
Trabajo Fin de Grado

Inteligencia Artificial académica moderna

Modern academic Artificial Intelligence

Autora

Dª Virginia Casino Sánchez

Directora

Dra. Dª Piedad Garrido Picazo
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Como he dicho, acabo esta carrera muy contenta y satisfecha por lo que he aprendido
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Resumen

En este documento se presenta un Trabajo Fin de Grado (TFG) con un enfoque

centrado en la docencia, donde se lleva a cabo el desarrollo de una práctica, sobre

agentes basados en objetivos, para que los alumnos la puedan realizar en la asignatura

de Inteligencia Artificial (IA) en el Grado de Ingenieŕıa Informática (GII) impartido

en la Escuela Universitaria Politécnica de Teruel (EUPT).

El objetivo que se desea conseguir con la práctica que se ha realizado es preparar

al alumnado para determinar cuándo un enfoque es adecuado para la resolución de

un problema concreto, identificando la representación apropiada, el mecanismo de

razonamiento, aśı como su implementación y evaluación.

Se lleva a cabo desde cero, empezando por la labor de investigación de realizar

algo que todav́ıa no existe, la búsqueda de una interfaz útil para no destinar tiempo a

algo innecesario, la implementación sobre el código de la interfaz de los algoritmos

de búsqueda exigidos en la asignatura y, parámetros necesarios para la dotación

de la inteligencia artificial al agente y alguna prueba o resultado sobre el código

implementado. Se emplea el juego del Pac-Man para que sea más amena y entretenida

la labor del estudiante al no tener que programar algo “sin sentido”, sino que se trata

de un videojuego lo cual suele resultar más atractivo.

Palabras claves

Agente basado en objetivos, Gamificación, Inteligencia Artificial (IA), Pac-Man,

Heuŕıstica



1. Introducción y Objetivos

El presente Trabajo Final de Grado (TFG) tiene como objetivo enfocar el estudio de

la Inteligencia Artificial (IA) hacia la preparación del alumnado para determinar cuándo

un enfoque es adecuado para la resolución de un problema concreto, identificando la

representación apropiada, el mecanismo de razonamiento, aśı como su implementación

y evaluación. El principal problema a abordar se centra en conseguir que el alumnado

no vea la IA como una materia aislada sino integrada en el resto de disciplinas de su

formación, gracias a la elaboración de una serie de novedosos recursos Tecnoloǵıas de

Información y Comunicación (TIC) de apoyo, que se prevén obtener como resultado

de este trabajo académico.

El núcleo central de este TFG radica en la implementación de una IA en un juego a

resolver mediante los distintos algoritmos de búsquedas enseñados en dicha asignatura

en la Escuela Universitaria Politécnica de Teruel (EUPT) [29, 30], que se basan en

agentes por objetivos que se desplazan sobre un espacio de estados. Concretamente

los algoritmos empleados en este proyecto son de búsqueda ciega o no informada

(primero en profundidad, coste uniforme y primero en anchura) [29] e informada, que

a diferencia de las otras aplican conocimiento sobre cómo llegar al objetivo y hacerla

más eficiente (voraz y A* ) [30]. Este conocimiento viene dado por una función que

estima la “bondad”de los distintos estados, dando preferencia a los que son mejores,

según el criterio de una función heuŕıstica.

La elección del uso de un juego para explicar estos algoritmos a los alumnos, consiste

en darle un enfoque distinto a la carrera, ya que los videojuegos no es un tema que

se aborde mucho en la EUPT y es una posible salida laboral más, y, además de hacer

el proceso más entretenido y enriquecedor para ellos, porque al programar un juego el

atractivo es mayor. El juego a abordar es el clásico Pac-Man, un personaje formado por

un ćırculo amarillo con boca que ha de comerse toda la comida disponible dentro de un

laberinto azul con fondo negro. Tras alcanzar el objetivo avanza de nivel, pero en todo

momento hay una serie de fantasmas que son los enemigos del Pac-Man y le quitarán

vidas cada vez que le alcancen, aśı hasta que o bien el Pac-Man se quede sin más vidas

o consiga pasarse todos los niveles [53]. También existen unas cápsulas que cuando el

Pac-Man se las come, es invencible y por mucho que se le acerque un fantasma éste no
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le hace daño, sino que se lo come. Eso śı, una vez se ha comido un fantasma, con el

efecto de una de estas, deja dicho fantasma de estar asustado y puede volver a quitarle

vidas al Pac-Man.

En este trabajo se ha llevado a cabo el desarrollo y creación de la práctica en

cuestión que debeŕıan realizar los alumnos para interiorizar y poder llevar a cabo

un proceso de mayor comprensión e interiorización de algunos de los algoritmos de

búsquedas explicados en la asignatura de IA. Para ello, primero se ha llevado a cabo

una investigación de si es cierto que mediante los videojuegos los alumnos adquieren

mejor los conocimientos, además de para conocer todo lo que se ha realizado hasta

hoy. Luego se analizan ciertos proyectos ya disponibles en Internet, por otras personas,

para dotar a sus Pac-Mans de inteligencia, pero como se verá no siguen los mismos

criterios que en este proyecto. Posteriormente, se expone la propuesta de Pac-Man, con

su análisis y diseño, aśı como su implementación que parte de un código ofrecido por

la Universidad de Berkeley y los resultados obtenidos. Más adelante se exponen los

temas de accesibilidad, usabilidad, licencias software y documental. Y, para finalizar,

las distintas conclusiones y el trabajo futuro. En el apartado de anexos, se encuentra

un posible borrador de lo que podŕıa ser el enunciado de la práctica a mostrar para los

alumnos.

En definitiva, los principales objetivos del TFG son:

1. Enfocar el estudio de la IA hacia la preparación del alumnado para determinar

cuándo un enfoque es adecuado para la resolución de un problema concreto,

identificando la representación apropiada, el mecanismo de razonamiento, aśı

como su implementación y evaluación.

2. Cumplir con el Objetivo de Desarrollo Sostenible (ODS) de Educación de Calidad,

en concreto 4.4. que consiste en aumentar considerablemente el número de

jóvenes y adultos que tienen las competencias necesarias, en particular técnicas

y profesionales, para acceder al empleo, el trabajo decente y el emprendimiento

[50].
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2. Contextualización

Este apartado ha sido añadido para explicar un poco el propósito del porqué he

elegido este proyecto como TFG. Mi idea desde muy pequeña era ser profesora pero

claro nunca se nos ocurre pensar en un profesor de pequeños y pensar en los de la

universidad. Por lo que, cuando entré en la carrera, mis disposición fue ya intentar

buscar el poder acabar dando clases de lo que aprend́ıa en ésta. Piedad, mi directora

de TFG, al conocer mis pensamientos, me planteó el poder llevar un proyecto, desde el

punto de vista del docente: desarrollar un dosier con la práctica que tus alumnos han

de realizar.

El proyecto que se ha llevado a cabo no ha pretendido ser una implementación de

inteligencia artificial donde el Pac-Man fuera capaz de resolver todos los laberintos sin

ser comido. Si se ha dotado al Pac-Man de inteligencia, pero desde un nivel muy bajo

que emplea uno de los conceptos más básicos y simples de la inteligencia artificial como

son los algoritmos de búsqueda, por lo tanto, no porque sea racionalmente inteligente

va a hacerlo todo y lo va a hacer perfecto, todo lo contrario. Se pretende que yo y los

alumnos podamos ver que prácticamente cualquier juego puede emplear inteligencia

artificial con los algoritmos de búsqueda y que no todas las implementaciones van a

ser las mejores, ya que no darán los mismos resultados para el mismo juego e incluso

para el mismo laberinto, cada uno es un mundo.

La implementación del software parte de conocimientos básicos enseñados en la

EUPT, como las estructuras de datos o grafos, esto no es un tipo de programación al

uso sino que son pequeños programas, donde unos agentes ejecutan una idea según los

algoritmos que le han sido indicados. Estos tratan de buscar el camino más eficiente

posible, y aunque hay veces que se creen haberlo encontrado, hay alguno más listo que

encuentra uno mejor al suyo.
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3. Estado del Arte

3.1. Parte investigación

En este apartado se expone el estado del arte de una selección de art́ıculos de la

bibliograf́ıa donde se recoge la labor de investigación llevada a cabo sobre el videojuego

del Pac-Man, con distintas implementaciones que tienen en común la utilización de

la IA. Aclarar que todas las veces que se nombra agente, se está denominando, al

protagonista del juego Pac-Man que suele estar bajo el control de los usuarios o los

posibles fantasmas en alguno de los casos.

Primero, se van a comentar una serie de art́ıculos que plantean un uso de algoritmos

de búsqueda para llevar a cabo la dotación de dicha “inteligencia”del agente.

En el art́ıculo [20], se plantea el uso de algoritmos de búsqueda para recorrer el

camino más eficiente con el agente, con la finalidad de alcanzar la mayor cantidad de

comida.

El proyecto [51], realiza 4 experimentos en base a distintos algoritmos de búsqueda

centrado en el juego del Pac-Man para luego poder realizar una comparación en

términos de rendimiento, integridad y optimización.

En el [58], se lleva a cabo la implementación de varios algoritmos de búsqueda de

árboles avanzados con el objetivo de poder realizar una comparación entre estos en

base al juego del Pac-Man. El modelo aplicado que es más óptimo, para este juego, es

el aprendizaje por refuerzo basado en modelos.

En el art́ıculo [39], se expone un ejemplo de un algoritmo de búsqueda en árbol

puesto en práctica sobre el juego del Pac-Man, empleando la técnica de captura de

pantalla y algoritmos evolutivos aplicados sobre el agente.

El art́ıculo [10], se centra concretamente en el algoritmo de lógica difusa haciendo

uso del Q-learning. Gracias a este enfoque se logra poder abordar los aspectos no

deterministas del juego del Pac-Man y encontrar un auto-aprendizaje o una estrategia

adaptativa, para el agente, en base a unos valores como la distancia a la ṕıldora más

cercana o distancia al fantasma más cercano.

4



Sobre el juego del Pac-Man, se plantean dos formas para controlar el agente en

el art́ıculo [26]. Una son las reglas bien definidas diseñadas por humanos, basadas

en el algoritmo de Dijkstra y la segunda es el empleo de la computación evolutiva,

mediante las redes neuronales. Ambas maneras pueden coexistir e incluso ofrecen un

mayor rendimiento que por separado.

En el art́ıculo [3], también es empleado el algoritmo de Dijsktra que sigue unas

reglas además de un algoritmo de búsqueda de árboles para la implementación del

agente y la ayuda de una cuadŕıcula gráfica base para representar el estado del juego.

El [14], se centra en el juego del Pac-Man enfocado con un propósito educativo para

ayudar a los estudiantes a realizar una comprensión de los algoritmos de búsqueda de

la inteligencia artificial. Los resultados que se obtuvieron fueron excelentes y afirman

que el empleo de un juego para el aprendizaje de conceptos teóricos hace más sencillo

y ameno el proceso, además, de facilitar su comprensión.

El [11], se centra en el ámbito escolar, como el anterior art́ıculo y en el juego del

Pac-Man, donde se plantean 4 enfoques distintos que son: búsqueda en el espacio de

estado, búsqueda multiagente, inferencia probabiĺıstica y aprendizaje por refuerzo. Para

ello los alumnos han de hacer uso de heuŕısticas de búsqueda, funciones de evaluación

y caracteŕısticas. El mero hecho de realizar el trabajo para el estudiante mediante un

videojuego, queda demostrado que resulta de mayor provecho y entusiasmo para ellos.

El art́ıculo [44], también se centra en realizar el proceso de adquisición de

conocimientos para el alumnado de IA, mediante un juego, concretamente el Pac-Man.

En este caso abarca los algoritmos genéticos de optimización de parámetros. Destacar

que hace hincapié en que para que un alumno comprenda mejor los algoritmos y sus

diferencias entre ellos, es mejor trabajar siempre sobre el mismo marco de trabajo, ya

que hace que se percaten menos de las posibles diferencias a notar si no se realiza de

esta manera.

Al igual que se plantea implementar IA en el agente o los fantasmas, en el art́ıculo

[41], se propone el uso de ésta para generar distintos laberintos. Se realiza mediante un

algoritmo genético en función de aptitud y propone un fin para el juego.

De la misma forma que el art́ıculo anterior, la programación genética es en más

casos empleada para la implementación de una IA en el agente, como ocurre en el

art́ıculo [1].

Existen otras variantes de búsqueda, en árbol, mediante el algoritmo de

Monte-Carlo. En los art́ıculos [17, 48, 23, 28, 2, 16, 42], se plantea tanto para el

agente como para los fantasmas en tiempo real en algunos casos. Incluso se abordan
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distintos comportamientos para el agente, pudiendo ser prioridad la puntuación más

alta o solo alcanzar el siguiente. Para el caso de los fantasmas se trata de predecir los

movimientos de los agentes para poder alcanzarlo mediante esta técnica, adaptando la

capacidad personal del jugador de manera proporcional al nivel del desaf́ıo. A pesar

de proporcionar buenos resultados y ser un algoritmo muy eficiente, estos requieren de

una IA más curanzada, ya que la asignatura de IA del GII de la EUPT es básica y sólo

cubre 6 créditos, por lo que no se tendrán en cuenta para la implementación del juego

en la práctica a realizar.

Una alternativa menos vista en los art́ıculos encontrados, es la implementación

del agente mediante un modelo de mapa de influencia, como se lleva a cabo en el

art́ıculo [55]. Los resultados que se obtienen a pesar de ser buenos, no son los mejores

comparados con otros art́ıculos y dio problemas tanto el modelo como el software a la

hora de su implementación.

Al igual que en el art́ıculo anterior se expońıa una nueva alternativa no tan frecuente

como otras, en éste [57], ocurre de manera similar. Se hace uso de una malla de

navegación (NavMesh) para optimizar el problema de la búsqueda. Destaca por su

gran área de implementación, especialmente en el ámbito de los juegos. El método

hace uso del algoritmo A* y un motor de juego Unity 3D. Este algoritmo dota de

inteligencia a 3 de los fantasmas, y se notó una diferencia con respecto a los restantes

a la hora de las pruebas.

Otra implementación para el agente seŕıa mediante un aprendizaje automático.

En el [27], se realiza una implementación de aprendizaje automático para los

fantasmas, modificando el camino de estos, pudiendo hacer un mejor o peor movimiento

dependiendo del nivel en el que se encuentre un jugador. Pero, también se aplica dicho

aprendizaje automático al agente, con tres niveles de juego (principiante, intermedio y

experto), para poder llevar a cabo las suficientes pruebas para determinar un modelo

de aprendizaje adecuado a los criterios.

El art́ıculo [4], se centra en el aprendizaje mediante refuerzo a través de algoritmos

de extracción, que producen entradas para una red neuronal Q-learning. Los resultados

obtenidos son muy buenos a pesar de las limitadas entradas que tiene la red neuronal,

e incluso, Pac-Man es capaz de desenvolverse en distintos laberintos.

El art́ıculo [37], se centra también en el aprendizaje automático por refuerzo

mediante el uso de redes neuronales profundas, proponiendo un nuevo método

empleando Deep Neuronal Network (DNN). En otros casos, como el art́ıculo [13],

se emplea una máquina de estados finitos simples y un conjunto de reglas para la
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aplicación de un aprendizaje incremental basado en la población (PBIL) para ajustar

los parámetros del agente.

Al igual que los anteriores art́ıculos, el art́ıculo [45] se centra en el paradigma del

aprendizaje automático por refuerzo, buscando una optimización del comportamiento

para reducir la duración y maximizar el rendimiento del aprendizaje, mediante un

nuevo algoritmo que realiza una extracción de información útil de demostraciones

de expertos y lo emplea para su mejora. Esta aplicación demuestra una evidencia

estad́ıstica significativa de la mejora en el rendimiento final.

En el art́ıculo [8], se plantea un aprendizaje automático únicamente para un

fantasma. De tal manera, que mediante el uso de redes neuronales cuyas entradas

son la posición y el estado del Pac-Man y cuya salida es la dirección a donde debe

moverse dicho fantasma, se puede realizar al final una comparación entre el fantasma

con conocimientos y los restantes, que son controlados por el guión tradicional, ya que

el primero aprende correctamente y juega mejor que los otros fantasmas.

Uno de los principales desaf́ıos en la IA es lograr, en la mayor medida posible,

simular el comportamiento humano. En el art́ıculo [22], se lleva a cabo el desarrollo

de jugadores virtuales mediante el uso de la neuroevolución. Esto es una forma de

aprendizaje automático que hace uso de algoritmos evolutivos para entrenar redes

neuronales artificiales. Se emplea el juego del Pac-Man para poder comparar dos

metodoloǵıas: datos sin procesar extráıdos del rastro humano y agregar niveles de

juegos más elaborados. En base a unos parámetros de medición, como la puntuación

final se evalúa la importancia de estas caracteŕısticas, para poder imitar de la mejor

manera el juego humano.

En otros casos, se hace uso del Webcam Pacman, un navegador de juegos donde

se puede jugar al Pac-Man, empleando un modelo de aprendizaje automático. El

conocimiento es aprehendido de un conjunto de datos de entrenamiento y se transfiere

a otro modelo. Esta manera es mencionada y analizada en los art́ıculos [46] [5].

Actualmente existen competiciones para que, sobre un tema, se aplique la IA y

la implementación de esta sea la más óptima y eficaz. El art́ıculo [40], se centra en

una competición para el juego del Pac-Man donde los participantes deben desarrollar

controladores para el agente o para los fantasmas interactuando directamente con el

motor de éste. Se recogen en él alguna de las revisiones de los trabajos previos y puesta

en marcha, que se presentan a esta competencia.
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3.2. Parte académica

En esta parte del trabajo se pretende mostrar la novedad o la diferencia de lo que

ya está realizado y se puede encontrar por la web y, el enfoque que se quiere dar al

proyecto para que pueda ser empleado en un ámbito académico. Se ha elegido un tema

tan popular para realizar este trabajo, que tras elaborar el estado del arte se llegó a

pensar que podŕıa estar muy machacado y estudiado, pero no fue aśı, tal y como se va

a explicar a continuación.

Aunque haya muchas fuentes, códigos y muchas implementaciones para dotar de IA

al Pac-Man, no se ha llegado a encontrar ninguna que trabaje desde el bajo nivel desde el

que se parte en este caso. Hay mucho repositorio en la plataforma Github que han dado

soluciones al código inicial ofrecido por la Universidad de Berkeley sin dicha inteligencia,

como por ejemplo el que se puede encontrar en la siguiente url: https://github.

com/karlapalem/UC-Berkeley-AI-Pacman-Project/blob/master/search o https:

//github.com/errikosg/Berkeley-AI-Pacman/blob/master/Project1-search

o https://github.com/LtVaios/Berkeley-Pacman-Project/blob/main/Pacman_

project1/search. Como se verá más adelante en esta propuesta, se desea implementar

unos algoritmos de búsqueda que requieren principalmente la implementación de: un

espacio de estados, una función sucesor, el concepto de nodos expandidos y generados.

En estos casos expuestos, se emplea sin embargo, mucho código del ya ofrecido por la

Universidad de Berkeley siendo una de las principales diferencias que cada algoritmo

de búsqueda tiene su método y distintas resoluciones, mientras que en el caso que se

plantea en ese trabajo, se pretende que los alumnos entiendan que tanto las búsquedas

no informadas como las informadas parten de la misma base, trabajando de manera

diferente uno de los elementos más importantes de estas técnicas: la frontera. Por lo

que, compartirán código a excepción de dicha frontera. Tal como está hecho en la

bibliograf́ıa ese concepto no se muestra a los alumnos.

Además, no queda definida claramente la función sucesor, que ésta tenga un objetivo

de manera externa al código donde se aloja el algoritmo de búsqueda aunque estén

relacionados. La función sucesor contiene un método donde se obtienen todas las

posibles acciones desde una posición. Incluso ya en esta se tienen en cuenta los conceptos

de coste de camino, el concepto de visitado y expandido, y, en la implementación que se

va a trabajar en este proyecto, sólo es empleado dentro de los algoritmos de búsqueda,

una metodoloǵıa de programación y organización del código que no se encuentra en la

bibliograf́ıa.

De igual manera, otra parte muy importante es, la definición de un estado con

parámetros que puedan indicar si se ha alcanzado la meta final o no, es empleada, pero
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de una manera que resulta tediosa, no se ve a simple vista y emplea una lógica un

tanto compleja para resolver un problema que se puede enfocar de otra manera más

sencilla. Remarcando también, que el objetivo de muchos de estos casos, no es el acabar

con la comida sino alcanzar las cuatro esquinas del laberinto por lo que no se tiene en

consideración acabar el juego sino llegar a estos cuatro puntos, de ah́ı la complejidad

de ese posible estado.

En definitiva, la estructuración del trabajo a plantear debe seguir rigurosamente

los conceptos de un estado claro y definido del cuál se pueda partir y alcanzar una

meta, que irá ligada a la cantidad de comida que queda en el laberinto. Esto supondrá

una parte, la otra podrá ser la definición de la función sucesor que generará distintos

estados. Dentro de los algoritmos de búsqueda ya se podrán distinguir los términos de

expandido, generado, coste temporal del camino y expansión desde el cuál se llamará

a la función sucesor.
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4. Propuesta Pac-Man - EUPT

En este apartado se lleva a cabo la explicación del análisis, diseño e implementación

de la propuesta del TFG. Este trabajo consiste en la creación de una práctica para la

asignatura de IA, concretamente para los algoritmos de búsquedas impartidos en el

temario 2 de la asignatura [29, 30].

Para realizar este proyecto, se ha partido de un código que ya consta de la interfaz

del Pac-Man. Al ser un juego tan famoso se encontraron muchas interfaces, existen

incluso torneos para ver quién dota de la mejor IA al Pac-Man para que pase el mayor

número de niveles solo, o al fantasma para que consiga que encuentre al fantasma

en el menor tiempo posible. El código que se ha escogido ha sido obtenido de la

siguiente url: http://ai.berkeley.edu/search.html. Es un código proporcionado

por la Universidad de Berkeley, que pretende que cualquier usuario de la red, pueda

dotar de inteligencia al Pac-Man y ofrece recursos para ello, pero estos recursos y la

lógica que quiere emplear para incorporar dicha inteligencia no sigue los principios

básicos que se imparten en la asignatura de la EUPT, por lo tanto, sirve para emplear

la interfaz, pero no el resto de la lógica de la aplicación.

4.1. Análisis y Diseño

Comenzando por la fase de análisis del trabajo, como se parte de un código ya

diseñado, se ha tenido que llevar a cabo una labor de conocimiento de éste para poder

estudiar donde se pod́ıa introducir dicha inteligencia. Para ello, se busca poder aislar

la interfaz del resto de código [9].

En el código de la Universidad de Berkeley se pueden encontrar los siguientes

ficheros:

− La carpeta layouts, que contiene una serie de ficheros con distintos diseños de

laberintos.

− La carpeta test cases donde están unos ejercicios que plantea la Universidad

de Berkeley, para que los alumnos puedan adquirir y poner en práctica sus

conocimientos de manera progresiva. Ésta contiene los casos de prueba para cada

una de ellos.
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− El fichero search.py es donde el alumnado debe incluir los algoritmos de búsqueda.

− El fichero searchAgents.py contiene los agentes basados en búsquedas.

− El fichero pacman.py es el archivo principal que ejecuta los juegos de Pac-Man.

− El fichero game.py contiene la lógica detrás de cómo funciona el mundo Pac-Man,

como se mueve, las acciones, etc.

− El fichero util.py consta de unas estructuras de datos útiles para implementar

algoritmos de búsqueda.

− El fichero graphicsDisplay.py implementa los gráficos para Pac-Man.

− El fichero graphicsUtils.py es donde se encuentra el soporte para los gráficos del

Pac-Man.

− El fichero textDisplay.py contiene los gráficos ASCII para Pac-Man.

− El fichero ghostAgents.py tiene los agentes para controlar fantasmas.

− El fichero keyboardAgents.py consta de interfaces de teclado para controlar el

Pac-Man mediante teclas.

− El fichero layout.py implementa el código para leer los archivos de diseño de

la carpeta layout y almacenar su contenido: donde se encuentra la comida, las

paredes y la posición inicial de Pac-Man.

− El fichero autograder.py que es un autograder de proyectos, es decir, un

autocalificador que simula el proceso de probar un programa [38].

− El fichero testParser.py analiza los archivos de prueba y solución del autograder.

− El fichero testClasses.py vinculado a las preguntas que plantea la Universidad de

Berkeley, son clases generales de prueba de autocalificación.

− El fichero searchTestClasses.py son clases de prueba de autocalificación espećıficas

de los algoritmos de búsquedas, implementadas para el banco de preguntas

comentado anteriormente.

Partiendo de esta estructura, se va a observar el código con un mayor lujo de detalle,

para discernir cuál es necesario para el trabajo académico que se pretende desarrollar.

Pero antes, se va a mostrar el diagrama de relación entre los distintos paquetes que hay
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Figura 4.1: Paquetes del código original

en este proyecto, generado con la herramienta de Python, pyreverse, que puede verse

en la Figura 4.1.

Con respecto al diagrama de clases, debido a su tamaño se deja como para su

consulta en el respositorio de GitHub del proyecto.

Ahora se procede a observar el proyecto de manera detenida para conocer su

ejecución. Comenzando por el fichero principal, que contiene la función main del

programa. La función principal es un entry point o punto de entrada, que es la ubicación

en el código donde se produce una transferencia de control (ejecución) del programa

[21]. Por lo tanto, cuando se ejecuta la aplicación, ésta es llamada la primera. En ella

se lo primero que se hace es recoger una serie de parámetros pasados por consola y los

transforma. Luego, llama al método runGames con dichos valores recogidos.

Antes de seguir con el análisis, para el trabajo académico a desarrollar se modificará

esta forma de lanzar la aplicación, para evitar pasar los parámetros por consola, ya que

suele resultar más tedioso. Se hará de manera que tendrán que modificar el valor de

una variable para indicar la modificación de estos.

Los datos pasados por parámetros pueden ser todos los que se ven en la Figura 4.2,

destacando el número de veces que se puede jugar, el laberinto que se va a emplear,

el agente que se va a considerar tanto para el Pac-Man como para los fantasmas, el

número de fantasmas que se desea tener, el zoom para ver la pantalla del juego y la

velocidad con la que se desplacen los agentes.

Una vez obtenidos los datos pasados como parámetros por consola son tratados. Se

observan aquellos que se han considerado interesantes. Para la interfaz del laberinto, se

ha de obtener el diseño, en el caso de los agentes, tienen que ser procesados, llamándose

a otra función denominada loadAgent. En ésta, lo que hace es comprobar si el agente

12



Figura 4.2: Posibilidad de parámetros a pasar por consola en el juego del Pac-Man

pasado existe y, si es aśı, crea un objeto del agente que se ha indicado. Los parámetros

restantes son almacenados en distintas variables.

Cuando ya tiene todos los parámetros almacenados, se procede a lanzar el juego,

método runGames. En éste lo que se hace es llamar a la clase ClassicGamesRules para

declarar una serie de reglas.

Esta clase contiene el método init, cada vez que se crea un objeto de dicha clase es

llamado y, se ejecuta el código en su interior que suele ser para inicializar los atributos

de este objeto [49]. También contiene el método newGame para iniciar un nuevo juego,

process que procesa si un juego ha terminado o no, win para comprobar si el Pac-Man

ha ganado y lose para ver si ha perdido. El método getProgress para ver el progreso

del juego en base a cuanta comida le queda por comer, agentCrash para cuando un

agente por una implementación errónea se salga del laberinto o cruce una pared, y

más métodos para obtener valores como el valor de la variable tiempo que lleva a cabo
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una cuenta atrás. Algunos de estos parámetros, como el último mencionado, no son de

interés para los objetivos buscados.

Posteriormente, una vez se ha creado el objeto ClassicGamesRules se mete en un

bucle para ejecutar los distintos juegos que se han indicado, o el valor por defecto que

es 1. Una vez dentro del bucle, comprueba si se ha introducido un valor para la variable

numTraining que se corresponde con si se desea llevar a cabo rondas de entrenamiento.

Si es aśı entra en un modo denominado beQuiet. Este modo no muestra una interfaz

gráfica y las reglas que tiene en consideración son menores. Dicho modo no se va a tener

en cuenta para el trabajo ya que es muy importante e interesante que la interfaz sea

visible en todo momento para que el alumno pueda ver como se desplaza el Pac-Man

por las distintas casillas y como lo hace.

Luego, se crea un nuevo juego, mediante el método de la clase ClassicGamesRules

comentado con anterioridad. En éste principalmente se declaran e inicializan los valores

del estado del juego, como son los agentes de los que se dispone, los cuál los almacena en

un vector denominado agents pero son distintos objetos. Esta información es relevante

ya que se debe tener en consideración como son tratados los fantasmas y el Pac-Man

para poder aplicarlo en la implementación futura. Todos son almacenados en el mismo

lugar, pero al parecer para diferenciarlos, el Pac-Man recibe el identificador 0 y los

fantasmas los números consecutivos a éste. A continuación, crea un objeto del estado

del juego, GameState. Éste contiene el número de comida que hay en total, cuánta de

ésta ha sido consumida, cuantas cápsulas hay y se ha comido, los agentes, el diseño de

la interfaz que se va a emplear, cuál es la puntuación y, si ha ganado o perdido. Todos

los parámetros han sido explicados anteriormente o se sobreentiende cuál es su valor,

pero no se ha indicado cuándo se puntúa y cuál es el valor de dicha puntuación. Cuando

el Pac-Man come, la puntuación se incrementa en 10, si consigue finalizar el juego se

añade 500 al igual que si pierde se reduce en 500; y, si alcanza a un fantasma asustado

ya que se ha comido una cápsula se añade 200. Además, cada vez que pasa un tiempo

especificado se va decrementando en una penalización de 1 punto. La puntuación en

nuestro caso se modificará para que se incremente cada vez que consuma una comida,

para que el alumno pueda ver que su algoritmo ofrece ganancias siempre que alcanza

parte de su objetivo, que es comer, y, no tendrá en cuenta posibles penalizaciones por

tiempo o afectará si alcanza a un fantasma asustado o no, porque será elección del

alumno si desea o no introducir fantasmas en la ejecución del código.

Además del objeto del estado de juego, se crea el juego, que contiene también a los

agentes como en el estado del juego, pero además tiene variables para comprobar si un

agente se ha salido del laberinto, las distintas reglas, cuál es el agente que comienza
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según el identificador especificado, un tiempo y un historial de por donde se han movido

los agentes.

Cuando ya se han inicializado todos los parámetros necesarios, se procede a lanzar

el juego. Para ello se llama al método run que tiene el objeto del juego, denominado

Game. Cuando se lleva a cabo la ejecución de éste, primero se inicia la interfaz, todos

los agentes que deben aparecer en ella, donde habrá siempre un Pac-Man pero no tiene

por qué haber fantasmas o no la misma cantidad. Cuando ya todo está listo, entonces

se procede a mostrar la pantalla con el juego y comienza éste para el usuario. Para

ello, se hace uso de un bucle infinito que va realizando acciones con cada uno de los

agentes, comenzando por el Pac-Man, recoge la acción que debe realizar, la lleva a

cabo, actualiza la interfaz y procesa si se ha ganado o no según las normas del juego

especificadas en una distinta clase. Luego, incrementa el número de identificador para

los agentes, y realiza la misma acción para estos, que serán los fantasmas. Una vez

se han ejecutado todas las acciones para todos los agentes se vuelve a empezar con el

Pac-Man, por su identificador 0.

Las acciones que llevan a cabo los agentes son diferentes para cada uno y dependerá

del objeto con el cuál ha sido creado. Este tipo de agente era especificado al pasarlo por

parámetro. Por ejemplo, un Pac-Man, puede ser creado según está diseñado el código,

como KeyboardAgent, LeftTurnAgent o GreedyAgent. En el primer caso, el agente será

manejado por la combinación de las teclas que emplee el alumno. En el segundo tipo de

agente, éste siempre que sea posible se moverá a la izquierda y el último, es un caso de

implementación de IA, que se pide a los alumnos que es el caso del algoritmo informado

denominado voraz. Se puede ver en la Figura 4.3 como primero lleva a cabo la obtención

de todas las acciones posibles desde la posición en la que se encuentra llamando a otro

método, luego obtiene un número de sucesores devolviendo los distintos estados según

las posibles acciones a realizar, comprueba cuál de ellos obtiene mejor resultado y

devuelve éste, si hay más de uno con la misma puntuación, entonces entre todos estos

retorna uno aleatorio. Como se indica en la parte académica (3.2) del apartado del

Estado del Arte, la implementación que se lleva a cabo no es la misma que se pretende

que los alumnos implementen porque no se puede trazar la estructura básica de cómo

se enseña en las clases teóricas. Aunque es una forma más de implementar inteligencia

artificial, no es la que se desea que los alumnos lleven a cabo.

Ya acabada la partida, se procede a almacenar los resultados en un fichero si no

era un entrenamiento y supone un texitrecord. Y, si ya se han jugado todas las rondas

que se hab́ıan indicado con el número de juegos, se muestra al usuario el valor de su

puntuación máxima, todas las puntuaciones obtenidas, las veces que ha ganado y la
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Figura 4.3: Algoritmo voraz desarrollado por la Universidad de Berkeley

media de las mismas.

De manera amplia es el análisis que se ha podido realizar del código desde el inicio de

éste, hasta que es ejecutada una partida. Para poder llevar a cabo una implementación

del código la labor de investigación ha sido mucho más tediosa, tal y como se podrá

ver más adelante y en el código entregado.

Se pretende que los alumnos solo tengan que llevar a cabo la implementación de la

IA y que la estructuración del proyecto o del código sea la más cómoda posible, por lo

que partiendo del esqueleto básico de la Universidad de Berkeley, los alumnos recibirán

un proyecto con la estructuración que se muestra a continuación, donde se desechan los

ficheros que no son necesarios y se reestructura la información que hay en estos para

que quede de la siguiente manera:

− La carpeta layouts, que contiene una serie de ficheros con distintos diseños de

laberintos se mantiene igual.

− Se crea otra carpeta denominada graphics, que contiene todos los ficheros

vinculados con el diseño e implementación de la interfaz (que no será necesario que

los alumnos modifiquen para la práctica), ya que sólo deberán consultar en fichero

layout y se les indicará en el enunciado. Los ficheros que contiene esta carpeta

son: graphicsDisplay.py, graphicsUtils.py y layout.py. Este último implementa

el código para leer los archivos de diseño de la carpeta layout y almacenar su

contenido, como se realizaba ya antes, pero con alguna modificación.

− El fichero search.py es donde están todos los algoritmos de búsqueda.

− El fichero pacman.py seguirá siendo el archivo principal que ejecuta los juegos de

Pac-Man aunque tendrá sus modificaciones.
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− Los ficheros game.py y gameState.py contienen la lógica detrás de cómo funciona

el mundo Pac-Man también se mantendrá, pero con los cambios necesarios.

− El fichero datastructures.py consta de las estructuras de datos que serán

necesarias para implementar los algoritmos de búsqueda.

− El fichero agents.py que contiene tanto los agentes como los fantasmas incluido

el Pac-Man.

− El fichero pacmanState.py que contiene los estados necesarios y parte de la lógica

para dotar al Pac-Man de IA.

Se puede ver en la Figura 4.4, el nuevo diagrama que muestra la relación que tendrán

los distintos paquetes en el proyecto final.

Figura 4.4: Paquetes del código a desarrollar

Para el diagrama de clases, de igual manera que para el del código original, se deja

para su consulta en el repositorio de GitHub del proyecto.

Claramente, la disminución de código que se pretende llevar a cabo, que se puede

ver con los diagramas, va a ser notable.

4.2. Herramientas tecnológicas empleadas

El lenguaje de programación para llevar a cabo el trabajo es Python [36] [15],

debido a que es el que ya se está empleando actualmente en la EUPT para realizar esta

práctica de algoritmos de búsqueda.

La versión a emplear de Python se pretende que no sea una espećıfica y cualquiera le

pueda servir al alumnado. El código de partida está preparado para la versión 2.7, pero

se llevarán a cabo las modificaciones pertinentes para lograr que pueda ser ejecutado

con otras versiones más actuales.
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La herramienta de software empleada para la implementación del trabajo es

PyCharm [32], un entorno de desarrollo integrado de Python. El paquete completo

de este entorno consta de las caracteŕısticas que se pueden observar en la Tabla 4.1.

Caracteŕısticas PyCharm

Editor de Python inteligente
Depurador gráfico y ejecutor de pruebas

Navegación y refactorización
Inspecciones de código

Compatibilidad con Visual Computing System (VCS)
Herramientas cient́ıficas

Desarrollo web
Marcos de trabajo web Python

Perfilador Python
Capacidades para desarrollo remoto

Soporte para bases de datos y Structured Query Language (SQL)

Tabla 4.1: Caracteŕısticas del entorno PyCharm

Este paquete tiene muchas cosas innecesarias para el desarrollo de la práctica y

encima es de pago. PyCharm ofrece un paquete más reducido, denominado PyCharm

Community Edition, gratuito y creado en código abierto. Consta de alguna de

las caracteŕıstica comentadas anteriormente que son: editor de Python inteligente,

depurador gráfico y ejecutor de pruebas, navegación y refactorización, inspecciones

de código y compatibilidad con VCS.

Además, tanto la versión completa como la reducida puede ser ejecutada en los

siguientes sistemas operativos: Windows, macOS Intel y Apple Silicon, y, Linux. Por

lo que no se limita al uso de un sistema operativo concreto para poder llevar a cabo el

desarrollo de cualquier proyecto.

4.3. Implementación

Antes de proceder con la implementación del código, se va a proceder a explicar

de manera teórica en qué consisten los algoritmos de búsquedas en la IA, para luego

poder entender mejor la parte práctica.

El principal objetivo de todo esto es resolver un problema y para ello crear un

programa que sea capaz de automatizarlo. La resolución de un problema es considerada

una capacidad inteligente.

Para todo esto se necesita un agente, es decir, una persona o cosa que percibe su

entorno a través de sensores e interacciona con en él a través de actuadores. Estos

agentes parten de un estado inicial y dependiendo de la acción que realicen llegan a
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uno u otro, hasta alcanzar aquel que es considerado el estado final que es el objetivo.

Existen 4 tipos de agentes: agente reflejo simple, agente reflejo basado en modelo,

agente basado en objetivos y agente basado en utilidad. En este trabajo se hace uso

de un agente reflejo basado en objetivos o también conocido como agente de resolución

de problemas, donde las acciones van dirigidas a conseguir un objetivo. Este tipo de

agentes utilizan representaciones atómicas, ya que se identifican los estados sin ninguna

estructura compleja. Si empleasen alguna representación más sofisticada seŕıan agentes

de planificación.

En este caso la solución a plantear mediante estos algoritmos consiste en hacer

búsquedas en un espacio de estados determinado y los pasos generales para poder

resolver un problema son:

− El objetivo a alcanzar, en este caso es que el Pac-Man pueda acabarse toda la

comida. De primeras pensando en los alumnos no se tiene en consideración que

los fantasmas puedan o no alcanzarlo, eso será una consideración que se quiere

llevar más adelante.

− Luego, se formula el problema, estados y acciones que se pueden llevar a cabo.

Las acciones son ir a la derecha, la izquierda, arriba y abajo siempre cuando

las barreras del laberinto lo permitan. La definición de estados viene dada más

adelante.

− Posteriormente, se plantea el método de búsqueda que se va a plantear para

determinar las posibles secuencias de acciones hasta lograr alcanzar el objetivo.

− Y, por último, se ejecutan todas las acciones de la secuencia.

Se trata de un entorno parcialmente observable ya que es posible detectar todos

los aspectos del entorno para la elección de una acción a excepción de los fantasmas

según lo que se plantea para el alumno, porque no tiene que tener en cuenta estos

para encontrar la solución. En un trabajo futuro se va a llevar a cabo un entorno

completamente observable ya que śı se tendrá en cuenta donde se encuentran los

fantasmas para determinar la acción a realizar por el Pac-Man. Continuando con el

entorno enfocado en la práctica para los alumnos, éste es determinista porque su

estado viene determinado por el estado actual y la acción ejecutada por el agente.

Es secuencial, porque sus decisiones vienen determinadas conforme a las decisiones

tomadas anteriormente y estático porque el entorno no se modifica cuando el agente

está determinando la siguiente acción que quiere realizar. Por último, es discreto porque

las acciones del agente no dependen de su evolución en el juego y no es multiagente.
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El espacio de estados del problema viene definido por el estado inicial y la función

sucesor. Este espacio forma un grafo donde los nodos son los estados y las acciones son

los arcos entre los nodos. El problema planteado es un grafo dirigido aćıclico que para

cada escenario será distinto, pero todos comparten que solo haya un estado inicial y

uno final.

A continuación, se muestra un ejemplo de un grafo para un escenario concreto

donde el estado inicial es el que se muestra en la Figura 4.5 y el estado final el que

se muestra en la Figura 4.6. Cada caja representa un estado, en cuyo interior hay un

valor que se corresponde con un número, concretamente el de comidas que hay en total

en el laberinto escogido, éste es el valor que determinará la evolución del juego, pero

también se ha de tener en cuenta la posición en donde se encuentra el Pac-Man en

todo momento. La resolución del problema a plantear pretende poder ser empleado en

cualquier espacio y no se centra en uno concreto, por lo que la posición no es un aspecto

interesante a considerar en los estados para saber si gana o no, ya que si no se hace

un estudio anterior de cuál va a ser la mejor posición en la cual acabar, puede suponer

que el algoritmo sea menos efectivo por tener en cuenta este valor también y un mayor

coste temporal porque requiere de un tiempo alcanzar esa posición óptima. Teniendo

en consideración solamente la comida es posible finalizar el juego, y es el objetivo, al

fin y al cabo. No es relevante para determinar si se ha finalizado o no, pero es necesario

para poder conocer la posición del Pac-Man en todo momento. El estado final será que

quede un valor de 0 comidas.

El interior de cada caja contiene el nombre que se le ha dado al estado, la posición

que ocupa el Pac-Man entre corchetes, siendo el primer valor correspondiente al eje

horizontal y el segundo al vertical; y, entre llaves, el valor realmente importante que es

el de la comida.

Figura 4.5: Ejemplo PacMan estado inicial Figura 4.6: Ejemplo PacMan estado final

En la Figura 4.8 se muestra un posible grafo de lo que podŕıa ser una ejecución donde

cada arco simboliza una acción, donde se refleja entre corchetes dicha acción que se
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está realizando en cada momento y hacia que celda. También se aporta el escenario del

Pac-Man dividido en las distintas posiciones que puede ocupar para ese ejemplo (ver

Figura 4.7). En este escenario existen hasta 6 cuadŕıculas por las que el Pac-Man se

puede desplazar, partiendo del estado inicial (E0) puede solamente ir a la derecha (E1)

o hacia bajo (E2), desde el Estado 1 se si se va a la derecha se puede llegar al Estado

3, volver al Estado 0 si se va a la izquierda, o ir al Estado 4 si se va hacia abajo.

Figura 4.7: Ejemplo PacMan con cuadŕıcula

Figura 4.8: Ejemplo PacMan grafo

Una vez se ha planteado el problema a abarcar, se procede a explicar los distintos

algoritmos de búsqueda básicas que se han implementado para la práctica.

La resolución de problemas mediante algoritmos de búsquedas emplea espacio de

estados, este sigue el modelo de estados que cumple lo siguiente [29]:

− Espacio de estados finito y discreto S

− Estado inicial s0 ∈ S

− Un conjunto de estados objetivos G ⊆ S
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− Acciones aplicables A(s) ⊆ A en cada estado s ∈ S

− Una función transición f(s,a) para s ∈ S y a ∈ A(s)

− Y una función de coste c(a,s) > 0

Una solución es una secuencia aplicable de acciones ai, i = 0, ..., n que lleva desde

el estado inicial s0 al estado objetivo s ⊆ SG; es decir, sn+1 ⊆ SG y para i = 0, ..., n

si+1 = f(ai, si) y ai ⊆ A(si)

Y, la solución óptima minimiza el coste es:
∑n

i=0 c(ai, si).

El estado inicial y la función sucesor definen el espacio de estados del problema (el

conjunto de todos los estados alcanzables desde el estado inicial). El espacio de estados

forma un grafo, como se ha visto anteriormente, en el cual los nodos son estados, y los

arcos entre los nodos son acciones. Además, la función transición (sucesor) devuelve un

conjunto, el coste del camino ya que refleja la medida del rendimiento (prestaciones)

y la solución óptima tiene el coste más pequeño del camino entre todas las soluciones

[29].

En este caso, el estado inicial ya se ha definido más atrás. La función sucesor

será una de las partes que los alumnos deberán implementar y hallar para resolver

la práctica, ya que ésta deberá devolver todos los estados válidos con base al estado

actual. Posteriormente, se explicará cómo ha sido resuelto para este TFG. El coste del

camino que refleja las prestaciones de cada posible método de búsqueda es en este caso

1 por cada acción realizada. Y, por último, la solución más óptima para cada caso

tendrá un valor, en el caso expuesto con anterioridad (ver Figura 4.8) será 4, porque

es el camino más corto entre todas las soluciones, que se puede observar en el grafo ya

mostrado y además se explicarán cada uno de los algoritmos a emplear.

Se exigen más de una búsqueda para la solución del problema, y la idea básica, es

llevar a cabo una simulación de una exploración del espacio de estados generando los

sucesores de los estados ya explorados, realizando expansiones.

Este espacio de estado genera un árbol de búsqueda que consta de un nodo ráız que

se corresponde con el estado inicial, nodos que son los distintos estados y las hojas (son

nodos sin hijos) generados por la función sucesor. Y el árbol a su vez, suele generar

un grafo, donde se permite la posibilidad de regresar a un estado ya visitado y existen

diferentes caminos para un mismo estado.

Por lo tanto, partiendo de un nodo que representa un estado, éste se expande, lo

que significa que se generan nuevos estados aplicando acciones permitidas sobre uno.
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El nodo que se expande se denomina padre y los resultantes los hijos. El conjunto de

nodos sin hijos, no expandidos, es conocido como frontera o lista abierta [29].

Teniendo en cuenta estos conceptos sobre los algoritmos de búsquedas, se procede a

la explicación de los algoritmos de búsquedas que se han implementado. Las estrategias

de búsqueda vienen definidas por la elección del orden de expansión de los nodos y se

evalúan de acuerdo a cuatro dimensiones:

− Completitud, ¿se encuentra la solución al problema?

− Optimización, ¿es encontrada siempre la solución de menor coste?

− Complejidad tempral, número de nodos generados y expandidos

− Complejidad espacial, número de nodos almacenados en memoria en la búsqueda

Existen estrategias de búsquedas informadas y no informadas. Para esta práctica

se han puesto a prueba tres no informadas y dos informadas.

En el caso de las búsquedas no informadas se hace uso sólo de información disponible

en la descripción del problema, no cuenta con ninguna información o conocimiento sobre

cómo llegar al objetivo. Se definen por el algoritmo de expansión utilizado, existen

seis categoŕıas, aunque las que se piden son: primero en anchura (breadth first), coste

uniforme (uniform cost) y primero en profundidad (depth first). Se diferencian por la

estructura de datos utilizada para la frontera. En el caso del primero en anchura se

emplea una cola FIFO (First In First Out), lo que significa que lo primero que entra es

lo primero en salir. Para la búsqueda de coste uniforme se emplea una cola ordenada

por coste de caminos, donde cada nodo supone un coste de 1 como se ha comentado con

anterioridad. Esta prioridad viene determinada por la función lambda, donde lambda

es una función anónima en el lenguaje de programación de Python, que consiste en

tomar cualquier número de argumentos, pero sólo puede tener una expresión [52]. Por

último, primero en profundidad emplea una cola LIFO (Last In First Out), donde el

último en entrar es el primero en salir [29].

En el caso de las búsquedas informadas, se aplica conocimiento al proceso para

hacerlo más eficiente. Este viene dado por una función que estima la ”bondad”de

los estados, y da preferencia a los que son considerados mejores, ordenando la cola

de abiertos por la comparación de su bondad estimada. Pretende reducir el árbol de

búsqueda para poder ganar eficiencia. Este conocimiento espećıfico que se va a usar

sobre el problema está codificado en la función heuŕıstica. Se denomina heuŕıstica a

una función numérica sobre los estados que estima la “distancia al objetivo y siempre
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tiene un valor mayor o igual a 0”. Será igual a 0 cuando se llegue al estado final y

se admite el valor “infinito”. Para este tipo de búsquedas se emplean dos algoritmos,

voraz o greedy y A*.

En ambos casos se hace uso de una cola con prioridades, pero vaŕıan en cuanto a

la prioridad de la que hacen uso de ésta. En el primer caso, el algoritmo de búsqueda

voraz únicamente se basa en la heuŕıstica para el cálculo del coste de la función: f = g,

donde g representa el coste del camino. En cambio, en el segundo caso de A*, además

de basarse en la heuŕıstica, hace uso de la información dada en el problema para hacer

el cálculo del coste de la función: f = g + h, donde g representa el coste del camino y h

el coste estimado por la heuŕıstica. En ambos casos se hace uso de la función anónima

lambda, ya explicada. La diferencia entre ambas viene determinada por hacer uso del

coste de la función, es decir, seŕıa hacer uso de g o no hacer uso de g. En el caso de

la voraz solo se hace uso de la heuŕıstica para el cálculo del coste para cada acción

hasta en nodo meta, y en el caso de la A* se hace uso de la heuŕıstica y el coste de la

función. Las funciones heuŕısticas son definidas más adelante, pero un ejemplo de éstas

muy conocido es el de la distancia Manhattan [19].

A continuación, se expone el pseudocódigo para los distintos algoritmos de

búsquedas. Ambos métodos de búsqueda hacen uso del algoritmo general de búsqueda

de grafos donde la única diferencia entre los informados y los no informados, es el coste

de la función, que en cada caso viene determinado por distintas funciones.

El procedimiento de estos algoritmos hace uso de cuatro variables. La primera es el

nodo inicial del cuál partimos, dos variables de tipo entero que almacenarán el número

de nodos expandidos y generados, y, un vector que contiene los nodos explorados. El

algoritmo sigue los siguientes pasos:

− Primero se añade el nodo inicial a la frontera. Es decir, se inicializa la frontera

con el estado inicial del problema.

− Luego dentro de un bucle infinito:

� Se comprueba si la frontera está vaćıa, si es aśı se devolverá un objeto vaćıo

� Si no está vaćıa la frontera entonces se elimina el nodo que le corresponde a

la frontera en cada caso. Si la frontera es una pila entonces el primer nodo

apilado será el nodo eliminado porque pasa a ser un nodo explorado, si es

una cola entonces será el último elemento añadido. Si se tratara de una cola

con prioridades, entonces seŕıa el elemento que mayor prioridad tuviese.
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� Luego se comprueba si el nodo explorado es el estado final, si es el estado

final se retorna el nodo explorado, el total de nodos expandidos y el total

de nodos generados.

� Si no era el estado final, se añade dicho nodo al vector de nodos explorados.

� Se incrementa el número de nodos expandidos.

� Se expande el nodo y se almacenan todos los nodos obtenidos al expandirse

en un vector.

� Se recorre este último vector nombrado, y se comprueba si no están en el

vector de nodos explorados o si la frontera no los contiene.

� Si se cumplen ambas premisas entonces, se añade el nodo a la frontera y se

incrementa el número de nodos generados.

� Una vez llegado a este punto se regresa a ejecutar el inicio del bucle hasta

que se alcanza el nodo final.

A continuación, se procede a explicar cómo funcionan los distintos algoritmos de

búsqueda.

Comenzando por los algoritmos de búsqueda no informada, concretamente el de

primero en anchura. Partiendo del árbol que se puede observar en la Figura 4.9, se

puede ver como el nodo inicial es el 1. Desde que éste se añade a la frontera, se expande.

Al hacerlo se generan los 3 nodos que se encuentran en el siguiente nivel, que seŕıan el

2, 3 y 4, por ese orden de izquierda a derecha, son añadidos a una lista. A continuación,

se debe expandir el primer nodo que se tiene en la lista, que seŕıa el 2 y se generan el 5

y 6. Estos son añadidos a la lista, que ahora es la siguiente 3, 4, 5 y 6, porque como el

2 ha sido expandido, sale de la lista. Ahora, se debe expandir el nodo que se encuentra

primero en la lista, que seŕıa el 3 y genera al 7. Por lo tanto, la lista es 4, 5, 6 y 7. Toca

expandir el nodo 4 y genera al 8 y 9, quedando la lista 5, 6, 7, 8 y 9. El nodo 5 es el

siguiente y genera el 10 y 11, la lista es la siguiente: 6, 7, 8, 9, 10 y 11. El nodo 6 no

tiene nada que generar por lo que sale de la lista y es el turno del 7 que pasa lo mismo

que el 6. Le toca el 8 y tampoco genera ningún nodo, pasa al 9 y éste śı genera los

nodos 12 y 13. La lista ahora está de la forma que se puede ver a continuación: 10, 11,

12 y 13. Estos nodos no generarán ninguno más y se deben recorrer en el orden que se

encuentran en la lista. Este recorrido es bastante sencillo y para entenderlo visualmente

se puede ver la Figura 4.10, donde se indica con flechas y número, el orden y lógica de

éste.

Por mucho que se haya explicado el recorrido entero del árbol, no siempre va a ser

aśı,éste será recorrido hasta que se genere el noto meta. Es decir, si el nodo meta es
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el 4, en el momento que se expanda el nodo 1 se habrá acabado porque al expandirse

genera el nodo 4. Por lo tanto, en ese instante la ejecución se para, no tiene sentido

seguir ya que se ha alcanzado la meta que se teńıa.

Figura 4.9: Ejemplo algoritmo primero en anchura

Figura 4.10: Ejemplo algoritmo primero en anchura recorrido

A continuación, se procede a explicar el algoritmo de primero en profundidad (ver

Figura 4.11), algoritmo no informado. De igual manera que antes se comienza por el

nodo inicial que es el 1, de estos nodos se expanden el nodo 2, 7 y 9. En este caso se

debe coger el primer nodo generado de izquierda a derecha, que es el 2, y el que más

abajo este dentro de una rama, es decir, en este caso todos los nodos están al mismo

nivel por lo que da igual, el nodo 2 genera al 3 y 6. Ahora tenemos 7, 9, 3 y 6, se debe

coger aquel que este más a la izquierda y abajo, por lo tanto en el nivel más bajo están

el 3 y el 6, y el que más a la izquierda esta es el 3. Este nodo se expande y genera el

4 y 5, la lista ahora es 7, 9, 6, 4 y 5. ¿Cuál de los nodos está en un nivel más bajo? El

4 y 5, y el que más a la izquierda el 4, no tiene nodos a generar, la lista es 7, 9, 6 y 5.

El siguiente nodo más abajo es el 5, tampoco genera nodos aśı que se continúa. En la

lista están el 7, 9 y 6, y el que está más abajo es el 6 por lo que este se expande. Ahora

están el 7 y el 9, están al mismo nivel por lo que se coge el que más a la izquierda está
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que es el 7 y genera el 8. Como el 8 está más abajo se expande antes que el 8 pero

no tiene nodos para generar y es el turno del 9, que se expande y genera el 10 y 11.

Se coge el 10 porque están al mismo nivel y está más a la izquierda. No tiene nodos

a generar. El siguiente porque no hay más nodos en la lista es el 11, éste genera el 12

y 13, ambos al mismo nivel pero primero se expandirá el 12 y luego el 13 porque está

más a la derecha este último (ver Figura 4.12).

De igual manera que el anterior, si el nodo está antes del último nodo a recorrer no

será necesario realizar el recorrido entero.

Figura 4.11: Ejemplo algoritmo primero en profundidad

Figura 4.12: Ejemplo algoritmo primero en profundidad recorrido

Para finalizar con los algoritmos no informados, toca el de coste uniforme, para el

que se va a emplear como referencia la Figura 4.13. En este caso se especifica que se

desea ir desde el nodo A hasta el nodo H. Para ello, desde el nodo A se expande y se

generan los nodos B, C y D. A diferencia de los otros árboles, estos tienen un valor en

cada ĺınea, que indica el coste del camino, es decir, desde el nodo A al B, cuesta 1 pero

desde A al D cuesta 10. En este caso la elección del nodo para expandir viene basada

en el menor coste posible, por lo tanto, desde el nodo A el menor coste es por el nodo

B que tiene un coste de 1. Este nodo B se expande y tiene el nodo E y F. Desde el

nodo A hasta el nodo E se tiene que tener en cuenta la suma del coste por los nodos
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que se pasa antes, en este caso seŕıa desde A hasta B y desde B hasta E, suponiendo

un total de 4 de A a E y 3 de A a F. Por lo tanto, ahora se debe elegir aquel camino

que tenga menor coste de todos los encontrados hasta ahora, que en este caso seŕıa el

de A a C que era 2. C genera el nodo G, desde A a G hay un coste de 4 igual que

desde A hasta E. En este caso, el coste desde A hasta F es el menor por el momento,

por lo que se expande F y hasta H tiene un coste de 8, superior al de 4 que teńıan

A hasta E y A hasta G. Si se escoge desde A hasta E se va al nodo H ya expandido,

desde A hasta H pasando por B y E, el coste es de 11, superior al de pasando por B y

F. En cambio, si se escoge desde A hasta H pasando por G el coste total es 6, y seŕıa

el camino más óptimo de llegar. El camino de D no es nombrado tan apenas ya que se

haya una solución antes por otro camino de un valor menor al del coste simplemente

de A a D.

Figura 4.13: Ejemplo algoritmo coste uniforme

Una vez terminados los algoritmos no informados, toca los informados, estos

funcionan de manera similar al de coste uniforme pero el valor que se tiene en

consideración para el coste, en el algoritmo de voraz es el de las heuŕısticas y el de

A* es una unión del voraz y coste uniforme porque tiene en cuenta el coste del camino

y el estimado por las heuŕısticas. Para la explicación de éstas se va a emplear el ejemplo

que se encuentra en la Figura 4.14.

Primero se va a comenzar a explicar el algoritmo voraz. Para ello se parte del nodo

A y se desea llegar hasta el nodo H. En este caso, aparece la diferencia con respecto al
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Figura 4.14: Ejemplo para algoritmo de búsquedas informadas

algoritmo de coste uniforme, es una tabla, donde se puede observar que para cada nodo

hay un valor, aleatorio, que se obtendŕıa al aplicar una heuŕıstica desde el nodo en el

que se encuentra hasta el nodo final. Como en este caso el algoritmo voraz trabaja con

los valores del coste estimado de la heuŕıstica, para calcular el coste del camino de A

a H será tomado de las cifras de la tabla. Por lo tanto, en este caso los cálculos para ir

desde A hasta H por los 4 distintos caminos posibles seŕıan:

− Pasando por B y E, la suma de A más B más E más H: A + B + E + H = 20

+ 14 + 8 + 0 = 42

− Pasando por B y F seŕıa : A + B + F + H = 20 + 14 + 6 + 0 = 40

− Pasando por C y G: A + C + G + H = 20 + 12 + 4 + 0 = 36

− Y, por, D: A + D + H = 20 + 18 + 0 = 38

En este caso el camino óptimo es el que va desde A hasta H pasando por C y

G. Pero por ejemplo se puede observar que en el algoritmo voraz, pasar por D era el

peor camino y en este caso es el segundo mejor. No siempre tienen que coincidir, el

posicionamiento de los mejores caminos, cuando se emplea el coste del camino o el

coste estimado por la heuŕıstica. Además de que no siempre distintas heuŕısticas darán

tampoco el mismo posicionamiento.

Para finalizar, se procede a explicar el algoritmo A*. Éste para obtener los resultados

del coste tiene en cuenta el coste del camino y el estimado de las heuŕısticas. Se va a

proceder al igual que en el caso anterior a explicar cuál seŕıa el coste para cada posible

29



camino y observar cuál seŕıa el mejor, considerando que g es el coste del camino y h

de la heuŕıstica. Los costes para ir desde A hasta H:

− Pasando por B y E, la suma de A más B más E más H: A(h) + B(h) + E(h) +

H(h) + A-B-E-H(g)= 20 + 14 + 8 + 0 + 11 = 58

− Pasando por B y F seŕıa : A(h) + B(h) + F(h) + H(h) + A-B-F-H(g) = 20 +

14 + 6 + 0 + 8 = 48

− Pasando por C y G: A(h) + C(h) + G(h) + H(h) + A-C-G-H(g) = 20 + 12 +

4 + 0 + 6 = 42

− Y, por, D: A(h) + D(h) + H(h) + A-D-H(g) = 20 + 18 + 30 = 68

Para este caso, como es lógico ya que en ambos algoritmos tanto voraz como coste

uniforme, el camino pasando por C y G desde A hasta H era el mejor, sigue siéndolo.

Hasta ahora se ha explicado el concepto teórico que se ha puesto en práctica para

el desarrollo del trabajo. A continuación, se procede a exponer la implementación de

la inteligencia en el Pac-Man.

Para ello, primero se tiene que dejar claro qué es necesario que contengan los

distintos estados del espacio, aunque algunos parámetros luego no se tengan en cuenta

para comprobar si se ha llegado al estado final. Como se ha indicado anteriormente,

el único parámetro para comprobar será la cantidad de comida que falta por comer,

siendo 0 cuando se alcance el estado último.

Se necesita conocer en todo momento dónde se encuentra el Pac-Man, es decir su

posición. Y en dicha posición se tendrá que saber si hay o no comida, si se pasa por

dicha posición, se tendrá que decrementar el número total de comida que queda y en

esta posición indicar que ya no habrá comida porque ya se ha pasado por ésta.

Teniendo claros los parámetros que se han de tener en consideración, se investiga

como se pueden obtener del código del que se parte.

Con respecto a la posición, se tiene que conocer de donde parte el agente y aquellas

por las que pasa. La posición inicial se puede obtener del objeto Layout que contiene los

siguientes valores: anchura y altura del laberinto, dónde se ubican las paredes, comida

y capsula en el laberinto, las posiciones de los distintos agentes, el número total de

fantasmas y el total de comida. Tras observar alguno de los diseños (ver Figura 4.15)

se puede ver que:

− El śımbolo de porcentaje (%) es empleado para indicar las paredes del laberinto.
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− Los puntos (.) para la comida.

− La letra “G”mayúscula, representa a los fantasmas.

− La letra “P”mayúscula al agente Pac-Man.

− La letra “o”minúscula las capsulas.

Figura 4.15: Diseño de la interfaz ”mediumClassic.lay”

Y, empleando el debugger para conocer el contenido de:

− La variable que contiene la ubicación de la comida. Se puede ver como se utiliza

una matriz para ello, con las dimensiones del laberinto, siendo en el caso que se

pone de ejemplo de la Figura 4.15 de ancho 20 y altura 11. Se indica en esta con

un True cuando hay comida en esa posición (ver Figura 4.16).

− La posición inicial del Pac-Man, es recogida en una variable junto a las posiciones

de los agentes restantes. Ésta contiene una tupla con un valor booleano y luego

la posición. El valor booleano indica si el agente del que se trata es el Pac-Man

(valor True) o si de es un fantasma (valor False). El agente Pac-Man ocupa la

primera posición de este vector siempre, por lo que, consultando el segundo valor

de la tupla de la primera posición de éste, se obtendrá el valor que se desea.

− Aunque esta variable es más sencilla, también se obtiene mediante este objeto el

número total de comidas que hay en este diseño, en la variable numFood.

Al constar de la posición inicial del Pac-Man, las restantes pueden ser calculadas

incrementando o decrementando el valor de las variables x e y, siendo x la

representación del eje horizontal e y el eje vertical, dependiendo de si la acción es

para arriba, abajo, izquierda, derecha o quedarse parado. El formato que sigue la

posición es el siguiente: (x, y). Pero no siempre se podrá llevar a cabo cualquier acción
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Figura 4.16: Matriz de la comida para la interfaz ”mediumClassic.lay”

porque existe la limitación de las paredes, hay otra matriz que indica en que posición

se pueden encontrar éstas, pero existe una función, disponible en el fichero game.py,

concretamente en la clase Actions que tiene el método getPossibleActions (ver Figura

4.17). Éste recibe como parámetros un objeto Configuration que consta de una tupla

con la posición y una acción, y, la matriz que contiene la pared. Por lo tanto, partiendo

de la posición pasada y las paredes del laberinto se obtienen todas las posibles acciones

a llevar a cabo.

Figura 4.17: Método getPossibleActions en Actions, game.py

Con los parámetros indicados se podŕıan establecer los estados para este juego que
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se va a denominar PacmanState (ver Figura 4.18). Éste tendrá una variable que serán

las paredes comunes para todo los estados, pero son necesarias para poder obtener

las acciones posteriores, el número total de comidas, la posición que será almacenada

en el objeto Configuration, por lo que también se tendrá la acción, y, la matriz de la

ubicación de la comida, ya que para cada estado podrá ser distinta al anterior.

Figura 4.18: Estado del Pac-Man

Remarcar la importancia de que, aunque en el estado se tengan que tener en

consideración todos los parámetros que éste contiene, no determinarán si se ha llegado

al estado final o no, solo lo hará la cantidad de comida que quede. Pero, es necesario

conocer cómo se va actualizando la matriz de comida conforme se generan nuevos

estados y, para ello, la posición que va ocupando en cada momento.

Una vez se tiene claro el estado, se debe crear la función sucesor que proporciona

los posibles estados consiguientes al estado en el que se encuentra en ese momento.

Para ello, primero se crea un método dentro de PacmanState denominado next states

que llamará al método succ donde se encontrará la función sucesor. De esta manera se

sigue la lógica requerida en la práctica actual de la asignatura de IA. Esta clase puede

ser encontrada en el fichero pacmanState.py.

En el método next states (ver Figura 4.19)se parte de un estado actual y primero

se obtienen todas las posibles acciones, para desde este estado poder desplazarse, ya

que no todo es viable porque existe la limitación de las barreras. La acción de estar

parado se elimina ya que no es útil para este caso y una vez se tienen éstas, se llama

a la función sucesor para cada una de las posibilidades. Ésta devuelve cómo seŕıa el

estado para cada una las posibilidades de acciones generadas para dicho estado. Y,

se generará un vector con los distintos estados obtenidos, que será empleado por los

algoritmos de búsqueda como se verá un poco más adelante.

En la función sucesor (ver Figura 4.20) se recibe como parámetro el estado actual

y la acción que se ha de llevar a cabo. Con esta información se comprueba qué nuevo

estado se quedaŕıa. Para ello, se aplica la acción a la posición del estado actual y
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Figura 4.19: Método next states

se comprueba si en dicha nueva posición hay comida. Si hubiere comida, el total del

número de comida es decrementado en uno y en la matriz de comida dicha posición

que estaŕıa a True pasa a ser False. La modificación de la matriz, en un principio, dio

problemas porque cuando se crea una variable y se le asigna el valor de otra variable,

siguen siendo distintas. Pero en el caso de la matriz, cuando a una variable se le trataba

de asignar el valor de la otra matriz como se haćıa con las variables, está en vez de

hacer una copia, haćıa un enlace a la misma variable. Dicho problema fue solventado

empleando la función deepcopy [34]. Estos nuevos valores del total de número de comida,

posición y la matriz de la comida generá un nuevo estado que es devuelto al método

next states.

Figura 4.20: Método succ

Ya definida la función sucesor y el método que devolverá todos los nuevos estados,

se procede a explicar los distintos algoritmos de búsqueda.

En el fichero search.py se puede ver toda la lógica implementada de estos algoritmos.

Ésta hace a su vez uso de otro fichero denominado datastructures.py que contiene las

distintas estructuras de datos que son empleadas para los distintos algoritmos. Estas
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estructuras son: pila o (stack), cola o (queue) y cola con prioridad o (priority queue).

Dentro del fichero search.py se encuentran los algoritmos de búsqueda tanto

informada como no. La lógica que sigue los algoritmos es la que se ha explicado

anteriormente. Ambos algoritmos parten de un nodo, concretamente el nodo inicial,

que este contiene el estado inicial y otros valores que son: el nodo del cual proviene el

estado y si es el inicial será vaćıo, la acción por la cual se ha llegado hasta dicho estado,

el coste del camino desde el estado inicial hasta el nodo actual, siendo 0 en el caso del

inicial y en el caso de las informadas el coste estimado por la heuŕıstica, desde el nodo

en el que se encuentra hasta el nodo meta que contiene el estado final.

Se lleva una cuenta de los nodos que son expandidos y generados para luego poder

realizar una comparativa con los distintos algoritmos y observar cuál de ellos es más

eficiente para cada laberinto. También se declara un vector que almacena todos los

nodos ya explorados.

Cuando se han terminado de declarar las variables, se inserta el nodo inicial en

la frontera como ya se hab́ıa indicado, y, se realiza el procedimiento que ya ha sido

explicado anteriormente. En la Figura 4.22, se puede ver el caso de búsqueda informada,

que difiere de la Figura 4.21, el caso de la búsqueda no informada, en la parte de abajo,

donde tras la sentencia de node.g = explored node.g +1 que se corresponde con el coste

de camino, en la búsqueda informada se añade el cálculo del coste estimado por la

heuŕıstica que es la siguiente: node.h = heuristic(node.state, goal state), donde se llama

a una heuŕıstica a la que se le indica cuál es el estado inicial y cuál es el estado meta.

Figura 4.21: Método de búsqueda no informada
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Figura 4.22: Método de búsqueda informada

Destacar, recordando lo que ya se hab́ıa comentado, que cuando se realiza la

comprobación de si se ha llegado al estado final, por mucho que se tengan en cuenta más

de una variable, sólo se comprueba si todav́ıa queda comida, los demás parámetros no se

tienen en este momento en consideración. Y, cuando se lleva a cabo una comprobación

de si dos estados son iguales śı se tiene en cuenta la posición, el número de comida que

queda y la matriz de la ubicación de la comida.

En todo este código para los algoritmos, no aparece la función sucesor ni la de los

siguientes estados, para poder saber en cuál estamos o cuales se pueden a partir de

uno. Esto se lleva a cabo cuando se ejecuta el método denominado expand, donde se

crea un vector para almacenar los posibles sucesores y se llama al método nextstates

(ver Figura 4.23) que retorna los siguientes posibles estados.

Figura 4.23: Método expand

En la Figura 4.24, se puede ver que las tres primeras funciones se corresponden
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con los algoritmos de búsqueda no informada, donde en cada uno de los casos se les

pasa la estructura de datos que emplean a la variable frontier, que es la frontera. Y las

dos últimas funciones son los algoritmos de búsqueda informada, donde la estructura

de datos que se pasa es una cola de prioridad, donde dicha prioridad en el caso del

algoritmo greedy o voraz, viene solo determinado por el coste estimado por la heuŕıstica,

y, en el caso de la A* por el coste del camino y el coste estimado por la heuŕıstica.

Figura 4.24: Algoritmos de búsqueda informada y no informada

Solo faltan por explicar en este apartado las heuŕısticas [47].

Las heuŕısticas que se suelen emplear para aplicar en los algoritmos son: la distancia

Manhattan [6] o Euclidiana [7]. Estas heuŕısticas trabajan con distancias y referencias

entre dos puntos distintos que constan de una x y una y, por lo que en este caso que el

estado inicial y el estado final van determinados por el valor de una variable que solo

indica cantidad, no son válidas.

Al no encontrar ninguna heuŕıstica clásica que pudiera ser empleada para este

planteamiento del juego, se han creado distintas heuŕısticas con diferentes operaciones

matemáticas básicas.

Las heuŕısticas que se han planteado son las que se pueden observar en la Figura

4.25. En la primera se hace una división por 2 de la cantidad de comida que queda en
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dicho estado. En el segundo caso una multiplicación por 2, en la heuŕıstica tercera una

ráız cuadrada, en la cuarta dicha cantidad por la potencia de 2 y la potencia de 3 en

el quinto caso. Una ráız cuadrática de la cantidad de comida entre 2 y la potencia de

2 del valor entre 2.

Figura 4.25: Heuŕısticas para la búsqueda informada

Una vez finalizada la implementación de la IA para este juego, falta fusionarla con

la interfaz. Para ello, se genera un vector con los distintos pasos a tomar según el

camino óptimo. Luego, se introduce en el método run del fichero game.py. Como se

hab́ıa comentado, en este método se consideran todos los agentes, por lo que se tiene

que comprobar en cada iteración si es el Pac-Man, y si lo es consultar una posición

del vector para saber la acción que se debe tomar e incrementar el contador del ı́ndice

del vector en uno. Si el ı́ndice del agente es 0 se sabrá que es el Pac-Man y sino será

un fantasma. El código del fantasma ha sido modificado para que funcione de manera

aleatoria, en cada momento se observará qué posiciones son legales desde su estado

y se cogerá una de todas las acciones válidas. En el run se pueden ver dos maneras

de juego distintas, en el caso del Pac-Man las acciones que se van a realizar se saben

antes de iniciar la interfaz, en cambio, el fantasma tiene poder de tomar una decisión

en tiempo real, en el momento que es su turno, por lo que se comprueba su posición y

se decide. Esta lógica de tiempo real para el Pac-Man va a ser trabajada en un futuro,

para que cuando vaya a tomar una decisión, se valore si hay un fantasma cerca es un

peor estado.

Otros aspectos que no teńıan que ver con la dotación de IA eran que en algunos

aspectos el código que se planteaba resultaba complejo de comprender, por lo que,

tras ver que sobraban muchos métodos e incluso clases, también se realizó una
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reestructuración y reorganización del código y una limpieza, eliminando aquello que

no fuera necesario.

Además, añadir que el código de por śı, de la base que se part́ıa, teńıa errores para

poder ser ejecutado con un compilador de Python de versión 3.7 o superior, pero no

para la 2.7. Para que a los alumnos no les genere ningún problema la versión con la cuál

trabajar, se ha planteado un código que puede ser compilado tanto con una versión de

2.7 que está en sus últimas etapas, hasta la versión más actual que es la 3.10 [35].

El código que se ofrecerá a los alumnos, se encuentra disponible en un respositorio

de GitHub. GitHub es una plataforma de desarrollo colaborativo para alojar proyectos

utilizando el sistema de control de versiones Git [54]. El enlace para visitarlo es el

siguiente: https://github.com/vircas/Pac-Man-EUPT

4.4. Resultados o pruebas

Una vez se ha llevado a cabo toda la implementación del código, se procede a ver

que algoritmo se adapta mejor al juego dependiendo de cada laberinto, ya que no se

garantiza que un algoritmo funcione igual de bien para todas las configuraciones. Por

ello, se van a plantear dos laberintos, distintos para todos los algoritmos de búsqueda,

con el objetivo de analizar su comportamiento y ver cuál puede ser mejor en cada caso.

Los laberintos a analizar vaŕıan en su tamaño uno un poco más grande y con más

cantidad de comida (ver Figura 4.26), caso 1 y otro de un tamaño más pequeño y

menos comida, como se puede observar en la Figura 4.27, caso 2.

Figura 4.26: Diseño del laberinto para el caso 1

Los resultados obtenidos para los distintos algoritmos de búsqueda en el caso 1,

son los que se pueden ver en la Tabla 4.2. Se puede observar que el camino con menor

pasos conseguidos es de un total de 18, y se ha obtenido con los algoritmos: breadth

first, uniform cost, A* con la heuŕıstica 1, 3, 4, 5, 6 y 7. Siguiendo con los que han

conseguido un camino óptimo con un menor número de pasos, cabe destacar que los
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Figura 4.27: Diseño del laberinto para el caso 2

que han hallado este camino en un menor número de nodos, tanto expandidos como

generados, ha sido el A* con las heuŕısticas 4 y 5. Éstas empleaban la potencia de

2 y 3 sobre el valor del estado actual. Se procede a realizar esta operación con una

potencia distinta sobre el mismo escenario para ver como evolucionan los datos. Se

aplican potencia de 4, 5 y 10. Para estos casos el camino óptimo son los mismos pasos,

pero los nodos generados son más siendo 30 los expandidos y 58 los generados para los

3, por lo que no se puede afirmar que todas las potencias obtienen un buen resultado

sino que solo han sido conseguidos buenos los mejores resultados con la potencia de 2

y 3.

En el caso del camino óptimo encontrado con un mayor número pasos ha sido depth

first, aunque los nodos expandidos o generados no hayan sido tantos. Si se realiza una

reflexión, es mejor el breadth first que el depth first. Uno ha encontrado un camino

óptimo con un menor número de pasos, pero el otro ha hallado un camino en una

menor cantidad de nodos. Para poder saber cuál es mejor, se debe plantear qué criterio

se tiene en consideración. De igual manera, este criterio no afecta si se compara el depth

first con el de A* de heuŕıstica 4 o 5 porque ambos han conseguido un resultado mejor

en todos los aspectos.

Los resultados del algoritmo greedy a excepción del primero, se han mantenido en

todos los parámetros para las distintas configuraciones.

Los resultados obtenidos para los distintos algoritmos de búsqueda en el caso 2, son

los que se pueden ver en la Tabla 4.3.

Este se trata de un caso más sencillo, porque es más pequeño, solo hay 3 comidas

y estas están en una ĺınea recta. El camino óptimo, de un total de 6 pasos, es obtenido

por todos los algoritmos menos por el depth first, y greedy con la heuŕıstica 1. Los

mejores resultados han expandido 6 nodos y 15 generados, por los algoritmos que

emplean heuŕısticas, concretamente greedy con las heuŕısticas 2, 3, 4, 5 y 6, y A* con

las heuŕısticas 4 y 5. Resulta llamativo que A* con las heuŕısticas 4 y 5 vuelven a ser
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Algoritmo Total pasos solución Nodos expandidos Nodos generados
BREADTH FIRST 18 6372 7269
DEPTH FIRST 30 35 72

UNIFORM COST 18 6266 7176
GREEDY H1 20 46 78
GREEDY H2 21 30 60
GREEDY H3 21 30 60
GREEDY H4 21 30 60
GREEDY H5 21 30 60
GREEDY H6 21 30 60
GREEDY H7 21 33 63

A* H1 18 4687 5654
A* H2 19 424 709
A* H3 18 4138 5162
A* H4 18 30 58
A* H5 18 30 58
A* H6 18 5166 6094
A* H7 18 32 60

Tabla 4.2: Resultados algoritmos de búsquedas caso 1

Algoritmo Total pasos solución Nodos expandidos Nodos generados
BREADTH FIRST 6 29 48
DEPTH FIRST 8 23 30

UNIFORM COST 6 21 39
GREEDY H1 10 18 33
GREEDY H2 6 6 15
GREEDY H3 6 6 15
GREEDY H4 6 6 15
GREEDY H5 6 6 15
GREEDY H6 6 6 15
GREEDY H7 6 22 30

A* H1 6 12 24
A* H2 6 6 15
A* H3 6 11 21
A* H4 6 6 15
A* H5 6 6 15
A* H6 6 18 33
A* H7 6 8 21

Tabla 4.3: Resultados algoritmos de búsquedas caso 2

unos de los que ofrecen el mejor resultado con un menor número de nodos expandidos

y generados.

El laberinto que se expone en la Figura 4.28, no ha sido resuelto todav́ıa ya que para

el algoritmo breadth firts lleva más de un d́ıa en ejecución y todav́ıa no ha finalizado,
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en una hora se expandieron alrededor de 50.000 nodos y de un total de 54 comidas en

el laberinto, el nodo que más cerca está de la meta teńıa todav́ıa 37 comidas.

Figura 4.28: Diseño del laberinto smallClassic

En el enlace que se muestra a continuación, se puede observar una ejecución del

Pac-Man con los distintos algoritmos y heuŕısticas para el caso 1: https://drive.

google.com/file/d/1ru8GvEmJu0t2o_EwVeZTXDZraXM6v-re/view?usp=sharing.
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5. Accesibilidad y Usabilidad

Este apartado se centra en los distintos parámetros de accesibilidad y usabilidad

que han sido cumplidos y considerados para el proyecto llevado a cabo.

5.1. Accesibilidad

Se entiende como accesibilidad la condición que deben cumplir los entornos,

productos y servicios para que sean comprensibles, utilizables y practicables por todos

los ciudadanos, incluidas las personas con discapacidad [12]. Hasta ahora lo que se ha

tenido en consideración hasta el momento han sido aquellos alumnos, que tendrán que

llevar a cabo la realización de la práctica. Se les da un código, el cual no han de entender

por completo, para la implementación de los algoritmos de búsqueda, ya que sigue una

estructura simple y está especificado en cada momento que han de emplear para poder

llevar a cabo su práctica. No es necesario que entiendan cada ĺınea para adquirir los

conocimientos que se pretende que interioricen y comprendan. Por eso, como se ha

comentado en el apartado de la propuesta, una de las tareas que se hicieron fue una

limpieza de código para una menor complejidad de éste. Aun aśı, la accesibilidad para

este proyecto es un tema que se encuentra todav́ıa en desarrollo y es una de las tareas

a realizar en el trabajo futuro.

5.2. Usabilidad

Con respecto a la usabilidad, hace referencia a la facilidad con que un usuario puede

utilizar una herramienta fabricada por otras personas para alcanzar un determinado

objetivo [43]. Para medirla en este proyecto, se va a hacer uso de los 10 principios de

usabilidad de Jakob Nielsen [24]. A continuación se va a llevar a cabo un análisis de

cada uno de los principios, para estudiar con cuántos de ellos cumple la aplicación.

Visibilidad del estado del sistema

Este principio dice que el diseño siempre debe mantener a los usuarios informados

sobre lo que está sucediendo, a través de comentarios apropiados dentro de un peŕıodo

de tiempo razonable.

Para el objetivo académico buscado śı se cumple el principio pero pensando en un

público más general quizás se podŕıa realizar otra versión explicando más algunos de los
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pasos que se van realizando, como:“se está estableciendo la inteligencia del PacMan.o

“se inicia el PacMan inteligente”.

Coincidencia entre el sistema y el mundo real

El segundo principio indica que el diseño debe hablar el idioma de los usuarios. Use

palabras, frases y conceptos familiares para el usuario, en lugar de jerga interna. Siga

las convenciones del mundo real, haciendo que la información aparezca en un orden

natural y lógico.

Todo lo que se comunica son frases u oraciones cortas que emplean palabras sencillas

sin complejidad alguna por lo que se cumple con el principio.

Control y libertad del usuario

Este principio se centra en que los usuarios a menudo necesitan echar marcha atrás,

porque no desean continuar, para dejar una acción no deseada sin tener que pasar por

un proceso prolongado.

Pensando en el alumnado, estos podrán parar el proceso de ejecución con el botón

cuadrado rojo, en el momento que deseen o utilizar el debugging para tener el control,

por lo que se cumple con el principio.

Consistencia y estándares

El cuarto principio plantea que no existan posibles ambigüedades para los usuarios

ya que no debeŕıan tener que preguntarse si diferentes palabras, situaciones o acciones

significan lo mismo.

Con respecto a las palabras son claras y concisas, como puede ser: “Ha ganado”.

Las situaciones, el usuario únicamente ve la pantalla del pacman y comienza el juego

solo. Con las acciones podŕıa haber confusión de que teclas son necesarias para poder

mover el PacMan aunque emplea las habituales que son las flechas o las letras WASD.

Prevención de errores

En este principio se abarca el tema de prevención de errores. Para prevenir distintos

errores se llevan a cabo comprobaciones de si se pasan objetos nulos o vaćıos. Ciertos

controles estaban ya realizados en el código original por lo que hay algunos que han sido

revisados, pero todav́ıa se siguen encontrando algún error y se subsana en el momento.

El código de implementación propia, comprueba en todo momento los parámetros y se

emiten mensajes de errores si es necesario ya que parte de este tema también es faena

de los alumnos como objetivo de la práctica para aprender. Por lo tanto, se cumple con

el principio.
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Reconocimiento en lugar de recuerdo

El sexto principio tiene como objetivo minimizar la carga de memoria del usuario

haciendo visibles los elementos, las acciones y las distintas opciones.

Para este caso una vez implementada la inteligencia, el usuario no requiere de

recordar nada a la hora de interactuar con la interfaz. Antes de introducir ese

conocimiento, solo tiene que recordar que teclas se emplean para poder mover el

PacMan si desean jugar a éste. Se cumple con el principio.

Flexibilidad y eficiencia de uso

Este principio abarca unos aspectos que no se pueden mejorar en el juego del

PacMan tal como está implementado ya que no permite una mayor flexibilidad o

eficiencia de uso porque no hay ninguna acción como para incrementar una mejoŕıa

en este aspecto. No se cumple con el principio.

Diseño estético y minimalista

El principio séptimo indica que las interfaces no deben contener información que

sea irrelevante o que rara vez se necesite. Cada unidad adicional de información en una

interfaz compite con las unidades de información relevantes y disminuye su visibilidad

relativa.

Solo se enseña información relevante mediante la interfaz que es el propio juego,

sin ningún mensaje adicional y los colores o figuras empleadas veńıan con el código

empleado y es el original. En la pantalla se ve el laberinto, el PacMan, la comida, las

capsulas y los fantasmas, todo necesario y nada en exceso. Se cumple con el principio.

Ayudar a los usuarios a reconocer, diagnosticar y recuperarse de errores

Para cumplir este principio se muestran mensajes de error expresados en un lenguaje

sencillo (sin códigos de error), indicando con precisión el problema y para el caso de

los alumnos no se sugiere dependiendo del error ninguna solución ya que es un objetivo

de la práctica que se peleen con el lenguaje, su código implementado y los algoritmos.

Se cumple con el principio.

Ayuda y documentación

Para finalizar, con el décimo principio a los propios alumnos se les aportará una

documentación que les permitirá tener una ayuda en la implementación del código,

pero para el uso de la interfaz no es necesario saber nada más que lanzar el programa,

que tal como es dado para cualquier versión de Python es ejecutable, y las teclas a

emplear para mover el PacMan. Se cumple con el principio.
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6. Licencia Software y Documental

Llegados a este apartado, se va a proceder a comentar tanto la licencia de software

como la licencia documental.

En cuanto a la licencia de software se va a emplear Berkeley Software Distribution

(BSD). Se trata de una licencia de software libre permisiva como puede ser OpenSSL

o la MIT License. Existen diferentes tipos de licencias, en el caso de este TFG se

ha utilizado la licencia “BSD modificada”, “BSD revisada”, “BSD-3” o “BSD de 3

cláusulas” [18].

Al igual que sucede en el mundo del software, se tienen que buscar formas de

garantizar las libertades asociadas al trabajo elaborado y su inviolabilidad futura. Para

garantizar que la libertad esté asociada al documento se buscan métodos, uno de ellos

es la licencia GNU Free Documentation License GFDL).

El propósito de esta Licencia es hacer que en el caso de este TFG sea “gratuito”

en el sentido de libertad: para asegurar a todos la libertad efectiva de copiarlo y

redistribuirlo, con o sin modificarlo, ya sea comercial o no comercialmente. En segundo

lugar, esta licencia preserva para el autor y el editor una forma de obtener crédito por

su trabajo, sin ser considerado responsable de las modificaciones realizadas por otros.

Es una especie de “copyleft”, lo que significa que las obras derivadas del documento

deben ser libres en el mismo sentido. Si por algún motivo se emplea este documento

y se modifica, debe realizar una serie de acciones indicadas en el sitio web oficial de

GNU [56].

Tampoco hay que olvidar que este documento, por defecto, está al amparo de

la licencia 7.3, por su inclusión en el Repositorio Institucional de Documentos de la

Universidad de Zaragoza: ZAGUAN.

Figura 6.1: Licencia de ZAGUAN
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7. Conclusiones y Trabajo Futuro

Para poder llevar a cabo este trabajo, han sido relevantes todas y cada una de las

asignaturas del GII, porque de manera indirecta la formación de cada una de ellas ha

hecho posible llegar a este punto con las capacidades y destrezas necesarias para lograr

finalizar este proyecto y la titulación, pero no todas han influido de manera directa en

éste. Las que śı lo han hecho son:

− Programación 1, Programación II, Tecnoloǵıa de la Programación para todo el

tema de la estructura, organización e implementación del código.

− Estructura de Datos y Algoritmos para el empleo de distintas estructuras de

datos para las fronteras de los algoritmos de búsqueda, además de generación de

árboles, grafos y recorridos de estos.

− Teoŕıa de la Computación, para la lógica de los estados y grafos del problema

planteado

− Inteligencia Artificial para todo el concepto de los agentes de resolución de

problemas.

− Sistemas de Ayuda a la Toma de Decisiones para la lógica de los estados del

Pac-Man.

Se puede confirmar haber cumplido con los objetivos propuestos para el TFG

exitosamente, que eran los siguientes:

1. Enfocar el estudio de la IA hacia la preparación del alumnado para determinar

cuándo un enfoque es adecuado para la resolución de un problema concreto,

identificando la representación apropiada, el mecanismo de razonamiento, aśı

como su implementación y evaluación.

2. Cumplir con el Objetivo de Desarrollo Sostenible (ODS) de Educación de Calidad,

en concreto 4.4. que consiste en aumentar considerablemente el número de

jóvenes y adultos que tienen las competencias necesarias, en particular técnicas

y profesionales, para acceder al empleo, el trabajo decente y el emprendimiento

[50].
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Este trabajo ha supuesto para mı́ un antes y un después de la carrera, marca el final

de una etapa que, aunque ha sido dura y ha requerido de un gran esfuerzo, ha merecido

la pena y además de adquirir mucho conocimiento técnico y aprender a buscarnos la

vida, para solventar posibles errores, como nos pasará en el d́ıa de mañana, también

me ha hecho crecer como persona y madurar más. El trabajo en una primera instancia

no créıa que fuera a tener la complejidad que, a d́ıa de hoy, una vez ha finalizado ha

supuesto.

La labor de investigación conllevó un tiempo, la que se requeŕıa encontrar si se

hab́ıa llevado a cabo antes esta idea y un código con una interfaz separable de la lógica

con la que se mov́ıan los distintos agentes.

El principal muro que ha supuesto este TFG para mı́ ha sido la lógica para dotar

de ı̈nteligencia al Pac-Man”, los algoritmos de búsqueda estaban claros, pero faltaba

por definir qué estados determinaŕıan que el juego no hab́ıa acabado todav́ıa y cuales

śı. Esto me supuso más de un quebradero de cabeza, sin exagerar pude estar dándole

vueltas durante 2 o más semanas sobre cómo podŕıa plantear este concepto. Cuando

teńıa cualquier rato libre el Pac-Man estaba dentro de mi cabeza, e incluso como no

dispońıa de un tiempo completo para ello, siempre que se me iban ocurriendo ideas me

lo apuntaba hasta que un d́ıa di con un posible enfoque de plantear que los estados

pudieran ir determinados por la cantidad de comida que quedará en el laberinto hasta

alcanzar la nada.

Tras tener todo algo más claro me dispuse a implementarlo, labor que tampoco

resultó ser sencilla ya que al partir de un código, sin apenas documentación. . . ( si

tanto nos insisten por la buena documentación en el grado. . . por algo será) resultó ser

más tediosa de lo que puede parecer, ya que hab́ıa mucho método sin sentido aparente

que encima la dificultaba. Por fin consegúı los parámetros necesarios para poder seguir

desarrollando la implementación y cuando pareció estar todo enfocado se cayó en la

cuenta de que, se necesitaba tener en consideración la posición del agente en cada

momento. Tras darle vueltas y parecer algo complejo, era tan sencillo como comprobar

solo la cantidad de comida para ver si se hab́ıa alcanzado el estado final y ya está. Pero

todav́ıa no funcionaba correctamente porque faltaba conocer cómo manejar la ubicación

de la posición en la que estaba la comida, algo que en un principio al no darle mucha

vuelta no se tuvo en cuenta. Tras añadir esto, se consiguió dotar de “inteligencia.al

Pac-Man.

Otro pequeño quebradero de cabeza fueron las heuŕısticas que se pod́ıan plantear

para un valor de un estado actual, ya que el estado final con un 0 mucha información

no pod́ıa aportar.
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Al final, se plantean operaciones matemáticas no muy complejas pero que llaman

la atención, ya que dan mejores resultados de lo esperado. Se buscará en un futuro

intentar darle un enfoque nuevo, planteando heuŕısticas más elaboradas.

Para finalizar con las conclusiones, comentar que la obtención de los resultados no

fue algo que requirió mucho tiempo y no se diŕıa que fue lo más complejo del trabajo

sino un análisis de distintos datos. Pero como siempre las he cuidado desde que entré

la carrera, considero que las memorias no son complejas sino costosas en tiempo a

invertir.

Dicho esto, la programación no resultó ser compleja sino la lógica detrás de todo

esto y la utilización de un código no propio con escasa documentación.

En lo que respecta al trabajo futuro. Se podŕıa centrar en:

− La actualización del proyecto para mejorarlo y mantenerlo usable con el paso del

tiempo, haciendo aśı las modificaciones necesarias para que pueda seguir siendo

usado con las nuevas versiones de Python publicadas en el repositorio de GitHub.

− Como modificaciones más espećıficas del código:

� La búsqueda de una heuŕıstica más acertada para este proyecto o algún

laberinto en concreto.

� En la búsqueda actual no hay adversarios porque la presión del fantasma no

se ha de tener en cuenta para la resolución del problema, pero se plantea una

nueva versión de futuro donde se lleve a cabo una implementación del juego,

pero con adversarios que seŕıa el PacMan contra los fantasmas. Para ello,

seŕıa empleado el algoritmo MINI-MAX, la Poda Alfa-Beta y/o funciones

de evaluación [31].

� La modificación del código para que si un fantasma está cerca o no en el

camino del Pac-Man se tenga en consideración y escoja un estado diferente.

� Conseguir que funcione para todas las versiones de Python, tratando de

solventar el error que produce la función lambda para las versión 3.10 en

Python.

− Mejorar la accesibilidad para los alumnos y crear una aplicación que pueda

ser usada por cualquiera, pero para ello hay que mejorar en mayor medida la

accesibilidad.

− Y, para finalizar, se pretende publicar este trabajo en un revista de educación de

impacto.
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Muchas gracias por haber llegado hasta aqúı. ¡Espero que te haya gustado mucho

mi trabajo!
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A. Enunciado de la práctica

En este anexo se va a dejar un boceto de lo que podŕıa ser el bolet́ın de prácticas

para los alumnos.

Esta práctica se corresponde con el Tema 2 de la asignatura, que a su vez está

basado en el Caṕıtulo 3 de la bibliograf́ıa básica (“Artificial Intelligence: A Modern

Approach, Chapter 3: Solving Problems By Searching”).

A.1. Objetivos de la práctica

La primera práctica de la asignatura se centrará en la resolución básica de problemas

mediante búsqueda por expansión de estados. Se estudiarán diferentes estrategias tanto

informadas como no informadas y se estudiará su eficiencia a la hora de resolver

problemas en entornos deterministas, completamente observables y estáticos.

Gran parte de los juegos para un solo jugador (sudoku, puzles, etc.) podŕıan caer en

esta categoŕıa, pero también otros problemas a resolver en los que se puedan definir de

forma ineqúıvoca los diferentes estados del sistema y las transiciones entre los mismos

mediante una serie finita de acciones.

A.2. Búsqueda no informada e informada

Los problemas de búsqueda siempre comienzan con un estado inicial del sistema,

y se centran en encontrar un estado final que satisface ciertas condiciones. Por tanto,

debemos definir para cada problema los siguientes parámetros:

− El estado inicial del sistema.

− Las posibles acciones que pueden producirse desde cada uno de los posibles

estados del sistema.

− El resultado de dichas acciones, es decir, a qué estado nos conduciŕıa una acción

dado un estado dado.

− Una función de coste, que asigna un coste a cada serie de acciones. Normalmente

se representa como g(n).
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− Un test para determinar si un estado es el final (también llamado meta u

objetivo).

El esquema general de un algoritmo de búsqueda aparece en la Figura 3.7

de la bibliograf́ıa, definida como TREE-SEARCH y GRAPH-SEARCH. La única

diferencia entre ellos es que GRAPHSEARCH incorpora una lista de estados visitados

(explorados) para evitar repeticiones, por lo que es más eficiente especialmente en

entornos con multitud de estados. Por ello, se usará este algoritmo como base para la

práctica:

Figura A.1: Descripción informal del algoritmo general de búsqueda en grafos

Existen diferentes variantes de este algoritmo, todas ellas basadas en pequeños

matices a la hora de elegir un nodo a expandir de la frontera de estados visitados.

Se puede hacer una primera división entre algoritmos de búsqueda no informada, o

informada:

− Búsqueda no informada (ciega): las estrategias no disponen de información

adicional sobre estados más allá de la proporcionada en la definición del problema,

por lo que sólo pueden expandir estados y distinguir entre estados objetivos y

no-objetivos. Dentro de esta categoŕıa se distinguen:

� Búsqueda primero en anchura (breadth-first): se expanden primero

los estados de un nivel antes de expandir los del estado siguiente.

� Búsqueda primero en profundidad (depth-first): se expanden primero

los estados de mayor nivel (los más profundos).

� Búsqueda en coste uniforme (uniform cost): se expanden primero los

estados con menor coste acumulado de acciones para llegar a él.
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− Búsqueda informada (heuŕıstica): se utiliza información propia del problema

más allá de la proporcionada en la definición. Se utiliza una función heuŕıstica,

normalmente denominada h(n), que estima el coste del camino más corto desde

el estado actual hasta el objetivo. Para que la heuŕıstica sea admisible, nunca

puede indicar un coste mayor que el real para algún estado. En esta categoŕıa se

incluiŕıan:

� Búsqueda voraz, avariciosa o primero el mejor (greedy or

best-first): se expanden primero los estados con el menor valor de la función

heuŕıstica, h.

� Búsqueda A*: se expanden primero los estados con el menor valor de la

suma del coste para llegar al estado más la estimación de alcanzar el estado

objetivo, es decir, f = g + h.

A.3. Problema a resolver

Para aplicar las estrategias de búsqueda, resolveremos el juego del Pac-Man, pero

no en el sentido de conseguir que pueda ganar todas las partidas, sino que se pueda

finalizar toda la comida del laberinto de la manera más óptima sin la presión generada

por parte de los fantasmas.

Figura A.2: Ejemplo de laberinto para el juego del Pac-Man

Se parte de un estado en el que el laberinto tiene un número indeterminado de

comida, la posición no influye de manera directa aunque como se verá será necesaria

para determinar los estados. Las acciones que se podrán llevar a cabo serán ir a la

derecha ’East’, ir a la izquierda ’West’, hacia arriba ’North’ y para abajo ’South’.

Por lo tanto, se debe tener en cuenta que aunque el objetivo es finalizar toda la

comida, la posición del Pac-Man será relevante para tener en cuenta donde se encuentra

y comprobar si en dicha casilla hay comida o no. Ya que si la hay se podrá decrementar
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el valor de la comida restante en el laberinto y estar un paso más cerca de alcanzar el

objetivo final que seŕıa que no quedase nada de comida en el laberinto.

El coste de una solución (función g) se considerará igual a cada desplazamiento

llevado a cabo, es decir, cuando el Pac-Man se mueve a una casilla, cuenta como 1.

A.4. Ficheros de la práctica

La práctica está compuesta por los siguientes ficheros:

− datastructures.py: contiene estructuras de datos útiles en Python para la

realización de los algoritmos (Stack, Queue, PriorityQueue).

− search.py: contiene la estructura básica del proceso de búsqueda no informada e

informada. Sin embargo, algunas de las funciones no tienen el código necesario

para que el algoritmo funcione correctamente. Por tanto, cada alumno debe

rellenar el código de las siguientes funciones: uninformed search, breadth first,

depth first, uniform cost, informed search, greedy, a star, h1 u otras funciones

heuŕısticas.

− pacmanState.py: contiene la clase que representa cada estado del problema. Cada

alumno debe rellenar el código de las siguientes funciones: succ, next states

− pacman.py: contiene el programa principal de la práctica, que hace llamadas a

los diferentes algoritmos de búsqueda. En este solo se tendrán que modificar los

parámetros de entrada como qué tipo de agente de Pac-Man es o el escenario

que se quiere emplear, todo se puede cambiar en el main de dicho fichero. Si se

desea que no haya fantasmas que interrumpan la ejecución del Pac-Man, habrá

que modificar en el método runGames, una variable como se ha indicado el

código denominada ghosts. Con respecto al laberinto que se desea resolver con

el Pac-Man se recomienda que no se empiece con uno muy grande ya que puede

tardar incluso d́ıas la resolución de alguno de estos.

− graphicsDisplay,py, graphicsUtils.py, layout.py: proporcionan una interfaz gráfica

para poder ver la solución encontrada con alguno de los algoritmos de búsqueda.

De estas solo quizás es necesario consultar los parámetros de los que consta

layout.py.

− game.py, gameState.py, agents.py: implementan la lógica necesaria para que el

Pac-Man se mueva o consuma la comida
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A.5. Entrega de la práctica

Deberán completare las siguientes tareas para considerar la práctica entregada:

1. Completar el código Python necesario para que los algoritmos de búsqueda

no informada e informada funcionen correctamente, siguiendo el algoritmo

GRAPH-SEARCH. Además, deberán proponerse, al menos 2 funciones

heuŕısticas diferentes y admisibles para ser utilizadas en los algoritmos de

búsqueda informada. La eficiencia de las funciones heuŕısticas formará parte de

la evaluación de la práctica.

2. Estudiar la optimalidad y eficiencia de los algoritmos en un laberinto concreto

que no expanda ni genere muchos nodos, comparando la longitud de las soluciones

encontradas y el número de nodos expandidos y generados por cada algoritmo.

Discutir los resultados.

3. Estudiar el comportamiento de los algoritmos cuando se escoge un laberinto más

grande del ya escogido o con una mayor cantidad de comida.

Todas estas tareas se llevarán a cabo en parejas o de manera individual.

La práctica se entregará a través del Anillo Digital Docente (ADD), para lo cual

se deberá realizar una memoria indicando cómo se ha realizado la implementación y

los resultados obtenidos por los diferentes algoritmos, y se deberá entregar un fichero

comprimido con el código de la práctica y con la memoria realizada en formato PDF.

La fecha ĺımite de entrega será el 22/11/2022.

A.6. Recursos adicionales

Explicación del juego del Pac-Man: https://pacman.fandom.com/wiki/Pac-Man_

(game)
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