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ANÁLISIS SOBRE LA INFLUENCIA DE LA TEMPERATURA Y DENSIDAD EN 

LOS ANEMÓMETROS DE CAZOLETAS 

RESUMEN 
 

El uso de la energía eólica para la producción de energía  eléctrica es una tecnología 

prometedora y a la vez muy madura, que tiene una gran importancia dentro  del escenario de 

generación de energía eléctrica. La actual situación de moratoria, hace que la optimización del 

rendimiento de los emplazamientos eólicos sea crucial y el principal objetivo. La velocidad del 

viento, es el parámetro más importante en el diseño de un parque, puesto que una mínima 

desviación en sus lecturas, puede provocar errores a lo largo de todo el proyecto eólico. Para 

ello se debe comenzar caracterizando precisamente el recurso eólico del parque.  

Tras observar repetidamente los efectos producidos por la temperatura en diversos registros 

eólicos, se decide hacer hincapié sobre esta variable, para cuantificar las desviaciones 

producidas por la misma. 

El objetivo principal de este estudio es analizar la influencia de la temperatura sobre las 

lecturas ofrecidas por los anemómetros de cazoletas. Para realizar este análisis, se ha contado 

con los registros tomados durante un año de una torre meteorológica y dos aerogeneradores, 

ambos provistos de sensores para caracterizar el viento del emplazamiento. Se realizaron 

análisis comparativos de los resultados ofrecidos por el anemómetro de cazoletas para cada 

sector de temperaturas, debido a que teóricamente es el más expuesto a este parámetro. 

También se estudiaron los efectos producidos en la curva de potencia de los aerogeneradores. 

Los resultados ofrecen una clara dependencia de este parámetro, mostrándose 

ordenadamente según su clasificación. Las temperaturas frías obtendrían una tendencia 

positiva, donde las lecturas de velocidad del anemómetro de cazoletas serían más rápidas que 

la media de los registros. Contrariamente, las lecturas de viento para temperaturas cálidas 

mostrarían una tendencia negativa en sus registros. 

Actualmente, esta variable es muy relevante y tenida en cuenta en los ensayos de calibración 

de los anemómetros. La prueba de ello se recoge en este informe donde se detalla su afección 

sobre dichos sensores. 
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1. INTRODUCCIÓN 
 

Antecedentes  

Importancia en un proyecto eólico  
 
La instalación de un parque eólico conlleva largos y costosos estudios que se prolongan a lo 

largo de varios años. La variable más importante para la caracterización de un parque eólico es 

la velocidad de viento. Desviaciones en un pequeño tanto por ciento en la velocidad de viento 

repercute en grandes errores en la diferencia entre el recurso estimado y el real. Por ello, tiene 

una gran importancia la medida de velocidad a lo largo de todo el proyecto eólico; siendo 

necesarios grandes esfuerzos para maximizar la longitud, calidad y cobertura de los datos. [3] 
 
 
 
 Antes de la construcción  
 
En primer lugar, se realiza el estudio de recurso por medio de campañas de viento para la 

estimación de la futura producción del parque eólico por medio de torres meteorológicas.  

Éstas se sitúan en un punto representativo del terreno y registra datos del viento para 

caracterizarlo. Se almacenan esos datos con un sistema de adquisición para una posterior 

descarga. Los datos deben ser representativos a largo plazo, con una disponibilidad de 

alrededor a los 10 años. En muchos casos se trata de una labor no viable por tiempo y 

economía. Se recurre a estimar las velocidades gracias a torres cercanas o servicios 

meteorológicos para conocer la rentabilidad del futuro parque eólico. Según emplazamiento se 

instalan varias torres, cada torre con varios sensores, sobre todo sensores de velocidad. [7]  

Por otro lado, otros estudios que se realizan previamente a la construcción son el estudio de 

clase de emplazamiento y el estudio de curva de potencia.  

El estudio de clase de emplazamiento se basa en la norma UNE-EN 61400-1:2006 y tiene como 

objetivo optimizar la disposición de los aerogeneradores sobre el terreno y alcanzar los 

cumplimientos de diseño de la máquina.  

El estudio de curva de potencia basado en las normas IEC 61400-12-1 y -2 tiene como principal 

objetivo garantizar la producción del parque eólico. Se trata de relacionar la velocidad de 

viento de la torre meteorológica de referencia del parque con las velocidades que se alcanzan 

a la altura de buje de uno o varios aerogeneradores del parque. De esa manera, se garantiza la 

curva de potencia que tendrá el aerogenerador o parque para cada régimen de velocidad de 

viento. [12] 
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En la operación del parque   
 
Una vez instalados los aerogeneradores, se debe asegurar su correcto funcionamiento y 

óptima explotación energética.  

El conocimiento de la velocidad de viento es esencial para gestionar el control del 

aerogenerador según su tecnología. Se pueden diferenciar hasta tres velocidades 

características en la curva de potencia de un aerogenerador, tales como muestra la gráfica 1: 

 

Gráfica 1. Curva de potencia de un aerogenerador 

• Velocidad de arranque, velocidad a partir de la cual el aerogenerador está en disposición de 

generar energía.  

• Velocidad de corte, velocidad de seguridad en la que los dispositivos de frenado y 

orientación realizan el parado de la máquina.  

• Velocidad de saturación o nominal, en los aerogeneradores con capacidad de cambio de 

ángulo de ataque de las palas. A partir de esta velocidad, el aerogenerador ha alcanzado la 

potencia nominal del generador y controlando el ángulo de ataque de la pala (pitch) se logra 

una potencia constante hasta la velocidad de corte.  

Para llevar un seguimiento de la operación de un parque eólico se realizan estudios periódicos 

mediante el análisis adecuado de los datos de la potencia producida y de la velocidad de viento 

registrada en los anemómetros colocados en las góndolas. También se realizan auditorías 

energéticas en las que se calcula la disponibilidad, el rendimiento, las pérdidas energéticas 

producidas por las paradas de las máquinas como también otros parámetros que ayudan a la 

correcta operación del parque.  

Otras acciones que se basan en el conocimiento de la velocidad de viento son las estimaciones 

de producción del parque (gestión de la energía) y la planificación de los mantenimientos 

preventivos que se realizan en el parque (gestión de mantenimiento para una mínima afección 

en la disponibilidad y rendimiento energético del parque por la parada de máquinas).  

Todas las acciones anteriores implican el tratamiento de una gran cantidad de datos que 

permitan caracterizar el parque antes de la instalación, controlar el correcto funcionamiento 
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una vez construido y estimar las futuras producciones. La medida de velocidad de viento deber 

ser muy precisa y lograr una independencia de otras propiedades físicas y climatológicas. De 

esa manera, no se producirá una superposición y expansión de errores en los sucesivos 

análisis.  

 

En referencia a estudios anteriores, se parte de los resultados obtenidos sobre proyectos que 

estudien la influencia de la temperatura en la operación de los anemómetros [4]. En él, se 

estudió el fenómeno de la fricción mecánica que se produce en los anemómetros de cazoletas, 

cuando estos son sometidos a temperaturas frías.  Los resultados ofrecidos en este proyecto 

permiten observar la influencia de la temperatura, sobre todo a bajas velocidades de viento 

reduciéndose conforme aumenta la velocidad. Las temperaturas bajas provocan diferencias 

negativas respecto al comportamiento general del periodo es decir, que la medida obtenida es 

menor a lo esperable. Para temperaturas altas se presenta el fenómeno contrario. [4] 

 

Ilustración 1. EEM para cada sector de temperaturas 

 

Además, También se recogió la influencia de la temperatura sobre la intensidad de turbulencia 

registrada. 
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Ilustración 2. Diferencia de IT para cada sector de temperaturas en el anemómetro de cazoletas 

 

Por ello, se constató la existencia de la influencia de la temperatura en la señal de salida de los 

anemómetros de cazoletas. Esta influencia debería ser tenida en cuenta durante los ensayos 

de calibración de los anemómetros, en los estudios de evaluación de potencial eólico así como 

en la evaluación de la producción de aerogeneradores para la optimización de la operación del 

parque eólico. Para poder valorar esta influencia adecuadamente harían falta investigaciones 

adicionales centradas en el desarrollo de modelos y metodologías de caracterización de esta 

influencia. 

Adicionalmente, se añadió como revisión bibliográfica un estudio sobre la influencia de la 

densidad en la calibración de los anemómetros de cazoletas. El estudio revela las desviaciones 

producidas en dichos sensores cuando son sometidos a variaciones de densidad. 

Como consecuencia de estas conclusiones, tiene origen este estudio. Se partirá desde la 

perspectiva final del anterior estudio, pero esta vez se analizarán dos emplazamientos con 

condiciones climáticas diferentes  y se añadirá un nuevo parámetro de estudio, la densidad del 

aire. 

1.1. Alcance y objetivos 
 

El objetivo de este estudio es la determinación de la influencia de la temperatura sobre los 

registros de viento reproducidos por el anemómetro de cazoletas del emplazamiento eólico 

sometido a estudio. Para ello, se han utilizado registros de viento recogidos durante el año 

2010. Debido a la privacidad de los mismos, cualquier información técnica referente al 

emplazamiento ha quedado sin registrar. 

Los datos registrados son tratados en hojas Excel, los cuales han sido clasificados con la mayor 

precisión posible en aras de una mayor clarificación en los resultados.  
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Para el desarrollo de este proyecto se han realizado las siguientes fases: 

 Revisión bibliográfica sobre estudios de influencia de la temperatura en sensores 

 Documentación sobre metodología de trabajo, así como sus procesos 

 Formación para la implementación del método aplicado 

 Análisis e interpretación de resultados 

 Escritura de la memoria del proyecto 

2. MEMORIA 
 

El presente trabajo parte de estudios ya realizados sobre la influencia de las condiciones 

climáticas en los anemómetros de cazoletas. Como hipótesis principal, se parte de una única 

variable de fundamento, la temperatura. Dicho parámetro, relaciona directamente otras 

variables que entran en juego, como la densidad, la humedad y en consecuencia la velocidad 

del viento. 

La memoria se compone de tres partes principales: La variable de velocidad de viento, la 

metodología aplicada en el trabajo y los resultados obtenidos. Como apoyo a dichas parte, el 

estudio cuenta con unos anexos que refuerzan las conclusiones obtenidas. 

En el primer capítulo se estudia la velocidad del viento, es la variable principal de cualquier 

proyecto eólico. En esta parte, se detalla el funcionamiento de los sensores objeto de estudio, 

así como la importancia de su calibración.  

La metodología seguida en el trabajo es crucial para obtener un rango de datos sin incidencias 

ni perturbaciones. De este modo, se asegura una garantía en los resultados obtenidos durante 

el proceso. 

El análisis de los resultados, completa el estudio. En esta parte, se comparan los anemómetros 

estudiados con el fin de conocer el comportamiento  y su respuesta cuando son agrupados por 

rangos de temperatura. De la misma manera, también se estudia la estimación de producción 

y la curva de potencia. Tras la consecución de los mismos, queda patente la influencia 

resultante en las variaciones de temperatura y densidad del emplazamiento. 

En los anexos encontramos la información más detallada de los estudios realizados, en los 

cuales figura un estudio paralelo de otro emplazamiento distinto al presentado a lo largo de 

esta memoria. 

2.1. La velocidad del viento  

2.1.1. El anemómetro   

 
El anemómetro es el instrumento que mide la velocidad de viento. Es el principal dispositivo 

para estudiar el recurso eólico de un emplazamiento. Los anemómetros son instalados en 

torres meteorológicas a alturas similares a la del buje del aerogenerador. El desarrollo 
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tecnológico ha provocado un aumento de las alturas de buje para lograr producciones mayores 

al encontrar perfiles de viento mayores y más estables. Este avance ha estimulado una mejora 

paralela en las distintas tecnologías de medición de viento sin la instalación de torres 

meteorológicas que pueden dejar de ser viables a tales alturas. [4] 
 
Rotación 
 
Pueden ser de cazoletas o de hélice.  

El anemómetro de cazoletas consiste en tres o cuatro cazoletas montadas simétricamente 

alrededor de un eje vertical. Debido a que la fuerza que ejerce el aire en el lado cóncavo es 

mayor que en el lado convexo, la rueda de cazoletas gira. La velocidad de rotación es 

proporcional a la velocidad del viento. Dicha rotación puede medirse de varios modos: 

contando mecánicamente el número de revoluciones, conectando el eje de la rueda de 

cazoletas a un pequeño generador eléctrico y midiendo el voltaje instantáneo, o a un 

interruptor optoeléctrico y midiendo su salida. [9] 

 
Ilustración 3. Anemómetro de cazoletas 

 
Ilustración 4. Anemómetro de hélice 

 
El anemómetro de cazoletas es el tipo más extendido, más simple, robusto y barato. En su 

utilización, aparecen principalmente tres posibles fuentes de error: 
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• El par de fricción de los rodamientos, genera la existencia de una velocidad umbral a partir 

de la cual el anemómetro comienza a girar.  Este efecto repercute en una mayor incertidumbre 

a velocidades bajas. El estado estático del dispositivo puede arrojar errores del 1 al 5% de las 

medidas.  

 

• Los Efectos dinámicos hacen al anemómetro acelerar con más rapidez de lo que decelera, a 

este efecto se le denomina sobrevelocidad  (overspeed). Depende del tipo de anemómetro y 

se expresa por su constante de distancia. Este efecto tiene un rol bajo, errores del 0.2% a 1% 

[7]  

 

• Respuesta angular, el flujo de aire no es totalmente horizontal, hay una cierta componente 

vertical que afecta a las medidas de velocidad horizontal que son las que nos interesa medir al 

estar directamente relacionadas con la producción de energía. Depende de la forma de las 

cazoletas (semiesféricas o cónicas). Este error puede llegar a errores del 0.2% al 2%. [7] 

Anemómetro sónico 
 Este anemómetro, no se basa en un principio mecánico sino en la medida del tiempo que 

tarda una señal de sonido en atravesar una distancia conocida entre pares de transmisores y 

receptores. Según la velocidad de viento, este tiempo varía ya que afecta a la propagación de 

las señales de sonido. Las señales pueden ser continuas o del pulso, realizándose las medidas 

entre direcciones perpendiculares pudiendo utilizar dos o tres ejes (plano horizontal o vector 

completo de velocidad de viento, respectivamente).  

Es considerablemente más caro y con un consumo energético mayor que el anemómetro de 

cazoletas, aunque tiene mayor precisión y no requiere de mantenimiento mecánico al no 

contener piezas móviles. En cambio, suelen tener problemas para medir cuando las 

condiciones meteorológicas son adversas, perdiéndose muchos registros. Estos anemómetros 

no suelen ser comunes en las campañas de medida.[9] 
 
 

 
Ilustración 5. Anemómetro sónico 
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Otros: LIDAR, SODAR  
 
Son sistemas que tienen como peculiaridad el permitir medir la velocidad del viento a 

diferentes alturas, requisito cada vez más necesario para conocer la velocidad en la altura de 

buje de los nuevos aerogeneradores (las torres meteorológicas pueden ser no viables a partir 

de cierta altura dependiendo del terreno) y conocer las velocidades a las que se expondrán las 

puntas de pala en su posición superior como inferior. El LIDAR se basa en la dispersión de 

ondas sonoras y el SODAR en el retraso temporal de un haz de láser reflejado por los aerosoles 

presentes en el aire.  

 

2.1.2.  Calibración  

 
La correcta calibración de los anemómetros, como del resto de sensores usados en un 

proyecto eólico, es básica para garantizar unos resultados con un nivel mínimo de precisión. 

MEASNET (International Measuring Network of Wind Energy Institutes) propone un 

procedimiento para la calibración de anemómetros de cazoletas basado en la norma 61400-

12-1:2005(E), este procedimiento es el más aceptado internacionalmente. Por medio de un 

túnel de viento, las instituciones autorizadas testean los anemómetros certificando los 

resultados obtenidos. [7] 

La calibración permite una minimización de los errores cometidos en la medida debidos a 

parámetros externos o internos de cada tipo de anemómetro; sin embargo, como las 

condiciones en las que se realiza la certificación en el túnel de viento no recogen todas las 

condiciones que sufren los anemómetros en operación, surgen comportamientos anómalos 

que todavía necesitan ser estudiados con detenimiento. 

 

Calidad de las medidas y rangos de operación 

Es recomendable que el error relativo en la medición de velocidad de viento, sea menor del 3% 

para velocidades de 10 m/s. 

La Tabla muestra los rangos de operación, según algunas condiciones ambientales y del 

terreno, en los cuales es conveniente que el anemómetro mida con la exactitud certificada. Los 

valores límites reflejan los rangos de operación del aerogenerador y condiciones climáticas 

extremas. [6] 
Tabla 1. Rango de valores de aerogenerador 
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2.2. Influencia en la medida de parámetros en campo 
 
La medida registrada por los anemómetros es sensible en su operación a las condiciones 

meteorológicas, topografía, problemas con la adquisición de datos o la degradación del 

instrumento. Estas condiciones no son recogidas en los test de calibración. Dada la 

importancia de la correcta medición de la velocidad del viento, se han realizado diferentes 

estudios para verificar las experiencias en campo. [13] 

Una serie de anemómetros de cazoletas calibrados en operación pueden tener desviaciones de 

la recta de calibración aumentando la incertidumbre en la medida, lo que puede variar 

drásticamente la rentabilidad de un proyecto eólico al registrar menores velocidades a las 

reales del emplazamiento.[5] 

Una de las variables que más afecta a la medida y de la que no se tiene una lectura 

representativa en los ensayos de túnel de viento es la intensidad de turbulencia vertical. Ésta 

depende del flujo específico del lugar y del régimen de turbulencia. La orografía, la naturaleza 

del viento, los obstáculos cercanos al lugar de medida, la altura de medición pueden afectar 

incrementando la desviación de las medidas, resultando una perturbación mayor a la que 

realmente tiene el emplazamiento.  

Otros aspectos críticos son los relacionados con las condiciones climatológicas. Fenómenos 

esporádicos como la caída de rayos pueden tener un efecto destructivo en los sensores si éstos 

no son protegidos correctamente. Otros más frecuentes como la acumulación de escarcha o 

nieve en las cazoletas causan un cambio en el comportamiento aerodinámico, se hace 

necesaria la detección y eliminación de los datos afectados así como la prevención a través de 

calentadores. Otras condiciones frecuentes como son la lluvia o la niebla son más críticos en 

los anemómetros sónicos ya que distorsionan la señal emitida para conocer el vector de 

velocidad en cada instante. 

Otras variables climatológicas como la temperatura (fricción mecánica) y la densidad del aire 

también producen desviaciones en la recta. Por ello, en este estudio se analizará 

detalladamente la problemática originada por dichas variables. 

 

Fricción mecánica (temperatura) 

La temperatura es una de las principales variables del estudio. La medición in situ de la 

temperatura del aire en general se recomienda especialmente para los lugares donde los 

rangos de temperatura son extremos. La medición debe llevarse a cabo de acuerdo con la 

norma IEC 61400-12-1. 

En los anemómetros de cazoletas, uno de problemas más perniciosos es el efecto de la 

temperatura. El efecto de las temperaturas frías, repercute negativamente sobre la fricción 

mecánica. Las ecuaciones, utilizadas en la calibración, modelan este efecto introduciendo un 

offset necesario para sobrepasar la fricción estática y la no linealidad. Los coeficientes de 

fricción son dependientes de la temperatura y se estiman para diferentes temperaturas en los 

test (gráfica 2). [14] 
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Gráfica 2. Fricción de un anemómetro de cazoletas en función de la temperatura y la velocidad de rotación 

Sin embargo, aunque un anemómetro de cazoletas opere correctamente en el túnel de viento 

en condiciones normales puede no tener la misma característica de calibración en servicio bajo 

atmósferas en las que la temperatura y densidad cambien constantemente. Según el estudio 

[14], se experimento  este comportamiento en un túnel del viento con 170 anemómetros de 

cazoletas. En los resultados arrojados se observa una clara dependencia lineal en los 

parámetros de calibración con la densidad afectando al arranque de los anemómetros; aunque 

esta variación es menor al 1% permitido por el procedimiento MEASNET. Esta dependencia 

combina el efecto de la temperatura ambiente y la presión. Como se citó anteriormente, la 

temperatura puede tener una influencia en el comportamiento del torque de fricción existente 

en los rodamientos del anemómetro al aumentar o disminuir la viscosidad de los aceites. Es 

decir, en un incremento de temperatura cabe esperar una menor fricción y por tanto el umbral 

de fricción decrezca para producir la rotación de las cazoletas. En cambio, si el efecto de la 

temperatura en la densidad es considerado, el resultado parece contradecir el argumento del 

efecto sobre la fricción (mayor densidad implica menor temperatura y resulta mayor torque de 

fricción y mayor valor de offset, ya que se necesita una presión dinámica alta para iniciar la 

rotación de la cazoleta). Sin embargo, se debe considerar que la temperatura a través de la 

densidad, tiene un efecto aerodinámico importante, al depender linealmente las fuerzas 

aerodinámicas con la densidad en un primer orden. [10]  

En la práctica, en los estudios de viabilidad se aconseja no tener en cuenta los datos por 

debajo de una referencia que puedan arrojar medidas con una gran incertidumbre, 

generalmente se fija en 2ºC. Este hecho reduciría considerablemente la disponibilidad en 

climas templados sobre todo; ya que en fríos se suelen incluir calentadores en los 

anemómetros. La eliminación de esta información tendría un efecto negativo en etapas en la 

que la medida de la velocidad del viento es más crucial, como en el control del aerogenerador 

o etapas muy ajustadas en tiempo como el estudio de curva de potencia.  

Por lo que es necesario un estudio más detallado de la operación de los anemómetros. Cuya 

iniciativa principal sea  el reflejar el efecto de la temperatura en las medidas de velocidad de 

viento, para que sea tenido en cuenta en los estudios eólicos. 

 



16 

 

Densidad del aire 

Es un parámetro función de la temperatura ambiente y de la presión atmosférica, 

representada a través de la ecuación: 

 

                             i=    (ec.3) 

 
Donde ρ es la densidad de aire promediada cada diez minutos en kg/m3, B es la presión 

atmosférica en Pa, Ti es la temperatura absoluta del aire en K y R es una constante de gas para 

aire seco con un valor de 287.05 J/kg K en el Sistema Internacional para el diezminutal i. 

 

El cálculo de la densidad del aire se realiza de acuerdo a IEC 61400-12-1 [[1][2]]. La corrección 

para el efecto de la densidad de la humedad del aire se puede realizar de acuerdo con la 

norma IEC 61400-12-1 [1]. 

La densidad es un parámetro de estudio al que solamente se le ha dado prioridad para la 

producción de energía en los aerogeneradores. En los últimos años, los estudios han 

confirmado que dicho parámetro tiene una influencia significativa en las lecturas de los 

anemómetros. Como resultado de ello, se analizan las conclusiones arrojadas por dichos 

estudios.  

Para entender correctamente el funcionamiento y calibración de los anemómetros, se debe 

incidir en los parámetros que afectan en su calibración.  

Tras realizar múltiples ensayos en un túnel del viento la exactitud del anemómetro se 

convierte en una certeza y es posible realizar un estudio más exhaustivo. Como resultado de 

este proceso de calibración es posible obtener los coeficientes A y B de la función de 

transferencia del anemómetro: 

                                                        V = A ⋅ f + B  (ec. 1) 

Donde V es la velocidad del flujo (velocidad del viento), f es la frecuencia de salida de la 

rotación del anemómetro, A (pendiente) y B (Offset). Esta relación lineal entre la velocidad del 

viento medida y la frecuencia de salida del anemómetro es lo  suficientemente exacta para la 

mayoría de propósitos [11] 

 

Las condiciones ambientales tienen un efecto sobre el comportamiento de los anemómetros, 

ya que su respuesta (cambios en la velocidad de rotación, ω) depende de los pares 

aerodinámicos y de la fricción (QA y Qf respectivamente), es decir: 

   (ec. 2) 

 
Donde I es el momento de inercia. El par aerodinámico (QA), es una función de la densidad del 

aire (ρ), entre otros parámetros, y el momento de rozamiento, (Qf), es una función de la 

temperatura ambiente, T, y la velocidad de rotación, ω [6]. 
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En un estudio de calibración ordinario, se tiene en cuenta un cierto margen de error producido 

por estas variables. Las desviaciones originadas por la densidad en entornos donde la amplitud 

térmica es considerable no se tienen en cuenta. Esto origina una fluctuación importante en las 

lecturas de velocidad del anemómetro. 

Prueba de ello son los resultados obtenidos en el estudio “Deviation of cup and propeller 

anemometer calibration. Results with air density”. 

 

En esta tabla se refleja el porcentaje de variación que sufren los diferentes rangos de 

velocidad, cuando son sometidos a un intervalo de variación de la densidad de 0,1 Kg/m3. Una 

de las particularidades que se ha de tener en cuenta en estos estudios, es que cada 

anemómetro tiene una respuesta diferente. Una de las particularidades halladas tras estas 

variaciones, es la desviación positiva que tiene la pendiente de la recta. [11]. Esto origina una 

medición de la velocidad de viento más rápida, para densidades más elevadas. 
 

Tabla 2. Porcentaje del intervalo de variación, de la velocidad del viento medida debido a una variación de la 
densidad de Δρ = 0,1 Kg /m

3
, para los modelos de anemómetro analizados. 

 

 

En la siguiente tabla se detalla en porcentaje las fluctuaciones de la energía anual producida 

(AEP) debido a las oscilaciones en la densidad. En este caso, se ponen de ejemplo varios 

anemómetros y diferencias de densidad de 0,05 Kg/m3 y 0,1 Kg/m3. 
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Tabla 3. . Desviación de la AEP debido a las variaciones en las mediciones de velocidad del viento causadas por la 
fluctuación de la densidad del aire, Δρ = 0,05 Kg/m

3
, y Δρ = 0.1 Kg/m

3
, en función de la velocidad media anual del 

viento (4 m/s, 7 m/s) 

 

Tras el análisis de las tablas, se observa que los resultados indican que este efecto puede ser 

alto si se traduce en la producción de energía anual. 

 

 

Velocidad del viento 
 

Es la principal variable a medir. Se dispondrá como mínimo de dos anemómetros de cazoletas 

y uno sónico (3D).  

En el anemómetro de cazoletas se utilizará la lectura original del registrador. En cambio, en el 

anemómetro sónico, la lectura diezminutal se trata de un vector de velocidad en las tres 

dimensiones. 

 

 Una variable derivada de la velocidad es la intensidad de turbulencia. Las variaciones 

turbulentas a corto plazo en la velocidad de viento son importantes para el diseño y evaluación 

de las turbinas eólicas. Es mayor durante el día y en días con altas temperaturas, también 

aumenta en terrenos complejos debido a que la superficie perturba más las corrientes de aire. 

[4]  

                                           (ec. 3) 

Donde IT es la intensidad de turbulencia, σ la desviación típica y V la velocidad media en el 

diezminutal i. 

 



19 

 

La medición in situ de la velocidad del viento se lleva a cabo según la norma IEC 61400-12-1. 

Los anemómetros deben ser calibrados de acuerdo a la directriz MEASNET [5] y recibir su 

aprobación, preferiblemente durante una única campaña de calibración. [12] 

 

La velocidad del viento se mide con promedios de 10 minutos, preferiblemente con una 

velocidad de muestreo de 1 Hz o más rápido. El sistema de documentación de datos deberá 

registrar y guardar los promedios y las desviaciones estándar, así como también los mínimos y 

máximos de los mismos. 

 

El período de medición deberá cubrir al menos 12 meses completos y consecutivos, para poder 

evaluar las variaciones estacionales. Si los datos de más de una torre meteorológica están 

disponibles, la correlación entre las mismas se debe realizar para prorrogar el período de 

medición para cada una de ellas y para llenar los datos vacios.  

 

La medición se considera incompleta, si una o más de las siguientes condiciones se cumplen: 

• El período de medición de las torres meteorológicas “in situ” no cubre al menos 12 meses 

consecutivos.  

• La disponibilidad de los datos brutos filtrados, ya sea del sensor correspondiente o una 

veleta que se instala a 30 m,  es menor del 90%.  

• La disponibilidad de los datos rellenados por métodos MCP es inferior al 95%. 

 

Si la medición se considera incompleta, esto debe indicarse claramente como la desviación de 

la norma, en la presentación de los resultados y hay que tener en cuenta para la evaluación de 

la incertidumbre. 

 

La re-calibración de los anemómetros se debe realizar después de 12 meses y tras el final del 

período de medición a través de la calibración del túnel de viento por una institución 

acreditada MEASNET. Si la re-calibración, muestra resultados que se desvían de manera 

significativa, se realizaran evaluaciones comparativas con el objetivo de determinar el 

momento en que las desviaciones comenzaron a ser significativas.  

En caso de que las diferencias de calibración parezcan ser demasiado altas, se informará del 

análisis de las diferencias de calibración y se rechazaran los datos debido a diferencias de 

calibración. Alternativamente, los datos sospechosos pueden ser retenidos. [7] 

 

Dirección del viento 
 
Gracias a sus lecturas se conocerá las rosas de frecuencia y energía del emplazamiento, muy 

importante en un estudio de recurso. En el estudio permitirá conocer los sectores de dirección 

menos importantes los cuales podrán ser obviados al no ser representativos. 

La medición in situ de la dirección del viento se llevará a cabo de acuerdo a IEC 61400-12-1 [7]. 

El montaje de la veleta (s) se realizara de acuerdo a la norma IEC 61400-12-1 [4]. El objetivo es 

reducir al mínimo los efectos de distorsión de flujo con respecto al sector de 360º. 
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Los datos de dirección del viento se recogen también en promedios de 10 min,  

preferiblemente con una velocidad de muestreo de 1 Hz o más rápido. El sistema de recogida 

de datos deberá registrar y guardar los promedios y las desviaciones estándar. 

 
 
Flujo de inclinación  
 
La componente vertical del flujo, está fuertemente ligada a la pendiente del terreno 

circundante. Por lo tanto, para los sitios de complejos, se deben utilizar sensores apropiados 

para medir los tres componentes del flujo, a fin de obtener la mayor precisión posible. 

 
Presión 
 
El estudio cuenta con los datos registrados por el barómetro. Complementará a la temperatura 

en el cálculo de la densidad de aire. 

Es recomendable medir la presión del aire “in situ” y preferentemente cerca de la altura del 

buje. Si el sensor de presión de aire no está montado cerca de la altura de buje, las mediciones 

de la presión de aire se corregirán a la altura de acuerdo con la norma ISO 2533. [7] 

 
Humedad 
 
Es una variable influyente en la determinación de la presión del emplazamiento. En el estudio 

no se han requerido los datos registrados sobre este parámetro. 

Se recomienda la medición in situ de la humedad relativa en sitios con altas temperaturas y 

sitios con condiciones climáticas extraordinarias. El sensor de humedad debe estar montado 

dentro de la parte superior a 10 m del mástil de medición. [7] 

Potencia 

A través de los datos registrados de la velocidad de viento en el anemómetro de la góndola del 

aerogenerador, y la potencia eléctrica activa del mismo, se genera la curva de producción. De 

este modo, se conoce la potencia eléctrica generada para una velocidad de viento dada. 

Los conjuntos de datos de velocidad y potencia, deben ser normalizados a dos densidades del 

aire: 

- Densidad del aire a nivel del mar, r0, atmósfera estándar (r0=1,225 kg/m3). 

- Densidad el aire promedio de los datos medidos, redondeados al valor más próximo de la 

cifra significativa de 0,005 kg/m3. 

 
Velocidad del viento: para aerogeneradores con control de potencia activo, la normalización 
se aplicará a la velocidad del viento, con la expresión: 

Vn=V10 MIN(10 MIN/0)
1/3  (ec.4) 

Donde: 
Vn: velocidad del viento, normalizada, [m/s]. 

V10 MIN: velocidad del viento medida, promediada en 10 minutos, [m/s]. 
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3. METODOLOGÍA 
 

Para una estimación más precisa del funcionamiento de los anemómetros estudiados se 

necesita el mayor número de registros validos posibles así como localizar con la mayor 

precisión las incidencias y perturbaciones producidas durante el periodo de estudio. 

Para ello se debe definir un procedimiento, que garantice una alta fiabilidad en la precisión de 

los registros clasificados.  

 

3.1. Registro de datos 
 

Las variables que se van a tener en cuenta en el estudio se recogen principalmente en el 

registrador de la torre meteorológica y que posteriormente se ajustarán para su análisis en 

hojas Excel. Todas las señales generadas en los sensores se envían al registrador que es un 

dispositivo electrónico con una memoria capaz de registrarlas. Su funcionamiento es el 

adquirir y procesar las señales que miden las variables necesarias para el estudio, realizar un 

almacenamiento de la información y servirla en una transferencia de datos. Los valores que se 

calculan habitualmente en cada periodo programado son el valor medio, la desviación 

estándar y los valores máximo y mínimo.  

Los datos en este estudio se basan en periodos diezminutales durante un año de duración, en 

los intervalos comprendidos entre febrero-junio de 2010 y noviembre-diciembre de 2010.  

 

Según está establecido en los sistemas eólicos, se tiene como unidad de tratamiento de datos 

los diez minutos debido a que la energía cinética del viento en el dominio de la frecuencia no 

muestra una gran potencia para esa medida temporal, éste apenas sufre alteraciones con la 

posición geográfica.  

Definición de conceptos 

Registros disponibles: son los registros pares de viento-potencia registrados durante el periodo 

de estudio. 

Registros útiles: son los registros cuya velocidad y potencia se consideran registros válidos y 

aquellos registros que pueden ser recuperados mediante técnicas de correlación. 

Producción útil: es la suma de las potencias de todos los registros útiles. 

El hecho de que la máquina no esté produciendo energía no implica que esté indisponible; 

puede no estar produciendo energía porque no se den las condiciones exteriores adecuadas 

para ello. Un ejemplo puede ser que la velocidad del viento este fuera del rango de 

funcionamiento o errores en la red de evacuación. [8] 
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Datos de velocidad y potencia 

 Funcionamiento normal: son comportamientos propios del aerogenerador. 

 Registros erróneos: son valores mal registrados que no deben entrar en los cálculos del 

estudio. 

 Errores: son las incidencias que producen pérdidas de producción y/o de 
disponibilidad. 

Funcionamiento normal 

Son comportamientos normales del aerogenerador todos aquellos eventos cuya relación 

velocidad potencia es próxima a la indicada por el fabricante; pero también existen 

circunstancias especiales que se engloban como funcionamiento normal, estas son: 

 Calma: cuando se dan velocidades muy bajas en todos los aerogeneradores, aparecen 

registros clavados de muy bajo valor con valores de producción nulos o incluso 

negativos debidos al consumo. 

 Cambios de rendimientos estacionales: la densidad del aire afecta el rendimiento de la 

máquina y se observan mayores rendimientos en invierno que en verano. 

Registros erróneos 

Los registros erróneos son valores mal registrados por causa de un fallo en el sensor de 
medición o del sistema de adquisición de datos. 

Los errores en el registro se identifican en el archivo de datos de velocidad-potencia por: 

 Valores fuera de rango: se registran valores de velocidad o de potencia que no se 
corresponden con las condiciones normales de funcionamiento, como velocidades 
negativas o muy altas y potencias muy superiores a la nominal del aerogenerador. 

 Anomalías en sensores: el valor registrado, aun estando dentro del rango de 
valores, difiere mucho con el resto de valores registrados. Por ejemplo, cambios 
bruscos en la velocidad registrada, velocidades muy inferiores a las registradas en 
los aerogeneradores cercanos, potencias muy superiores a la correspondiente por 
el valor de velocidad de góndola registrado, etc. 

Errores  

En este grupo se describen las incidencias que provocan que el aerogenerador no produzca en 

condiciones normales: 

 Alarmas registradas 
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Gráfica 3. Ejemplo de una clasificación de datos de un aerogenerador 

 

 Alarmas no registradas: son periodos en los que el aerogenerador no produce y la 

velocidad de góndola es superior a la de arranque, no habiéndose registrado ninguna 

alarma en ese periodo.  

 Anómalos: son periodos en los que el aerogenerador produce pero no todo lo que 

debería sin haberse registrado ninguna otra incidencia en ese periodo.  

 Heladas: Son periodos anómalos coincidiendo con temperaturas inferiores a 0º 

Centígrados. Los periodos con helada también provocan clavadas y errores en los 

sensores de velocidad por lo normalmente la potencia está bien registrada y es el valor 

correcto y hay un error en la velocidad medida.   

Una vez definidos los periodos con incidencias se procede a los cálculos de los parámetros 

necesarios para obtener un comportamiento del aerogenerador. En este apartado se va a 

definir el tratamiento de los distintos archivos y los cálculos necesarios para el seguimiento. 

Los archivos a tratar son el de datos de velocidad y potencia, buscando y marcando las 

incidencias producidas, y alarmas.[8] 

 

3.2. Tratamiento de datos 
 

Los datos descargados tanto en la torre como en el aerogenerador son almacenados en 

archivos de datos sin formato con extensiones .dat o .csv.  

Estos archivos se extraen en una hoja de cálculo. El siguiente objetivo consiste en localizar los 

registros de viento-potencia que alteren la normalidad del funcionamiento de los sensores, 

para que puedan ser aislados y no produzcan desviaciones en su posterior estudio. El 

procesado que se ha seguido para alcanzar el objetivo se basa en el esquema de la Gráfica 4. 



24 

 

 

Gráfica 4. Proceso del tratamiento de datos 

Inicialmente, los datos de ambas fuentes son extraídos en hojas de cálculo y se realiza una 

comprobación en la sincronización de los datos. El registrador de la torre meteorológica unifica 

temporalmente las señales provenientes de los sensores instalados. Por otra parte se 

encuentra la referencia temporal del aerogenerador y su potencia eléctrica [8].  

Las referencias temporales están sincronizadas y con registros temporales correctos, pero se 

observa una ausencia de registros ya que no existen los totales comprendidos por un año. La 

razón más común se debe a un fallo en la red de alimentación de los sensores y/o registrador, 

si la tensión que alimenta es inferior a la necesitada, el registrador no puede grabar los datos y 

se produce un hueco de información.  

Una vez que los datos están sincronizados, se procede a un filtrado de los mismos.  

Se eliminan de la base de datos los grupos de datos adquiridos bajo las siguientes 

circunstancias: 

1. Condiciones externas diferentes a la velocidad del viento que están fuera del rango 

normal de funcionamiento del aerogenerador. 

2. Fallo del aerogenerador. 

3. Desconexión manual del aerogenerador o en modo de pruebas o mantenimiento. 

4. Dirección del viento fuera del sector o sectores de medida. 

5. Dirección del viento fuera de sectores correctamente calibrados. 

Localización de registros erróneos 

Para localizar este tipo de datos se ha procedido de la siguiente manera: 

 Gráficas comparativas: Inicialmente, se realiza una comparación visual entre la 

velocidad de los anemómetros (dos de tipo cazoletas y dos de tipo sónico) en 

contraste con la temperatura. De esta manera se pueden localizar rápidamente las 

principales perturbaciones de los registros (clavadas, registros erróneos…). 

 Filtros: Tras analizar gráficamente tanto la velocidad de los anemómetros como la 

potencia de los aerogeneradores, se puede proceder de una manera rápida hacia la 

depuración de estos datos. Las gráficas comparativas serán V-V y V-P.  

o V-V: Se estudiaron las comparativas de los anemómetros de cazoletas y 

sónicos entre sí. Así como, la correlación entre sónico-cazoletas. El eje X de la 

gráfica lo ocupará el anemómetro sónico y en el eje Y se situará el de 

cazoletas, que será la variable puesta a estudio ya que es la más expuesta a 

este tipo de perturbaciones. 
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Gráfica 5. Datos brutos (Izquierda); Datos útiles (derecha) 

                                           

 

o V-P: La curva de potencia también fue sometida a un riguroso filtro para evadir 

los datos registrados que afectaban a los registros útiles. 

 

Gráfica 6. Curva de potencia datos brutos (izquierda); datos útiles (derecha) 

  

                                   

Los sensores, así como también los registradores, sufren anomalías en las medidas. Los datos 

filtrados no se desechan sino se marcan con un código (-1000) para una posible recuperación 

en los cálculos posteriormente. 
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Tabla 4. Datos generales del parque de estudio 

 
Parque estudio (nº datos) % datos útiles  

Anemo Pral 18364 70,45 

Anemo 3_D 24570 94,26 

Potencia 24451 93,81 

Total datos 26064 

 

3.2.1. Clasificación de datos 

Debido a las condiciones a las que el terreno está sometido, se deben agrupar los datos según 

su implicación e influencia. Para este estudio, se han tenido en cuenta la temperatura y la 

dirección del viento. 

Temperatura 

Para conocer la influencia de la temperatura se ha clasificado el registro de datos de 

temperatura en cinco sectores. Tras realizar un primer análisis, se toma la decisión de acotar el 

registro en tres sectores debido a la escasa representatividad que ofrece alguno de los 

sectores en relación con la velocidad. Una vez aplicado el segundo criterio, se obtiene una 

gráfica de temperaturas más estable y con menos incertidumbre en sus resultados. 

 

Gráfica 7. Sectorización de los datos de temperatura. (5 sectores y 3 sectores) 

                                  

Características de cada sector: 

 Sector 1: Representa las temperaturas frías, por debajo de 280 K. En este se producen 

variaciones tanto en densidad como en la fricción mecánica propia del anemómetro. El 

sensor tiene la probabilidad de sufrir una congelación, escarcha o deposición de nieve. 

 Sector 2: Se reflejan temperaturas medias, comprendidas entre 280K y 290 K. La mayor 

aportación de estos datos son la poca representatividad en la influencia de los 
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parámetros estudiados, lo cual sirve para clarificar la influencia sometida en sectores 

más extremos. 

 Sector 3: Aquí se ubican las temperaturas cálidas, temperaturas mayores a 290 K. 

 

Dirección del viento 

La agrupación de estos datos, sirve para clasificar la dirección del viento predominante en 

nuestro emplazamiento. Para ello se realiza la rosa de viento, que clasifica los datos en 16 

sectores de dirección, agrupando los datos arrojados de las dos veletas de la torre 

meteorológica y los aerogeneradores sometidas a estudio. Una vez realizada, se opta por 

coger la rosa de vientos que mejores condiciones representa, en este caso la veleta 1 

perteneciente al aerogenerador.  

 

Gráfica 8. Izquierda, rosa de viento torre meteorológica; Derecha, rosa de vientos aerogenerador 

Para que los datos sean más resolutivos, los datos menos representativos serán obviados 

debido a su escasa influencia y para reducir lo más posible la incertidumbre que puedan verter 

al estudio. Tras observar la rosa, se puede determinar que existen dos direcciones principales, 

que son con las que se ha trabajado en el estudio. 

3.2.2. Aplicación del método 

Para desarrollar el método que permita conocer la influencia de la temperatura en los 

anemómetros de cazoletas se han utilizado dos algoritmos de Medición-Correlación-Predicción 

(MCP). Por un lado el algoritmo de regresión lineal y por otro el método de discretización de 

bines.  

El método de discretización de bines logra mejores resultados teniendo en cuenta la medida 

de la velocidad media. Por otro lado, la regresión lineal tiene problemas ya que minimiza la 

suma total de los residuos dando como resultado un ajuste mejor en rangos de velocidad con 

más datos, lo que perjudica el ajuste en bines de velocidad con menor número de datos. 

Una vez se ha desarrollado el método de los bines, se distribuyen los resultados en grupos de 

temperatura y dirección. En este caso, tres sectores de temperatura y dos de dirección.  
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4. RESULTADOS 
 

Estudio del parque 

Con los datos obtenidos, se realiza una comparativa de las velocidades registradas en los 

anemómetros. Se decide utilizar el método de los bines para el resto de cálculos debido a su 

menor incertidumbre respecto a la regresión lineal.  

Descripción de los sensores: 

En esta parte se clasificarán los datos técnicos más importantes del emplazamiento: 

Rosa de viento y potencia. Datos brutos 

 

Gráfica 9. Rosa de viento y potencia datos brutos 

Se diferencian dos grandes sectores donde la potencia desarrollada es más incidente. Con esta 

rosa de viento se caracteriza el emplazamiento, el cual a simple vista tendrá dos sectores que 

tendrán que ser analizados con cierta periodicidad. 

Tras aplicar la metodología de trabajo sobre el emplazamiento,  se obtiene una nueva rosa de 

viento y potencia. Para ello, se aplican diversos filtros con el fin de depurar los datos y obtener 

una menor incertidumbre a la hora de trabajar con ellos. 

En estas rosas se muestran los datos erróneos y que no se han utilizado para la resolución del 

proyecto. Como se aprecia, los datos pertenecientes a una de las direcciones predominantes 

contiene un alto número de mediciones inexactas y que por lo tanto producen desviaciones 

importantes a la hora analizar el computo general de los datos. 
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Gráfica 10. Direcciones de viento de los datos erróneos (Izq. Anemo caz; Derecha. Anemo sónico) 

 

Una vez aislados estos datos, se vuelve a generar una nueva rosa de vientos. Esta, nos 

mostrará la veracidad de los datos del parque. En este caso, para el desarrollo de los 

resultados se utilizaron los datos referentes a la dirección D1, los cuales no se vieron 

contaminados por diversos factores tanto ambientales como técnicos. 

 

 

 

Distribución de Weibull del emplazamiento 

En color amarillo tendremos la distribución perteneciente al anemómetro de cazoletas y en 

color azul la del anemómetro 3D (sónico). 

Gráfica 11. Rosa de viento y potencia datos útiles 
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Gráfica 12. Distribución Weibull del emplazamiento 

 

Clasificación de la temperatura 

Se clasificaron las temperaturas del emplazamiento para observar si existía algún desequilibrio 

en sus proporciones. Como se aprecia, se trata de una situación donde una gran parte de sus 

medidas oscilan entre 280-285 ºK.  

 

Gráfica 13. Sectorización por diferentes temperaturas 
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Para intentar generar la menor incertidumbre posible, se hizo una clasificación de 3 rangos de 

temperatura: 1) T < 280º. 2) 280º < T > 290º. 3) T > 290º. 

 

Gráfica 14. Clasificación en 3 sectores de temperatura 

 

Influencia de la temperatura en la recta de regresión 

Tras efectuar el filtrado de datos de este parque, se realiza la recta de regresión, enfrentando 

el anemómetro sónico (eje X) y el anemómetro principal de cazoletas (eje  Y).  

Como se aprecia en la gráfica, la recta muestra una amplitud en sus registros. A simple vista no 

se detalla ninguna desviación que pueda producir una perturbación en los resultados.  

 

Gráfica 15. Recta de regresión del estudio 

Para poder ser más efectivos en esta caracterización, el siguiente paso será aplicar el método 

de los bines. 
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Método de los bines 

Este apartado muestra los resultados obtenidos en el parque del estudio. Son estos datos los 

que guiarán los pasos de este proyecto, ya que son los más completos porque analizan la parte 

correspondiente a la velocidad de los anemómetros y la potencia desarrollada por el 

aerogenerador. 

Como se muestra seguidamente, y después de hacer un exhaustivo filtro, se clasifican los datos 

en una comparativa general y en tres sectores de temperatura. Ya que el objetivo principal es 

mostrar las variaciones del anemómetro de cazoletas, se aplica el método de los bines sobre 

los datos de velocidad del anemómetro sónico puesto que ofrece unos datos mucho menos 

influenciados por la temperatura. De esta manera, se podrán ver las posibles variaciones a las 

que se ve sometido en anemómetro de cazoletas con respecto a la temperatura. 

 

Gráfica 16. Relación general bin a bin entre sendos anemomómetros 
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Gráfica 17. Relación bin a bin sector temperatura fría 

 

 

Gráfica 18. Relación bin a bin sector temperatura media 
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Gráfica 19. Relación bin a bin sector temperatura alta 

Tras analizar las diferentes rectas ofrecidas mediante el método de los bines, se observa que la 

pendiente de la recta decrece a medida que aumenta la temperatura. Lo cual nos indica en 

primer lugar, que los registros de viento de temperaturas frías son más rápidos. 

Para analizar correctamente los resultados, se ha estudiado el comportamiento de los 

anemómetros frente a dos variables que producen perturbaciones en los mismos, la densidad 

del aire y la fricción mecánica producida por los rodamientos del anemómetro de cazoletas.  

El primer análisis, es visual, para tener una comprensión global de cómo responden los 

sensores a sendas agrupaciones. Seguidamente, se analizarán las diferencias producidas entre 

el esquema general y sus diferentes grupos, tanto de temperatura (Tfria, Tmedia, Talta) como 

de dirección (D1). De esta manera se podrá apreciar de una manera más precisa los efectos 

producidos cuando se somete a estudio cada parte. 

Esta gráfica muestra las diferencias existentes bin a bin entre los datos generales y cada sector 

de temperaturas. De esta manera, se puede observar el comportamiento  de cada sector de 

manera individual frente al comportamiento general del anemómetro. 
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Gráfica 20. Diferencia bin a bin entre la comparativa general y cada sector de temperaturas (anemómetro de 
cazoletas)  Parque estudio 

Fricción 

Según la normativa de calibración Riso, la fricción es mayor cuando la temperatura es más baja 

y la velocidad de rotación es más alta.  

Tal y como se ve en el gráfico comparativo, en los primeros bines la temperatura fría está por 

debajo. Esto nos hace indicar el efecto que puede estar teniendo la fricción, ya que para 

velocidades bajas a diferentes temperaturas, la fricción puede ser determinante en el 

comportamiento. Son velocidades comprendidas entre 1-5 (m/s). También se estudió la 

temperatura media que existe en este intervalo, 275,81 K en referencia al parque del estudio, 

frente a los 277,04K del parque de Walqa, que sirve de apoyo para los resultados. De aquí se 

extrae, que este emplazamiento tiene unas condiciones más adversas y que por consiguiente, 

el estudio de estos fenómenos es más determinante. Seguidamente, los bines cambian y se 

sitúan en la parte superior del gráfico. Este fenómeno es producido por la densidad. 

 

Densidad 

La densidad del viento es un parámetro muy importante en las lecturas de velocidad y 

potencia, ya que el rendimiento del parque puede cambiar sustanciosamente. Según se detalla 

en el artículo [13], la densidad del aire afecta a la calibración de los anemómetros de cazoletas.   

Como antes se ha detallado, la calibración de un anemómetro tiene dos parámetros 

importantes, la pendiente y el offset. Tras someter al anemómetro de cazoletas a 

fluctuaciones de densidad entre 0,05-0,1 Kg/m3, el comportamiento de la pendiente (A) se 

desregula ofreciendo unos registros por encima de los valores testados, esto produce que los 

registros del sector de temperaturas frías ofrezcan unos resultados por encima de la media.  
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Prueba de ello es que en sendos estudios, las gráficas siempre quedan clasificadas por sectores 

de temperatura, siendo determinante el papel que juegan en las medidas.  

Tras analizar las densidades de cada sector de temperaturas obtenemos:  

Tabla 5. Densidades medias de cada sector de temperaturas 

 Densidad [Kg/m3] 

Temperatura fría 1,2198 
Temperatura media 1,1793 
Temperatura  alta 

Comparativa general                                                                     
1,1369 
1,1738 

 

Las variaciones con la comparativa general son: 

Tabla 6. Variación en densidad frente a la media general de los datos 

 Densidad [Kg/m3] 

Temperatura fría 0,046 
Temperatura media 0,0055 
Temperatura  alta -0,037 

 

Como se aprecia en las tablas, la diferencia de densidad entre sectores es lo suficientemente 

importante como para tenerla en cuenta, y que unido a una calibración deficiente del  

anemómetro, muestran resultados con mayores amplitudes.  

Si se hace referencia al estudio sobre la densidad antes mencionado, se puede aseverar que en 

este emplazamiento la densidad es un factor que hay que tener en cuenta puesto que las 

oscilaciones de densidad entre temperaturas frías y altas roza el 0,1 [Kg/m3]. Por lo tanto es de 

esperar que se produzcan perturbaciones en las medidas de velocidad.  

 

Otro parámetro importante es la potencia desarrollada por el aerogenerador. Tras corregir las 

velocidades en densidad, se obtiene un gráfico totalmente clasificado por temperaturas. Los 

errores provocados por la densidad oscilan entre el 5% para temperaturas frías y hasta el 15% 

para temperaturas cálidas.  

Primeramente se realiza un examen visual de las curvas de potencia para los diferentes 

sectores de temperatura. Como se aprecia en las siguientes gráficas, el orden de 

representatividad es el mismo. 
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Gráfica 21. Curva de potencia General - Temperatura fría 

 

Gráfica 22.Curva de potencia General - Temperatura media 
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Gráfica 23. Curva de potencia General - Temperatura alta 

 

Gráfica 24. Diferencia bin a bin entre la comparativa general y cada sector de temperaturas (anemómetro de 
cazoletas)  Parque estudio 
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5. CONCLUSIONES 
 

Se ha realizado una investigación sobre la influencia de la temperatura en la operación del 

anemómetro de cazoletas y los efectos que tendría a lo largo de un proyecto eólico. Partiendo 

de estudios anteriores, queda verificada la influencia de la temperatura sobre las medidas de 

velocidad de los sensores. Por ello, surge la hipótesis de realizar un estudio más exhaustivo de 

las variables climáticas que afectan a dichos sensores. Tras el análisis de diferentes curvas de 

potencia de diversos aerogeneradores en diferentes épocas del año, se focaliza dicha 

influencia sobre el parámetro más importante del estudio, la densidad. Para ello, se realiza una 

verificación en una instalación con una torre meteorológica con varios sensores donde se 

comparan las velocidades medidas entre un anemómetro de cazoletas y otro ultrasónico. Y por 

último, una replicación en los comportamientos observados en las curvas de potencia de 

varios aerogeneradores de un parque eólico. 

El estudio constata el efecto producido en los sensores debido en gran medida a la densidad. 

Como ha quedado patente, los sectores de temperatura quedan totalmente ordenados debido 

a la densidad de cada periodo, positivamente para temperaturas más frías y negativamente 

para temperaturas más cálidas. Esto se ve respaldado gracias al informe sobre el cual se  

apoyan los resultados, ya que los parámetros de calibración de pendiente y offset se ven 

influenciados tras someterlos a fluctuaciones de diferentes rangos de densidad. Su significado 

más inmediato se aplica en emplazamientos donde la amplitud térmica es mayor, y que por 

consiguiente el rango de densidades varía con mayor asiduidad puesto que la temperatura es 

un factor que afecta directamente a la densidad. El resultado de este proceso se traduce en 

desviaciones tanto positivas como negativas de más del 1% en las lecturas de velocidad de los 

sensores. Siendo positivas cuando se trabaja en un régimen de densidades altas y el efecto 

contrario para densidades bajas. De esta forma, se puede concluir que dicho parámetro tiene 

una gran afección a la hora de diseñar un emplazamiento eólico, puesto que una buena 

caracterización del perfil del viento garantizaría una inversión más segura. 

Otro parámetro de diseño importante en un proyecto eólico, pero en menor medida sería la 

fricción mecánica de los anemómetros de cazoletas. Tras el estudio de este parámetro, se 

observa que su principal afección se produce para temperaturas extremadamente frías, 

agravándose en velocidades de rotación más elevadas. En el caso de nuestro estudio, la 

fricción se ve reflejada en los primeros bines de velocidad de los registros fríos (1-5 m/s), 

donde la temperatura media de los registros es de 275,81K. Debido a ello, se atenúan las 

medidas de velocidad pertenecientes a este intervalo. Cabe destacar, que estas afecciones en 

términos generales no provocan una gran desviación en términos productivos puesto que 

ambas situaciones se sitúan en la velocidad de arranque y posterior a la velocidad de corte. 

Una vez instalado el parque eólico, el principal objetivo de la operación es la optimización de la 

producción. Como anteriormente se ha expuesto, la curva de potencia de un aerogenerador 

está influenciada por la densidad del aire. La densidad es dependiente de la temperatura  y la 

velocidad que registra el aerogenerador para el control está influenciada por la temperatura. 

De esta manera, el dibujo de la curva de potencia también quedará clasificado por sectores de 
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temperatura, quedando por encima de la misma, registros de densidad más altos y por debajo 

la agrupación de densidades más bajas.  

La principal limitación de este estudio, es la falta de datos recopilados. Estos abarcan 

diferentes periodos del año, pero no su totalidad. La adición de parámetros como desviaciones 

típicas de los registros de viento, así como valores máximos y mínimos de los mismos, 

otorgarían más solidez al estudio.  

El estudio realizado muestra grandes incertidumbres debido a la dependencia con la 

temperatura, mayores que el límite marcado en calibración por MEASNET del 1% por lo que 

sería recomendable una calibración en la que se tuviera en cuenta la influencia de la 

temperatura haciendo ensayos a distintas temperaturas propias de la operación a grandes 

alturas en parques eólicos.  
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7. ANEXOS 
 

7.1. Anexo Parque Walqa 
 

Emplazamiento de Walqa 

El emplazamiento de Walqa servirá como apoyo a los datos arrojados por el otro parque, en 

aras de una mayor claridad y comprensión de los resultados. Por ello, se hará una breve 

descripción de dicho lugar, puesto que se dispone de dicha información. 

Se cuenta con una torre meteorológica y un aerogenerador, como se detalla en las figuras. 

La torre de celosía arriostrada cuenta con una serie de sensores capaces de caracterizar el 

emplazamiento. Estos sensores están instalados según la norma IEC 61400-12-1 [5] que 

minimiza las interferencias que pueden tener los brazos y los propios sensores en las 

respectivas medidas. La torre consta de un sensor de radiación neta, un barómetro, un 

piranómetro, un anemómetro vertical, un anemómetro sónico 3D, dos veletas y dos 

anemómetros de cazoletas (uno principal y otro de apoyo). 

  
El aerogenerador, de tecnología VESTAS y modelo V27, se encuentra a dos rotores y medio de 

la torre. Esta distancia se adecua a la norma para realizar el estudio de curva de potencia. El 

aerogenerador de una potencia nominal de 255 kW vierte la electricidad generada en la red. 

Un registrador se encarga de recoger todas las señales enviadas por los sensores, los datos se 

descargan periódicamente para su tratamiento al utilizar una memoria circular y de esta forma 

evitar grabar encima de los primeros datos existentes.  

 

Tras la descarga de datos, éstos se tratan mensualmente para realizar un seguimiento del buen 

funcionamiento de los sensores. En este caso, los datos se procesarán para conocer si la 

temperatura tiene una influencia en la medida que realizan durante su operación los 

anemómetros de cazoletas. 
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Ilustración 6. Descripción del equipo del emplazamiento de Walqa. (Torre meteorológica y aerogenerador) 

Caracterización del emplazamiento 

Rosa de vientos 

Tras la recopilación de datos de la torre meteorológica, se clasifican los datos de las dos 

veletas instaladas con el objetivo de caracterizar la dirección del viento y testear su estado 

funcional. Con ello se obtiene la rosa de vientos. 

 

Gráfica 25.Rosa de vientos de las veletas del emplazamientos (frecuencia %) 
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Este emplazamiento está situado en una región donde ya están caracterizados los vientos 

predominantes, el cierzo y el bochorno. Se sabe que el cierzo sopla desde el oeste y el 

bochorno desde el este. Por lo tanto, se observa un mal comportamiento en la veleta 1, la cual 

recoge unos datos erróneos donde se ha producido una clavada en su registro. Por ello, en el 

estudio del parque de Walqa se ha desestimado la medición de la veleta 2. 

Registro de temperaturas 

Para evaluar las condiciones climáticas del emplazamiento se han clasificado por sectores todo 

el registro de temperaturas. Esta gráfica nos muestra la probabilidad de cada sector de 

temperatura. 

 

Gráfica 26. Sectorización de datos por temperatura 

 

Para seguir con la misma línea de trabajo que el anterior caso, para los resultados, se han 

clasificado en tres grandes sectores de temperatura, con el fin de agrupar la mayor cantidad de 

datos posibles y conseguir la menor incertidumbre posible. 
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Gráfica 27. Clasificación de datos en 3 temperaturas 

 

 

Influencia de la temperatura en la recta de regresión 

Tras efectuar el filtrado de datos de este parque, se realiza la recta de regresión, enfrentando 

el anemómetro sónico (eje X) y el anemómetro principal de cazoletas (eje  Y).  

Como se aprecia en la gráfica, la recta no muestra ninguna desviación que pueda producir una 

perturbación en los resultados. De esta manera, el siguiente paso será aplicar el método de los 

bines. 

 

Gráfica 28. Correlación lineal entre el anemómetro sónico y el de cazoletas 
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Método de los bines 

Las gráficas obtenidas en este punto hacen referencia al Parque del Walqa. Una vez sometidos 

los datos a estudio, se clasifican las temperaturas en tres sectores (temperatura fría, media, 

alta). Tras analizar las rectas de regresión se observa si existe un patrón que defina dicha 

influencia. 

 

Gráfica 29. Relación bin a bin sector temperatura fría (emplazamiento Walqa) 

 

Gráfica 30. Relación bin a bin sector temperatura media (emplazamiento Walqa) 



47 

 

 

Gráfica 31. Relación bin a bin sector temperatura alta (emplazamiento Walqa) 

 

Tras la visualización de la recta de regresión se observa que su pendiente es creciente a 

medida que la temperatura aumenta. Para un mejor punto de vista, se tomarán datos y se 

sustituirán en la ecuación de la recta para ver el calado de la temperatura. Se marcarán en 

color verde las velocidades más rápidas correspondientes a cada intervalo. 

Tabla 7. Registro de velocidades medias bin a bin de cada sector 

 
V_Principal (m/s) 

V_3D (m/s) T fría T media T alta 

1 0,2128 0,0844 -0,0561 

2 1,2331 1,1106 0,9714 

3 2,2534 2,1368 1,9989 

4 3,2737 3,163 3,0264 

5 4,294 4,1892 4,0539 

6 5,3143 5,2154 5,0814 

7 6,3346 6,2416 6,1089 

8 7,3549 7,2678 7,1364 

9 8,3752 8,294 8,1639 

10 9,3955 9,3202 9,1914 

11 10,4158 10,3464 10,2189 

12 11,4361 11,3726 11,2464 

13 12,4564 12,3988 12,2739 

14 13,4767 13,425 13,3014 

15 14,497 14,4512 14,3289 

16 15,5173 15,4774 15,3564 

17 16,5376 16,5036 16,3839 
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18 17,5579 17,5298 17,4114 

19 18,5782 18,556 18,4389 

20 19,5985 19,5822 19,4664 

21 20,6188 20,6084 20,4939 

22 21,6391 21,6346 21,5214 

23 22,6594 22,6608 22,5489 

24 23,6797 23,687 23,5764 

25 24,7 24,7132 24,6039 
 

Tras la sustitución, se observa que es en la temperatura fría donde el rango de velocidades es 

más alto. Nuevamente la densidad del aire y la fricción debida a la temperatura vuelven a ser 

un factor importante a tener en cuenta. La densidad del aire es un parámetro a tener en 

cuenta siempre. Tras los resultados obtenidos, no cabe duda de que el peso del aire tiene su 

influencia en el registro de datos de los anemómetros de cazoletas, ya que el bin de 

velocidades frías siempre es mayor. 

 Con respecto a la fricción de los cojinetes del anemómetro de cazoletas, según el estándar  

RISO, dicha influencia aumenta si la velocidad de rotación es más alta y la temperatura es más 

baja. Dicha influencia puede verse reflejada en las velocidades más altas. Como se aprecia en 

la gráfica, cada vez se aproximan más los valores hasta que son rebasados, este fenómeno 

puede ser debido a la fricción de las temperaturas más frías a velocidades elevadas. 

Densidad 

Siguiendo la línea de trabajo del anterior emplazamiento, analizamos las variaciones de 

densidad.  

Tras analizar las densidades de cada sector de temperaturas obtenemos: 

Tabla 8. Densidad media de cada sector de temperaturas (Walqa) 

 Densidad [Kg/m3] 

Temperatura fría 1,1265 
Temperatura media 1,0977 
Temperatura  alta 1,0568 

 

Las variaciones con la comparativa general son: 

Tabla 9. Variación en densidad de cada sector (Walqa) 

 Densidad [Kg/m3] 

Temperatura fría 0,0315 
Temperatura media 0,0017 
Temperatura  alta 0,0392 
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El filtrado de este parque es más limpio y se puede apreciar en mayor medida el efecto 

producido por la densidad. En este caso los sectores quedan gráficamente ordenados. Dicha 

resolución gráfica nos muestra meritoriamente el efecto producido por la densidad. 

 

Gráfica 32. Diferencia bin a bin entre la comparativa general y cada sector de temperaturas (anemómetro de 
cazoletas) Parque Walqa 
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7.2. Anexo densidad. Informe sobre las desviaciones producidas 

por la densidad. (Pindado, S., Sanz, A., & Wery, A. Deviation of 

cup and propeller anemometer calibration. Results with air 

density) 

 

En este anexo se detallan los resultados de calibración de diferentes anemómetros cuando son 

sometidos a diferencias de densidad. El presente trabajo forma parte de un programa de 

investigación más ambicioso en el Instituto IDR / UPM para revisar y analizar gran serie de 

calibraciones anemómetros. [13] 

En la primera tabla tenemos los anemómetros del estudio, el número de calibraciones a los 

que han sido sometidos y las fechas de las mismas. 

 

Ilustración 7. Modelos de anemómetros sometidos a estudio 

Modelo A100 L2 

Como antes se ha especificado, en la función (V = A ⋅ f + B), la velocidad es dependiente de 

dos valores de calibración A (pendiente) y B (offset).  

Tras la consecución de las diferentes calibraciones, se observa como dichos parámetros se ven 

influenciados por la densidad. En las figuras siguientes se detalla gráficamente la repercusión 

de la densidad a la hora de calibrar los anemómetros, marcando  en color rojo los resultados 

que debería mostrar si la calibración fuese la óptima. Como se ha mencionado anteriormente, 

la pendiente sobreestima su valor en las mediciones cuando es sometida a cambios de 

densidad. 
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Ilustración 8. Tendencia de los parámetros A y B de calibración (modelo A100 L2) 

 

Modelo Thies Clima 4.3350 

 

Ilustración 9. Tendencia de los parámetros A y B de calibración (modelo Thies Clima 4.3350) 

Como se mencionó anteriormente, estas diferencias son bastante obvias. Como se relata en el 

estudio, las desviaciones estándar correspondientes a los modelos anemómetros se tienen en 

cuenta a la hora de la calibración de cada anemómetro. Sin embargo, gracias a esta 

comparación, es posible hacer una primera estimación de los valores de la desviación estándar 

de un solo anemómetro, basado en los datos de las calibraciones realizados en múltiples 

anemómetros del mismo modelo. 

 

 
La oscilación de estos parámetros de calibración tiene mayor influencia a medida que la 

diferencia de densidad es mayor. Como se aprecia en las siguientes gráficas, las estimaciones 

en la desviación tanto de A como B son mayores conforme la densidad aumenta. De esta 

manera se puede deducir que en regiones o emplazamientos donde la densidad del aire es 
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mayor, estos parámetros se ven sometidos a mayores deviaciones y por lo tanto es necesario 

recalibrarlos periódicamente. 

 

Ilustración 10. Estimaciones de desviación de los parámetros A y B 
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7.3.  Métodos aplicados 
 

Regresión lineal 

Es la técnica más simple y aplicada para obtener un modelo lineal a partir de una serie de 

datos. Se obtiene una función lineal para estimar la velocidad de viento a partir de una de 

referencia con la ecuación: 

 

Donde 𝑉𝑖𝑜𝑏𝑗 es la velocidad de viento en el anemómetro objeto de estudio en el diezminutal i, 

𝑉𝑖𝑟𝑒𝑓 es la velocidad de viento medida en el anemómetro de referencia en el diezminutal i, a es 

la pendiente de la regresión lineal y b es el término independiente de la regresión lineal. 

Los parámetros a y b se calculan a partir de los conjuntos de datos comunes entre ambos 

anemómetros. 

 

Donde 𝑉𝑖𝑜𝑏𝑗  y 𝑉𝑖𝑟𝑒𝑓 son las velocidades medias del anemómetro objeto y referencia, 
respectivamente.  
Se ha establecido en los últimos años en la industria eólica pero presenta inconvenientes su 

uso. El principal problema es la minimización de la suma total de los residuos y por tanto los 

rangos con más datos fuerzan a la recta a que se ajuste mejor en esos bines de velocidad. 

Método de discretización de bines  

El método de discretización de bines ha estado en uso durante muchos años como un simple   

procedimiento para el cálculo de los consumos de energía.  Últimamente,  se ha eclipsado 

como herramienta de análisis dinámico por ordenador en programas de simulación. Las 

virtudes de la simplicidad y la transparencia  se han asegurado de que se siga utilizando el 

método de los bines en muchas enseñanzas y  aplicaciones prácticas. Además de su uso en 

cálculos, las  ventajas de la utilización de datos agrupadas han sido de gran utilidad en el 

equilibrio de  Simulaciones de sistemas HVAC. [15] 

Su uso está normalizado en el ensayo de curva de potencia de aerogeneradores [15]. Los datos 

se agrupan en bines de velocidad y sectores de dirección. 



54 

 

Para este estudio se han dividido en bines de 0.5 m/s, en cada bin se calcula la velocidad media 
para el anemómetro de referencia y la velocidad del anemómetro de referencia. Se obtiene 
una serie de puntos para cada bin de velocidad.  
Con este método se obtiene una mejor adaptación a todo el rango de velocidades, mejorando 

la precisión en la estimación de velocidades. 

 

 

Gráfica 33. Comparativa método de los bines y regresión lineal 

 


