Universidad
Zaragoza

[L1]]]
U

1542

Trabajo Fin de Grado

Inteligencia Artificial académica moderna

Modern academic Artificial Intelligence

Autora

D? Virginia Casino Sanchez

Directora

Dra. D2 Piedad Garrido Picazo

Escuela Universitaria Politécnica de Teruel, Universidad de Zaragoza
2022

Repositorio de la Universidad de Zaragoza - Zaguan
http://zaguan.unizar.es

Tabla de Contenidos

Lista de Figuras

Lista de Tablas

1. Introduccion y Objetivos
2. Contextualizaciéon

3. Estado del Arte
3.1. Parte investigacion

3.2. Parte académica

4. Propuesta Pac-Man - EUPT
4.1. Analisis y Disefio
4.2. Herramientas tecnologicas empleadas
4.3. Implementacién

4.4. Resultados o pruebas oL

5. Accesibilidad y Usabilidad
5.1. Accesibilidad
5.2. Usabilidad e

6. Licencia Software y Documental
7. Conclusiones y Trabajo Futuro
8. Bibliografia

Anexos

A. Enunciado de la practica
A.1. Objetivos de la practica L.
A.2. Busqueda no informada e informada

A.3. Problema a resolver

10
10
17
18
39

43
43
43

46

47

51

57

A.4. Ficheros de la practica
A.5. Entrega de la practica

A.6. Recursos adicionales

Lista de Figuras

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.

6.1.

Paquetes del codigo original 12
Posibilidad de parametros a pasar por consola en el juego del Pac-Man 13
Algoritmo voraz desarrollado por la Universidad de Berkeley 16
Paquetes del cédigo a desarrollar 17
Ejemplo PacMan estado inicial 0. 20
Ejemplo PacMan estado final L. 20
Ejemplo PacMan con cuadricula 21
Ejemplo PacMan grafo o 0oL 21
Ejemplo algoritmo primero en anchura 26
Ejemplo algoritmo primero en anchura recorrido 26
Ejemplo algoritmo primero en profundidad 27
Ejemplo algoritmo primero en profundidad recorrido 27
Ejemplo algoritmo coste uniforme 28
Ejemplo para algoritmo de bisquedas informadas 29
Diseno de la interfaz "mediumClassic.lay” 31
Matriz de la comida para la interfaz "mediumClassic.lay” 32
Método getPossibleActions en Actions, game.py 32
Estado del Pac-Man oo 33
Método next_states 34
Método suce L 34
Método de bisqueda no informada 35
Método de busqueda informada 36
Método expand 36
Algoritmos de busqueda informada y no informada 37
Heuristicas para la bisqueda informada 38
Diseno del laberinto paraelcaso 1. 39
Diseno del laberinto paraelcaso2. 40
Diseno del laberinto smallClassic 42

Licencia de ZAGUAN 46

A.1. Descripcion informal del algoritmo general de bisqueda en grafos . . . 59

A.2. Ejemplo de laberinto para el juego del Pac-Man 60

Lista de Tablas

4.1. Caracteristicas del entorno PyCharm . . .
4.2. Resultados algoritmos de busquedas caso 1

4.3. Resultados algoritmos de busquedas caso 2

Agradecimientos

En esta pagina de mi TFG, queria dedicar unas palabras a todas esas personas
que han estado en mi vida en estos 4 tltimos anos correspondientes a mis anos de

universidad en este grado de Ingenieria Informatica.

No han sido unos anos faciles, pero si que lo han sido entretenidos porque salgo de
esta carrera muy satisfecha de haberla elegido, y, las personas que me han acompanado
en estos anos han hecho que fuera mas divertido. Gracias a mi familia y seres queridos
que me han apoyado, han estado conmigo en todo momento, han confiado en mi, mucho
mas de lo que a veces hacia yo misma, y no me han soltado nunca de la mano, al igual
que mi directora de TFG, Piedad Garrido que de igual manera a aguantado todos mis
agobios como una mas de mi familia. Ademas, sin todas las nociones que he aprendido
a lo largo de estos anos tampoco hubiera sido posible estar hoy aqui, por ello, gracias
a todos mis profesores que me han inculcado y compartido todo sus conocimiento y

sabiduria.

Como he dicho, acabo esta carrera muy contenta y satisfecha por lo que he aprendido
tanto de conocimientos académicos, como de la vida, y lo que ha supuesto para mi, por
las personas que he conocido y por las que me demuestran dia a dia que van a estar

siempre para mi ayudando y apoyandome en todo momento.

Resumen

En este documento se presenta un Trabajo Fin de Grado (TFG) con un enfoque
centrado en la docencia, donde se lleva a cabo el desarrollo de una préctica, sobre
agentes basados en objetivos, para que los alumnos la puedan realizar en la asignatura
de Inteligencia Artificial (IA) en el Grado de Ingenieria Informatica (GII) impartido

en la Escuela Universitaria Politécnica de Teruel (EUPT).

El objetivo que se desea conseguir con la practica que se ha realizado es preparar
al alumnado para determinar cuando un enfoque es adecuado para la resolucién de
un problema concreto, identificando la representacion apropiada, el mecanismo de

razonamiento, asi como su implementacién y evaluacion.

Se lleva a cabo desde cero, empezando por la labor de investigacién de realizar
algo que todavia no existe, la biisqueda de una interfaz 1til para no destinar tiempo a
algo innecesario, la implementacion sobre el cédigo de la interfaz de los algoritmos
de busqueda exigidos en la asignatura y, pardametros necesarios para la dotacién
de la inteligencia artificial al agente y alguna prueba o resultado sobre el cédigo
implementado. Se emplea el juego del Pac-Man para que sea mas amena y entretenida
la labor del estudiante al no tener que programar algo “sin sentido”, sino que se trata

de un videojuego lo cual suele resultar mas atractivo.

Palabras claves

Agente basado en objetivos, Gamificacién, Inteligencia Artificial (IA), Pac-Man,

Heuristica

1. Introduccién y Objetivos

El presente Trabajo Final de Grado (TFG) tiene como objetivo enfocar el estudio de
la Inteligencia Artificial (IA) hacia la preparacién del alumnado para determinar cuando
un enfoque es adecuado para la resolucion de un problema concreto, identificando la
representacion apropiada, el mecanismo de razonamiento, asi como su implementacién
y evaluacion. El principal problema a abordar se centra en conseguir que el alumnado
no vea la A como una materia aislada sino integrada en el resto de disciplinas de su
formacion, gracias a la elaboracién de una serie de novedosos recursos Tecnologias de
Informacién y Comunicacién (TIC) de apoyo, que se prevén obtener como resultado

de este trabajo académico.

El nicleo central de este TFG radica en la implementacién de una IA en un juego a
resolver mediante los distintos algoritmos de busquedas ensenados en dicha asignatura
en la Escuela Universitaria Politécnica de Teruel (EUPT) [29, 30], que se basan en
agentes por objetivos que se desplazan sobre un espacio de estados. Concretamente
los algoritmos empleados en este proyecto son de busqueda ciega o no informada
(primero en profundidad, coste uniforme y primero en anchura) [29] e informada, que
a diferencia de las otras aplican conocimiento sobre cémo llegar al objetivo y hacerla
més eficiente (voraz y A*) [30]. Este conocimiento viene dado por una funcién que
estima la “bondad”de los distintos estados, dando preferencia a los que son mejores,

segun el criterio de una funcion heuristica.

La eleccion del uso de un juego para explicar estos algoritmos a los alumnos, consiste
en darle un enfoque distinto a la carrera, ya que los videojuegos no es un tema que
se aborde mucho en la EUPT y es una posible salida laboral mas, y, ademés de hacer
el proceso mas entretenido y enriquecedor para ellos, porque al programar un juego el
atractivo es mayor. El juego a abordar es el clasico Pac-Man, un personaje formado por
un circulo amarillo con boca que ha de comerse toda la comida disponible dentro de un
laberinto azul con fondo negro. Tras alcanzar el objetivo avanza de nivel, pero en todo
momento hay una serie de fantasmas que son los enemigos del Pac-Man y le quitaran
vidas cada vez que le alcancen, asi hasta que o bien el Pac-Man se quede sin mas vidas
o consiga pasarse todos los niveles [53]. También existen unas capsulas que cuando el

Pac-Man se las come, es invencible y por mucho que se le acerque un fantasma éste no

le hace dano, sino que se lo come. Eso si, una vez se ha comido un fantasma, con el
efecto de una de estas, deja dicho fantasma de estar asustado y puede volver a quitarle

vidas al Pac-Man.

En este trabajo se ha llevado a cabo el desarrollo y creacion de la practica en
cuestién que deberian realizar los alumnos para interiorizar y poder llevar a cabo
un proceso de mayor comprension e interiorizacion de algunos de los algoritmos de
busquedas explicados en la asignatura de IA. Para ello, primero se ha llevado a cabo
una investigacion de si es cierto que mediante los videojuegos los alumnos adquieren
mejor los conocimientos, ademas de para conocer todo lo que se ha realizado hasta
hoy. Luego se analizan ciertos proyectos ya disponibles en Internet, por otras personas,
para dotar a sus Pac-Mans de inteligencia, pero como se vera no siguen los mismos
criterios que en este proyecto. Posteriormente, se expone la propuesta de Pac-Man, con
su analisis y diseno, asi como su implementacion que parte de un cédigo ofrecido por
la Universidad de Berkeley y los resultados obtenidos. Méas adelante se exponen los
temas de accesibilidad, usabilidad, licencias software y documental. Y, para finalizar,
las distintas conclusiones y el trabajo futuro. En el apartado de anexos, se encuentra
un posible borrador de lo que podria ser el enunciado de la practica a mostrar para los

alumnos.

En definitiva, los principales objetivos del TFG son:

1. Enfocar el estudio de la TA hacia la preparacién del alumnado para determinar
cuando un enfoque es adecuado para la resoluciéon de un problema concreto,
identificando la representacién apropiada, el mecanismo de razonamiento, asi

como su implementacion y evaluacion.

2. Cumplir con el Objetivo de Desarrollo Sostenible (ODS) de Educacién de Calidad,
en concreto 4.4. que consiste en aumentar considerablemente el nimero de
jovenes y adultos que tienen las competencias necesarias, en particular técnicas

y profesionales, para acceder al empleo, el trabajo decente y el emprendimiento

[50].

2. Contextualizacion

Este apartado ha sido anadido para explicar un poco el propdsito del porqué he
elegido este proyecto como TFG. Mi idea desde muy pequena era ser profesora pero
claro nunca se nos ocurre pensar en un profesor de pequenos y pensar en los de la
universidad. Por lo que, cuando entré en la carrera, mis disposicién fue ya intentar
buscar el poder acabar dando clases de lo que aprendia en ésta. Piedad, mi directora
de TFG, al conocer mis pensamientos, me planteé el poder llevar un proyecto, desde el
punto de vista del docente: desarrollar un dosier con la practica que tus alumnos han

de realizar.

El proyecto que se ha llevado a cabo no ha pretendido ser una implementaciéon de
inteligencia artificial donde el Pac-Man fuera capaz de resolver todos los laberintos sin
ser comido. Si se ha dotado al Pac-Man de inteligencia, pero desde un nivel muy bajo
que emplea uno de los conceptos mas basicos y simples de la inteligencia artificial como
son los algoritmos de busqueda, por lo tanto, no porque sea racionalmente inteligente
va a hacerlo todo y lo va a hacer perfecto, todo lo contrario. Se pretende que yo y los
alumnos podamos ver que practicamente cualquier juego puede emplear inteligencia
artificial con los algoritmos de busqueda y que no todas las implementaciones van a
ser las mejores, ya que no daran los mismos resultados para el mismo juego e incluso

para el mismo laberinto, cada uno es un mundo.

La implementacién del software parte de conocimientos basicos enseniados en la
EUPT, como las estructuras de datos o grafos, esto no es un tipo de programacion al
uso sino que son pequenos programas, donde unos agentes ejecutan una idea segun los
algoritmos que le han sido indicados. Estos tratan de buscar el camino mas eficiente
posible, y aunque hay veces que se creen haberlo encontrado, hay alguno mas listo que

encuentra uno mejor al suyo.

3. Estado del Arte

3.1. Parte investigacion

En este apartado se expone el estado del arte de una seleccion de articulos de la
bibliografia donde se recoge la labor de investigacion llevada a cabo sobre el videojuego
del Pac-Man, con distintas implementaciones que tienen en comun la utilizacién de
la TA. Aclarar que todas las veces que se nombra agente, se estd denominando, al
protagonista del juego Pac-Man que suele estar bajo el control de los usuarios o los

posibles fantasmas en alguno de los casos.

Primero, se van a comentar una serie de articulos que plantean un uso de algoritmos

de busqueda para llevar a cabo la dotacién de dicha “inteligencia”del agente.

En el articulo [20], se plantea el uso de algoritmos de busqueda para recorrer el
camino mas eficiente con el agente, con la finalidad de alcanzar la mayor cantidad de

comida.

El proyecto [51], realiza 4 experimentos en base a distintos algoritmos de biisqueda
centrado en el juego del Pac-Man para luego poder realizar una comparacién en

términos de rendimiento, integridad y optimizacion.

En el [58], se lleva a cabo la implementacién de varios algoritmos de busqueda de
arboles avanzados con el objetivo de poder realizar una comparacién entre estos en
base al juego del Pac-Man. El modelo aplicado que es mas 6ptimo, para este juego, es

el aprendizaje por refuerzo basado en modelos.

En el articulo [39], se expone un ejemplo de un algoritmo de bisqueda en arbol
puesto en practica sobre el juego del Pac-Man, empleando la técnica de captura de

pantalla y algoritmos evolutivos aplicados sobre el agente.

El articulo [10], se centra concretamente en el algoritmo de 1égica difusa haciendo
uso del Q-learning. Gracias a este enfoque se logra poder abordar los aspectos no
deterministas del juego del Pac-Man y encontrar un auto-aprendizaje o una estrategia
adaptativa, para el agente, en base a unos valores como la distancia a la pildora mas

cercana o distancia al fantasma mas cercano.

Sobre el juego del Pac-Man, se plantean dos formas para controlar el agente en
el articulo [26]. Una son las reglas bien definidas disenadas por humanos, basadas
en el algoritmo de Dijkstra y la segunda es el empleo de la computacién evolutiva,
mediante las redes neuronales. Ambas maneras pueden coexistir e incluso ofrecen un

mayor rendimiento que por separado.

En el articulo [3], también es empleado el algoritmo de Dijsktra que sigue unas
reglas ademas de un algoritmo de busqueda de arboles para la implementacién del

agente y la ayuda de una cuadricula grafica base para representar el estado del juego.

El [14], se centra en el juego del Pac-Man enfocado con un propésito educativo para
ayudar a los estudiantes a realizar una comprensién de los algoritmos de bisqueda de
la inteligencia artificial. Los resultados que se obtuvieron fueron excelentes y afirman
que el empleo de un juego para el aprendizaje de conceptos tedricos hace mas sencillo

y ameno el proceso, ademas, de facilitar su comprensién.

El [11], se centra en el &mbito escolar, como el anterior articulo y en el juego del
Pac-Man, donde se plantean 4 enfoques distintos que son: buisqueda en el espacio de
estado, busqueda multiagente, inferencia probabilistica y aprendizaje por refuerzo. Para
ello los alumnos han de hacer uso de heuristicas de biisqueda, funciones de evaluacién
y caracteristicas. El mero hecho de realizar el trabajo para el estudiante mediante un

videojuego, queda demostrado que resulta de mayor provecho y entusiasmo para ellos.

El articulo [44], también se centra en realizar el proceso de adquisiciéon de
conocimientos para el alumnado de A, mediante un juego, concretamente el Pac-Man.
En este caso abarca los algoritmos genéticos de optimizacion de parametros. Destacar
que hace hincapié en que para que un alumno comprenda mejor los algoritmos y sus
diferencias entre ellos, es mejor trabajar siempre sobre el mismo marco de trabajo, ya
que hace que se percaten menos de las posibles diferencias a notar si no se realiza de

esta manera.

Al igual que se plantea implementar TA en el agente o los fantasmas, en el articulo
[41], se propone el uso de ésta para generar distintos laberintos. Se realiza mediante un

algoritmo genético en funcién de aptitud y propone un fin para el juego.

De la misma forma que el articulo anterior, la programacién genética es en mas
casos empleada para la implementacién de una IA en el agente, como ocurre en el

articulo [1].

Existen otras variantes de busqueda, en &rbol, mediante el algoritmo de
Monte-Carlo. En los articulos [17, 48, 23, 28, 2, 16, 42], se plantea tanto para el

agente como para los fantasmas en tiempo real en algunos casos. Incluso se abordan

distintos comportamientos para el agente, pudiendo ser prioridad la puntuacion mas
alta o solo alcanzar el siguiente. Para el caso de los fantasmas se trata de predecir los
movimientos de los agentes para poder alcanzarlo mediante esta técnica, adaptando la
capacidad personal del jugador de manera proporcional al nivel del desafio. A pesar
de proporcionar buenos resultados y ser un algoritmo muy eficiente, estos requieren de
una [A mas curanzada, ya que la asignatura de IA del GII de la EUPT es bésica y sélo
cubre 6 créditos, por lo que no se tendran en cuenta para la implementacion del juego

en la practica a realizar.

Una alternativa menos vista en los articulos encontrados, es la implementacion
del agente mediante un modelo de mapa de influencia, como se lleva a cabo en el
articulo [55]. Los resultados que se obtienen a pesar de ser buenos, no son los mejores
comparados con otros articulos y dio problemas tanto el modelo como el software a la

hora de su implementacién.

Aligual que en el articulo anterior se exponia una nueva alternativa no tan frecuente
como otras, en éste [57], ocurre de manera similar. Se hace uso de una malla de
navegacién (NavMesh) para optimizar el problema de la bisqueda. Destaca por su
gran area de implementacion, especialmente en el ambito de los juegos. El método
hace uso del algoritmo A* y un motor de juego Unity 3D. Este algoritmo dota de
inteligencia a 3 de los fantasmas, y se noté una diferencia con respecto a los restantes

a la hora de las pruebas.
Otra implementacion para el agente seria mediante un aprendizaje automaético.

En el [27], se realiza una implementacién de aprendizaje automdtico para los
fantasmas, modificando el camino de estos, pudiendo hacer un mejor o peor movimiento
dependiendo del nivel en el que se encuentre un jugador. Pero, también se aplica dicho
aprendizaje automadtico al agente, con tres niveles de juego (principiante, intermedio y
experto), para poder llevar a cabo las suficientes pruebas para determinar un modelo

de aprendizaje adecuado a los criterios.

El articulo [4], se centra en el aprendizaje mediante refuerzo a través de algoritmos
de extraccién, que producen entradas para una red neuronal QQ-learning. Los resultados
obtenidos son muy buenos a pesar de las limitadas entradas que tiene la red neuronal,

e incluso, Pac-Man es capaz de desenvolverse en distintos laberintos.

El articulo [37], se centra también en el aprendizaje automdtico por refuerzo
mediante el uso de redes neuronales profundas, proponiendo un nuevo método
empleando Deep Neuronal Network (DNN). En otros casos, como el articulo [13],

se emplea una maquina de estados finitos simples y un conjunto de reglas para la

6

aplicacién de un aprendizaje incremental basado en la poblacién (PBIL) para ajustar

los parametros del agente.

Al igual que los anteriores articulos, el articulo [45] se centra en el paradigma del
aprendizaje automatico por refuerzo, buscando una optimizacién del comportamiento
para reducir la duracién y maximizar el rendimiento del aprendizaje, mediante un
nuevo algoritmo que realiza una extracciéon de informacién 1til de demostraciones
de expertos y lo emplea para su mejora. Esta aplicacién demuestra una evidencia

estadistica significativa de la mejora en el rendimiento final.

En el articulo [8], se plantea un aprendizaje automdtico unicamente para un
fantasma. De tal manera, que mediante el uso de redes neuronales cuyas entradas
son la posicion y el estado del Pac-Man y cuya salida es la direcciéon a donde debe
moverse dicho fantasma, se puede realizar al final una comparaciéon entre el fantasma
con conocimientos y los restantes, que son controlados por el guién tradicional, ya que

el primero aprende correctamente y juega mejor que los otros fantasmas.

Uno de los principales desafios en la IA es lograr, en la mayor medida posible,
simular el comportamiento humano. En el articulo [22], se lleva a cabo el desarrollo
de jugadores virtuales mediante el uso de la neuroevolucion. Esto es una forma de
aprendizaje automatico que hace uso de algoritmos evolutivos para entrenar redes
neuronales artificiales. Se emplea el juego del Pac-Man para poder comparar dos
metodologias: datos sin procesar extraidos del rastro humano y agregar niveles de
juegos mas elaborados. En base a unos parametros de medicion, como la puntuaciéon
final se evaltia la importancia de estas caracteristicas, para poder imitar de la mejor

manera el juego humano.

En otros casos, se hace uso del Webcam Pacman, un navegador de juegos donde
se puede jugar al Pac-Man, empleando un modelo de aprendizaje automatico. El
conocimiento es aprehendido de un conjunto de datos de entrenamiento y se transfiere

a otro modelo. Esta manera es mencionada y analizada en los articulos [46] [5].

Actualmente existen competiciones para que, sobre un tema, se aplique la IA y
la implementacién de esta sea la més 6ptima y eficaz. El articulo [40], se centra en
una competicion para el juego del Pac-Man donde los participantes deben desarrollar
controladores para el agente o para los fantasmas interactuando directamente con el
motor de éste. Se recogen en él alguna de las revisiones de los trabajos previos y puesta

en marcha, que se presentan a esta competencia.

3.2. Parte académica

En esta parte del trabajo se pretende mostrar la novedad o la diferencia de lo que
ya esta realizado y se puede encontrar por la web y, el enfoque que se quiere dar al
proyecto para que pueda ser empleado en un ambito académico. Se ha elegido un tema
tan popular para realizar este trabajo, que tras elaborar el estado del arte se llego a
pensar que podria estar muy machacado y estudiado, pero no fue asi, tal y como se va

a explicar a continuacién.

Aunque haya muchas fuentes, cédigos y muchas implementaciones para dotar de TA
al Pac-Man, no se ha llegado a encontrar ninguna que trabaje desde el bajo nivel desde el
que se parte en este caso. Hay mucho repositorio en la plataforma Github que han dado
soluciones al codigo inicial ofrecido por la Universidad de Berkeley sin dicha inteligencia,
como por ejemplo el que se puede encontrar en la siguiente url: https://github.
com/karlapalem/UC-Berkeley-AI-Pacman-Project/blob/master/search o https:
//github.com/errikosg/Berkeley-AI-Pacman/blob/master/Projectl-search
o https://github.com/LtVaios/Berkeley-Pacman-Project/blob/main/Pacman_
projectl/search. Como se verd mas adelante en esta propuesta, se desea implementar
unos algoritmos de busqueda que requieren principalmente la implementacion de: un
espacio de estados, una funcién sucesor, el concepto de nodos expandidos y generados.
En estos casos expuestos, se emplea sin embargo, mucho cédigo del ya ofrecido por la
Universidad de Berkeley siendo una de las principales diferencias que cada algoritmo
de busqueda tiene su método y distintas resoluciones, mientras que en el caso que se
plantea en ese trabajo, se pretende que los alumnos entiendan que tanto las busquedas
no informadas como las informadas parten de la misma base, trabajando de manera
diferente uno de los elementos maés importantes de estas técnicas: la frontera. Por lo
que, compartiran codigo a excepcion de dicha frontera. Tal como estd hecho en la

bibliografia ese concepto no se muestra a los alumnos.

Ademas, no queda definida claramente la funcién sucesor, que ésta tenga un objetivo
de manera externa al cédigo donde se aloja el algoritmo de busqueda aunque estén
relacionados. La funcién sucesor contiene un método donde se obtienen todas las
posibles acciones desde una posicién. Incluso ya en esta se tienen en cuenta los conceptos
de coste de camino, el concepto de visitado y expandido, y, en la implementacién que se
va a trabajar en este proyecto, solo es empleado dentro de los algoritmos de busqueda,
una metodologia de programacion y organizacion del codigo que no se encuentra en la

bibliografia.

De igual manera, otra parte muy importante es, la definicion de un estado con

parametros que puedan indicar si se ha alcanzado la meta final o no, es empleada, pero

https://github.com/karlapalem/UC-Berkeley-AI-Pacman-Project/blob/master/search
https://github.com/karlapalem/UC-Berkeley-AI-Pacman-Project/blob/master/search
https://github.com/errikosg/Berkeley-AI-Pacman/blob/master/Project1-search
https://github.com/errikosg/Berkeley-AI-Pacman/blob/master/Project1-search
https://github.com/LtVaios/Berkeley-Pacman-Project/blob/main/Pacman_project1/search
https://github.com/LtVaios/Berkeley-Pacman-Project/blob/main/Pacman_project1/search

de una manera que resulta tediosa, no se ve a simple vista y emplea una légica un
tanto compleja para resolver un problema que se puede enfocar de otra manera més
sencilla. Remarcando también, que el objetivo de muchos de estos casos, no es el acabar
con la comida sino alcanzar las cuatro esquinas del laberinto por lo que no se tiene en
consideracién acabar el juego sino llegar a estos cuatro puntos, de ahi la complejidad

de ese posible estado.

En definitiva, la estructuracion del trabajo a plantear debe seguir rigurosamente
los conceptos de un estado claro y definido del cudl se pueda partir y alcanzar una
meta, que irad ligada a la cantidad de comida que queda en el laberinto. Esto supondra
una parte, la otra podra ser la definicién de la funcién sucesor que generara distintos
estados. Dentro de los algoritmos de bisqueda ya se podran distinguir los términos de
expandido, generado, coste temporal del camino y expansién desde el cual se llamara

a la funcién sucesor.

4. Propuesta Pac-Man - EUPT

En este apartado se lleva a cabo la explicacion del andlisis, diseno e implementacion
de la propuesta del TFG. Este trabajo consiste en la creaciéon de una préctica para la
asignatura de TA, concretamente para los algoritmos de busquedas impartidos en el

temario 2 de la asignatura [29, 30].

Para realizar este proyecto, se ha partido de un cédigo que ya consta de la interfaz
del Pac-Man. Al ser un juego tan famoso se encontraron muchas interfaces, existen
incluso torneos para ver quién dota de la mejor IA al Pac-Man para que pase el mayor
nimero de niveles solo, o al fantasma para que consiga que encuentre al fantasma
en el menor tiempo posible. El codigo que se ha escogido ha sido obtenido de la
siguiente url: http://ai.berkeley.edu/search.html. Es un cddigo proporcionado
por la Universidad de Berkeley, que pretende que cualquier usuario de la red, pueda
dotar de inteligencia al Pac-Man y ofrece recursos para ello, pero estos recursos y la
légica que quiere emplear para incorporar dicha inteligencia no sigue los principios
basicos que se imparten en la asignatura de la EUPT, por lo tanto, sirve para emplear

la interfaz, pero no el resto de la logica de la aplicacion.

4.1. Analisis y Diseno

Comenzando por la fase de andlisis del trabajo, como se parte de un codigo ya
disenado, se ha tenido que llevar a cabo una labor de conocimiento de éste para poder
estudiar donde se podia introducir dicha inteligencia. Para ello, se busca poder aislar

la interfaz del resto de cddigo [9].

En el cédigo de la Universidad de Berkeley se pueden encontrar los siguientes

ficheros:

— La carpeta layouts, que contiene una serie de ficheros con distintos disenos de

laberintos.

— La carpeta test_cases donde estan unos ejercicios que plantea la Universidad
de Berkeley, para que los alumnos puedan adquirir y poner en practica sus
conocimientos de manera progresiva. Esta contiene los casos de prueba para cada

una de ellos.

10

http://ai.berkeley.edu/search.html

— El fichero search.py es donde el alumnado debe incluir los algoritmos de biisqueda.
— El fichero searchAgents.py contiene los agentes basados en busquedas.
— El fichero pacman.py es el archivo principal que ejecuta los juegos de Pac-Man.

— El fichero game.py contiene la légica detrds de como funciona el mundo Pac-Man,

como se mueve, las acciones, etc.

— El fichero wtil.py consta de unas estructuras de datos tutiles para implementar

algoritmos de busqueda.
— El fichero graphicsDisplay.py implementa los graficos para Pac-Man.

— El fichero graphicsUtils.py es donde se encuentra el soporte para los graficos del
Pac-Man.

— El fichero textDisplay.py contiene los graficos ASCII para Pac-Man.
— El fichero ghostAgents.py tiene los agentes para controlar fantasmas.

— El fichero keyboardAgents.py consta de interfaces de teclado para controlar el

Pac-Man mediante teclas.

— El fichero layout.py implementa el cédigo para leer los archivos de diseno de
la carpeta layout y almacenar su contenido: donde se encuentra la comida, las

paredes y la posicion inicial de Pac-Man.

— El fichero autograder.py que es un autograder de proyectos, es decir, un

autocalificador que simula el proceso de probar un programa [38].
— El fichero testParser.py analiza los archivos de prueba y solucién del autograder.

— El fichero testClasses.py vinculado a las preguntas que plantea la Universidad de

Berkeley, son clases generales de prueba de autocalificacion.

— El fichero searchTestClasses.py son clases de prueba de autocalificacion especificas
de los algoritmos de busquedas, implementadas para el banco de preguntas

comentado anteriormente.

Partiendo de esta estructura, se va a observar el cédigo con un mayor lujo de detalle,
para discernir cual es necesario para el trabajo académico que se pretende desarrollar.

Pero antes, se va a mostrar el diagrama de relacion entre los distintos paquetes que hay

11

search.game search.graphicsUtils \ search.grading

search.layout | | search.ghostAgents \\ search.pacmanAgents / search.textDisplay | | search.graphicsDisplay
\ / >.

A /

search search.pacman

search.search | | search keyboardAgents \

N

search.eightpuzzle | | search.seerchAgents | search.projectParams

search.searchTestClasses search.autograder | | search.submission_autograder

7

search testClasses search.testParser

Figura 4.1: Paquetes del cédigo original

en este proyecto, generado con la herramienta de Python, pyreverse, que puede verse

en la Figura 4.1.

Con respecto al diagrama de clases, debido a su tamano se deja como para su

consulta en el respositorio de GitHub del proyecto.

Ahora se procede a observar el proyecto de manera detenida para conocer su
ejecucion. Comenzando por el fichero principal, que contiene la funcién main del
programa. La funcion principal es un entry point o punto de entrada, que es la ubicacién
en el c6digo donde se produce una transferencia de control (ejecucién) del programa
[21]. Por lo tanto, cuando se ejecuta la aplicacién, ésta es llamada la primera. En ella
se lo primero que se hace es recoger una serie de pardmetros pasados por consola y los

transforma. Luego, llama al método runGames con dichos valores recogidos.

Antes de seguir con el andlisis, para el trabajo académico a desarrollar se modificara
esta forma de lanzar la aplicacién, para evitar pasar los parametros por consola, ya que
suele resultar mas tedioso. Se hara de manera que tendran que modificar el valor de

una variable para indicar la modificacion de estos.

Los datos pasados por parametros pueden ser todos los que se ven en la Figura 4.2,
destacando el nimero de veces que se puede jugar, el laberinto que se va a emplear,
el agente que se va a considerar tanto para el Pac-Man como para los fantasmas, el
numero de fantasmas que se desea tener, el zoom para ver la pantalla del juego y la

velocidad con la que se desplacen los agentes.

Una vez obtenidos los datos pasados como parametros por consola son tratados. Se
observan aquellos que se han considerado interesantes. Para la interfaz del laberinto, se
ha de obtener el diseno, en el caso de los agentes, tienen que ser procesados, llamandose

a otra funcion denominada loadAgent. En ésta, lo que hace es comprobar si el agente

12

parser.add_option("-n", "--numGames", dest="numbGames", type="int",
help=default("the number of GAMES to play"), metavar="GAMES', default=1)
parser.add_option("-1", "--layout", dest="layout",
help=default('the LAYOUT_FILE from which to load the map layout'),
metavar="LAYOUT_FILE", defauvlt="mediumClassic")
parser.add_option("-p', "--pacman’, dest="pacman’,
help=default('the agent TYPE in the pacmanfgents module to use"),
metavar="TYPE', default="HKeyboardAgent")
parser.add_option("-t", "--textGraphics', action="store_true’, dest="textGraphics',
help="Display output as text only', default=False)
parser.add_option("-q', "--quietTextGraphics', actlon="store_true’, dest="quietGraphics’,
help="Generate minimal output and no graphics®, default=False)
parser.add_option("-g', "--ghosts", dest="ghost",
help=default('the ghost agent TYPE in the ghostAgents module to use’),
metavar = "TYPE", default="RandomGhost')
parser.add_option("-k", "--numghosts', type="int", dest="numBhosts",

help=default('The maximum number of ghosts to use'), default=4)

parser.add_option("-z', "--zoom", type="float', dest="zoom",
help=default('Zoom the size of the graphics window'), default=1.0)
parser.add_option("-f", "--fixRandom5eed', action="store_true', dest="fixRandomSeed",

help="Fixes the random seed to always play the same game®', default=False)
parser.add_option("-r", "--recordActions', action="store_true', dest="record',

help="Writes game histories to a file (named by the time they were played)’, default=False)
parser.add_option("--replay", dest="gameToReplay",

help="A recorded game file (pickle) to replay", default=None)
parser.add_option("-a","--agenthArgs",dest="agenthArgs",

help="Comma separated values sent to agent. e.g. "optl=vall,opt2,opt3=valld™')
parser.add_option("-x", "--numTraining’, dest="numTraining', type="int",

help=default(How many eplsodes are tralning (suppresses output)’), default=0)
parser.add_option("--frameTime", dest="frameTime", type="float',

help=default('Time to delay between frames; <0 means keyboard®'), default=0.1)
parser.add_option("-c", "--catchExceptions®, action="store_true", dest="catchExceptions®,

help="Turns on exceptlon handling and timeouts during games®', default=False)
parser.add_option("--timeout’, dest="timeout', type="int',

help=default('Maximum length of time an agent can spend computing in & single game"), default=30)

Figura 4.2: Posibilidad de parametros a pasar por consola en el juego del Pac-Man

pasado existe y, si es asi, crea un objeto del agente que se ha indicado. Los pardmetros

restantes son almacenados en distintas variables.

Cuando ya tiene todos los pardmetros almacenados, se procede a lanzar el juego,
método runGames. En éste lo que se hace es llamar a la clase ClassicGamesRules para

declarar una serie de reglas.

Esta clase contiene el método init, cada vez que se crea un objeto de dicha clase es
llamado y, se ejecuta el codigo en su interior que suele ser para inicializar los atributos
de este objeto [49]. También contiene el método newGame para iniciar un nuevo juego,
process que procesa si un juego ha terminado o no, win para comprobar si el Pac-Man
ha ganado y lose para ver si ha perdido. El método getProgress para ver el progreso
del juego en base a cuanta comida le queda por comer, agentCrash para cuando un
agente por una implementacién errénea se salga del laberinto o cruce una pared, y

mas métodos para obtener valores como el valor de la variable tiempo que lleva a cabo

13

una cuenta atras. Algunos de estos parametros, como el ultimo mencionado, no son de

interés para los objetivos buscados.

Posteriormente, una vez se ha creado el objeto ClassicGamesRules se mete en un
bucle para ejecutar los distintos juegos que se han indicado, o el valor por defecto que
es 1. Una vez dentro del bucle, comprueba si se ha introducido un valor para la variable
num Training que se corresponde con si se desea llevar a cabo rondas de entrenamiento.
Si es asi entra en un modo denominado beQuiet. Este modo no muestra una interfaz
grafica y las reglas que tiene en consideracién son menores. Dicho modo no se va a tener
en cuenta para el trabajo ya que es muy importante e interesante que la interfaz sea
visible en todo momento para que el alumno pueda ver como se desplaza el Pac-Man

por las distintas casillas y como lo hace.

Luego, se crea un nuevo juego, mediante el método de la clase ClassicGamesRules
comentado con anterioridad. En éste principalmente se declaran e inicializan los valores
del estado del juego, como son los agentes de los que se dispone, los cual los almacena en
un vector denominado agents pero son distintos objetos. Esta informacién es relevante
ya que se debe tener en consideracion como son tratados los fantasmas y el Pac-Man
para poder aplicarlo en la implementacion futura. Todos son almacenados en el mismo
lugar, pero al parecer para diferenciarlos, el Pac-Man recibe el identificador 0 y los
fantasmas los niimeros consecutivos a éste. A continuacién, crea un objeto del estado
del juego, GameState. Este contiene el nimero de comida que hay en total, cuanta de
ésta ha sido consumida, cuantas capsulas hay y se ha comido, los agentes, el disenio de
la interfaz que se va a emplear, cual es la puntuacién y, si ha ganado o perdido. Todos
los parametros han sido explicados anteriormente o se sobreentiende cudl es su valor,
pero no se ha indicado cudndo se puntia y cudl es el valor de dicha puntuacién. Cuando
el Pac-Man come, la puntuacién se incrementa en 10, si consigue finalizar el juego se
anade 500 al igual que si pierde se reduce en 500; y, si alcanza a un fantasma asustado
ya que se ha comido una capsula se anade 200. Ademas, cada vez que pasa un tiempo
especificado se va decrementando en una penalizacion de 1 punto. La puntuacion en
nuestro caso se modificara para que se incremente cada vez que consuma una comida,
para que el alumno pueda ver que su algoritmo ofrece ganancias siempre que alcanza
parte de su objetivo, que es comer, y, no tendra en cuenta posibles penalizaciones por
tiempo o afectard si alcanza a un fantasma asustado o no, porque sera eleccién del

alumno si desea o no introducir fantasmas en la ejecucién del cédigo.

Ademas del objeto del estado de juego, se crea el juego, que contiene también a los
agentes como en el estado del juego, pero ademas tiene variables para comprobar si un

agente se ha salido del laberinto, las distintas reglas, cudl es el agente que comienza

14

segtn el identificador especificado, un tiempo y un historial de por donde se han movido

los agentes.

Cuando ya se han inicializado todos los parametros necesarios, se procede a lanzar
el juego. Para ello se llama al método run que tiene el objeto del juego, denominado
Game. Cuando se lleva a cabo la ejecucion de éste, primero se inicia la interfaz, todos
los agentes que deben aparecer en ella, donde habra siempre un Pac-Man pero no tiene
por qué haber fantasmas o no la misma cantidad. Cuando ya todo esta listo, entonces
se procede a mostrar la pantalla con el juego y comienza éste para el usuario. Para
ello, se hace uso de un bucle infinito que va realizando acciones con cada uno de los
agentes, comenzando por el Pac-Man, recoge la accion que debe realizar, la lleva a
cabo, actualiza la interfaz y procesa si se ha ganado o no segin las normas del juego
especificadas en una distinta clase. Luego, incrementa el nimero de identificador para
los agentes, y realiza la misma accién para estos, que seran los fantasmas. Una vez
se han ejecutado todas las acciones para todos los agentes se vuelve a empezar con el

Pac-Man, por su identificador 0.

Las acciones que llevan a cabo los agentes son diferentes para cada uno y dependera
del objeto con el cual ha sido creado. Este tipo de agente era especificado al pasarlo por
parametro. Por ejemplo, un Pac-Man, puede ser creado segin esta disenado el cédigo,
como KeyboardAgent, LeftTurnAgent o GreedyAgent. En el primer caso, el agente sera
manejado por la combinacion de las teclas que emplee el alumno. En el segundo tipo de
agente, éste siempre que sea posible se movera a la izquierda y el tltimo, es un caso de
implementacién de TA, que se pide a los alumnos que es el caso del algoritmo informado
denominado voraz. Se puede ver en la Figura 4.3 como primero lleva a cabo la obtencion
de todas las acciones posibles desde la posicién en la que se encuentra llamando a otro
método, luego obtiene un niimero de sucesores devolviendo los distintos estados segin
las posibles acciones a realizar, comprueba cual de ellos obtiene mejor resultado y
devuelve éste, si hay méas de uno con la misma puntuacion, entonces entre todos estos
retorna uno aleatorio. Como se indica en la parte académica (3.2) del apartado del
Estado del Arte, la implementacion que se lleva a cabo no es la misma que se pretende
que los alumnos implementen porque no se puede trazar la estructura basica de como
se ensena en las clases tedricas. Aunque es una forma mas de implementar inteligencia

artificial, no es la que se desea que los alumnos lleven a cabo.

Ya acabada la partida, se procede a almacenar los resultados en un fichero si no
era un entrenamiento y supone un texitrecord. Y, si ya se han jugado todas las rondas
que se habian indicado con el nimero de juegos, se muestra al usuario el valor de su

puntuaciéon maxima, todas las puntuaciones obtenidas, las veces que ha ganado y la

15

class GreedyAgent(Agent):
def __init__(self, evalFn="scoreEvalvation"):
self.evalvationFunction = vtil.lookup(evalFn, globals())
assert self.evaluationFunction !'= None

def getAction(self, state):

legal = state.getlLegalPacmanActions()
if Directions.STOP in legal: legal.remove(Directions.STOP)

successors = [(state.generateSuccessor(@, action), action) for action in legal]
scored = [(self.evaluationFunction(state), action) for state, action in successors]
bestScore = max(scored)[0]

bestActions = [pair[1] for pair in scored if pair[0] == bestScore]

return random.choice(bestActions)

Figura 4.3: Algoritmo voraz desarrollado por la Universidad de Berkeley

media de las mismas.

De manera amplia es el anélisis que se ha podido realizar del codigo desde el inicio de
éste, hasta que es ejecutada una partida. Para poder llevar a cabo una implementacién
del codigo la labor de investigacién ha sido mucho mas tediosa, tal y como se podra

ver mas adelante y en el codigo entregado.

Se pretende que los alumnos solo tengan que llevar a cabo la implementacién de la
[A y que la estructuracién del proyecto o del cédigo sea la mas cémoda posible, por lo
que partiendo del esqueleto basico de la Universidad de Berkeley, los alumnos recibiran
un proyecto con la estructuracién que se muestra a continuacion, donde se desechan los
ficheros que no son necesarios y se reestructura la informacién que hay en estos para

que quede de la siguiente manera:

— La carpeta layouts, que contiene una serie de ficheros con distintos disenos de

laberintos se mantiene igual.

— Se crea otra carpeta denominada graphics, que contiene todos los ficheros
vinculados con el disefio e implementacién de la interfaz (que no serd necesario que
los alumnos modifiquen para la préctica), ya que sélo deberén consultar en fichero
layout y se les indicard en el enunciado. Los ficheros que contiene esta carpeta
son: graphicsDisplay.py, graphicsUtils.py vy layout.py. Este tltimo implementa
el cédigo para leer los archivos de diseno de la carpeta layout y almacenar su

contenido, como se realizaba ya antes, pero con alguna modificacién.
— El fichero search.py es donde estan todos los algoritmos de busqueda.

— El fichero pacman.py seguira siendo el archivo principal que ejecuta los juegos de

Pac-Man aunque tendra sus modificaciones.

16

— Los ficheros game.py y gameState.py contienen la logica detras de como funciona

el mundo Pac-Man también se mantendra, pero con los cambios necesarios.

— El fichero datastructures.py consta de las estructuras de datos que seran

necesarias para implementar los algoritmos de busqueda.

— El fichero agents.py que contiene tanto los agentes como los fantasmas incluido
el Pac-Man.

— El fichero pacmanState.py que contiene los estados necesarios y parte de la logica
para dotar al Pac-Man de IA.

Se puede ver en la Figura 4.4, el nuevo diagrama que muestra la relacién que tendran

los distintos paquetes en el proyecto final.

Al.gameState

Algraphics.graphicsUtils Al.game

J_

Algraphics | | AlLgraphics.graphicsDisplay | | Al.agents | | Algraphics.layout | | Al pacmanState

-

—_—— -

M Alpacman | | Aldatastructures | | Alsearch

Figura 4.4: Paquetes del cédigo a desarrollar

Para el diagrama de clases, de igual manera que para el del codigo original, se deja

para su consulta en el repositorio de GitHub del proyecto.

Claramente, la disminucién de cédigo que se pretende llevar a cabo, que se puede

ver con los diagramas, va a ser notable.

4.2. Herramientas tecnolégicas empleadas

El lenguaje de programacién para llevar a cabo el trabajo es Python [36] [15],
debido a que es el que ya se esta empleando actualmente en la EUPT para realizar esta

practica de algoritmos de busqueda.

La versién a emplear de Python se pretende que no sea una especifica y cualquiera le
pueda servir al alumnado. El codigo de partida esta preparado para la version 2.7, pero
se llevaran a cabo las modificaciones pertinentes para lograr que pueda ser ejecutado

con otras versiones mas actuales.

17

La herramienta de software empleada para la implementacién del trabajo es
PyCharm [32], un entorno de desarrollo integrado de Python. El paquete completo

de este entorno consta de las caracteristicas que se pueden observar en la Tabla 4.1.

’ Caracteristicas PyCharm ‘

Editor de Python inteligente
Depurador grafico y ejecutor de pruebas
Navegacion y refactorizacién
Inspecciones de codigo
Compatibilidad con Visual Computing System (VCS)
Herramientas cientificas

Desarrollo web
Marcos de trabajo web Python
Perfilador Python
Capacidades para desarrollo remoto
Soporte para bases de datos y Structured Query Language (SQL)

Tabla 4.1: Caracteristicas del entorno PyCharm

Este paquete tiene muchas cosas innecesarias para el desarrollo de la préctica y
encima es de pago. PyCharm ofrece un paquete més reducido, denominado PyCharm
Community Edition, gratuito y creado en cdédigo abierto. Consta de alguna de
las caracteristica comentadas anteriormente que son: editor de Python inteligente,
depurador grafico y ejecutor de pruebas, navegacion y refactorizacion, inspecciones

de cédigo y compatibilidad con VCS.

Ademas, tanto la version completa como la reducida puede ser ejecutada en los
siguientes sistemas operativos: Windows, macOS Intel y Apple Silicon, y, Linux. Por
lo que no se limita al uso de un sistema operativo concreto para poder llevar a cabo el

desarrollo de cualquier proyecto.

4.3. Implementacién

Antes de proceder con la implementacion del codigo, se va a proceder a explicar
de manera tedrica en qué consisten los algoritmos de busquedas en la IA, para luego

poder entender mejor la parte practica.

El principal objetivo de todo esto es resolver un problema y para ello crear un
programa que sea capaz de automatizarlo. La resolucién de un problema es considerada

una capacidad inteligente.

Para todo esto se necesita un agente, es decir, una persona o cosa que percibe su
entorno a través de sensores e interacciona con en él a través de actuadores. Estos

agentes parten de un estado inicial y dependiendo de la accién que realicen llegan a

18

uno u otro, hasta alcanzar aquel que es considerado el estado final que es el objetivo.
Existen 4 tipos de agentes: agente reflejo simple, agente reflejo basado en modelo,
agente basado en objetivos y agente basado en utilidad. En este trabajo se hace uso
de un agente reflejo basado en objetivos o también conocido como agente de resolucién
de problemas, donde las acciones van dirigidas a conseguir un objetivo. Este tipo de
agentes utilizan representaciones atomicas, ya que se identifican los estados sin ninguna
estructura compleja. Si empleasen alguna representacion mas sofisticada serian agentes

de planificacion.

En este caso la solucién a plantear mediante estos algoritmos consiste en hacer
busquedas en un espacio de estados determinado y los pasos generales para poder

resolver un problema son:

— El objetivo a alcanzar, en este caso es que el Pac-Man pueda acabarse toda la
comida. De primeras pensando en los alumnos no se tiene en consideracién que
los fantasmas puedan o no alcanzarlo, eso serda una consideracion que se quiere

llevar mas adelante.

— Luego, se formula el problema, estados y acciones que se pueden llevar a cabo.
Las acciones son ir a la derecha, la izquierda, arriba y abajo siempre cuando
las barreras del laberinto lo permitan. La definicién de estados viene dada més

adelante.

— Posteriormente, se plantea el método de bisqueda que se va a plantear para

determinar las posibles secuencias de acciones hasta lograr alcanzar el objetivo.
— Y, por ultimo, se ejecutan todas las acciones de la secuencia.

Se trata de un entorno parcialmente observable ya que es posible detectar todos
los aspectos del entorno para la eleccion de una accion a excepcién de los fantasmas
segtin lo que se plantea para el alumno, porque no tiene que tener en cuenta estos
para encontrar la soluciéon. En un trabajo futuro se va a llevar a cabo un entorno
completamente observable ya que si se tendra en cuenta donde se encuentran los
fantasmas para determinar la accién a realizar por el Pac-Man. Continuando con el
entorno enfocado en la préactica para los alumnos, éste es determinista porque su
estado viene determinado por el estado actual y la accién ejecutada por el agente.
Es secuencial, porque sus decisiones vienen determinadas conforme a las decisiones
tomadas anteriormente y estatico porque el entorno no se modifica cuando el agente
esta determinando la siguiente accion que quiere realizar. Por 1ltimo, es discreto porque

las acciones del agente no dependen de su evolucion en el juego y no es multiagente.

19

El espacio de estados del problema viene definido por el estado inicial y la funcion
sucesor. Este espacio forma un grafo donde los nodos son los estados y las acciones son
los arcos entre los nodos. El problema planteado es un grafo dirigido aciclico que para
cada escenario sera distinto, pero todos comparten que solo haya un estado inicial y

uno final.

A continuacién, se muestra un ejemplo de un grafo para un escenario concreto
donde el estado inicial es el que se muestra en la Figura 4.5 y el estado final el que
se muestra en la Figura 4.6. Cada caja representa un estado, en cuyo interior hay un
valor que se corresponde con un nimero, concretamente el de comidas que hay en total
en el laberinto escogido, éste es el valor que determinard la evolucién del juego, pero
también se ha de tener en cuenta la posiciéon en donde se encuentra el Pac-Man en
todo momento. La resolucién del problema a plantear pretende poder ser empleado en
cualquier espacio y no se centra en uno concreto, por lo que la posiciéon no es un aspecto
interesante a considerar en los estados para saber si gana o no, ya que si no se hace
un estudio anterior de cudl va a ser la mejor posicion en la cual acabar, puede suponer
que el algoritmo sea menos efectivo por tener en cuenta este valor también y un mayor
coste temporal porque requiere de un tiempo alcanzar esa posicion 6ptima. Teniendo
en consideracién solamente la comida es posible finalizar el juego, y es el objetivo, al
fin y al cabo. No es relevante para determinar si se ha finalizado o no, pero es necesario
para poder conocer la posicion del Pac-Man en todo momento. El estado final sera que

quede un valor de 0 comidas.

El interior de cada caja contiene el nombre que se le ha dado al estado, la posicion
que ocupa el Pac-Man entre corchetes, siendo el primer valor correspondiente al eje
horizontal y el segundo al vertical; y, entre llaves, el valor realmente importante que es

el de la comida.

SCORE: 0

Figura 4.5: Ejemplo PacMan estado inicial Figura 4.6: Ejemplo PacMan estado final

En la Figura 4.8 se muestra un posible grafo de lo que podria ser una ejecucién donde

cada arco simboliza una accién, donde se refleja entre corchetes dicha accién que se

20

esta realizando en cada momento y hacia que celda. También se aporta el escenario del
Pac-Man dividido en las distintas posiciones que puede ocupar para ese ejemplo (ver
Figura 4.7). En este escenario existen hasta 6 cuadriculas por las que el Pac-Man se
puede desplazar, partiendo del estado inicial (E0) puede solamente ir a la derecha (E1)
o hacia bajo (E2), desde el Estado 1 se si se va a la derecha se puede llegar al Estado

3, volver al Estado 0 si se va a la izquierda, o ir al Estado 4 si se va hacia abajo.

Figura 4.7: Ejemplo PacMan con cuadricula

[Dcha] f \ [Dcha]
E0-[1,2] {1} E1-[2,2] {1} E3-[3,2] {1}
v (lzda] " , [lzda] \

[Arriba] [Arriba] [Arriba]
[Abajo] [Abajo] [Abajo]

B [Dcha] . ! [Dcha] .
E2-[1,1]{1} E4-[21] {1} E5-[1,3] {0}
[lzda] \ J [lzda]

Figura 4.8: Ejemplo PacMan grafo

Una vez se ha planteado el problema a abarcar, se procede a explicar los distintos

algoritmos de busqueda basicas que se han implementado para la préactica.

La resolucién de problemas mediante algoritmos de bisquedas emplea espacio de

estados, este sigue el modelo de estados que cumple lo siguiente [29]:
— Espacio de estados finito y discreto S
— Estado inicial sy € S
— Un conjunto de estados objetivos G C S

21

— Acciones aplicables A(s) C A en cada estado s € S
— Una funcién transiciéon f(s,a) paras € Sy a € A(s)
— Y una funcién de coste c(a,s) > 0

Una solucién es una secuencia aplicable de acciones a;, i = 0, ..., n que lleva desde

el estado inicial sy al estado objetivo s C SG; es decir, s,y;1 € SG y parai =0, ..., n
siv1 = f(ai, 8;) v a; € A(sy)

Y, la solucién 6ptima minimiza el coste es: Y. c(a;, s;).

El estado inicial y la funcién sucesor definen el espacio de estados del problema (el
conjunto de todos los estados alcanzables desde el estado inicial). El espacio de estados
forma un grafo, como se ha visto anteriormente, en el cual los nodos son estados, y los
arcos entre los nodos son acciones. Ademads, la funcién transicién (sucesor) devuelve un
conjunto, el coste del camino ya que refleja la medida del rendimiento (prestaciones)

y la solucion éptima tiene el coste méas pequeno del camino entre todas las soluciones
[29].

En este caso, el estado inicial ya se ha definido més atras. La funcién sucesor
serd una de las partes que los alumnos deberan implementar y hallar para resolver
la préactica, ya que ésta debera devolver todos los estados validos con base al estado
actual. Posteriormente, se explicara cémo ha sido resuelto para este TFG. El coste del
camino que refleja las prestaciones de cada posible método de buisqueda es en este caso
1 por cada accion realizada. Y, por iltimo, la soluciéon méas éptima para cada caso
tendra un valor, en el caso expuesto con anterioridad (ver Figura 4.8) sera 4, porque
es el camino mas corto entre todas las soluciones, que se puede observar en el grafo ya

mostrado y ademas se explicaran cada uno de los algoritmos a emplear.

Se exigen mas de una busqueda para la solucién del problema, y la idea basica, es
llevar a cabo una simulacién de una exploracion del espacio de estados generando los

sucesores de los estados ya explorados, realizando expansiones.

Este espacio de estado genera un arbol de buisqueda que consta de un nodo raiz que
se corresponde con el estado inicial, nodos que son los distintos estados y las hojas (son
nodos sin hijos) generados por la funcién sucesor. Y el arbol a su vez, suele generar
un grafo, donde se permite la posibilidad de regresar a un estado ya visitado y existen

diferentes caminos para un mismo estado.

Por lo tanto, partiendo de un nodo que representa un estado, éste se expande, lo

que significa que se generan nuevos estados aplicando acciones permitidas sobre uno.

22

El nodo que se expande se denomina padre y los resultantes los hijos. El conjunto de

nodos sin hijos, no expandidos, es conocido como frontera o lista abierta [29].

Teniendo en cuenta estos conceptos sobre los algoritmos de biisquedas, se procede a
la explicacion de los algoritmos de buiisquedas que se han implementado. Las estrategias
de busqueda vienen definidas por la eleccién del orden de expansion de los nodos y se

evaluan de acuerdo a cuatro dimensiones:

— Completitud, jse encuentra la solucién al problema?
— Optimizacion, ;jes encontrada siempre la solucion de menor coste?
— Complejidad tempral, niimero de nodos generados y expandidos

— Complejidad espacial, niimero de nodos almacenados en memoria en la buisqueda

Existen estrategias de busquedas informadas y no informadas. Para esta practica

se han puesto a prueba tres no informadas y dos informadas.

En el caso de las busquedas no informadas se hace uso sélo de informacién disponible
en la descripcién del problema, no cuenta con ninguna informacion o conocimiento sobre
cémo llegar al objetivo. Se definen por el algoritmo de expansién utilizado, existen
seis categorfas, aunque las que se piden son: primero en anchura (breadth first), coste
uniforme (uniform cost) y primero en profundidad (depth first). Se diferencian por la
estructura de datos utilizada para la frontera. En el caso del primero en anchura se
emplea una cola FIFO (First In First Out), lo que significa que lo primero que entra es
lo primero en salir. Para la bisqueda de coste uniforme se emplea una cola ordenada
por coste de caminos, donde cada nodo supone un coste de 1 como se ha comentado con
anterioridad. Esta prioridad viene determinada por la funcién lambda, donde lambda
es una funcién anénima en el lenguaje de programacién de Python, que consiste en
tomar cualquier nimero de argumentos, pero sélo puede tener una expresion [52]. Por
ultimo, primero en profundidad emplea una cola LIFO (Last In First Out), donde el

ultimo en entrar es el primero en salir [29].

En el caso de las busquedas informadas, se aplica conocimiento al proceso para
hacerlo mas eficiente. Este viene dado por una funcion que estima la ”bondad”de
los estados, y da preferencia a los que son considerados mejores, ordenando la cola
de abiertos por la comparaciéon de su bondad estimada. Pretende reducir el arbol de
busqueda para poder ganar eficiencia. Este conocimiento especifico que se va a usar
sobre el problema estd codificado en la funcién heuristica. Se denomina heuristica a

una funcion numeérica sobre los estados que estima la “distancia al objetivo y siempre

23

tiene un valor mayor o igual a 0”. Sera igual a 0 cuando se llegue al estado final y
se admite el valor “infinito”. Para este tipo de bisquedas se emplean dos algoritmos,

voraz o greedy y A*

En ambos casos se hace uso de una cola con prioridades, pero varian en cuanto a
la prioridad de la que hacen uso de ésta. En el primer caso, el algoritmo de busqueda
voraz Unicamente se basa en la heuristica para el calculo del coste de la funcién: f = g,
donde ¢ representa el coste del camino. En cambio, en el segundo caso de A*, ademads
de basarse en la heuristica, hace uso de la informacion dada en el problema para hacer
el calculo del coste de la funcién: f = g + h, donde g representa el coste del camino y h
el coste estimado por la heuristica. En ambos casos se hace uso de la funciéon anénima
lambda, ya explicada. La diferencia entre ambas viene determinada por hacer uso del
coste de la funcién, es decir, seria hacer uso de g o no hacer uso de g. En el caso de
la voraz solo se hace uso de la heuristica para el célculo del coste para cada accién
hasta en nodo meta, y en el caso de la A* se hace uso de la heuristica y el coste de la
funcién. Las funciones heuristicas son definidas més adelante, pero un ejemplo de éstas

muy conocido es el de la distancia Manhattan [19].

A continuacién, se expone el pseudocddigo para los distintos algoritmos de
busquedas. Ambos métodos de bisqueda hacen uso del algoritmo general de buisqueda
de grafos donde la tnica diferencia entre los informados y los no informados, es el coste

de la funcién, que en cada caso viene determinado por distintas funciones.

El procedimiento de estos algoritmos hace uso de cuatro variables. La primera es el
nodo inicial del cudl partimos, dos variables de tipo entero que almacenaran el niimero
de nodos expandidos y generados, y, un vector que contiene los nodos explorados. El

algoritmo sigue los siguientes pasos:

— Primero se anade el nodo inicial a la frontera. Es decir, se inicializa la frontera

con el estado inicial del problema.
— Luego dentro de un bucle infinito:

e Se comprueba si la frontera estd vacia, si es asi se devolvera un objeto vacio

e Sino esta vacia la frontera entonces se elimina el nodo que le corresponde a
la frontera en cada caso. Si la frontera es una pila entonces el primer nodo
apilado sera el nodo eliminado porque pasa a ser un nodo explorado, si es
una cola entonces sera el iltimo elemento anadido. Si se tratara de una cola

con prioridades, entonces seria el elemento que mayor prioridad tuviese.

24

e Luego se comprueba si el nodo explorado es el estado final, si es el estado
final se retorna el nodo explorado, el total de nodos expandidos y el total

de nodos generados.
e Si no era el estado final, se anade dicho nodo al vector de nodos explorados.
e Se incrementa el nimero de nodos expandidos.

e Se expande el nodo y se almacenan todos los nodos obtenidos al expandirse

en un vector.

e Se recorre este ultimo vector nombrado, y se comprueba si no estan en el

vector de nodos explorados o si la frontera no los contiene.

e Si se cumplen ambas premisas entonces, se anade el nodo a la frontera y se

incrementa el nimero de nodos generados.

e Una vez llegado a este punto se regresa a ejecutar el inicio del bucle hasta

que se alcanza el nodo final.

A continuacién, se procede a explicar cémo funcionan los distintos algoritmos de

busqueda.

Comenzando por los algoritmos de busqueda no informada, concretamente el de
primero en anchura. Partiendo del drbol que se puede observar en la Figura 4.9, se
puede ver como el nodo inicial es el 1. Desde que éste se anade a la frontera, se expande.
Al hacerlo se generan los 3 nodos que se encuentran en el siguiente nivel, que serian el
2, 3y 4, por ese orden de izquierda a derecha, son anadidos a una lista. A continuacion,
se debe expandir el primer nodo que se tiene en la lista, que seria el 2 y se generan el 5
y 6. Estos son anadidos a la lista, que ahora es la siguiente 3, 4, 5 y 6, porque como el
2 ha sido expandido, sale de la lista. Ahora, se debe expandir el nodo que se encuentra
primero en la lista, que seria el 3 y genera al 7. Por lo tanto, la lista es 4, 5, 6 y 7. Toca
expandir el nodo 4 y genera al 8 y 9, quedando la lista 5, 6, 7, 8 y 9. El nodo 5 es el
siguiente y genera el 10 y 11, la lista es la siguiente: 6, 7, 8, 9, 10 y 11. El nodo 6 no
tiene nada que generar por lo que sale de la lista y es el turno del 7 que pasa lo mismo
que el 6. Le toca el 8 y tampoco genera ningtin nodo, pasa al 9 y éste si genera los
nodos 12 y 13. La lista ahora esta de la forma que se puede ver a continuacién: 10, 11,
12 y 13. Estos nodos no generaran ninguno més y se deben recorrer en el orden que se
encuentran en la lista. Este recorrido es bastante sencillo y para entenderlo visualmente
se puede ver la Figura 4.10, donde se indica con flechas y niimero, el orden y légica de

éste.

Por mucho que se haya explicado el recorrido entero del arbol, no siempre va a ser

asi,éste sera recorrido hasta que se genere el noto meta. Es decir, si el nodo meta es

25

el 4, en el momento que se expanda el nodo 1 se habra acabado porque al expandirse
genera el nodo 4. Por lo tanto, en ese instante la ejecucién se para, no tiene sentido

seguir ya que se ha alcanzado la meta que se tenia.

JON
@ G @
@@@0@
ofe ® ®

Figura 4.9: Ejemplo algoritmo primero en anchura

10

2 ()

3° 6 8 9
AU

40 11 12
\10)

Figura 4.10: Ejemplo algoritmo primero en anchura recorrido

A continuacién, se procede a explicar el algoritmo de primero en profundidad (ver
Figura 4.11), algoritmo no informado. De igual manera que antes se comienza por el
nodo inicial que es el 1, de estos nodos se expanden el nodo 2, 7 y 9. En este caso se
debe coger el primer nodo generado de izquierda a derecha, que es el 2, y el que mas
abajo este dentro de una rama, es decir, en este caso todos los nodos estan al mismo
nivel por lo que da igual, el nodo 2 genera al 3 y 6. Ahora tenemos 7, 9, 3 y 6, se debe
coger aquel que este més a la izquierda y abajo, por lo tanto en el nivel mas bajo estan
el 3 yel6,yel que méas a la izquierda esta es el 3. Este nodo se expande y genera el
4 y 5, la lista ahora es 7, 9, 6, 4 y 5. ;Cudl de los nodos esta en un nivel més bajo? El
4y 5,y el que mas a la izquierda el 4, no tiene nodos a generar, la lista es 7, 9, 6 y 5.
El siguiente nodo mas abajo es el 5, tampoco genera nodos asi que se continia. En la
lista estan el 7, 9 y 6, y el que estd més abajo es el 6 por lo que este se expande. Ahora

estan el 7 y el 9, estan al mismo nivel por lo que se coge el que mas a la izquierda esta

26

que es el 7 y genera el 8. Como el 8 estd mas abajo se expande antes que el 8 pero
no tiene nodos para generar y es el turno del 9, que se expande y genera el 10 y 11.
Se coge el 10 porque estan al mismo nivel y estd mas a la izquierda. No tiene nodos
a generar. El siguiente porque no hay mas nodos en la lista es el 11, éste genera el 12
y 13, ambos al mismo nivel pero primero se expandira el 12 y luego el 13 porque esta

més a la derecha este dltimo (ver Figura 4.12).

De igual manera que el anterior, si el nodo esté antes del iltimo nodo a recorrer no

serd necesario realizar el recorrido entero.

()

ONONORORO

/N
/

/N
/N
Vi \
/ \ / \
y, / \
/ N\ / \

Figura 4.11: Ejemplo algoritmo primero en profundidad

Figura 4.12: Ejemplo algoritmo primero en profundidad recorrido

Para finalizar con los algoritmos no informados, toca el de coste uniforme, para el
que se va a emplear como referencia la Figura 4.13. En este caso se especifica que se
desea ir desde el nodo A hasta el nodo H. Para ello, desde el nodo A se expande y se
generan los nodos B, C y D. A diferencia de los otros drboles, estos tienen un valor en
cada linea, que indica el coste del camino, es decir, desde el nodo A al B, cuesta 1 pero
desde A al D cuesta 10. En este caso la eleccién del nodo para expandir viene basada
en el menor coste posible, por lo tanto, desde el nodo A el menor coste es por el nodo
B que tiene un coste de 1. Este nodo B se expande y tiene el nodo E y F. Desde el

nodo A hasta el nodo E se tiene que tener en cuenta la suma del coste por los nodos

27

que se pasa antes, en este caso seria desde A hasta B y desde B hasta E, suponiendo
un total de 4 de A a E y 3 de A a F. Por lo tanto, ahora se debe elegir aquel camino
que tenga menor coste de todos los encontrados hasta ahora, que en este caso seria el
de A a C que era 2. C genera el nodo G, desde A a G hay un coste de 4 igual que
desde A hasta E. En este caso, el coste desde A hasta F es el menor por el momento,
por lo que se expande F y hasta H tiene un coste de 8, superior al de 4 que tenian
A hasta E y A hasta G. Si se escoge desde A hasta E se va al nodo H ya expandido,
desde A hasta H pasando por B y E, el coste es de 11, superior al de pasando por B y
F. En cambio, si se escoge desde A hasta H pasando por G el coste total es 6, y seria
el camino mas 6ptimo de llegar. El camino de D no es nombrado tan apenas ya que se

haya una soluciéon antes por otro camino de un valor menor al del coste simplemente

de A a D.

Figura 4.13: Ejemplo algoritmo coste uniforme

Una vez terminados los algoritmos no informados, toca los informados, estos
funcionan de manera similar al de coste uniforme pero el valor que se tiene en
consideracién para el coste, en el algoritmo de voraz es el de las heuristicas y el de
A* es una unién del voraz y coste uniforme porque tiene en cuenta el coste del camino
y el estimado por las heuristicas. Para la explicacion de éstas se va a emplear el ejemplo

que se encuentra en la Figura 4.14.

Primero se va a comenzar a explicar el algoritmo voraz. Para ello se parte del nodo

A y se desea llegar hasta el nodo H. En este caso, aparece la diferencia con respecto al

28

oSN
B O-e=¢

Figura 4.14: Ejemplo para algoritmo de busquedas informadas

algoritmo de coste uniforme, es una tabla, donde se puede observar que para cada nodo
hay un valor, aleatorio, que se obtendria al aplicar una heuristica desde el nodo en el
que se encuentra hasta el nodo final. Como en este caso el algoritmo voraz trabaja con
los valores del coste estimado de la heuristica, para calcular el coste del camino de A
a H sera tomado de las cifras de la tabla. Por lo tanto, en este caso los calculos para ir

desde A hasta H por los 4 distintos caminos posibles serfan:

— Pasando por B y E, la suma de A mds B mas Emas H: A+ B + E + H =20
+ 14+ 8+ 0=42

— Pasandopor By Fserfa: A + B+ F+ H =20+ 14+ 6+ 0= 40
— Pasandopor CyG: A+ C+ G+ H=20+ 12+ 4 + 0= 36
—Y,por, DDA+D+H=20+ 18+ 0= 38

En este caso el camino 6ptimo es el que va desde A hasta H pasando por C y
G. Pero por ejemplo se puede observar que en el algoritmo voraz, pasar por D era el
peor camino y en este caso es el segundo mejor. No siempre tienen que coincidir, el
posicionamiento de los mejores caminos, cuando se emplea el coste del camino o el
coste estimado por la heuristica. Ademéds de que no siempre distintas heuristicas daran

tampoco el mismo posicionamiento.

Para finalizar, se procede a explicar el algoritmo A *, Este para obtener los resultados
del coste tiene en cuenta el coste del camino y el estimado de las heuristicas. Se va a

proceder al igual que en el caso anterior a explicar cudl seria el coste para cada posible

29

camino y observar cual seria el mejor, considerando que ¢ es el coste del camino y h

de la heuristica. Los costes para ir desde A hasta H:

— Pasando por B y E, la suma de A més B mas E mds H: A(h) + B(h) + E(h) +
H(h) + A-B-E-H(g)= 20 + 14 + 8 + 0 + 11 = 58

— Pasando por By F seria : A(h) + B(h) + F(h) + H(h) + A-B-F-H(g) = 20 +
1 +64+0+8=48

— Pasando por Cy G: A(h) + C(h) + G(h) + H(h) + A-C-G-H(g) = 20 + 12 +
40+ 6=42

— Y, por, D: A(h) + D(h) + H(h) + A-D-H(g) = 20 + 18 + 30 = 68

Para este caso, como es logico ya que en ambos algoritmos tanto voraz como coste

uniforme, el camino pasando por C y G desde A hasta H era el mejor, sigue siéndolo.

Hasta ahora se ha explicado el concepto tedrico que se ha puesto en practica para
el desarrollo del trabajo. A continuacion, se procede a exponer la implementacién de

la inteligencia en el Pac-Man.

Para ello, primero se tiene que dejar claro qué es necesario que contengan los
distintos estados del espacio, aunque algunos parametros luego no se tengan en cuenta
para comprobar si se ha llegado al estado final. Como se ha indicado anteriormente,
el dnico parametro para comprobar sera la cantidad de comida que falta por comer,

siendo 0 cuando se alcance el estado ultimo.

Se necesita conocer en todo momento donde se encuentra el Pac-Man, es decir su
posicion. Y en dicha posicion se tendrd que saber si hay o no comida, si se pasa por
dicha posicién, se tendra que decrementar el niimero total de comida que queda y en

esta posicion indicar que ya no habra comida porque ya se ha pasado por ésta.

Teniendo claros los parametros que se han de tener en consideracién, se investiga

como se pueden obtener del codigo del que se parte.

Con respecto a la posicion, se tiene que conocer de donde parte el agente y aquellas
por las que pasa. La posicién inicial se puede obtener del objeto Layout que contiene los
siguientes valores: anchura y altura del laberinto, donde se ubican las paredes, comida
y capsula en el laberinto, las posiciones de los distintos agentes, el nimero total de
fantasmas y el total de comida. Tras observar alguno de los disenos (ver Figura 4.15)

se puede ver que:
— El simbolo de porcentaje (%) es empleado para indicar las paredes del laberinto.

30

Los puntos (.) para la comida.
La letra “G”mayuscula, representa a los fantasmas.
La letra “P”mayuscula al agente Pac-Man.

La letra “o”mintscula las capsulas.

£ mediumClassic.lay

696269626 26% 76969696 %% %6 %6%6 6% 6%

%0 ... B %..o..%
% . %% . % . %%%%%% . % . %% . %
2620 v i e % . %
% .%.%% . %% %% .%%.%.%
Hoeeennan %6 G%...... %
% . % . %% . %A%IK%%% . %% . % . %
e Tbe e % . %
% . %% . % . %%K%%% . % . %% . %
%eoed.. Poo %, 0%

%6%696962696%6969%6 2626969 %6 %6266 %6 %6 %

Figura 4.15: Diseno de la interfaz " mediumClassic.lay”

Y, empleando el debugger para conocer el contenido de:

La variable que contiene la ubicacién de la comida. Se puede ver como se utiliza
una matriz para ello, con las dimensiones del laberinto, siendo en el caso que se
pone de ejemplo de la Figura 4.15 de ancho 20 y altura 11. Se indica en esta con

un True cuando hay comida en esa posicién (ver Figura 4.16).

La posicién inicial del Pac-Man, es recogida en una variable junto a las posiciones
de los agentes restantes. Esta contiene una tupla con un valor booleano y luego
la posicion. El valor booleano indica si el agente del que se trata es el Pac-Man
(valor True) o si de es un fantasma (valor False). El agente Pac-Man ocupa la
primera posicion de este vector siempre, por lo que, consultando el segundo valor

de la tupla de la primera posicion de éste, se obtendra el valor que se desea.

Aunque esta variable es mas sencilla, también se obtiene mediante este objeto el

nimero total de comidas que hay en este diseno, en la variable numFood.

Al constar de la posicién inicial del Pac-Man, las restantes pueden ser calculadas

incrementando o decrementando el valor de las variables =z e y, siendo z la
representacion del eje horizontal e y el eje vertical, dependiendo de si la accién es
para arriba, abajo, izquierda, derecha o quedarse parado. El formato que sigue la

posicion es el siguiente: (x, y). Pero no siempre se podra llevar a cabo cualquier accién

31

(= 00= {list: 11} [False, False, False, False, False, False, False, False, False, False, False]
1= 01 ={li
1= 02 = {list: 11} [False, True, Falze, False, False, True, False, False, False, True, Falze]

: 11} [False, True, True, True, True, True, True, True, True, False, False]

11} [False, True, False, True, True, True, True, True, False, True, False]
: 11} [False, True, True, True, False, True, False, True, True, True, False]
ist: 11} [False, False, False, True, False, True, False, True, False, False, False]
: 11} [False, True, True, True, True, True, True, True, True, True, False]
ist: 11} [False, True, False, True, False, False, False, True, False, True, False]
: 11} [False, True, False, True, False, False, False, True, False, True, False]
11} [False, False, False, True, False, False, False, True, False, True, False]
11} [False, True, False, True, False, False, False, True, False, True, False]
11} [False, True, False, True, False, False, False, True, False, True, False]
: 11} [False, True, False, True, False, False, False, True, False, True, False]
st: 11} [False, True, True, True, True, True, True, True, True, True, False]
ist: 11} [False, False, False, True, False, True, False, True, False, False, False]
st: 11} [False, True, Trug, True, False, True, False, True, True, True, False]
= {list: 11} [False, True, False, True, True, True, True, True, False, True, False]
=t: 11} [False, True, Falze, False, Falze, True, False, False, False, True, False]

ist: 11} [False, False, True, True, True, True, True, True, True, True, False]

WOWOW W W W W W W W W W W W W W W W

:= 19 = {lizt: 11} [False, False, False, False, False, False, False, False, False, Falze, False]

Figura 4.16: Matriz de la comida para la interfaz ”mediumClassic.lay”

porque existe la limitacién de las paredes, hay otra matriz que indica en que posicién
se pueden encontrar éstas, pero existe una funcion, disponible en el fichero game.py,
concretamente en la clase Actions que tiene el método getPossible Actions (ver Figura
4.17). Este recibe como parametros un objeto Configuration que consta de una tupla
con la posicién y una accion, y, la matriz que contiene la pared. Por lo tanto, partiendo
de la posicion pasada y las paredes del laberinto se obtienen todas las posibles acciones

a llevar a cabo.

def getPossibleActions(config, walls):
possible = []
X, y = config.pos
x_int, y_int = int(x + 0.5), int(y + 0.5)
In between grid points, all agents must continue straight
if abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE:
return [config.getDirection()]

for dir, vec in Actions._directionsAslList:
dx, dy = vec
next_y = y_int + dy
next_x = x_int + dx
if not walls[next_x][next_y]:
possible.append(dir)
return possible

getPossibleActions = staticmethod(getPossibleActions)

Figura 4.17: Método getPossibleActions en Actions, game.py

Con los parametros indicados se podrian establecer los estados para este juego que

32

se va a denominar PacmanState (ver Figura 4.18). Este tendrd una variable que seran
las paredes comunes para todo los estados, pero son necesarias para poder obtener
las acciones posteriores, el nimero total de comidas, la posicién que sera almacenada
en el objeto Configuration, por lo que también se tendra la accién, y, la matriz de la

ubicacién de la comida, ya que para cada estado podra ser distinta al anterior.

class PacmanState(object):
nalls = set()

def __init__(self, numFood, position, direction, food):
self.numFood = numFood
self.config = Configuration(position, direction)
self.food = food

Figura 4.18: Estado del Pac-Man

Remarcar la importancia de que, aunque en el estado se tengan que tener en
consideraciéon todos los parametros que éste contiene, no determinaran si se ha llegado
al estado final o no, solo lo hara la cantidad de comida que quede. Pero, es necesario
conocer c¢émo se va actualizando la matriz de comida conforme se generan nuevos

estados y, para ello, la posicién que va ocupando en cada momento.

Una vez se tiene claro el estado, se debe crear la funcién sucesor que proporciona
los posibles estados consiguientes al estado en el que se encuentra en ese momento.
Para ello, primero se crea un método dentro de PacmanState denominado next_states
que llamara al método succ donde se encontrara la funcién sucesor. De esta manera se
sigue la légica requerida en la practica actual de la asignatura de TA. Esta clase puede

ser encontrada en el fichero pacmanState.py.

En el método next_states (ver Figura 4.19)se parte de un estado actual y primero
se obtienen todas las posibles acciones, para desde este estado poder desplazarse, ya
que no todo es viable porque existe la limitacion de las barreras. La accién de estar
parado se elimina ya que no es 1til para este caso y una vez se tienen éstas, se llama
a la funcién sucesor para cada una de las posibilidades. Esta devuelve cémo serfa el
estado para cada una las posibilidades de acciones generadas para dicho estado. Y,
se generara un vector con los distintos estados obtenidos, que sera empleado por los

algoritmos de busqueda como se vera un poco mas adelante.

En la funcién sucesor (ver Figura 4.20) se recibe como pardmetro el estado actual
y la accién que se ha de llevar a cabo. Con esta informacién se comprueba qué nuevo

estado se quedaria. Para ello, se aplica la acciéon a la posicién del estado actual y

33

def next_states(self, state):
self = state
new_states = []

legal = Actions.getPossibleActions(self.config, self.walls)

if Directions.STOP in legal:
legal.remove(Directions.STOP)

for action in legal:
state = 0
if action is not None:
state = self.succ(action)
if state is not None:

new_states.append([state, state.config.direction])

return new_states

Figura 4.19: Método next_states

se comprueba si en dicha nueva posiciéon hay comida. Si hubiere comida, el total del
nimero de comida es decrementado en uno y en la matriz de comida dicha posicién
que estaria a True pasa a ser Fulse. La modificacion de la matriz, en un principio, dio
problemas porque cuando se crea una variable y se le asigna el valor de otra variable,
siguen siendo distintas. Pero en el caso de la matriz, cuando a una variable se le trataba
de asignar el valor de la otra matriz como se hacia con las variables, estda en vez de
hacer una copia, hacia un enlace a la misma variable. Dicho problema fue solventado
empleando la funcién deepcopy [34]. Estos nuevos valores del total de nimero de comida,
posicion y la matriz de la comida genera un nuevo estado que es devuelto al método

next_states.

def succ(self, action):
numFood = self.numFood
food = copy.deepcopy(self.food)
config = self.getNewPosition(action)
X, y = config.pos
if food[x][y]:
numFood -= 1
food[x][y] = False

return PacmanState(numFood, config.pos, config.direction, food)

Figura 4.20: Método succ

Ya definida la funcion sucesor y el método que devolvera todos los nuevos estados,

se procede a explicar los distintos algoritmos de busqueda.

En el fichero search.py se puede ver toda la logica implementada de estos algoritmos.
Esta hace a su vez uso de otro fichero denominado datastructures. py que contiene las

distintas estructuras de datos que son empleadas para los distintos algoritmos. Estas

34

estructuras son: pila o (stack), cola o (queue) y cola con prioridad o (priority queue).

Dentro del fichero search.py se encuentran los algoritmos de busqueda tanto
informada como no. La logica que sigue los algoritmos es la que se ha explicado
anteriormente. Ambos algoritmos parten de un nodo, concretamente el nodo inicial,
que este contiene el estado inicial y otros valores que son: el nodo del cual proviene el
estado y si es el inicial sera vacio, la accion por la cual se ha llegado hasta dicho estado,
el coste del camino desde el estado inicial hasta el nodo actual, siendo 0 en el caso del
inicial y en el caso de las informadas el coste estimado por la heuristica, desde el nodo

en el que se encuentra hasta el nodo meta que contiene el estado final.

Se lleva una cuenta de los nodos que son expandidos y generados para luego poder
realizar una comparativa con los distintos algoritmos y observar cudl de ellos es mas
eficiente para cada laberinto. También se declara un vector que almacena todos los

nodos ya explorados.

Cuando se han terminado de declarar las variables, se inserta el nodo inicial en
la frontera como ya se habia indicado, y, se realiza el procedimiento que ya ha sido
explicado anteriormente. En la Figura 4.22, se puede ver el caso de buisqueda informada,
que difiere de la Figura 4.21, el caso de la bisqueda no informada, en la parte de abajo,
donde tras la sentencia de node.g = explored_node.g +1 que se corresponde con el coste
de camino, en la busqueda informada se anade el calculo del coste estimado por la
heuristica que es la siguiente: node.h = heuristic(node.state, goal_state), donde se llama

a una heuristica a la que se le indica cudl es el estado inicial y cudl es el estado meta.

def uninformed_search(initial_state, goal_state, frontier):
initial_node = Node(initial_state, None, None)
expanded = ©
generated = @
explored = []

frontier.insert(initial_node)

while True:
1f frontier.is_empty():
return None

explored_node = frontier.remove()

if explored_node.state.numFood == goal_state.numFood:
return explored_node, expanded, generated

explored.append(explored_node.state)
expanded += 1

expand = explored_node.expand()
for node in expand:
if node.state not in explored and not frontier.contains(node):
node.g = explored_node.g + 1
frontier.insert(node)
generated += 1

Figura 4.21: Método de busqueda no informada

35

def informed_search(initial_state, goal_state, frontier, heuristic):
initial_node = Node(initial_state, None, None)
explored = []
expanded = 0
generated = @
frontier.insert(initial_node)
while True:
if frontier.is_empty():
return None

explored_node = frontier.remove()

if explored_node.state.numFood == goal_state.numFood:
return explored_node, expanded, generated

explored.append(explored_node.state)
expanded += 1

expand = explored_node.expand()
for node in expand:
if node.state not in explored and not frontier.contains(node):
node.g = explored_node.g + 1
node.h = heuristic(node.state, goal_state)

frontier.insert(node)
generated += 1

Figura 4.22: Método de busqueda informada

Destacar, recordando lo que ya se habia comentado, que cuando se realiza la
comprobacion de si se ha llegado al estado final, por mucho que se tengan en cuenta mas
de una variable, s6lo se comprueba si todavia queda comida, los demas pardmetros no se
tienen en este momento en consideracién. Y, cuando se lleva a cabo una comprobacion
de si dos estados son iguales si se tiene en cuenta la posicién, el nimero de comida que

queda y la matriz de la ubicacién de la comida.

En todo este codigo para los algoritmos, no aparece la funcién sucesor ni la de los
siguientes estados, para poder saber en cual estamos o cuales se pueden a partir de
uno. Esto se lleva a cabo cuando se ejecuta el método denominado expand, donde se
crea un vector para almacenar los posibles sucesores y se llama al método nextstates

(ver Figura 4.23) que retorna los siguientes posibles estados.

def expand(self):
successors = []
for (newState, action) in self.state.next_states(self.state):
newllode = Node(newState, self, action)
successors. append (newhode)
return successors

Figura 4.23: Método ezxpand

En la Figura 4.24, se puede ver que las tres primeras funciones se corresponden

36

con los algoritmos de bisqueda no informada, donde en cada uno de los casos se les
pasa la estructura de datos que emplean a la variable frontier, que es la frontera. Y las
dos ltimas funciones son los algoritmos de buisqueda informada, donde la estructura
de datos que se pasa es una cola de prioridad, donde dicha prioridad en el caso del
algoritmo greedy o voraz, viene solo determinado por el coste estimado por la heuristica,

y, en el caso de la A* por el coste del camino y el coste estimado por la heuristica.

def breadth_first(initial_state, goal_state):
frontier = Queue()
return uninformed_search(initial_state, goal_state, frontier)

def depth_first(initial_state, goal_state):
frontier = Stack()
return uninformed_search(initial_state, goal_state, frontier)

def uniform_cost(initial_state, goal_state):
frontier = PriorityQueuve(lambda x: x.g)
return uninformed_search(initial_state, goal_state, frontier)

def greedy(initial_state, goal_state, heuristic):
frontier = PriorityQueve(lambda x: x.h)
return informed_search(initial_state, goal_state, frontier, heuristic)

def a_star(initial_state, goal_state, heuristic):
frontier = PriorityQueve(lambda x: x.g + x.h)
return informed_search(initial_state, goal_state, frontier, heuristic)

Figura 4.24: Algoritmos de busqueda informada y no informada

Solo faltan por explicar en este apartado las heuristicas [47].

Las heuristicas que se suelen emplear para aplicar en los algoritmos son: la distancia
Manhattan [6] o Euclidiana [7]. Estas heuristicas trabajan con distancias y referencias
entre dos puntos distintos que constan de una x y una y, por lo que en este caso que el
estado inicial y el estado final van determinados por el valor de una variable que solo

indica cantidad, no son validas.

Al no encontrar ninguna heuristica clasica que pudiera ser empleada para este
planteamiento del juego, se han creado distintas heuristicas con diferentes operaciones

matematicas bésicas.

Las heuristicas que se han planteado son las que se pueden observar en la Figura

4.25. En la primera se hace una divisién por 2 de la cantidad de comida que queda en

37

dicho estado. En el segundo caso una multiplicacion por 2, en la heuristica tercera una
raiz cuadrada, en la cuarta dicha cantidad por la potencia de 2 y la potencia de 3 en
el quinto caso. Una raiz cuadratica de la cantidad de comida entre 2 y la potencia de

2 del valor entre 2.

def hl{current_state, goal_state): def ni(current_state, goal_state):
return current_state.numFood [2 return current_state
def h2(current_state, goal_state): def no(current_state, goal_state):
return 2 % current_state.numFood return current_state * 13
def hi(current_state, goal_state): def h7(current_state, goal_state):
return math.sgrt(current_state.nunFood) return math.sgrt(current_state.nunFood) / 2
def h4(current_state, goal_state): def h8(current_state, goal_state):
return pow(current_state.numFood, 2) return pow(current_state.numFood, 2) / 2

Figura 4.25: Heuristicas para la bisqueda informada

Una vez finalizada la implementacion de la TA para este juego, falta fusionarla con
la interfaz. Para ello, se genera un vector con los distintos pasos a tomar segun el
camino 6ptimo. Luego, se introduce en el método run del fichero game.py. Como se
habia comentado, en este método se consideran todos los agentes, por lo que se tiene
que comprobar en cada iteracién si es el Pac-Man, y si lo es consultar una posicién
del vector para saber la accion que se debe tomar e incrementar el contador del indice
del vector en uno. Si el indice del agente es 0 se sabra que es el Pac-Man y sino sera
un fantasma. El cédigo del fantasma ha sido modificado para que funcione de manera
aleatoria, en cada momento se observara qué posiciones son legales desde su estado
y se cogerd una de todas las acciones validas. En el run se pueden ver dos maneras
de juego distintas, en el caso del Pac-Man las acciones que se van a realizar se saben
antes de iniciar la interfaz, en cambio, el fantasma tiene poder de tomar una decisién
en tiempo real, en el momento que es su turno, por lo que se comprueba su posicion y
se decide. Esta logica de tiempo real para el Pac-Man va a ser trabajada en un futuro,
para que cuando vaya a tomar una decision, se valore si hay un fantasma cerca es un

peor estado.

Otros aspectos que no tenian que ver con la dotacién de TA eran que en algunos
aspectos el codigo que se planteaba resultaba complejo de comprender, por lo que,

tras ver que sobraban muchos métodos e incluso clases, también se realizé una

38

reestructuracion y reorganizacion del cédigo y una limpieza, eliminando aquello que

no fuera necesario.

Ademas, anadir que el cédigo de por si, de la base que se partia, tenfa errores para
poder ser ejecutado con un compilador de Python de versién 3.7 o superior, pero no
para la 2.7. Para que a los alumnos no les genere ningtin problema la version con la cual
trabajar, se ha planteado un cédigo que puede ser compilado tanto con una version de

2.7 que estd en sus ultimas etapas, hasta la versién més actual que es la 3.10 [35].

El cédigo que se ofrecera a los alumnos, se encuentra disponible en un respositorio
de GitHub. GitHub es una plataforma de desarrollo colaborativo para alojar proyectos
utilizando el sistema de control de versiones Git [54]. El enlace para visitarlo es el

siguiente: https://github.com/vircas/Pac-Man-EUPT

4.4. Resultados o pruebas

Una vez se ha llevado a cabo toda la implementacién del codigo, se procede a ver
que algoritmo se adapta mejor al juego dependiendo de cada laberinto, ya que no se
garantiza que un algoritmo funcione igual de bien para todas las configuraciones. Por
ello, se van a plantear dos laberintos, distintos para todos los algoritmos de biisqueda,

con el objetivo de analizar su comportamiento y ver cual puede ser mejor en cada caso.

Los laberintos a analizar varian en su tamano uno un poco mas grande y con mas
cantidad de comida (ver Figura 4.26), caso 1 y otro de un tamafio méas pequeno y

menos comida, como se puede observar en la Figura 4.27, caso 2.

SCORE: 0

Figura 4.26: Diseno del laberinto para el caso 1

Los resultados obtenidos para los distintos algoritmos de bisqueda en el caso 1,
son los que se pueden ver en la Tabla 4.2. Se puede observar que el camino con menor
pasos conseguidos es de un total de 18, y se ha obtenido con los algoritmos: breadth
first, uniform cost, A* con la heuristica 1, 3, 4, 5, 6 y 7. Siguiendo con los que han

conseguido un camino 6ptimo con un menor nimero de pasos, cabe destacar que los

39

https://github.com/vircas/Pac-Man-EUPT

SCORE: 0

Figura 4.27: Diseno del laberinto para el caso 2

que han hallado este camino en un menor nimero de nodos, tanto expandidos como
generados, ha sido el A* con las heuristicas 4 y 5. Estas empleaban la potencia de
2 y 3 sobre el valor del estado actual. Se procede a realizar esta operacién con una
potencia distinta sobre el mismo escenario para ver como evolucionan los datos. Se
aplican potencia de 4, 5 y 10. Para estos casos el camino 6ptimo son los mismos pasos,
pero los nodos generados son mas siendo 30 los expandidos y 58 los generados para los
3, por lo que no se puede afirmar que todas las potencias obtienen un buen resultado

sino que solo han sido conseguidos buenos los mejores resultados con la potencia de 2

y 3.

En el caso del camino éptimo encontrado con un mayor niimero pasos ha sido depth
first, aunque los nodos expandidos o generados no hayan sido tantos. Si se realiza una
reflexion, es mejor el breadth first que el depth first. Uno ha encontrado un camino
optimo con un menor numero de pasos, pero el otro ha hallado un camino en una
menor cantidad de nodos. Para poder saber cual es mejor, se debe plantear qué criterio
se tiene en consideracion. De igual manera, este criterio no afecta si se compara el depth
first con el de A* de heuristica 4 o 5 porque ambos han conseguido un resultado mejor

en todos los aspectos.

Los resultados del algoritmo greedy a excepcion del primero, se han mantenido en

todos los pardmetros para las distintas configuraciones.

Los resultados obtenidos para los distintos algoritmos de bisqueda en el caso 2, son

los que se pueden ver en la Tabla 4.3.

Este se trata de un caso mas sencillo, porque es mas pequeno, solo hay 3 comidas
y estas estan en una linea recta. El camino éptimo, de un total de 6 pasos, es obtenido
por todos los algoritmos menos por el depth_first, y greedy con la heuristica 1. Los
mejores resultados han expandido 6 nodos y 15 generados, por los algoritmos que
emplean heuristicas, concretamente greedy con las heuristicas 2, 3, 4, 5y 6, y A* con

las heuristicas 4 y 5. Resulta llamativo que A* con las heuristicas 4 y 5 vuelven a ser

40

Algoritmo Total pasos solucién | Nodos expandidos | Nodos generados
BREADTH FIRST 18 6372 7269
DEPTH FIRST 30 35 72
UNIFORM COST 18 6266 7176
GREEDY H1 20 46 78
GREEDY H2 21 30 60
GREEDY H3 21 30 60
GREEDY H4 21 30 60
GREEDY H5 21 30 60
GREEDY H6 21 30 60
GREEDY H7 21 33 63
A* H1 18 4687 5654
A* H2 19 424 709
A* H3 18 4138 5162
A* H4 18 30 58
A* H5 18 30 58
A* H6 18 5166 6094
A* HT 18 32 60

Tabla 4.2: Resultados algoritmos de busquedas caso 1

Algoritmo Total pasos solucién | Nodos expandidos | Nodos generados
BREADTH FIRST 6 29 48
DEPTH FIRST 8 23 30
UNIFORM COST 6 21 39
GREEDY H1 10 18 33
GREEDY H2 6 6 15
GREEDY H3 6 6 15
GREEDY H4 6 6 15
GREEDY Hb5 6 6 15
GREEDY H6 6 6 15
GREEDY H7 6 22 30
A* H1 6 12 24
A* H2 6 6 15
A* H3 6 11 21
A* H4 6 6 15
A* H5 6 6 15
A* H6 6 18 33
A* HT 6 8 21

Tabla 4.3: Resultados algoritmos de bisquedas caso 2

unos de los que ofrecen el mejor resultado con un menor nimero de nodos expandidos

y generados.

El laberinto que se expone en la Figura 4.28, no ha sido resuelto todavia ya que para

el algoritmo breadth_firts lleva mas de un dia en ejecucion y todavia no ha finalizado,

41

en una hora se expandieron alrededor de 50.000 nodos y de un total de 54 comidas en

el laberinto, el nodo que mas cerca esta de la meta tenia todavia 37 comidas.

SCORE:

Figura 4.28: Diseno del laberinto smallClassic

En el enlace que se muestra a continuacion, se puede observar una ejecuciéon del
Pac-Man con los distintos algoritmos y heuristicas para el caso 1: https://drive.

google.com/file/d/1ru8GvEmJuOt20_EwVeZTXDZraXM6v-re/view?usp=sharing.

42

https://drive.google.com/file/d/1ru8GvEmJu0t2o_EwVeZTXDZraXM6v-re/view?usp=sharing
https://drive.google.com/file/d/1ru8GvEmJu0t2o_EwVeZTXDZraXM6v-re/view?usp=sharing

5. Accesibilidad y Usabilidad

Este apartado se centra en los distintos parametros de accesibilidad y usabilidad

que han sido cumplidos y considerados para el proyecto llevado a cabo.

5.1. Accesibilidad

Se entiende como accesibilidad la condicion que deben cumplir los entornos,
productos y servicios para que sean comprensibles, utilizables y practicables por todos
los ciudadanos, incluidas las personas con discapacidad [12]. Hasta ahora lo que se ha
tenido en consideracion hasta el momento han sido aquellos alumnos, que tendran que
llevar a cabo la realizacién de la practica. Se les da un cédigo, el cual no han de entender
por completo, para la implementacion de los algoritmos de busqueda, ya que sigue una
estructura simple y esta especificado en cada momento que han de emplear para poder
llevar a cabo su practica. No es necesario que entiendan cada linea para adquirir los
conocimientos que se pretende que interioricen y comprendan. Por eso, como se ha
comentado en el apartado de la propuesta, una de las tareas que se hicieron fue una
limpieza de cédigo para una menor complejidad de éste. Aun asi, la accesibilidad para
este proyecto es un tema que se encuentra todavia en desarrollo y es una de las tareas

a realizar en el trabajo futuro.

5.2. Usabilidad

Con respecto a la usabilidad, hace referencia a la facilidad con que un usuario puede
utilizar una herramienta fabricada por otras personas para alcanzar un determinado
objetivo [43]. Para medirla en este proyecto, se va a hacer uso de los 10 principios de
usabilidad de Jakob Nielsen [24]. A continuacién se va a llevar a cabo un anélisis de

cada uno de los principios, para estudiar con cuantos de ellos cumple la aplicacion.
Visibilidad del estado del sistema

Este principio dice que el diseno siempre debe mantener a los usuarios informados
sobre lo que esta sucediendo, a través de comentarios apropiados dentro de un periodo

de tiempo razonable.

Para el objetivo académico buscado si se cumple el principio pero pensando en un

publico mas general quizas se podria realizar otra version explicando mas algunos de los

43

pasos que se van realizando, como: “se esta estableciendo la inteligencia del PacMan.°

“se inicia el PacMan inteligente”.
Coincidencia entre el sistema y el mundo real

El segundo principio indica que el diseno debe hablar el idioma de los usuarios. Use
palabras, frases y conceptos familiares para el usuario, en lugar de jerga interna. Siga
las convenciones del mundo real, haciendo que la informacion aparezca en un orden

natural y logico.

Todo lo que se comunica son frases u oraciones cortas que emplean palabras sencillas

sin complejidad alguna por lo que se cumple con el principio.
Control y libertad del usuario

Este principio se centra en que los usuarios a menudo necesitan echar marcha atras,
porque no desean continuar, para dejar una accién no deseada sin tener que pasar por

un proceso prolongado.

Pensando en el alumnado, estos podran parar el proceso de ejecucién con el boton
cuadrado rojo, en el momento que deseen o utilizar el debugging para tener el control,

por lo que se cumple con el principio.
Consistencia y estandares

El cuarto principio plantea que no existan posibles ambigiiedades para los usuarios
ya que no deberfan tener que preguntarse si diferentes palabras, situaciones o acciones

significan lo mismo.

Con respecto a las palabras son claras y concisas, como puede ser: “Ha ganado”.
Las situaciones, el usuario iinicamente ve la pantalla del pacman y comienza el juego
solo. Con las acciones podria haber confusion de que teclas son necesarias para poder

mover el PacMan aunque emplea las habituales que son las flechas o las letras WASD.
Prevencién de errores

En este principio se abarca el tema de prevencion de errores. Para prevenir distintos
errores se llevan a cabo comprobaciones de si se pasan objetos nulos o vacios. Ciertos
controles estaban ya realizados en el cddigo original por lo que hay algunos que han sido
revisados, pero todavia se siguen encontrando algin error y se subsana en el momento.
El cédigo de implementacién propia, comprueba en todo momento los parametros y se
emiten mensajes de errores si es necesario ya que parte de este tema también es faena
de los alumnos como objetivo de la practica para aprender. Por lo tanto, se cumple con

el principio.

44

Reconocimiento en lugar de recuerdo

El sexto principio tiene como objetivo minimizar la carga de memoria del usuario

haciendo visibles los elementos, las acciones y las distintas opciones.

Para este caso una vez implementada la inteligencia, el usuario no requiere de
recordar nada a la hora de interactuar con la interfaz. Antes de introducir ese
conocimiento, solo tiene que recordar que teclas se emplean para poder mover el

PacMan si desean jugar a éste. Se cumple con el principio.
Flexibilidad y eficiencia de uso

Este principio abarca unos aspectos que no se pueden mejorar en el juego del
PacMan tal como estd implementado ya que no permite una mayor flexibilidad o
eficiencia de uso porque no hay ninguna accién como para incrementar una mejoria

en este aspecto. No se cumple con el principio.
Diseno estético y minimalista

El principio séptimo indica que las interfaces no deben contener informacion que
sea irrelevante o que rara vez se necesite. Cada unidad adicional de informacién en una
interfaz compite con las unidades de informacién relevantes y disminuye su visibilidad

relativa.

Solo se ensena informacién relevante mediante la interfaz que es el propio juego,
sin ningin mensaje adicional y los colores o figuras empleadas venian con el cédigo
empleado y es el original. En la pantalla se ve el laberinto, el PacMan, la comida, las

capsulas y los fantasmas, todo necesario y nada en exceso. Se cumple con el principio.

Ayudar a los usuarios a reconocer, diagnosticar y recuperarse de errores
Para cumplir este principio se muestran mensajes de error expresados en un lenguaje
sencillo (sin cdédigos de error), indicando con precisién el problema y para el caso de
los alumnos no se sugiere dependiendo del error ninguna solucién ya que es un objetivo
de la préactica que se peleen con el lenguaje, su codigo implementado y los algoritmos.

Se cumple con el principio.
Ayuda y documentacién

Para finalizar, con el décimo principio a los propios alumnos se les aportard una
documentacién que les permitirda tener una ayuda en la implementacion del cédigo,
pero para el uso de la interfaz no es necesario saber nada mas que lanzar el programa,
que tal como es dado para cualquier version de Python es ejecutable, y las teclas a

emplear para mover el PacMan. Se cumple con el principio.

45

6. Licencia Software y Documental

Llegados a este apartado, se va a proceder a comentar tanto la licencia de software

como la licencia documental.

En cuanto a la licencia de software se va a emplear Berkeley Software Distribution
(BSD). Se trata de una licencia de software libre permisiva como puede ser OpenSSL
o la MIT License. Existen diferentes tipos de licencias, en el caso de este TFG se

ha utilizado la licencia “BSD modificada”, “BSD revisada”, “BSD-3” o “BSD de 3

clausulas” [18].

Al igual que sucede en el mundo del software, se tienen que buscar formas de
garantizar las libertades asociadas al trabajo elaborado y su inviolabilidad futura. Para
garantizar que la libertad esté asociada al documento se buscan métodos, uno de ellos

es la licencia GNU Free Documentation License GFDL).

El propésito de esta Licencia es hacer que en el caso de este TFG sea “gratuito”
en el sentido de libertad: para asegurar a todos la libertad efectiva de copiarlo y
redistribuirlo, con o sin modificarlo, ya sea comercial o no comercialmente. En segundo
lugar, esta licencia preserva para el autor y el editor una forma de obtener crédito por
su trabajo, sin ser considerado responsable de las modificaciones realizadas por otros.
Es una especie de “copyleft”, lo que significa que las obras derivadas del documento
deben ser libres en el mismo sentido. Si por algin motivo se emplea este documento

y se modifica, debe realizar una serie de acciones indicadas en el sitio web oficial de
GNU [56].

Tampoco hay que olvidar que este documento, por defecto, estd al amparo de

la licencia 7.3, por su inclusién en el Repositorio Institucional de Documentos de la
Universidad de Zaragoza: ZAGUAN.

[@oKle)

Figura 6.1: Licencia de ZAGUAN

46

7. Conclusiones y Trabajo Futuro

Para poder llevar a cabo este trabajo, han sido relevantes todas y cada una de las
asignaturas del GII, porque de manera indirecta la formacién de cada una de ellas ha
hecho posible llegar a este punto con las capacidades y destrezas necesarias para lograr
finalizar este proyecto y la titulacion, pero no todas han influido de manera directa en

éste. Las que si lo han hecho son:

— Programacion 1, Programacién 11, Tecnologia de la Programacién para todo el

tema de la estructura, organizacion e implementacion del codigo.

— Estructura de Datos y Algoritmos para el empleo de distintas estructuras de
datos para las fronteras de los algoritmos de bisqueda, ademas de generacién de

arboles, grafos y recorridos de estos.

— Teoria de la Computacién, para la logica de los estados y grafos del problema

planteado

— Inteligencia Artificial para todo el concepto de los agentes de resolucién de

problemas.

— Sistemas de Ayuda a la Toma de Decisiones para la légica de los estados del
Pac-Man.

Se puede confirmar haber cumplido con los objetivos propuestos para el TFG

exitosamente, que eran los siguientes:

1. Enfocar el estudio de la IA hacia la preparacién del alumnado para determinar
cuando un enfoque es adecuado para la resolucién de un problema concreto,
identificando la representacién apropiada, el mecanismo de razonamiento, asi

como su implementacion y evaluacion.

2. Cumplir con el Objetivo de Desarrollo Sostenible (ODS) de Educacién de Calidad,
en concreto 4.4. que consiste en aumentar considerablemente el nimero de
jovenes y adultos que tienen las competencias necesarias, en particular técnicas

y profesionales, para acceder al empleo, el trabajo decente y el emprendimiento
[50].

47

Este trabajo ha supuesto para mi un antes y un después de la carrera, marca el final
de una etapa que, aunque ha sido dura y ha requerido de un gran esfuerzo, ha merecido
la pena y ademés de adquirir mucho conocimiento técnico y aprender a buscarnos la
vida, para solventar posibles errores, como nos pasara en el dia de manana, también
me ha hecho crecer como persona y madurar mas. El trabajo en una primera instancia
no creia que fuera a tener la complejidad que, a dia de hoy, una vez ha finalizado ha

supuesto.

La labor de investigacion conllevé un tiempo, la que se requeria encontrar si se
habia llevado a cabo antes esta idea y un cédigo con una interfaz separable de la logica

con la que se movian los distintos agentes.

El principal muro que ha supuesto este TFG para mi ha sido la logica para dotar
de inteligencia al Pac-Man”, los algoritmos de busqueda estaban claros, pero faltaba
por definir qué estados determinarian que el juego no habia acabado todavia y cuales
si. Esto me supuso méas de un quebradero de cabeza, sin exagerar pude estar dandole
vueltas durante 2 o mas semanas sobre como podria plantear este concepto. Cuando
tenia cualquier rato libre el Pac-Man estaba dentro de mi cabeza, e incluso como no
disponia de un tiempo completo para ello, siempre que se me iban ocurriendo ideas me
lo apuntaba hasta que un dia di con un posible enfoque de plantear que los estados
pudieran ir determinados por la cantidad de comida que quedard en el laberinto hasta

alcanzar la nada.

Tras tener todo algo mas claro me dispuse a implementarlo, labor que tampoco
resulté ser sencilla ya que al partir de un cédigo, sin apenas documentacién. .. (si
tanto nos insisten por la buena documentacién en el grado. .. por algo serd) resulté ser
maés tediosa de lo que puede parecer, ya que habia mucho método sin sentido aparente
que encima la dificultaba. Por fin consegui los parametros necesarios para poder seguir
desarrollando la implementacion y cuando parecié estar todo enfocado se cayé en la
cuenta de que, se necesitaba tener en consideracion la posicion del agente en cada
momento. Tras darle vueltas y parecer algo complejo, era tan sencillo como comprobar
solo la cantidad de comida para ver si se habia alcanzado el estado final y ya esta. Pero
todavia no funcionaba correctamente porque faltaba conocer cémo manejar la ubicacién
de la posicién en la que estaba la comida, algo que en un principio al no darle mucha

vuelta no se tuvo en cuenta. Tras anadir esto, se consiguié dotar de “inteligencia.?l

Pac-Man.

Otro pequeno quebradero de cabeza fueron las heuristicas que se podian plantear
para un valor de un estado actual, ya que el estado final con un 0 mucha informacién

no podia aportar.

48

Al final, se plantean operaciones matematicas no muy complejas pero que llaman
la atencion, ya que dan mejores resultados de lo esperado. Se buscara en un futuro

intentar darle un enfoque nuevo, planteando heuristicas més elaboradas.

Para finalizar con las conclusiones, comentar que la obtencion de los resultados no
fue algo que requirié mucho tiempo y no se diria que fue lo mas complejo del trabajo
sino un analisis de distintos datos. Pero como siempre las he cuidado desde que entré
la carrera, considero que las memorias no son complejas sino costosas en tiempo a

invertir.

Dicho esto, la programacion no resulté ser compleja sino la logica detras de todo

esto y la utilizacién de un cédigo no propio con escasa documentacion.

En lo que respecta al trabajo futuro. Se podria centrar en:

— La actualizacién del proyecto para mejorarlo y mantenerlo usable con el paso del
tiempo, haciendo asi las modificaciones necesarias para que pueda seguir siendo

usado con las nuevas versiones de Python publicadas en el repositorio de GitHub.
— Como modificaciones mas especificas del cédigo:

e La busqueda de una heuristica mas acertada para este proyecto o algin

laberinto en concreto.

¢ En la busqueda actual no hay adversarios porque la presién del fantasma no
se ha de tener en cuenta para la resolucion del problema, pero se plantea una
nueva versién de futuro donde se lleve a cabo una implementacién del juego,
pero con adversarios que seria el PacMan contra los fantasmas. Para ello,
serfa empleado el algoritmo MINI-MAX, la Poda Alfa-Beta y/o funciones

de evaluacion [31].

e La modificacién del codigo para que si un fantasma esta cerca o no en el

camino del Pac-Man se tenga en consideracion y escoja un estado diferente.

e Conseguir que funcione para todas las versiones de Python, tratando de
solventar el error que produce la funcién lambda para las version 3.10 en

Python.

— Mejorar la accesibilidad para los alumnos y crear una aplicacién que pueda
ser usada por cualquiera, pero para ello hay que mejorar en mayor medida la

accesibilidad.

— Y, para finalizar, se pretende publicar este trabajo en un revista de educacién de

impacto.

49

Muchas gracias por haber llegado hasta aqui. jEspero que te haya gustado mucho

mi trabajo!

2 BRB

cAME OVER

50

8.

1]

Bibliografia

ALHEJALI, A. M., AND Lucas, S. M. Evolving diverse ms. pac-man playing
agents using genetic programming. In 2010 UK Workshop on Computational
Intelligence (UKCI) (2010), pp. 1-6.

ALHEJALI, A. M., AND LucAs, S. M. Using genetic programming to evolve
heuristics for a monte carlo tree search ms pac-man agent. In 2013 IEFEFE

Conference on Computational Inteligence in Games (CIG) (2013), pp. 1-8.

BeLL, N., FanG, X., HuGHES, R., KENDALL, G., O’REILLY, E., AND QIU, S.
Ghost direction detection and other innovations for ms. pac-man. In Proceedings
of the 2010 IEEE Conference on Computational Intelligence and Games (2010),
pp. 465-472.

Bowm, L., HENKEN, R., AND WIERING, M. Reinforcement learning to train ms.
pac-man using higher-order action-relative inputs. In 2013 IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) (2013),
pp- 156-163.

CARNEY, M., WEBSTER, B., ALvVARADO, I., PHiLLiPS, K., HOWELL, N.,
GRIFFITH, J., JONGEJAN, J., PITARU, A., AND CHEN, A. Teachable machine:
Approachable web-based tool for exploring machine learning classification. In
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems (New York, NY, USA, Apr. 2020), ACM.

CUEMATH. Distance formula - derivation, examples, types, applications. https:

//www.cuemath.com/distance-formula/.

CUEMATH. Euclidean distance formula - derivation, examples. https://wuw.

cuemath.com/euclidean-distance-formula/.

Dar, J.-Y., L1, Y., CHEN, J.-F., AND ZHANG, F. Evolutionary neural network

for ghost in ms. pac-man. In 2011 International Conference on Machine Learning
and Cybernetics (2011), vol. 2, pp. 732-736.

51

https://www.cuemath.com/distance-formula/
https://www.cuemath.com/distance-formula/
https://www.cuemath.com/euclidean-distance-formula/
https://www.cuemath.com/euclidean-distance-formula/

[9]

[10]

[11]

[12]

[15]

[16]

[17]

[18]

DE BERKELEY, U. Materiales de ia de berkeley. http://ai.berkeley.edu/

search.html.

DeELoozg, L. L., AND VINER, W. R. Fuzzy g-learning in a nondeterministic
environment: developing an intelligent ms. pac-man agent. In 2009 IEEE

Symposium on Computational Intelligence and Games (2009), pp. 162-169.

DeENERO, J., AND KLEIN, D. Teaching introductory artificial intelligence
with pac-man. Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence (01 2010).

EspPANOLA, R. A. Definicién de accesibilidad - diccionario panhispéanico del
espanol juridico - rae. https://dpej.rae.es/lema/accesibilidad#: ~:text=
Adm. , TRLGDPD%20%2C%20art .

GALLAGHER, M., AND RYAN, A. Learning to play pac-man: an evolutionary,
rule-based approach. In The 2003 Congress on Fvolutionary Computation, 2003.
CEC ’05. (2003), vol. 4, pp. 2462-2469 Vol.4.

GRIVOKOSTOPOULOU, F., PERIKOS, I., AND HATZILYGEROUDIS, I. An
educational game for teaching search algorithms. In In Proceedings of the Sth
International Conference on Computer Supported Education (01 2016), vol. 2,
pp- 129-136.

Guibo VAN Rossum, F. L. D. The python language reference
manual - guido van rossum, fred 1. drake - google libros. https:
//books.google.es/books/about/The_Python_Language_Reference_Manual.
htm1?7id=Ut4BuQAACAAJ&redir_esc=y. (Accessed on 06/24/2022).

Hao, Y., HE, S., WANG, J., Liu, X., JIAJIAN YANG, AND HuanG, W.
Dynamic difficulty adjustment of game ai by mcts for the game pac-man. In
2010 Sixth International Conference on Natural Computation (2010), vol. 8,
pp- 3918-3922.

IKEHATA, N., AND ITO, T. Monte-carlo tree search in ms. pac-man. In 2011 IEFEE
Conference on Computational Intelligence and Games (CIG’11) (2011), pp. 39-46.

INtTIATIVE, O. S. The 3-clause bsd license — open source initiative. https:
//opensource.org/licenses/BSD-3-Clause. (Accessed on 06/17/2022).

52

http://ai.berkeley.edu/search.html
http://ai.berkeley.edu/search.html
https://dpej.rae.es/lema/accesibilidad#:~:text=Adm.,TRLGDPD%20%2C%20art.
https://dpej.rae.es/lema/accesibilidad#:~:text=Adm.,TRLGDPD%20%2C%20art.
https://books.google.es/books/about/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ&redir_esc=y
https://books.google.es/books/about/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ&redir_esc=y
https://books.google.es/books/about/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ&redir_esc=y
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause

[19]

[20]

[24]

[25]

2]

[29]

[30]

1Q, O. Manhattan distance [explained]. https://iq.opengenus.
org/manhattan-distance/#:~:text=Manhattanj,20distance’%20is’%20a%
20distance, all’20dimensions%200f%20two’%20points.

Luo, W. PAC-MAN game based on SAPF algorithm. In 2018 International
Conference on Intelligent Transportation, Big Data & Smart City (ICITBS) (Jan.
2018), IEEE.

MATHWORKS. Configure generated ¢ function interface for model entry-point
functions - matlab & simulink. https://www.mathworks.com/help/rtw/ug/
configure-c-code-generation-for-model-entry-point-functions.html#:
~:text=An’20entry%20point’20is%20a, when)20the%20applicationi,
20starts’20executing.

MIRANDA, M., SANCHEZ-RUIZ, A. A., AND PEINADO, F. A neuroevolution

approach to imitating human -like play in ms. pac-man video game.

NGUYEN, K. Q., AND THAWONMAS, R. Monte carlo tree search for collaboration

control of ghosts in ms. pac-man. [EEE Transactions on Computational
Intelligence and Al in Games 5, 1 (2013), 57-68.

NIELSEN, J. 10 usability heuristics for user interface design. https://www.

nngroup.com/articles/ten-usability-heuristics/, 11 2020.

NorviG, P. R., AND INTELLIGENCE, S. A. A modern approach. Prentice
Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An
ontology-based adaptive personalized e-learning system, assisted by software agents
on cloud storage. Knowledge-Based Systems 90 (2002), 33-48.

OH, K., AND CHO, S.-B. A hybrid method of dijkstra algorithm and evolutionary
neural network for optimal ms. pac-man agent. In 2010 Second World Congress
on Nature and Biologically Inspired Computing (NaBIC) (2010), pp. 239-243.

ORTECA, D. B. Machine learning applied to pac-man final report, 6 2015.

PepPELS, T., WINANDS, M. H. M., AND LANCcTOT, M. Real-time monte carlo

tree search in ms pac-man. IFEE Transactions on Computational Intelligence and
Al in Games 0, 3 (2014), 245-257.

Picazo, P. G. Tema 2 (i). resolucién de problemas y bisqueda, 2020.
Picazo, P. G. Tema 2 (ii). busqueda informada, 2020.

53

https://iq.opengenus.org/manhattan-distance/#:~:text=Manhattan%20distance%20is%20a%20distance,all%20dimensions%20of%20two%20points.
https://iq.opengenus.org/manhattan-distance/#:~:text=Manhattan%20distance%20is%20a%20distance,all%20dimensions%20of%20two%20points.
https://iq.opengenus.org/manhattan-distance/#:~:text=Manhattan%20distance%20is%20a%20distance,all%20dimensions%20of%20two%20points.
https://www.mathworks.com/help/rtw/ug/configure-c-code-generation-for-model-entry-point-functions.html#:~:text=An%20entry%20point%20is%20a,when%20the%20application%20starts%20executing.
https://www.mathworks.com/help/rtw/ug/configure-c-code-generation-for-model-entry-point-functions.html#:~:text=An%20entry%20point%20is%20a,when%20the%20application%20starts%20executing.
https://www.mathworks.com/help/rtw/ug/configure-c-code-generation-for-model-entry-point-functions.html#:~:text=An%20entry%20point%20is%20a,when%20the%20application%20starts%20executing.
https://www.mathworks.com/help/rtw/ug/configure-c-code-generation-for-model-entry-point-functions.html#:~:text=An%20entry%20point%20is%20a,when%20the%20application%20starts%20executing.
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[42]

[43]

Picazo, P. G. Tema 2 (iv). busqueda entre adversarios - juegos, 2020.

PyCHARM. Pycharm: el ide de python para desarrolladores profesionales,
por jetbrains. https://www.jetbrains.com/es-es/pycharm/. (Accessed on
06/21/2022).

PYPI. pyreverse - pypi. https://pypi.org/project/pyreverse/.

PyTrHON. copy — shallow and deep copy operations — python 3.10.5
documentation. https://docs.python.org/3/library/copy.html. (Accessed
on 06/22/2022).

Pyranon. Download python — python.org. https://www.python.org/
downloads/. (Accessed on 06/21/2022).

PYTHON. Welcome to python.org. https://www.python.org/. (Accessed on
06/21/2022).

Qu, S., TAN, T., AND SHUHUIQ, Z. Z. Reinforcement learning with deeping

learning in pacman, 2014.

RESPUESTAS, T. ;qué es un autograder? - tus respuestas. https://

tusrespuestas.net/que-es-un-autograder/.

RoBLES, D., AND LucaAs, S. M. A simple tree search method for playing ms.

pac-man. In 2009 IEEE Symposium on Computational Intelligence and Games
(2009), pp. 249-255.

ROHLFSHAGEN, P., AND LLucAs, S. M. Ms pac-man versus ghost team cec 2011
competition. In 2011 IEEE Congress of Evolutionary Computation (CEC) (2011),
pp. 70-77.

SAFAK, A. B., Bostanci, E., AND SOYLUCICEK, A. E. Automated maze

generation for ms. pac-man using genetic algorithms. International Journal of
Machine Learning and Computing 6, 4 (2016), 226-230.

SAMOTHRAKIS, S., ROBLES, D., AND LucAs, S. Fast approximate max-n

monte carlo tree search for ms pac-man. IEEE Transactions on Computational
Intelligence and Al in Games 3, 2 (2011), 142-154.

SEAS. ;qués es la usabilidad de una interface? — blog seas. https://www.

seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:

o4

https://www.jetbrains.com/es-es/pycharm/
https://pypi.org/project/pyreverse/
https://docs.python.org/3/library/copy.html
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/
https://tusrespuestas.net/que-es-un-autograder/
https://tusrespuestas.net/que-es-un-autograder/
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.

[44]

[45]

[47]

[48]

[49]

~:text=La’,20usabilidad’%2C%20seg’,C3%BAn%201a%20RAE, paraj,20alcanzary
20un%20determinado’%20objetivo}E2780%9D., 10 2019.

SitLA, C. N. Teaching genetic algorithm-based parameter optimization using
pacman. In 2016 IEEE Frontiers in Education Conference (FIE) (Oct. 2016),
IEEE.

TAMASSIA, M., ZAMBETTA, F., RArreE, W. L., MUELLER, F., AND L1, X.
Learning options from demonstrations: A jitalic; pac-man;j/italic;case study. IEEE
Transactions on Games 10, 1 (2018), 91-96.

TANG, D. Empowering novices to understand and use machine learning with
personalized image classification models, intuitive analysis tools, and mit app
inventor, 1 1970.

TECHOPEDIA. ;qué es la heuristica? - definiciéon de techopedia. https://www.
techopedia.com/definition/5436/heuristic, 3 2022.

TILKIDAGI, S. Monte-carlo tree search algorithm in pac-man identification of
commonalities in 2d video games for realisation in ai (artificial intelligence), 11
2021.

UbAciTy. _init__ in python: An overview — udacity. https://www.
udacity.com/blog/2021/11/__init__-in-python-an-overview.html#:~:

text=The’,20__init__%20method’,20is%20the%20Python’20equivalent%200of,
is%200nly%20used’%20within20classes. (Accessed on 06/21/2022).

UNIDAS, N. Educacién - desarrollo sostenible. https://www.un.org/

sustainabledevelopment/es/education/.
VERI, B. M. R. Project - 1 ¢s:246 artificial intelligence, 09 2019.

W3ScHooLrs. Python lambda. https://www.w3schools.com/python/python_
lambda. asp.

Wiki, P.-M. Pac-man (videojuego) — pac-man wiki — fandom. https://

pacman. fandom.com/es/wiki/Pac-Man_(videojuego).

WIKIPEDIA. Github - wikipedia, la enciclopedia libre. https://es.wikipedia.
org/wiki/GitHub.

95

https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.seas.es/blog/informatica/ques-es-la-usabilidad-de-una-interface/#:~:text=La%20usabilidad%2C%20seg%C3%BAn%20la%20RAE,para%20alcanzar%20un%20determinado%20objetivo%E2%80%9D.
https://www.techopedia.com/definition/5436/heuristic
https://www.techopedia.com/definition/5436/heuristic
https://www.udacity.com/blog/2021/11/__init__-in-python-an-overview.html#:~:text=The%20__init__%20method%20is%20the%20Python%20equivalent%20of,is%20only%20used%20within%20classes.
https://www.udacity.com/blog/2021/11/__init__-in-python-an-overview.html#:~:text=The%20__init__%20method%20is%20the%20Python%20equivalent%20of,is%20only%20used%20within%20classes.
https://www.udacity.com/blog/2021/11/__init__-in-python-an-overview.html#:~:text=The%20__init__%20method%20is%20the%20Python%20equivalent%20of,is%20only%20used%20within%20classes.
https://www.udacity.com/blog/2021/11/__init__-in-python-an-overview.html#:~:text=The%20__init__%20method%20is%20the%20Python%20equivalent%20of,is%20only%20used%20within%20classes.
https://www.un.org/sustainabledevelopment/es/education/
https://www.un.org/sustainabledevelopment/es/education/
https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lambda.asp
https://pacman.fandom.com/es/wiki/Pac-Man_(videojuego)
https://pacman.fandom.com/es/wiki/Pac-Man_(videojuego)
https://es.wikipedia.org/wiki/GitHub
https://es.wikipedia.org/wiki/GitHub

[55]

[56]

[57]

[58]

WIRTH, N., AND GALLAGHER, M. An influence map model for playing ms.
pac-man. In 2008 IEEE Symposium On Computational Intelligence and Games
(2008), pp. 228-233.

Y FSF, G. El sistema operativo gnu y el movimiento del software libre. https:
//www.gnu.org/home.es.html. (Accessed on 06/16/2022).

ZIKKY, M. Review of a* (a star) navigation mesh pathfinding as the alternative
of artificial intelligent for ghosts agent on the pacman game. EMIT. Int. J. Eng.
Technol. 4, 1 (Aug. 2016).

Z0ou, Y. General pacman Al: Game agent with tree search, adversarial search and
model-based RL algorithms. In 2021 2nd International Conference on Big Data
& Artificial Intelligence & Software Engineering (ICBASE) (Sept. 2021), IEEE.

56

https://www.gnu.org/home.es.html
https://www.gnu.org/home.es.html

Anexos

57

A. Enunciado de la practica

En este anexo se va a dejar un boceto de lo que podria ser el boletin de practicas

para los alumnos.

Esta practica se corresponde con el Tema 2 de la asignatura, que a su vez estd
basado en el Capitulo 3 de la bibliografia basica (“Artificial Intelligence: A Modern
Approach, Chapter 3: Solving Problems By Searching”).

A.1. Objetivos de la practica

La primera préctica de la asignatura se centrara en la resolucién basica de problemas
mediante busqueda por expansion de estados. Se estudiaran diferentes estrategias tanto
informadas como no informadas y se estudiara su eficiencia a la hora de resolver

problemas en entornos deterministas, completamente observables y estaticos.

Gran parte de los juegos para un solo jugador (sudoku, puzles, etc.) podrian caer en
esta categoria, pero también otros problemas a resolver en los que se puedan definir de
forma inequivoca los diferentes estados del sistema y las transiciones entre los mismos

mediante una serie finita de acciones.

A.2. Busqueda no informada e informada

Los problemas de busqueda siempre comienzan con un estado inicial del sistema,
y se centran en encontrar un estado final que satisface ciertas condiciones. Por tanto,

debemos definir para cada problema los siguientes parametros:

— FEl estado inicial del sistema.

— Las posibles acciones que pueden producirse desde cada uno de los posibles

estados del sistema.

— El resultado de dichas acciones, es decir, a qué estado nos conduciria una accion

dado un estado dado.

— Una funcién de coste, que asigna un coste a cada serie de acciones. Normalmente

se representa como g(n).

58

— Un test para determinar si un estado es el final (también llamado meta u

objetivo).

El esquema general de un algoritmo de busqueda aparece en la Figura 3.7
de la bibliografia, definida como TREE-SEARCH y GRAPH-SEARCH. La tnica
diferencia entre ellos es que GRAPHSEARCH incorpora una lista de estados visitados
(explorados) para evitar repeticiones, por lo que es més eficiente especialmente en
entornos con multitud de estados. Por ello, se usara este algoritmo como base para la

practica:

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored sef to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figura A.1: Descripcién informal del algoritmo general de busqueda en grafos

Existen diferentes variantes de este algoritmo, todas ellas basadas en pequenos
matices a la hora de elegir un nodo a expandir de la frontera de estados visitados.
Se puede hacer una primera division entre algoritmos de busqueda no informada, o

informada:

— Bisqueda no informada (ciega): las estrategias no disponen de informacién
adicional sobre estados mas alla de la proporcionada en la definicion del problema,
por lo que sélo pueden expandir estados y distinguir entre estados objetivos y

no-objetivos. Dentro de esta categoria se distinguen:
e Bisqueda primero en anchura (breadth-first): se expanden primero
los estados de un nivel antes de expandir los del estado siguiente.

¢ Bisqueda primero en profundidad (depth-first): se expanden primero

los estados de mayor nivel (los més profundos).

e Bisqueda en coste uniforme (uniform cost): se expanden primero los

estados con menor coste acumulado de acciones para llegar a él.

59

— Bisqueda informada (heuristica): se utiliza informacién propia del problema
mas alld de la proporcionada en la definicién. Se utiliza una funcién heuristica,
normalmente denominada h(n), que estima el coste del camino mas corto desde
el estado actual hasta el objetivo. Para que la heuristica sea admisible, nunca
puede indicar un coste mayor que el real para algtin estado. En esta categoria se

incluirian:

e Bisqueda voraz, avariciosa o primero el mejor (greedy or
best-first): se expanden primero los estados con el menor valor de la funcién

heuristica, h.

e Bisqueda A*: se expanden primero los estados con el menor valor de la
suma del coste para llegar al estado mas la estimacion de alcanzar el estado

objetivo, es decir, f = g + h.

A.3. Problema a resolver

Para aplicar las estrategias de buisqueda, resolveremos el juego del Pac-Man, pero
no en el sentido de conseguir que pueda ganar todas las partidas, sino que se pueda
finalizar toda la comida del laberinto de la manera mas 6ptima sin la presiéon generada

por parte de los fantasmas.

SCORE: 120

Figura A.2: Ejemplo de laberinto para el juego del Pac-Man

Se parte de un estado en el que el laberinto tiene un nimero indeterminado de
comida, la posiciéon no influye de manera directa aunque como se vera sera necesaria
para determinar los estados. Las acciones que se podran llevar a cabo seran ir a la

derecha "East’; ir a la izquierda "West’, hacia arriba 'North’ y para abajo ’South’.

Por lo tanto, se debe tener en cuenta que aunque el objetivo es finalizar toda la
comida, la posicién del Pac-Man sera relevante para tener en cuenta donde se encuentra

y comprobar si en dicha casilla hay comida o no. Ya que si la hay se podra decrementar

60

el valor de la comida restante en el laberinto y estar un paso mas cerca de alcanzar el

objetivo final que seria que no quedase nada de comida en el laberinto.

El coste de una solucién (funcién g) se considerara igual a cada desplazamiento

llevado a cabo, es decir, cuando el Pac-Man se mueve a una casilla, cuenta como 1.

A.4. Ficheros de la practica

La practica esta compuesta por los siguientes ficheros:

— datastructures.py: contiene estructuras de datos ttiles en Python para la

realizacion de los algoritmos (Stack, Queue, PriorityQueue).

— search.py: contiene la estructura basica del proceso de bisqueda no informada e
informada. Sin embargo, algunas de las funciones no tienen el cédigo necesario
para que el algoritmo funcione correctamente. Por tanto, cada alumno debe
rellenar el codigo de las siguientes funciones: uninformed_search, breadth_first,
depth_first, uniform_cost, informed_search, greedy, a_star, h1 u otras funciones

heuristicas.

— pacmandState.py: contiene la clase que representa cada estado del problema. Cada

alumno debe rellenar el cédigo de las siguientes funciones: succ, next_states

— pacman.py: contiene el programa principal de la practica, que hace llamadas a
los diferentes algoritmos de buisqueda. En este solo se tendran que modificar los
parametros de entrada como qué tipo de agente de Pac-Man es o el escenario
que se quiere emplear, todo se puede cambiar en el main de dicho fichero. Si se
desea que no haya fantasmas que interrumpan la ejecucién del Pac-Man, habré
que modificar en el método runGames, una variable como se ha indicado el
c6édigo denominada ghosts. Con respecto al laberinto que se desea resolver con
el Pac-Man se recomienda que no se empiece con uno muy grande ya que puede

tardar incluso dias la resolucion de alguno de estos.

— graphicsDisplay,py, graphicsUtils.py, layout.py: proporcionan una interfaz grafica
para poder ver la solucién encontrada con alguno de los algoritmos de busqueda.
De estas solo quizas es necesario consultar los pardmetros de los que consta

layout.py.

— game.py, gameState.py, agents.py: implementan la légica necesaria para que el

Pac-Man se mueva o consuma la comida

61

A.5. Entrega de la practica

Deberan completare las siguientes tareas para considerar la practica entregada:

1. Completar el cédigo Python necesario para que los algoritmos de busqueda
no informada e informada funcionen correctamente, siguiendo el algoritmo
GRAPH-SEARCH. Ademéas, deberan proponerse, al menos 2 funciones
heuristicas diferentes y admisibles para ser utilizadas en los algoritmos de
busqueda informada. La eficiencia de las funciones heuristicas formara parte de

la evaluacién de la préctica.

2. Estudiar la optimalidad y eficiencia de los algoritmos en un laberinto concreto
que no expanda ni genere muchos nodos, comparando la longitud de las soluciones
encontradas y el niimero de nodos expandidos y generados por cada algoritmo.

Discutir los resultados.

3. Estudiar el comportamiento de los algoritmos cuando se escoge un laberinto més

grande del ya escogido o con una mayor cantidad de comida.

Todas estas tareas se llevaran a cabo en parejas o de manera individual.

La préctica se entregara a través del Anillo Digital Docente (ADD), para lo cual
se deberd realizar una memoria indicando cémo se ha realizado la implementacién y
los resultados obtenidos por los diferentes algoritmos, y se debera entregar un fichero
comprimido con el cédigo de la practica y con la memoria realizada en formato PDF.
La fecha limite de entrega serd el 22/11/2022.

A.6. Recursos adicionales

Explicacion del juego del Pac-Man: https://pacman.fandom. com/wiki/Pac-Man_

(game)

62

https://pacman.fandom.com/wiki/Pac-Man_(game)
https://pacman.fandom.com/wiki/Pac-Man_(game)

	Lista de Figuras
	Lista de Tablas
	Introducción y Objetivos
	Contextualización
	Estado del Arte
	Parte investigación
	Parte académica

	Propuesta Pac-Man - EUPT
	Análisis y Diseño
	Herramientas tecnológicas empleadas
	Implementación
	Resultados o pruebas

	Accesibilidad y Usabilidad
	Accesibilidad
	Usabilidad

	Licencia Software y Documental
	Conclusiones y Trabajo Futuro
	Bibliografía
	Anexos
	Enunciado de la práctica
	Objetivos de la práctica
	Búsqueda no informada e informada
	Problema a resolver
	Ficheros de la práctica
	Entrega de la práctica
	Recursos adicionales

