Métodos discriminativos para la optimización de modelos en la Verificación del Hablante

García Perera, Leibny Paola
Nolazco Flores, Juan Arturo (dir.) ; Lleida Solano, Eduardo (dir.)

Universidad de Zaragoza, 2014


Abstract: La creciente necesidad de sistemas de autenticación seguros ha motivado el interés de algoritmos efectivos de Verificación de Hablante (VH). Dicha necesidad de algoritmos de alto rendimiento, capaces de obtener tasas de error bajas, ha abierto varias ramas de investigación. En este trabajo proponemos investigar, desde un punto de vista discriminativo, un conjunto de metodologías para mejorar el desempeño del estado del arte de los sistemas de VH. En un primer enfoque investigamos la optimización de los hiper-parámetros para explícitamente considerar el compromiso entre los errores de falsa aceptación y falso rechazo. El objetivo de la optimización se puede lograr maximizando el área bajo la curva conocida como ROC (Receiver Operating Characteristic) por sus siglas en inglés. Creemos que esta optimización de los parámetros no debe de estar limitada solo a un punto de operación y una estrategia más robusta es optimizar los parámetros para incrementar el área bajo la curva, AUC (Area Under the Curve por sus siglas en inglés) de modo que todos los puntos sean maximizados. Estudiaremos cómo optimizar los parámetros utilizando la representación matemática del área bajo la curva ROC basada en la estadística de Wilcoxon Mann Whitney (WMW) y el cálculo adecuado empleando el algoritmo de descendente probabilístico generalizado. Además, analizamos el efecto y mejoras en métricas como la curva detection error tradeoff (DET), el error conocido como Equal Error Rate (EER) y el valor mínimo de la función de detección de costo, minimum value of the detection cost function (minDCF) todos ellos por sue siglas en inglés. En un segundo enfoque, investigamos la señal de voz como una combinación de atributos que contienen información del hablante, del canal y el ruido. Los sistemas de verificación convencionales entrenan modelos únicos genéricos para todos los casos, y manejan las variaciones de estos atributos ya sea usando análisis de factores o no considerando esas variaciones de manera explícita. Proponemos una nueva metodología para particionar el espacio de los datos de acuerdo a estas carcterísticas y entrenar modelos por separado para cada partición. Las particiones se pueden obtener de acuerdo a cada atributo. En esta investigación mostraremos como entrenar efectivamente los modelos de manera discriminativa para maximizar la separación entre ellos. Además, el diseño de algoritimos robustos a las condiciones de ruido juegan un papel clave que permite a los sistemas de VH operar en condiciones reales. Proponemos extender nuestras metodologías para mitigar los efectos del ruido en esas condiciones. Para nuestro primer enfoque, en una situación donde el ruido se encuentre presente, el punto de operación puede no ser solo un punto, o puede existir un corrimiento de forma impredecible. Mostraremos como nuestra metodología de maximización del área bajo la curva ROC es más robusta que la usada por clasificadores convencionales incluso cuando el ruido no está explícitamente considerado. Además, podemos encontrar ruido a diferentes relación señal a ruido (SNR) que puede degradar el desempeño del sistema. Así, es factible considerar una descomposición eficiente de las señales de voz que tome en cuenta los diferentes atributos como son SNR, el ruido y el tipo de canal. Consideramos que en lugar de abordar el problema con un modelo unificado, una descomposición en particiones del espacio de características basado en atributos especiales puede proporcionar mejores resultados. Esos atributos pueden representar diferentes canales y condiciones de ruido. Hemos analizado el potencial de estas metodologías que permiten mejorar el desempeño del estado del arte de los sistemas reduciendo el error, y por otra parte controlar los puntos de operación y mitigar los efectos del ruido.

Pal. clave: ingeniería electrónica ; sistemas de autenticación ; sistemas vh ; verificación de hablante ; electronic engineering ; authentication systems ; vh systems ; speaker verification

Knowledge area: Tecnología electrónica

Department: Ingeniería Electrónica y Comunicaciones

Nota: Presentado: 29 05 2014
Nota: Tesis-Univ. Zaragoza, Ingeniería Electrónica y Comunicaciones, 2014

Creative Commons License



 Record created 2014-11-20, last modified 2019-02-19


Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)