

Camino básico del caso de uso “Supertree”

Usuario Sistema

1. Envía la petición de descarga del ADN
mitocondrial incluye la URI que da acceso
al fichero de datos de secuencia

 2. Include Store Service

 3. Include Business Logic Service

 4. Include Store Service

 5. Include Notification Service

Camino alternativo

Evento 1. El usuario ha introducido algún error en la petición. El sistema responde
de forma síncrona informando del error al usuario.

Evento 2. Se produce un error al descargar el fichero de entrada. El sistema
responde de forma asíncrona informado del error al usuario.

Evento 3. Se produce un error interno del sistema PhyloFlow que impide realizar el
procedimiento de evaluación con modelos biológicos. El sistema notifica al usuario
el error producido de forma asíncrona.

Evento 4. Se produce un error al almacenar el resultado en el sistema de

almacenamiento externo. El sistema responde de forma asíncrona informando del

error al usuario.

42

Consensus

Pre: El fichero de secuencias de ADN mitocondrial humano de entrada es válido o de árboles
filogenéticos.
Post: Se realiza un procedimiento de consenso sobre las secuencias de entrada de ADN mitocondrial.
Finalmente, se almacenan los resultados en un sistema de almacenamiento externo accesible al
usuario.
Descripción: El caso de uso comienza cuando el usuario desea realizar una fase de consenso sobre las
secuencias de ADN mitocondrial que posee o sobre los árboles filogenéticos si ha realizado
previamente una generación de bootstraps. El usuario envía la petición al servicio y una vez
finalizado el consenso de los ficheros de secuencias o árboles filogenéticos será notificado. En el caso
de que la petición sea sintácticamente incorrecta el sistema le notificará inmediatamente. En caso
contrario, el sistema se encarga de solicitar al sistema PhyloFlow [2] que realice el procedimiento de
consenso sobre el fichero de secuencias de entrada. Por último, el sistema se encargará recupera los
resultados, almacenarlos en el sistema externo y notificar al usuario la ubicación del archivo que
contiene los resultados obtenidos.

Flujo de eventos

Camino básico del caso de uso “Supertree”

Usuario Sistema

1. Envía la petición de descarga del ADN
mitocondrial incluye la URI que da acceso
al fichero de datos de secuencia

 2. Include Store Service

 3. Include Business Logic Service

 4. Include Store Service

 5. Include Notification Service

Camino alternativo

Evento 1. El usuario ha introducido algún error en la petición. El sistema responde
de forma síncrona informando del error al usuario.

Evento 2. Se produce un error al descargar el fichero de entrada. El sistema
responde de forma asíncrona informado del error al usuario.

Evento 3. Se produce un error interno del sistema PhyloFlow que impide realizar el
procedimiento de consenso. El sistema notifica al usuario el error producido de
forma asíncrona.

Evento 4. Se produce un error al almacenar el resultado en el sistema de

almacenamiento externo. El sistema responde de forma asíncrona informando del

error al usuario.

43

Supertree

Pre: El fichero de secuencias árboles filogenéticos de entrada es válido.
Post: Se realiza la construcción del superárbol a partir de los árboles filogenéticos generados
previamente. Finalmente, se almacenan los resultados en un sistema de almacenamiento externo
accesible al usuario.
Descripción: El caso de uso comienza cuando el usuario desea realizar la construcción de un único
árbol filogenético (superárbol) a partir de los ficheros de árboles filogenéticos que posee. El usuario
envía la petición al servicio y una vez finalizado el consenso de los ficheros de secuencias será
notificado. En el caso de que la petición sea sintácticamente incorrecta el sistema le notificará
inmediatamente. En caso contrario, el sistema se encarga de solicitar al sistema PhyloFlow que
realice la construcción del superárbol empleando el método y perfil seleccionados por el usuario. Por
último, el sistema se encargará recupera los resultados, almacenarlos en el sistema externo y
notificar al usuario la ubicación del archivo que contiene los resultados obtenidos.

Flujo de eventos

Camino básico del caso de uso “Supertree”

Usuario Sistema

1. Envía la petición de descarga del ADN
mitocondrial incluye la URI que da acceso
al fichero de datos de secuencia

 2. Include Store Service

 3. Include Business Logic Service

 4. Include Store Service

 5. Include Notification Service

Camino alternativo

Evento 1. El usuario ha introducido algún error en la petición. El sistema responde
de forma síncrona informando del error al usuario.

Evento 2. Se produce un error al descargar el fichero de entrada. El sistema
responde de forma asíncrona informado del error al usuario.

Evento 3. Se produce un error interno del sistema PhyloFlow que impide realizar el
procedimiento de construcción del superárbol. El sistema notifica al usuario el error
producido de forma asíncrona.

Evento 4. Se produce un error al almacenar el resultado en el sistema de

almacenamiento externo. El sistema responde de forma asíncrona informando del

error al usuario.

44

Business Logic Service

Pre: -
Post: Se captura la salida estándar y la salida de error generada por el sistema PhyloFlow [2]. Si el
proceso ha finalizado con éxito el sistema recupera los resultados generados por el sistema
PhyloFlow [2].
Descripción: El caso de uso comienza cuando el sistema desea obtener los resultados proporcionaos
por una de las funcionalidades ofrecidas por el sistema PhyloFlow [2]. El sistema crea un proceso que
invoca por línea de comando al sistema PhyloFlow [2], introduciendo por la entrada estándar los
parámetros seleccionados. Se genera uno o más procesos que realizan la funcionalidad solicitada.
Por último, el sistema recoge los resultados si el procesamiento ha tenido éxito. En caso contrario,
captura el error que se ha producido a través de la salida del sistema PhyloFlow [2].

Flujo de eventos

Camino básico del caso de uso “Business Logic Service”

Sistema Sistema PhyloFlow

1. Genera un proceso, el cuál mediante
línea de comandos invoca al sistema
PhyloFlow

 2. Realiza el procesamiento solicitado

3. Captura la salida de error

4. Recupera los resultados

45

Store Service

Pre: -
Post: Se realiza la descarga de un recurso identificado por una URI o se procede al almacenamiento
de un recurso en el sistema de almacenamiento externo.
Descripción: El caso de uso comienza cuando el sistema desea realizar la descarga de un recurso en
base a una URI que posee. El sistema envía la petición al servicio y sus credenciales de acceso. Si las
credenciales son válidas y posee permisos para realizar las acción solicitada, lectura o escritura, el
sistema de almacenamiento externo realizará la acción solicitada. Por último, el sistema recuperará
los archivos descargados o la URI que identifica al recurso almacenado.

Flujo de eventos

Camino básico del caso de uso “Store Service”

Sistema Sistema externo de almacenamiento

1. Solicita la descarga de un archivo
identificado por una URI

 2. Comprueba las credenciales y las reglas
de seguridad.

 3. El sistema comprueba la URI. Si es
correcta, descarga el archivo

4. Recupera el archivo descargado

Camino alternativo

Evento 2. Las credencias de acceso son inválidas o no posee permisos de lectura. El
sistema de almacenamiento generara un error y el sistema lo captura.

Evento 3. Se produce un error interno del sistema de almacenamiento externo
debido a un error interno o una URI incorrecta. El sistema capturar el error.

Camino básico II del caso de uso “Store Service”

Sistema Sistema externo de almacenamiento

1. Solicita el almacenamiento de un
archivo

 2. Comprueba las credenciales y las reglas
de seguridad. Almacena el archivo

 3. Almacena el archivo y devuelve una
URI con su ubicación

4. El sistema recupera la URI

Camino alternativo

Evento 2. Las credencias de acceso son inválidas o no posee permisos de escritura.
El sistema de almacenamiento generara un error y el sistema lo captura.

Evento 3. Se produce un error interno del sistema de almacenamiento externo
debido a un error interno o una URI incorrecta. El sistema captura el error.

46

Notification Service

Pre: El sistema posee las credenciales válidas para acceder al sistema remoto.
Post: Se notifica al usuario final los resultados obtenidos a causa de la petición que realizó
previamente.
Descripción: El caso de uso comienza cuando el sistema desea notificar al usuario final los resultados
que ha obtenido a causa de la petición que realizó previamente el usuario. El sistema envía las
credenciales de acceso al sistema remoto de notificación. Si las credenciales son válidas, el sistema
tendrá acceso y podrá notificar los resultados al cliente. En caso contrario, se generará un error.

Flujo de eventos

Camino básico del caso de uso “Notification Service”

Sistema Sistema externo de notificación

1. Solicita la notificación de los resultados
al cliente.

 2. Comprueba las credenciales y las reglas
de seguridad.

 3. Notifica los resultados al cliente.

Camino alternativo

Evento 2. Las credencias de acceso son inválidas. El sistema de notificación generara
un error y el sistema lo captura.

47

Configuration

Pre: -
Post: Se realiza la configuración del sistema para desplegarlo y lanzarlo de forma correcta sobre la
máquina en la que reside.
Descripción: El caso de uso comienza cuando el usuario desea configurar la máquina en la que se
encuentra el sistema para poder utilizarlo. Para ello modifica los ficheros de configuración del
subsistema estableciendo las variables de entorno, rutas y credenciales de acceso de cada servicio
que compone el sistema. Por último, se realiza el despliegue del sistema. Si el sistema está bier
configurado su puesta en marcha será correcta.
Flujo de eventos

Camino básico del caso de uso “hmtDNA Workflow”

Usuario Sistema

1. Modifica los ficheros de configuración
del sistema

2. Despliega el sistema sobre un servidor
de aplicaciones

 4. El sistema se actualiza y se lanza

Camino alternativo

Evento 4. El usuario ha configurado incorrectamente el sistema, por tanto, se
genera algún tipo de error durante la puesta en marcha del mismo.

48

hmtDNA Workflow

Pre: -
Post: Se realiza un flujo de trabajo completo para la inferencia filogenética de un árbol evolutivo
sobre un conjunto de secuencias de ADN mitocondrial humano.
Descripción: El caso de uso comienza cuando el usuario desea realiza un análisis del filogenético
sobre un árbol evolutivo sobre un conjunto de secuencias de ADN mitocondrial humano. El usuario
envía la petición al servicio y una vez finalizado el flujo de trabajo completo para la inferencia de un
árbol filogenético será notificado. En el caso de que la petición sea sintácticamente incorrecta el
sistema le notificará inmediatamente. En caso contrario, el sistema se encarga de integrar cada uno
de los servicios que se corresponden con cada componente del flujo de trabajo para llevarlo a cabo.
Flujo de eventos

Camino básico del caso de uso “hmtDNA Workflow”

Usuario Sistema

1. Envía la petición de realización de un
flujo de trabajo completo para secuencias
de ADN mitocondrial.

 2. Include Scheduler

Camino alternativo

Evento 1. El usuario ha introducido algún error en la petición. El sistema responde
de forma síncrona informando del error al usuario.

49

Scheduler

Pre: -
Post: Se realiza un flujo de trabajo completo para la inferencia filogenética de un árbol evolutivo
sobre un conjunto de secuencias de ADN mitocondrial humano integrando cada uno de los
componentes del sistema PhyloFlow [2].
Descripción: El caso de uso comienza cuando el sistema solicita la realización de un flujo completo de
ADN mitocondrial humano. Para ello solicita de forma secuencial y ordenada cada uno de los
componentes que forman el flujo de trabajo la realización de uno o varios trabajos concretos.
Emplea los resultados parciales de cada componente como la entrada de datos del siguiente
componente.

Flujo de eventos

Camino básico del caso de uso “Scheduler”

Sistema Componente Fetch Sequences

1. Envía la petición de descarga de la
base de datos de ADN mitocondrial
humano de GenBank

 2. Include DownloadDB

3. Espera hasta obtener los resultados
solicitados.

Camino alternativo

Evento 1. Se ha producido un error durante la realización de la petición y el mensaje
recibido así lo indica.

Flujo de eventos

Camino básico del caso de uso “Scheduler”

Sistema Componente Sequences Processing

1. Envía la petición de realizar el
procesamiento biológico sobre las
secuencias de entrada.

 2. Include Map-reduce

3. Espera hasta obtener los resultados
solicitados.

Camino alternativo

Evento 1. Se ha producido un error durante la realización de la petición y el mensaje
recibido así lo indica.

Flujo de eventos

Camino básico del caso de uso “Scheduler”

Sistema Componente Sequences Evalutaion

1. Envía la petición para la evaluación de
modelos evolutivos sobre las secuencias
de entrada.

 2. Include Evaluation

3. Espera hasta obtener los resultados
solicitados.

Camino alternativo

Evento 1. Se ha producido un error durante la realización de la petición y el mensaje
recibido así lo indica.

50

Flujo de eventos

Camino básico del caso de uso “Scheduler”

Sistema Componente Sequences Evalutaion

1. Envía la petición para la generación de
un único árbol filogenético consensuado
a partir de las soluciones parciales de
entrada.

 2. Include Consensus

3. Espera hasta obtener los resultados
solicitados.

Camino alternativo

Evento 1. Se ha producido un error durante la realización de la petición y el mensaje
recibido así lo indica.

Flujo de eventos

Camino básico del caso de uso “Scheduler”

Sistema Componente Supertree Building

1. Envía la petición para la generación de
un único superárbol a partir de los
resultados parciales de entrada
obtenidos previamente

 2. Include Supertree

3. Espera hasta obtener los resultados
solicitados.

Camino alternativo

Evento 1. Se ha producido un error durante la realización de la petición y el mensaje
recibido así lo indica.

51

MailBox Service

Pre: -
Post: Se recupera el mensaje solicitado por la entrada.
Descripción: El caso de uso comienza cuando el sistema Scheduler recuperar un mensaje que se
corresponde con la notificación de unos de los servicios integrados. Este mensaje contiene la
respuesta a su petición. El sistema Scheduler solicita la recuperación del mensaje, el sistema
comprueba las credenciales de acceso. Si las credenciales son válidas y el mensaje se encuentra en la
bandeja de entrada el sistema entregará el mensaje solicitado. En caso contrario, el sistema seguirá
consultado la bandeja de entrada cada cierto tiempo hasta obtener el mensaje solicitado.
Flujo de eventos

Camino básico del caso de uso “MailBox Service”

Sistema Scheduler Sistema

1. Solicita la recuperación de un mensaje
o notificación.

 2. Comprueba las credenciales de acceso.

 3. Cada cierto tiempo recupera los
mensajes y notificaciones sin leer. Si
coincide con el mensaje lo pedido.

4. Recupera el mensaje solicitado

Camino alternativo

Evento 2. Las credencias de acceso son inválidas. El sistema de almacenamiento
generara un error y el sistema lo captura.

Evento 3. El mensaje solicitado no se ha recibido aún. Se mantiene en este estado
hasta que el mensaje solicitado se encuentre en la bandeja de entrada.

Evento 3. Se produce un error interno del sistema de lectura de notificaciones. El
sistema captura el error.

52

53

Anexo II. Diseño de la solución

1. API REST de cada componente que constituye el flujo de trabajo

Componente: Fetch Sequences

Identidad: Fetch Sequences, ofrece una operación relacionada con la recuperación de las distintas bases de

datos de secuencias disponibles..

DownloadDB

Descripción: se encarga de recuperar la base de datos para el tipo de secuencia seleccionado. Si el tipo de

secuencia es “hmtDNA” descargara la última versión de la base de datos de GenBank con todas las

secuencias de ADN mitocondrial disponibles.

Petición:

Método URL

POST /phyloflow/fetchsequences/download

Parámetros Estilo Tipo Descripción

input plain api:Input Datos de entrada

downloadDB plain api:Operation Operación a realizar

data_type plain xsd:string Tipo de secuencia de datos

email plain xsd:string Correo electrónico para notificar en

caso de abusos

notification plain api:Notification Notificación

email(choice) plain xsd:string Correo electrónico para notificar los

resultados

other(choice) plain xsd:string Otro tipo de notificación

Respuesta:

Estado Respuesta

200 “Ok your process ID is [PID]”

400 “Syntax Error: [error]”

500 “Internal Error, try again later”

54

Componente: Processing Sequences

Identidad: Processing Sequences, ofrece una operación relacionada con el procesamiento biológico de

secuencias empleando técnicas de map-reduce para reducir los costes temporales en base a procesar

conjunto de datos más pequeños

Map-reduce

Descripción: se encarga de realizar el procesamiento biológico de las secuencias de entrada en base al

método seleccionado.

Petición:

Método URL

POST /phyloflow /sequencesprocessing/map-reduce

Parámetros Estilo Tipo Descripción

input plain api:Input Datos de entrada

map-reduce plain api:Operation Operación a realizar

data_type plain xsd:string Tipo de secuencia de datos

method plain xsd:string Método que se desea emplear para el

procesamiento de las secuencias

num_retries plain xsd:integer Número total de reintentos

do_reduce plain xsd:boolean Flag de reducción de los resultados

ref_seq

(optional)

plain xsd:string Referencia de la secuencia, si el

método de procesamiento la requiere

data plain api:Data Datos de entrada

URI plain xsd:string Identificador de los recursos

id_file

(optional)

plain xsd:string Identificador de los ficheros si es

necesario

directory

(optional)

plain xsd:string Identificador de los directorios si

es necesario

notification plain api:Notification Notificación

email(choice) plain xsd:string Correo electrónico para notificar los

resultados

other(choice) plain xsd:string Otro tipo de notificación

55

Respuesta:

Estado Respuesta

200 “Ok your process ID is [PID]”

400 “Syntax Error: [error]”

500 “Internal Error, try again later”

56

Componente: Evaluation Sequences

Identidad: Evaluation Sequences, ofrece operaciones para la evaluación de modelos y la generación de

árboles filogenéticos consensuados en base a soluciones parciales. Opcionalmente se puede realizar un

análisis estadístico realizando una fase de bootstrapping.

Evaluation

Descripción: se encarga de evaluar los ficheros para el tipo de secuencia de entrada y de seleccionar el

mejor modelo de entre todos los evaluados. Además, si se desea, se encarga de generar bootstraps a partir

de los ficheros para el tipo de secuencia de entrada y de evaluar los bootstraps generados con el mejor

modelo obtenido previamente.

Petición:

Método URL

POST /phyloflow /sequencesevaluation/evaluation

Parámetros Estilo Tipo Descripción

input plain api:Input Datos de entrada

evaluate plain api:Operation Operación a realizar

data_type plain xsd:string Tipo de secuencia de datos

method plain xsd:string Método que se desea emplear para la

evaluación de la secuencias

num_retries plain xsd:integer Número total de reintentos

models

(optional)

plain xsd:string Modelos para realizar la evaluación

num_bootstraps

(optional)

plain xsd:integer Número total de ficheros bootstraps a

generar

bs_method

(optional)

plain xsd:string Método de bootstrapping

cons_method

(optional)

plain xsd:string Método de consenso de resultados

parciales

data plain api:Data Datos de entrada

URI plain xsd:string Identificador de los recursos

id_file

(optional)

plain xsd:string Identificador de los ficheros si es

necesario

directory

(optional)

plain xsd:string Identificador de los directorios si

es necesario

57

notification plain api:Notification Notificación

email(choice) plain xsd:string Correo electrónico para notificar los

resultados

other(choice) plain xsd:string Otro tipo de notificación

Respuesta:

Estado Respuesta

200 “Ok your process ID is [PID]”

400 “Syntax Error: [error]”

500 “Internal Error, try again later”

58

Consensus

Descripción: se encarga de generar un único árbol filogenético consensuado a partir del mejor modelo

evolutivo.

Petición:

Método URL

POST /phyloflow /sequencesevaluation/consense

Parámetros Estilo Tipo Descripción

input plain api:Input Datos de entrada

consensus plain api:Operation Operación a realizar

method plain xsd:string Método de consensos de soluciones parciales

after_bootstraps plain xsd:boolean Flag que indica si la etapa de

consenso es posterior a la etapa de

bootstrapping

num_retries plain xsd:integer Número total de reintentos

data plain api:Data Datos de entrada

URI plain xsd:string Identificador de los recursos

id_file

(optional)

plain xsd:string Identificador de los ficheros si es

necesario

directory

(optional)

plain xsd:string Identificador de los directorios si

es necesario

notification plain api:Notification Notificación

email(choice) plain xsd:string Correo electrónico para notificar los

resultados

other(choice) plain xsd:string Otro tipo de notificación

Respuesta:

Estado Respuesta

200 “Ok your process ID is [PID]”

400 “Syntax Error: [error]”

500 “Internal Error, try again later”

59

Componente: Supertree Building

Identidad: Supertree Building, ofrece una operación para la generación de un superárbol a partir de

resultados parciales.

Supertree

Descripción: se encarga de generar el proceso de construcción del superárbol para los tipos de datos de

entrada en base al método seleccionado.

Petición:

Método URL

POST / phyloflow /supertreebuilding/supertree

Parámetros Estilo Tipo Descripción

input plain api:Input Datos de entrada

supertree plain api:Operation Operación a realizar

data_type plain xsd:string Tipo de secuencia de datos

method plain xsd:string Método de construcción de un

superárbol

num_retries plain xsd:integer Número total de reintentos

profile (optional) plain xsd:string Perfil del superárbol a generar

data plain api:Data Datos de entrada

URI plain xsd:string Identificador de los recursos

id_file

(optional)

plain xsd:string Identificador de los ficheros si es

necesario

directory

(optional)

plain xsd:string Identificador de los directorios si

es necesario

notification plain api:Notification Notificación

email(choice) plain xsd:string Correo electrónico para notificar los

resultados

other(choice) plain xsd:string Otro tipo de notificación

60

Respuesta:

Estado Respuesta

200 “Ok your process ID is [PID]”

400 “Syntax Error: [error]”

500 “Internal Error, try again later”

61

2. Interfaz de cada servicio que forma parte de la capa middleware

BussinesLogicService

Este elemento ofrece todas las operaciones de la lógica de negocio. Por tanto encapsula todas la

problemática relacionadas con la generación de procesos y recuperación de las salidas. Los servicios que

ofrece son los siguientes:

Operación: downloadDB (data_type, email)

Descripción: se encarga de descargar o copiar los ficheros de secuencia para el tipo de datos y de dividirlos

en sets de secuencias que se almacenan en “data/sets” en formato tar.gz.

Parámetros:

Parámetro Tipo Representación

data_type String Tipo de secuencia

email String Email de contacto

Operación: map_reduce (data_type, method, num_retries, do_reduce, ref_seq)

Descripción: se encarga de realizar el método procesamiento seleccionado para el tipo de datos de entrada

sobre los ficheros de secuencia almacenados en formato tar.gz en “data/mapred”, almacenando en la

misma carpeta los ficheros de secuencia en formato tar.gz. Si el flag do_reduce está activo genera un único

fichero que contiene todos los resultados unidos.

Parámetros:

Parámetro Tipo Representación

data_type String Tipo de secuencia

method String Nombre del método que se desea emplear para el
procesamiento de las secuencias

num_retries int Número total de reintentos

do_reduce boolean Flag de reducción

ref_seq String Referencia de secuencia

Operación: evaluate (data_type, eval_method, num_bootsraps, bs_method, cons_method, num_retries)

Descripción: se encarga de evaluar los ficheros almacenados en el directorio “data/phylo” en formato

tar.gz, para el tipo de secuencia de entrada y de seleccionar el mejor modelo de entre todos los evaluados.

Además si el número de bootstraps de entrada es mayor de 0, se encarga de generar el número total de

bootstraps solicitados a partir de los ficheros para el tipo de secuencia de entrada y de evaluar los

bootstraps generados con el mejor modelo obtenido.

Parámetros:

Parámetro Tipo Representación

data_type String Tipo de secuencia

eval_method String Método de evaluación

models String Modelos para realizar la evaluación

num_retries int Número total de reintentos

num_ bootsraps int Número total de ficheros a generar

bs_method String Método de bootstrapping

cons_method String Método de consenso

62

Operación: consensus (method, after_bootstraps, num_retries)

Descripción: Se encarga de generar un árbol filogenético en base al método de consenso seleccionado. Si el

flag after_bootstraps está activo genera el árbol de consenso teniendo en cuenta el resultado de la

evaluación de los bootstraps.

Parámetros:

Parámetro Tipo Representación

method String Método de consenso

after_bootstraps boolean
Flag que índica si la etapa de consenso es
posterior a la etapa de bootstrapping

num_retires int Número total de reintentos

Operación: supertree (data_type, method, num_retries)

Descripción: se encarga de generar el proceso de construcción del superárbol para los tipos de datos de

entrada en base al método seleccionado.

Parámetros:

Parámetro Tipo Representación

data_type String Tipo de secuencia

method String Método de construcción del superárbol

profile String Perfil del superárbol

num_retries int Número de reintentos

StorageService

Este elemento ofrece operaciones relacionas con el almacenamiento, recuperación y eliminación de

ficheros en un sistema de almacenamiento externo.

Operación: URI - storeFile (fichero)

Descripción: se encarga de almacenar en un sistema de almacenamiento externo el fichero solicitado.

Devuelve la URI donde se encuentra el recurso.

Parámetros:

Parámetro Tipo Representación

fichero File Fichero a almacenar

Operación: File - downloadFile(URI)

Descripción: se encarga de descargar el recurso que se encuentra en la URI de entrada. Devuelve el fichero

que corresponde al recurso descargado.

Parámetros:

Parámetro Tipo Representación

URI URI Identificador único de un recurso a descargar

Operación: removeFile (URI)

Descripción: se encarga de eliminar el recurso pasado como parámetro de entrada.

63

Parámetros:

Parámetro Tipo Representación

URI URI Identificador único de un recurso a eliminar

CompressionService

Este elemento ofrece operaciones relacionas con la compresión y descompresión de ficheros.

Operación: File – compress (fichero)

Descripción: se encarga de comprimir el fichero pasado por la entrada en un directorio temporal. Devuelve

el fichero descomprimido en el directorio temporal.

Parámetros:

Parámetro Tipo Representación

fichero File Fichero a descomprimir

Operación: decompress (fichero)

Descripción: se encarga de descomprimir el fichero pasado en un directorio temporal. Devuelve el fichero

descomprimido.

Parámetros:

Parámetro Tipo Representación

fichero File Fichero a descomprimir

NotificationService

Este elemento ofrece operaciones relacionas con el envió de notificaciones relacionadas con el final de un

procesamiento.

Operación: notifícate (cliente, fichero)

Descripción: se encarga de notificar al cliente solicitado el fichero pasado por la entrada.

Parámetros:

Parámetro Tipo Representación

subject String Asunto de la notificación

client String Cliente a notificar

fichero File Fichero que contiene los resultados generado

64

3. API REST componente que representa el flujo de trabajo
Identidad: Workflow System, ofrece operaciones para la realización de un flujo de trabajo completo para el

procesamiento y análisis filogenético de distintos tipos de secuencias.

Synthetic Workflow

Descripción: se encarga de gestionar el flujo de trabajo completo para el procesamiento y análisis

filogenético de secuencias sintéticas integrando los componentes necesarios.

Petición:

Método URL

POST /phyloflow/workflow/synthetic

Parámetros Estilo Tipo Descripción

email plain xsd:string Correo electrónico para notificar los

resultados

Respuesta:

Estado Respuesta

200 “The workflow process has begun without problems. You will receive a

message in your mailbox in a few hours”

400 “Syntax Error: invalid email”

500 “Internal Error, try again later”

hmtDNA Workflow

Descripción: se encarga de gestionar el flujo de trabajo completo para el procesamiento y análisis

filogenético de secuencias de ADN mitocondrial humano integrando los componentes necesarios.

Petición:

Método URL

POST /phyloflow/workflow/hmtDNA

Parámetros Estilo Tipo Descripción

email plain xsd:string Correo electrónico para notificar los

resultados

65

Respuesta:

Estado Respuesta

200 “The workflow process has begun without problems. You will receive a

message in your mailbox in a few hours”

400 “Syntax Error: invalid email”

500 “Internal Error, try again later”

66

4. Comunicación: estándares de intercambio

Estándar de entrada: descripción

El formato de intercambio de datos para la entrada está divido en 3 secciones. La primera sección es
obligatoria y describe la operación a realizar y los parámetros de entrada necesarios para cada operación
así como el tipo de los mismos. Los parámetros de entrada se pueden introducir en cualquier orden. El
sistema de inferencia filogenética ofrece las siguientes operaciones:

 downloadDB: está operación descarga los datos deseados para el tipo de secuencia de entrada,
cuyos parámetros son:

o data_type: tipo de secuencia de datos
o email: correo electrónico para informar al usuario en caso de abuso de descargas.

 map-reduce: está operación realiza el procesamiento deseado mediante el método seleccionado al
tipo de secuencia de entrada, cuyos parámetros son:

o data_type: tipo de secuencia de datos
o method: tipo de procesamiento
o num_retries: número total de reintentos
o do_reduce: reduce los ficheros de salida a uno único
o ref_seq: referencia a la secuencia (opcional)

 evaluate: está operación realiza la evaluación de modelos para el tipo de secuencia de entrada y de

manera opcional realiza tanto la generación como la evaluación de bootstraps. Sus parámetros son:
o data_type: tipo de secuencia de datos
o method: tipo de procesamiento
o num_retries: número total de reintentos
o models: modelos a emplear en la evaluación (opcional)
o num_bootstraps: número total de bootstraps a generar (opcional)
o bs_method: método de creación de bootstraps (opcional)
o cons_method: método de consenso (opcional)

 consensus: está operación realiza el consenso de los datos generados en la fase de evaluación de

modelos:
o method: método de consensos
o after_bootstraps: booleano que indica si se ha de realizar antes o después de la creación

de bootstraps, es decir, los tiene o no en cuenta para la realización del consenso
o num_retries: número total de reintentos

 supertree: está operación genera el superárbol para los datos de entrada:
o data_type: tipo de secuencia de datos
o method: método de creación
o num_retries: número total de reintentos
o profile: perfil del superárbol (opcional)

La segunda sección describe los datos de entrada, los cuales se emplearán para realizar los procesamientos
solicitados. Esta sección es obligatoria para todas las operaciones salvo para la operación downloadDB, ya
que es la única operación que no procesa datos de entrada.

 uri: es una cadena de caracteres que representa el identificador único que permite el acceso al
recurso que contiene o se corresponde a los datos de entrada

 id_file: es una cadena de caracteres que representa una expresión regular para seleccionar
únicamente aquellos datos que cumplen dicha expresión

 directory: es una cadena de caracteres que representa el nombre de la carpeta donde se ubican los
datos a procesar

67

La última sección está relacionada con el proceso de notificación. En la actualidad se puede notificar al
usuario mediante un correo electrónico que contendrá la respuesta a su petición.

 email: correo electrónico al cual notificar el resultado del servicio
 other: otro tipo de mecanismo (sin uso actualmente)

Estándar de entrada: xsd
<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="input">

 <xs:complexType>

 <xs:sequence>

 <!-- Operation -->

 <xs:choice>

 <xs:element name="downloadDB">

 <xs:complexType>

 <xs:all>

 <xs:element name="data_type" type="xs:string"/>

 <xs:element name="email" type="xs:string"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="map-reduce">

 <xs:complexType>

 <xs:all>

 <xs:element name="data_type" type="xs:string"/>

 <xs:element name="method" type="xs:string"/>

 <xs:element name="num_retries" type="xs:integer"/>

 <xs:element name="do_reduce" type="xs:boolean"/>

 <xs:element minOccurs="0" maxOccurs="1" name="ref_seq" type="xs:string"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="evaluate">

 <xs:complexType>

 <xs:all>

 <xs:element name="data_type" type="xs:string"/>

 <xs:element name="method" type="xs:string"/>

 <xs:element name="num_retries" type="xs:integer"/>

 <xs:element minOccurs="0" maxOccurs="1" name="models" type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name="num_bootstraps"

type="xs:integer"/>

 <xs:element minOccurs="0" maxOccurs="1" name="bs_method" type="xs:string"/>

 <xs:element minOccurs="0" maxOccurs="1" name="cons_method" type="xs:string"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="consensus">

 <xs:complexType>

 <xs:all>

 <xs:element name="method" type="xs:string"/>

 <xs:element name="after_bootstraps" type="xs:boolean"/>

 <xs:element name="num_retries" type="xs:integer"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="supertree">

 <xs:complexType>

 <xs:all>

 <xs:element name="data_type" type="xs:string"/>

 <xs:element name="method" type="xs:string"/>

 <xs:element name="num_retries" type="xs:integer"/>

 <xs:element minOccurs="0" maxOccurs="1" name="profile" type="xs:string"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <!-- Input Data -->

 <xs:element name="data" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="URI" type="xs:string"/>

 <xs:element minOccurs="0" maxOccurs="1" name="id_file" type="xs:string"/>

 <xs:element minOccurs="0" maxOccurs="1" name="directory" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- Notification -->

 <xs:element name="notification">

 <xs:complexType>

 <xs:choice>

 <xs:element name="email" type="xs:string"/>

 <xs:element name="other" type="xs:string"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType> </xs:element> </xs:schema>

68

Estándar de salida: descripción

La primera sección describe el resultado del servicio solicitado. El campo status indica si la petición se
realizo con éxito. La sección data describe los datos de salida producidos por el servicio. Si el campo no
aparece indica que se ha producido un error y la sección fault describirá dicho error.

 uri: es una cadena de caracteres que representa el identificador único que permite el acceso al
recurso que contiene/corresponde a los datos de entrada

 id_file: es una cadena de caracteres que representa una expresión regular para seleccionar
únicamente aquellos datos que cumplen dicha expresión

 directory: es una cadena de caracteres que representa el nombre de la carpeta donde se ubican los
datos a procesar

La segunda sección, si existe, indica que se ha producido un error durante la realización del servicio y da
información del error que se ha producido. Emplea un formato similar a la entidad fault que describe los
errores en servicios Web usada por el protocolo SOAP.

 faultcode: es un entero que índica el código de error producido
 faultstring: es una cadena de caracteres que representa el error producido
 faultdetail: es una cadena de caracteres que detalla el error que se ha producido

Estándar de salida: xsd
<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="output">

 <xs:complexType>

 <xs:sequence>

 <!-- Output Result -->

 <xs:element name="result">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="status"/>

 <!-- Output Data -->

 <xs:element name="data" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:sequence>

<xs:element name="URI" type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name="id_file" type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name="directory" type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name="data_type" type="xs:string"/>

<xs:element minOccurs="0" maxOccurs="1" name="method" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!-- Fault-->

 <xs:element minOccurs="0" maxOccurs="1" name="fault">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="faultcode"/>

 <xs:element name="faultstring"/>

 <xs:element name="faultdetail"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

69

Anexo III. Implementación

1. Mapa de errores
Se ha creado tres categorías principales de errores que corresponden con los errores internos del servicio,

errores relacionados con el almacenamiento y errores relacionados con el formato de entrada y salida de

datos.

InterfaceException: corresponde con las excepciones generadas tanto en la creación de ficheros que

cumplan los estándares de intercambio, como en su análisis y validación (Cód. 100). Esta excepción abarca

las siguientes posibles excepciones:

 IOException (Cód. 101)

 ParserConfigurationException (Cód. 102)

 TransformeException (Cód. 103)

 SAXEception (Cód. 104)

 URISyntaxExcpetion: excepción causada debido a que la cadena de caracteres que representa la

URI no es válida. (Cód. 105)

El código de error para este tipo de categoría es el código 100 en adelante.

StoreException: corresponde con las excepciones relacionadas con el sistema de almacenamiento externo

empleado, las cuales se pueden producir debido a que el servicio no se encuentre disponible, que la URI del

recurso no sea válida, etc. (Cód. 200) Esta excepción abarca las siguientes posibles excepciones:

 IOException (Cód. 201)

 AmazonServiceException: corresponde con excepciones relacionadas con el servicio de Amazon

producidos por la creación de buckets cuyo nombre ya existente, descarga de recursos cuya URI no

se corresponde con una URI válida de Amazon, etc. (Cód. 202)

 AmazonClientException: corresponde con excepciones relacionadas con el cliente del servicio

externo como autenticación de credenciales, etc. (Cód. 203)

 URISyntaxExcpetion: excepción causada debido a que la cadena de caracteres que representa la

URI no es válida. (Cód. 204)

El código de error para este tipo de categoría es el código 200 en adelante.

InnerException: corresponde con las excepciones internas de la lógica de negocio del servicio, las cuales se

pueden producir debido a parámetros de entrada erróneos, errores internos de los scripts en Python,

número total de reintentos agotados, etc. (Cód. 300) Esta excepción abarca las siguientes posibles

excepciones:

 IOException (Cód. 310)

 PhyloFlowException: corresponde con las excepciones relacionadas directamente con el sistema

de inferencia filogenética existente (Cód. 320). Esta excepción abarca:

o IOException (Cód. 321)

o InterruptedExeception: excepción producida por una interrupción sobre el proceso

generado para ejecutar el script correspondiente. (Cód. 322)

70

o Salida de error: el servicio captura la salida de error el proceso generado para ejecutar el

script correspondiente y en caso de producirse uno, genera una excepción de tipo

PhyloFlowException con la información de la salida de error. (Cód. 323)

El código de error para este tipo de categoría es el código 300 en adelante.

71

Anexo IV. Despliegue y evaluación

1. Evaluación del sistema
Una vez desplegado el sistema sobre una instancia micro de Amazon EC2 se han realizado distintas pruebas

para validar el sistema y evaluar la carga de trabajo que puede soportar dicha instancia. Las instancias

micro de Amazon EC2 cuentan con una única CPU, por tanto, paralelizar en diferentes procesos los trabajos

a realizar no supone ningún beneficio. Además cuenta con tan sólo 0.613 GB de memoria.

Para dos o menos conjuntos de secuencias de ADN mitocondrial humano el sistema sobre la instancia micro

ha sido capaz de obtener los resultados Sin embargo, tres conjuntos de secuencias supone un coste

computacional excesivo para este tipo de instancias.

A continuación en la Tabla 5 se muestran en los resultados de las pruebas realizadas para secuencias de

ADN mitocondrial.

Tiempo total

Sets Fetch Sequences Sequences Processing Sequences Evaluation Total

2 ≈7 s. ≈38 min. ≈41 min. ≈80 min.

2 ≈7 s. ≈120 min. ≈51 min. ≈172 min.

3 ≈7 s. ERROR
Tabla 5. Tiempos totales de las pruebas para ADN mitocondrial sobre una instancia micro de Amazon EC2

Como se puede comprobar los tiempos varían significativamente a pesar de emplear el mismo número de

secuencias. En este caso, se debe al consumo de memoria que en la segunda prueba fue mayor y el coste

temporal aumento significativamente en la segunda fase del procesamiento. En las Figura 22 y Figura 23 se

distribuye el tiempo total en fases y se muestra la diferencia entre el tiempo de ejecución consumido por

Phyloflow [2] y el tiempo total.

Figura 22. Gráfica de tiempos para dos conjuntos de ADN mitocondrial

0

500000

1000000

1500000

2000000

2500000

3000000

Phylo Time

Total Time

72

Figura 23. Gráfica de tiempos para dos conjuntos de ADN mitocondrial

Prácticamente no se puede diferenciar la sobrecarga de ofrecer el sistema como un servicio. También se

puede comprobar que la fase de haplogrupos ha sido la causante de la gran diferencia que hay entre las

dos pruebas realizadas. La sobrecarga en el primer caso supone un 1% y en el segundo caso

aproximadamente el 0% del tiempo total.

Por tanto, se han empleado conjuntos de secuencias sintéticas cuyo coste computacional de procesamiento

es netamente inferior. Para conjuntos reducidos de secuencias la sobrecarga de ofrecer el sistema como un

servicio supone aproximadamente el 10% del tiempo total de ejecución. Conforme se aumenta el conjunto

de secuencias el tiempo crece por encima de la complejidad lineal, reduciendo el porcentaje de sobrecarga.

A continuación se muestran en los resultados de las pruebas realizadas para secuencias de ADN

mitocondrial.

Tiempo total

Sets
Reintentos
máximos

Fetch
Sequences

Sequences
Processing

Sequences
Evaluation

Total

2 3 ≈3 s. ≈1min. ≈0,5 min. ≈1,5 min.

2 3 ≈4 s. ≈3 min. ≈3 min. ≈6 min.

2 3 ≈3 s. ≈1,5 min. ≈1 min. ≈2,5 min.

4 4 ≈3 s. ≈9,5 min. ≈5,5 min. ≈15 min.

4 5 ≈12 s. ≈18,5 min. ≈8,5 min. ≈27 min.

8 7 ≈4 s. ≈4 min. ≈2 min. ≈6 min.

16* 10 ≈4 s. ≈48 min. ≈25 min. ≈73 min

26* 30 ≈6 s. ≈91 min. ≈42,5 min. ≈134 min

4 3 ≈3 s. ERROR

8 6 ≈4 s. ERROR
Tabla 6. Tiempos totales de las pruebas para secuencia sintéticas sobre una instancia micro de Amazon EC2

Estas pruebas han permitido detectar un defecto en el sistema PhyloFlow [2] con respecto a una fase en la

que realiza un backup de los resultados. Para la realización de las pruebas se ha aumentado el número total

de reintentos para que finalice el procesamiento a pesar de dicho defecto.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Phylo Time

Total Time

73

Las pruebas que tienen un asterisco indican que la fase que realiza el backup se ha omitido para evitar que

se produzca la excepción. Viendo los resultados destaca la diferencia existente entre las pruebas de 8 y 4

conjuntos de secuencia. La diferencia se debe sustancialmente al tiempo que lleva la máquina en

funcionamiento. En el primer caso, la máquina está recién lanzada, mientras que en el segundo caso lleva

cierto tiempo en funcionamiento y tras varias peticiones parte de la memoria está siendo desempleada por

el garbage collector de Java [7].

El tiempo de sobrecarga es determinante en este contexto debido a que nunca se pondrá realizar una

ejecución completa por debajo de este tiempo. Es una métrica a tener en cuenta a la hora de seleccionar

tanto el tipo de instancias como el número total de hilos de ejecución. En el dominio de la aplicación el

tiempo de sobrecarga no es constante debido a que depende del tamaño de los conjuntos de secuencia.

Conforme el tamaño de los conjuntos de secuencia aumente también lo hará la sobrecarga a causa de que

los tiempos de subida y bajada al sistema de almacenamiento remoto están ligados al tamaño de los

ficheros.

2. Implementación de un sistema de toma de decisiones
Para la implementación del sistema de toma de decisiones mediante aprendizaje sobre ficheros de log se

han empleado los ficheros de log generados en la fase de evaluación y validación del sistema. A partir de la

información recogida en concreto la referente a tipo de secuencia, número total de conjuntos de

secuencias, método de procesamiento, número total de reintentos, consumo de memoria y tiempo total de

ejecución se ha decidido crear perfiles de ejecución que permiten establecer sobre qué tipo de instancia se

debería utilizar.

De esta manera, se ha planteado un modelo de mejora sencillo basado en el entrenamiento de un árbol de

decisión sobre un conjunto de entrenamiento basado en tablas. Se ha creado un conjunto de

entrenamiento por cada uno de los componentes que constituyen el flujo de trabajo del sistema PhyloFlow

[2]. Por último, se ha escogido que tipo de instancia se adaptaría mejor para cada prueba realizada

considerando los costes económicos y temporales que implicaría su elección de forma aproximada. La Tabla

7 muestra un conjunto reducido de perfiles de entrenamiento a modo ejemplo para el componente

Sequences Processing del formato de las tablas empleadas.

Secuencia Sets Método Reintentos T. Activa Memoria T. Ejecución Decisión

sintéticos 4 dactal 5 1,5 529288 492908 t1.micro

sintéticos 4 mafft 4 4 483693 384555 t1.micro

sintéticos 8 dactal 5 0 491996 MAX INT t1.micro

sintéticos 8 dactal 7 0 492780 107018 t1.micro

sintéticos 8 mafft 7 0 509484 133428 t1.micro

sintéticos 26 dactal 30 9,5 527192 2484217 m1.small

sintéticos 26 mafft 30 10,5 532196 2983629 m1.small
Tabla 7. Conjunto de entrenamiento de ejemplo basado en tablas

En el caso de producirse un error se ha decidió establecer el tiempo de ejecución como el máximo posible

para no desvirtuar el resultado. Una vez completada las tres tablas para cada uno de los componentes se ha

utilizado la herramienta KNIME [25] para generar el sistema de toma de decisiones basado en el

entrenamiento de un árbol de decisión.

74

En la herramienta KNIME [25] se crea un flujo de trabajo como el de la Figura 24 para cada conjunto de

entrenamiento. Los ficheros de entrada contienen el conjunto de entrenamiento a partir del cual se crea un

árbol de decisión. Se han empleado las secuencias sintéticas para generar estos árboles y las secuencias de

ADN mitocondrial para establecer árboles predictivos, por último, se genera una imagen con el árbol de

decisión.

Figura 24. Flujo de trabajo para crear un árbol de decisión

A continuación, la Figura 25 muestra los resultados de los modelos derivados del entrenamiento y las

pruebas realizadas con ellos para el componente Fetch Sequences.

Figura 25. Árbol de decisión para el componente Fetch Sequences

En este caso debido a que sólo se realizaban copias de la bases de datos disponibles para todos los perfiles

de entrenamiento descritos la decisión establecía emplear instancias de tipo micro.

La Figura 26 y la Figura 27 muestran los resultados de los modelos derivados del entrenamiento y las

pruebas realizadas con ellos para los componentes Sequences Processing y Sequences Evaluation

respectivamente. En el primer caso la variable de mayor peso es el número de reintentos debido al defecto

comentado anteriormente producido en la fase de backup que obliga a aumentar el número de reintentos

a la par que se aumenta el conjunto de secuencias.

75

Figura 26. Árbol de decisión para el componente Sequences Processig

Figura 27. Árbol de decisión para el componente Sequences Evaluation

76

77

Anexo V. Manual de usuario

En esta sección se detallan los procedimientos que deben realizar un usuario para utilizar correctamente el

sistema.

1. Identificación del servicio
Todos los servicios Web ofrecidos son de tipo REST, por tanto, el usuario debe emplear una herramienta

que le permita realizar peticiones REST al servicio que desee, por ejemplo, la herramienta REST Advanced

Client para el navegador Google Chrome que ofrece una interfaz gráfica para realizar las peticiones de

forma sencilla. Otra alternativa sería implementar un sistema propio utilizando cualquier lenguaje de

programación que soporte peticiones REST.

El primer paso que debe realizar el usuario es identificar el servicio que desea consumir. Una vez

identificado debe consultar la API de dicho servicio para conocer el protocolo de comunicación establecido.

Ésta informa de la ubicación exacta del servicio, el método HTTP y los parámetros de entrada. Además se

ha de tener en cuenta el estándar de comunicación establecido.

2. Servicios individuales
Por ejemplo, para realizar una petición al servicio Fetch Sequences una vez consultada la API se conoce que

la URL del servicio que es la dirección relativa /phyloflow/fetchsequences/download, el método HTTP es

POST y los parámetros de entrada para dicha operación son el tipo de secuencia y el correo electrónico. Por

tanto, la petición a enviar en el payload del mensaje tendrá la siguiente estructura:

<input>
 <downloadDB>
 <data_type>hmtDNA</data_type>
 <email>usuario@email.com</email>
 </downloadDB>
 <notification>
 <email>usuario@email.com</email>
 </notification>
</input>

A continuación la Figura 28 se muestra un ejemplo empleando la herramienta REST Advanced Client

comentada anteriormente. En esta petición se solicita obtener la base de datos de secuencias sintéticas. La

Figura 28 muestra el procedimiento a realizar.

Figura 28. Petición POST al servicio Fetch Sequences con la herramienta REST Advanced Client

78

Si el servicio responde con un estado 200 significa que la petición ha tenido éxito. Si la petición fuera

sintácticamente incorrecta el servicio responderá con el estado 400 que equivale a petición incorrecta. En

cambio si se produjese un error interno durante el análisis de la petición el servicio responderá con un

estado 500 que equivale a error interno del servidor.

Si la petición ha tenido éxito el servidor comenzará a realizar el procesamiento solicitad, cuando finalice el

servicio notificará al correo electrónico los resultados obtenidos. La Figura 29 muestra el mensaje enviado

al correo electrónico con el adjunto que contiene los resultados.

Figura 29. Mensaje de respuesta del servicio Fetch Sequences

El fichero adjunto con la respuesta contiene la URI que da acceso a los resultados comprimidos en el

sistema de almacenamiento de Amazon S3. La URI contiene caracteres de escape, por tanto, se deben

modificar antes de introducirla en el navegador. La respuesta a la petición anterior es la siguiente:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<output>
 <result>
 <status>Status: OK</status>
 <data>
 <URI>https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-
1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;S
ignature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D
 </URI>
 </data>
 </result>
</output>

Si se hubiera producido un error durante el procesamiento la respuesta tendría un bloque fault que

contendría el error producido y una breve explicación del mismo. De esta forma, el usuario podría detectar

si ha introducido algún parámetro erróneo o si el servicio está momentáneamente fuera de servicio.

La única diferencia respecto al resto de servicios es que este servicio no requiere una entrada de datos a

procesar. Las peticiones del resto de servicios como indica la API de cada uno de ellos debe tener un campo

para los datos de entrada. Basta con utilizar el campo data del fichero de respuesta en la siguiente petición,

siempre y cuando el recurso siga estando disponible.

https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;Signature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D
https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;Signature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D
https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;Signature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D

79

A continuación, se muestra como se ha de realizar una petición al componente Sequences Processing para

realizar un procesamiento biológico sobre las secuencias sintéticas obtenidas anteriormente. En este caso

se ha seleccionado el método dactal con un número de reintentos igual a 3. La petición tiene la siguiente

estructura:

<input>
 <map-reduce>
 <data_type>dna</data_type>
 <method>dactal</method>
 <num_retries>3</num_retries>
 <do_reduce>false</do_reduce>
 <ref_seq>backup</ref_seq>
 </map-reduce>
 <data>
 <URI>https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-
1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;S
ignature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D
 </URI>
 </data>
 <notification>
 <email>usuario@email.com</email>
 </notification>
</input>

Nuevamente se ha de esperar a que finalice el procesamiento por completo para obtener los resultados.

Para interactuar con el resto de componentes que constituyen el flujo de trabajo se realiza de la misma

forma. La única variación se produce en el campo que corresponda a la operación y parámetros del servicio

que se desee consumir.

3. Servicio para un flujo de trabajo completo
Si se desea realizar un flujo de trabajo completo sin la necesidad de integrar manualmente cada una de las

fases el usuario puede consumir el servicio Web publicado por el componente Workflow System. Al igual

que para los servicio anteriores el primer paso es consultar la API del servicio para conocer el protocolo de

comunicación. Este servicio realiza un flujo de trabajo predeterminado y, por tanto, no es necesario que el

usuario añada ningún parámetro a excepción del correo electrónico. Consecuentemente, si se desea

realizar un flujo de trabajo completo simplemente se debe enviar un parámetro etiquetado con email que

representa el correo electrónico del usuario. Por tanto, la petición sería la siguiente:

<email>usuario@email.com</email>

Exactamente igual que para los servicios anteriores si la petición tiene éxito responderá con el estado 200,

si la petición es sintácticamente incorrecta lo hará con estado 400 y, por último si se produce un error

interno responderá con el estado 500.

El componente System Workflow se encargará de realizar las peticiones ordenadamente y capturar los

resultados parciales. El último nodo del flujo de trabajo completo será el encargado de notificar al usuario

los resultados. El mensaje con los resultados será exactamente igual que el mostrado en la Figura 29.

https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;Signature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D
https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;Signature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D
https://buckete3e1db59-fae0-4145-8da4-b1492f63d502.s3-eu-west-1.amazonaws.com/sets.zip?Expires=1403726111&amp;AWSAccessKeyId=AKIAI2NWUPUT5KCSJ7EQ&amp;Signature=Asa%2BPxyxrge0s57oE2uCOkQbOkQ%3D

80

