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Estimación del riesgo de caídas usando 

acelerómetros y técnicas de Aprendizaje Automático 

Resumen 
 En este Trabajo Fin de Grado se pretende estimar el riesgo de caídas en ancianos usando 
acelerómetros para evaluar dicho riesgo gracias a técnicas de Aprendizaje Automático en 
lenguaje Python. 
 
 Para ello se cuenta con una base de datos de personas mayores que llevaron el teléfono 
en su vida diaria, recogiendo datos del acelerómetro de forma casi continua, así como de un 
código previo de procesado, realizado en el grupo EduQTech. También se realizaron pruebas 
controladas caminando. De estos datos en bruto se puede obtener una serie de características 
reducidas que sirvan como entrada a los clasificadores. Además, se realizaron una serie de 
pruebas clínicas (prueba Tinetti, test up and go) y entrevistas sobre las caídas que tuvieron 
recientemente. Estas pruebas permiten determinar si una persona tiene o no riesgo de sufrir 
una caída. La idea del proyecto es vincular este riesgo clínico con las señales de aceleración 
utilizando técnicas de Aprendizaje Automático. 
 
 Palabras clave: Python, Aprendizaje Automático, Riesgo de caída, Acelerómetros. 

Fall risk estimation using accelerometers and 

Machine Learning techniques 

Abstract 

The aim of this Final Degree Project is to estimate the risk of falls in elderly people using 
accelerometers to assess this risk thanks to Machine Learning techniques in Python language. 
 
 For this purpose, we have a database of elderly people who carried the phone in their 
daily life, collecting accelerometer data almost continuously, as well as a previous processing 
code, made in the EduQTech group. Controlled walking tests were also performed. From this 
raw data, a number of reduced features can be obtained to serve as input to the classifiers. In 
addition, a series of clinical tests (Tinetti test, up and go test) and interviews about recent falls 
were performed. These tests make it possible to determine whether or not a person is at risk of 
falling. The idea of the project is to link this clinical risk with acceleration signals using Machine 
Learning techniques. 
 
 Keywords: Python, Machine Learning, Fall Risk, Accelerometers. 
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1 INTRODUCCIÓN 
 

1.1 Motivaciones del proyecto 
 
Actualmente en el campo de la medicina se necesita una revolución en la que se integren 
mucho más la última tecnología existente, sobre todo la inteligencia artificial, ya que esto 
podría suponer una cuestión vital en la vida de los pacientes a la hora de la prevención de 
anomalías en fases tempranas. 
 
En el caso propuesto, la predicción de caídas en ancianos, sería fundamental su 
combinación. Al año supone 37,3 millones de lesiones cuya gravedad requiere atención 
médica (OMS, 2021). Por lo que el Machine Learning podría ser una técnica adecuada para 
pronosticar el riesgo de caída mediante el uso de un acelerómetro llevado por los ancianos. 
La aceleración es medida directamente con un teléfono móvil, por lo que el sistema de 
medición es relativamente barato y sin apenas influir en la vida diaria de los ancianos que 
lo usan. La implementación se llevaría a cabo en código Python para conseguir de la 
aceleración un sistema predictor de caídas. Al haber diferentes técnicas de Machine 
Learning para obtener este sistema predictor se evaluará cual sería la mejor. Dicha 
evaluación se realizará con la vinculación de las pruebas clínicas actuales que se utilizan 
para medir este riesgo (prueba Tinetti, Test Up and Go) y entrevistas sobre las caídas que 
han tenido recientemente.  
 

1.2 Objetivos del proyecto  
 
La idea principal del proyecto es vincular el riesgo de caídas clínico con las señales de 
aceleración para así determinar si una persona tiene o no riego de sufrir una caída mediante 
técnicas de Aprendizaje Automático.  
 
Por lo que para este proyecto han sido necesario cumplir con las siguientes metas: 
 

• Familiarizarse con las técnicas de Aprendizaje Automático y el uso de librerías 

para su implementación en Python. 

• Conocer los diferentes entonos de trabajo para programar en Python. 

• Aplicación de la base de datos de los ancianos realizada por el grupo EduQTech. 

• Estimar las prestaciones de los algoritmos para la predicción del riesgo de caídas 

en función de varios factores 

• Comprobar la diferencia entre las prestaciones obtenidas cuando se usan señales 

de la vida diaria o señales de pruebas físicas controladas. 

• Presentar los resultados de forma compacta y comprensible. 
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2 FUNDAMENTOS TEÓRICOS 
 

2.1 Caídas en la población mundial  
 
Las caídas suponen un problema real, ya que pueden significar un peligro en la vida de los 
individuos. Pero antes continuar analizándolas tenemos que saber a lo que se conoce por 
caída: “Las caídas son sucesos involuntarios que hacen perder el equilibrio y dar con el 
cuerpo en el suelo o en otra superficie firme que lo detenga” (OMS, 2021).  
 
A continuación, se muestran unos datos claves para entender la magnitud que proporciona 
la OMS (2021): 
 

• 37,3 millones de caídas revisten suficiente gravedad como para requerir atención 

médica. 

• Anualmente fallecen en todo el mundo unas 684 000 personas debido a caídas. 

• Las mayores tasas de mortalidad por esta causa corresponden a los mayores de 60 

años. 

Las caídas no afectan a todas las personas por igual, según su edad o sexo varía. 
 

• Sexo: A priori todos tienen las mismas posibilidades de sufrir caídas, pero las 

mujeres de avanzada edad están más predispuestas a padecerlas, aunque la las tasas 

de mortalidad y los AVAD perdidos son más altas en varones. Esto se podría deber 

a los hombres realizan trabajos de más de riesgo.  

• Edad: Las personas de una edad avanzada son los que tiene una probabilidad mayor 

de sufrir lesiones de una mayor gravedad. Para entender mejor los datos se puede 

observar el ejemplo de EEUU, entorno a un 20/30% de las personas que sufren una 

caída tienen lesiones de moderadas a graves. 

El costo económico según las estimaciones de diferentes países varía mucho, pero el 
importe del tratamiento de un traumatismo en una persona de 65 años varía según el país. 
Por ejemplo, 1049$ en EEUU a 3611$ en Finlandia, lo que supondría, sin lugar a dudas, un 
gran desembolso. 
 

2.2 Base de datos suministrada 
 
Se cuenta con una base de datos de personas mayores que llevaron el teléfono en su vida 
diaria, recogiendo datos del acelerómetro de forma casi continua, así como de un código 
previo de procesado, realizado en el grupo EduQTech. De estos datos en bruto se puede 
obtener una serie de características reducidas que sirvan como entrada a los clasificadores. 
 
Además de esta base de datos se cuenta con otra base de datos similar, pero a diferencia de 
la primera el acelerómetro se llevaba cuando el sujeto únicamente andaba para así no tener 
que filtrar el código e introducir menos error (pruebas controladas caminando). Un ejemplo 
gráfico de la aceleración en la prueba controlada de caminar sería el siguiente: 
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Ilustración 1: Aceleración VS tiempo en prueba controlada andada. 

 
A dichos sujetos se les realizaron una serie de pruebas clínicas: test de Tinetti o evaluación 
de la movilidad orientada al rendimiento (POMA por sus siglas en inglés) o el Timed Up and 
Go Test (TUGT) y entrevistas sobre las caídas que han tenido recientemente para 
posteriormente vincularlas con los datos obtenidos del acelerómetro. Estas pruebas son 
vitales a la hora de predecir las caídas, ya que son los indicadores del riesgo. 
 
De todas las ventanas que se extraen de la vida diaria y que se supone que corresponden a 
periodos caminando, se extraen las características y luego se hace un clustering en 2, 3, hasta 
6 clusters, dando a lugar a los ficheros llamados por el tutor features_1, features_2 etc. 
Después al clasificador se pasan sólo los centros de los clusters. El objetivo es intentar 
reducir un poco la falta de fiabilidad de las señales, ya que el detector de la acción “caminar” 
no es muy bueno. La representación gráfica de esta idea sería la siguiente: 
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2.2.1 POMA 
El POMA o test de Tinetti fue publicado por Mary Tinetti para evaluar la marcha y el 
equilibrio en ancianos. 
 
La prueba requiere de una silla dura sin brazos y un cronómetro. Tiene dos partes: una 
evalúa habilidades de equilibrio en una silla y la otra evalúa el equilibrio dinámico durante 
la marcha. Al realizar dicho test, el evaluador observará varios puntos clave, entre ellos: 
cómo se levanta y se sienta el paciente en su silla, qué sucede cuando los ojos del paciente 
están cerrados en la silla, si el paciente se mantiene erguido o no mientras camina, además 
de observar la velocidad de la marcha, así como la simetría y longitud de los pasos. 
 
La prueba de Tinetti tiene una puntuación de marcha y una puntuación de equilibrio. Utiliza 
una escala ordinal de 3 puntos de 0, 1 y 2. La marcha se puntúa sobre 12 y el equilibrio se 
puntúa sobre 16, con un total de 28. Cuanto más bajo sea el puntaje en la prueba de Tinetti, 
mayor será el riesgo de caída. Aunque esta descripción de la puntación es correcta, cada 
autor usa un umbral distinto, por ejemplo, EduQTech uso que para una nota menor a 25 
tiene riesgo de caída, por lo tanto, se puede decir que es se han juntado el riesgo bajo y 
medio conforme a la descripción anterior. El grupo de investigación se basó en el trabajo de 
M.E Tinetti (Tinetti, 1986). 
 
 

FEATURES 

FEATURES 

FEATURES 

CLUSTERING 

VAN AL CLASIFICADOR 

Ilustración 2: Proceso desde que se obtienen los datos en las gráficas hasta el clasificador. 
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TEST TINNETI PUNTUACIÓN RIESGO DE CAIDA 
<25 Sí 
≥25 No 

Tabla 1: Riesgo de caídas basado en POMA. 

2.2.2 TUGT 
El TUGT es una prueba especialmente indicada para medir movilidad y valorar el riesgo de 
caídas en personas mayores. 
 
Solo se necesita una silla y un cronómetro. La prueba consiste en medir el tiempo necesario 
para levantarse de la silla (preferiblemente sin utilizar los brazos), caminar hasta la marca 
situada a tres metros (ambos pies deben rebasar la marca), darse la vuelta y sentarse 
nuevamente en la silla. 
 
El test tiene un diferente riesgo dependiendo del número de segundos que tarda el sujeto 
en hacer la prueba. EduQtech establece el umbral en 14 segundos (M. Jacobs y T.Fox, 2008) 
cómo se puede ver en la tabla. 
 

TEST TUGT PUNTUACIÓN RIESGO DE CAIDA 
< 14 No 
≥14 Sí 

Tabla 2: Riesgo de caídas basado en TUGT. 

2.2.3 RETRO (Caídas anteriores) 
 

RETRO es la base de datos obtenida de las entrevistas sobre las caídas que han tenido 
recientemente, denominándose RETRO_A a la contestación binaria de los ancianos a la 
pregunta “¿Has tenido dos o más caídas en los últimos seis meses?”. RETRO_B es la 
respuesta a la misma pregunta, pero con una caída en el mismo periodo de tiempo. 
 
RETRO responde a un nombre corto de la palabra retrospectivo, en el sentido en el que el 
riesgo de caídas se evalúa por lo que ha pasado anteriormente. En los estudios prospectivos 
se deduce de las caídas futuras, haciendo un seguimiento de los voluntarios durante un 
período de tiempo. 
 
La valoración del riesgo es muy sencilla, siendo la misma entre los dos subconjuntos como 
se puede apreciar en la tabla. 
 

CONTESTACIÓN RETRO_A RIESGO DE CAIDA 
Sí Con Riesgo 
No Sin riego 

Tabla 3: RETRO_A. 

 

CONTESTACIÓN RETRO_B RIESGO DE CAIDA 
Sí Con Riesgo 
No Sin riego 

Tabla 4: RETRO_B. 
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2.3 Descripción del sistema previo 
 
Existen multitud de trabajos que analizan el riesgo de caída en función de la salida de 
sensores vestibles, especialmente inerciales. Los trabajos se basan en datos de pruebas 
controladas (la mayoría) o bien de datos tomados en la vida diaria. Dada la amplitud y la 
complejidad del problema, el TFG se ha centrado en el uso de diferentes clasificadores y en 
el análisis de sus prestaciones. 
 
Para la parte correspondiente a la extracción de características, que casi todos los 
problemas de clasificación necesitan, el director del TFG ha proporcionado un código que 
extrae una serie de características a partir de ventanas temporales de aceleración de los 
datos de la vida diaria. En total hay 8 características. También ha indicado un clasificador 
de partida, Random Forest. Tanto las características elegidas como el clasificador aparecen 
en recientes trabajos ( T. E. Lockart et al, 2021). Una diferencia con los trabajos previos, es 
que los ejes del acelerómetro son conocidos. El sitio más habitual es en la zona lumbar. Por 
contra, en la base de datos que manejamos, la colocación del móvil en el bolsillo es variable 
y depende de cada usuario. Por ello antes de analizar cualquier señal se realiza un análisis 
de componentes principales, incluido en el código, que transforma los ejes a tres ejes 
ordenados por su nivel de variabilidad.  
 
A modo informativo, se incluye una tabla con las características extraídas: 
 
Características Obtención  No. 

Tiempo de paso Obtenido a partir del pico de frecuencia 
de la señal de aceleración total 

1 

Variación del tiempo de 
paso 

Obtenido a partir de la anchura del pico 
en frecuencia de la señal de aceleración 
total 

1 

RMS Root Mean Square por eje 3 
Relación armónica Relación entre las sumas de armónicos 

pares e impares de la frecuencia 
fundamental de la transformada de 
Fourier de la señal. Se hace para cada 
eje 

3 

Tabla 5: Características extraídas del sistema previo. 
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3 ASPECTOS GENERALES DE LA 

INTELIGENCIA ARTIFICIAL 
 
Antes de hablar de conceptos técnicos y adentrarnos profundamente, es necesario tener 
una idea superficial sencilla de los temas con los que se van a tratar. 
 
El termino inteligencia artificial (IA) se refiere a sistemas o máquinas que imitan la 
inteligencia humana para realizar tareas y que pueden mejorar iterativamente a partir de 
la información que recopilan (Oracle, s.f.). La diferencia de la IA con un software como los 
que conocemos es que no está programado para una determinada tarea.  
 
En cuanto a la diferencia entre Machine Learning y Deep Learning radica en el tipo de 
algoritmos que se usan en cada caso. Aunque el DL se parece más al aprendizaje humano 
por su funcionamiento como neuronas. El ML acostumbra a usar técnicas más sencillas 
como árboles de decisión o redes neuronales de una o unas pocas capas ocultas y el DL redes 
neuronales, que están más evolucionadas y que tienen más profundidad (capas) (Silva, 
2021). 
 
El último término que debemos conocer es el Big Data, que es el almacenamiento y 
procesamiento de cantidades masivas de datos estructurados, semiestructurados y no 
estructurados con gran potencial para ser extraídos y organizados de forma que 
proporcionen información valiosa para las organizaciones y empresas. (nexusintegra, 
2022) 
 
La relación entre la IA y el Big Data es muy fácil de entender, ambos necesitan uno del otro, 
siendo simple de comprender con el símil de un coche, el Big Data sería el combustible para 
que el motor (IA) funcionará, ya que la inteligencia artificial necesita datos para construir 
su inteligencia.   
 
Todo lo explicado se ha plasmado en la siguiente figura para una mayor comprensión. 
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Ilustración 3: Relación entre IA y Big Data. 

 

3.1 Inteligencia Artificial  
 
Una vez conocido lo que es inteligencia artificial, se debe echar una mirada hacia el pasado 
para tener una perspectiva global. 
 
Aunque hay debate de desde cuándo se puede considerar el punto de partida de la 
inteligencia artificial, fue en 1956 cuando se habló formalmente en una conferencia por 
primera vez sobre esta. Desde este año se empezó a explorarla, destacando los trabajos de 
la Agencia de Proyectos de Investigación Avanzada de Defensa de EEUU.  
 
Un hecho que bastante gente conoce es el que se llevó a cabo por el supercomputador de 
IBM, ganando al campeón del mundo de ajedrez. Pero no fue realmente a partir de 2012 
cuando los expertos consideraron que se estaba produciendo una explosión en la 
Inteligencia Artificial, presentándose productos comerciales al público en general. Hoy en 
día nombres como Siri, Alexa o Cortana completamente conocidos. 
 
Actualmente la inteligencia artificial está en todos campos, destacando cuatro de ellos: 
 

• Medicina: es el campo que ataña al TFG presentado. Proporciona predicciones de 

enfermedades, lecturas de pruebas y asistencia personalizada del paciente. Incluso 

es utilizado en el ámbito de la investigación. 

• Retail: ayuda a personalizar la compra del consumidor. Además de su utilización en 

la gestión del inventario.  

• Industria: la inteligencia artificial ha supuesto en la industria 4.0 una gran 

revolución ya que se produce dinámicamente. También se puede aplicar para hacer 

un mantenimiento predictivo e incluso en los controles de calidad. 

INTELIGENCIA
ARTIFICIAL

MACHINE 
LEARNING

DEEP 
LEARNING

BIG DATA
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• Finanzas: gracias a la IA se pueden identificar transacciones que tienen 

probabilidad de ser fraudulentas, así como también automatizar tareas de gestión 

de grandes datos. 

         

3.2 Machine Learning  
 
Como hemos comentado anteriormente el Machine Learning se encarga de analizar datos e 
identifica patrones para posteriormente realizar la tarea encomendada, donde el 
entrenamiento es llevado a cabo por las personas para que esta pueda identificar patrones 
en datos y predecir posteriormente 
 
Según la intervención humana se puede clasificar en: 
 

• Aprendizaje supervisado: se suministra un grupo etiquetado de datos. Este es el 

modelo es el menos complejo. 

• Aprendizaje no supervisado: los datos están sin etiquetar y extrae de ellos 

conocimientos o patrones desconocidos anteriormente. 

• Aprendizaje semisupervisado: se tienen datos parcialmente etiquetados. 

Comienza con los datos etiquetados para comprender los no etiquetados. 

• Aprendizaje de refuerzo: el algoritmo aprende observando el mundo que le rodea 

y retroalimentados conforme obtiene respuestas. Por lo tanto, es un ensayo prueba 

y error. 

También hay una clasificación alternativa según el tipo de resultado: 
 

• Clasificación: el resultado es una clase, entre un número limitado de clases. 

Siendo clase la categoría arbitraria según el problema a resolver. 

• Regresión: el resultado es un valor numérico. 

3.3 Deep Learning  
 
El Deep Learning es un conjunto del Machine Learning en el que la máquina aprende por ella 
sola, razonando y sacando sus propias conclusiones, donde el entrenamiento lo realiza la 
computadora (reconocimiento del habla, la identificación de imágenes o hacer 
predicciones).  
 
En lugar de organizar datos para que se ejecuten a través de ecuaciones predefinidas, el 
Deep Learning configura parámetros básicos acerca de los datos y entrena a la computadora 
para que aprenda por cuenta propia reconociendo patrones mediante el uso de muchas 
capas de procesamiento. (SAS, s.f.) 
 

3.4 Big data 
 
Big data es un término que describe el gran volumen de datos (estructurados y no 
estructurados), pero no es la cantidad de datos lo importante. Puede ser analizado para 
obtener insights que conlleven a mejores decisiones y acciones de negocios estratégicas. 
(SAS, s.f.) 
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4 ANÁLISIS DE LAS HERRAMIENTAS 

SOFTWARE 
 
Ante las distintas opciones que se tenían para comenzar a programar se decidió realizarlo 
en Jupyter Lab, ya que se cursó la asignatura de “Introducción a Inteligencia Artificial” en el 
periodo de Erasmus, en el cual se utilizó dicho software. 
 
Para utilizar Jupyter Lab se requería previamente el programa “Ubuntu on Windows”, el cual 
se puede obtener de la Windows Store de forma gratuita. Antes de seguir profundizando en 
los programas, tenemos que conocer el lenguaje en el que se va programar y el porqué. 
 

4.1 Python 
 
Python es un lenguaje de programación flexible y diseñado para ser fácil de leer. Además, 
es orientado a objetos y de alto nivel. Gracias a su sintaxis sencilla es un muy buen lenguaje 
para aprender a programar. Python utiliza módulos y paquetes, lo cual fomenta el 
modularidad y la reutilización de código. (Datademia, 2022) 
 

4.1.1 Origen  
Python es una creación del informático Guido van Rossum. Rossum trabajaba con el 
lenguaje ABC, pero no le gustaba, ya que era muy difícil de comprenderlo y difundirlo. Tras 
estos pensamientos, Rossum creo su propio lenguaje en 1991, subiendo la primera versión 
en febrero de 1991 a USENET. 
 
El origen del nombre es curioso, ya que como le gustaba leer los episodios de “El circo 
volador de Monty Python” de la famosa compañía británica de comedia. Le puso a este 
nuevo lenguaje Python, ya que buscaba que fuera “corto, único y ligeramente misterioso”. 
 

4.1.2 Usos 
Gracias a su sencillez y sus abundantes posibilidades ha ganado muchos seguidores. Los 
principales campos donde se utilizan son:  
 

• Inteligencia artificial y Big data: su simplicidad y sus numerosas bibliotecas de 

procesamiento de datos hacen que Python funcione extremadamente bien al 

analizar y gestionar grandes cantidades de datos en tiempo real. 

• Blockchain: conocida por ser la base sobre la que se han creado las criptomonedas 

y los NTFs. Se utiliza porque es seguro y rápido, siendo extremadamente útil al 

realizar cadenas de bloques, ya que lo simplifica. 

• Desarrollo web: al utilizar Python en el desarrollo web se consigue webs complejas 

en menos líneas de código por lo que se optimizan más. Por ejemplo, el framework 

de Python, Django, es utilizado para crear webs dinámicas y extremadamente 

seguras.  

• Juegos y gráficos 3D: la creación de gráficos y el manejo de estos en Python es 

bastante bueno, ya que hay multitud de herramientas y frameworks. 
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4.2 Ubuntu on Windows  
 
Ubuntu on Windows permite usar Ubuntu Terminal y ejecutar en línea los comandos de 
Ubuntu. Esta aplicación instala la versión Ubuntu 20.04 LTS en la que se pueden desarrollar 
aplicaciones multiplataforma, mejorando la ciencia de los datos y flujos de trabajo de 
desarrollo web dentro de Windows. 
 
Una vez descargado y nada más inicializarlo se abrirá una ventana de la consola y le pedirá 
que espere uno o dos minutos para que los archivos se descompriman y se almacenen en su 
ordenador. Posteriormente solo tardar un par de segundos en iniciarse la consola. A 
continuación, se debe crear una cuenta de usuario y una contraseña para Linux.  
 
Al tener el terminal Linux funcionando dentro de Windows. Lo último es ver si hay 
actualizaciones e instalarlas, escribiendo el siguiente comando:  
 

In [ ]: sudo apt update && sudo apt upgrade 

 

Por último, habría que instalar pip, el cuál es un sistema de administración de paquetes 
para instalar y administrar módulos en Python.  
 
In [ ]: sudo apt update 

  sudo apt install python3-pip  

 
Ambos comandos comienzan con sudo, porque necesitamos más privilegios para realizar 
instalaciones. Apt es un administrador de paquetes para instalar y administrar software en 
sistemas basados en Debian GNU. 
 
El comando de actualización actualiza la información del paquete desde el servidor y el de 
instalación es justo lo que parece, es para instalar software, siendo python3-pip es el 
nombre del paquete que queremos instalar. 
 

4.3 Jupyter Lab  
 
Jupyter Lab es un editor online que te permite trabajar con documentos como los Jupyter 
notebooks, editores de textos, terminales y componentes custom, de forma flexible, 
integrada y extensible, teniendo una estructura modular. 

 
In [ ]: pip3 install --user jupyterlab  

 

Después de la instalación de Jupyter, hay que asegurarse que se encuentre el nuevo paquete, 

una forma fácil de hacerlo es simplemente cerrar Ubuntu y volver a iniciarlo: 

 

In [ ]: jupyter lab 
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Como es normal en los sistemas operativos basados en Unix, al presionar las teclas ctrl y c 

se detiene el servidor Jupyter. Para iniciarlo sin tokens y contraseñas (ahorra bastante 

tiempo) se puede escribir el siguiente comando: 

 
In [ ]: jupyter lab –LabApp.token=''  

 

Suponiendo que está ejecutando como se ha explicado, sin tokens, simplemente quedaría ir 
al sistema y abrir el navegador, yendo a la siguiente página: 
 

In [ ]: Localhost:8888  

 

Una vez conectado al servidor Jupyter Lab ya disponible para codificar en Python3. 
 

4.4 Librerías 

 
Hay una seria de librerías fundamentales para poder trabajar en el proyecto: 
 

4.4.1 Scikit learn  
Scikit-Learn es una de estas librerías gratuitas para Python que cuenta con algoritmos de 
clasificación, regresión, clustering y reducción de dimensionalidad. Además, es de código 
abierto y unifica bajo un único marco los principales algoritmos y funciones, facilitando 
en gran medida todas las etapas de preprocesado, entrenamiento, optimización y 
validación de modelos predictivos. (Rodrigo, 2020) 
 

In [ ]: pip3 install -U scikit-learn  

 

4.4.2 Numpy 
NumPy es una biblioteca para el lenguaje de programación Python que da soporte para crear 
vectores y matrices grandes multidimensionales, junto con una gran colección de funciones 
matemáticas de alto nivel para operar con ellas. (Wikipedia, s.f.) 
 

import numpy as np 

 

La parte del código as np le dice a Python que asigne NumPy al alias de np 

 

4.4.3 Pandas 
Pandas es una biblioteca de software escrita como extensión de NumPy para manipulación 
y análisis de datos para el lenguaje de programación Python. En particular, ofrece 
estructuras de datos y operaciones para manipular tablas numéricas y series temporales, o 
leer datos de ficheros como hojas de cálculo. (Wikipedia, s.f.) 
 

import panda as pd 

 

Igual que ocurre en la biblioteca NumPy, la parte del código as pd le dice a Python que 

asigne Pandas al alias de pd 

 

https://en.wikipedia.org/wiki/Scikit-learn
https://es.wikipedia.org/wiki/Biblioteca_(inform%C3%A1tica)
https://es.wikipedia.org/wiki/NumPy
https://es.wikipedia.org/wiki/An%C3%A1lisis_de_datos
https://es.wikipedia.org/wiki/Python
https://es.wikipedia.org/wiki/Series_temporales
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4.4.4 Tensorflow y Keras 
TensorFlow es una biblioteca de código abierto para aprendizaje automático a través de un 
rango de tareas, y desarrollado por Google para satisfacer sus necesidades de sistemas 
capaces de construir y entrenar redes neuronales para detectar y descifrar patrones y 
correlaciones, análogos al aprendizaje y razonamiento usados por los humanos. (Wikipedia, 
s.f.) 
 
A su vez, Keras, es una biblioteca de Redes Neuronales de Código Abierto escrita en Python. 
Es capaz de ejecutarse sobre TensorFlow, Microsoft Cognitive Toolkit o Theano. Está 
especialmente diseñada para posibilitar la experimentación en más o menos poco tiempo 
con redes de Aprendizaje Profundo. Sus fuertes se centran en ser amigable para el usuario, 
modular y extensible. (Wikipedia, s.f.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://es.wikipedia.org/wiki/C%C3%B3digo_abierto
https://es.wikipedia.org/wiki/Aprendizaje_autom%C3%A1tico
https://es.wikipedia.org/wiki/Google
https://es.wikipedia.org/wiki/Red_neuronal_artificial
https://es.wikipedia.org/wiki/Red_neuronal_artificial
https://es.wikipedia.org/wiki/C%C3%B3digo_abierto
https://es.wikipedia.org/wiki/Python
https://es.wikipedia.org/wiki/TensorFlow
https://es.wikipedia.org/w/index.php?title=Microsoft_Cognitive_Toolkit&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Theano&action=edit&redlink=1
https://es.wikipedia.org/wiki/Aprendizaje_profundo


Estimación del riesgo de caídas usando acelerómetros 

 y técnicas de Aprendizaje Automático 

 

  

IVÁN GÓMEZ PASCUAL 14 

 

5 CLASIFICADORES 
 

5.1 Random Forest 
 
Un Random Forest es un conjunto (ensemble) de árboles de decisión combinados con 
bagging. Al usar bagging, lo que en realidad está pasando, es que distintos árboles ven 
distintas porciones de los datos. Ningún árbol ve todos los datos de entrenamiento. Esto 
hace que cada árbol se entrene con distintas muestras de datos para un mismo problema. 
De esta forma, al combinar sus resultados, unos errores se compensan con otros y tenemos 
una predicción que generaliza mejor. (Heras, 2020) 
 

5.1.1 Aspectos positivos  

• Funciona aceptablemente sin el ajuste de sus parámetros para todos los casos. 

• Correcto funcionamiento para problemas de clasificación y regresión. 

• Al utilizar múltiples árboles se reduce considerablemente el riesgo de overfiting 

(causa en la que se obtiene malos resultados, ya que aprende los casos 

particulares, pero no es capaz reconocer datos nuevos). 

• Con nuevas muestras funciona bien porque utiliza multitud árboles ponderados. 

5.1.2 Aspectos negativos  

• El tiempo en el que se realiza el entrenamiento puede ser alto. 

• Funcionamiento eficiente con base de datos pequeñas. 

• Opciones muy limitadas para ajustar los parámetros. 

 

5.2 Multi-Layer Perceptron  
 
Aunque Scikit-learn es una librería de aprendizaje automático también puede desarrollar 
un modelo de aprendizaje profundo. MLP está formado por tres capas como mínimo, la de 
entrada, una de salida y n capas ocultas entre ambas. 

 

5.2.1  Aspectos positivos  

• Puede crear modelos no lineales. 

• Con partial_fit, se puede entrenar en tiempo real. 

5.2.2  Aspectos negativos  

• En MLP, si no se entrena bien, las salidas pueden ser muy imprecisas. 

• No es posibilite utilizar la GPU. 

• No se puede ajustar los parámetros de cada capa. 

 

 

 

https://www.aprendemachinelearning.com/7-pasos-machine-learning-construir-maquina/
https://www.aprendemachinelearning.com/que-es-overfitting-y-underfitting-y-como-solucionarlo/
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5.3 Keras 
 
Como ya hemos comentado, Keras es un framework para hacer Deep Learning. Una de sus 
opciones es un MLP, por lo que se ha implementado dicha alternativa. Esta cuenta con más 
capas ocultas que en el MLP de scikit-learn. La librería keras está más adaptada para este 
tipo de estructuras que tienden a ser "profundas" (Deep). 
 

5.3.1  Aspectos positivos  

• Simplificación e interfaz diseñado para un fácil entendimiento. 

• Soporte para diferentes GPU. 

• Grandes empresas mantienen y desarrollan Keras. 

• Extraordinaria compatibilidad entre las diversas plataformas. 

• Considerable número de usuarios. 

• Modelos predeterminados previamente entrenados. 

5.3.2  Aspectos negativos  

• Limitaciones a cuanto el interfaz es de aplicaciones de bajo nivel. 

• Es menos flexible y más estandarizado que otras opciones. 
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6 IMPLEMENTACIÓN EN JUPYTER LAB 
 

6.1 Ancianos en la vida diaria 
Lo primero es cargar las librerías que vamos a utilizar a la hora de programar. Estas han 
tenido de ser instaladas previamente en Ubuntu on Windows con el módulo pip descrito 

anteriormente. 
 

 
 

Ilustración 4: Primera parte del código “Ancianos vida diaria”: librerías. 

 
Como podemos ver se encuentra las librerías Numpy y Pandas, descritas anteriormente, así 
como Tensorflow y Keras. Además, se encuentran diversos módulos Sklearn para entrenar 
los datos, para el clasificador MLP y el Random Forest, así como para las métricas para la 
evaluación. 

 
Lo siguiente es cargar la base de datos suministrada por el tutor. Lo primero es subir los 
archivos a Jupyter Lab y después cargarlos uno a uno, para eso utilizamos el bucle de la 
siguiente ilustración. A continuación, se dividen los datos en dos subconjuntos, para 
entrenar y testear. Siendo el tamaño de testear de un 33%. Además, se ha introducido el 
parámetro random_state en 42, lo que significa que los resultados serán los mismos cada 

vez que ejecute la división del conjunto para obtener resultados reproducibles. 
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PRECISIÓN:   
       

           RECALLL:     
                   

            

 

 
Ilustración 5: Segunda parte del código “Ancianos vida diaria”: loop y entrenamiento. 

 
A partir de aquí, se programa los diferentes clasificadores, empezando por ejemplo por 
Random Forest. 
 
Lo primero es entrenar dicho algoritmo. Se ha elegido 300 árboles, aunque contra más 
árboles suele ser mejor, el tiempo de entrenamiento es mayor. Además, se ha utilizado el 
mismo random_state y un class_weight = “balanced” para hacer que los pesos de 
cada clase no valgan uno, sino que automáticamente los pesos sean inversamente 
proporcionales a las frecuencias de clase en los datos de entrada: 
 

n_samples / (n_classes * np.bincount(y) 

 
Ahora que el modelo ya ha sido entrenado, se tiene que predecir sobre el conjunto de datos 
de testeo, ya que nunca el algoritmo tiene que conocer las respuestas y saber cuánto de 
bueno es haciéndolo. Para ello se utilizan cinco métricas: 
 

• Accuracy: Es básicamente el número total de predicciones correctas dividido por el 

número total de predicciones.  

• Sensivity o tasa de Verdaderos Positivos: es la proporción de casos positivos que 

fueron correctamente identificadas por el algoritmo. 

• Specifity o tasa de Verdaderos Negativos: son los casos negativos que el 

algoritmo ha clasificado correctamente. 

• F1score: Se basa en la precision y el recall, por lo que las definiremos previamente: 

Precisión proporciona la calidad de la predicción, siendo el porcentaje de la clase 

positiva que realmente son; y el recall muestra la cantidad de la clase positiva se ha 

identificado correctamente. (Herás, 2020) 

 

 

 

 

 

 

 

 

Negativos Falsos Verdaderos 
Negativos 

Verdaderos 
positivos 

Falsos 
positivos 
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Conociendo esto, F1Score es dada por la media entre precisión y recall, se puede 

decir que combina precisión y recall en una sola métrica. 
 

(2 x precision x recall / (precision+recall)) 

 

• Ponderada: propia métrica que utiliza tanto la sensivity como la specificity con 
el porcentaje que hay de ceros y unos. El resultado es muy parecido a la función 

f1_score, dando así una visión global muy acertada.  

 
Ilustración 6: Tercera parte del código “Ancianos vida diaria”: Random Forest. 

El siguiente clasificador sería el MLP (Stickt learn). En este caso el proceder es igual al 
modelo anterior por la salvedad que hemos utilizado como máximo 25000 interacciones. 
(valor que se ha ido ajustando conforme las métricas salían mejores, teniendo en cuenta 
también el tiempo de entrenamiento). 
 

 
Ilustración 7: Cuarta parte del código “Ancianos vida diaria”: MLP. 
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Respecto al clasificador Keras, se puede decir que el procedimiento es diferente a los 
anteriores. 
 
Primero creamos un modelo vació de tipo Secuential, se ha seleccionado este tipo porque 
queremos crear un modelo con varias capas de neuronales en orden. 
 
Creamos cuatro capas Dense con model.add(). Utilizaremos relu para activarlo. 
Además, se agregará una función sigmoid para para una última capa únicamente una 
neurona de salida. Se ha elegido esta cantidad de neuronas, capas y sus funciones de 
activación por las recomendaciones del libro de Aurélien Géron (Hands-on Machine 
Learning with Scikit-Learn, Keras, and TensorFlow, 2019). Además de probar 
constantemente y obtener mejores resultados con estos parámetros. 
  
Para mejorar los resultados se ha añadido una pérdida (loss), un optimizer de los pesos 
de las conexiones de las neuronas y las métricas que se quiere obtener. (Na8, 2018) 
 
Tras esto solo quedaría entrenar el modelo como en el resto de clasificadores incluyendo 
100 epochs (interacciones de aprendizaje). Cuanta más cantidad, mejor será el resultado, 
pero mayor tiempo tardará, teniendo cuidado obviamente con no pasarnos, ya que se puede 
producir overfitting, por lo que para comprobar que no se esté produciendo habría que 
revisar las métricas para realmente saber si estamos sobreentrenando. 
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Ilustración 8: Quinta parte del código “Ancianos día a día”: Keras. 

 

6.1.1 Comparación entre los tres métodos.  

 
Primero y tras no apreciar a simple vista unas diferencias significativas entre clasificadores 
y features, se decide en una tabla en las que se pueda considerar los datos de una manera 
mucho más clara. Para ello se hace uso de tres tablas, una para cada clasificador con sus 
cinco correspondientes features y métricas como se pueden apreciar en la siguiente página. 
 
Tras analizar dichas tablas, se precisará únicamente de las feutures_1, ya los resultados son 
parejos entre todas ellas, siendo incluso mejor y con un tiempo requerido menor porque el 
cluster es de dos. Además, se va a analizar solo con la métrica “ponderada” porque 
representa una visión general la calidad de la predicción. 
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Datos
No, clusters

Sensibilidad 
Exactitud 

Especificidad 
F1score

Ponderada
Sensibilidad 

Exactitud 
Especificidad 

F1score
Ponderada

Sensibilidad 
Exactitud 

Especificidad 
F1score

Ponderada
Sensibilidad 

Exactitud 
Especificidad 

F1score
Ponderada

features_1
2

0,417
0,679

0,875
0,526

0,596
0,500

0,786
0,900

0,571
0,617

0,000
0,929

1,000
0,000

0,171
0,286

0,571
0,667

0,250
0,434

features_2
4

0,714
0,745

0,765
0,682

0,734
0,353

0,709
0,868

0,429
0,504

0,000
0,800

1,000
0,000

0,171
0,286

0,600
0,794

0,353
0,484

features_3
8

0,381
0,615

0,761
0,432

0,529
0,219

0,697
0,896

0,298
0,417

0,000
0,798

1,000
0,000

0,171
0,289

0,578
0,781

0,361
0,481

features_4
16

0,533
0,733

0,838
0,580

0,652
0,344

0,760
0,923

0,447
0,514

0,023
0,788

0,977
0,042

0,186
0,352

0,641
0,837

0,443
0,542

features_5
32

0,402
0,661

0,834
0,488

0,571
0,350

0,727
0,908

0,454
0,513

0,073
0,811

0,983
0,128

0,228
0,356

0,621
0,805

0,434
0,531

RANDOM
 FOREST

PO
M

A
TUG

T
RETRO

RETRO
_B

Datos
No, clusters

Sensibilidad 
Exactitud 

Especificidad 
F1score

Ponderada
Sensibilidad 

Exactitud 
Especificidad 

F1score
Ponderada

Sensibilidad 
Exactitud 

Especificidad 
F1score

Ponderada
Sensibilidad 

Exactitud 
Especificidad 

F1score
Ponderada

features_1
2

0,500
0,607

0,688
0,522

0,573
0,625

0,750
0,800

0,588
0,676

0,000
0,750

1,000
0,000

0,390
0,000

0,750
1,000

0,000
0,390

features_2
4

0,429
0,618

0,735
0,462

0,548
0,471

0,673
0,763

0,471
0,556

0,000
0,800

1,000
0,000

0,171
0,429

0,600
0,706

0,450
0,537

features_3
8

0,381
0,624

0,776
0,438

0,535
0,000

0,706
1,000

0,000
0,293

0,000
0,800

1,000
0,000

0,171
0,000

0,587
1,000

0,000
0,390

features_4
16

0,347
0,696

0,880
0,441

0,555
0,131

0,737
0,974

0,219
0,378

0,000
0,802

1,000
0,000

0,171
0,045

0,599
0,977

0,084
0,409

features_5
32

0,333
0,628

0,826
0,419

0,526
0,129

0,672
0,932

0,202
0,364

0,000
0,811

1,000
0,000

0,171
0,068

0,587
0,945

0,118
0,410

M
PL

RETRO_B
POMA

TUGT
RETRO

Datos
No, clusters

Sensibilidad 
Exactitud 

Especificidad 
F1score

Ponderada
Sensibilidad 

Exactitud 
Especificidad 

F1score
Ponderada

Sensibilidad 
Exactitud 

Especificidad 
F1score

Ponderada
Sensibilidad 

Exactitud 
Especificidad 

F1score
Ponderada

features_1
2

0,500
0,607

0,750
0,545

0,598
0,500

0,750
0,850

0,533
0,602

0,000
0,750

0,714
0,000

0,279
0,000

0,750
0,714

0,000
0,279

features_2
4

0,429
0,618

0,676
0,439

0,525
0,059

0,673
0,868

0,087
0,296

0,000
0,800

1,000
0,000

0,171
0,190

0,600
0,676

0,222
0,380

features_3
8

0,571
0,624

0,522
0,490

0,552
0,219

0,706
0,935

0,318
0,428

0,045
0,798

0,920
0,920

0,195
0,200

0,587
0,859

0,286
0,457

features_4
16

0,480
0,696

0,768
0,500

0,592
0,213

0,737
0,936

0,310
0,425

0,000
0,802

0,943
0,000

0,161
0,159

0,599
0,853

0,231
0,430

features_5
32

0,351
0,651

0,819
0,433

0,533
0,307

0,672
0,870

0,389
0,472

0,073
0,811

0,946
0,112

0,222
0,294

0,587
0,715

0,344
0,458

KERAS
PO

M
A

TUG
T

RETRO
RETRO

_B

T
a

b
la

 8
: R

esu
lta

d
o

s R
a

n
d

o
m

 F
o

rest. 

T
a

b
la

 6
: R

esu
lta

d
o

s M
L

P
 (scikit-lea

rn
). 

T
a

b
la

 7
: R

esu
lta

d
o

s M
L

P
 (K

era
s) 
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ANCIANOS EN LA VIDA DIARIA (FEATURES 1 + PONDERADA) 

CLASIFICADOR POMA TUGT RETRO RETRO_B 

RANDOM FOREST 0,596 0,617 0,171 0,434 

MLP (scikit-learn) 0,573 0,676 0,390 0,390 

KERAS 0,598 0,602 0,279 0,279 

 
               Tabla 9: Features 1 + Ponderada. 

 
Tras examinar la tabla se puede concluir que no hay diferencias significativas entre ninguno 
de los tres clasificadores, pero sí entre las pruebas. POMA y TUGT son muy superiores a las 
dos definiciones basadas en la entrevista. 
 
Podemos concluir que para la predicción de caídas según POMA y TUGT funciona bastante 
bien, en el sentido de que las señales de aceleración pueden predecir aceptablemente su 
resultado. 
 

6.1.2 Generación de gráficas para comprobar el movimiento en las ventanas 

seleccionadas como entrada al sistema. 

 
Uno de los puntos críticos en la utilización de datos de la vida diaria es la detección previa 
que se realiza de partes de la señal que correspondan al movimiento de caminar, ya que 
muchas técnicas de clasificación se basan en este tipo de movimiento. Sin embargo, en el 
código proporcionado por el tutor esta detección es bastante básica y se basa simplemente 
en un nivel de actividad de la señal de aceleración. Por ello, se ha querido comprobar de 
forma visual cómo de acertado es esta selección previa de las ventanas de aceleración, 
dónde sólo debería haber movimientos correspondientes a una persona caminando. Por 
ello, se ha introducido en el código suministrado por el tutor una serie de líneas para saber 
si se está correctamente filtrando que el sujeto se encuentra andando, para ello hay que 
guardar unas cuantas gráficas por voluntario para después dibujarlas y comprobar si tiene 
visualmente cierta periodicidad como en las pruebas controladas. 
 
La parte del código introducida se encuentra en la función allFeature(n_clusters, 

subjects = None. En primer lugar, se crea un bucle que genera 5 números aleatorios 
entre 12000 (número aproximados de ventanas generadas por cada sujeto), dicho número 
se utilizará para guardar graficas azarosamente, por lo que cada vez que ejecutemos el 
código tendremos 5 gráficas del sujeto. 
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Ilustración 9: Generación de gráficas: 1º parte. 
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Ilustración 10: Generación de gráficas: 2º parte. 
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Tras haber generado 10 gráficas (2 ejecuciones) se puede observar que algunas veces se 
identifica un movimiento periódico. Esto es típico del movimiento de andar, por lo que el 
filtro funciona correctamente. Sin embargo, en otras ocasiones no, ya que no se aprecia 
periodicidad alguna. La introducción de los datos incorrectos no ayudará al clasificador. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ilustración 11: Gráficas generadas 
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6.2 Ancianos andando: prueba controlada 
 
Para este apartado se ha realizado varias funciones del código que se utiliza para obtener 
los datos que introducimos a los clasificadores a partir de los que están en bruto de los 
acelerómetros. En este caso utilizaremos los datos de las pruebas controladas, es decir 
estamos seguros de que el movimiento correspondiente a la aceleración es caminar. 
  
Lo primero que se hace es obtener de la hoja de cálculo “datos usuarios” la lista de sujetos 
para posteriormente inicializar las listas que queremos conseguir como objetivo final.  
 

Tras esto se obtiene cada uno de los archivos de cada individuo donde se encuentra 
andando. Dependiendo del individuo hay un diferente número de archivos, llegando a no 
haber ninguno o incluso a ser este defectuoso. Para su implementación se ha creado con una 
estructura if else como se puede apreciar en las siguientes ilustraciones. 
 

Ilustración 12: Primera parte "Ancianos andando": Datos hoja de cálculo + inicializaciones listas. 
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Ilustración 13: Segunda parte "Ancianos andando": Archivos vacíos + únicamente un archivo. 

 

 
Ilustración 14: Ilustración 15: Tercera parte "Ancianos andando": Dos archivos. 

 
Ilustración 16:Ilustración 10: Tercera parte "Ancianos andando": Tres archivos 

Dentro de estas estructuras secuenciales condicionales se encuentra la segunda función 
desarrollada, allFeaturesFinal(fname), la cual simplemente se ha implementado para 
tener una menor cantidad de código y que este de forma más clara. En esta función se lee el 
archivo, se obtiene unos ejes determinados y finalmente se logra una señal filtrada y 
transformada. 
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Ilustración 17: Cuarta parte "Ancianos andando": Función en la que reduce el código. 

 
Lo último que se tendría que hacer es pasar de las listas generadas a array y devolverlas en 
dicha función cuando es utilizada. 
 

 
Ilustración 18: Quinta parte "Ancianos andando": Transformación a array y devolución. 

Tras realizar esta parte habría que programar el mismo código que en el apartado anterior, 
pero con las modificaciones necesarias.  
 
Lo primero que habría que hacer es almacenar en una variable los arrays obtenidos. 
 

 
Ilustración 19: Sexta parte "Ancianos andando":  Almacenamiento de los arrays obtenidos. 

 
A continuación, se realiza un bucle que escriba el nombre del tipo de prueba realizado con 
su correspondiente elemento del array (donde ha sido almacenado dicho test 
anteriormente) y se usan de nuevo los diferentes clasificadores. 
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Ilustración 20: Séptima parte "Ancianos andando":  Inicio del bucle + Random forest. 
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Ilustración 21: Octava parte "Ancianos andando":  MLP (scikit-learn) + MLP(Keras). 
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6.2.1 Comparación entre los tres métodos  
Una vez ejecutado el código y habiendo obtenido los resultados correspondientes, se 
introducen los datos en la siguiente tabla para una mayor compresión de los mismos. 
 

CALSIFICADOR POMA TUGT RETRO_A RETRO_B

RANDOM FOREST 0,795 0,768 0,249 0,662

MLP (Scikit-learn) 0,824 0,759 0,324 0,404

MLP (Keras) 0,735 0,777 0,308 0,562

ANCIANOS ANDANDO

 
      Tabla 10: Resultados (métrica ponderada) del sistema predictor en ancianos únicamente andando. 

 
Teniendo en cuenta que un clasificador ideal tiene una figura de mérito de 1.0 y tras 
examinar la tabla se puede concluir que no hay diferencias significativas entre ninguno de 
los tres clasificadores, pero sí entre las pruebas. POMA y TUGT son muy superiores a las dos 
definiciones basadas en la entrevista, sobre todo a la llamada Retro_A. 
 
Podemos concluir que para la predicción de caídas según POMA y TUGT funciona 
extremadamente bien, de manera correcta para Retro_B y mal para su homóloga con dos o 
más caídas, en el sentido de que las señales de aceleración pueden predecir aceptablemente 
su resultado. 

También se ha realizado un clasificador al azar para su comparación, implementándose con 
un bucle para todos los casos de test y generando un número aleatorio entre 0 y 1 

(np.random.rand), siendo  >= 0.5 con riesgo y  <0.5 sin este. El resultado debía ser de 0.5 
para la métrica ponderada, para ellos se ha procedido a realizar la media con todos los datos 
de dicha métrica. 

 

Ilustración 22: Resultado de la media ponderada del casificador al azar. 

El código que se ha utilizado es el siguiente: 

 

Ilustración 23: Predicción al azar. 1º parte. 
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Ilustración 24: Predicción al azar. 2º parte. 

En la siguiente tabla, se ve que son casi siempre cercanas a 0,5. Se desvía alguna métrica, 
pero puede deberse por casualidad de los números al azar y porque realmente tampoco hay 
tantos casos de una clase, sobre todo en RETRO, lo que puede hacer más fácil que salgan 
valores muy diferentes a 0.5.  

  
PREDICCIÓN AL AZAR 

  POMA TUGT RETRO_A RETRO_B 

Datos No, clusters Ponderada Ponderada Ponderada Ponderada 

features_1 2 0,447 0,441 0,493 0,777 

features_2 4 0,619 0,422 0,439 0,445 

features_3 8 0,430 0,551 0,477 0,599 

features_4 16 0,474 0,396 0,535 0,479 

features_5 32 0,481 0,544 0,531 0,472             

           Tabla 11: Predicción el azar. 
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Las prestaciones del clasificador original mejoran respecto a este, sobre todo en POMA y 
TUGT, que siempre sale > 0.5, pero respecto a las entrevistas (RETRO) es, al contrario, es 
decir, no se tiene mucha capacidad predictiva si intentamos asociar el resultado de la 
entrevista con las señales de aceleración.  
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7 COMPARACIÓN ENTRE EL 

ACELERÓMETRO EN LA VIDA DIARIA 

Y EN LA PRUEBA CONTROLADA 
 
Viendo los resultados no se puede afirmar cual es el mejor con una rotunda respuesta. 
Dependerá de las circunstancias. Obviamente los resultados son mejores cuando los 
ancianos llevan el acelerómetro mientras andan. Ahora bien, ¿Es esta una diferencia 
significativa? ¿Supone el llevarlo en el día a día una mayor adherencia (al llevar siempre el 
móvil con uno mismo) que en la prueba controlada? ¿Tiene la capacidad los sujetos de 
realizar una prueba controlada habitualmente para un autodiagnóstico y sin introducir 
error? Si lo lleva continuamente, ¿podremos estimar en tiempo real del riesgo de caída ante 
cambios repentinos en el sujeto? ¿Se podría utilizar el acelerómetro del móvil o de pulseras 
inteligentes para la obtención de estos datos o tendrían que ser dispositivos especializados? 
 
Todas estas preguntas tienen respuestas que dependen de las circunstancias y de los 
sujetos. 
 
Si analizamos los datos de manera detenida calculando el porcentaje de diferencia entre los 
datos de los ancianos andando con los del día a día, se puede observar que el porcentaje 
medio de diferencia (resta de ambos datos entre el mayor de ellos por cien) es del 33%, por 
lo que supone una tercera parte, siendo un porcentaje a tener en cuenta. 
 

 

PORCENTAJE DE DIFERENCIA 
CLASIFICADOR POMA TUGT RETRO_A RETRO_B 

RANDOM FOREST 33% 24% 46% 52% 

MLP(scikit-learn) 44% 12% 17% 3% 

KERAS 23% 29% 11% 101% 
 

            Tabla 12:Porcentaje de diferencia en la comparación 

 
No obstante, está claro que, si nos aseguramos de que los datos de aceleración se han 
obtenido en condiciones de andar, las prestaciones de los algoritmos mejoran 
considerablemente.  
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8 MEJORAS FUTURAS 
 
Este proyecto lo podríamos denominar abierto, lo que significa que al tener código siempre 
se puede desarrollar nuevas ideas que lo mejoren. Se podría empezar por el 
perfeccionamiento de la parte del código que identifica que el sujeto está andando, 
pudiéndose resolver muchas de las preguntas del apartado anterior y llegando a reducir 
considerablemente el porcentaje de diferencia entre el acelerómetro en la vida diaria y el 
de solamente andando. 
 
Otra parte sería la mejora en los clasificadores. Esta se podría llevar a cabo hilando más fino 
en los diferentes parámetros de cada uno, para eso se podría implementar con bucles que 
encuentre le parámetro que saca una métrica mejor. 
 
Otra mejora se refiere al aumento del número de características implementadas. Se ha 
escogido un número reducido para acotar el tiempo del proyecto, pero el estudio de Lockart 
et al (2021) contiene muchas otras características extraídas de las ventanas de aceleración. 
También se puede intentar introducir los datos en bruto a los clasificadores de tipo Deep 
Learning, ya que muchas veces son capaces de detectar las características como salida de 
las capas ocultas, evitando la labor manual de elegirlas previamente. Esta es precisamente 
una de las ventajas principales de las técnicas de Deep Learning. 
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9 CONCLUSIONES 
 
Tras la realización de dicho TFG y resolución de todos los problemas que han ido surgiendo, 
se considera que se ha conseguido el objetivo del mismo: estimar del riesgo de caídas 
usando acelerómetros y técnicas de Aprendizaje Automático. 
 
Las conclusiones a las que se ha llegado con el desarrollo del proyecto han sido: 
 

• El coste del desarrollo de dicho sistema predictor de caídas es nulo, por lo que la 

implementación y su puesta en marcha a nivel comercial sería mínimo. 

• El software utilizado también es gratuito y con una amplia comunidad de usuarios 

utilizándolo por lo que hay una cantidad inmensa de información. 

• Si se llevará a cabo la comercialización habría que trabajar en el entorno y en la 

visualización de los datos. Incluso con dichos resultados se podría trabajar mano a 

mano con personal médico para su posterior interpretación y prescripción médica. 

• Si el acelerómetro es un smartwatch o smartphone, este recolectaría datos en un 

continuo del tiempo, sin generar modificaciones en los hábitos de los sujetos. 

• La predicción del riesgo de caída es aceptable respecto de las pruebas clínicas, no 

así a las basadas en la entrevista. 

Con todo lo comentado anteriormente, se podría decir que hay una alternativa real 
tecnológica a la predicción de riesgo de caída, ya que anteriormente estos test y pruebas 
clínicas eran laboriosas en cuanto a tiempo y personal, además de su inviabilidad para 
llevarlas a cabo de una forma continuada en el tiempo. 
 
Personalmente, la realización de este proyecto me ha abierto un nuevo horizonte, ya que 
esta rama de la ingeniería casi la desconocía por completo. Además, ha sido un reto personal 
muy parecido a lo que puede ser la vida laboral, ya que te enfrentas a un proyecto que tienes 
que entregar en un tiempo concreto y con casi total libertad. 
 
Además de rama de la inteligencia artificial, el proyecto te permite asentar todos los 
conocimientos que has ido adquiriendo durante la carrera, así como competencias a la hora 
de redactar y maquetar un proyecto. 
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ANEXO: CÓDIGO 
1.1. Ancianos en la vida diaria 
# In[1]: 

 

 

# Using numpy to convert to arrays 

import numpy as np 

# Using pandas to management and analysis of data structures  

import pandas as pd 

#Using keras as High-level TensorFlow API for building and training deep 

learning models 

import tensorflow as tf 

from tensorflow import keras 

# Using Skicit-learn to split data into training and testing sets 

from sklearn.model_selection import train_test_split 

# Using Skicit-learn to ensemble of Decision Trees 

from sklearn.ensemble import RandomForestClassifier 

# Using Scikit-learn to obtain sensitivity and specificity values 

from sklearn.metrics import precision_score, recall_score 

# Using Scikit-learn to obtain a better classification metric for unbalanced 

data 

from sklearn.metrics import f1_score 

# Using Scikit-learn to classifier with neural networks 

from sklearn.neural_network import MLPClassifier 

# Using Scikit-learn to obtain accuracy values 

from sklearn.metrics import accuracy_score 

 

 

# In[2]: 

 

 

#loop to work with all features  

for nn in range (1,6): 

    dirname = “features/features_”+ str(nn)+”/” 

    xname = dirname + “X_”+ str(nn)+ “.npy” 

    for name in [“poma”, “retro”,”retroB” , “tugt”]: 

        yname = dirname + “y”+ name + “_”+ str(nn)+ “.npy” 

        print (“Feature “+ str(nn)+ “: “ + name) 

        X = np.load(xname) 

        y = np.load(yname) 

#Splitting the data into training and testing sets, being the size of 

test part 33%. 

#Setting the random state to 42 which means the results will be the 

same each time I run the split for reproducible results. 

(X_train, X_test, y_train, y_test) = train_test_split(X, 

y,test_size=0.33,random_state=42) 

         

        print (“   ---- RAMDOM FOREST ----")    

        # Instantiate model with 300 decision trees. 

Rf = RandomForestClassifier(random_state=42, n_estimators=300, 

class_weight = “balanced”) 

        # Trainning the model on training data. 

        Rf.fit(X_train, y_train) 

        #Using the forest’s predict method on the test data. 

        Y_pred = rf.predict(X_test) 

        print (f”   TEST      : {y_test}”)    

        print(f”   PREDICCION: {y_pred}”) 

        #Using different methods of evaluation 

        Sensivity = recall_score(y_test, y_pred) 

        Specifity = recall_score(y_test, y_pred, pos_label=0) 
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        #Printing the results obtained on the screen. 

        Print(f”   Accuracy: {rf.score(X_test, y_test)}”) 

        print(f”   Sensivity: {Sensivity}”) 

        print(f”   Specifity: {Specifity}”) 

        print(f”   F1score: {f1_score(y_test, y_pred)}”) 

 print(f”   Ponderada:   

{(y==0).sum()/y.shape[0]*Sensivity+(y==1).sum()/y.shape[0]*Specifity}”) 

        print() 

          

        print (“   ---- MPL ----")      

         # Instantiate model with 2500 max interactions 

        cla = MLPClassifier(max_iter=25000) 

        cla.fit(X_train, y_train) 

        #Using the MLPClassifier on the test data. 

        Y_pred=cla.predict( X_test) 

        print (f”   TEST      : {y_test}”)    

        print(f”   PREDICCION: {y_pred}”) 

        #Using different methods of evaluation 

        Sensivity_1=recall_score(y_test, y_pred) 

        Specifity_1=recall_score(y_test, y_pred, pos_label=0) 

        #Printing the results obtained on the screen 

        print(f”   Accuracy: {cla.score(X_test, y_test)}”) 

        print(f”   Sensivity: {Sensivity_1}”) 

        print(f”   Specifity: {Specifity_1}”) 

        print(f”   F1score: {f1_score(y_test, y_pred)}”) 

 print(f”   Ponderada:   

{(y==0).sum()/y.shape[0]*Sensivity+(y==1).sum()/y.shape[0]*Specifity}”) 

        print() 

         

        print (“   ---- KERAS ----")    

        # Instantiate model with 4 layers 

        model = keras.models.Sequential() 

        model.add(keras.layers.Dense(300, activation=”relu”)) 

        model.add(keras.layers.Dense(100, activation=”relu”)) 

        model.add(keras.layers.Dense(100, activation=”relu”)) 

        model.add(keras.layers.Dense(1, activation=”sigmoid”)) 

        #Improvement of the model 

        model.compile(loss=”mean_squared_error”, 

        optimizer=”adam”, 

        metrics=[“binary_accuracy”]) 

        #Trainning data with 100 epochs 

        model.fit(X_train, y_train,epochs=100) 

        #Using Keras on the test data. 

        Y_pred = model.predict(X_test).round() 

        print (f”   TEST      : {y_test}”)    

        print(f”   PREDICCION: {np.transpose(y_pred) }”) 

        #Using different methods of evaluation 

        Sensivity_2=recall_score(y_test, y_pred) 

        Specifity_2=recall_score(y_test, y_pred, pos_label=0) 

        # Accuracy_2 =accuracy_score(y_test, y_pred) 

        #Printing the results obtained on the screen 

         print(f"   Accuracy: {Accuracy_2}")  

        print(f”   Sensivity: {Sensivity_2}”) 

        print(f”   Specifity: {Specifity_2}”) 

        print(f”   F1score: {f1_score(y_test, y_pred)}”) 

  print(f”   Ponderada:   

{(y==0).sum()/y.shape[0]*Sensivity+(y==1).sum()/y.shape[0]*Specifity}”) 

        print() 
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1.2. Ancianos en pruebas físicas controladas 
# In[13]: 

 

 

def allFeaturesFINAl(fname): 

     

    acf = getLabelledAcelFilter(fname) 

    pca = PCA() 

    acf2 = pca.fit_transform(acf)  

    X1=extractFeatures(acf2) 

                

    return X1 

 

 

# In[14]: 

 

 

def allFeatures(subjects = None): 

    """ 

    Si subjects es None (no se le pasa parametro) entonces saca el la  

    lista de voluntarios 

    Tambien se le puede pasar subjects = ["T001", "T002"], es decir 

    una lista de voluntarios. Entonces solo analizara los voluntarios de 

    la lista. 

    """ 

    # IVAN 

    nyq = FNYQ # For smartphone 50Hz/2 

    voluntDic = getVoluntDic2('data/datosUsuarios.csv') 

    rdir = 'data/' 

    if(subjects is None): 

        subjects = sorted(voluntDic.keys()) 

    #import ipdb;ipdb.set_trace() 

    X = [] 

    ypoma = [] 

    ytugt = [] 

    yretro = [] 

    yretroB = [] 

    for subject in subjects: 

         

        if subject == "T003": 

            continue 

# Aqui: para cada individuo, y cada archivo andando. OJO algunos no 

tienen, nombre mal. 

         # Leer archivo getLabelledAcelFilter 

if subject == "T006" or  subject == "T024" or  subject == "T026" or  

subject == "T027": 

            fname=rdir+subject+"/"+subject +"andar1"+".log" 

            print(fname) 

            final= allFeaturesFINAl(fname) 

            X.append(final) 

            yretro.append(int(faller(voluntDic, subject, "retro"))) 

            yretroB.append(int(faller(voluntDic, subject, "retroB"))) 

            ypoma.append(int(faller(voluntDic, subject, "poma25"))) 

            ytugt.append(int(faller(voluntDic, subject, "tugt14"))) 

            continue 

        

if subject >= "T009" and  subject <="T013" or  subject == "T017" 

or  subject == "T018"  or  subject == "Z002" or subject == "Z001" 

or  subject == "T008"  : 

            for nn in range (1,3): 

                fname=rdir+subject+"/"+subject +"andar"+str(nn)+".log" 

                print(fname) 

                final= allFeaturesFINAl(fname) 

                X.append(final) 
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                yretro.append(int(faller(voluntDic, subject, "retro"))) 

                yretroB.append(int(faller(voluntDic, subject, "retroB"))) 

                ypoma.append(int(faller(voluntDic, subject, "poma25"))) 

                ytugt.append(int(faller(voluntDic, subject, "tugt14"))) 

                continue 

        else:  

            for nn in range (1,4) : 

                fname=rdir+subject+"/"+subject +"andar"+str(nn)+".log" 

                print(fname) 

                final= allFeaturesFINAl(fname) 

                X.append(final) 

                yretro.append(int(faller(voluntDic, subject, "retro"))) 

                yretroB.append(int(faller(voluntDic, subject, "retroB"))) 

                ypoma.append(int(faller(voluntDic, subject, "poma25"))) 

                ytugt.append(int(faller(voluntDic, subject, "tugt14"))) 

 

    # Pasamos de lista a array y las devolvemos 

    

    X = np.vstack(X) 

    yretro = np.array(yretro) 

    yretroB = np.array(yretroB) 

    ytugt = np.array(ytugt) 

    ypoma = np.array(ypoma) 

    # AQUI: guardar en ficheros si no se quiere repetir 

    # cada vez 

    return  X,yretro, yretroB, ytugt, ypoma 

 

 

# In[15]: 

 

 

allFeatures() 

 

 

# In[40]: 

 

 

DATOS=allFeatures() 

 

 

# In[41]: 

 

 

X = DATOS[0] 

 

for nn in range (1,5): 

    if nn == 1: 

        print('Retro_A') 

    elif nn == 2: 

        print('Retro_B') 

    if nn == 3: 

        print('TUGT') 

    elif nn == 4: 

        print('POMA') 

         

    y = DATOS[nn] 

     

#Splitting the data into training and testing sets, being the size of test 

part 33%. 

#Setting the random state to 42 which means the results will be the same 

each time I run the split for reproducible results. 

(X_train, X_test, y_train, y_test) = train_test_split(X, 

y,test_size=0.33,random_state=42) 

 

    print ("   ---- RAMDOM FOREST ----")    
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    # Instantiate model with 300 decision trees. 

rf = RandomForestClassifier(random_state=42, n_estimators=300, 

class_weight = "balanced") 

    # Trainning the model on training data. 

    rf.fit(X_train, y_train) 

    #Using the forest's predict method on the test data. 

    y_pred = rf.predict(X_test) 

    print (f"   TEST      : {y_test}")    

    print(f"   PREDICCION: {y_pred}") 

    #Using different methods of evaluation 

    Sensivity = recall_score(y_test, y_pred) 

    Specifity = recall_score(y_test, y_pred, pos_label=0) 

    #Printing the results obtained on the screen. 

    print(f"   Accuracy: {rf.score(X_test, y_test)}") 

    print(f"   Sensivity: {Sensivity}") 

    print(f"   Specifity: {Specifity}") 

    print(f"   F1score: {f1_score(y_test, y_pred)}") 

 print(f"   Ponderada: 

{(y==0).sum()/y.shape[0]*Sensivity+(y==1).sum()/y.shape[0]*Specifity}") 

    print() 

 

    print ("   ---- MPL ----")      

    # Instantiate model with 3000 max interactions 

    cla = MLPClassifier(max_iter=30000) 

    cla.fit(X_train, y_train) 

    #Using the MLPClassifier on the test data. 

    y_pred=cla.predict( X_test) 

    print (f"   TEST      : {y_test}")    

    print(f"   PREDICCION: {y_pred}") 

    #Using different methods of evaluation 

    Sensivity_1=recall_score(y_test, y_pred) 

    Specifity_1=recall_score(y_test, y_pred, pos_label=0) 

    #Printing the results obtained on the screen 

    print(f"   Accuracy: {cla.score(X_test, y_test)}") 

    print(f"   Sensivity: {Sensivity_1}") 

    print(f"   Specifity: {Specifity_1}") 

    print(f"   F1score: {f1_score(y_test, y_pred)}") 

 print(f"   Ponderada: 

{(y==0).sum()/y.shape[0]*Sensivity_1+(y==1).sum()/y.shape[0]*Specifity_1}"

) 

    print() 

 

    print ("   ---- KERAS ----")    

    # Instantiate model with 4 layers 

    model = keras.models.Sequential() 

    model.add(keras.layers.Dense(300, activation="relu")) 

    model.add(keras.layers.Dense(100, activation="relu")) 

    model.add(keras.layers.Dense(100, activation="relu")) 

    model.add(keras.layers.Dense(1, activation="sigmoid")) 

    #Improvement of the model 

    model.compile(loss="mean_squared_error", 

    optimizer="adam", 

    metrics=["binary_accuracy"]) 

    #Trainning data with 500 epochs 

    model.fit(X_train, y_train,epochs=500) 

    #Using Keras on the test data. 

    y_pred = model.predict(X_test).round() 

    print (f"   TEST      : {y_test}")    

    print(f"   PREDICCION: {np.transpose(y_pred) }") 

    #Using different methods of evaluation 

    Sensivity_2=recall_score(y_test, y_pred) 

    Specifity_2=recall_score(y_test, y_pred, pos_label=0) 

    Accuracy_2 =accuracy_score(y_test, y_pred) 

    #Printing the results obtained on the screen 

     print(f"   Accuracy: {Accuracy_2}")  
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    print(f"   Sensivity:{Sensivity_2}") 

    print(f"   Specifity: {Specifity_2}") 

    print(f"   F1score: {f1_score(y_test, y_pred)}") 

 print(f"   Ponderada: 

{(y==0).sum()/y.shape[0]*Sensivity_2+(y==1).sum()/y.shape[0]*Specifity_2}"

) 

    print() 
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1.3. Clasificador aleatorio 
 

# In[1]: 

 

 

# Using numpy to convert to arrays 

import numpy as np 

# Using pandas to management and analysis of data structures  

import pandas as pd 

# Using Skicit-learn to split data into training and testing sets 

from sklearn.model_selection import train_test_split 

# Using Skicit-learn to ensemble of Decision Trees 

from sklearn.metrics import precision_score, recall_score 

# Using Scikit-learn to obtain a better classification metric for unbalanced 

data 

from sklearn.metrics import f1_score 

# Using Scikit-learn to obtain accuracy values 

from sklearn.metrics import accuracy_score 

  

 

# In[6]: 

 

 

#loop to work with all features  

lista = [] 

for nn in range (1,6): 

    dirname = "features/features_"+ str(nn)+"/" 

    xname = dirname + "X_"+ str(nn)+ ".npy" 

    for name in ["poma", "retro","retroB" , "tugt"]: 

        yname = dirname + "y"+ name + "_"+ str(nn)+ ".npy" 

        print ("Feature "+ str(nn)+ ": " + name) 

        X = np.load(xname) 

        y = np.load(yname) 

         

        #Splitting the data into training and testing sets, being the size of 

nnnnnnnntest part 33%. 

        #Setting the random state to 42 which means the results will be the 

nnnnnnnnsame each time  

        #I run the split for reproducible results. 

        (X_train, X_test, y_train, y_test) = train_test_split(X, 

……………………y,test_size=0.33,random_state=42) 

        print ("   ---- RANDOM ----")      

        N = y_test.shape[0] 

        y_pred=np.random.rand(N)>0.5 

        #Using different methods of evaluation 

        Sensivity=recall_score(y_test, y_pred) 

        Specifity=recall_score(y_test, y_pred, pos_label=0) 

        Accuracy =accuracy_score(y_test, y_pred) 

        Ponderada =  

hhhh.hhh((y==0).sum()/y.shape[0]*Sensivity+(y==1).sum()/y.shape[0]*Specifity) 

        lista.extend([Ponderada]) 

        #Printing the results obtained on the screen 

        print(f"   Accuracy: {Accuracy}") 

        print(f"   Sensivity: {Sensivity}") 

        print(f"   Specifity: {Specifity}") 

        print(f"   F1score: {f1_score(y_test, y_pred)}") 

        print(f"   Ponderada: {Ponderada}") 

        print() 

         

print(lista) 

mean = sum(lista)/len(lista) 

print() 

print(mean) 
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1.4. Generación de gráficas 
 

def allFeatures(n_clusters, subjects = None): 

    nyq = FNYQ # For smartphone 50Hz/2 

    voluntDic = getVoluntDic2('data/datosUsuarios.csv') 

    rdir = 'data/' 

    print('OJO features low pass 8 Hz') 

    print('OJO que las features se igualen en cuanto a valores (normalizar)') 

    print('Esto por el tema de kmeans') 

    print('OJO tb a la longitud de la segnal. Si disminuyo wsize') 

    print('y quiero llegar a 0.25 Hz en los analisis en freq hay problemas') 

    print('porque casi no tengo resolucion y salen indices negativos al buscar 

nnnnanchura') 

    coefs = scipy.signal.butter(5, 8.0/nyq, 'lowpass') 

    b1 = coefs[0] 

    a1 = coefs[1] 

    wsize = 512 # 512/50 s, 512 = 2**9 

    if(subjects is None): 

        subjects = sorted(voluntDic.keys()) 

    #import ipdb;ipdb.set_trace() 

    X = [] 

    ypoma = [] 

    ytugt = [] 

    yretro = [] 

    yretroB = [] 

    listanumeros = [] 

    i=0 

    for subject in subjects: 

        print(subject) 

        nwalk = 0.0 

        nwin = 0.0 

        path=rdir+subject+'/' 

        segs, wtimes, dum1, dum2=getSegmentsPath(path) 

        Xkm = [] # For kmeans 

        for ac in segs: 

            acf = scipy.signal.filtfilt(b1, a1, ac, axis = 0, 

nnnnnnnnnnnnpadtype='constant') 

            acft = np.sqrt( (acf**2).sum(1)) 

            ## 

            wints = np.split( acft , range(wsize, acft.shape[0], wsize)) 

            wints.pop(-1) 

            wins = np.split( acf , range(wsize, acf.shape[0], wsize)) 

            wins.pop(-1) 

            ## 

            nwin += len(wins)       

            

            for win, wint in zip(wins, wints): 

                if(isWalking(wint)): 

                    nwalk += 1.0 

                                        

                    #SABER CUANTAS HAY 

                    if i == 0: 

                        for nn in range (1,6): 

                            numero = random.randint(1, 12000)                           

                            listanumeros.extend([numero]) 

                             

                    for element in listanumeros: 

                        if i == element: 

                            plt.figure(1) 
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                            plt.plot(win) 

                            plt.xlabel("Tiempo(s)") 

                            plt.ylabel("Ace(m/s^2)") 

                            plt.savefig("PlotGeneratedUsingMatplotlib"+ 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnstr(i)+".png")    

                            plt.close(1) 

                                                        

                    i+=1 

                                       

                    pca = PCA() 

                    win2 = pca.fit_transform(win) 

                    feat = extractFeatures(win2, wsize) 

                    if(feat is not None): 

                        Xkm.append(feat.reshape(1, feat.shape[0])) 

                    # A este nivel win es una array 512x3, 512 muestras  

                    # de los tres ejes, mientras que wint es la aceleracion 

                    # total (modulo del vector) de 512x3 

                    # Se supone que esta andando. win2 tras el PCA 

                     

        # Esto seria el porcentaje de tiempo andando dentro de la actividad 

        print(nwalk/nwin) 

        Xkm = np.vstack(Xkm) 

        # I have decided to scale features 

        scaler = StandardScaler() 

        X2 = scaler.fit_transform(Xkm) 

        # Then cluster 

        km = KMeans(n_clusters=n_clusters, n_init=100, max_iter=20000) 

        km.fit(X2) 

        # Then add but undo scale to recover original units 

        X.append(scaler.inverse_transform(km.cluster_centers_)) 

        yretro.extend(n_clusters*[ int( faller(voluntDic, subject, 'retro'))]) 

        yretroB.extend(n_clusters*[ int( faller(voluntDic, subject, 

nnnnnnnn'retroB'))]) 

        ytugt.extend(n_clusters*[ int( faller(voluntDic, subject, 'tugt14'))]) 

        ypoma.extend(n_clusters*[ int( faller(voluntDic, subject, 'poma25'))]) 

         

    X = np.vstack(X) 

    yretro = np.array(yretro) 

    yretroB = np.array(yretroB) 

    ytugt = np.array(ytugt) 

    ypoma = np.array(ypoma) 

    return X, yretro, yretroB, ytugt, ypoma 

 
 


