i2s  Universidad
180  Zaragoza

1542

Trabajo Fin de Grado

Libreria de mensajeria
instantanea fiable para
aplicaciones moviles (Chat-Sot)

Autor:

Razvan Gabriel Oniga Rus

Director:

Ivan Verde Pita

Grado Ingenieria Informatica
Escuela Universitaria Politécnica de Teruel.

Noviembre 2021




Resumen

Con el avance tecnolégico, surgié la mensajeria instantanea, inicialmente implantada en
ordenadores, con aplicaciones como Messenger. Posteriormente, como la gente percibid
que esta modalidad de comunicarse era muy comoda, rapida y barata, lo que hizo que se
extendiera también a los dispositivos moéviles con aplicaciones como WhatsApp y muchas
otras.

Asi pues, a lo largo de los afios, los chats han ido ganando presencia en todo tipo de dmbitos:
servicios de compraventa, consultorias, atencién al cliente, redes sociales o simplemente un
servicio de mensajeria.

En este contexto se ha creado una libreria, que permite a cualquier equipo de trabajo,
integrar un chat en su cliente y servidor en apenas unas horas. La finalidad de la libreria es
reutilizar soluciones ya implementadas para ahorrar el coste del desarrollo. Dicha libreria
dispone de chat individual, chat grupal, control de mensajes leidos y un estado de
disponibilidad del usuario.

Respecto a los chats, se tratan de conversaciones donde se intercambian mensajes de texto
entre dos usuarios en caso del chat individual y entre varios usuarios en un chat grupal.

En los grupos, no esta delimitado el nimero de miembros que puede abarcar, esto se deja a
disposicidn de la solucion final, de igual forma que la politica que se le aplica a la creacién y
administracién de grupos, es decir, si se les permite a los usuarios crear grupos, o los grupos
son gestionados por usuarios administradores.

El control de mensajes leidos incluido en esta libreria es a modo informativo, enfocado al
usuario; donde si el check es negro, se indica al usuario que no ha leido la conversacion, y
por el contrario, si es azul, si. Por otro lado, también se dispone de un sistema de estados
personales, lo que indicara a los demas si estas disponible u ocupado.

Con estas caracteristicas se plantea una herramienta rapidamente integrable en la solucién
final y que una vez operativa, tiene gran margen de personalizacion.



Abstract

With technological advancement, instant messaging emerged, initially implemented on
computers, with applications such as Messenger. Later, as people perceived that this way of
communicating was very comfortable, fast and cheap, it was also extended to mobile devices
with applications such as WhatsApp and many others.

Thus, over the years, chats have been gaining presence in all kinds of areas: purchase and
sale services, consultancies, customer service, social networks or simply a messaging service.

In this context, a library has been created that allows any work team to integrate a chat on
their client and server in just a few hours. The purpose of the library is to reuse solutions
already implemented to save development costs. This library has individual chat, group chat,
control of read messages and a user availability status.

Regarding chats, they are conversations where text messages are exchanged between two
users in the case of individual chat and between several users in a group chat.

In groups, the number of members that can be included is not delimited, this is left at the
disposal of the final solution, in the same way as the policy that is applied to the creation and
administration of groups, that is, if they are allowed Users create groups, or the groups are
managed by admin users.

The control of read messages included in this library is informative, focused on the user;
where if the check is black, the user is indicated that he has not read the conversation, and
on the contrary, if it is blue, yes. On the other hand, there is also a personal status system,
which will indicate to others if you are available or busy.

With these characteristics, a tool that can be quickly integrated into the final solution is
proposed, and once operational, it has a great margin for customization.



Abreviaturas
API: Aplication Program Interface

BD: Base de Datos

SDK: Software Development Kit
CUL: Casos de Uso Libreria
CUU: Casos de Uso Usuario
CUS: Casos de Uso Servidor
DTO: Data Transference Object

AWS: Amazon Web Services

Glosario de Términos

Check: Este término hace referencia al simbolo de confirmacidon de lectura de una
conversacion, el cual se utilizara a lo largo del documento para explicar su comportamiento
dentro del listado de conversaciones.

Push: A lo largo del documento, se utilizard este término para hacer referencia a las
notificaciones cuyo estilo de mostrarse en pantalla es emerger desde la parte superior de la
pantalla.

WebSockets: es una tecnologia que hace posible abrir una sesién de comunicacion
interactiva entre el navegador del usuario y un servidor.

Sandbox: hace referencia a un entorno de pruebas de un servicio donde esta permitido hacer
todo tipo de pruebas para testear funcionalidades que se quieran implementar.



Tabla de contenido

T o e [FTolol e o R PP PP PP TUPPTOPUPPPOP 1
Andlisis de 1as SOIUCIONES EXISTENTES. ... . uuiiiiiiiiie ettt ettt e e et e e e s aeeeeas 2
PUSHER. ...ttt ettt ettt ettt ettt ettt e e sttt e e e abt e e e e s ab e e e e e abe e e e e eaabee e e s abeeeeeaabbeeeeeanbaeeeeaanbeeeeennee 3
QUUICKBLOX .ttt ettt e ettt ettt e e ettt e e e at et e e e ettt e e e s ab b e e e e ab et e e e abeeeeesanbeeeesnbeeeeeaabbaeasanbaeeesansaeeenans 4
STREAM ettt ettt e e ettt et ettt e e e e eab et e e s aubeee e e e abeee e e s abb e e e e ab e e e e e abeeeeeanbeeeeeanbeeeeeaabbaeaeanbeeeesannaeeeaaas 5
(017N 7 S P PP TP P PP ROPPPPOPUPPT 6
SENDBIRD .. uttteeeuutteeesauteteeaaateteeeaaueeeaeeubeeeeeaabeeeeeaaee e e e e aba e e e e abeeeeeanbeeeeeanbeeeeeaabbeeeeaanbeeeeeanraeeeanas 7
AANBLISTS <.ttt e et e e sttt e e e b et e e e e h bt e e e e e abeeeeeahbteeeeaabaeeeeabeeeeeenres 10
V<Y oo Fo] [ =4t TR PP POPPPPPRPPPPPPPRt 10
OFgaNIZACION ..., 12
(0 1Yo Ko [T UKo NPT PP PP PPPPTRTPP 13
REGUISITOS ..ttt ettt e e e e e e et bbbt e e e e e eeeeeabaa e e e eeeaeeabnanaeeeeeeensnnnnns 17
REQUISITOS NO FUNCIONALES .....ceetuutteeesutteeesattteessauraeeesauseeeesaseeeessausaeeesausaseesanssseessanseeessanseeeenans 20
F AN o LU TR =Tt U 20
CLIENTE ANDROID ..ttt eeuttteeeautteeesauteeeesauteeeesaueteeesaabeeeeaaabeaeeesnbeeeeeaabeeeeeanbaeeesanbbeeesanbbaeasaanranans 20
SERVIDOR . uttteeeeittee e ettt e e e ettt e e e s aubee e e e aabeee e e e abeee e e abeeeeaaabbeeeeeanbeeeeeaabbeeeeaanbeeeesanbbeeesaabbaeeeaanbanens 21
LYol g Y] (o= 4= PP PUPPPPPPPPPPPPRS 22
LeNgUAje 0@ PrOgramaCiOn . .......uuuuuuueruurrrururereretsesessessesesessessseseeesssrerarere....—.......a—.........—.———.———. 24
INEErfaces A USUAIIO ..ceiiieiiiiiiiiieeee ettt ettt e e e s e e e e e e s bbb e e e e e e e s s e snnrneeeeeeens 25
1Ry s Tl = [ 4] o] [=T 0 41T 1 = Vol o T o TP PSSR 26
Y] VAo (o PP TP PPPPTT PP 26
(61 11=70 ) U P PP PP PUPUPPTRIOt 30
BaSE A DatS .eoeiiiiiieiee ettt e e e e e e e r et e e e e s e b b be e e e e e e e e e nrrraeeeeeeeean 31
o] {eTolo] Fo ko [T U HN TP PUPTPPORt 33
YTV [o [ TP PP OPPPUUPPPPTRt 33
(01111 o1 TP TP UPPT P 37
Conclusiones y ampliaCiones fULUIaS.......coeevviiiiiiiiii 40
(6070 To I To T4 T=T PP UPPTP PR 40
AMPlIACIONES FULUIAS ..eueeiieieeeceee e e e e e ettt r e e e e e e e e ettt aaeeeeeseesstnaaaeeaaaeeens 40
Valoracion PersONal ........eei oottt e st e et e e s araee s 41
1] o [TeT = =Y i - PP PPPPPPPPPPPPPPRS 42
Y = (o L PP PPPPTN 43
Anexo 1: Boceto de los disefos de pantalla.........ccceeveviiiiiiiiiiiiiiii 43
Anexo 2: Fragmentos de codigo de la implementacion........cccccvvvvvieiiiiiiiiiicicccccceeeeeeeeeeee e, 46

Anexo 3: Capturas de pantalla de la libreria dentro de una aplicacion.........ccccoeoevivviiiiiiieeeeneeeinnnne, 52



Tabla de llustraciones

Imagen 1 Pusher: Menus de creacidn con distintas OPCIONES ...........uuvvvvuiviiiiiiriiiiiriirrrirereereerrrrr.. 3
T oYY A e T Y=Y Gl o o <Y o TSP 4
Imagen 3 QuickBlox: Soluciones diSPONIbIES ..........uuuiiiiiiiiiceee e 4
Imagen 4 QuickBlox: Precios de CONTrataCion............uuuuuuuuieuriiiiiiiisireieeeeerssrererrreerrrrrrrrarr——————————————. 5
Imagen 5 Stream: Plataformas disponibles..............uuuiiiiiiiiiiiiiiiiie . 5
Imagen 6 Stream: Planes de CONTIratacion ..............uuuuuuiuuuiiieiiiiiriiiiirsieeeererererrrrrrrrarrrrrra.—.——————————————. 6
Imagen 7 Chat21: Planes diSponibIes .........oei i e e 6
Imagen 8 Sendbird: Plataformas diSponibIEs............uuuuiiiiiiiiiiiiiiiiiiiiiiiireererer .. 7
Imagen 9 Sendbird: Precios de CONTratation ................ueeueuuuuuiuuriiiiiriiiiierereerrerreererrerrr—.——————————————. 7
Imagen 10 Metodologia del PrOYECLO ........uuuuuuiiiiiiiiiiiiiiiiiitiittrierraarrrrereerrerrrrrraerraaerrrrrrraraaarrarraaa———. 11
Imagen 11 Organizacion del PrOYECLO .......uuuuuuuriiiiiiiiiiiititertttttrarerrrrrrrerrrrrarrrrarrrr———————————————————————————. 12
Imagen 12 Casos de USO el USUAIIO......uuuiii it ceeee e e e et e e e e e e e e et e e e e e e e eeeaeneeeeeas 13
Imagen 13 Casos de Uso de 1@ [Hreria ..........uueuuiiiiiiiiiiiiiiiia e eeeeeaereeeerereeeseaaeaeeasaanes 15
Imagen 14 Casos de USO del SEIVIAOr ... .....ii i e e e e e e e e e 16
Imagen 15 Arquitectura del SEIVICIO......uu i e e e e e e e e e e e e e 20
Imagen 16 Funcionamiento notificacion hUDS ............uuuiiiiiiii e 21
Imagen 17 Interfaces de 1a Clase IMESSAZE.......uuuuuuuuuuuuiiiiiii e ananaannnas 27
Imagen 18 Interfaz de 12 clase iChatGroUP ........ueeeuueei e 27
Imagen 19 Interfaz de la clase IMemberENrolled......... ... 27
Imagen 20 Diagrama de despliegue de COMUNICACIONES........uuuuuuuuuumuunniiniiiiinaaaaaaanas 29
IMagen 21 DIagrama A€ ClaSES ... .uuuuuuuuuuueeiiiiii e nnannnnnnnnnnnnnnnnnnn 31
Imagen 22 Lista de companieros de la libreria incorporada en una aplicacion.........cccccceeeeeecccccnnnnnn. 32
Imagen 23 Conversacion de la libreria dentro de una aplicacion ..........cccccceeeeiiiiiiiiiicicccceiccea, 32
IMagen 24 RECUISO AZUIE SQL....ccuuuiiiiiiieiiieiiie et e e et e et e e e et e e e e et e e eeau s e e eaaa e e eeebaeeeesnaseeeannnaaes 33
IMagen 25 RECUISO AZUIE AP ...t e e et e e e et e e e e abe e e ee e e e eearaneaes 33
Imagen 26 Recurso Azure Notification HUDS............uu e 34
Imagen 27 Explorador archivos Visual STUIO..........uuuuuue e 34
Imagen 28 Conectar BD @ VisUal STUIO | .....uuuneeeeei s 34
Imagen 29 Conectar BD @ VisUal STUAIO H......uuuuueee s 35
Imagen 30 Creacion tabla mensaje €N 1a BD ... ... .. s 35
Imagen 31 Creacidn de las dependencias de la tabla mensaje enla bd........ccccooeeiiiiiiiiiiiiiiiiiiiiinnn, 35
Imagen 32 Clases a importar en el proyecto de visual studio...........cceeviiiiiiiiiiiiiiiiiiccee e, 36
Imagen 33 pardmetros a cambiar en la clase PushNotificationProvider............cccuvvvvvvvvivivvevnnnennnnnn. 36
Imagen 32 Ejemplo de version Yy ruta d@ APl ...........uuuiiiiiiiiiiiiiiiiiiiiesseesessraessearessrerrrrerrrrrrar———————.. 36
IMAEEN 35 PUDIICAr @N AZUIC..ueeiiii ettt e e e e et ee e e e e e e e e ettt e e e e e e e eeattanaaaeeeeseesstnnnnaeens 37
Imagen 36 Abrir ment de importar HOreria.........c...ueeiiiiiiiiiiiie e 37
IMAgEN 37 IMPOItAr [IDr@ITa . ..uueuiiiiiiiiiiiiiieiiiii ittt e e e e ebaaeeaeaaeassasssesssssssssssssssssssssssnsssnnnnnes 38
Imagen 38 Anadir dependencias €n Gradle...........uuuiiiii i 38
Imagen 39 configuracidn gradle ProPErtiEs...........uuuuuuuuuiuuuiiiiiiiiiiiiiiirrrerrrerrrrrrrrr—————————————————————————. 38

Imagen 40 Configuracion URL SErVIAOr APIS .........uuuuuuuiuiiiiiiiiiiiiiuiieesieenessssererrreereereereerere———————. 38



Tabla de Anexos

Anexo 1 Boceto de la pantalla de chats.........coe oo 43
Anexo 2 Boceto de la pantalla de coNtactos ........cooviiiiiiiiii i e 44
Anexo 3 Boceto de 1a pantalla de grupOS.... .. e eieiiicee e e e e e e e 45
JAN Lo ol AN o =T o NV Tl o U= LT [ 46
F AN 1o (o IR AN ad e o1 =Y V=T gl ¢ T=T A = 1= 46
F AN 1o (o NS AN ad e o =Y g T=T g =4 (VT o Yo 1P 47
Anexo 7 Cambiar estado del USUAIIO .....cciiiiiiiiiiiiiiiiiiiiiiiieccceeeeeeceeceeeeee e e e e e e e e e e e e e e e e e e eeeee e 47
Anexo 8 Concrete ObTENEr NUEVOS MENSAJES.....ccciviiiiiiiieeeeeeeeiiiiieeeeeeeeeeettaaeeeeeseeesrranaeeeeeeeessrsnnnns 48
Anexo 9 Concrete guardar mensaje enlabd ... 48
Anexo 10 Concrete OBtENEr BrUPOS ...covviiiiiiiee e e e e e e e e e e e et s e e e e e e e eatbaeeeeeeeeeersrnnnnes 49
ANEXO 11 DTO EStrUCTUIa IMIBNS@ . e u i iiiiieeeeiiie e et e et e et e e e e e e et e e e e et e e e e aa e e eeta e e aeananeeenanans 49
ANEXO 12 DTO StrUCTUIA BIUPO .. ceiieeiieiie e eeeitie e et e e e e e e e e e e et e e e e et e e e e et e e eeaaa e eensnnseeeananeeenanans 50
ANEXO 13 DTO USUAIIOS - eeeeetittiie e e e e ettt e e e e et ettt e e e e e e et tebba e e e eeeeeeasaaa s e e eeeeeessaaa e eeeeeeeennnnannns 50
Anexo 14 Método de envio de mensaje desde CHENTE...........eiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 51
Anexo 15 Método de obtener mensajes desde CENTE .........vvvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e eeeeeees 51
Anexo 16 Método de cambiar estado desde el cliente ......cccuvvvveeeieei i 51
Anexo 17 Captura de pantalla de la lista de contactos de la libreria dentro de una aplicacién ......... 52
Anexo 18 Captura de pantalla de la opcion de cambiar de estado de la libreria en una aplicacién...53
Anexo 19 Captura de pantalla de una conversacion de la libreria dentro de una aplicacion............. 54
Anexo 20 Captura de pantalla de la lista de grupos de la libreria dentro de una aplicacion.............. 55

Anexo 21 Captura de pantalla de la lista de conversaciones de la libreria en una aplicacién............ 56



Introduccion

Comunicarse a través de internet mediante mensajes es mds comun cada dia. Por ello,
incorporar un sistema de mensajeria en nuevas aplicaciones o servicios es cada vez mas
demandado.

Por ello, se ha decidido crear esta libreria de chat, que proporcionan beneficios en los
ambitos temporales, de coste y reutilizacion, explicados a continuacion:

TIEMPO

Cuando se esta desarrollando una aplicacion se debe tener en cuenta el coste temporal de
suimplementacion y disefio. Entonces, si el servicio de chat es tan habitual, ¢por qué se tiene
invertir recursos en desarrollarlo nuevamente para cada ambito donde se quiera utilizar?
éPor qué no invertir el tiempo de desarrollo para nuevas funcionalidades o funcionalidades
especificas de cada aplicacion? La solucidn perfecta para que los equipos de trabajo no
tengan que invertir tiempo en el desarrollo de un chat propio, es el uso de una libreria, que
permita en unas pocas horas integrar el servicio.

COSTES

Relacionado con el anterior objetivo, en el ambito de un equipo de trabajo, cuanto mas
tiempo se dedique a una funcionalidad, mayor coste econdmico tendra. Si aprovechamos la
libreria que estamos presentado, obtendriamos un gran ahorro en recursos ya que no solo
nos ahorrariamos el coste de un proyecto, sino de todos los que necesiten un chat.

COMODIDAD Y REUTILIZACION

Finalmente, los ultimos objetivos que se pretende solventar con esta herramienta son la
comodidad y la reutilizacidn. Se tiene que evitar reinventar la rueda. Si hay una herramienta
gue ya desempeiia el trabajo que nosotros estamos buscando, hay que aprovecharla. De esta
manera, cada vez que se necesite incorporar un chat en alguna aplicaciéon, ya tenemos la
soluciéon y, ademas, de lo Unico que nos vamos a tener que preocupar es de la
personalizacion, porque se trata de una herramienta universal y con gran libertad para
dejarla a tu gusto.




Analisis de las soluciones existentes
En los ultimos afios, todos los ambitos han tendido a digitalizarse, lo cual ha llevado a que
muchos comercios y servicios cotidianos o no tan cotidianos, se realicen de forma online. Al
principio via web y posteriormente mediante movil tanto en dispositivos Android, iOS u otras
plataformas que no han tenido tanta demanda.

Hoy en dia, incorporar un chat en cualquier ambito es muy comun, por lo que
constantemente se van a tener que desarrollar estos servicios de mensajeria.

Algunos ejemplos de casos donde se utilizan chats:

- Ala hora de realizar una consulta o demanda sobre un servicio y/o producto. Por
ejemplo, informarse sobre un gimnasio al que se quiere apuntar. Se puede realizar
mediante un chat en vez de una llamada, lo que es mds cémodo y rapido.

- Al realizar una llamada a una entidad telefdnica para llevar a cabo alguna gestidn,
vamos a tener que lidiar un robot preguntandonos nuestros datos y aguantar una
musica repetitiva hasta que nos conteste un operador. Con un chat, es todo mas
sencillo y comodo para el usuario, si este es capaz de resolver sus demandas en
menos tiempo.

- Aplicaciones de compraventa de productos y/o servicios, como Wallapop, Vinted,
Uber las cuales también estan en auge y todas ellas disponen de chat.

- Unared social, donde comunicarse con tus contactos es imprescindible.

Cada vez que se quiere implementar una aplicacién que contenga un chat, es comun que el
equipo desarrollador, deba destinar recursos a disefiar y programar la misma funcionalidad
repetidas veces, pero para diferente dmbito.

Al ser un servicio muy comun y demandado, hay muchas opciones que dan soluciéon al
problema actualmente en el mercado, pero todas tienen algun inconveniente. Por ello, se
van a analizar algunas opciones y posteriormente se van a comparar con el sistema creado
para analizar cual es la diferencia con estas soluciones y las ventajas que ofrece nuestra
libreria. Se va a tomar en cuenta el método de integracién que tienen, las plataformas para
las cuales estdn disponibles, el nivel de personalizacion y el precio.




PUSHER

Es un servicio alojado en la nube, que ofrece una facil integracién del chat a través de
websockets a web y aplicaciones moviles. El funcionamiento resumido de este servicio es
que la aplicacién movil realiza una peticion al servidor dedicado y este a su vez realiza una
peticién a los servicios de Pusher que gestiona la peticién y devuelve el resultado. Ofrece
multitud de opciones para el front-end (Aplicacién Usuario) y el back-end (Servidor):

Front end Back end
L+
Welcome to Pusher Channets! Choose an option Choose an option
sealau-braase- o0 : .NET
e Laravel
Feiect o cluster uani”a JS Z:r::e
Ve, js '
#u [IU (Feland)) React Mode B
: ! Python
CrosTe SpEE for MURipds arsironmanTs? Android {KGI'IH} GE
Chases your eeh staek JopSans DbjECTIUE -C Java
Front end Back wd Java i Yii
React Native PHP
[= T Chaose o0 option Android {Ja"-"aj Rub\r
JQuery Bails
— ﬁngu larJs Django
Swift Symfony

IMAGEN 1 PUSHER: MENUS DE CREACION CON DISTINTAS OPCIONES

Para implementar este servicio se nos proporciona una guia rapida con la cual se puede
probar el funcionamiento del producto, pero para un uso mas personalizado se requiere
consultar la documentacién, la cual es algo minimalista porque no sigue una explicacién
lineal, sino que tiene apartados para cada elemento aparte. La impresién que da es que, si
se necesita un servicio de mensajeria basico sin personalizacion alguna y estar
despreocupado, es una buena opcién debido a que la puesta en marcha parece costar un
tiempo bastante corto. Pero si lo que se esta buscando es tener un control mayor sobre lo
gue sucede en nuestra aplicacion, no es una opcidén valida.

En cuanto al precio que cuesta contratar este servicio, como se puede ver en la IMAGEN 2 tiene
distintas opciones segun las caracteristicas que se estan buscando, y pensando en una
empresa de tamafio pequefio o mediano, son precios muy asequibles, pero hay que recalcar
el grado de personalizacion.




Messages per Concurrent Level of support Meonitoring Price Annual price

day connections integrations (1) discount
sandbox 200k 100 Standard (1) o Free o
Startup 1million 500 Standard (1) o $49/month o
Pro 4 million 2,000 Standard (1) $99/month o
Business 10 million 5,000 Premium (1) $299/month 9
Premium 20 million 10,000 Premium (1) $499/month Q
Growth 40 million 15,000 Premium (1) $699/month Get in touch
Plus 80 million 20,000 Premium (1) $899/month Get in touch
Growth Plus 90 million 30,000 Premium (1) $1199/month Get in touch

IMAGEN 2 PUSHER: PRECIOS

QuIckBLOX

Se trata de un Software Development Kit (SDK) que funciona con el servidor propio del
servicio. Internamente esta creado con los servicios de Google, es decir con Firebase. Para
poder usar este servicio se debe instalar la libreria en la aplicacién cliente, configurar con las
credenciales apropiadas de QuickBlox y anadir el cédigo necesario que indican en su
documentacion. Funciona en varias plataformas.

SDKs and APls

' i0S Android Jg JavaSeript
Learn how to add QuickBlox to your iO5 app Learn how to add QuickBlox to your Android Learn how to add QuickBlox to your web app
and send your first message. app and send your first message. and send your first meszage.

> Download samples > Download samples n > Download samples
) ) ) ) Quick Start ‘ )
> View on GitHub » View on GitHub > View on GitHub

C@ React Native ( Flutter {++} Server API
Learn how to add QuickBlox to your React Learn how to add QuickBlox to your Flutter app Learn how to add QuickBlox to your server app.
Native app and send your first message. and send your first message.

> Download sampl
Quick Start ouniead sampies Quick Start m
> View on GitHub

IMAGEN 3 QUICKBLOX: SOLUCIONES DISPONIBLES




En cuanto al precio para usar este servicio, nos ofrece varios planes incluso uno gratuito
(ImAGEN 4). Se trata de un plan bastante sencillo, pero al menos no es versién sandbox, es
decir una version solo para hacer pruebas. El resto de los planes también son asequibles si
se tratara de una empresa pequeina o mediana, pero puede suponer un problema para
proyectos que se lanzan con muy bajo presupuesto.

P - > <+ X7

Basic Startup Growth HIPAA Cloud Enterprise

Free $99 /mo $249 /. $399 /e From $599

IMAGEN 4 QUICKBLOX: PRECIOS DE CONTRATACION

STREAM

De la misma forma que la anterior nombrada, también se trata de un SDK el cual debe ser
instalado en la aplicacién y configurado con las credenciales propias del servicio. La
documentacién que ofrecen es bastante detallada y un aspecto importante es que esta
ordenada. Indican los pasos a seguir para desplegar correctamente el servicio e incluso
incluyen un apartado de personalizacion. En cuanto a plataformas disponibles también
dispone de una gran variedad.

&
React SDK

Choose advanced features to match
your unique requirements from our
React chat component library.

START TUTORIAL - FEATURES

M ) NEMm

“
iOS Swift SDK

Build your mobile messaging app to
match the iOS ecosystem with
components written in Swift.

START TUTORIAL - FEATURES

m Q)

[
Android SDK

Get the most out of the Android UX and
save time building mobile chat with our
Java/Kotlin SDK.

START TUTORIAL - FEATURES

LT )

%

Flutter SDK

Create a beautiful cross-platform
mobile app Ul for messaging in Flutter
using our SDK.

START TUTORIAL - FEATURES

L

IMAGEN 5 STREAM: PLATAFORMAS DISPONIBLES

&
React Native SDK

Use our React Native components to

build cross-platform chat messaging in

a familiar and feature-rich framework.

START TUTORIAL - FEATURES

W () NEm

Golang Chat Client

@ PythonChatClient -
s JS Chat Client >
@  Rrubychatclient E
@  DartChat Client =
php PHP Chat Client >
n .NET Chat Client k4




En cuanto a precios (IMAGEN 6), debe estar enfocado a otro tipo de mercados o paises, porque
el precio de la version Startup, que corresponderia con una empresa pequefia o mediana, es
igual de elevado que las versiones Premium de los servicios comentados anteriormente. Es
cierto que ofrecen mas personalizacién, pero los precios son bastantes elevados. Hay que
anadir que dispone de una prueba gratuita.

Startup Standard Premium Enterprise
$499/mo $1,299/mo $2,299/mo Customized
TALK TO SALES GET STARTED GET STARTED GET STARTED CONTACT US

IMAGEN 6 STREAM: PLANES DE CONTRATACION

CHAT21

Al analizar este servicio nos encontramos con el primer servicio de cédigo abierto, lo que nos
indica que al menos vamos a tener un extra de personalizacidn, al poder modificar el codigo
del servicio a nuestro gusto. Como la mayoria de los servicios anteriores, también se trata de
un SDK e indican directamente que se trata de un chat basado en Firebase, por lo que vamos
a tener 2 partes. Por un lado, vamos a tener que instalar el SDK en nuestra aplicacion y por
otro lado vamos a tener que crearnos una cuenta de Firebase, ya que sin este elemento no
funcionaria el servicio, para conectarla con el SDK. En cuanto a plataformas, estd disponible
para las principales. Y sobre el precio o planes que ofrece, es gratuito.

SDK
Chat SDKs and Chat APls is available for:

e Android SDK
* [OSSDK
¢ lonic3 application

e Javascript Web Widget

Download it on:

© GitHub

IMAGEN 7 CHAT21: PLANES DISPONIBLES




SENDBIRD

Nuevamente un SDK a instalar en nuestra aplicacion y con el cual tendremos que realizar la
conexién con los servidores del servicio. Mediante una detallada guia, siguiendo los pasos
gue indican, conseguiremos desplegar rapidamente el chat en la solucién final. Ademas,
ofrecen informacion para incorporar los elementos que se quiera al chat base. Es un servicio
muy completo. En cuanto a plataformas disponibles también dispone de una gran variedad.

’
' ios

Learn how to integrate Chat SDK
forios.

View more >

@ Unity

Learn how to integrate Chat SDK
for Unity.

View mare >

'ﬁ' Android Js JavaScript

Learn how to integrate Chat SDK

for Android. for JavaScript.

View more > View more >

© et & Platiorm API

Learn how to integrate Chat SDK

& Flutter [ New |

Learn how to integrate Chat SDK

for Flutter.

View more >

Learn how to integrate Chat SDK
for Net.

Learn how to manage Chat

activities from the server side.

View more > View more >

IMAGEN 8 SENDBIRD: PLATAFORMAS DISPONIBLES

En cuanto a precios, como se puede ver en la IMAGEN 9 ofrecen una version de prueba, pero
si se quiere contratar el servicio no va a ser nada barato. Es un caso como el del servicio
Stream los planes que ofrece son bastante caros para una empresa pequefia o mediana,
aungque en este caso, es algo mas barato que Stream y parece que ofrece mas caracteristicas

y de forma mas clara.

Starter 5K

Get started with chat

$399/ month
[ ]

SK MAU

Starter includes:
« Modern messaging essentials
« Basic moderation

+ Ticketed support

Pro 5K

Most features for growing businesses

$599/ montn
[ ]

100K SKMAU 100K

Pro includes all Starter features and:
« Message translation
o Advanced moderation & filters

+ Ticketed support

Start your free trial today

Enterprise

The power of our full platferm

Custom pricing with
millions of MAU

Enterprise includes all Pro features and:

» Data export

» Option for dedicated servers

+ Priority support

Talk to Sales

IMAGEN 9 SENDBIRD: PRECIOS DE CONTRATACION




Como se ha visto a lo largo de este breve analisis, las opciones que tenemos en el mercado
son muy similares entre si. Casi todas se tratan de un SDK de pago, que se conectan con el
servidor del propio servicio y gestionan las peticiones.

Esto puede parecer muy cémodo, pero tiene sus desventajas:

- Poco control o practicamente nulo sobre la parte del servidor: Dependiendo del
servicio se pueden revisar o modificar algunos pardmetros, pero muchos de ellos son
bastante cerrados. Es decir, se trata de sistemas cerrados, que nos dan soporte para
el servicio que necesitamos, pero no podemos acceder y modificar el contenido de
estos.

- Personalizacién escasa. Este aspecto va de la mano con el anterior: Al ser un sistema
bastante cerrado, tenemos poca personalizacién a nivel de funcionamiento del
sistema. Se va a tener que ceiir a la estructura de trabajo del servicio.

- Precio elevado: Dependiendo de la entidad que va a hacer uso del SDK, el esfuerzo
econdémico seria resefiable. Ademds, muchas incorporan mas funciones, no solo la
del chat. Por lo que, si se pagara por algun servicio de este estilo, habria funciones
gue estariamos pagando y que se necesitarian.

- Demasiada dependenciay problemas de fiabilidad: Al tratarse de un servicio externo
a tu aplicacién, es decir que tu no tienes control sobre ello, puedes tener algun
problema como que el servicio falle mucho, o no funcione. Si el servicio del que se
depende no estd funcionando, se va a tener que esperar a que resuelvan el problema
para volver a disponer del chat.

- Tecnologia utilizada: Actualmente hay 3 grandes proveedores para servicios Cloud:
Amazon Web Services (AWS), Firebase de Google y Azure de Microsoft. Aunque la
opcién de Firebase es la que menos cuota de mercado tiene, es la mas utilizada en
este tipo de SDK. Lo que significa que muchas aplicaciones o servicios que trabajan
con AWS o Firebase, no pueden utilizar este tipo de librerias facilmente.

- Poca flexibilidad: Al estar tan definidos todos los elementos, es dificil reemplazar
alguno o modificarlo, por ejemplo, algo tan sencillo como los parametros que se
quiere que lleve el mensaje. Es decir, falta de MVC.




Contrarrestando estas desventajas, nuestra libreria es capaz de brindar toda esa flexibilidad
y personalizacion que no nos ofrecen las demas:

- Esta basada en Azure de Microsoft, lo que significa que se estd trabajando con uno
de los mejores y mas utilizados servicios Cloud.

- A pesar de estar construida en Azure, se podria cambiar el servicio Cloud gracias a su
estructura MVCy a los scripts que crean la estructura de la base de datos.

- Se tiene un control total sobre los datos. Se pueden visualizar, modificar los datos y
las estructuras segun las necesidades.

La comunicacion entre aplicacion y servidor se realiza directamente, por lo que
supone una ventaja para el funcionamiento integral de la aplicacién como tanto para
la proteccién de datos.

- Contiene Unicamente la funcién de chat, que es lo que se busca en la mayoria de los
casos, sin tener que pagar por funcionalidades extras que no se necesitan.

- Se puede personalizar completamente.

En resumen, utilizar la libreria desarrollada supone una ventaja de personalizacién, control,
fiabilidad y flexibilidad a la hora de implementar una nueva aplicaciéon Android y en el futuro
i0S.




Analisis
Metodologia

Para el desarrollo de la libreria se ha usado una combinacién de dos metodologias: cascada
y la incremental.

FUNCIONAMIENTO DE LA METODOLOGIA EN CASCADA

Se desarrollan las diferentes funciones en etapas diferenciadas y obedeciendo un riguroso
orden. Antes de cada etapa se debe revisar el producto para ver si esta listo para pasar a la
siguiente fase. Los requisitos y especificaciones iniciales no estan predispuestos para
cambiarse, por lo que no se puede ver los resultados hasta que el proyecto ya esté bastante
avanzado.

FUNCIONAMIENTO DE LA METODOLOGIA INCREMENTAL

Se va construyendo el producto final de manera progresiva. En cada etapa incremental se
agrega una nueva funcionalidad, lo que permite ver resultados de una forma mas rapida en
comparacion con el modelo en cascada. El software se puede empezar a utilizar incluso antes
de que se complete totalmente y, en general, es mucho mas flexible que las demas
metodologias.

En este proyecto, al principio se utilizé la metodologia cascada, con la cual se estudio que se
debia hacer, qué debia contener y como se queria hacer. Una vez se definieron los requisitos,
se dividieron por funcionalidades, se disefiaron y se empezd a implementar. De esta forma
se estaba cambiando la metodologia a incremental, lo que supone que a medida que se
vayan implementado los requisitos correspondientes a cada funcionalidad, ya se tendra una
herramienta funcional que con el tiempo tendrd mas opciones (IMAGEN 10).

10




m—

IMAGEN 10 METODOLOGIA DEL PROYECTO

Asi pues, una vez que se planifiquen los requisitos a implementar y se disefen, se irdn
implementando las distintas funciones progresivamente y cuando se entre en dicho bucle de
planificar, disefiar e implementar, es cuando se cambia la metodologia a incremental.

11




Organizacion

En cuanto a la organizacidon que se ha seguido para el desarrollo de este proyecto, como se
ha comentado antes, se ha basado en funcionalidades y agrupaciones de requisitos. Para
ello, se han establecido reuniones con el tutor del proyecto cada dos semanas, para revisar
el estado del proyecto.

Para definir los objetivos de cada reunidn, se ha utilizado una herramienta simple en Excel,
disefiada por el tutor:

Fechas Progreso:
Lunes - Domingo
Horario
Flexible
Responsable 1 000/0
Garbiel Oniga
Comentarios
Proyecto Tarea pla:icl,il;:a:das Hora‘_s relales Terminado VTII\"Z;?O Comentarios
Generar APK 05 0,05 0K
Cuando estas viendo el Chat (conversacién) con una persona y llega una Push, actualizar el 1 04 oK

listado de mensjes

RQ4, RQ5, aun no estan probados. RQT
falta que cuando el mensaje na esté leido

. ) . aparezca en negrita, pero depende de los
Revisar RQ marcados en naranja y revisar los que ya estan hechos 05 015 requisitos de estado del mensaje. RQ12
RQ13 revisar implementacién, porque
parece que se muestran todos los mensajes
Revisar codigo servidor 2 15
Disefiar el modulo de conversaciones en grupo para Android 4 4
Disefiar el médulo de conversaciones en grupo para Servidor 4 15
Reunidn 2 1
Generar la pantalla para conversacion en grupo 4 2

Total 18 10,3

Porcentaje de finalizacion:
100,00%
0,00%
100,00%

IMAGEN 11 ORGANIZACION DEL PROYECTO

Se trata de una tabla donde se especifican las tareas que se deben cumplir, el tiempo
estimado en el que se deberia poder solventar dicha tarea, el tiempo real que ha costado
hasta finalizar la tarea y finalmente si esta completada y validada por el tutor.

Todo esto va asociado a un porcentaje, con el cual vamos a tener informacidon de como de
avanzadas tenemos las tareas para estas semanas, si estamos a punto de terminarlas o si nos
falta mucho trabajo y de esta manera ser constantes con el trabajo realizado. Muchas veces
no se conseguia realizar el 100% de las tareas, por lo que para la siguiente sesion se volvia a
anotar en la lista de tareas.

Por ultimo, decir que, aunque esta solucién de organizacion mediante Excel no sea la mas
profesional, es mucho mas intuitiva y facil de utilizar que otras.

12




Casos de Uso

Para determinar las acciones que se pueden realizar en nuestra libreria, se van a presentar
mediante los casos de uso. Concretamente en tres escenarios, por parte del usuario, la
aplicacion y por parte del servidor.

USUARIO

CUUL. Cambiar de pestaia: el usuario podra cambiar de pestafias libremente para visualizar
conversaciones, contactos o grupos.

CUU2. Seleccionar conversacion: se podra seleccionar la conversacion a la que se quiere
acceder.

CUU3. Seleccionar contacto: se podra seleccionar un contacto con el cual iniciar una
conversacion.

CUUA. Seleccionar grupo: el usuario podra seleccionar el grupo del cual quiera visualizar la
conversacion.

CUUS. Enviar mensaje: se podra enviar mensajes tanto individuales como grupales.

CUU6. Borrar conversacion individual: el usuario tiene la capacidad de borrar una
conversacion individual si quiere.

CUU7. Ver Mensajes: el usuario podrd ver los mensajes de las conversaciones tanto
individuales como de grupo.

CUUS8. Cambiar su estado: se podra cambiar el estado a Disponible u Ocupado.

IMAGEN 12 CASOS DE USO DEL USUARIO

13




LIBRERIA

CUL1. Obtener contactos: la libreria obtendrd los contactos disponibles.

CUL2. Recibir mensajes: se recibirdn mensajes nuevos.

CUL3. Mostar notificacidn: en caso de recibir mensajes nuevos, se mostrara una notificacion.

CULA4. Actualizar lista de conversaciones: Cuando se cree una conversacion nueva o llegue un
nuevo mensaje se actualizara. Ademas, si se esta viendo la lista de conversaciones y nos llega
un mensaje nuevo, se actualizard en tiempo real.

CULS. Actualizar lista de mensajes dentro de una conversacion: cuando llegue un nuevo
mensaje se actualizara la lista de mensajes correspondiente a la conversacién. Ademas, si
nos encontramos en la conversacion y nos llega un mensaje nuevo, se actualizara en tiempo
real.

CUL6. Obtener mensajes: la libreria obtendra todos los mensajes.

CUL7. Comprobar conversaciéon leida: antes de mostrar la lista de conversaciones, se
comprobara si la hemos leido o no.

CUL8. Cambiar estado de una conversacién: en caso de que hayamos leido la conversacion,
se cambiara el estado de esta.

CUL9. Obtener grupos: la libreria podra obtener los grupos a los que pertenecemos.

CUL10. Mostar lista de mensajes: se mostrara el listado de mensajes en caso de abrir una
conversacion.

CUL11. Mostar lista de contactos: mostrara el listado de contactos al acceder a la pantalla
correspondiente.

CUL12. Mostrar lista de conversaciones: mostrara la lista de conversaciones que se hayan
iniciado cuando estemos en la pantalla correspondiente.

CUL13. Mostrar lista de grupos: mostrard la lista de grupos que se hayan iniciado cuando
estemos en la pantalla correspondiente.

CUL14.Crear conversacion: cuando el usuario envie o reciba un mensaje de un destinatario
nuevo, la libreria creara una conversacion.

CUL15. Cambiar estado: la libreria podrd notificar al servidor de que el usuario quiere
cambiar su estado.

14




IMAGEN 13 CASOS DE USO DE LA LIBRERIA

SERVIDOR

CUS1. Recibir mensaje: el servidor puede recibir un mensaje por parte de el/los clientes y
puede ser tanto un mensaje individual como grupal.

CUS2. Enviar mensaje: cuando el servidor reciba una peticion de envio de mensaje, podra
hacerlo, tanto a usuarios individuales como a grupos.

CUS3. Notificar mensaje nuevo: cuando un usuario o grupo reciba un nuevo mensaje, la API
notificara al servicio de notificaciones (Notification Hubs) que debe mostrar dicha
notificacién.

CUS4. Devolver lista mensajes: el servidor devolverd la lista de mensajes para cada
conversacion.

CUSS. Devolver lista grupos: se devolvera la lista de los grupos de los cuales forma parte el
usuario.

CUSG6. Gestionar usuarios de un grupo: se podra gestionar la participacion de los usuarios en
uno O varios grupos.

15




CUS7. Cambiar estado del usuario: el servidor podrd cambiar el estado dentro de la BD de un
usuario

IMAGEN 14 CASOS DE USO DEL SERVIDOR

16




Requisitos

A continuacién, se van a determinar los requisitos que debe cumplir la libreria, se
encontraran divididos en varias secciones, que coinciden con cada elemento de la libreria.
Asimismo, habra dos tipos de requisitos, funcionales (que deben ser implementados y estar
operativos correctamente) y los no funcionales (que no son directamente testeables).

REQUISITOS FUNCIONALES

RQF1. Se podran realizar conversaciones individuales. Lo que significa que habrd intercambio
de mensajes entre un usuario Ay un usuario B.

RQF2. Asimismo, se podran realizar conversaciones grupales, siendo estas el intercambio de
mensajes entre N usuarios.

LISTADO DE CONVERSACIONES

RQF3. Se tendra un listado de conversaciones que contendra tanto las individuales como las
grupales.

RQF4. En el listado de conversaciones, apareceran todas aquellas que contengan al menos
un mensaje.

RQF5. El listado estara ordenado cronolégicamente estando en primer lugar las
conversaciones mas recientes y en ultimo las mas antiguas.

RQF6. La informacién que se tendra disponible al ver el listado es el nombre del usuario con
el que estamos teniendo la conversacién en caso de tratarse de una conversacion individual
y el nombre del grupo en caso de una grupal. En ambos casos se mostrara la foto, el ultimo
mensaje de la conversacion y el estado de este.

RQF7. Por defecto, la lista mostrard todas las conversaciones disponibles.

FQF8. La pantalla que mostrara el listado de conversaciones estara pendiente de recibir
nuevos mensajes para actualizar la lista de mensajes.

RQF9. Cuando se reciba un nuevo mensaje, se actualizard la pantalla que muestra las
conversaciones automaticamente con los nuevos datos.

RQF10. Cuando se actualice el listado de conversaciones, este se volverd a ordenar
cronolégicamente.

17




CONVERSACION

RQF11. Se podra ver el listado de mensajes que se han intercambiado entre un usuario Ay
un usuario B en caso de conversaciones individuales y todos los mensajes en caso de Chat
grupales.

RQF12. Dichos mensajes se mostraran de manera cronolégica, estando los mas recientes al
final de la lista y los mds antiguos al principio.

RQF13. Al mostrar el listado de mensajes, cuando el dia se diferente, se mostrara un
indicativo del dia al que pertenecen los mensajes.

RQF14. Por defecto se cargaran todos los mensajes de los que disponga la conversacion.

RQF15. La pantalla que mostrara los mensajes de una conversacion estara pendiente de
recibir nuevos mensajes para actualizar la lista de mensajes.

RQF16. Cuando se reciba un nuevo mensaje, el evento actualizara la pantalla que muestra
los mensajes con los nuevos datos.

RQF17. Los elementos que contendra la pantalla de una conversacién seran los siguientes:

RQF17.1. Una caja de texto en la cual se deberd escribir el mensaje que se desea
enviar.

RQF17.2. Si esta caja de texto estd vacia y se desea enviar un mensaje, no se realizara
ninguna accion.

RQF17.3. Contendra también un botdn cuya funcionalidad sera enviar el mensaje.

RQF17.4. Si a la hora de enviar el mensaje, ocurre algln error, el mensaje no se
anadird a la lista.

RQF17.5. Cuando se produzca un error de envio, se notificard con un mensaje
emergente.

RQF17.6. En la parte superior de la conversacion estara el nombre del usuario o grupo
con el que se esta intercambiando mensajes.

RQF17.7. En la parte izquierda del nombre, se mostrara la foto del contacto o grupo.

RQF17.8. Finalmente, a la izquierda de la foto, habrd un botdn con icono de flecha, la
cual volvera a la pantalla de conversaciones en caso de ser pulsado.

18




LISTADO DE CONTACTOS

RQF18. Se mostrard un listado con todos los contactos individuales del que dispone el
usuario.

RQF19. De los contactos se mostrara el nombre, la foto y su estado, si estan disponibles u
ocupados.

RQF20. En caso de pulsar sobre alguno de los contactos, se abrira la conversacion.

RQF21. Si no estaba creada la conversacion, es decir no se han intercambiado ningun
mensaje, en caso de que se haga, se creard la conversacién y el mensaje se anadird a la lista.

RQF22. En caso de que no se realice ningun envio de mensaje, al salir de la conversacion no
pasara nada.

LISTADO DE GRUPOS
RQF23. Se mostrard una lista con los grupos a los que el usuario pertenece.

RQF24. De los grupos se mostrara el nombre, la foto y como informacién adicional se
mostrard la fecha en la que se cred.

RQF25. En caso de pulsar sobre alguno, se mostrara la conversacion de grupo.

GRUPOS

RQF26. La modalidad de creacién de grupos (cualquier usuario puede crear un grupo o solo
usuarios administradores pueden crear grupos), dependerd de la aplicacion final que
implemente la libreria.

RQF27. Tendran una capacidad que estara determinada por la solucidn final.

RQF38. En caso de que envien mensajes mas de un usuario a la vez, estos seran ordenados
de manera cronoldgica.

ESTADO DE LAS CONVERSACIONES
RQF29. Cuando se cree una nueva conversacion, el estado por defecto sera no leida.
RQF30. Cuando el usuario lea la conversacién, esta cambiara de estado a leida.

RQF31. El check del estado de la conversacion de color negro significa no leida y el azul, leida.

19




NOTIFICACIONES PUSH

RQF32. Estando la aplicacidon cerrada, se deberdn recibir las notificaciones que avisen de los
nuevos mensajes.

REQUISITOS NO FUNCIONALES
RQNF1. La libreria se podra usar en dispositivos Android con versién Android superior a 26
(Android Oreo), los servidores programados en .NET con una minima version 2.2.4.

RQNF2. En los dispositivos moéviles, se guardardn copias locales completas de la base de datos
de los mensajes pertenecientes al usuario siempre que se pueda.

RQNF3. Los mensajes deberdn ser guardados de forma segura para proteger los datos.

Arquitectura

Servidor

Cliente Android

ED Cliente

IMAGEN 15 ARQUITECTURA DEL SERVICIO

A continuacion, se va a explicar cdmo es la estructura de la libreria, las conexiones que tiene y de
qué forma se comunica.

CLIENTE ANDROID

El cliente Android, desde la cual se van a enviar los mensajes al servidor, o donde llegaran los
nuevos. Para comunicarse con el servidor, lo hace mediante llamadas a Application
Programming Interfaces (API’s). Para cada funcién especifica hay una APl que trata la
solicitud del cliente y le devuelve una respuesta.

Por otro lado, el cliente tiene una BD interna en la cual tiene una réplica de la estructura de
la BD del servidor y donde almacena los mensajes enviados y recibidos.

20




SERVIDOR
Como se puede ver en la anterior IMAGEN 15, en el servidor hay 3 elementos importantes: por
un lado, las API’s que son las que se comunican con el cliente, la BD de la libreria y el
notification hubs que es el encargado de enviar el aviso a los usuarios de que tienen nuevos
mensajes.

API’s

Como se ha comentado antes, las API’s son el canal de comunicacién entre el cliente y el
servidor. Hay varias y cada una tiene su funcién especifica, como por ejemplo comprobar si
el usuario tiene nuevos mensajes, o saber a cuantos grupos pertenece. Ademas, son estas
las que acceden a la BD para obtener informacién y notificar al HUB de que hay nuevos
mensajes para que muestre la notificacién push.

BASE DE DATOS

Se trata de la base de datos, es donde se almacenan todos los datos necesarios para el
funcionamiento de la libreria y a la cual se accede mediante consultas desde las API’s.

NOTIFICATION HUBS

Es el encargado de enviar notificaciones Push a los dispositivos suscritos a los eventos. Una
API| realiza una llamada a este servicio, que se encarga de enviar la notificacién push
correspondiente. Con una sola llamada, es capaz de enviar las notificaciones a dispositivos
Android, iOS u otras opciones como Windows, Kindle.... Esta disefiado para escalados de gran
volumen y, ademads, funciona con cualquier back-end lo que lo convierte en muy versatil.
Usar un servicio como este, facilita mucho el uso de notificaciones, ya que todo el
funcionamiento se concentra en un Hub que gestiona todo el trafico.

! — i

il o -
1.-Recuperar mampulados l: & '.t ¢ . :
de PNS L o e g

Centro de

Back-end de
notificaciones

O aplicacién

Servicio de notificacion de plataforma

IMAGEN 16 FUNCIONAMIENTO NOTIFICACION HUBS

21




Tecnologias

Para realizar este proyecto, se han utilizado distintas tecnologias, algunas para la parte del
cliente, otras para la parte del servidor y finalmente otras para la documentacién u otros. A
continuacion, se van a enumerar y a describir brevemente:

- Android Studio: ha sido el programa con el que se ha desarrollado la aplicacion
Android

- Visual Studio: para poder desarrollar el servidor con todos sus elementos, se ha
realizado con este programa, ya que se puede conectar directamente con Azure (que
ha sido la plataforma cloud que se ha elegido) y trabajar comodamente tanto con las
API’s como con las BBDD.

- Azure: como se acaba de comentar, de entre las opciones que habia para desarrollar
nuestra libreria, se ha escogido Azure porque es una de las mas utilizadas y eso
supone varias ventajas. Por un lado, el funcionamiento en si, ya que, al tratarse de
una de las grandes, sus infraestructuras son fiables.

Por otro lado, cuando se quiere incorporar una nueva funcién en una aplicacién, en
este caso nuestra libreria de chat, vamos a querer tener lo mejor, y utilizando Azure
es lo que tenemos.

- SQL Server: se podia haber utilizado otro tipo de gestor de BBDD, pero en este caso
como se esta trabajando con el entorno de Microsoft, mds concretamente de Azure,
se ha querido unificar todo. Ademas, es una de las opciones que nos ofrece Azure a
la hora de crear una BD.

- SQlite: se ha utilizado para poder crear una BD en el dispositivo mévil, y ser capaces
de almacenar los mensajes, contactos y grupos. De esta forma, se tienen los datos
mas accesibles y a cambio de menos recursos a la hora de obtenerlos.

- Postman: para poder controlar y comprobar el funcionamiento de nuestras API’s se
ha utilizado esta herramienta. Es un programa que permite realizar lamadas a APl y
ver el resultado que nos devuelve, asi podemos hacer pruebas mas comodamente.

- Bitbucket: una de las muchas herramientas basadas en GIT, se ha utilizado para el
control de versiones, cuando se lograba implementar una nueva funcionalidad se
guardaba para que si en el futuro habia algin problema tener una copia de seguridad.
Se ha utilizado tanto para el cliente como para el servidor.

22




KeePass: un gestor de contrasenas para almacenar de forma segura las contrasefas
de acceso a la plataforma Azure, a su BBDD y a demds elementos.

Visual Paradigm: se ha utilizado este programa para la creacion de la documentacion,
mas en especifico para todos los diagramas.

Balsamiq: es un programa con el cual se pueden realizar maquetas de las interfaces,
por lo tanto, se ha utilizado para crear los bocetos de las interfaces de las que dispone
nuestro cliente.

23




Lenguaje de Programacion

Para definir los lenguajes de programacion que se han utilizado en el proyecto, se van a
separar en dos grupos, por un lado, los utilizados para el cliente, y por otro los utilizados para
el servidor, ambos acompafiados de una breve explicacién del porqué se ha utilizado estas
tecnologias y no otras.

CLIENTE ANDROID

- Java: las aplicaciones Android pueden ser desarrolladas tanto en Java como el Kotlin,
pero para este caso, se ha elegido Java por varias razones:

o Aunque Kotlin se cred con el propdsito de mejorar Java, mejorando los puntos
mas débiles que tiene, es un lenguaje joven y aun esta en fase de crecimiento.

o Como es un lenguaje joven, aun no hay toda la informacién que se dispone
con Java para crear proyectos que interconecta tecnologias especificas como
nuestra libreria.

o Apesar de que la cuota de mercado de Kotlin esta aumentando, Java se sigue
utilizando muchisimo y puede ser una moda pasajera.

- SQL: se utiliza para las consultas internas de la BD de Android, para crear las tablas,
almacenar y consultar datos.

SERVIDOR AZURE

El servidor estd basado en Azure y para ello se ha utilizado el entorno de trabajo
(framework) de .NET, que aparte de Azure puede trabajar con muchas otras
tecnologias.

- CH#:esellenguaje de programacion base
- .NET: es unframework de Microsoft que hace un énfasis en la transparencia de redes,
conindependencia de plataforma de hardware y que permite un rdpido desarrollo de

aplicaciones.

- Entity Framework: trabajos con la base de datos, como los modelos de las clases,
consultas...

- Ling: consultas con la base de datos

24




Interfaces de Usuario

A continuacion, se van a adjuntar y describir brevemente los bocetos que se hicieron para
definir el aspecto de la interfaz en la aplicacién. Son bocetos simples, ya que, al tratarse de
una libreria personalizable, el aspecto final sera dado por la solucién definitiva.

Se tratan de 3 pantallas, una para las conversaciones, tanto individuales como grupales, una
para los contactos disponibles y una tercera para los grupos. Este disefio se ha planteado de
esta manera, que en una primera version de la libreria, la creacién de los grupos asi como su
gestién, sera controlado de manera manual por un administrador con acceso al servidor.
Ademas, esta la posibilidad de que se quiera tener Unicamente conversaciones individuales,
o, por el contrario, solo grupales.

CHATS

En la parte de abajo tenemos el menu de navegacion, y en la parte principal de la pantalla se
encuentra la lista de conversaciones con los que se ha intercambiado mensajes alguna vez.
Ademads, para cada conversacidn se mostrard la foto, fecha del ultimo mensaje, ademas del
estado de la conversacion, lo que se determinara el color del check. (ANEXO 1)

CONTACTOS

En cuanto a la pantalla de contactos, se visualizaran todos los contactos que el usuario tenga y con
los cuales puede iniciar una conversacion en caso de que no la haya tenido anteriormente, o visualizar
la conversacion actual. Para cada conversacion se mostrara la foto del contacto, y un dato TBD como
por ejemplo un apodo del usuario. (ANEXO 2)

GRUPOS

Finalmente, en cuanto a la pantalla de chats grupales, en caso de que el usuario se encuentre
en uno 0 mas grupos, se mostrara un listado de estos junto a la fecha de creacidn de estos.
(ANEXo 3)

25




Disefio e Implementacion
Para explicar cdmo ha sido el proceso de implementacién de la libreria de chat integral, se
va a dividir en tres secciones:

Servidor

Dentro del servidor hay unas partes clave en el funcionamiento de la herramienta, la parte
mas directa con la que se conecta el cliente, son los controladores, es decir las API's. Y
después hay otros elementos de los que hace uso las API’s para su correcto funcionamiento.

API’s

UniversalChatController

Es el encargado de toda la légica de mensajes, es decir de enviar los mensajes y de
obtenerlos.

- HttpGet(“GetAlINewMessages”): Con este método de tipo GET, obtenemos todos los
mensajes en los cuales estd involucrado el usuario. Pertenecientes tanto a
conversaciones individuales como grupales. (ANExo 4)

- HttpPost(“SendChatMessage”): Y con este método tipo POST, cuando se envie un
mensaje, en caso de estar todo correcto, se almacenara en la base de datos.
(ANEX0 5)

ChatGroupsController

Como su propio nombre indica, a través de esta APl obtendremos los grupos a los que
pertenece el usuario.

- HttpGet(“GetAllGroupsByMemberEnrolled”): Para obtener los grupos a los que
pertenece el usuario, se utilizard este método GET, el cual devolvera una lista de
todos los grupos y con los cuales podremos filtrar los mensajes para mostrarlos
posteriormente. (ANEXO 6)

26




MembersEnrroledController

Con este controlador, se puede administrar toda la informacion correspondiente con los
miembros de la libreria.

- HttpPost(“ChangeUserStatus”): Mdas concretamente, nosotros utilizamos la API
ChangeUserStatus, con la cual el usuario podra establecer su estado en Disponible u
Ocupado. (ANEXO 7)

INTERFACES

Para tener un buen disefio también se han hecho uso de las interfaces, las cuales determinan
las funcionalidades que tenemos en nuestra libreria.

IMessage

En esta interfaz se encontraran todos los métodos que tengan que ver con la trata de
mensajes.

ime LastUpdateUTCInServer);

IMAGEN 17 INTERFACES DE LA CLASE IIMESSAGE

IChatGroup

Andlogo a la interfaz anterior, contendrd todos los métodos que tengan que ver con los
grupos.

Task<IEnumerable<ChatGroup>> GetAllChatGroupsByMemberEnrolled(Guid idMemberEnrolled});

IMAGEN 18 INTERFAZ DE LA CLASE ICHATGROUP

IMemberEnrolled

Interfaz que determina las API’s disponibles relacionadas con los datos del usuario.

> ChangeUserStatus({Guid idMemberEnrolled,

IMAGEN 19 INTERFAZ DE LA CLASE IMEMBERENROLLED

27




CONCRETE

Continuando con los elementos que contiene el servidor para su correcto funcionamiento,
nos encontramos con los Concrete, que son las clases que implementan las interfaces.

MessageConcrete

- GetAlINewMessages: Como se observa en el fragmento de cédigo (ANEXO 8), primero
de todo se obtienen el identificador de los grupos a los cuales pertenece el usuario.
A continuacion, se obtienen todos los mensajes de las conversaciones individuales y
finalmente se obtienen los mensajes de las conversaciones grupales. Se concatenan
y devuelven en forma de lista de mensajes.

- SaveMessagelnServerDatabase: Con este otro método (ANEX0 9), cuando se envie un
mensaje, si se realiza el proceso de forma correcta, se almacenara en la base de datos.

ChatGroupConcrete

GetAllChatGroupsByMemberEnrolled: Como se ha comentado anteriormente, en
cuanto a grupos el método que estamos tratando es el que obtener la lista de
grupos en los cuales estd involucrado el usuario. (ANEXx0 10)

DTO

Una vez se tiene clara la estructura del servidor, se va a explicar como se envian y reciben los
datos entre el cliente y el servidor. Para ello, y segun nos indica la documentacion de Azure,
se deben definir unas clases de tipo Data Transference Object (DTO). Estas clases, definen un
objeto que debe tener la misma estructura tanto en el servidor como el cliente para que la
transferencia sea correcta. Realmente lo que se estd realizando es un mapeo de las
caracteristicas de los mensajes o de los grupos para no trabajar directamente con las
entidades de la base de datos, y también porque si se quiere realizar algun cambio con la
cantidad de parametros que se quieren de alguna clase, no tener que cambiar la entidad de
la BD, solo se modifica el DTO.

ChatMessageDTOUniversal

Determina los pardmetros que se utilizan en la transferencia al cliente. (ANExo 11)

ChatGroupDTO

Determina los elementos que se utilizan de los grupos. (ANExo 12)

28




MemberEnrolledDTO

Determina la estructura de los usuarios como se puede ver en ANExo 13.

Una vez repasados todos los elementos del servidor, sin tener en cuenta las entidades de la base de
datos, la estructura quedaria de la siguiente manera:

Concrete

DTO @

Interfaz

Cliente

APl

IMAGEN 20 DIAGRAMA DE DESPLIEGUE DE COMUNICACIONES

Las API’s usan los métodos de los Concrete a través de las Interfaces. Después utilizando los DTO
correspondientes, se comunican con el cliente y la BD.

29




Cliente

En cuanto al cliente, también contamos con una estructura similar a la del servidor, tiene
interfaces, clases que especifican las llamadas a las API’s, clases que interaccionan con la
base de datos interna de la libreria para almacenar la informacidn del usuario y todas las
clases relacionadas con la vista y con el comportamiento de estas. Se van a destacar unas
cuantas clases cuya relevancia es superior.

SERVERCONNECTION

Esta clase es la encargada de hacer las llamadas a las API’s del servidor. De la misma forma
gue anteriormente, se analizaran las mas importantes.

sendChatMessage

En caso de que nos devuelva una respuesta favorable, se recogera el resultado y se evaluara,
en este caso si nos devuelve un “Ok”, se actualizara la conversacion y el mensaje se
vera reflejado en la lista. (ANEXO 14)

getAlINewChatMessages

A la hora de obtener todos los mensajes (ANExo 15), en caso de obtener un resultado
favorable, el servidor nos mandara la lista con todos los mensajes. Se van a evaluary se van
a asociar a cada conversacion correspondiente.

changeUserStatus

Para que el usuario pueda cambiar su estado de disponibilidad a Disponible u Ocupado, se
ha implementado este método que llama a la APl correspondiente en el servidor y que hace
el cambio en la BD para que pueda verse en cambio para todas las personas. (ANEXO 16)

30




NOTIFICACIONES

Cuando el usuario recibe nuevos mensajes, gracias a una funcionalidad incorporada de
Android Studio, heredada de Firebase, la libreria lo detectard y procedera a realizar varias
acciones.

La accién base, es obtener los nuevos mensajes, y eso se realiza de la misma manera que se
ha explicado antes, mediante la clase ServerConnection. Si esta accion de obtener los nuevos
mensajes se realiza correctamente se procedera a realizar las siguientes acciones:

1. Se creard una notificacion push

2. Se comprobard la conversacién o conversaciones y se afiadiran a la lista los nuevos
mensajes.

3. Se enviard la notificacidn y se mostrara

4. Se actualizaran las vistas de la lista de conversaciones y las conversaciones en si.

Base de Datos

Como se ha mencionado brevemente antes, el servidor se comunica con la base de datos a
través de entidades. Estas entidades representan la estructura que tiene internamente la BD
y de esta forma se pueden almacenar, obtener o modificar elementos de la base de datos de
forma mas comoda en objetos.

Un usuario puede tener varios mensajes y pertenecer a varios grupos, por lo que se debe
crear una tabla Usuario_Grupo con la cual establecer la relacion de los diferentes grupos.

Usuario Grupo

| a
T ~ F T

T
i
i
I
i
i
i
I

.

i

Mensaje

IMAGEN 21 DIAGRAMA DE CLASES

31




Una vez se hayan hecho uso de todos los fragmentos de cédigo que se han ido describiendo en el
documento, se puede obtener un resultado final como el que se puede observar en las imagenes de

a continuacion.

Unai
DISPONIBLE

Luisa
DISPONIBLE

Angel
DISPONIBLE

Javier
OCUPADO/A

Laura
OCUPADO/A

Adrian
DISPONIBLE

Aimar
DISPONIBLE

Oscar
OCUPADO/A

Sabela
OCUPADO/A

Pablo
OCUPADO/A

0000000009

=] o o

Compafieros

IMAGEN 22 LISTA DE COMPANEROS DE LA LIBRERIA INCORPORADA EN UNA APLICACION

Pablo Internal

»

sos

Hola, que tal estas? ;5,4
Bien, aqui preparando la cena. 1g.4q

Te apetece quedar mafnana? ;g.49

Si, me parece genial, podemos ir
a comer 18:49

Vamos al restaurante italiano
que ha abierto hace poco? 19:50

Perfecto! Nos vemos mafana! ;.5

IMAGEN 23 CONVERSACION DE LA LIBRERIA DENTRO DE UNA APLICACION

32




Protocolos de Uso

En este apartado, se van a detallar las instrucciones las cuales hay que seguir para poder
incorporar correctamente la libreria, tanto su parte de cliente, como el servidor. Con ello
obtendremos un chat funcional dentro del entorno que se requiera.

Servidor

1. Requisitos previos:

a.

d.

Tener una cuenta en Azure: es un requisito basico, ya que todo el servidor
estd basado en Microsoft, pero como se ha mencionado, esta solucion es
flexible, y se puede trasladar el proceso a otro proveedor si se desea.

Crear la Base de Datos SQL Server: Se debera crear un recurso de BD SQL
en el panel de Azure.

@ 5QL Database

Crear | Documentaos | MS Learn

IMAGEN 24 RECURSO AZURE SQL

Crear una AppService: es el servicio que se encarga de alojar las
funcionalidades de la libreria, es el nucleo del servidor.

Aplicacion de API

Microsoft

* 4.3 (124 calificaciones de Azure)

IMAGEN 25 RECURSO AZURE API

Crear un Notification Hubs: con la cual posteriormente se conectard la API
y se podran recibir notificaciones push.

33




Notification Hub

Microsoft

* 4.0 (80 calificaciones de Azure)

IMAGEN 26 RECURSO AZURE NOTIFICATION HUBS

2. Conectar Visual Studio a la BD creada:
Para ello abrimos Visual Studio, y mostramos el explorador de objetos.

m Archive  Editar Ver Git Proyecte  Compilar  Depurar

Abrir

Abrir con...

Explorador de soluciones Ctrl+Alt+L
Cambios de GIT Ctrl+0, Ctrl+G
Repositorio GIT Ctri+0, Ctrl+R
Tearn Explorer

Explorador de servidores Ctrl+Alt+5
Cloud Explorer Ctrl+, Ctrl+X
{CmdSet_crdidAdlaExplorer ADLAExplorer}

Explorador de objetos de SCL Server Ctrl+h, Ctrl+5

IMAGEN 27 EXPLORADOR ARCHIVOS VISUAL STUDIO

A continuacién, iniciamos sesidn con nuestras credenciales de Azure, lo que hara que
nos aparezca las BBDD disponibles. Se debera seleccionar la opcion de Azure vy
seleccionar la BD correspondiente.

o) Conectar >

History Examinar

|P E=scriba agui para filtrar la lista

I Local |
P Red
4 Azure

IMAGEN 28 CONECTAR BD A VISUAL sTUDIO |

34




Finalmente, introducimos los datos de la BD que acabamos de crear en Azure.

Mombre del servidon

Autenticacion: Autenticacion de SOL Server w

Mombre del usuario: |

Contrasefia:

[ ] Recordar contrasefia

Mombre de la base de datos: <predeterminado> w

Avanzadas..

IMAGEN 29 CONECTAR BD A VISUAL STUDIO Il

3. Conayuda del script, crear las tablas

Se deberdn generar las tablas para que el servicio funcione correctamente, para ello
se ejecutaran los scripts que se proporcionan. Se trata de un archivo .sgl que contiene
una consulta y genera todas las tablas necesarias.

CREATE TABLE [dbo].[Message](
[MessageId] [uniqueidentifier] NOT NULL,
[FromUser] [uniqueidentifier] NOT MULL,
[ToUSer] [uniqueidentifier] MULL,
[Text] [wvarchar](max) NULL,
[LastUpdateUTCLocal] [datetime] NOT NULL,
[FileName] [varchar](3@@) NULL,
[FileExtension] [varchar](1l@) MNULL,
[LastUpdateUTCInServer] [datetime] NULL,
[GroupId] [uniqueidentifier] NULL,

CONSTRAINT [PK_Message] PRIMARY KEY CLUSTERED

IMAGEN 30 CREACION TABLA MENSAJE EN LA BD

Ademads, también crea las dependencias necesarias:

ALTER TABLE [dbe].[Message] WITH NOCHECK ADD CONSTRAINT [FK Message GroupId] FOREIGN KEY([GroupId])
REFERENCES [dbo].[ChatGroup] ([IdChatGroup])

IMAGEN 31 CREACION DE LAS DEPENDENCIAS DE LA TABLA MENSAJE EN LA BD

35




4. Importar libreria:

Se debera crear un nuevo proyecto, e importar las siguientes librerias que estaradn a
disposicién del usuario.

i [ Concrete Interfaces
o ChatGroupConcrete.cs ¢ IChatGrou
c* MemberConcrete.cs ¢ IMember.cs

c* MessageConcrete.cs o |Message.cs

[ Controllers Modeis
a5l VI » & € ChatGroupDTO.cs

b & c* ChatGroupsController.cs c# ChatMessageDTOUniversal.cs
b & ©= MembersController.cs b & ¢ MemberDTO.cs
P & €= UniversalChatController.cs 4 il Providers
s Entities P& ¢ PushMotificationProvider.cs
a € ChatGroup.cs
» + C* DB_Context.cs
» & O Member.cs

a C* Message.cs

IMAGEN 32 CLASES A IMPORTAR EN EL PROYECTO DE VISUAL STUDIO

5. Configurar pardmetros de conexion:
En la clase PushNotificationProvider, se debera establecer los datos que
correspondan con el NotificationHubs creado.

hubTestConnectionString = “Endpoint=sh:// SSgeasasemn

hubTestName =

hubProductionConnectionString = “Endpoint=s

hubProductionName

IMAGEN 33 PARAMETROS A CAMBIAR EN LA CLASE PUSHNOTIFICATIONPROVIDER

Ademads, en los controllers, se podra personalizar la ruta de las API’s en caso de que
se quiera.

IMAGEN 34 EJEMPLO DE VERSION Y RUTA DE API

36




6. Publicar API:
Finalmente, para tener la parte del servidor lista, se deberan publicar las API’s con

todas sus clases en el Portal de Azure, para ello, seleccionamos como destino
Azure, introducimos los datos del servicio APl que hemos creado anteriormente,

lo seleccionamos y publicamos.

Publicar

ynde publica hoy?

Destino Azure
IS Publique su aplicacién en la nube de Microsoft.

IMAGEN 35 PUBLICAR EN AZURE

Cliente
1. Crear/Abrir un proyecto en Android Studio:
Si no se cuenta con un proyecto de Android, se debe crear uno nuevo. Es importante

a la hora de crear el proyecto, establecer como lenguaje Java.

2. Importar la libreria:

Hay que seleccionar la opcion de nuevo archivos y seleccionar importar un mdédulo

Run Tools W Window

-

lodule...

Import Module...

IMAGEN 36 ABRIR MENU DE IMPORTAR LIBRERIA

En el cuadro que nos aparecera, debemos seleccionar la ruta donde se encuentra el
proyecto de la libreria de chat. Posteriormente deberemos seleccionar el médulo de

chat e importarlo.

37




Gradle or Eclipse

Source directory: | C: \oniga\AndroidStudioProjectsilibreriachat

Source location: chat V| Import

Module name:

IMAGEN 37 IMPORTAR LIBRERIA

3. Establecer dependencias:

Ahora debemos establecer las dependencias con la libreria para poder empezar a
utilizarla. Para ello vamos a abrir el gradle del proyecto y vamos a anadir la siguiente
linea:

e implementation project(

IMAGEN 38 ANADIR DEPENDENCIAS EN GRADLE

Ademads, en las properties del gradle debemos asegurarnos de que estdn las
siguientes lineas para evitar discrepancias en la compatibilidad.

IMAGEN 39 CONFIGURACION GRADLE PROPERTIES

4. Configurar los parametros de conexién

Para ello, como se tiene acceso a todo el cddigo, iremos a la clase ServerConnection
y definiremos nuestro servidor de API’s y la versién que le hemos asignado.

IMAGEN 40 CONFIGURACION URL SERVIDOR APIs

38




5. Configurar servicios de Google.

Para poder utilizar la libreria, se debera crear una cuenta en Firebase, con la cual
obtendremos acceso a los servicios de Google, pudiendo comunicar los clientes con
el servidor. Deberemos crear un nuevo proyecto que deberd tener el mismo nombre
gue el proyecto en Android. Posteriormente se deberan seguir los pasos que nos
indica la propia pagina para obtener e importar el archivo google-services.json en
nuestro proyecto.

Ejemplo de Uso

Ahora que esta ya todo configurado, podemos acceder a la libreria como si estuviéramos en
el mismo proyecto. Vamos a empezar a utilizar la libreria, para ello vamos a crear un
fragment del tipo ConversationsFragment, y reemplazaremos un fragment local, por el
nuevo, el cual nos mostrara la misma pantalla que hemos explicado a lo largo del documento,
y con ello la funcionalidad que conlleva.

Extra

Por ultimo, como se ha mencionado antes, al incorporar dicha libreria, tenemos acceso a
todo su contenido, por lo cual podemos modificar todos los parametros a nuestro gusto,
modificar las vistas, los textos, todo. Ademas, si no queremos reemplazar el fragment en su
totalidad, podemos crear una instancia de los objetos que nos interesan y usarlos a nuestro
gusto.

Ejemplo real

Para poder ver que aspecto tiene la libreria una vez insertada en una aplicacidn, se puede ir
al ANexo 17 donde podemos observar la lista de contactos, al ANExo 18 donde vemos la funcién
de cambiar nuestro estado a Disponible u Ocupado, en el ANExo 19 podemos ver que aspecto
tiene una conversacion individual y en el ANExo 20 se muestra la lista de grupos a los que
pertenecemos. Finalmente, en el ANExo 21 se nos muestra la lista de conversaciones
existentes.

39




Conclusiones y ampliaciones futuras

En este capitulo se van a exponer una serie de conclusiones sobre el trabajo que se ha llevado
a cabo, el futuro de la herramienta y finalmente una valoracién personal sobre el trabajo y
lo que ha supuesto.

Conclusiones

Lo que se buscaba con la creacion de la libreria de chat, era facilitar la integracion de esta en
todos los sentidos, temporales, econdmicos y universal. Como se ha visto en el andlisis de
servicios existentes, no es la idea mas innovadora ya que son varias plataformas las que
ofrecen este servicio, pero la mayoria de ellas tienen algun inconveniente que hacen que no
sean una opcidn real para un equipo de desarrollo o una empresa.

Algunas tienen un precio demasiado elevado, otras son muy estrictas en cuanto a
personalizacion o en cuanto a la infraestructura con la que esta construida. Y, por otro lado,
muchas de ellas son directamente el servidor, es decir que la libreria se conecta con sus
servicios y después estos se conectan con el proveedor cloud correspondiente. Lo que hace
que los datos personales sean compartidos con terceras personas, lo que es algo no
deseable.

Asi pues, intentando solventar todos estos inconvenientes se quiso crear nuestra libreria.
Una solucidn versatil, personalizable en todos los aspectos y facilmente integrable. Ademas,
esto se trata de una primera version, si se quiere, a esta libreria le queda mucha evolucién
por delante con muchas mejoras y nuevas funcionalidades.

Ampliaciones futuras
Este, como todo proyecto tecnoldgico, tiene mucho margen de mejora. A continuacién, se
van a explicar nuevas funcionalidades y cambios que podrian llevarse a cabo:

- Un servicio de intercambio de archivos, ya sean videos, audios, fotos o documentos.
Y ya para cada aplicacion final, decidiria cuales quiere permitir o si permite alguno.

- Envio de audios: Permitir a los usuarios comunicarse mediante notas de voz.

- Videollamadas: implementar un sistema de videollamadas para el chat, podria ser
utilizado para conferencias en una aplicacion interna de una empresa.

- Administrador de grupos: incluir herramientas para poder administrar los miembros
de un grupo, asi como los datos de este.

- i0S: ofrecer el mismo servicio para la plataforma mavil de Apple. Es decir, crear una
libreria para este sistema.

- Escritorio: ofrecer también una libreria para clientes Web.

40




- Base de datos del cliente: Actualmente la base de datos que utilizada en el cliente
viene encapsulada en la libreria y a pesar de que es personalizable, en un futuro seria
una buena opcidn modificarla para que sea integrable con la BD de la aplicacion que
incorpore la libreria.

- Documentacién: para facilitar el uso de la libreria y la personalizacién de esta, en el
futuro se deberia crear una documentacion detallada de todas las funcionalidades
qgue otorga y como amoldarlas con la aplicacién que la integra.

Valoracion Personal

En cuanto a valoracién personal, mis sensaciones son agridulces ya que no he podido cumplir
con todos los objetivos que me habia propuesto inicialmente. Pero por otro lado ha sido una
buena experiencia porque he aprendido mas sobre el funcionamiento de las API’s, Azure y
Android.

Laideainicial era presentar la libreria para iOS también, pero por la gran curva de aprendizaje
gue me ha supuesto entender como realmente funciona Azure y las conexiones con Android,
no me ha dado tiempo desarrollar una libreria también para iOS.

Me ha servido también para entender que a pesar de que el pensamiento genérico que
llevamos a cabo para plantear como vamos a implementar un programa, no siempre es valido
porgue hay muchas tecnologias que tienen su funcionamiento especifico. Me ha pasado en
este proyecto, que en ocasiones he querido disefiar segun la forma légica o comun y no he
conseguido ningun resultado a la hora de completar la implementacién y darme cuenta
después, de que era debido a algo bastante especifico de la tecnologia.

Ha habido muchos momentos de frustracién porque me he pasado semanas atascado con el
mismo problema y no le podia dar solucidn, ese ha sido otro factor que ha hecho no poder
completar mis objetivos.

Finalmente, y como opinidn final, en general estoy contento con el desarrollo del proyecto,
pero si es verdad que me quedo con ganas de mads, porque ahora que tengo mejor controlado
cémo funcionan las cosas, estoy seguro de que el avance seria mucho mas rapido vy
conseguiria un resultado mejor. Lo ideal hubiese sido poder haber empezado el proyecto con
un nivel de conocimiento similar, pero en un futuro estoy seguro de que me voy a volver a
encontrar con situaciones de este tipo y que lo aprendido durante este proyecto me servira
para entonces.

41




Bibliografia

[Informacién sobre Pusher] Integrando Pusher con Android, URL:
https://medium.com/@victor.garibayy/integrando-pusher-con-android-
mensajer%C3%ADa-instant%C3%Alnea-18b479d7d900

[Pusher] Pusher, URL: https://pusher.com/

[Quickblox] Quickblox, URL: https://docs.quickblox.com/

[Stream] Stream, URL: https://getstream.io/tutorials/android-chat/

[Chat21] Chat21, URL: http://www.chat21.org/

[Sendbird] Sendbird, URL: https://sendbird.com/

[Metodologias de Desarrollo] éQué tipos de metodologias de desarrollo de software
existen? URL: https://www.becas-santander.com/es/blog/metodologias-desarrollo-
software.html

[Visual Studio] Documentacién, URL: https://docs.microsoft.com/es-
es/visualstudio/windows/?view=vs-2019

[Android Studio] Documentacién, URL: https://developer.android.com/docs

[Azure] Documentacion, URL: https://docs.microsoft.com/es-es/azure/?product=featured

[SQL] Documentacion, URL: https://docs.microsoft.com/es-es/sql/?view=sql-server-ver15

[Firebase] Servicios de Google, URL: https://firebase.google.com/docs/android/setup?hl=es-
419#tconsole

42



https://medium.com/@victor.garibayy/integrando-pusher-con-android-mensajer%C3%ADa-instant%C3%A1nea-18b479d7d900
https://medium.com/@victor.garibayy/integrando-pusher-con-android-mensajer%C3%ADa-instant%C3%A1nea-18b479d7d900
https://pusher.com/
https://docs.quickblox.com/
https://getstream.io/tutorials/android-chat/
http://www.chat21.org/
https://sendbird.com/
https://www.becas-santander.com/es/blog/metodologias-desarrollo-software.html
https://www.becas-santander.com/es/blog/metodologias-desarrollo-software.html
https://docs.microsoft.com/es-es/visualstudio/windows/?view=vs-2019
https://docs.microsoft.com/es-es/visualstudio/windows/?view=vs-2019
https://developer.android.com/docs
https://docs.microsoft.com/es-es/azure/?product=featured
https://docs.microsoft.com/es-es/sql/?view=sql-server-ver15

Anexos
Anexo 1: Boceto de los disefios de pantalla

®
®
®
®
®
®

Contactos

ANEXO 1 BOCETO DE LA PANTALLA DE CHATS

43




@
®
®
®
®
@

Contactos

ANEXO 2 BOCETO DE LA PANTALLA DE CONTACTOS

44




i

@
®
®
®
®
@

Contactos

ANEXO 3 BOCETO DE LA PANTALLA DE GRUPOS

45




Anexo 2: Fragmentos de cédigo de la implementacion

turn BadRe

ANEXO 5 APl OBTENER MENSAIJES

46




Ta

chatGroups

GetAllGroup mbereEnrolle

mberEnrolle lemberEnrolled);

s

und(};

s.ForEach(group =»

. IsNullOrEmpty(group.Imag

rage.GetImage
h

irolledInChatGrou 5

mapper.Map chatGroups

ANEXO 6 APl OBTENER GRUPOS

lemberEnrolled,
_memberEnrolled.Changelser: lemberEnrolled,

ntent();

return BadReque

ANEXO 7 CAMBIAR ESTADO DEL USUARIO

id idMemberEnrolled)

47




Enumerab I Al1Nes id Us d, DateTime LastUpdateUTCInS

cont femberEnrolledInChatGroup
emberEnrolled. Equals (UserId))
g.IdChatGroup)

.Includ

1Eere

UpdateUTCInSe

ANEXO 8 CONCRETE OBTENER NUEVOS MENSAJES

.GroupId.Equals(

tatusInfo.

ANEXO 9 CONCRETE GUARDAR MENSAIJE EN LA BD

48




Enumerable<Cha dyMemberEnrolle id idMemberEnrolled)

ltGroup =

result =

.Inclu icl =
T Includ

Mhere(grp ==

ach ( memberGroup in result.MemberEnrolledInChatGroup)

1taroup (memberaroup.IdChatGroupNavigation);

urn resultGroup;

ANEXO 10 CONCRETE OBTENER GRUPOS

ds the number of characters

ageInfo {

0 From Navigation {

0 ToUserNavigation {

ANEXO 11 DTO ESTRUCTURA MENSAIJE

49




d IdMemberEnrolled {
r

IdOorganization {

Grouphame {

Image {

0 MemberEnrolled {

Organization { 3 H

11ledInChatGroupDTO> MembersEnrolled |

ANEXO 12 DTO ESTRUCTURA GRUPO

d IdMemberEnrolled {
? IdMember {

? IdOrganization |

? IdDepartment {

? Id

? IdMemberType f{

AccessId {

Nickname |

WorkPhone

WorkMail {

ANEXO 13 DTO USUARIOS

50




ANEXO 14 METODO DE ENVIO DE MENSAJE DESDE CLIENTE

ANEXO 15 METODO DE OBTENER MENSAJES DESDE CLIENTE

ANEXO 16 METODO DE CAMBIAR ESTADO DESDE EL CLIENTE

51




Anexo 3: Capturas de pantalla de la libreria dentro de una aplicacion

Unai
DISPONIBLE

Luisa
DISPONIBLE

Angel
DISPONIBLE

Javier
OCUPADO/A

Laura
OCUPADO/A

Adrian
DISPONIBLE

Aimar
DISPONIBLE

Oscar
OCUPADO/A

Sabela
OCUPADO/A

Pablo
OCUPADO/A

= O

Compaiieros

b

- 00000009090

ANEXO 17 CAPTURA DE PANTALLA DE LA LISTA DE CONTACTOS DE LA LIBRERIA DENTRO DE UNA APLICACION

52




Cambiar estado a Disponible

Unai Cambiar estado a Ocupado
DISPONIBLE

Luisa
DISPONIBLE

Angel
DISPONIBLE

Javier
OCUPADO/A

Laura
OCUPADO/A

Adrian
DISPONIBLE

Aimar
DISPONIBLE

Oscar
OCUPADO/A

Sabela
OCUPADO/A

Pablo
OCUPADO/A

= &

Comparieros

)

O
O
O
®
O
®
®
®
®
®

ANEXO 18 CAPTURA DE PANTALLA DE LA OPCION DE CAMBIAR DE ESTADO DE LA LIBRERIA EN UNA APLICACION

53




Pablo Internal

Hola, que tal estas? 445

Bien, aqui preparando la cena. ;g.q
Te apetece quedar mafiana? ;449

Si, me parece genial, podemos ir
a comer 18:49

Vamos al restaurante italiano
que ha abierto hace poco?

Perfecto! Nos vemos mafana! ;.5

ANEXO 19 CAPTURA DE PANTALLA DE UNA CONVERSACION DE LA LIBRERIA DENTRO DE UNA APLICACION

54




2@

<
At

32

=

ANEXO 20 CAPTURA DE PANTALLA DE LA LISTA DE GRUPOS DE LA LIBRERIA DENTRO DE UNA APLICACION

Gimnasio
2021-11-28

Familia
2021-11-28

Clases de Inglés
2021-11-28

=

)

i,
1l

Grupos

55




Familia 19:09
N Cuando es la comida familiar e v
{ samaz  Gimnasio 19:03
w Vamos hoy al gimnasio? v
Gabriel Oniga 18:44
Bien, que te cuentas? v

=] -

8 ® i

Mensajes

ANEXO 21 CAPTURA DE PANTALLA DE LA LISTA DE CONVERSACIONES DE LA LIBRERIA EN UNA APLICACION

56




	Resumen
	Abstract
	Abreviaturas
	Glosario de Términos
	Tabla de Ilustraciones
	Tabla de Anexos
	Introducción
	Análisis de las soluciones existentes
	Pusher
	QuickBlox
	Stream
	Chat21
	Sendbird

	Análisis
	Metodología
	Organización
	Casos de Uso
	Requisitos
	requisitos no funcionales
	Arquitectura
	Cliente Android
	Servidor
	Tecnologías
	Lenguaje de Programación
	Interfaces de Usuario

	Diseño e Implementación
	Servidor
	Cliente
	Base de Datos

	Protocolos de Uso
	Servidor
	Cliente

	Conclusiones y ampliaciones futuras
	Conclusiones
	Ampliaciones futuras
	Valoración Personal

	Bibliografía
	Anexos
	Anexo 1: Boceto de los diseños de pantalla
	Anexo 2: Fragmentos de código de la implementación
	Anexo 3: Capturas de pantalla de la librería dentro de una aplicación


