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Abstract iii

Development of robust, physically-based numerical models for transport
processes and geomorphodynamic changes

Abstract

Bed changes in rivers may occur under several morphodynamics and hydrodynamics
conditions. The modeling of this type of phenomena can be performed coupling the
Shallow Water Equations (SWE) for the hydrodynamic part and the Exner equation
for the morphodynamic part. The Exner equation states that the time variation of the
sediment layer is due to the sediment transport discharge through the boundaries of
the volume. Considering that sediment transport discharge are computed by means
of sediment capacity formulae based on 1D experimental steady flows, the assessment
of these empirical relations under unsteady 1D and 2D situations must be studied. In
order to ensure the reliability of the numerical experimentation, the numerical scheme
must handle correctly the coupling between the 2D SWE and the Exner equation under
any condition. If possible, it is convenient to express the formulation of different empir-
ical laws under a general framework. In consequence, a finite-volume numerical scheme
that includes these two main features has been chosen as a benchmark for comparing
the 1D and 2D results obtained when using several well known sediment transport
formulae: Meyer-Peter and Müller, Ashida and Michiue, Engelund and Fredsoe, Fer-
nandez Luque and Van Beek, Parker, Smart, Nielsen, Wong and Camenen and Larson.
In addition, a new interpretation of the Smart empirical law is presented in order to
cope with bed load transport over irregular beds of changing slope. Detailed results for
this new modified empirical law together with the ones obtained with Meyer-Peter and
Müller (which is the sediment capacity formula more used in hydraulic engineering)
are provided for every test case analyzed. Furthermore, the Root Mean Square Error
(RMSE) associated to every formula at each experimental condition is calculated with
the purpose of evaluating quantitatively the overall behavior of each one. The results
point out that the new interpretation of the Smart formula reaches the most accurate
results in all cases, but in a genuinely 2D flow, that is, a situation involving more
than one flow direction, the differences among sediment transport formulae are not as
noticeable as in the 1D studied situations.

Once the forecasting capacity of each sediment transport formula has been studied,
another concern is the computational cost. The coupling between the SWE and the
Exner equation by means of an augmented Jacobian matrix involves a high number of
algebraic operations for computing the eigenvalues and the eigenvectors. Therefore, the
computational cost is increased significantly, limiting the applicability of the numerical
scheme to realistic situations where large domains are involved. In order to improve
the computational efficiency, the coupling technique is modified, not decreasing the
number of waves involved in the Riemann Problem but simplifying their definitions.
The approach proposed in this thesis is a new strategy to combine concepts from
hyperbolic conservation laws and conservative finite volume schemes. With the aim to
control numerical stability in the most efficient form possible, a numerical eigenvalue
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is defined to control the discrete Exner equation in the explicit scheme. This bed
wave celerity helps mainly to ensure conservation and to control automatically the
numerical stability of the explicit scheme. The effects of the numerical coupling strategy
proposed in this thesis are tested against exact solutions and 1D and 2D experimental
data. The results emerging from this analysis show that efficiency and accuracy can be
obtained when choosing an adequate sediment transport law and the stability condition
is augmented by including a new celerity associated to the bed changes.

On the other hand, in environmental and civil engineering applications, geomorpho-
logical changes are not only present in rivers but also in steep areas where massive
mobilizations of poorly sorted material can occur. This sliding material is usually
composed by a mixture of sand and water. For simplifying the phenomenon, dry gran-
ular flows have been considered as a starting point for the understanding of the physics
involved within the landslides. The hypothesis of Saint-Venant equations are consid-
ered valid for modeling these land movements. Taking advantage of this approach, in
this thesis approximate augmented Riemann solvers are formulated providing appro-
priate numerical schemes for mathematical models of granular flow on irregular steep
slopes. Fluxes and source terms are discretized to ensure steady state configurations
including correct modeling of start/stop flow conditions, both in a global and a local
system of coordinates. The weak solutions presented involve the effect of bed slope
in pressure distribution and frictional effects by means of the adequate gravity accel-
eration components. The numerical solvers proposed are first tested against 1D cases
with exact solution and then are compared with 2D experimental data in order to
check the suitability of the mathematical models described in this thesis. Comparisons
between results provided when using global and local system of coordinates are pre-
sented. Both the global and the local system of coordinates can be used to predict
faithfully the overall behavior of the landslides. The performance of the numerical
scheme has been studied using novel experimental situations. These laboratory works
include bidimensional configurations, the inclusion of obstacles in the flow path and a
variable slope in the domain. Hence, a further step in mimicking realistic situations is
obtained, since the behavior of the granular flow is affected by the presence of natural
elements such as boulders or trees. Three situations have been considered. The first
experiment is based on a single obstacle, the second one is performed against multiple
obstacles and the third one study the influence of a dike when an overtopping situation
takes place. Due to the impact of the flow against the obstacles, fast moving shocks
appear, and a variety of secondary waves emerge. Comparisons between computed
and experimental data are presented for the three cases. The computed results show
that the numerical tool previously developed is able to predict faithfully the overall
behavior of this type of complex dense granular flow.
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Desarrollo de esquemas numéricos robustos y basados en modelos f́ısicos
para procesos de transporte y cambios geomorfodinámicos

Resumen

Los cambios en la topograf́ıa de los ŕıos pueden ocurrir bajo diferentes condiciones
hidrodinámicas y morfodinámicas diferentes. La modelización de este tipo de fenómenos
se puede desarrollar mediante un acoplamiento entre un modelo de aguas poco pro-
fundas (SWE) para la parte hidrodinámica y la ecuación de Exner para la parte mor-
fodinámica. La ecuación de Exner relaciona la variación temporal del nivel de fondo
con los flujos de transporte de sedimento que atraviesan el volumen de control. Con-
siderando que las fórmulas de transporte de sedimento están basadas en situaciones
experimentales 1D con flujo estacionario, la validación de estas relaciones emṕıricas
para situaciones transitorias 1D y 2D es imprescindible. Para garantizar la confi-
anza en los resultados computacionales obtenidos, el esquema numérico empleado debe
manejar correctamente el acoplamiento entre las ecuaciones 2D SWE y la ecuación
de Exner bajo cualquier situación. Además, es conveniente expresar la formulación
de las diferentes formulaciones de transporte general de forma general para que se
puedan incorporar con facilidad al esquema numérico. En consecuencia, un esquema
en volúmenes finitos que incluye ambas caracteŕısticas ha sido utilizado para comparar
los resultados 1D y 2D obtenidos con diversas fórmulas de transporte de sedimentos
ampliamente conocidas: Meyer-Peter and Müller, Ashida and Michiue, Engelund and
Fredsoe, Fernández Luque and Van Beek, Parker, Smart, Nielsen, Wong and Camenen
and Larson. Además, una nueva interpretación de la fórmula de Smart es presentada
para tener en cuenta el efecto del transporte de fondo sobre topograf́ıas irregulares
con pendientes cambiante. Resultados detallados para esta nueva interpretación de
la fórmula junto con los obtenidos con Meyer-Peter y Müller (que es la fórmula de
sedimento más utilizada en ingenieŕıa hidraúlica) son mostrados para cada caso anal-
izado. Además, el error cuadrático medio asociado a cada fórmula para cada condición
experimental es calculado con el propósito de evaluar cuantitativamente el compor-
tamiento general de cada relación emṕırica. Los resultados demuestran que la nueva
interpretación de la fórmula de Smart obtiene los resultados más precisos en todos los
casos, aunque, en un caso genuinamente 2D, las diferencias entre las leyes de transporte
de sedimento no son tan notables como en los casos 1D estudiados.

Una vez analizada la precisión de los resultados obtenidos con cada formulación de
transporte de sedimento, se ha estudiado otro hecho importante como es el coste
computacional del esquema numérico empleado. El acoplamiento entre las SWE y
la ecuación de Exner a través de una matriz Jacobiana ampliada requiere un elevado
número de operaciones algebraicas para calcular los valores y vectores propios. De esta
manera, el coste computacional se incrementa notablemente, limitando la aplicabilidad
del esquema numérico ante situaciones realistas. Para mejorar la eficiencia computa-
cional, la técnica de acoplamiento es simplificada, pero sin reducir el número de ondas
involucradas en el problema a Riemann. La aproximación considerada en esta tesis
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combina conceptos de las ecuaciones conservativas hiperbólicas y de los esquemas con-
servativos en volúmenes finitos. Con el propósito de controlar la estabilidad numérica
de la forma más eficaz posible, un valor propio numérico es definido para controlar la
ecuación discreta de Exner en el esquema expĺıcito. Esta celeridad asociada al fondo
ayuda principalmente a garantizar la conservación y a controlar automáticamente la
estabilidad numérica del esquema expĺıcito. Los efectos del acoplamiento numérico
propuesto en este trabajo son verificados frente a soluciones exactas y casos experi-
mentales 1D y 2D. Los resultados obtenidos muestran que eficiencia y precisión pueden
obtenerse si se escoge una formulación de transporte de sedimento adecuada y además,
se amplia la condición de estabilidad del esquema numérico para considerar la nueva
celeridad asociada a los cambios de fondo.

Por otra parte, en la ingenieŕıa medio ambiental y civil, los cambios geomorfológicos
no están solo presentes en los ŕıos, sino también en áreas con fuertes pendientes donde
masivas movilizaciones de terreno con escasa cohesión pueden producirse. Este mate-
rial deslizante suele estar compuesto por una mezcla de arenas y agua. Para simplificar
el fenómeno, los flujos granulares secos han sido considerados como un punto de par-
tida para comprender la f́ısica involucrada en estos deslizamientos de terreno. Además,
las hipótesis de las ecuaciones de Saint-Venant son válidas para modelar este tipo de
movimientos térreos. Por ello, esquemas aproximados aumentados de tipo Riemann
han sido formulados incorporando las caracteŕısticas propias de flujos que evolucionan
sobre pendientes elevadas. Los flujos y términos fuente son discretizados para garan-
tizar la correcta modelización de las condiciones de parada y comienzo de movimiento
tanto en coordenadas locales como en globales. Las soluciones débiles presentadas
tienen en cuenta los efectos de las proyecciones de la gravedad en la distribución de
presiones y en los términos de fricción. Los esquemas numéricos propuestos son primer-
amente testados frente a casos 1D con solución exacta y luego, son comparados con
casos experimentales 2D para verificar la idoneidad de los modelos matemáticos prop-
uestos. Los resultados obtenidos con las coordenadas locales y globales son presenta-
dos, concluyendo que ambos sistemas de coordenadas pueden ser usados para predecir
adecuadamente el comportamiento de los deslizamientos de terreno.

Gracias a la herramienta numérica desarrollada para el cálculo de deslizamientos de ma-
terial granular seco, una serie de situaciones experimentales nuevas han sido estudiadas.
El denominador común de estos ensayos de laboratorio se basa en una configuración
bidimensional, la incorporación de obstáculos al paso del flujo y una pendiente variable
en el dominio de estudio. De esta manera, se intenta conseguir un mayor acercamiento
a la realidad donde el comportamiento de los flujos granulares está influenciado por
la presencia de elementos naturales como grandes bloques de piedra o árboles. Tres
situaciones experimentales han sido consideradas. El primer experimento está basado
en un único obstáculo, el segundo es realizado con varios obstáculos y el último, estu-
dia el efecto que la presencia de un dique tiene sobre el flujo. Los resultados muestran
una sucesión de rápidos choques, que evolucionan desplegando una variedad de ondas
secundarias alrededor de los obstáculos. La comparativa con los datos experimentales
es presentada. Los resultados computacionales muestran que el esquema numérico es
capaz de predecir la evolución del flujo ante este tipo de situaciones complejas.
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Chapter 1

Introduction

There are an unaffordable number of physical processes over the earth surface that
affect strongly to human life, most of them linked to the transport of multiple sub-
stances. A common agent is present: water. Water can participate in different ways:
as a result of a high porosity in landslide events or as almost pure water in rivers. Also,
many geophysical or environmental flows in earth have another relevant characteristic:
the geometrical scales presented in the problem can allow us to define them mathe-
matically as shallow type flows. This means that the vertical scales can be considered
very small if compared with the horizontal ones. This aspect ratio appears in channels,
rivers, oceans or even the atmosphere, but also in debris flows, landslides, tsunamis
and volcanic eruptions. All these processes can be mathematically modeled and are
frequently defined as flows of hyperbolic nature. The importance of all those processes
makes necessary the development of predictive tools.

Predictive tools were first derived for a special type of hyperbolic flow involving gas
dynamics, and the results were applied next to the shallow water equations. Shallow
type flows are hyperbolic but not strictly hyperbolic, since in majority of the physical
situations the governing equations include the presence of source terms. The pres-
ence of source terms constitutes a challenge since the numerical point of view, as the
discretization of these terms is not an easy task.

By incorporating the presence of source terms in a specific numerical scheme, the
attention has been traditionally focused on how it can be modified by a discreet balance
between fluxes and source terms. In the context of the discretization of hyperbolic
systems a fundamental point has been to preserve the stationary states in equilibrium
with zero velocity, i.e. the well balanced property. The difficulty of constructing such
schemes has been pointed out by several authors and it has driven to the development
of several numerical schemes able to guarantee the well balanced property, (Alcrudo
and Benkhaldoun, 2001; Chinnayya et al., 2004; LeFloch and Thanh, 2007; Bernetti
et al., 2008; Rosatti and Begnudelli, 2010; LeFloch and Thanh, 2011) . On the other
hand, when it comes to realistic and common problems, involving transient situations,
flow characteristics impose restrictions on the time step size much larger than those
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given by the classical conditions which can lead to inefficient calculations and even
instabilities that prevent progress in the predictive calculation. Thus, it can be argued
that the presence of source terms justifies the building of new solutions in harmony
with the real nature of the equations, instead of using solutions built for the simple
case without source terms solutions.

The development of conservative Godunov schemes for the solution of systems of con-
servation laws was the starting point for the development of the best known numerical
schemes. Among Godunov type methods, the HLL method Harten et al. (1983) and
Roe method Roe (1986) are the most widespread. Both methods can be constructed
departing from the definition of a solver of the Riemann problem (RP). In the search
of approximate solvers linked to the presence of source terms, two augmented solvers
named ARoe (Augmented Roe) and HLLCS (HLL with Contact wave and Source
terms) were presented in Murillo and Garćıa-Navarro (2010b) and Murillo and Garćıa-
Navarro (2012b) respectively. The approximate solver in Murillo and Garćıa-Navarro
(2010b) was based on the upwind discretization of the source terms in Bermúdez and
Vázquez-Cendón (1994) and the Roe solver defined for the homogeneous case. In
Murillo and Garćıa-Navarro (2012b) the HLLCS was constructed by including the
presence of source terms in the HLLC solver (Toro, 1994). Both augmented solvers
were constructed by including an extra wave associated to the presence of source terms,
providing a complete description of the evolution of the conserved variables in the inner
estates of the RP. In consequence, the Godunov-type schemes developed were able to
avoid the appearance of instabilities and negative values of the flow depth in presence
of source terms.

This family of augmented schemes has been able to explain the effect of source terms
in the stability, which has allow to advance to much more complex surface models gen-
erating a potential breakthrough in the development of new computational tools. In
Murillo and Garćıa-Navarro (2010a) a fully coupled numerical scheme able to predict
the morphodynamics changes in alluvial channels was developed. This numerical tool
was established as a robust benchmark for performing a numerical assessment of differ-
ent formulae in Juez et al. (2013b). Another success in the employment of augmented
solvers is found in Murillo and Garćıa-Navarro (2012a), where it is stated how the
introduction of bed and friction source terms can be handled even in situations which
involve complex rheology forces of different nature: turbulent, dispersive, Coulomb,
viscous or Yield. These results have driven to formulate numerical schemes appropri-
ate for mathematical models of granular flow under steep and irregular slopes in Juez
et al. (2013a).

These advances in simulation techniques through the description of augmented solvers
constitute the basis of this thesis. Hence, the main purpose is the development of
robust, physically-based numerical schemes on the basis of Roe augmented solvers,
which can simulate accurately hydrodynamic, transport processes and geomorphody-
namic changes.
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1.1 Goal

The physic of the problems described above needs to be described in order to de-
fine suitable mathematical models. A theoretical framework is established for the two
phenomena studied in this work: the sediment transport in alluvial channels and the
geomorphodynamic flow over steep areas. The relevant formulation of these 2D phe-
nomena derives from the depth-averaged equation of bulk mass conservation, mixture
momentum conservation and conservation of the mass of the different sediments. The
main goal of this thesis is the development of numerical models able to handle with
the mathematical model studied. The milestones overcame in this work for achieving
this goal are detailed below

• Numerical assessment of several closure equations for bed-load transport

Usual formulations for morphodynamic bed load transport are given by empiri-
cal sediment transport laws. The different sediment transport capacity formulae,
used worldwide to control the erosion and deposition rates that deform the bed
in transient cases, are based on equilibrium closure equations obtained from ex-
perimental observation in 1D steady cases. Their general applicability to 2D
unsteady problems requires a careful analysis to assess whether they are able to
predict sediment transport in complex transient flows. This point is of paramount
importance and requires a well tested and robust numerical method. For this rea-
son, the numerical scheme proposed in Murillo and Garćıa-Navarro (2010a) and
based on a Jacobian-coupled model has been chosen as a numerical benchmark
for analyzing the relative performance of several well-known formulations under
different morphodynamic conditions in 1D and 2D configurations.

• Development of a efficient and robust weakly-coupled numerical technique for the
shallow water equations and the Exner equation

Recent advances in free surface flows over mobile bed have shown that accu-
rate and stable results in realistic problems can be provided if an appropriate
coupling between the shallow water equations (SWE) and the Exner equation is
performed. This coupling can be done if using a suitable Jacobian matrix, as the
one employed in the previous milestone. However, when considering this coupling
option despite that the SWE are enhanced by only considering one extra con-
servation law, i.e, the sediment mass conservation, the computational cost may
become unaffordable in situations where the initial SWE for rigid bed can be used
involving large time and space scales without giving up to the adequate level of
mesh refinement. In order to restore the computational efficiency, the coupling
technique has been studied and simplified, not decreasing the number of waves
involved in the Riemann Problem but simplifying their definitions. The effects
of the approximations made have been tested against experimental data which
include transient problems over erodible bed. The simplified model has been for-
mulated under a general framework able to insert any desirable discharge solid
load formula.
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• Development of a 2D dry granular flow solver

Landslides, rockfalls and debris avalanches take place when a mixture of mud,
sand and rocks slide down a slope together. As suggested by Denlinger and
Iverson (2004) the study of granular flows constitutes an starting point for the
understanding of the more complex mass movement phenomena mentioned be-
fore. For this reason a numerical scheme following Murillo and Garćıa-Navarro
(2010b) is developed, taking into account the particularities which arises in this
type of flows and ensuring quiescent equilibrium stages. Taking advantage on
the reliability of the numerical scheme developed, a series of novel experimental
cases which represent small-scale up-to-date environmental problems have been
studied for delving into the physics of this type of phenomena.

1.2 Outline

The outline of the present document is structured in two parts. Part I is devoted to the
sediment motion involving the presence of water. Part II addresses the mass motion
over steep areas, i.e. landslides.

Within Part I the milestones 1.1,1.1 are developed. In Chapter 2 a brief introduction of
the science of sediments dealing with water bodies is provided. In Chapter 3 different
mathematical models are described in order to clarify the assumptions made in these
type of flow, leading to as suitable description of the problem by means of a reduced set
of partial differential equations. In Chapter 4 the bed load formulations employed in
this work are described, and are written using a differentiable expression. The study of
the numerical assessment of several closure equations for bed-load transport, milestone
1.1, is developed within Chapter 5 and Chapter 7. The development of a efficient and
robust weakly-coupled numerical technique for the shallow water equations and the
Exner equation, milestone 1.1, is performed from Chapter 8 to Chapter 10. For the
achievement of each milestone, several 1D and 2D experimental test cases presenting
transient states, complex geometries and wet/dry boundaries have been been compared
with the computational results. The particular conclusions and future research line are
also included.

Part II brings together all the features regarding the mass motion over steep areas.
Therefore the milestone 1.1 is addressed here. Chapter 11 provides an introduction of
the nature of landslides and the previously laboratory work developed for its study.
Chapters 12 and 13 describe the numerical schemes particularized for this phenomena
when using both local and global coordinate systems. Chapter 14 presents the ver-
ification of the numerical models and Chapter 15 is devoted to the conclusions and
further research. Once the reliability of the numerical scheme has been proven, a series
of small-scale environmental problem are studied in Chapter 16. Chapter 17 shows the
results obtained. Finally, Chapter 18 summarizes the conclusions of these small-scale
environmental problem and future research lines.



Part I

Sediment motion in alluvial
channels





Chapter 2

Sediment transport

The science of sediment transport deals with the interrelationship between flowing
water and sediment particles. Despite having been studied since the 1950s and being
widely employed in real-life engineering (Nielsen, 1992; Julien, 1998), the develop in
the improvement of sediment management remains at present one of the most active
topics in the field of hydraulic research

The hydraulic and sediment systems are not static even under nature conditions, the
cyclic flooding events cause an imbalance on the sediment processes leading to changes
in river and coastal morphology. These differences on the sediment transport behavior
can be largely augmented by human activities such as river regulation, agriculture,
forestry, dredging, coastal and port construction and soil degradation. For this reason
there is a a general agreement about the significance of sediment management in rivers,
estuaries and coastal areas.

Additionally, sediment not only affects to the morphodynamic changes. Sediment
is also a key part of the ecosystem and directly concerns the biodiversity: it is the
responsible of the habitat formation and of the adequate ecological and chemical quality
of the water volumes.

In order to develop a sustainable use of river, coastal and marine environments several
practical solutions have been proposed. However, some of this sediment management
actions have been only focused on the initial domains of concern, leading to local
positive effects, but causing unforeseen negative consequences in other places.

For all these reasons, the inclusion of sediment management into river, coastal manage-
ment programs has became a reality and allows to get closer to the holistic idea which
represents the understanding of the water bodies, where the same level of importance
should be paid to the whole, the local river, coastal and marine environment, and to
the interdependence of each part, i.e. the hydrology, the hydraulic, the sediment, the
biology and the pollutant issues.

In response to the necessity of the integration of sediment in the water bodies manage-
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ment a computational tool is required for the analysis and prediction of these complex
systems. The forecasting capacities of the numerical technology allow to obtain pro-
active solutions and provides not only a local but also, a global feed-back on how a
man-made action or a natural event may alter a particular domain. In this fashion
this thesis pushes the development of numerical morphodynamic models for increasing
accuracy and efficiency. Since the sediment environmentals (river, coastal and marine)
are wide an each one has its own particularities, this document is focused on the river
ones.

2.1 State of the art

It is generally accepted that two of the fundamental concerns in modern sediment
hydraulic engineering practice is the need for accurate and, in the same level of im-
portance, efficient schemes for computing the shallow water equations together with
the movement of sediment particles. The numerical strategy proposed must mimic the
principal phenomenae observed in the flow field and in the movable bed.

In the search for capturing this physically significant processes Hudson and Sweby
(2002, 2005) studied the influence of steady and unsteady approaches in the mathe-
matical model when computing free surface flows considering a bed-load transport. It
was commanded to consider the unsteady system contrary to what was assumed in ear-
lier works (De Vriend et al., 1993; Abderrezzak and Paquier, 2011). Ignoring unsteady
hydrodynamical effects means that the time scales of the morphodynamics changes are
smaller in comparison with the morphodynamic ones and only nearly steady process
where the bed changes are generated in a slow way could be computed.

Focusing on the numerical techniques employed for obtaining the solution, a classi-
fication between asynchronous and synchronous strategies can be established (Aricò
and Tucciarelli, 2008). Asynchronous procedures imply that the changes in the bed
level are not of enough importance for affecting the hydrodynamic equations during a
computational time step. This way, the continuity and momentum equations for the
fluid phase are decoupled of the sediment continuity equation. They are also known
as uncoupled models. On the other hand, numerical methods which solve at the same
time step the hydrodynamic and morphodynamic equations are called synchronous and
also, coupled. De Vriend et al. (1993) justified that asynchronous/uncoupled techniques
were only valid for a limited range of hydrodynamic regimes governed by low Froude
numbers and weak interactions between the flow and bed dynamics. For this reason,
other authors, Holly and Rahuel (1990); Cao et al. (2002); Wu and Wang (2004); Xia
et al. (2010); Cordier et al. (2011), have studied synchronous/coupled procedures, able
to handle a wider range of hydrodynamic and morphodynamic situations. In some of
those previous works, despite considering an extra equation for computing the sediment
dynamics no additional conditions to the classical Courant-Friedrichs-Lewy (CFL) were
provided for controlling the numerical stability. In particular, the lack of knowledge of
an automatic numerical stability condition in Wu et al. (2012) has driven to calibrate,
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by trial and error a CFL condition for obtaining a stable solution to each particular
case.

In order to overcome the challenge when building a self-stable numerical scheme, several
strategies have been proposed: ones are based on the development of the exact form
of the eigenvalues through the mathematical model (Kassem and Chaudry, 1998; Tassi
et al., 2008; Lyn and Altinakar, 2002; Cao et al., 2006; Goutière et al., 2008) and other
in the numerical treatment of the whole set of equations (Hudson and Sweby, 2002,
2005). This work is focused on this last idea. In Hudson and Sweby (2002, 2005) thanks
to the Riemann theory and using a Roe’s approximate Jacobian matrix of the whole
system of equations was developed. Hence, the hydrodynamic and morphodynamic
equations were not only solved at the same time step but also the wave celerities,
which participate in the stability condition, incorporated information from both phases:
water and sediment. The term coupled-Jacobian will be used for that model from now
on. The main drawback of this Jacobian matrix was a strong dependence on the
bed reference level. Additionally, this Jacobian matrix included the definition of the
sediment transport formula through the Grass law, Grass (1981). This formula is based
in a power law of the velocity, which is nicely differentiable, and in a global calibration
parameter, which is unique for all the computational domain and must be tuned in
each particular problem.

Following with the Jacobian-coupled strategy, other schemes have been proposed and
extended to 2D triangular meshes more recently. In Castro Diaz et al. (2009) the
identification of the approximate Jacobian matrix was achieved by means of the dis-
tribution theory (Dal Maso et al., 1995). However, this numerical technique needs to
select families of paths that cannot be generalized. In Soares-Frazao and Zech (2010) a
first order HLLC scheme was proposed and a novel wave-speed estimator was provided
for the Exner equation. The results were affected by numerical diffusion and a fine
mesh was required by obtaining accurate results. The work in Rosatti et al. (2008a)
described a Roe solver for a two-phase problem where the attention was devoted to the
non-linear relations between primitive and conserved variables. Only the 1D approach
of the problem was studied. In Canestrelli et al. (2010); Siviglia et al. (2013) high order
numerical techniques were explained over fixed and mobile beds. However, no clear
evidence of the behavior of the numerical scheme under a real and experimental case is
provided, since only a laboratory test case is studied in the second word. Additionally,
the high computational cost of such schemes is not addressed.

In Murillo and Garćıa-Navarro (2010a) a novel coupled-Jacobian model was proposed
and the Jacobian matrix was built with independence of the bed level reference. Re-
garding the calibration coefficient of Grass law, the uniqueness of this parameter in all
the problem was avoided, (Murillo and Garćıa-Navarro, 2010a), by writing the law in
terms of several bed-load sediment transport formulae. Numerical solutions obtained
probed to be robust and accurate. Nevertheless, the applicability of this numerical
scheme to a real situation, where the domain contains kilometers of river and several
types of sediment, is in somehow limited by the computational cost, which is pro-
hibitively expensive. The computational time is highly penalized by the number of
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algebraic operations need for computing the eigenvectors and eigenvalues of the aug-
mented Jacobian matrix. In order to overcome this huge numerical effort in Serrano
et al. (2012) a partially coupled model was proposed, although the quality of the re-
sults were compromised by the poor sediment transport law employed. Furthermore,
no clear evidence of the effect of the bed wave speed in the time step restriction was
provided.

2.2 Outline

Following the previous effort made by the authors mentioned above, the concern of this
part of the work is twofold: accuracy and efficiency. The first one is related with the
sediment transport law employed. Several well known capacity formulae based on 1D
experimental steady flows have been analyzed under unsteady 1D and 2D situations.
Moreover, a new interpretation of the Smart (1984) empirical law is presented in order
to cope with bed load transport over irregular beds of changing slope. Detailed results
for this new modified empirical law together with the ones obtained with Meyer-Peter
and Müller (1948) (which is the sediment capacity formula more used in hydraulic
engineering) are provided for every test case analyzed. Furthermore the Root Mean
Square Error (RMSE) associated to every formula at each experimental condition is
calculated with the purpose of evaluating quantitatively the overall behavior of each
one. In order to ensure the reliability of the numerical experimentation the coupled-
Jacobian model previously developed and tested in Murillo and Garćıa-Navarro (2010a)
has been used.

The second objective, the efficiency, has been addressed studying a novel weakly-
coupled numerical strategy for coupling the hydrodynamic and the morphodynamic
models. The sediment transport law employed in the simulations have been the most
accurate one chosen from the previous analysis. Some of the experimental test cases
employed when studying the accuracy among the sediment discharge formulae are also
employed in this part of the work. Results of the computational cost between the
coupled-Jacobian scheme and the weakly-coupled scheme are provided. Furthermore,
a clear evidence of how a non-carefully treatment of the stability condition can ruined
the numerical results is provided.

The outline of this part is as follows: in Chapter 3 different mathematical models are
described in order to clarify the assumptions made in these type of flow, leading to
a suitable description of the problem by means of a reduced set of partial differential
equations. In Chapter 4 the bed load formulations employed in this work are described,
and are written using a differentiable expression. Chapter 5 presents the coupled-
Jacobian numerical scheme used to study the differences among the bed-load discharge
formulae and a novel numerical discretization of the Smart one is provided. Chapter
6 displays the numerical results obtained with the coupled-Jacobian model in 1D and
2D test cases when using several sediment discharge formulae. Chapter 7 is devoted
to the conclusions about the bed-load formulae studied and further research. The
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novel weakly-coupled numerical scheme proposed in this thesis is showed in Chapter 8.
Results obtained with this numerical strategy are depicted in Chapter 9 and conclusions
and future research lines are written in Chapter 10.





Chapter 3

Mathematical model

3.1 Mathematical modeling of sediment motion

In this chapter the mathematical model which governs the dynamics of the sediment
transport problem will be described. The equations express the depth averaging of the
mass and momentum conservation laws, under the hypothesis of hydrostatic pressure
and negligible vertical accelerations (SWE) and are extended to include the morpho-
dynamic evolution of the bed.

Along this chapter, the physics of the problem is analyzed departing from a general
and complex two fluid layer model, where the set of equations is reduced ending up in
a one fluid layer model coupled with the bed evolution Exner equation. First, for the
sake of clarity, the formulation is presented considering only the vertical plane and 1D
flow. Then, the extension to 2D situations is indicated.

3.2 Two layer model

The model involves the following assumptions:

i) Based on experimental observations Fraccarollo and Capart (2002), and as a first
assumption, the flow is considered stratified and composed by two fluid layers (hence the
name of the model) and one solid layer, as shown in Figure 3.1. The upper liquid-solid
layer is called the suspended layer of thickness h1: the heterogeneous liquid-granular
flow behaves as an effective medium with little slip between water and transport layer,
sediment transport is produced by suspension. The medium layer, of thickness h2,
will be referred to as transport layer: the sediment phase is mostly transported as bed
load, supported by frictional and collisional grain-grain interactions. The lower layer,
defined by the position of the bed level, z, is commonly defined as the morphodynamic
layer: the bed boundary is viewed as a transition between two mediums with different
behaviors, the solid phase and the fluid phase.
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ii) Both upper layers transport granular material, with variable size and density. The
amount of granular material transported is defined by means of the depth averaged
volumetric concentration, φ.

3.2.1 1D Conservation equations

The domain is divided in three layers, Figure 3.1, limited by interfaces. Interface Γw
is the air-water/suspended load boundary at the flow free surface. Interface Γs defines
the upper limit of the transport layer, separating the low concentration layer above
from the high concentration liquid-granular mixture below. The third interface, Γb,
acts as a boundary between the fluid and the solid behavior.

Q

Γb

Γs

Γw

z, φb

h2, φ2

h1, φ1 1 - Suspended layer

2 - Transport layer

3 - Morphodynamic layer

Figure 3.1: Interfaces in the domain

Every layer between the interfaces has its own depth (h1, h2, z), depth averaged velocity
(u1, u2) and depth averaged concentration (φ1, φ2, φb).

Γb

Γs

Γw

u2

u1

φ2

φ1 1 - Suspended layer

2 - Transport layer

3 - Morphodynamic layer

Figure 3.2: Depth averaged quantities within the layers

Through these interfaces solid material exchanges take place.
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Mass conservation

The balance of mass applied in an arbitrary control volume, Ω, using the Reynolds
transport theorem, yields the general integral equation

∂

∂t

∫

Ω

ρ(x, t)dΩ = 0 ⇔ ∂

∂t

∫

Ω

ρdΩ +

∫

Γ

ρurndΓ = 0 (3.1)

where Γ are the sections across fluxes interact (mobile boundaries and fixed bound-
aries), ρ is the mass density, ur is the relative velocity between the flow velocity and
the speed of boundary Γ (ur = u - v) and n is the outward unit vector normal to Γ.
For a better comprehension Figure 3.3 is plotted below.

Ω Mobile boundariesFixed boundaries

Figure 3.3: Reynolds theorem applied in an arbitrary volume

Applying (3.1) to the spatial control volume of layer 1, the following integral formula
is obtained

Ω1

urn = u(x2, t)urn = −u(x1, t)
urn = 0

urn = 0

n

n

n n

Ψ1,2 -Ψ1,2

x1 x2

Figure 3.4: Mass conservation in layer 1
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d

dt

∫ x2

x1

∫

A1(x,t)

ρ1dAdx

︸ ︷︷ ︸
Local variation

+

∫

A1(x1,t)

−ρ1udS
︸ ︷︷ ︸
Flow boundary fixed 1

+

∫

A1(x2,t)

ρ1udS

︸ ︷︷ ︸
Flow boundary fixed 2

+

+

∫ x2

x1

{−(Bρ1Ψ2,1) + (Bρ1Ψ1,2)} dx
︸ ︷︷ ︸

Flow bottom

= 0 (3.2)

where A1(x, t), A2(x, t) are the crossed areas, located at coordinates x1 and x2, respec-
tively, and B is the width.

The convective inertia term has been split in two contributions, the first one belongs
to the fixed boundaries (horizontal flows) and the second one to the mobile boundaries
(vertical flows). In the horizontal exchange the relative velocity ur is equal to u, the
flow velocity, because the speed of boundary is equal to zero, due to is fixed. In the
vertical exchange ur is the difference between the two velocities. The term of ur is
rewritten as a flow per unit length, Ψi,j =

Q
A
, where Q is the flow, A is the transversal

section equal to Bdx, being B the width. Hence, the product ρΨi,j is just a material
flux per unit area.

After time integrating, applying Leibnitz rule, the width B is eliminated and the inte-
gral form of mass conservation in layer 1 is rewritten as

∫ t2

t1

∫ x2

x1

∂

∂t
(ρ1h1)dxdt+

∫ t2

t1

∫ x2

x1

∂

∂x
(ρ1h1u1)dxdt−

−
∫ t2

t1

∫ x2

x1

ρ1Ψ
net
2,1dxdt = 0 (3.3)

In differential form is expressed as

∂(ρ1h1)

∂t
+
∂(ρ1h1u1)

∂x
− ρ1Ψ

net
2,1 = 0 (3.4)

Splitting the above formulation in its two components, the differential equations are
expressed as one part of sediment material (3.5) and another part of water (3.6)

∂(ρ1h1φ1)

∂t
+
∂(ρ1h1φ1u1)

∂x
− ρ1Ψ

net
s2,1

= 0 (3.5)

∂(ρ1h1(1− φ1))

∂t
+
∂(ρ1h1(1− φ1)u1)

∂x
− ρ1Ψ

net
w2,1

= 0 (3.6)

Following the same procedure the mass conservation for layer 2, Figure 3.5, leads to
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Ω2 nn

n

n

Ψ1,2 -Ψ1,2

-Ψ3,2 Ψ2,3

Figure 3.5: Mass conservation in layer 2

∂(ρ2h2)

∂t
+
∂(ρ2h2u2)

∂x
− ρ2Ψ

net
3,2 + ρ2Ψ

net
2,1 = 0 (3.7)

and finally for layer 3

∂(ρbzφb)

∂t
+ ρbΨ

net
3,2 = 0 (3.8)

Momentum conservation

The balance of linear momentum, (3.9), applied in an arbitrary control volume, Ω,
using the Reynolds transport theorem, yields the general integral equation

d

dt
(P ) =

d

dt

∫

Ω

ρudΩ (3.9)

∂

∂t

∫

Ω

ρudΩ +

∫

Γ

(ρu(urn))dΓ =

∫

Γ

(fs)dΓ +

∫

Ω

(ρfv)dΩ (3.10)

being fs the stresses and fv the volumetric forces.

The application of momentum conservation is only available in layer 1 and layer 2
where there exists velocity. The momentum equation applied to layer 1, Figure 3.6,
using Gauss theorem, leads to

d

dt

∫

Ω1

ρ1u1dΩ

︸ ︷︷ ︸
Local inertia

+

∫

Γ1

ρ1u1urndΓ

︸ ︷︷ ︸
Convective inertia

=

∫

Ω1

gρ1dΩ

︸ ︷︷ ︸
Gravity force

+

∫

Γ1

(−pn)dΓ
︸ ︷︷ ︸
Pressure forces

+

∫

Γ1

(τn)dΓ

︸ ︷︷ ︸
Tangential forces

(3.11)
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u(x2, t)−u(x1, t)

n

n

n n
-ρ2u2Ψ2,1 ρ1u1Ψ1,2

gsenθ

g

θ
p1 p2

τ2,1

x1 x2

θ

Figure 3.6: Momentum balance in layer 1

where g is the acceleration gravity, p is the pressure (normal stress) and τ is the shear
stress.

Expressing (3.11) in differential form:

∂(h1ρ1u1)

∂t
+
∂(h1ρ1u

2
1)

∂x
+ g

∂
(
1
2
ρ1h

2
1

)

∂x
+ g

∂(zρ1h1)

∂x
=

= (ρ2u2Ψ2,1 − ρ1u1Ψ2,1)− τ2,1 (3.12)

Following the same procedure for layer 2 the corresponding differential form is obtained:

∂(h2ρ2u2)

∂t
+
∂(h2ρ2u

2
2)

∂x
+ g

∂

∂x

(
1

2
ρ2h

2
2 + ρ1h1h2

)
+ g

∂(zρ2h2)

∂x
=

= −(ρ2u2Ψ2,1 − ρ1u1Ψ2,1 + ρ2u2Ψ3,2) + (τ2,1 − τ2,3) (3.13)

Summary of conservation equations of layers and bed

A summary of the conservation equations obtained from a 1D flow over a mobile bed
with a two layer fluid model is provided below

Total mass, layer 1
∂(ρ1h1)

∂t
+
∂(ρ1h1u1)

∂x
+ ρ1Ψ

net
2,1 = 0 (3.14)

Total mass, layer 2

∂ρ2h2
∂t

+
∂(ρ2h2u2)

∂x
− ρ2Ψ

net
3,2 + ρ2Ψ

net
2,1 = 0 (3.15)

Sediment mass, bed
∂(ρbzφb)

∂t
+ ρbΨ

net
s3,2 = 0 (3.16)
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Sediment mass, layer 1

∂(ρ1h1φ1)

∂t
+
∂(ρ1h1u1φ1)

∂x
− ρ1Ψ

net
s2,1 = 0 (3.17)

Sediment mass, layer 2

∂(ρ2h2φ2)

∂t
+
∂(ρ2h2u2φ2)

∂x
− ρbΨ

net
s3,2 + ρ1Ψ

net
s2,1 = 0 (3.18)

Momentum of the mixture, layer 1

∂(h1ρ1u1)

∂t
+
∂(h1ρ1u

2
1)

∂x
+ g

∂

∂x

(
1

2
ρ1h

2
1

)
+ g

∂(zρ1h1)

∂x
=

= (ρ2u2Ψ2,1 − ρ1u1Ψ2,1)− τ2,1 (3.19)

Momentum of the mixture, layer 2

∂(h2ρ2u2)

∂t
+
∂(h2ρ2u

2
2)

∂x
+ g

∂

∂x

(
1

2
ρ2h

2
2 + ρ1h1h2

)
+ g

∂(zρ2h2)

∂x
=

= −(ρ2u2Ψ2,1 − ρ1u1Ψ2,1 + ρ2u2Ψ3,2) + (τ2,1 − τ2,3) (3.20)

In case that the granular material is not homogeneous in size or density, the subscript
p should be employed to distinguish among cases with non uniform size and specific
weight distributions, inside each liquid-granular layer. Thus the formulation becomes:

Total mass, fraction p, layer 1

∂(ρ1ph1)

∂t
+
∂(ρ1ph1pu1)

∂x
+ ρ1pΨ

net
2,1 = 0 (3.21)

Total mass, fraction p, layer 2

∂ρ2ph2p
∂t

+
∂(ρ2ph2pu2)

∂x
− ρ2pΨ

net
3,2 + ρ2pΨ

net
2,1 = 0 (3.22)

Sediment mass, bed
∂(ρbzφb)

∂t
+ ρbΨ

net
s3,2 = 0 (3.23)

Sediment mass, fraction p, layer 1

∂(ρ1ph1pφ1p)

∂t
+
∂(ρ1ph1pu1φ1p)

∂x
− ρ1pΨ

net
s2,1 = 0 (3.24)

Sediment mass, fraction p, layer 2

∂(ρ2ph2pφ2p)

∂t
+
∂(ρ2ph2pusφ2p)

∂x
− ρbΨ

net
s3,2 + ρ1pΨ

net
s2,1 = 0 (3.25)
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Momentum of the mixture, layer 1

∂(h1pρ1pu1)

∂t
+
∂(h1pρ1pu

2
1)

∂x
+ g

∂

∂x

(
1

2
ρ1ph

2
1p

)
+ g

∂(zρ1ph1p)

∂x
=

= (ρ2pu2Ψ2,1 − ρ1pu1Ψ2,1)− τ2,1 (3.26)

Momentum of the mixture, layer 2

∂(h2pρ2pu2)

∂t
+
∂(h2pρ2pu

2
2)

∂x
+ g

∂

∂x

(
1

2
ρ2ph

2
2p + ρ1ph1ph2p

)
+ g

∂(zρ2ph2p)

∂x
=

= −(ρ2pu2Ψ2,1 − ρ1pu1Ψ2,1 + ρ2pu2Ψ3,2) + (τ2,1 − τ2,3) (3.27)

There are (5 + 2)Np equations, being Np the number of size fractions p which had the
bed material, and (5 + 2)Np independent variables: the flow depth for each layer, h1p,
h2p; the depth averaged velocity in layer 1, u1 and in layer 2, u2; the bottom elevation,
z and finally the sediment concentration in layer 1 of fraction p, φ1p and in layer 2, φ2p.

Several closure equations are required to express the shear stress between layers, τ2,1
and τ2,3 and the sediment fluxes, Ψ2,1 and Ψ3,2 in terms of the independent variables.
This represents such a complex task that it justifies further simplification of the model.
Next section is devoted to discuss this.

3.3 One layer model

The one layer model, Figure (3.7), is built upon a set of assumptions in relation to the
two layer model: (i) a unique layer of depth h is considered, which includes previous
layer 1 and 2, (ii) continuity approach, assuming the same velocity for the liquid and
for the solid phase, u, which leads to continuity of momentum and consequently to a
continuity of shear stresses, avoiding the necessity of calculating τij between interfaces.

Q

z, φb

h 1 - Fluid layer

2 - Solid layer

Figure 3.7: Interfaces in the domain
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3.3.1 Conservation equations

The relevant formulation of the model derives from the depth-averaged equation of bulk
mass conservation, mixture momentum conservation and conservation of the mass of
the different constituents.

The term φp represents the scalar depth-averaged volumetric concentration of compo-
nent p, with p = 1, ..., Np and Np the number of different components transported. The
mixture density is given by ρm = ρwr where ρw is the density of the water and r means
the relative density of the bulk mixture with respect the clean water

r = 1 +

Np∑

p=1

∆pφp (3.28)

where ∆p = (ρp−ρw)/ρw is the relative density of the solid phase p. It is assumed that
dissolved species with low concentration do not change bulk density ∆p = 0. In case of
having an unique specie the relative density of the bulk mixture becomes r = 1 +∆φ.

Mass conservation

Considering a generic control volume for a horizontal flow over a mobile bed where
the velocity is depth averaged, defined in Figure 3.7, the Reynolds transport for mass
conservation at the liquid layer leads to:

∫ x2

x1

∂

∂t
(ρmh)dx+

∫ x2

x1

∂

∂x
(ρmhu)dx+

∫ x2

x1

ρmΨ
net
s dx = 0 (3.29)

and to the sediment balance mass

∫ x2

x1

∂

∂t
(h

Np∑

p=1

ρpφp)dx+

∫ x2

x1

∂

∂x
(hu

Np∑

p=1

ρpφp)dx+

∫ x2

x1

Np∑

p=1

ρpΨ
net
p dx = 0 (3.30)

Following the same procedure for mass sediment balance at the bottom and considering,
φbp = (1− pp), being pp the porosity of each sediment, drives to

∫ x2

x1

∂

∂t
(z

Np∑

p=1

ρp(1− pp))dx−
∫ x2

x1

Np∑

p=1

ρpΨ
net
p dx = 0 (3.31)
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The term Ψnet
s , which appears in the above set of equations, includes the vertical sedi-

ment flux, suspension transport, and the horizontal sediment flux, bed load transport.

Ψnet
s = Ψload +Ψsusp (3.32)

Momentum equation

For the x direction, and considering Figure 3.7, the momentum conservation equation
for the mixing layer, which is the unique zone where there exists velocity, and with the
x component of the gravity mass force equal to 0, (fv)x = 0, leads to

∫ x2

x1

∂

∂t
(ρmhu)dx+

∫ x2

x1

∂

∂x
(ρmhu

2)dx =

∫ x2

x1

pbdx−
∫ x2

x1

τbdx (3.33)

The term of superficial forces, (fs)x, has been split in its two components, the hydro-
static pressure, pb, and the friction term exerted over the bed, τb.

fs = pb − τb (3.34)

Summary of conservation equations

The set of developed differential equations is newly written below in terms of the
relative density r.

Total mass

∂(hr)

∂t
+
∂(hur)

∂x
=

Np∑

p=1

∆Ψnet
p (3.35)

Sediment mass, bed

∂(z)

∂t
+

Np∑

p=1

Ψnet
p

(1− pp)
= 0 (3.36)

Sediment mass of the mixing layer for specie p

∂(hφp)

∂t
+
∂(huφp)

∂x
= Ψnet

p (3.37)

Momentum of the mixing layer

∂(hur)

∂t
+
∂[hu2r + (1/2)gh2r]

∂x
=
pb
ρw

− τb
ρw

(3.38)
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There are 3+Np equations and 3+Np variables, beingNp the number of species: the flow
depth, h, the mean flow velocity, u, the bed level, z, and the depth averaged sediment
concentration, φp. Furthermore two closure equations are still needed, one for the bed
shear stress, τb, and another one for the formulation of the sediment flux between flow
and bed, Ψnet

p . In the search for the simplest model involving the minimum number of
closure relations, the above formulation can be transformed into Exner equation, next
presented.

3.3.2 Exner equation

The above set of equations may be manipulated leading to a simpler model. Inserting
Ψp from (3.36) in (3.37) leads to the following sediment mass conservation,

∂z

∂t
+

1

(1− pp)

∂(huφp)

∂x
= − 1

(1− pp)

∂(hφp)

∂t
(3.39)

The second term on the left hand side of (3.39) is the derivative of transported sediment
flow qs,x = huφp along the x coordinate, whereas the term on the right side contains
information about the temporal evolution of the bed level due to vertical fluxes of
material in cases of suspended material. They become the Exner equation (Kalinske,
1947), expressed as follows

∂z

∂t
+ ξ

∂qs,x
∂x

= ξωs (Es − cb) (3.40)

with ξ = 1
1−pp , ωs the settling velocity of the sediment particles, Es a dimensionless

factor accounting for the sediment material entering the volume by suspension and φb
is the suspended material concentration. Both terms of qs,x and ξωs (Es − φb) can be
estimated if using empirical closure formulae, that depend on the flow conditions.

Regarding the bulk density, it can be evaluated assuming that the volumetric con-
centration is given by the closure formulae themselves (Rosatti et al., 2007). In many
environmental problems, the bulk density remains almost constant and furthermore low
concentrations of transported material are present. This means that further simplica-
tions over liquid phase mass and momentum conservation equations are admissible,
allowing the elimination of the dependence with the relative density of the mixture,
r. Alternatively, assuming that the sediment material presents low concentration and
does not change the bulk density, the relative density of the mixture, r can be made
constant and equal to 1.

Gathering the depth averaged set of equations which governed the 1D flow and the
sediment dynamics leads to
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Mass
∂(h)

∂t
+
∂(hu)

∂x
= 0 (3.41)

Momentum

∂(hu)

∂t
+
∂[hu2 + (1/2)gh2]

∂x
=
pb
ρw

− τb
ρw

(3.42)

Sediment mass, bed
∂z

∂t
+ ξ

∂qs,x
∂x

= ξωs (Es − cb) (3.43)

The extension of the formulation of the shallow water equations to unsteady 2D flow
over mobile bed using the Exner equation approach is:

Mass
∂(h)

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0 (3.44)

Momentum in x direction

∂(hu)

∂t
+
∂[hu2 + (1/2)gh2]

∂x
+
∂(huv)

∂y
=
pbx
ρw

− τbx
ρw

(3.45)

Momentum in y direction

∂(hu)

∂t
+
∂(huv)

∂x
+
∂[hv2 + (1/2)gh2]

∂y
=
pby
ρw

− τby
ρw

(3.46)

Sediment mass, bed
∂z

∂t
+ ξ

∂qs,x
∂x

+ ξ
∂qs,y
∂y

= ξωs (Es − cb) (3.47)

with (u, v) the depth averaged components of the velocity vector along the (x, y) co-
ordinates.

Considering that the present work is focused on the numerical simulation of bed load
transport since the influence of the suspended load is assumed negligible, the Exner
equation turns into a reduced form:

∂z

∂t
+ ξ

∂qs,x
∂x

+ ξ
∂qs,y
∂y

= 0 (3.48)



Chapter 4

Bed load transport

4.1 Introduction

Sediment transport includes suspended and bed-load sediment transport. Suspended
sediment is present when the flux is intense enough for allowing the sediment grains
to move away from the bed. Bed-load transport is the kind of sediment motion where
the grains roll, slide or even jump over the bed, Figure 4.1. In this work it is faced the
study of bed-load sediment transport and the suspended transport is neglected.

Rolling Sliding Jumping

Figure 4.1: Types of sediment transport

As it has been depicted in the previous chapter, when using the Exner equation, hori-
zontal solid fluxes can be evaluated using capacity formulae. In this chapter, different
formulations empirically proposed for the modeling of non-cohesive granular material
flows are presented and written following a unified expression. In this work mass ex-
change fluxes associated to suspended load will be considered negligible in comparison
with bed load transport, and therefore will not be included in the mathematical model.

4.2 Description of bed load formulation

Considering a bidimensional flow where the solid transport is focused on the bed load,
the Exner equation can be written as
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∂z

∂t
+ ξ

∂qs,x
∂x

+ ξ
∂qs,y
∂y

= 0 (4.1)

The formulation of the bed load discharge qs can be based on deterministic laws (Meyer-
Peter and Müller, 1948), (Camenen and Larson, 2005), (Smart, 1984) or in probabilis-
tic methods (Kalinske, 1947), (Einstein, 1950), always supported by experimentation.
Grass (Grass, 1981) discussed one of the most basic sediment transport laws that in
2D can be written as (Hudson, 2001)

qs,x = Agu
(
u2 + v2

)
qs,y = Agv

(
u2 + v2

)
(4.2)

This deterministic formulation is well suited for the modeling of non-cohesive granular
material and, as a basic feature, this model does not involve any sediment movement
threshold but assumes that the flow is always able to mobilize the bed. The model
requires a dimensional calibration constant Ag, accounting for the effects associated to
the grain size and the kinematic viscosity. Ranging typically from 0 to 1, it represents
a stronger interaction between flow and sediment as it approaches 1.

Following the idea presented in (Murillo and Garćıa-Navarro, 2010a), Ag can be de-
termined by using the empirical deterministic formulae avoiding the necessity of ex-
pressing this quantity as a calibration constant in each particular problem. To do this,
several empirical formulations for sediment transport will be analyzed assuming that
it is possible to write them all as

Ag = Ag(h, qs,x, qs,y) (4.3)

The bed load transport is often represented by the following dimensionless parameter,

Φ =
|qs|√

g(s− 1)d3m
(4.4)

where s = ρp/ρw is the ratio between solid material (ρp) and water densities, and dm
is the median diameter.

The dimensionless bottom shear stress or Shields parameter, can be expressed as:

θ =
|Tb|

g(ρs − ρw)dm
(4.5)

where Tb = (τb,x, τb,y) is the shear stress at the bottom due to the steady flow, that
written in terms of the Manning-Strickler’s coefficient (16.2) can be expressed as
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Formula Φ

Meyer-Peter and Müller (1948) 8 (θ − θc)
3/2

Ashida and Michiue (1972) 17 (θ − θc)(
√
θ −

√
θc)

Engelund and Fredsoe (1976) 18.74 (θ − θc)(
√
θ − 0.7

√
θc)

Luque and van Beek (1976) 5.7 (θ − θc)
3/2

Parker (1979) fit to Einstein (1950) 11.2 θ3/2 (1− θ/θc)
9/2

Smart (1984) 4 (d90/d30)
0.2 S0.6

o Cθ1/2(θ − θSc )
Nielsen (1992) 12 θ1/2(θ − θc)
Wong (2003) 4.93 (θ − θc)

1.6

Wong (2003) 3.97 (θ − θc)
3/2

Camenen and Larson (2005) 12 θ3/2 exp (−θ/θc)

Table 4.1: Summary of sediment formulae

τb,x
ρw

= ghSf,x Sf,x =
n2u

√
u2+v2

h4/3
τb,y
ρw

= ghSf,y Sf,y =
n2v

√
u2+v2

h4/3

(4.6)

This allows to express |Tb| as

|Tb| =
√
τ 2b,x + τ 2b,y =

√
(ρwghSf,x)2 + (ρwghSf,y)2 (4.7)

leading to the following expression for the Shields parameter:

θ =
n2

(s− 1)dmh1/3
(u2 + v2) =

n2

(s− 1)dmh1/3
|u|2 (4.8)

Different commonly applied empirical deterministic formulae are written in terms of Φ
and θ. The formulae tested in this work are gathered in Table 4.1, where d90 and d30 are
the grain diameter for which 90% and 30% of the weight of a nonuniform sample is finer
respectively, C is the flow resistance factor C = u/(ghSf )

0.5, So is the bed slope, θc is
the critical Shields parameter, Table 4.2, expressing the sediment movement threshold,
and

θSc = θc cosφ

(
1− tanφ

tanψ

)
(4.9)

with φ the angle of the bed slope and ψ the angle of repose of saturated bed material.
Using (4.8) and (4.4) the transport formulae in (4.1) can be expressed as

|qs| = K0 K1 (u
2 + v2)3/2 = Ag|u|3 (4.10)
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Formula θc

Meyer-Peter and Müller (1948) 0.0470
Ashida and Michiue (1972) 0.0500
Engelund and Fredsoe (1976) 0.0500
Fernández Luque and Van Beek (1976) 0.037–0.0455
Parker (1979) fit to Einstein (1950) 0.030
Smart(1984) 0.0470
Nielsen (1992) 0.0470
Wong (2003) 0.0470
Wong (2003) 0.0495
Camenen and Larson(2005) 0.0400

Table 4.2: Summary of threshold of non dimensional shear stress

with Ag = K0 K1, K0 = g1/2n3

(s−1)h1/2
and K1 varying in each case as displayed in Table

4.3.

Formula K1

Meyer-Peter and Müller (1948) 8 (1− θc/θ)
3/2

Ashida and Michiue (1972) 17 (1− θc/θ)(1−
√
θc/θ)

Engelund and Fredsoe (1976) 18.74 (1− θc/θ)(1− 0.7
√
θc/θ)

Fernández Luque and Van Beek (1976) 5.7 (1− θc/θ)
3/2

Parker (1979) fit to Einstein (1950) 11.2 (1− θ/θc)
9/2

Smart(1984) 4 (d90/d30)
0.2 S0.6

o C (1− θc/θ)
Nielsen (1992) 12 (1− θc/θ)

Wong (2003) 4.93 (1− θc/θ)
3/2 (θ − θc)

0.1

Wong (2003) 3.97 (1− θc/θ)
3/2

Camenen and Larson(2005) 12 exp (−θ/θc)

Table 4.3: Summary of Grass coefficients written for sediment formulae

These more complex definitions provided for Ag, (4.10), allows to standardize sediment
transport formulae and perform a study about their relative behavior under different
hydrodynamic and morphodynamic conditions.



Chapter 5

CJ numerical scheme

5.1 Introduction

The numerical scheme proposed in Murillo and Garćıa-Navarro (2010a) and based
on a coupled-Jacobian (CJ) strategy has been chosen as a numerical benchmark for
analyzing the relative performance of the bed load formulae described in the previous
section. The development of the numerical scheme departs from the previous system
of equations presented in the one layer model for the shallow water (3.41) and for the
Exner model (8.8) which are written in a 2D coupled form as follows:

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= S(U, x, y) (5.1)

where

U = (h, qx, qy, z)
T (5.2)

with

F =
(
qx,

q2x
h
+ 1

2
gh2, qxqy

h
, Ag

qx(q2x+q
2
y)

h3

)T

G =
(
qy,

qxqy
h
,
q2y
h
+ 1

2
gh2, Ag

qy(q2x+q
2
y)

h3

)T (5.3)

and the source term S

S =

(
0,

pb,x
ρw

− τb,x
ρw

,
pb,y
ρw

− τb,y
ρw

, 0

)T
(5.4)

In the next section, the finite volume scheme is described.
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5.2 Description of the finite volume scheme

To introduce the finite volume scheme, (5.1) is integrated in a constant size volume or
grid cell Ω using Gauss theorem:

∂

∂t

∫

Ω

UdΩ +

∮

∂Ω

Endl =

∫

Ω

SdΩ (5.5)

where En = Fnx + Gny and n = (nx, ny) is the outward unit normal vector to the
volume Ω. In order to obtain a numerical solution of system (5.1) we divide the domain
in computational cells, Ωi, using a mesh fixed in time, and (12.9) is applied to each cell

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

∫
(En)

↓
kdlk =

∫

Ωi

SdΩ (5.6)

Here (En)
↓
k is the value of the interface flux function through the edge k to be defined,

nk = (nx, ny) is the outward unit normal vector to the cell edge k, and NE is the
number of edges in cell i. Assuming a piecewise representation per cell of the conserved
variables,

Un
i =

1

Ai

∫

Ωi

U(x, y, tn)dΩ (5.7)

(12.15) is written as

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

(En)
↓
klk =

NE∑

k=1

Tn,blk +
NE∑

k=1

Tn,slk (5.8)

where lk is the corresponding edge length and Tbn and Tsn are suitable integrals of
the bed slope and friction source terms (Murillo et al., 2009):

(Tn,b)k =

(
pb
ρw

)

k

(
0, nx, ny

)T
k

(Tn,s)k = g(h̃Sf )kdn
(
0, nx, ny

)T
k

(5.9)

with h̃ = 1/2(hi + hj), i and j the cells sharing edge k, Sf,k the friction slope and dn
the normal distance between neighboring cell centers.

The numerical scheme is constructed by defining an approximate Jacobian matrix J̃
at each k edge each cell combining the normal flux En with the bed slope source term
Tn,b at each cell edge

(δE−Tb)knk
= J̃n,kδUk (5.10)
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with δ(En)k = (Ej − Ei)nk
, δUk = Uj −Ui, and Ui and Uj the initial values at cells

i and j sharing edge k. The approximate Jacobian matrix J̃ is

J̃n,k =




0 nx ny 0
(c̃2 − ũ2)nx − ũṽny 2ũnx + ṽny ũny pbznx
−ũṽnx + (c̃2 − ṽ2)ny ṽnx ũnx + 2ṽny pbzny

Ã B̃ C̃ 0


 (5.11)

being ũ, ṽ and c̃ the Roe averaged variables (Roe, 1986)

ũ =
ui
√
hi + uj

√
hj√

hi +
√
hj

, ṽ =
vi
√
hi + vj

√
hj√

hi +
√
hj

, c̃ =

√
g
hi + hj

2
(5.12)

and the coefficients Ã, B̃ and C̃ equal to

Ã = −(C1nx + C2ny)ũ− (C2nx + C3ny)ṽ

B̃ = (C1nx + C2ny)

C̃ = (C2nx + C3ny)

(5.13)

where

C1 = Ag,k ξ
(u2i+uiuj+u

2
j )√

hihj
+ Ag,k ξ

vivj√
hihj

C2 = Ag,k ξ
(uivi+ujvj)√

hihj

C3 = Ag,k ξ
(v2i +vivj+v

2
j )√

hihj
+ Ag,k ξ

uiuj√
hihj

(5.14)

As the coefficient Ag is not a constant but varies from cell to cell, at every edge k a
local Ag,k value is defined as an arithmetic mean between cells

Ag,k =
Ag,i + Ag,j

2
(5.15)

where the Ag,i coefficients are obtained through the relations presented in the bed load
formulation chapter. Other average possibilities have been tested leading to negligible
differences.

From the approximate Jacobian matrix in (5.11) a set of four real eigenvalues λ̃mk and
eigenvectors ẽmk are obtained (see Appendix A for their detailed expression). Vector U

is then split through the matrix eigenvectors basis, P̃, as

δUk = P̃kAk (5.16)
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with

P̃k = (ẽ1, ẽ2, ẽ3, ẽ4) Ak =
(
α1 α2 α3 α4

)T
k

(5.17)

The friction source terms are also projected onto the matrix eigenvectors basis, P̃, in
5.18, to guarantee the exact equilibrium between fluxes and source terms

(Tn,s)k = P̃kBk (5.18)

with

Bk =
(
β1 β2 β3 β4

)T
k

(5.19)

The complete details of the coefficients can be found in Murillo and Garćıa-Navarro
(2010a). Gathering all the previous information the volume integral in the cell at time
tn+1 is expressed as

Un+1
i = Un

i −
NE∑

k=1

4∑

m=1

(λ̃−α− β−)mk ẽ
m
JI,klk

∆t

Ai
−

NE∑

k=1

δEIi,knklk
∆t

Ai
(5.20)

being lk the length of the edge normal to the nk vector and

β̃±,m
k =

1

2
(1± sign(λ̃))mk β

m
k λ̃±,mk =

1

2
(λ̃± |λ̃|)mk (5.21)

in (5.20) the second term of the right side evaluates the flux in the cell edge and the
third term completes the updating formula to consider the spacial variation of Ag, see
Appendix B for further details.

The updated value Un+1
i in (5.20) can be interpreted as a cell average of the contri-

butions of the local RPs, and in consequence the time step ∆t is taken small enough
so that there is no interaction of waves from the k neighboring Riemann problems. In
the 2D framework, considering unstructured meshes, the relevant distance, that will
be referred to as χi in each cell i must consider the volume of the cell and the length
of the shared k edges,

χi =
Ai

maxk=1,NE lk
(5.22)

Considering that each k RP is used to deliver information to a pair of neighboring cells
of different size, the distance min(Ai, Aj)/lk is relevant, so in case that the water depth
is greater than zero in all the regions of the RP solution the time step is limited by
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∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

max |λ̃m|
(5.23)

with CFL=1/2 in the case of rectangular or structured triangular cells and, according
to computational experience, CFL close to 1 for triangular unstructured grids as the
construction of finite volume schemes from direct application of one-dimensional fluxes
leads to reduced stability ranges (Toro, 2001).

5.3 Numerical discretization of the bed slope in the

generalized Grass coefficient for the Smart for-

mulation

Empirical formulations for bed load transport presented in the previous chapter are
written as a function of the bed friction slope, except in the case of the Smart formula-
tion, that considers an additional term based on an estimation of the bed slope along
the preferential flow direction.

Φ = 4 (d90/d30)
0.2 S0.6

o Cθ1/2(θ − θSc ) (5.24)

where Φ is the dimensionless sediment transport, θ is the dimensionless shear stress,
d90 and d30 are the grain diameters for which 90% and 30% of the weight of a non-
uniform sample is finer respectively, So stands for the bed slope along the preferential
flow direction, θc is the critical Shields parameter, and C is the flow resistance factor
C = u/(ghSf )

0.5, being u the unique velocity in the 1D experimental tests carried out
by Smart and Sf the friction slope along that direction, calculated as 16.2.

In a 2D model both the bed slope and friction slope are defined along the two horizontal
coordinate directions. This subsection is devoted to the discussion of their correct
evaluation in that case. As the Smart formula was derived from 1D experimental cases
involving the bed slope in the flow direction, in 2D simulation it is necessary to evaluate
the bed slope in the local flow direction, |So,u|. The bed slope in the flow direction is
given by:

|So,u|i = |So,inu,i| (5.25)

where nu,i is the unit vector associated to the local velocity u, i at each cell i. As in 2D
the bed level surface is defined by a plane, the following technique, able to handle both
rectangular and triangular meshes, is used to evaluate the bed slope So,i = (So,x, So,y)
in each cell (Murillo et al., 2009),
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So,x =
(∑NE

k=1

(
δz nx

dn

))(∑NE
k=1 |nx|

)−1

So,y =
(∑NE

k=1

(
δz ny

dn

))(∑NE
k=1 |ny|

)−1

(5.26)

where δz is the difference of bottom heights, dn is the normal distance between the
centers of cells and nx, ny are the components of the normal vector along the axis.

Furthermore, in cases where the flow finds a nil or an adverse slope So,iui ≤ 0 the bed
slope in (5.25) is replaced by the friction slope computed in cell i, Sf,i, with the compo-
nents as defined in (16.2) . This option will be referred to as Smart CFBS (Combined
Friction and Bed Slope). In case of using under any morphodynamic condition the
friction slope, the option will be called Smart.

5.4 Geomorphological collapse

Together with the morphodynamic changes associated to the bed, when managing
transient geomorphological flows in realistic cases, the geotechnical equilibrium bank
characteristics can be ruined, leading to dramatic channel metamorphosis. This effect
needs to be modeled to reproduce correctly bed geometry evolution in combination with
flow action. In this work the effect of the geomorphological collapse is introduced in the
simulation by a simple mass conservative mechanism of slope sliding failure, assuming
that the angle of repose of submerged material of the bed can be approximated by the
friction angle. The failure mechanism is applied by comparison between the bed slope
in each cell edge k, computed as δzk

dnk
, and the angle of repose of saturated bed material.



Chapter 6

CJ scheme: numerical results

6.1 Introduction

This Chapter gathers 1D and 2D cases with experimental data in order to study the
relative behavior of the numerical results predicted when using different sediment trans-
port formulae. These closure laws were derived from 1D experimental steady flows and
are going to be tested in order to verify their capacity of prediction in unsteady situ-
ations. In addition, a novel numerical discretization of the classical Smart formula is
also tested.

Firstly 1D results are presented. A series of sudden dam break test cases are presented,
with a combination of morphodynamic and hydrodynamic situations. In the next
test case, dam erosion in time due to flow overtopping is considered. In all these
numerical experiments the flow finds different regions under subcritical or supercritical
regime. The last experiment considers a case of fully subcritical flow, with an important
discontinuity at the bottom.

The second section of this chapter is devoted to 2D hydro-morphodynamic changes.
The dam failure is the first test case studied. Then, two test cases of dam break over
a channel with a a/symmetric enlargement are analyzed.

6.2 One dimensional cases

6.2.1 Dam break test cases

These experiments were performed in a flume designed at the UCL Civil Engineering
Department (Spinewine and Zech, 2007). The flume had a length of 6 m, 3 m on
both sides of a central gate simulating an idealized dam. The channel width was set
constant and equal to 25 cm. The bed material was uniform coarse sand with the
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Test hL hR zL zR

A 0.35 0.00 0.00 0.00
B 0.40 0.00 -0.05 0.00
D 0.25 0.00 0.10 0.00
F 0.25 0.10 0.10 0.00

Table 6.1: Summary of dam break test cases

following properties: particle sizes ranging from 1.2 to 2.4 mm, with d50 = 1.82 mm,
density ρs = 2683 kg m−3, a friction angle ϕ = 30o, negligible cohesion, porosity
p = 0.47 and was characterized by a Manning roughness factor n = 0.0165 sm−1/3.

Table 6.1 summarizes the set of experiments selected in this work. The regions up-
stream and downstream the gate were filled with sediments and different water depths.
The three first test cases, A, B, and D, have been chosen to guarantee the correct per-
formance of the numerical scheme in combination with a discharge formulation, in cases
where morphological changes are produced in presence of dry bed and null, adverse or
in favorable slope. Case F allows checking if the numerical scheme in combination with
a discharge formulation is able to handle with the different type of waves that may
arise in a dam break case over wet bed. Numerical simulations have been performed
using ∆x = 0.01 m and CFL = 1.0. In all the simulations the bed domain is considered
deformable and no boundary condition is imposed at the downstream section.

6.2.2 Test A

Test A is a dam break over dry bed with an initially plain bed level. The flow evolves in
time leading to a left moving rarefaction wave upstream the gate ending in a flooding
front dominated by friction. The experimental results are close to those ones obtained
for dam break cases over dry and fixed bed (Dressler, 1954). In Figure 6.1 numerical
results and experimental data have been plotted for test case A, for times ranging from
0 to 1.5 seconds. The front wave is numerically well reproduced in space and time
when using Smart CFBS.

Figure 6.2 shows the numerical results and experimental data for the dam break test
case A using MPM (left) and Smart CFBS (right). In this case little scour is produced
and both formulations provide indistinguishable results. The Smart CFBS formulation
provides a correct tracking of the advance velocity, bed level and water level surface in
time, as shown in Figure 6.1. Considering that the numerical scheme is conservative,
differences among measured and computational data are expected to be produced by
the lack of an infiltration parameter in the numerical model.
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Figure 6.1: Numerical results and experimental data for the dam break test case A
at times t = 0.025, 0.050, 0.075, 0.100, 0.125 and 1.5 s, using a variable value of Ag
computed using Smart CFBS: measured water level surface (− • −), measured bed
level surface (−◦−), computed water level surface (−4−), computed bed level surface
(−N−)
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Figure 6.2: Numerical results and experimental data for the dam break test case A at
t = 1.5 s, using a variable value of Ag computed using MPM (left) and Smart CFBS
(right): measured water level surface (− • −), measured bed level surface (− ◦ −),
computed water level surface (−4−), computed bed level surface (−N−)

The similarity among computational results for the different discharge formulations is
clear when observing Figure 6.3, that displays the modulus of the water level surface
error (left) and bed level (right) error in x for the different formulations at t = 1.5 s.
The RMSE (Root median square error) for the different formulations plotted at Figure
6.4, confirms that in plain bed, accurate results are given by all formulas.
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Figure 6.3: Modulus of the water level surface error (left) and bed level error (right)
in x for the different formulations at t = 1.5 s in test A
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Figure 6.4: RMSE for water level surface (left) and bed level surface (right) with
different formulas at t = 1.5 s in test A

6.2.3 Test B

Test B is a case of advance front over dry bed and adverse discontinuity. The flow
evolves leading to a left moving rarefaction wave ending in front wave dominated by
friction. Figure 6.5 shows how front wave celerity is well reproduced in time when using
the Smart CFBS formula. Figure 6.6 shows the numerical results and experimental
data for the dam break test case B when using MPM (left) and Smart CFBS (right).
In both cases, the most relevant difference with measured data is observed over the
step, due to the lack of erosion with respect to experimental data. Upstream and
downstream the step both numerical simulations provide identical results, being able
to reproduce accurately the free surface level in space.

The lack of precision over the upward step is observed for all discharge formulations
if observing Figure 6.7, that provides level errors in space. The rest of the domain
presents an acceptable error. The RMSE for water level surface (left) and bed level
surface (right) at t = 1.5 s plotted at Figure 6.8 shows that in this test case there is
not clearly a more advantageous formula.
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Figure 6.5: Numerical results and experimental data for the dam break test case B
at times t = 0.025, 0.050, 0.075, 0.100, 0.125 and 1.5 s, using a variable value of Ag
computed using Smart CFBS: measured water level surface (− • −), measured bed
level surface (−◦−), computed water level surface (−4−), computed bed level surface
(−N−)
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Figure 6.6: Numerical results and experimental data for the dam break test B at t =
1.5 s, using a variable value of Ag computed using MPM (left) and Smart CFBS (right):
measured water level surface (− • −), measured bed level surface (− ◦ −), computed
water level surface (−4−), computed bed level surface (−N−)
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Figure 6.7: Modulus of the water level surface error (left) and bed level error (right)
in x for the different formulations at t = 1.5 s in test B

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

M
PM

ASHIDA-M
ICHIUE

ENGELUND-FREDSOE

FERNANDEZ LUQUE-VAN BEEK

PARKER

SM
ART

NIELSEN

W
ONG (4.93)

W
ONG (3.97)

CAM
ENEN-LARSON

SM
ART CFBS

R
M

S
E

 (
m

)

 0

 0.005

 0.01

 0.015

 0.02

M
PM

ASHIDA-M
ICHIUE

ENGELUND-FREDSOE

FERNANDEZ LUQUE-VAN BEEK

PARKER

SM
ART

NIELSEN

W
ONG (4.93)

W
ONG (3.97)

CAM
ENEN-LARSON

SM
ART CFBS

R
M

S
E

 (
m

)

Figure 6.8: RMSE for water level surface (left) and bed level surface (right) with
different formulas at t = 1.5 s in test B
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6.2.4 Test D

Test D represents a reservoir partially filled with sediments and includes a downward
step. In this case, once flow passes through the gate location accelerates and decelerates
in the friction dominated front. Figure 6.9 shows numerical results and experimental
data for the dam break using MPM (left) and Smart CFBS (right). Smart CFBS
formulation is able to handle perfectly with this kind of bed discontinuity, tracking
the water level surface and redrawing correctly the bed level. Different time instants
captured in Figure 6.10 allow appreciating the accuracy and the grade of detail of
the computational results in time. Free surface and bed levels are correctly captured
for both rarefaction wave and advance front wave, as well as, the bed level at the
discontinuity point.

Figure 6.11 shows how Smart CFBS formulation provides the lowest level for bed level
(right) and free surface (left) error in space at t = 1.5 s if compared with the rest of
formulations. Also, the RMSE for water level surface (left) and bed level surface (right)
displayed in Figure 6.12 confirms that Smart CFBS formulation gives the better results.
Compared with test cases A and B, error is drastically reduced with the proposed
formulation.
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Figure 6.9: Numerical results and experimental data for the dam break test case D at
t = 1.5 s, using a variable value of Ag computed using MPM (left) and Smart CFBS
(right): measured water level surface (− • −), measured bed level surface (− ◦ −),
computed water level surface (−4−), computed bed level surface (−N−)
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Figure 6.10: Numerical results and experimental data for the dam break test case D
at times t = 0.025, 0.050, 0.075, 0.100, 0.125 and 1.5 s, using a variable value of Ag
computed using Smart CFBS: measured water level surface (− • −), measured bed
level surface (−◦−), computed water level surface (−4−), computed bed level surface
(−N−)
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Figure 6.11: Modulus of the water level surface error (left) and bed level error (right)
in x for the different formulations at t = 1.5 s in test D
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Figure 6.12: RMSE for water level surface (left) and bed level surface (right) with
different formulas at t = 1.5 s in test D
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6.2.5 Test F

Test F is the last dam break studied in this paper. It is the case of a downward bed
step combined with an initial layer of clear water in the downstream reach. The flows
evolves in time leading to a left moving rarefaction wave upstream the gate, followed by
an steady hydraulic jump downstream the gate and ending up in a right moving shock.
Figure 6.13 gathers numerical results and experimental data for the dam break test
case F using MPM (left) and Smart CFBS (right). The results of Smart CFBS show
that the experimental data is well depicted by numerical predictions in the rarefaction,
the hydraulic jump and in the moving shock.

Figure 6.14 plots free surface and bed level at different times, where it can be observed
how the shock celerity is perfectly captured by the numerical scheme in combination
with Smart CFBS formulation. Small differences produced in the shock wave are
attributable to fast transient energy variations associated to the existence of a hydraulic
jump.

Smart CFBS leads to the smallest error in comparison with the other discharge formu-
las, as it is appreciated in Figure 6.15, where modulus of the water level surface error
(left) and bed level error (right) in x are plotted. Figure 6.16 displays RMSE for water
level surface (left) and bed level surface (right) with different formulas at t = 1.5 s
leading to the same conclusion.
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Figure 6.13: Numerical results and experimental data for the dam break test F at t =
1.5 s, using a variable value of Ag computed using MPM (left) and Smart CFBS (right):
measured water level surface (− • −), measured bed level surface (− ◦ −), computed
water level surface (−4−), computed bed level surface (−N−)
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Figure 6.14: Numerical results and experimental data for the dam break test case F
at times t = 0.025, 0.050, 0.075, 0.100, 0.125 and 1.5 s, using a variable value of Ag
computed using Smart CFBS: measured water level surface (− • −), measured bed
level surface (−◦−), computed water level surface (−4−), computed bed level surface
(−N−)
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Figure 6.15: Modulus of the water level surface error (left) and bed level error (right)
in x for the different formulations at t = 1.5 s in test F
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Figure 6.16: RMSE for water level surface (left) and bed level surface (right) with
different formulas at t = 1.5 s in test F

6.2.6 1D Numerical modeling of dam failure

Dam surface erosion and slope sliding failure in time due to flow overtopping was
studied in Tingsanchali and Chinnarasri (2001). Figure (6.17) shows a sketch of the
experimental setup. Experiments were carried out in a rectangular flume 35 m long, 1.0
m deep, and 1.0 m wide. The height and crest width of the dam were fixed at 0.80 m
and 0.30 m. The upstream slope was fixed at 1V:3H, while the downstream slopes set
to 1:5. The dam was made of sand with the following characteristics: ρp = 2650kgm−3,
d30 = 0.52mm, d50 = 0.86mm, d90 = 3.80mm and dm = 1.13mm. A friction angle of
ϕ = 30o was suggested, and the porosity was estimated by using the formula described
in Wu and Wang (2007):

p = 0.013 +
0.21

(d501000 + 0.002)0.21
(6.1)

and the Manning roughness coefficient by the Strickler formula:
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Figure 6.17: Sketch of the dam failure experimental setup

n =
1

26
d
1/6
90 (6.2)

To have a uniform overflowing across the flume width, in the experiment reproduced
in this work a vertical plate was held at the dam crest across the flume width until
the upstream water level was 3 cm higher than the dam crest. The vertical plate was
lifted up suddenly to allow the overflow to start.

In the dam breaching experiment three zones can be distinguished. The first is a
subcritical region in the reservoir area, characterized by a very low velocity. The
second zone is a supercritical region of highly unsteady flow over a steep bed slope in
the downhill slope of the dam, starting at the front edge of the dam crest. The third
zone, downstream of the dam is characterized by the presence of a hydraulic jump.
The dam erosion model was computed in all cases using cells ∆x = 0.05 m and CFL
= 1.

During the development of this experiment bed level was recorded in time at three
stations: SA, SB and SC, located respectively 15, 65 and 115 cm downstream from
the edge of the original dam crest. The overtopping discharge was also caught along
time, as well as, the reservoir level, just upstream the breach. The results presented
below compare these experimental data with the computed ones, in order to validate
the accuracy of the numerical method.

In Figure 6.18 (a) and (b) the numerical results for water level and bed level using MPM
and Smart CFBS, respectively, are plotted. Figure 6.18 (c) and (d) show measured and
computed bed level surface in time evolution at stations SA, SB and SC using MPM
and Smart CFBS respectively. While MPM clearly underestimates the erosion rate,
Smart CFBS provides results in good agreement with experimental data. Experimental
and computed values of reservoir free surface level are displayed in Figure 6.19 (a) and
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Figure 6.18: Initial bed level (- - -), computed water level surface (−4−) and bed level
surface (−N−) at t = 120 s using (a) MPM and (b) Smart CFBS. Bed level surface
evolution in time measured at stations SA (−◦−) (−�−),SB (−•−), and SC (−4−)
and computed at stations SA (− ?−),SB (−�−), and SC (−�−) using (c) MPM and
(d) Smart CFBS

(b) using MPM and Smart CFBS respectively. Better accuracy is reached when using
the new proposed formulation.

Figure 6.20 (a) and (b) depicts the evolution in time of overtopping discharge using
MPM and Smart CFBS respectively. It is observed that the maximum experimental
overtopping discharge is reached by Smart CFBS while MPM predictions are quite far
away from experimental data. Figure 6.20 shows the maximum overtopping discharge
which is achieved with different formulas. The continuous line at the top of the im-
age represents the maximum experimental overtopping discharge which is only well
calculated with Smart CFBS formula.

Modulus of bed level error in time at stations SA, SB and SC with different formulas
are shown in Figure 6.21 (a), (b) and (c), respectively. Smart CFBS formulation is the
one which introduces less error in computed values. RMSE for bed level with different
formulas in time appears plotted in Figure 6.21 (d). Newly, Smart CFBS presents the
best agreement with experimental data in the three stations.
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Figure 6.19: Evolution in time of the measured water reservoir level (− ◦ −) and
computed water reservoir level (− • −) using (e) MPM and (f) Smart CFBS
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Figure 6.20: Evolution in time of the measured (−◦−) and computed (−•−) overtop-
ping discharge using (a) MPM and (b) Smart CFBS. Maximum overtopping discharge
with different formulas (c)
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Figure 6.21: Modulus of bed level error in time at (a) station SA, (b) station SB and
(c) station SC with different formulas. RMSE for bed level z with different formulas
in time (d)
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6.2.7 Sand cube

The last experiment studied in this paper is a test where the flow has a subcritical
regime in opposition to previous tests. The experiment was made in a 15 m long
channel, with a cross section of 0.5 x 0.5 m2, at the Hydraulics Laboratory of the Civil
Engineering School of the University of A Coruña (Spain) (Peña et al., 2008).

The bottom of the flume was characterized by uniform slope, 0.00052, and a sediment
layer 4.5 cm height, was placed in the central part, between 4.5 and 9 m from its
upstream end. A sketch can be appreciated in Figure 6.22. The sand employed had the
following properties: ρs = 2680kgm−3, d50 = 1mm (uniform size), ϕ = 30o, negligible
cohesion, porosity p = 0.5 and was characterized by a Manning roughness factor n =
0.015 sm−1/3.

Initial conditions used were a water surface level downstream set to 0.115 m and a flow
value enforced to be 21.8 l/s. Numerical simulations were performed using cells ∆x =
0.05 m and CFL = 1.

0.115 m

4.5 m 4.5 m

0.045 m

15 m

S0 = 0.00052

Figure 6.22: Sand cube sketch

Figure 6.23 shows experimental data and numerical results calculated using MPM
(left) and Smart CFBS (right) at different times. The bed evolution in time is well
described with Smart CFBS. In the first part of the simulation there is an important
mobilization of material up to time t = 40 min, when the sediment bed tends to
stabilize. Most relevant differences between numerical and experimental data appear
downstream the cube. This difference is more noticeable at time t = 120 min and is
attributable to the fact that in the sediment transport model suspended load is not
considered. A careful data analysis of the measured bed level reveals that at this time,
the initial mass associated to the cube is not conserved, may be due to suspension
effects. On the other hand, the numerical scheme used in this work is exactly mass
conservative, so differences between numerical and experimental data downstream the
cube are expectable. The results provided by MPM formula are unable to gather
information correctly, leading to a poor bed level prediction as time increases.

Correct performance of Smart CFBS in comparison with the rest of sediment discharge
formulae is well appreciated in Figure 6.24, where the modulus of bed level error in x
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(left) and RMSE for bed level surface at time t = 120 min (right) are plotted. Smart
CFBS presents the more accurate results.
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Figure 6.23: Results for the sand cube test case. Initial bed level (· · ·), measured bed
and water level (− • −) and computed (−4−) using MPM at times (a) t = 10 min,
(c) t = 40 min, (e) t = 120 min, and using Smart CFBS at times (b) t = 10 min,(d) t
= 40 min, (f) t = 120 min
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Figure 6.24: Results for the sand cube test case. Modulus of the bed level error in x
for the different formulations after 120 min (left) and RMSE for bed level surface with
different formulae at 120 min (right)

6.3 Two dimensional cases

6.3.1 2D Numerical modeling of dam failure

The test case studied above, in section 6.2.6, is reproduced in a 2D mesh. Being the
flow mostly onedimensional in this case, it is important to check the performance of
the numerical discretization of the empirical formulations in a 2D mesh to ensure that
numerical results are not influenced by the grid definition. This case is of great interest,
as it allows a direct comparison between 1D and 2D simulations in a wide variety of
flow conditions.

2D numerical simulations have been performed using a coarse unstructured triangular
mesh, with a maximum cell size of 0.01m2, Figure 6.25. The CFL is retained equal to
0.5. Figure 6.26 displays the numerical results obtained using Smart CFBS formulation
for both the water level and the bed level. During the first seconds the erosion rate
reduces drastically the height of the crest and downstream the dam a hydraulic jump
appears. At the final stage of the simulation, a large wedge has been developed. Also,
the presence of incipient antidunes is observed.

Figures 6.27 (a) and (b) show the water and bed level surface computed after 120s using
MPM and Smart CFBS formulations respectively. The bed level evolution recorded
in time at the three stations SA, SB and SC, located downstream from the edge of
the original dam crest, are plotted in Figures 6.27 (c) and (d). The evolution of the
measured and computed water reservoir level is depicted in Figures 6.27 (e) and (f).
In all cases the Smart CFBS formulation presents accurate results, while the MPM
formulation shows noticeable discrepancies with respect to the experimental data.

Figures 6.28 (a) and (b) display the measured and computed overtopping discharge
just upstream the breach using MPM and Smart CFBS formulations respectively. It
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Figure 6.25: Detail of the triangular mesh

(a)
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Figure 6.26: Numerical results of water level (top image) and bed level (bottom level)
in the dike at 0s (a) and 120s (b) using Smart CFBS formulation.

is observed that the experimental overtopping discharge is better tracked with Smart
CFBS while MPM predictions are quite far from experimental data.

The relative performance of the different formulations in terms of RMSE is plotted
in Figure 6.29 at the three stations SA, SB and SC, showing important differences
among numerical results depending of the experimental law selected. The Engelund
and Fredsoe sediment transport relation was derived for a wide range of slopes, and
Figure 6.29 shows how this formulation leads to low values of RMSE. The Smart for-
mula was derived for a set of experimental cases with steep slopes, therefore it can be
expected that in this case any numerical discretization would provide accurate predic-
tions. Contrarily, numerical simulation shows that the Smart FS discretization leads to
less accurate results if compared with those given by the Smart CFBS discretization.
The rest of formulations, derived from experiments ranging from low to medium slopes
provide higher RMSE.

When comparing the numerical results of the 2D simulation with those obtained of a
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Figure 6.27: Initial bed level (- - -), computed water level surface (−4−) and bed level
surface (−N−) at t = 120 s using (a) MPM and (b) Smart CFBS. Bed level surface
evolution in time measured at stations SA (−◦−) (−�−),SB (−•−), and SC (−4−)
and computed at stations SA (− ?−),SB (−�−), and SC (−�−) using (c) MPM and
(d) Smart CFBS. Evolution in time of the measured water reservoir level (− ◦ −) and
computed water reservoir level (− • −) using (e) MPM and (f) Smart CFBS.
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Figure 6.28: Evolution in time of the measured (−◦−) and computed (•−) overtopping
discharge using (a) MPM and (b) Smart CFBS.
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Figure 6.29: RMSE for bed level z at stations SA, SB and SC (−4−) with different
formulas in time.

1D discretization, section 6.2.6, it can be observed that the RMSE is slightly bigger
in the 2D cases and that 2D results follow closely the tendencies given by the 1D
formulation.

6.3.2 Symmetric configuration for 2D dam break flow over
erodible bed

This experiment was designed at the laboratory of UCL (Soares-Frazao et al., 2012)
consisting of a dam break over a 3.6 m wide and about 36 m long flume. The gate
was connected to an upstream reservoir and was 1 m wide. The sand was extended
over 9 m downstream the gate and 1 m upstream the gate, having a thickness of 0.085
m. A complete sketch of the set up of the experiment is shown in Figure 6.30. The
properties of the sand were ρs = 2630 kg m−3, d50 = 1.61 mm, ϕ = 30o, negligible
cohesion, porosity p = 0.40 and was characterized by a Manning roughness factor n=
0.019 sm−1/3. Initial conditions used were: upstream, the water level was imposed to
0.047 m, and downstream, a control section at the end of the flume with the same height
as the sand layer, 0.085 m. The measurements carried out during the experiments
consisted of recording the water level evolution for the first 20 s at different probes,
Figure 6.31, and the longitudinal bed profiles measured from x = 0.5 m to x = 8 m at
two y coordinates, Table 6.2, and at t = 100 s.

The domain was discretized on a non-uniform triangular mesh, with a higher density
downstream the widening, being the total number of cells equal to 12500. The CFL
used was imposed to 0.5.

Figures in 6.32 show a sequence of plant views of the computed bed evolution in time
predicted by the Smart CFBS discretization, characterized by fast morphodynamic
changes. Figure 6.32 (a) at t = 10 s shows how the flow generates a wavefront which
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Figure 6.31: Position of probes in the experiment
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Section Y coordinate (m)

S1 0.20
S2 0.70

Table 6.2: Position of the sections

causes an important erosion process in the enlargement zone of the channel. While the
flooding wave advances the sand particles grabbed in this process are carried out to
the wavefront and to the wall, where they tend to sediment, as shown in Figure 6.32
(b) at t = 20s respectively. Symmetric elongated sedimentary bodies appear on the
right and left banks of the channel, that grow in time to merge generating a diamond-
shaped erosion region at t = 40s, shown in Figure 6.32 (c). At t = 60 s most of the
morphodynamic changes have taken place, and the drainage of the water contained in
the upstream reservoir smooths the bed surface, attenuating the bed forms previously
generated. For longer times, no more important morphodynamic changes happen. At
t = 100 s, Figure 6.32 (f) shows how only the diamond-shaped erosion region in the
enlargement zone, generated by the sudden change in flow direction after the opening
of the gate, remains in time. The rest of the bed surface becomes almost planar.

Figure 6.33 displays the final bed surface at t = 100 s obtained with the experimental
data (left) and with the numerical results using Smart CFBS formula (right). Numer-
ical results follow correctly the tendency of the final bed morphology although they
tend to underestimate the length of the diamond-shaped body and the thickness of the
eroded layer, resulting in smaller heights for the deposition forms. In the experimental
data the length of the bed-form zones is bigger than the one provided by the numerical
simulation. This may be explained, if considering that, due to the underestimation
of erosion rates along the numerical simulation, the magnitude of the bed forms is
smaller, and consequently, they are more easily eroded. Also, differences between nu-
merical and experimental bed surfaces can be justified by two important points: i) the
2D SW model neglects the vertical accelerations and decreases the erosion/deposition
rate and ii) errors associated to the reconstruction of the experimental bed surface,
which was generated through the interpolation of measured bed profiles.

The results shown in, Figures 6.34, 6.35, display the experimental bed level against
the computed one using the MPM and the Smart CFBS formulae at the two control
sections. The first one, section S1, which is placed to study the effect of the flow over
the bottom in the enlargement zone presents differences between both load discharge
formulae. The Smart CFBS formula obtains a better tracking of the sedimentary
process, getting more accurate results for the maximum erosion position, x = 1.4 m,
and in the maximum deposition position, x = 2.6 m.

At the second control section, section S2, differences are also noticeable between both
sediment transport formulae, being the Smart CFBS the formula which achieves a
better averaged bed level. The computed results obtained with MPM show a zone at
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Figure 6.32: Numerical results of bed level in the enlargement zone at 10s (a), 20s (b),
40s (c), 60s (d), 80s (e) and 100s (f) using Smart CFBS formula
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Figure 6.33: Experimental results (left) and numerical results using Smart CFBS for-
mula (right) of bed level in the enlargement zone at 100s
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x = 1.2 m where erosion is clearly overestimated.
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Figure 6.34: Numerical results of bed level with MPM (left) and Smart CFBS (right)
against experimental data at section S1 (y = 0.2 m) and at t = 100 s
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Figure 6.35: Numerical results of bed level with MPM (left) and Smart CFBS (right)
against experimental data at section S2 (y = 0.7 m) and at t = 100 s

The RMSE of every section and every bed load discharge are shown in Figure 6.36.
The results obtained with Smart CFBS are always among the ones which provide less
error.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

M
PM

ASHIDA-M
ICHIUE

ENGELUND-FREDSOE

FERNANDEZ LUQUE-VAN BEEK

PARKER

SM
ART

NIELSEN

W
ONG (4.93)

W
ONG (3.97)

CAM
ENEN-LARSON

SM
ART CFBS

R
M

S
E

 (
m

)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

M
PM

ASHIDA-M
ICHIUE

ENGELUND-FREDSOE

FERNANDEZ LUQUE-VAN BEEK

PARKER

SM
ART

NIELSEN

W
ONG (4.93)

W
ONG (3.97)

CAM
ENEN-LARSON

SM
ART CFBS

R
M

S
E

 (
m

)

Figure 6.36: RMSE values corresponding to the two control sections, S1 (left) and S2
(right), and obtained with every sediment transport formula
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In the case of the probes, the results are presented in Figures 6.37 and 6.38. The water
level measured is compared with the results obtained using the MPM and Smart CFBS
formulae. Both formulations provide similar values, except at probes U2 and U3 where
the Smart CFBS formula shows a better tracking of the water level evolution in time.
Probes which are further from the widening location obtain more accurate predictions
and this is justified by the reduced influence of the erosion/deposition rates in those
zones.

The RMSE value associated to every probe and to every bed load transport formula
is displayed in Figures 6.39 and 6.40. The RMSE provided by probes which are close
to the enlargement zone, U1, U2, U3 and U4, presents a bigger error, as it is has
been argued previously. Smart CFBS formula is always between formulations with less
associated error.
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Figure 6.37: Probe U1 (x = 0.64 m, y = -0.99 m). Probe U2 (x = 0.64 m, y = -0.33 m).
Probe U3 (x = 0.64 m, y = 0.33 m). Probe U4 (x = 0.64 m, y = 0.99 m). Comparison
between experimental values and MPM and Smart CFBS water level at t = 20 s
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Figure 6.38: Probe U5 (x = 1.94 m, y = -0.5 m). Probe U6 (x = 1.94 m, y = -0.165 m).
Probe U7 (x = 1.94 m, y = 0.165 m). Probe U8 (x = 1.94 m, y = 0.5 m). Comparison
between experimental values and MPM and Smart CFBS water level at t = 20 s
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Figure 6.39: RMSE values corresponding to four probes (U1, U2, U3, U4, from left to
right and from top to the bottom) and computed for every sediment transport formula
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Figure 6.40: RMSE values corresponding to four probes (U5, U6, U7, U8, from left to
right and from top to the bottom) and computed for every sediment transport formula
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6.3.3 2D Dam break with a sudden enlargement

A dam break over a dry and erodible bed experiment was performed at the laboratory
of the Civil and Environmental Engineering Department of the UCL (Palumbo et al.,
2008; Goutière et al., 2011) and is numerically reproduced here. This experiment allows
to test the ability of the different empirical formulations and discretizations in a 2D
flow configuration proposed in this work.

The upstream reservoir was 3 m long and the total channel length was 6 m. The initial
water depth upstream was set to 0.25 m whilst the sediment layer was 0.1 m deep over
the flume. A change in width was imposed 1 m downstream of the end of the reservoir,
ranging from 0.25 m to 0.5 m. A schematic sketch of the experimental set up is shown
in Figure 6.41. The bed material was uniform sand with the following properties:
median diameter d50 = 1.65 mm, density ρs = 2630 kg m−3, friction angle ϕ = 15o,
negligible cohesion, porosity p = 0.42 and was characterized by a Manning roughness
factor n = 0.0185. The water level evolution was measured at different points, whose
location is indicated in Table 6.3. The bed level was also recorded at specific sections
at the end of the experiment, displayed in Table 6.4. Once the gate is opened the flow
remains 1D until it arrives to the enlargement zone, where the flow suffers a sudden
change in its direction. The abrupt expansion generates a recirculating region and a
strong erosion at that point. The sand is transported and deposited on the left side of
the channel.

z

y

x

0.25 m

0.1 m

2 m1 m3 m
x

0.5 m

0.25 m

Gate

Figure 6.41: Sketch of the experimental flume

The domain is discretized using a non uniform triangular mesh of 4300 triangles, lo-
cally refined downstream the gate, as shown in Figure 6.42. The smallest cell area is
approximately 0.001 m2. The bed domain is considered deformable and a free flow
boundary condition is imposed at domain exit.
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Probe X coordinate (m) Y coordinate (m)

U1 3.75 0.125
U3 4.20 0.375
U6 4.95 0.125
U7 4.95 0.375

Table 6.3: Position of the probes

Probe X coordinate (m)

S1 4.10
S3 4.20
S5 4.30
S7 4.40
S9 4.50

Table 6.4: Position of the sections

X

Y

3 3.5 4 4.5
0

0.5

Figure 6.42: Part of the triangular mesh. The gate is remarked with a thick line at x
= 3 m

Figure 6.43 displays several computed results at times 2s (a), 3s (b), 5s (c) and 20s (d)
showing the bed level surface. Most of the morphodynamic change takes place during
the first five seconds of the dam break, Figures 6.43 (a), (b) and (c). The erosion rate
is of utmost importance at the corner of the enlargement zone, and is caused by the
sudden change in flow velocity direction after the abrupt widening. A peak of material
is formed at the left side of the channel. The sediment particles grabbed in this process
are settled next to the right wall where the flow reduces its velocity. As a result of
the bed deformation an elongated sedimentary body appears on the right bank. At
time t = 20s, (d), the initial strong erosion in the corner zone has been partially filled
with sediment particles transported from the upstream zone. The rest of the bed level
surface does not change noticeably.

The experimental data and computational results for the water level surface obtained
with every sediment transport formula for each probe are displayed in Figure 6.44.



6.3 Two dimensional cases 67

Computed results at probe U1, which is placed within the channel, where the flow
is mostly one dimensional, provided accurate results with respect the experimental
data. Numerical simulations at probe U3, located closer to the enlargement zone,
where erosion is of maximum importance, reproduce less accurately the measured water
surface level if compared with the rest of probes. Numerical results for probes U6 and
U7 located downstream the widening zone lead to accurate predictions of water level
surface. Numerical predictions using MPM, Smart, Wong (3.97), Fernandez Luque
and Van Beek and Smart CFBS obtain closer results to the experimental data. Smart
formula provides less accurate results than the Smart CFBS one, although it achieves
in tracking the general trend of temporal evolution.

The measured bed level after the dam break event and the numerical predictions at
cross sections S1, S3, S5 and S7, S9 are plotted in Figures 6.45 (left) and 6.46 (left).
The RMSE obtained with every sediment transport discharge formula at cross sections
S1, S3, S5 and S7, S9 are plotted in Figures 6.45 (right) and 6.46 (right) respectively.

All sediment transport formulations are able to describe the deposition of material on
the left bank and the erosion on the right bank. More noticeable differences appear
among them for the predicted bed level at the right bank, where deposition processes
take place.

On the left bank (y=0, looking upstream) of section S1, located close to the widening
zone, all sediment transport formulations predict a bed profile that follows closely
the pattern given by the experimental data. Smart CFBS, Wong (4.93) and Wong
(3.97) formulae provide the most accurate bed elevations levels. Regarding the right
bank (y=0.5), all formulations generate a less sharp slope than the one given by the
experiments and Wong (4.93) and Wong (3.97) also obtained the most accurate results.
Sections S3 and S5 show that the numerical results track correctly the bed level surface
for both left and right banks, giving similar results and RMSE values. The Smart CFBS
formula provides the least error. Section S7 shows that on the left bank the level of
erosion is well captured with independence of the formulae. Noticeable differences
among sediment discharge formulae appear in the stagnation flow region, located at
the right wall, where Smart CFBS obtained a better prediction for the bed slope shape.

At Section S9, Figure 6.46, which is the cross section placed farthest from the enlarge-
ment location, numerical results present the lowest values of RMSE. The bed level on
the left bank is newly well tracked by all the formulations but the key zone close to the
right bank is only well predicted by Smart CFBS and Wong (4.93) and Wong (3.97).
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Figure 6.43: Numerical results of water level (top image) and bed level (bottom level)
in the enlargement zone at 2s (a), 3s (b), 5s (c) and 20s (d)
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Figure 6.44: Numerical results and experimental data of water level for probes U1 (a),
U3 (b), U6 (c), U7 (d)
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Figure 6.45: Numerical results and experimental data of bed level for sections S1 (a),
S3 (b), S5 (c), S7 (d), and its corresponding RMSE obtained with every sediment
transport formula
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Figure 6.46: Numerical results and experimental data of bed level for section S9, and
its corresponding RMSE obtained with every sediment transport formula

.



Chapter 7

CJ scheme: conclusions

Several well-known sediment discharge formulae have been studied and included in
a general form in a coupled-Jacobian model for the shallow water equations and the
Exner equation. Additionally, the Smart formula, that includes the bed slope, has
been formulated in both in 1D, 2D configurations and extended to distinguish among
different situations. In special, the possibility to evaluate situations where the flow
encounters an adverse slope, and consequently has a less erosion capacity as well as
other situations where the flow reaches a favorable slope and has a bigger erosion rate
has been included. This discretization has been called Smart CFBS (Combined Friction
and Bed Slope).

1D test cases

In the first set of test cases, the bed load formulae have been applied to solve dam
break flows over dry/wet initial conditions. Whilst advance front celerity has been well
captured in the dam break cases over dry bed with independence of the type of capacity
formula used, noticeable differences appear in the bed level predictions, except in the
dam break test case A with initially flat bed level and in the case B with adverse slope.
In experiment D, over favorable slope and dry bed, erosion produces a meaningful
variation of the initial bed step, leading to a rate of erosion and deposition only well
captured in time and space if using Smart CFBS formula. In test case F, where both
sides are initially filled with water, and a favorable slope is present, only Smart CFBS
formula leads to a correct erosion evolution in time, that becomes negligible in the final
stage of the experiment. From this set of test cases it can be concluded that Smart
CFBS formula can be recommended for dam break test cases with null, adverse and
favorable slopes, and wet/dry problems.

When numerically modeling dam erosion and failure it has been found that Smart
CFBS formula is applicable in all cases analyzed in this study. Also, Engelund and
Fredsoe capacity formula provides correct results in bed level predictions, although
Smart CFBS formula estimates much better the maximum discharge values reached
in all experiments. It is also worth mentioning that, for downstream steep slopes, the
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computational time associated to the peak discharge value is calculated earlier.

The computed sand cube test showed that the best agreement between experimental
and numerical data are obtained with Smart (computing slope as friction slope) and
Smart CFBS. This can be explained considering that, in this case, unsteady hydrody-
namic effects are a quasi-steady process of slowly varying bed-load, and friction slope
is adapted to bed slope.

2D test cases

For the first experiment, the dike failure by overtopping, characterized by a one-
dimensional flow, it was clearly stated that the Smart CFBS formulation provides
the most accurate results in time and in space.

In the second experiment, a symmetric dam break over a mobile bed in a channel with
an enlargement zone was numerically reproduced. In this case a two-dimensional flow
is generated and differences among different sediment formulations are less noticeable.
Numerical results follow the tendency of the final bed morphology, underestimating
the length of the diamond-shaped body and the thickness of the eroded layer. In the
third experiment, where an erodible channel with a sudden enlargement produces a
two-dimensional flow, the computational results provided good agreement with exper-
imental values for the different sediment formulae.

Comparing with previous results from other authors (Spinewine and Zech, 2004; Ab-
derrezzak and Paquier, 2011; Wu and Wang, 2007, 2008) it can be stated that the
numerical scheme used in this work allows to clarify the differences among different
formulations which were derived by 1D stationary laboratory experiments.

The Smart CFBS discretization reaches the more accurate results in all cases, although
in a genuinely 2D flow, that is, a situation involving more than one flow direction,
the differences between sediment transport formulae are not as noticeable as in the
1D situations. The results and conclusions of this part of the document have been
published in Juez et al. (2013b).

7.1 Further research

Numerical experimentation is necessary to include non-equilibrium state formulation in
the mathematical model. Hence, it is necessary to develop the one layer model derived
of mass conservation equations, section 3, including a non uniform density along the
longitudinal profile. Several authors have suggested to include the difference between
the actual transported material and the equilibrium sediment transport capacity by
means of the definition of an adaptation length.
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The inclusion of the suspended transport coupled with the bed load model developed
here is other natural follow-up of this work. For this phenomenon, both mathematical
and numerical model are still to be studied. Another important feature that should be
addressed is the numerical assessment of the the bed load sediment transport discharge
formulae under a bed composed of a non-uniform sand particles. The interaction
between grains of different diameter requires an additional effort.

The study of the mathematical and numerical properties of more complex friction laws
for the definition of the shear stress at the bottom is also necessary. This feature is
oriented to the definition of a hyperconcentrated model, where the rheology of the flow
presents a pseudo plastic behavior due to high values of depth averaged concentrations.





Chapter 8

Weakly-coupled numerical scheme

8.1 Introduction

The development of the novel numerical strategy proposed for coupling the hydro-
dynamic and the morphodynamic models is described in this Chapter. The weakly-
coupled numerical scheme will be noted as WC from now on. The numerical scheme
departs from the previous system of equations presented in the one layer model for
the shallow water (3.41) and for the Exner model (8.8) which are written separately
as follows:

Hydrodynamic model

Neglecting diffusion of momentum due to viscosity and turbulence, wind effects and
the Coriolis term, the two-dimensional shallow water equations are formulated as,

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= S (U, x, y) (8.1)

where

U = (h, qx, qy)
T (8.2)

are the conserved variables with h representing the water depth, qx = hu and qy = hv,
with (u, v) the depth averaged components of the velocity vector u along the (x, y)
coordinates respectively. The fluxes of these variables are given by:

F =

(
qx,

q2y
h

+
1

2
gh2,

qxqy
h

)T
, G =

(
qy,

qxqy
h
,
q2y
h

+
1

2
gh2
)T

(8.3)

where g is the acceleration of the gravity. The source terms of the system are
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S =

(
0,

pb,x
ρw

− τb,x
ρw

,
pb,y
ρw

− τb,y
ρw

)T
(8.4)

which express the x-component and y-component of: i) the pressure force along the
bottom line, pb,x and pb,y, being ρw the water density, that in differential form are
expressed as a function of the bed slope, So

pbx
ρw

= ghSo,x So,x = − ∂z
∂x

pby
ρw

= ghSo,y So,y = −∂z
∂y

(8.5)

and ii) the bed shear-stress, τb,x and τb,y.

System (8.1) is time dependent, non-linear, and is non-homogeneous due to the presence
of source-terms. The pure shallow water model is hyperbolic since the eigenvalues of
its Jacobian matrices are always real. The presence of the source-terms leads to a
non-strictly hyperbolic system. However, it is assumed that under the hypothesis of
dominant advection it can be classified and numerically dealt with as belonging to the
family of hyperbolic systems. Hence, the mathematical properties of (8.1) include the
existence of a Jacobian matrix, Jn, of the flux normal to a direction given by the unit
vector, n, En = Fnx +Gny, defined as

Jn =
∂En

∂U
=
∂F

∂U
nx +

∂G

∂U
ny (8.6)

whose components are

Jn =




0 nx ny
(gzh− u2)nx − uvny vny + 2unx uny
(gzh− v2)ny − uvnx vnx unx + 2vny


 (8.7)

The eigenvalues of this Jacobian matrix (λ1 = un− c, λ2 = un and λ3 = un+ c, with
c =

√
gh) constitute the wave speeds in the linearized problem and provide information

about directions in which the information travels.

Morphodynamic model

Sediment dynamics are assumed to be well modeled through the bed-load Exner equa-
tion,

∂z

∂t
+ ξ

∂qs,x
∂x

+ ξ
∂qs,y
∂y

= 0 (8.8)

where z is the bed elevation, ξ = 1
1−p , p is the material porosity, qs,x and qs,y denote

the solid transport discharge along the (x, y) coordinates respectively, influenced by
the water depth h and the depth averaged velocities u and v.
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The formulation of the bed load discharge, qs, assumes an instantaneous adaptation
of the flow transport capacity to the hydrodynamic conditions, and is based on Grass
law as explained in Chapter 4. The constant Ag has been written by means of several
empirical formulae as explained in Chapter 4.

Despite of the fact that the Exner equation is not actually hyperbolic, it is possible to
write a wave speed estimation associated to the sediment flux as follows

λb = ξ
∂qsn

∂z
(8.9)

The computation of this bed wave speed is not directly extracted from the characteris-
tics theory. However, it constitutes the basis of the upwind strategy that is explained
in the following sections. Its definition and participation in the stability of the method
is of utmost importance as it was stated in a previous work, (Cordier et al., 2011).

8.2 Finite Volume Model

To introduce the finite volume scheme, system (8.1) and equation (8.8) are integrated
in a grid cell Ωi

∂

∂t

∫

Ω

UdΩ +

∫

Ω

(
−→∇E)dΩ =

∫

Ω

SdΩ (8.10)

∂

∂t

∫

Ω

zdΩ +

∫

Ω

ξ(
−→∇qs)dΩ = 0 (8.11)

Using Gauss theorem (8.10) and (8.11) are written as

∂

∂t

∫

Ωi

UdΩ +

∮

∂Ωi

Endl =

∫

Ωi

SdΩ (8.12)

∂

∂t

∫

Ωi

zdΩ +

∮

∂Ωi

ξqsndl = 0 (8.13)

where vector n is outward to the cell Ωi, as displayed in Figure 12.2. The second
integral in (12.9) and (8.13) can be explicitly expressed as a sum over the cell edges,

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

∫
Enkdlk =

∫

Ω

SdΩi (8.14)
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Figure 8.1: Cell parameters

∂

∂t

∫

Ωi

zdΩ +
NE∑

k=1

ξ

∫
qsnkdlk = 0 (8.15)

with nk = (nx, ny) the outward unit normal vector to the cell edge k, dlk is aligned in
the direction of the edge and NE is the number of edges in cell i, as shown in Figure
12.2.

Assuming a first order in space approach, (12.10) and (8.15) become

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

Enklk =

∫

Ω

SdΩi (8.16)

∂

∂t

∫

Ωi

zdΩ +
NE∑

k=1

ξqsnklk = 0 (8.17)

Also, the volume integrals of the source terms are expressed in terms of appropriate
contour integrals by projecting the source terms onto the normal direction nk to each
cell edge as follows

∫

Ωi

SdΩi ≈
NE∑

k=1

∫

x′
[Skdx

′
k] lk (8.18)

being x′ the coordinate normal to cell edge k, as shown in Figure B.1. Then, the initial
system of equations in (8.1) is transformed in

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

(
En −

∫

x′
Skdx

′
)

k

lk = 0 (8.19)
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System (12.15) and equation (8.17) will be solved using approximate linear solutions of
initial value problems according to the Godunov method, where Un

i is the cell-average
value of the solution U(x, y, t) for the ith cell at time tn

Un
i =

1

Ai

∫

Ωi

U(x, y, tn)dΩ (8.20)

being Ai the cell area. Assuming a piecewise representation of the variables within the
cell drives to define an uniform value for each variable.

The development of the numerical scheme in the Godunov method can be completed by
the definition of an approximate solver of the Riemann problem, hereafter RP, governed
by the fluxes at each side of each edge, Ej and Ei for the hydrodynamic model and
qsj,qsi for the morphodynamic model. For the Roe’s approximate solver this solution
is given by an approximate Jacobian matrix constructed through the flux difference
(δE)k = Ej − Ei and (δqs)k = qsj − qsi (Roe, 1986).

Un
i Un

j

U

Un
i

Un
j

nk

x′

x′

x′ = 0

Figure 8.2: Riemann problem in 2D along the normal direction to a cell side

8.3 Approximate Riemann Solution for the Hydro-

dynamic model

The next step consists of defining a local 1D RP at each k edge, as shown in Figure
B.1. This is done projecting the fluxes onto the normal direction nk to each cell edge.
Therefore in a k edge the following local RP, including bed slope and friction terms,
along the x′ direction (i.e. the coordinate normal to the cell edge) is defined
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∂U

∂t
+
∂(En)

∂x′
− S = 0 (8.21)

with the following initial conditions

U(x′, 0) =

{
Ui if x′ < 0
Uj if x′ > 0

(8.22)

The exact solution of the local RP provides the variation of U in time and space,
U
(
x

′

, t
)
, and additionally the exact value of the normal flux crossing the edge, (En)k.

Variation ofU(x′, t) can be obtained by integrating (8.21) over a suitable control volume
such as the one shown in Figure 8.3. It is showed a local RP with initial values Ui,Uj ,
over the time interval [0,∆t] and the space interval [−∆x′,∆x′], where

−∆x′ ≤ λmin∆t, ∆x′ ≥ λmax∆t (8.23)

Integrating (8.21) over the control volume [0,∆t]× [−∆x′,∆x′]

∫ x′=∆x′

x′=−∆x′

∫ t=∆t

t=0

(
∂U

∂t
+
∂En

∂x′
− S

)
dx′dt = 0 (8.24)

and reordering the following expression of integral volume for U(x′, t) is obtained

∫ +x′

−x′
U(x′, t = ∆t) dx′ = ∆x′ (Uj +Ui)− δ(En)k∆t+

∫ x′

−x′

∫ ∆t

0

S dx′dt (8.25)

The source term involved in the Riemann solver is linearized driving to consider a dis-
continuity at point x′ = 0, Figure 8.3. Assuming that source terms are not necessarily
constant in time, the following time linearization of the nonconservative term is applied
(Vázquez-Cendón, 1999; Murillo and Garćıa-Navarro, 2010b)

∫ ∆x′

−∆x′

∫ ∆t

0

S dx′dt ≈ ∆t

∫ ∆x′

−∆x′
S(x′, 0) dx′ = ∆tS̄nk (8.26)

where S̄ is a suitable numerical source vector (Murillo and Garćıa-Navarro, 2011,
2010b). Once all the terms of the volume integral in (8.25) are defined, the varia-
tion of the conserved variables is assumed to be given by

∫ +∆x′

−∆x′
U(x′, t = ∆t) dx′ = ∆x′ (Ui +Uj)− δMk∆t (8.27)



8.3 Approximate Riemann Solution for the Hydrodynamic model 81

with

δM = δEn − S̄n (8.28)

t

x′

∆t
(En)i (En)j

S̄k

∆x′ ∆x′

Ui Uj

h(t > 0)

x′=0

x′

λmin λmax

hi

hj

Figure 8.3: Integration control volume defined by a time interval [0,∆t] and a space
interval [−∆x′,∆x′]

Consistency condition for the Hydrodynamic Model

The exact solution of the local RP in (8.21) U(x′, t) is not easily derivable and addi-
tionally, its computational cost is high enough for not using a exact solver. Therefore, a
strategy for handling it can be based in a approximation through a constant coefficient
linear problem,

∂Û

∂t
+ Ln,k

∂Û

∂x′
= 0 (8.29)

with the same initial conditions as the ones proposed in (8.22)

Û(x′, 0) =

{
Ui if x′ < 0
Uj if x′ > 0

(8.30)

This approximation will provide a set of linearized or weak solutions, that will be
referred to as Û(x′, t). In this case, the term Û(x′, t) include the presence of a source
term, as it appears in the original RP (8.21).
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Thanks to the Consistency Condition (Toro, 2009) it must satisfied that the integral
of the approximate solution Û(x′, t) of the linearized RP over control volume [0,∆t]×
[−∆x′,∆x′] must be equal to the integral of the exact solution U(x′, t) given in (8.29)

∫ ∆x′

−∆x′
Û(x′, t = ∆t) dx′ =

∫ ∆x′

−∆x′
U(x′, t = ∆t) dx′ (8.31)

This fashion, making use of relationship from (12.27), it is possible to equalize the
following terms

∫ ∆x′

−∆x′
Û(x′, t = ∆t) dx′ = ∆x′ (Ui +Uj)− δMk∆t (8.32)

Bearing in mind (12.44), (8.29) is integrated over the control volume pictured in Figure
8.3

∫ x′=∆x′

x′=−∆x′

∫ t=∆t

t=0

(
∂Û

∂t
+ Ln,k

∂Û

∂x′

)
dx′dt = 0 (8.33)

and reordering, the following expression is obtained at each k edge

∫ ∆x′

−∆x′
Û(x′, t = ∆t) dx′ = ∆x′ (Ui +Uj)− Ln,kδUk∆t (8.34)

and since we want to satisfy (12.44), the constraint that follows is

δMk = Ln,kδUk (8.35)

The construction of the constant linear matrix Ln,k is based on the definition of an

approximated Jacobian matrix of the non-linear flux En, J̃n,k (Roe, 1986)

δ(En)k = J̃n,kδUk (8.36)

This approach provides a set of 3 real eigenvalues λ̃mk and 3 eigenvectors ẽmk . With

them, it is possible to define matrix P̃ = (ẽ1, ẽ2, ẽ3) making use of the Roe’s averages,

Roe (1986). The approximate matrices P̃, and P̃−1 diagonalize J̃k

P̃−1
k J̃n,kP̃k = Λ̃k (8.37)

with Λ̃k a diagonal matrix with eigenvalues λ̃mk in the main diagonal
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Λ̃k =




λ̃1 0 0

0 λ̃2 0

0 0 λ̃3



k

(8.38)

Difference in vector U across the grid edge is projected onto the matrix eigenvectors
basis

δUk = P̃kAk (8.39)

where Ak = ( α1 α2 α3 )Tk contains the set of wave strengths.

Furthermore, for linking the source terms to the set of eigenvalues they are also pro-
jected onto the matrix eigenvectors basis

(S̄n)k = (P̃B)k (8.40)

with Bk = (β1, β2, β3)Tk . Using (12.28), (12.48) and (12.56) matrix δMk can be ex-
pressed as

δMk = J̃n,kδUk − P̃k(B)k =
3∑

m=1

(
λ̃ θαẽ

)m
k

(8.41)

with

θmk =

(
1− β

λ̃α

)m

k

(8.42)

or in matrix form

δMk = (P̃Λ̃ΘP̃−1)kδUk (8.43)

Therefore the value for the desired matrix Ln,k in (12.47) is

Ln,k = (P̃Λ̃ΘP̃−1)k (8.44)

where Θ is a diagonal matrix

Θk =




θ1 0 0
0 θ2 0
0 0 θ3



k

(8.45)
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that relates fluxes and source terms and that becomes equal to the identity matrix in
absence of source terms.

2D first order finite volume for the Hydrodynamic Model

Definition of matrix Ln,k allows to define directly right-going and left-going wave prop-
agations. This way the flux δMk is written in splitting way as follows

δMk = δM−
i,k + δM+

j,k (8.46)

with

δM−
i,k = (P̃Λ̃−ΘP̃−1)kδUk δM+

j,k = (P̃Λ̃+ΘP̃−1)kδUk (8.47)

the flux splitting version of the Godunov first order method is

Un+1
i = Un

i −
NE∑

k=1

δM−
i,k

∆t lk
Ai

(8.48)

Superindex − becomes necessary to distinguish from outcoming fluxes to cell i at edge
k, that will be referred to as δM+

j,k, as they update the adjacent j cell sharing the k
edge.

8.4 Approximate Riemann Solution for the Mor-

phodynamic model

Coming back to the equation which governs the sediment dynamics (8.8), the same
steps followed with system (8.1) can be applied. A local 1D RP is obtained projecting
the sediment fluxes onto the normal direction nk of each k edge of each cell

∂z

∂t
+ ξ

∂(qsn)

∂x′
= 0 (8.49)

Using the integral form of (8.49) the weak solutions of the RP can be found. For this
purpose a suitable control volume, Figure 8.4, is integrated over the following time
interval [0,∆t] and the space interval [−∆x′,∆x′], with x′ sufficiently large,

∫ +∆x′

−∆x′
z(x′, t = ∆t) dx′ = ∆x′ (zi + zj)− ξδqsn∆t (8.50)
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t

x′

∆t
(qsn)i (qsn)j

∆x′ ∆x′

zi zj

z(t > 0)

x′=0

x′

zi

zj

λb

Figure 8.4: Integration control volume defined by a time interval [0,∆t] and a space
interval [−∆x′,∆x′]

Again, the piecewise representation of the variables is hypothesized and the first order
Godunov method is used for updating the averaged quantities.

Consistency condition for the Morphodynamic Model

Following the philosophy employed for the hydrodynamic model a Roe approach is
going to be used, i.e., the solution of each RP is obtained from the exact solution of
a locally linearized problem defined by an approximate solution ẑ(x, t). This constant
linear problem is based on the definition of an approximate wave speed of the non-linear
sediment flux, qsn. This following equivalent equation is written

∂ẑ

∂t
+ λ̃bn,k

∂ẑ

∂x′
= 0 (8.51)

with the following initial conditions

ẑ(x′, 0) =

{
zi if x′ < 0
zj if x′ > 0

(8.52)

The approximate solution must fulfill the Consistency Condition (Leveque, 2002), forc-
ing the integral of the exact solution (8.49) and the integral of the locally linearized
solution, (8.51) to be the same. Thanks to this constraint it is possible to obtain the
following expression for the wave speed which updates the bed level,
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λ̃bn,k =
δ(ξqsn,k)

δz
(8.53)

with δz = zj − zi and δqsn,k = qsn,j − qsn,i. Regarding equation (4.2) it is neces-
sary to compute the Grass coefficient for defining the bed load discharge in each cell.
Following Murillo and Garćıa-Navarro (2010a) as the coefficient Ag is not a constant
but varies from cell to cell, at every edge k a local Ag,k value is defined as an arith-
metic mean between neighboring cells. Consequently, the term δqsn,k is written as
δqsn,k = Ag,kδunk.

Additionally, when applying numerical modeling techniques under a flat bottom sit-
uation, the bed level difference is null and consequently the bed wave speed is not
defined. In order to overcome this difficulty the computation of the friction slope,
Sf,k Murillo and Garćıa-Navarro (2010b), is proposed. The friction slope is commonly
used in a high number of sediment transport empirical laws, Meyer-Peter and Müller
(1948); Smart (1984); Ashida and Michiue (1972); Camenen and Larson (2005), as
these formulae were derived from 1D steady solid transport experiments. Additionally,
its employment is coherent with the fact that transport process implies a loss of energy
through the interaction between the sediment and the flow (Smart, 1984; Whittaker
and Davies, 1982).

Also it is worth noting that the linearization of λ̃bn,k in cases of almost flat bottom
can lead to unphysical huge values of the bed wave speed. This is avoided by im-
posing a lower threshold for the bed level difference between cells: up to grain size,
ds, the approximation of the friction slope will be considered. This limitation ensures
coherent values in the estimation of the bed wave speed, and wave celerity in (8.53) is
approximated by

λ̃bn,k =
ξδqsn,k

δz′
(8.54)

with

δz
′

=

{
δz if δz

′

> ds
−Sf,kdn if δz

′

< ds
(8.55)

being dn the normal distance between cell centers (Murillo and Garćıa-Navarro, 2010b).

2D first order finite volume for the Morphodynamic Model

The evaluation of the wave speed, λ̃bn,k as in (8.54), brings the opportunity of splitting
the sediment flux difference δqsn,k in right-going and left-going wave propagations.
Consequently the Godunov first order method can be written as
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δqsn,k = δqsn
+
i,k + δqsn

−
j,k (8.56)

with

δqsn
+
i,k = λ̃+bn,kδzk δqsn

−
j,k = λ̃−bn,kδzk (8.57)

and λ̃±bn,k =
1
2
(λ̃bn,k ± |λ̃bn,k|). Therefore,

zn+1
i = zni −

NE∑

k=1

δqsn
−
i,k

∆t lk
Ai

−
NE∑

k=1

δqsnIi,k

∆t lk
Ai

(8.58)

where the second term of the right side in (8.58) evaluates the flux in the cell edge and
the third term completes the updating formula to consider the spatial variation of Ag,
as it was justified in Murillo and Garćıa-Navarro (2010a).

Another possibility for defining the Godunov first order method is through a flux
scheme, considering outcoming and incoming fluxes through the edges of the cell. Hence
the bed level is updated as

zn+1
i = zni −

NE∑

k=1

ξq∗
sn,k

∆t lk
Ai

(8.59)

where

q∗
sn,k =

{
qsn,i if λ̃bn,k > 0

qsn,j if λ̃bn,k < 0
(8.60)

being qsn,i and qsn,j the bed load discharge computed in the cell i and in the cell j.

Although both numerical schemes (8.58) and (8.59) are completely equivalent, it must
be stressed that the flux version is computationally more efficient, as minor algebraic
operations are need. Additionally, with the flux form of the numerical scheme in
(8.59), ghost cells must be considered in the boundary cells in order to complete the
information over the entire cell, Leveque (2002). It is worth noting that the application
of ghost cells almost does not penalize the computational effort. In this fashion, since
the computational cost when using the flux scheme in (8.59) is less, this alternative
has been chosen for obtaining the results displayed in the next sections.
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8.5 Stability region

Updated values of Un+1
i and zn+1

i are defined cell averaging the contributions of the
local RPs, and in consequence the time step ∆t has to be taken small enough so that
there is no interaction of waves from the k neighboring RPs. In the 2D framework,
considering unstructured meshes, the relevant distance, that will be referred to as χi
in each cell i must consider the volume of the cell and the length of the shared k edges
(Murillo and Garćıa-Navarro, 2010b)

χi =
Ai

maxk=1,NE lk
(8.61)

Considering that each k RP is used to deliver information to a pair of neighboring cells
of different size, the distance min(Ai, Aj)/lk is relevant, so in case that the water depth
is greater than zero in all the regions of the RP solution the time step is limited by

∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

max |λ̃m|
(8.62)

with CFL=1 in case of 1D meshes, CFL=1/2 in case of 2D structured or unstructured

meshes (Toro, 1997) and being λ̃m the wave speeds.

When the advection structure of the problem is all contained in the system matrices,
i.e. coupled-Jacobian approach (Murillo and Garćıa-Navarro, 2010a; Castro Diaz et al.,
2009; Soares-Frazao and Zech, 2010; Siviglia et al., 2013), the linearised wave speeds
provided by the eigenvalues allow to define a suitable CFL condition, retaining the
sediment transport part of the system. However, when using uncoupled/asynchronous
(De Vriend et al., 1993) or coupled/synchronous models (Holly and Rahuel, 1990; Cao
et al., 2002; Wu and Wang, 2004; Xia et al., 2010), it has been considered traditionally
that since the wave speeds associated to water surface and bed level present different
magnitudes, not straightforward limitation has to be considered in the stability con-
dition. Nevertheless, this is no longer admissible when the celerities are in the same
order of magnitude. Therefore, an extra limitation linked to the bed wave speed is
required

∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

|λ̃m, λ̃b|
(8.63)

8.6 Geomorphological collapse

The same strategy proposed in 5.4 for modeling the geotechnical equilibrium bank
characteristics is employed here: a simple mass conservative mechanism of slope sliding
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failure, assuming that the angle of repose of submerged material of the bed can be
approximated by the friction angle.





Chapter 9

Weakly-coupled scheme: results

9.1 Introduction

This Chapter gathers the validation tests that allow to show the assessment of the
numerical schemes described in Chapter 8. Numerical results have been compared
with experimental data and exact solution considering 1D and 2D situations. The
bed-load discharge law employed for computing the bed evolution is the Smart CFBS,
which was introduced in Chapter 5. Furthermore, in all the simulations a conservative
mechanism of slope sliding failure has been considered, 5.4. The experimental tests
employed for comparing with the numerical results are the same as the ones proposed
in Chapter 6. Therefore the detailed description is omitted and the reference to each
particular section from Chapter 6 is given.

9.2 Problems with exact solutions

In this section the numerical solutions for three bidimensional test cases that will be
named A, B and C, as summarized in Table 9.1 are presented. The tests are Riemann
problems for the movable bed equations, in which the friction shear-stress has been
neglected in the momentum equation. The two first test cases, A and B, have been
chosen to assess the performance of the numerical scheme assuming that morphological
changes can be characterized using constant values of Ag. The third one, Test C,
assumes that the value of Ag depends on the water depth. These exact solutions were
firstly reported in Murillo and Garćıa-Navarro (2010a). The exact solutions were built
by nesting several waves, departing from a left state until reaching to define the right
state. The CFL condition is equal to 1.0, the mesh size is x = 0.1m and the simulation
is computed up to t = 2s. The value of the parameter Ag for the Grass law is considered
as
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Ag =
Ag,o
hr

(9.1)

being Ag,o = 0.01 in all cases, r = 0 in test cases A and B, and r = 1 in test case C.

Test hL hR uL uR vL vR zL zR

A 2.0 2.0 0.25 2.3247449 0.05 0.04 3.0 2.846848
B 2.25 1.18868612 0.20 2.4321238 0.045 0.02 5.0 5.124685
C 6.0 5.2 0.3 15.167196 0.015 0.04 3.0 4.631165

Table 9.1: Summary of dam break test cases with exact solution

In order to compare the accuracy of the weakly-coupled technique (WC) proposed in
this work, the results obtained with the coupled-Jacobian technique used in Murillo
and Garćıa-Navarro (2010a) (CJ) are also plotted.

TestA: the solution proposed in this test case is based on two outcoming rarefaction-
waves and a central shock together with a contact wave evolving downstream, Figure
9.1. The shock and the contact wave move slowly, compared with the other two waves.
The shock absorbs most of the initial step in bed profile. The numerical solution is able
to capture the general trend of the flow behavior, without arising numerical problems
at the step area. The unit sediment discharge in both directions is also displayed.

TestB: the second solution analyzed is built through two-rarefaction waves, a contact
wave and a shock, Figure 9.2. he central wave is a quite slowly-moving rarefaction,
bearing most of the initial step of the bed profile, whereas the shock is very weak,
almost ineffective for the bed. The computed results are able to depict the moving
waves in all the wet domain with an adequate level of accuracy.
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Figure 9.1: Exact and computed solution for Test A
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Figure 9.2: Exact and computed solution for Test B
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TestC: this solution is constituted by two rarefaction waves, a contact wave and an
ending rarefaction, Figure 9.3. Despite of being the Ag variable, the resulting computed
results follows closely the exact ones.
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Figure 9.3: Exact and computed solution for Test C
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9.3 One dimensional cases

9.3.1 Dam break test cases

These experiments were performed in a flume designed at the UCL Civil Engineering
Department (Spinewine and Zech, 2007). Further details are provided in 6.2.1. Table
9.2 summarizes the set of experiments selected in this work. Test A has been chosen
to guarantee the correct performance of the numerical schemes in a situation where
morphological changes are produced in presence of dry bed and a flat bottom. Test F
allows checking the numerical assessment against the different type of waves that may
arise in a dam break case over wet bed. Numerical simulations have been performed
using ∆x = 0.01 m and CFL = 1.0. In all the simulations the bed domain is considered
deformable and no boundary condition is imposed at the downstream section.

Test hL hR zL zR

A 0.35 0.00 0.00 0.00
F 0.25 0.10 0.10 0.00

Table 9.2: Summary of dam break test cases

Test A

Figure 9.4 displays numerical results and experimental data, for times ranging from
0 to 1.5 seconds. The front wave is numerically well reproduced in space and time,
without observing numerical instabilities in the wet/dry boundaries.

As the numerical stability is of paramount importance the time step associated to the
hydrodynamic and morphodynamic models is plotted in Figure 9.5. Harder restriction
is required by the bed movement, which justifies the inclusion of the bed wave speed
in the stability condition as it has been proposed in 8.5.

Whether the CFL limitation related to the bed speed is removed the scheme becomes
unstable as it is displayed in Figure 9.6 at times t = 1.0 and 1.5 s.



96 Weakly-coupled scheme: results

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

Figure 9.4: Numerical results and experimental data for the dam break test case A at
times t = 0.25, 0.50, 0.75, 1.0, 1.25 and 1.5 s, using a variable value of Ag computed
using Smart CFBS: measured water level surface (− • −), measured bed level surface
(− ◦ −), computed water level surface (−4−), measured bed level surface (−N−)
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Figure 9.5: Time step evolution in test case A for the water waves speed as in (8.62),
(− • −), and for the bed wave speed as in (8.63), (− ◦ −) during time simulation
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Figure 9.6: Numerical results and experimental data for the dam break test case A at
times t = 1.0 and 1.5 s, when CFL limitation related to the bed speed is removed
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Test F

In this test an initial layer of clear water is present in both sides of the dam break.
There is also a downwards step at the bottom. Figure 9.7 gathers numerical results
and experimental data for the free surface and bed level at different times, where it
can be observed how the shock celerity is well captured by the numerical schemes.
Small differences produced in the shock wave are attributable to fast transient energy
variations associated to the existence of a hydraulic jump and also to the density
variations of the vertical column associated to sediment concentration.

Figure 9.8 shows newly that the time step associated to bed wave celerity is governing
the stability condition since the bed changes observed in the bottom configuration are
of utmost importance.

Additionally, in Figure 9.9 is plotted the water level surface and the bed evolution at
times t = 1.0 and 1.5 s when the CFL restriction associated to the bed wave celerity is
removed. As it is expected, the scheme becomes unstable since it is not able to handle
with the bed changes.



9.3 One dimensional cases 99

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1  0  1  2  3

h+
z 

(m
)

x(m)

z Experimental
h+z Experimental

z Numerical
h+z Numerical

Figure 9.7: Numerical results and experimental data for the dam break test case F at
times t = 0.25, 0.50, 0.75, 1.0, 1.25 and 1.5 s, using a variable value of Ag computed
using Smart CFBS: measured water level surface (− • −), measured bed level surface
(− ◦ −), computed water level surface (−4−), measured bed level surface (−N−)
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Figure 9.8: Time step evolution in test case F for the water waves speed as in (8.62),
(− • −), and for the bed wave speed as in (8.63), (− ◦ −) during time simulation
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Figure 9.9: Numerical results and experimental data for the dam break test case F at
times t = 1.0 and 1.5 s, when CFL limitation related to the bed speed is removed
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9.3.2 1D Knickpoint test case

Morphological changes due to the transition between two planes with different slope
(knickpoint) were measured in (Bellal et al., 2004). This test case is useful to compare
the capacity of the numerical schemes to handle with a sudden flow transition from
subcritical regime over a mild slope to supercritical regime over a steep slope. A sketch
of the experiment, with the initial conditions of bed slope, is shown in Figure 9.10. The
knickpoint is defined as the point of abrupt change in the longitudinal bottom profile
of the channel.

This experiment was carried out using a coarse and uniform size sand with the following
properties ρs = 2680kgm−3, d50 = 1.65mm, ϕ = 30o, negligible cohesion, porosity
p = 0.42 and was characterized by a Manning roughness factor n = 0.0165 sm−1/3.
Initial conditions employed are: upstream, water level surface (0.028 m) and discharge
(9.8 l/s); downstream, a known water surface level at the end of the flume (0.11 m).
The domain, 7.4 meters long, is divided using ∆x = 0.05 m. In all simulations CFL =
1.

S01 = 0.0057 S02 = 0.024

0.0274 m0.063 m

0.001 m

0.109 m0.109 m

6.3 m 1.1 m

Figure 9.10: Knickpoint sketch

Bed level variation in the longitudinal profile was recorded in time and is compared
with the predictions supplied by the numerical schemes in Figure 9.11. The computed
solution describes a good trend when comparing with the experimental solution. The
erosion located in the knickpoint is predicted at the same rate as the experiment and
the final bottom is also well achieved.

Since in this experimental case an important change in the bottom morphology takes
place, Figure 9.12 shows the more restrictive time step associated to the wave speeds of
water and bed in time simulation. Bed time step imposes a harder restriction than the
fluid flow and for this reason has to be considered in (8.62) for preserving the numerical
stability of the numerical scheme.
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Figure 9.11: Results for the knickpoint test case. Initial bed level (· · ·), measured bed
and water level (−•−) and computed (−4−) at times t = 165, 223, 345, 589 and 851
s with variable value of Ag computed using Smart CFBS
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Figure 9.12: Time step evolution for the water waves speed, as in (8.62), (− •−), and
for the bed wave speed as in (8.63), (− ◦ −) during time simulation

9.4 Two dimensional cases

9.4.1 2D Numerical modeling of dam failure

This experiment has been previously defined in 6.2.6 and it was studied by Tingsanchali
and Chinnarasri (2001). Following prior work developed in Juez et al. (2013b) the 2D
numerical simulation has been performed using a coarse unstructured triangular mesh,
with a maximum cell size of 0.01m2. The mesh together with the initial water depth
is displayed in Figure 9.13. CFL is imposed equal to 0.5. Free boundary condition is
considered at the outflow section. Figure 9.14 displays the bed level evolution when
using Smart CFBS formulation. At the crest of the dike strong erosion occurred because
of the strong initial discontinuity of water depth and the severe slope downwards the
gate. The granular material of the dike is completely mobilized within a short period
of time and it is grabbed downstream the dam by the flow.

Figure 9.15(a) shows the water and bed level surface computed after 120 s when using
Smart CFBS formulation. As the bed level was recorded in time at three stations SA,
SB and SC, located downstream from the edge of the original dam crest, the compari-
son between experimental data and computed results are displayed in Figure 9.15(b).
Numerical results are able to handle the strong morphodynamics changes which take
place without displaying numerical oscillations and additionally, well tracking the ex-
perimental data. On the other hand, the evolution of the measured and computed water
reservoir level is depicted in Figure 9.15(c). Figure 9.15(d) displays the measured and
computed overtopping discharge just upstream the breach. Both measurements pro-
vide high quality and useful information about this type of phenomena. Numerical
schemes allows to obtain a good detail of forecasting capacity for the bed and water
level evolution together with an efficient computational cost.
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Figure 9.13: Detail of the triangular mesh and initial condition for the water depth

Figure 9.14: Computed results of the bed level evolution when using a variable value
of Ag built with Smart CFBS and at times t = 0, 30, 80 and 120 s
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Figure 9.15: (a) Initial bed level (- - -), computed water level surface (−4−) and bed
level surface (−N−) at t = 120 s. (b) Bed level surface evolution in time measured at
stations SA (− ◦ −) (−�−), SB (− • −), and SC (−4−) and computed at stations
SA (− ?−),SB (−�−), and SC (−�−). (c) Evolution in time of the measured water
reservoir level (− ◦ −) and computed water reservoir level (− • −). (d) Evolution in
time of the measured (− ◦ −) and computed (− • −) overtopping discharge

For this test case, the time step evolution associated to each wave speed is also studied,
Figure 9.16. Initially, heavier restrictions are required by the water flow, as the over-
topping event has not provoked yet the dike failure. However, as time advances and
the geomorphic changes become more severe, time step restrictions come from the bed
celerity. At the end of time simulation, where most of the sediment particle movement
has occurred, the time step is newly governed by flow characteristics. In view of these
results, it is proved the efficiency of the solver, as only when important bed changes
exist the classical time step of water flow is decreased.

Additionally to the study of the time step evolution this test case has been chosen
also for comparing the computational time cost with respect to the coupled-Jacobian
technique used in Murillo and Garćıa-Navarro (2010a) (CJ) and the weakly-coupled
scheme (WC) proposed in this work. For this purpose three meshes with increasing
number of elements are considered. In Table 9.3 are displayed the ratio between the
computational cost when employing Murillo and Garćıa-Navarro (2010a) and when
considering the procedure explained in this work. Results plotted above belongs to the
second mesh. Noticeable computational efficiency is achieved, being more important
as the level of mesh refinement is increased. The computational cost time with the
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Figure 9.16: Time step evolution for the water waves speed, as in (8.62), (− •−), and
for the bed wave speed, as in (8.63), (− ◦ −) during time simulation

CJ is penalized by the high number of algebraic operations need for computing the
eigenvalues and eigenvectors. In order to support this fact and employing the second
mesh, the time step evolution, associated to the CJ and to WC is displayed in Figure
9.17. Despite of presenting a bigger time step on average when using the CJ, the
computational cost is higher.
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Figure 9.17: Time step evolution following the CJ technique in Murillo and Garćıa-
Navarro (2010a), (−◦−), and the WC technique explained in this work, (−•−) during
time simulation

Together with the computational cost time, the RMSE (Root median square error) for
the three stations SA, SB and SC obtained when using the CJ and the WC technique,
is displayed in Table 9.4. The weakly-coupled technique provides computational results
close to the experimental ones whilst the computational time is decreased.
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N. of elements Ratio of computational cost time = CJ/WC

2000 8.46
4100 10.15
8300 13.72

Table 9.3: Summary of ratios of computational cost time when using the JCM technique
and the WC technique

N. of elements RMSE(m) SA RMSE(m) SB RMSE(m) SC

CJ WC CJ WC CJ WC

2000 0.065 0.039 0.042 0.034 0.058 0.037
4100 0.043 0.021 0.028 0.019 0.038 0.023
8300 0.028 0.014 0.019 0.012 0.025 0.015

Table 9.4: Summary of the RMSE associated to each station when using the JC tech-
nique and the WC technique

9.4.2 2D Dam break with a sudden enlargement

This experiment was performed at the laboratory of the Civil and Environmental En-
gineering Department of the UCL (Palumbo et al., 2008; Goutière et al., 2011) and has
been previously numerically reproduced in 6. During the development of the experi-
ment the water level evolution was recorded at different points as well as the final bed
surface at several cross sections, Figure 9.18. An unstructured mesh is considered and
CFL condition is imposed equal to 0.5.

Figure 9.18: Plan view of the experimental flume. Locations of the probes (left) and
the cross sections (right)

This experimental case represents a complete challenge as it gathers several highlighted
situations which can occur in the real engineering life: an area where the flow is gen-
uinely one-dimensional, an abrupt expansion which provokes the change to a two-
dimensional flow, important velocity gradients which create a recirculating area, mov-
ing shocks close to the wall zone and moreover a severe local erosion together with a
noticeable sediment deposition area. It constitutes the perfect benchmark for checking
the assessment of the numerical schemes against sudden and strong changes in the flow
and the bed. Due to these characteristics other authors have also studied recently this
test case (Soares-Frazao and Zech, 2010; Xia et al., 2010; Siviglia et al., 2013).
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A series of computed bed surface evolutions are shown in Figure 9.19. The bed de-
formation is very sensitive since the flow evolves over a initially dry bed: sediment
particles start to bounce as soon as the water reaches their position creating a kind of
ripples or dunes, at time t = 2 s. As the water overtakes the corner of the channel the
flow expands, causing the water depth to decrease and the bed level suffers a dramatic
local erosion, at time t = 4 s. Close to the wall area the flow tends to slow down and
the material grabbed upstream is settled. In this zone of the channel the loss of energy
is so strong that a bed sharp surface emerges, at times t = 4 and 6 s. Downstream,
the sediment grains are pushed outward the domain and eventually intersects driving
to settling zones, times t = 6 and 10 s. At the last time, t = 20 s, the drainage of
water leads to soften the bed surface although the minimum and maximum sediment
peak areas are clearly identified. It is worth noting that the bed ripples plotted have
a twofold nature. Firstly they have a numerical origin, since they are generated by
the mesh topology as the numerical technique employed in this work make use of the
Riemann theory, which is built considering the edges of each cell. Additionally, the
bed ripples have also a physical nature, as the flow evolves over a dry bottom.

Once the experiment has been qualitatively described, computed and experimental data
are faced. Comparison between the water level measured and the numerical solution
is showed in Figure 9.20. The majority of the probes achieve a good trend in relation
with the experimental data. Probes U3 and U4 are the ones which provide less accurate
results. This is justified by the fact that they are located close to the expansion (probe
U3) and close to the wall (probe U4), where three dimensional flow structures are
generated due to the sudden expansion and the shock against the lateral side. With
the present mathematical model, where the set of equations is depth-averaged, the
vertical accelerations are neglected and consequently, this flow behavior cannot be
properly treated (Xia et al., 2010).

Figure 9.21 gathers the measured bed level after the dam break event and the numerical
predictions at control sections S1, S2, S3, S4 and S5. In all the sections the computed
bed surface is able to follow the measured evolution. Section S1 which is the closest
to the expansion does not obtain neither the maximum nor the minimum of sediment
peaks, although the prediction follows the sediment movement pattern: particles are
grabbed from left and settled to the right bank. In control sections, S2, S3 and S4,
the computed bed surface follows correctly the tendency of the final bed morphology
although the final bed slopes are less sharp than the ones recorded after the experi-
ment. As it has been noted before, since the mathematical model is depth-averaged the
vertical accelerations are not considered. Consequently, the erosion/deposition rates
are decreased and differences in the granular material lying close to the right wall are
expected. Section S5, positioned far away from the area of stronger influence, obtains
a good tendency when comparing with the experimental data.
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Figure 9.19: Computed bed surface evolution in time
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Figure 9.20: Temporal comparison between experimental (−◦−) and computed (−•−)
results for the water level at probes U1-U7
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Figure 9.21: Comparison of the experimental (− ◦−) and computed (− •−) final bed
surface at cross sections S1-S5
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Comparison of the computational cost time and the accuracy obtained when using the
coupled-Jacobian technique (CJ) from Murillo and Garćıa-Navarro (2010a) and the
weakly-coupled scheme (WC) proposed in this work is displayed in Table 9.5. For the
sake of brevity only the RMSE associated to section S2 is showed. The CJ technique
provides more accurate results in this case at the cost of increasing the computational
time.

N. of elements Ratio of computational cost time : CJ/WC RMSE(m) : S2

CJ WC

2000 5.23 0.015 0.024
4300 8.15 0.009 0.015
8100 14.02 0.006 0.012

Table 9.5: Summary of ratios of computational cost time and the RMSE for section
S2 when using the CJ technique and the WC technique



Chapter 10

Weakly-coupled scheme:
conclusions

A 2D numerical scheme for wave flows over mobile beds has been detailed. The numer-
ical scheme solves a weak coupled model which includes the 2D SWE and the 2D Exner
sediment continuity equation. It is written considering a finite volume method based
on a Roe type solver and allows to verify that stable results can be obtained without
employing a coupled-Jacobian and computationally expensive scheme. Following the
first part of this thesis the Smart CFBS sediment empirical law has been considered.
The explicit scheme has shown robust stability, always controlled by an augmented
CFL condition.

The first two experimental cases considered, developed in 1D, have been performed
to solve dam break situations over dry/wet initial conditions and with different mor-
phodynamic configuration. Advance front celerity has been well captured in the dam
break as well as the bed changes. Regarding the 1D knickpoint test case, the existence
of variable flow regime or morphodynamic discontinuities does not ruin the forecast
capacity of the numerical scheme leading to stable results.

Regarding the bidimensional cases, the comparison with the exact solutions showed
that the computed results are similar to the ones obtained with a coupled-Jacobian
model. In the next experiment, the dike collapse by overtopping, numerical perfor-
mance of the solution in a 2D mesh is checked under severe changes in the bed surface
level. Self-stable results have been obtained for both the water level and the bottom
changes. Finally, in the 2D dam break with an abrupt expansion numerically repro-
duced, the free surface and bed level predictions have been well computed in time and
space.

Since in practical applications, both stability and efficiency characteristics are required,
the main challenge of this work has been to combine the interactions between flow and
bed without using a coupled-Jacobian matrix as the proposed in Murillo and Garćıa-
Navarro (2010a) with a higher computational effort. Also, when plotting the time
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step restrictions associated to the water wave celerities and to the bed wave celerity it
has been checked how only severe changes in bottom morphology affect the time step
restriction of the weakly-coupled model proposed in this work.

10.1 Further research

The proposed explicit finite-volume Godunov-type numerical scheme should be com-
pared in terms of efficiency and accuracy with other implicit numerical techniques
suggested in the literature (Garegnani et al., 2013; Bilanceri et al., 2012). When em-
ploying an implicit strategy the time step chosen can be bigger in relation with an
explicit however, however the main drawback is the convergence speed of he linear
solver used to solve the algebraic system as well as the convergence of the linearization
process. A throughly study should be addressed.



Part II

Mass motion over steep areas





Chapter 11

Introduction

Several catastrophic events during the past decades have showed that important flood
induced by a dam-break is in relation with a strong erosion in the bed and in the
banks. These rapid and variably geomorphodynamic processes affect significantly to
the flow behavior compounding the harmful effects of the flooding waves. For this
reason, the numerical modeling of severe transient geomorphic flows is an active topic
in the research field.

In addition, the study of these geomorphic flows/landslides and their movement consti-
tutes an important environmental issue as they play a key role in landscape evolution.
Currently, the triggering mechanisms, mechanical properties and assessment of likeli-
hood and consequences as well as the development of measures to limit their impact,
is an active topic in the field of the geophysical flows research.

As this phenomena involved a mixture of mud, sand and water sliding down a slope
together, the study of granular flows constitutes an starting point for the understanding
of the more complex mass movement phenomena mentioned before (Denlinger and
Iverson, 2004). Therefore, several experiments on granular dry flows have been carried
out in the past (Savage and Hutter, 1989; Iverson and Denlinger, 2001; Pouliquen and
Forterre, 2002; Lajeunesse et al., 2004; Mangeney et al., 2010) as the initial target to
be overcame by the numerical modeling tools.

Since the computational models open a wide range of possibilities for handling with
this type of phenomena a numerical scheme has been developed for the analysis of
dry granular flows. Moreover, taking advantage of the numerical experimentation an
extra work has been carried out in order to push the knowledge about the dry granular
behavior.
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11.1 State of the art of the numerical techniques

Granular dry flows show fluid-like behavior where the front of the avalanche moves as a
thin layer along high distances. Well known approaches for describing geophysical flows
consider the Saint-Venant equations as an starting point. Depth averaged equations
were first employed for solving geomorphologic flows by Savage and Hutter (1989),
where granular mass sliding was modeled including Coulomb-like basal frictions, and
assuming a cohesionless Mohr-Coulomb type material. Since then, new mathematical
models have appear in the literature. In Denlinger and Iverson (2004) an extensive
and complete review of predictive models for geomorphologic flows was provided and
special attention was devoted to the computation of the Coulomb stresses conjugated
to the deformation in solid-like behavior avalanches. Contrary to the Saint-Venant
equations, defined in a Cartesian coordinate, the Savage-Hutter model uses a curvi-
linear coordinate along the topography. Denlinger and Iverson (2004) formulated the
depth-averaged governing equations referenced to a rectangular Cartesian coordinate
system (with Z vertical) and in their new approach the estimated frictional stresses
were defined with independence of the orientation of the coordinate system. The model
was tested against analytical solutions and experimental data. Bouchut et al. (2003)
introduced an extra term in the original Savage-Hutter mathematical model, related
to the curvature of the bottom, which is usually neglected when compared in terms of
magnitude, in order to ensure the equilibrium at rest of the mass whatever the flow
conditions (topography, friction coefficients, etc). Some phenomenas, such as land-
slides, where the curvature terms play an important role can be found in Favreau et al.
(2010); Moretti et al. (2012). In Bouchut and Westdickenberg (2004) this model was
extended to consider an arbitrary coordinate system for shallow flow over a 2D topog-
raphy, retaining the curvature terms. In recent works concerning geomorphologic flows
over 2D irregular bed topographies (Pirulli et al., 2007; Pirulli and Mangeney, 2008)
this term was omitted and promising computational results were obtained. Following
Pirulli et al. (2007); Pirulli and Mangeney (2008) curvature terms related with the
geometry are not considered here and the rheology of the material will be described
using a Coulomb-type friction law.

Once a mathematical model is selected, another separate issue is the numerical scheme
used. Considering the hyperbolic nature of the depth averaged equations, Godunov
type schemes are commonly used in literature (Denlinger and Iverson, 2004; Mangeney-
Castelnau et al., 2003). Godunov type schemes can be constructed departing from the
definition of approximate solvers of the Riemann problem (RP). Approximate solvers
provide a comprehensible definition of the conserved variables in the inner states of
the same RP. Among the most successful and disseminated approximate solvers, Roe’s
method (Roe, 1986) and the HLL method (Harten et al., 1983), were defined to ap-
proximate solutions for hyperbolic system of equations without source terms. When
including the presence of source terms in the system of equations, it is possible to
extend the numerical schemes defined for the homogeneous case using point-wise ex-
plicit or implicit discretizations of the source terms. In Mangeney-Castelnau et al.
(2003), internal stresses represented by the Coulomb friction law were discretized us-
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ing a point-wise implicit discretization. Numerical experimentation has shown that
point-wise discretizations lead to undesirable results, as non uniform discharge values
in steady solutions (Burguete et al., 2008b; Murillo et al., 2008). A proper discretiza-
tion of the frictional source terms must ensure a correct balance among fluxes and
source terms (well-balanced property). Following previous work in well balanced nu-
merical schemes for the shallow flow equations in presence of bed variations (Hubbard,
M. E. and Garćıa-Navarro, P., 2000), in Denlinger and Iverson (2004), the Roe scheme
was applied in combination with an upwind technique applied to the internal stresses.
The apparent topography method to deal with generic source terms in Bouchut and
Westdickenberg (2004), based on the well-balanced property, was applied successfully
to the simulation of the spreading of a granular column over a rough horizontal plane
in Mangeney-Castelnau et al. (2005) and over a over an inclined plane in Mangeney-
Castelnau et al. (2007). Contrary to shallow water flows, where quiescent flow is given
in cases of horizontal water level surface, in granular flows, steady state configura-
tions include correct modeling of starting and stopping flow conditions (Bouchut and
Westdickenberg, 2004; Mangeney-Castelnau et al., 2007; Pirulli et al., 2007; Pirulli and
Mangeney, 2008).

The presence of source terms leads to non-strictly hyperbolic systems of equations and,
as a consequence, they have an impact in the solution of the RP. In the shallow water
equations with variable topography, different approximations to the Riemann problem
have been presented in the literature (Alcrudo and Benkhaldoun, 2001; Chinnayya
et al., 2004; LeFloch and Thanh, 2007; Bernetti et al., 2008; Rosatti and Begnudelli,
2010; LeFloch and Thanh, 2011). The properties of these RP solutions not only must
guarantee the well-balanced property, but also, the associated numerical scheme must
ensure convergence to the solution. Convergence to the solution is not an easy task, as
in problems with source terms the total number of waves can be larger than the num-
ber of characteristic fields (LeFloch and Thanh, 2011). Two augmented solvers which
consider intrinsically the presence of source terms, named ARoe (Augmented Roe) and
HLLCS (HLL with Contact wave and Source terms), were presented in Murillo and
Garćıa-Navarro (2010b) and Murillo and Garćıa-Navarro (2012b) respectively. Both
schemes include an extra static wave for considering the effect of the source terms in the
stability region. The ARoe solver was exploited in Murillo and Garćıa-Navarro (2012a)
allowing correct approximate solutions of wave Riemann problems involving complex
rheology when using depth average equations. An accurate and robust first order fi-
nite volume scheme, able to handle correctly transient problems including modeling
of starting and stopping flow conditions was presented in Murillo and Garćıa-Navarro
(2012a). Then, in contrast with prior works, Bouchut and Westdickenberg (2004);
Pirulli et al. (2007), where numerical fluxes were constructed to ensure well-balanced
arguments, in Murillo and Garćıa-Navarro (2012a), the definition of the complete ap-
proximate solution ensured correct integral estimations of the source terms under all
type unsteady of flow conditions. It is worth mentioning, that, in general, only in cases
of quiescent equilibrium, the source terms can be integrated exactly. In any other
case, the approximate solver provides the rules to avoid unphysical results, allowing
the correction of the estimations made for the source terms if necessary. This result is
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of utmost importance when modeling of starting and stopping flow conditions and can
be applied with independence of the type of rheological model selected.

In presence of steep slopes the usual hypothesis of hydrostatic pressure in the vertical
direction Z in the shallow water equations is not longer admissible. This fact has
consequences when deriving the mathematical model. In global coordinates (X, Y, Z)
(Figure 12.1), the gravity vector has a simple form

g = −(gX , gY , gZ)
T = (0, 0,−g)T (11.1)

and the bed vector So can be written as

So = (tan θ, tan γ) =

(
−∂Zb
∂X

,−∂Zb
∂Y

)
(11.2)

where Zb is the bed level surface in global coordinates. If a coordinate system linked
to the topography (x, y, z) is preferred, the gravity vector must be projected following
the new system of coordinates. By means of two rotations around the angles γ and θ,
as in Pirulli (2005),

g = −(gx, gy, gz) =
(
−g sin θ, −g sin γ cos θ, −g cos θ cos γ

)T
(11.3)

The correct discretization of numerical fluxes and source terms is an important issue in
both coordinate systems, when the bed slopes may change from cell to cell. Therefore,
in order to preserve steady state configurations, and with independence of the numerical
solver selected, it is necessary to ensure exact balance among fluxes and source terms,
including the correct modeling of starting and stopping flow conditions.

11.2 State of the art for the experimental works

Due to the fact that avalanches are initiated on steep slopes, pioneer experimental
studies concerning granular flows were focused on the grain movement over constant
inclined planes with slopes larger than the material repose angle Wieland et al. (1999);
Pouliquen (1999); Pouliquen and Forterre (2002); Mangeney et al. (2010). This type of
movement is governed by the gravity component along the slope direction. Experiments
developed in Pouliquen (1999); Mangeney et al. (2010) were performed over a genuine
1D configuration whilst Wieland et al. (1999); Pouliquen and Forterre (2002) were
devoted to 2D events. All of them brought the opportunity of studying unstable
granular masses, focusing on the maximum spreading or the avalanche front and tail
speeds.

dditionally to these prior laboratory works, in Lajeunesse et al. (2004); Boutreux and
deGennes (1997) other type of configuration was experimentally addressed: the sudden



11.2 State of the art for the experimental works 121

release of a surface over a quasi-horizontal surface. In such case, the weight of the sand
grains was the responsible for the onset of the movement, while the frictional forces were
in charge of the stopping condition. These experiments, being free from the influence
of the topography, were of utmost importance, since they provided results concerning
the quantity of mass mobilized by the flow, the final shape and the maximum spreading
of the granular mass.

Another important configuration which has been recently mimicked in the laboratory
consists of granular flows traveling over erodible topography, Mangeney et al. (2010);
Roche et al. (2011). This phenomena is easily found in nature, as under certain cir-
cumstances landslides can move over deposits built up by earlier events. The strong
effects of erosion processes can significantly increase the mobility of avalanches, chang-
ing drastically the final distribution of the granular mass, Mangeney-Castelnau et al.
(2005); Bouchut et al. (2008); Mangeney et al. (2010).

The study of granular flows in combination with obstacles has also acquired prominence
during the last years. The impact of the obstacle in the flow behavior needs to be
understood for a better design of civil engineering elements such as mast of electrical
power lines, buildings, ski lifts, dams and other man-made structures. Several works
have dug on this active research field, some of them analyzing the flow overtopping on
dike elements Hakonardottir et al. (2003); Faug et al. (2008) and other ones focusing
on the shock waves generated by the impact between the flow and the single obstacle
Gray et al. (2003); Hakonardottir and Hogg (2005); Hauksson et al. (2007).

Following the previous effort made by the authors mentioned above Gray et al. (2003);
Hakonardottir et al. (2003); Hakonardottir and Hogg (2005); Hauksson et al. (2007),
one of the main concern of this work is in relation with the study of the variable nature
of the moving shocks and their complex birth and propagation. Since we want to get
closer to the phenomenology which takes place in nature, a series of laboratory experi-
ments have been carried out for studying novel an real-life configuration: 2D spread of
the granular mass over variable topography with a changing slope and multiple shock
waves derived from the presence of multiple obstacles. The experimental avalanche
is triggered by a simple mechanism: a granular mass which is suddenly released from
a semi-spherical container. The full description of the experimental facility, methods
and cases is found in Caviedes et al. (2014). To provide a physical insight into these
phenomena, the spatial and temporal spreading dynamics and the morphology of the
resulting shape are investigated and discussed in this work through the wave theory
(Roe, 1986). For this purpose, the computational scheme developed for dry granular
flow in this work as previous goal is the basis for performing the numerical experimen-
tation. Since the computational scheme has been previously tested and validated the
numerical results obtained are free of distorting numerical effects allowing to study the
physical features involve in the granular flows.
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11.3 Outline

In this work, the results presented in Murillo and Garćıa-Navarro (2010b, 2012a) are
extended to provide appropriate numerical schemes for mathematical models of 2D
granular flow written in global and local system of coordinates. Taking advantage of
this fact a numerical experimentation has been performed through the basis of a novel
experimental work. In Chapter 11 weak solutions for Riemann problems over steep
and variable slopes are presented focusing in the analysis and definition of the correct
numerical discretization of both fluxes and source terms in local coordinates. Also, a
detailed definition of the numerical fluxes based on the analysis of the approximate
solution is provided. The results are extended to global coordinates in Chapter 12.
The augmented approximate solver in Murillo and Garćıa-Navarro (2010b, 2012a) is
modified in both systems of coordinates to consider the effect of bed slope in pres-
sure distribution and frictional effects. In Chapter 13, the numerical solvers are tested
against 1D and 2D experimental data in order to check the suitability of the mathe-
matical models described in this work following global and local system of coordinates.
Conclusions and further research are written in Chapter 14. Regarding the experimen-
tal work, in Chapter 15 it is brought together a summary of the laboratory setup where
the experiments have been carried out and in addition, it is also depicted extra con-
sideration about the friction law employed. Chapter 16 is devoted to the comparison
between the experimental data and the computed results, focusing on the discussion
of the physics involved in the granular flow behavior. Finally, the conclusions of the
laboratory work and future research line are written in Chapter 17.



Chapter 12

Mathematical model and numerical
scheme following local coordinates

12.1 Introduction

In this Chapter, a mathematical model for describing granular flow in local coordinates,
LC from now on, is presented. It assumes that the flow is oriented in a predominantly
longitudinal direction and is confined to a layer which is thin compared to the scale
of interest. Hydrostatic pressure distribution in the normal direction to the bed is
assumed and a Coulomb type bed friction is used to model the basal stress. The set
of depth averaged equations developed in Chapter 3 for the one layer model are also
valid in this phenomena. Additionally, a numerical scheme is developed regarding the
particularities of the problem.

12.2 Mathematical model

Bearing in mind the expression for the gravity vector in (11.3), the depth averaged
equations expressing volume and momentum conservation are written as follows

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= Sτ + Sb (12.1)

where

U =
(
h, hu, hv

)T
(12.2)

are the conserved variables, with h representing granular material depth in the z co-
ordinate and (u, v) the depth averaged components of the velocity vector along x, y
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coordinates. The fluxes are given by

F =

(
hu, hu2 +

1

2
gzh

2, huv

)T

G =

(
hv, huv, hv2 +

1

2
gzh

2

)T
(12.3)

and the source terms of the system are split in two kind of terms. The term Sτ
represents the frictional effects in the bed, and is defined as

Sτ =

(
0,−τb,x

ρ
,−τb,y

ρ

)T
(12.4)

with τb,x, τb,y the bed shear stress in the x and y direction respectively and ρ the density
of the fluid. These tangential forces are evaluated in this work through a Coulomb law

Sτ = (0,−gzh tan θb,−gzh tan θb)T (12.5)

being θb the dynamic friction angle between the bed and the flowing mass. The term
Sb is defined as

Sb = (0, −gxh,−gyh)T (12.6)

and expresses the variation of the pressure force in the x and y direction respectively.
Note that no bed derivatives are included. Instead the relevant quantity is the gravity
acceleration projection. Figure 12.1 shows a 1D sketch of the relative position of local
and global coordinates.

g

X

Z

x

Zb(X)

h(x)

z

θ

Figure 12.1: 1D sketch of global and local coordinates

System (12.1) is time dependent, non linear, and contains source terms. Under the
hypothesis of dominant advection it can be classified and numerically dealt with as
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belonging to the family of non strictly hyperbolic systems (LeFloch and Thanh, 2011).
The mathematical properties of (12.1) include the existence of a Jacobian matrix, Jn,
of the flux normal to a direction given by the unit vector n, En = Fnx +Gny, defined
as

Jn =
∂En

∂U
=
∂F

∂U
nx +

∂G

∂U
ny (12.7)

whose components are

Jn =




0 nx ny
(gzh− u2)nx − uvny vny + 2unx uny
(gzh− v2)ny − uvnx vnx unx + 2vny


 (12.8)

12.3 Finite Volume Model

To introduce the finite volume scheme, (12.1) is integrated in a grid cell Ωi in the plane
defined by the local coordinates (x, y). Using Gauss theorem system in (12.1) is written
as

∂

∂t

∫

Ωi

UdΩ +

∮

∂Ωi

Endl =

∫

Ωi

(Sτ + Sb)dΩ (12.9)

where vector n is outward to the cell Ωi, as displayed in Figure 12.2.

l3

n3e1
e2

e3

Uj1
UiUj2

Uj3

Figure 12.2: Cell parameters

The second integral in (12.9) can be explicitly expressed as a sum over the cell edges,

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

∫ ek+1

ek

Enkdlk =

∫

Ω

(Sτ + Sb)dΩi (12.10)
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with nk = (nx, ny) the outward unit normal vector to the cell edge k, dlk is aligned in
the direction of the edge and NE is the number of edges in cell i, as shown in Figure
12.2.

Assuming a first order in space approach, (12.10) becomes

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

Enklk =

∫

Ω

(Sτ + Sb)dΩi (12.11)

Also, the volume integrals of the source terms are expressed in terms of appropriate
contour integrals by projecting the source terms onto the normal direction nk to each
cell edge as follows

∫

Ωi

(Sτ + Sb)dΩi ≈
NE∑

k=1

∫

x′
[(Snτ + Snb)kdx

′
k] lk (12.12)

being x′ the coordinate normal to cell edge k, as shown in Figure B.1.

Un
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j
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nk

x′

x′

x′ = 0

Figure 12.3: Riemann problem in 2D along the normal direction to a cell side

The normal projection of the friction term is written as

Snτ = (0,−gzh tan(θb)nx,−gzh tan(θb)ny)T (12.13)

and the normal projection of pressure force over the bed is expressed as

Snb = (0, −gxhnx,−gyhny)T (12.14)
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It is worth emphasizing that source terms in (12.13) and (12.14) recover exactly the
differential formulation in 1D meshes and in 2D cartesian structured meshes at each
edge. Then, the initial system of equations in (12.1) is transformed in

∂

∂t

∫

Ωi

UdΩ +
NE∑

k=1

(
En −

∫

x′
(Snτ + Snb)kdx

′
)

k

lk = 0 (12.15)

and will be solved using approximate linear solutions of initial value problems according
to the Godunov method, where Un

i is the cell-average value of the solution U(x, y, t)
for the ith cell at time tn

Un
i =

1

Ai

∫

Ωi

U(x, y, tn)dΩ (12.16)

being Ai the cell area.

12.3.1 Definition of the Riemann problem

Although in first order approximation all conserved variables and also the bed elevation
at each cell are defined as piecewise uniform functions, it is possible to evaluate the
change in bed surface elevation by means of linear functions in order to obtain the
vector of gravitational acceleration in (11.3). These means that, when moving from
cell to cell the value of gz in En and in Snτ may change, and also the components gx
and gy in Snb. On the other hand, with independence of the numerical solver selected
it is necessary to ensure exact balance among fluxes and source terms in order to
keep in time steady state configurations. This point is of paramount importance when
performing numerical approaches for both fluxes and source terms.

In this work, the piecewise representation of the variables and the definition of gravity
forces affected by the presence of uneven bed levels, are brought together in order to
ensure the well-balance property. This is done by defining a discrete approximation of
the gravity vector in the x′ direction at each one dimensional RP,

gn,k = −(gx, gz)
T
k = − (g sinψ, g cosψ)Tk (12.17)

where ψ represents the angle of the bed normal with respect to the vertical in the one
dimensional problem defined along x′. The value of ψ is computed in this work by
projecting the bed slope defined in (11.2) in the normal direction of the edge as follows

tanψ = Son = tan θ nx + tan γ ny (12.18)

Now, considering that at each RP the problem is one-dimensional and defined by a
single angle ψ, the flux En can be approximated by
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En ≈




h(u nx + v ny)
(h u2 + 1

2
gzh

2)nx + h u v ny
(h v2 + 1

2
gzh

2)ny + h u v nx


 (12.19)

The source terms are reformulated as

Snτ ≈ (0,−g cos(ψ)h tan(θb)nx,−g cos(ψ)h tan(θb)ny)
T

Snb ≈ (0, −g sin(ψ)hnx,−g sin(ψ)hny)T
(12.20)

Then, at each k edge in Figure B.1, the following local RP along the x′ direction is
defined

∂U

∂t
+
∂(En)

∂x′
− Sn = 0 (12.21)

with Sn = Snτ + Snb, and the following initial conditions

U(x′, 0) =

{
Ui if x′ < 0
Uj if x′ > 0

(12.22)

Even when ignoring the exact solution of the associate RP U(x′, t), it is possible to
provide its variation by integrating (12.21) over a suitable control volume. Figure 12.4
shows a local RP with initial values Ui,Uj , and a control volume given by the time
interval [0,∆t] and the space interval [−∆x′,∆x′], where

−∆x′ ≤ λmin∆t, ∆x′ ≥ λmax∆t (12.23)

being λmin, λmax the minimum and maximum wave velocities respectively in the domain
at t = ∆t, given by the eigenvalues of (12.7). Integrating (12.21) over the control
volume [0,∆t]× [−∆x′,∆x′]

∫ +∆x′

−∆x′

∫ ∆t

0

(
∂U

∂t
+
∂En

∂x′
− Sn

)
dx′dt = 0 (12.24)

and reordering the following expression of integral volume for U(x′, t) is obtained

∫ +∆x′

−∆x′
U(x′, t = ∆t)dx′ = ∆x′ (Uj +Ui)− δ(En)k∆t+

∫ ∆x′

−∆x′

∫ ∆t

0

Sndx
′dt (12.25)
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t

x′

∆t
(En)i (En)j

Sn(x
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∆x′ ∆x′

Ui Uj

h(t > 0)
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x′

hi

hj
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Figure 12.4: Integration control volume defined by a time interval [0,∆t] and a space
interval [−∆x′,∆x′]

with δ(En)k = (En)j − (En)i.

In order to ensure self similar solutions of the RP in the (x′, t) plane, the source term
is involved in the Riemann solver as a singular source at the discontinuity point x′ = 0.
Considering that source terms are not necessarily constant in time, the following time
linearization of the nonconservative term is applied (Vázquez-Cendón, 1999; Murillo
and Garćıa-Navarro, 2010b)

∫ ∆x′

−∆x′

∫ ∆t

0

Sn dx
′dt ≈ ∆t

∫ +∆x′

−∆x′
Sn(x

′, 0) dx′ = ∆t (S̄n)
n
k (12.26)

where S̄n = S̄nτ+S̄nb, and S̄nτ and S̄nb are suitable numerical source matrices. Once all
the terms of the volume integral in (12.25) are defined, the variation of the conserved
variables is assumed to be given by

∫ +∆x′

−∆x′
U(x′, t = ∆t) dx′ = ∆x′ (Ui +Uj)− δMk∆t (12.27)

with

δM = δEn − S̄n (12.28)
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12.3.2 Integration of the bed slope source term

As stated previously, it is necessary to ensure exact balance among fluxes and source
terms with independence of the numerical solver selected in order to preserve steady
state configurations. Frictionless, quiescent equilibrium over a sloping bed is repre-
sented in Figure 12.5.

g

X

x

Zb,i

hi

Zb,j

hj

ψ

∆x

Figure 12.5: Quiescent equilibrium

For the sake of clarity, a one dimensional mesh with uniform cell size ∆x is considered.
The surface level is uniform per cell along X so that the the geometrical relation
between variables h and Zb in cells i and j is

δ(Zb + h cosψ) = (Zb + h cosψ)j − δ(Zb + h cosψ)i = 0 (12.29)

The momentum equation reduces to

δ

(
g cosψ

h2

2

)
=

∫ ∆x/2

−∆x/2

−g sin(ψ)h dx (12.30)

Under the hypothesis of smooth variation of the variables, and considering that δZb =
∆x sinψ and δ h

2

2
= h̃δh, equation (12.30) becomes

g cosψh̃δh = −gh̃δZb (12.31)

with h̃ = 1/2(hi + hj). Therefore the condition in (12.29) is recovered. The 1D idea is
easily extended to 2D, and S̄nb in (12.26) is defined as

S̄nb =




0

−gzh̃ δZb

cos(ψ)
nx

−gzh̃ δZb

cos(ψ)
ny


 (12.32)
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12.3.3 Integration of the friction stress source term

The importance of the discrete equilibrium in cases of still granular mass to provide
well-balanced schemes has been widely reported (Mangeney-Castelnau et al., 2003,
2005), but it is important to stress that the well balanced property must include the
presence of different types of shear stresses: turbulent stress, dispersive stress, inertial
stress, viscous stress, yield stress and Coulomb frictional stress. Not all stresses act
along or simultaneously in the same location of the granular mass column. Nevertheless,
since the conceptual model is depth-averaged, all terms may be mathematically lumped
in the same formula. In the present work, only friction induced by a Coulomb law is
considered.

The discrete bed friction, τb,k, must produce a resistance against the flow direction. In
case of |un| > 0, τb,k is computed as

τb,k =
un
|un|

|τb,k| (12.33)

In case that |un| = 0, τb,k is defined acting against the movement produced by the
variation of the surface level

τb,k =

{
|τb,k| if δ(Zb + h cosψ)k ≤ 0
−|τb,k| if δ(Zb + h cosψ)k > 0

(12.34)

In both cases |τb,k| is calculated as

|τb,k| = gzρh̃ tan(θb) (12.35)

Figure 12.6 considers a 1D test case with quiescent equilibrium over a sloping bed that
involves Coulomb-type resistance forces.

g′

X

x

Zb,i

hi

Zb,j

hj

ψ

θb

∆x

Figure 12.6: Quiescent equilibrium involving Coulomb stress

In this case the surface level has a uniform slope along X characterized by tanψ =
tan θb. The geometric relation between variables h and Zb in cells i and j is
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δ(Zb + h cosψ)

∆x cosψ
= tanθb (12.36)

In this case, the momentum equation reduces to

δ

(
g cosψ

h2

2

)
=

∫ ∆x/2

−∆x/2

(−g sin(ψ)h+ g cosψh tan θb) dx (12.37)

Under the hypothesis of smooth variation of the variables, the integral term in equation
(12.37) becomes

δ

(
g cosψ

h2

2

)
= gh̃(−δZb + cosψ tan θb∆x) (12.38)

that can be written as follows

g cosψh̃δh+ gh̃δZb = gh̃ cosψ tan θb∆x (12.39)

leading to the equilibrium condition in (12.36). Then, S̄nτ in (12.26) is defined in a 2D
mesh as follows

S̄nτ =




0
− τb

ρ
dnnx

− τb
ρ
dnny




k

(12.40)

12.3.4 Consistency Condition

The local RP in (12.21) is approximated by using the following constant coefficient
linear problem

∂Û

∂t
+ Ln,k

∂Û

∂x′
= 0 (12.41)

with the following initial conditions

Û(x′, 0) =

{
Ui if x′ < 0
Uj if x′ > 0

(12.42)

The term Û(x′, t) represents the linearized solution given by the Roe approach, aug-
mented to include the presence of source terms.



12.3 Finite Volume Model 133

On the other hand, the Consistency Condition (Toro, 2009) states that the integral of
the approximate solution Û(x′, t) of the linearized RP over control volume [0,∆t] ×
[−∆x′,∆x′] must be equal to the integral of the exact solution U(x′, t) given in (12.25)

∫ ∆x′

−∆x′
Û(x′, t = ∆t) dx′ =

∫ ∆x′

−∆x′
U(x′, t = ∆t) dx′ (12.43)

Therefore according to (12.27)

∫ ∆x′

−∆x′
Û(x′, t = ∆t) dx′ = ∆x′ (Ui +Uj)− δMk∆t (12.44)

Bearing in mind (12.44), (12.41) is integrated over the control volume pictured in
Figure 12.7

∫ x′=∆x′

x′=−∆x′

∫ t=∆t

t=0

(
∂Û

∂t
+ Ln,k

∂Û

∂x′

)
dx′dt = 0 (12.45)

and reordering, the following expression is obtained at each k edge

∫ ∆x′

−∆x′
Û(x′, t = ∆t) dx′ = ∆x′ (Ui +Uj)− Ln,kδUk∆t (12.46)

and since we want to satisfy (12.44), the constraint that follows is

δMk = Ln,kδUk (12.47)

The construction of the constant linear matrix Ln,k is based on the definition of an

approximated Jacobian matrix of the non-linear flux En, J̃n,k (Roe, 1986)

δ(En)k = J̃n,kδUk (12.48)

and is exploited here. This approach provides a set of 3 real eigenvalues λ̃mk

λ̃1k = (ũn− c̃)k, λ̃2k = (ũn)k, λ̃3k = (ũn+ c̃)k (12.49)

and 3 eigenvectors ẽmk . With them, it is possible to define matrix P̃ = (ẽ1, ẽ2, ẽ3) as

P̃k =




1 0 1
ũ− c̃nx −c̃ny ũ+ c̃nx
ṽ − c̃ny c̃nx ṽ + c̃ny



k

(12.50)



134 Mathematical model and numerical scheme following local coordinates

t

x′

∆t
(En)i (En)j

Sn

X ′ X ′

Ui Uj

h(t > 0)

x′=0

x′

λmin λmax

hi

hj

Figure 12.7: Integration control volume in interval [0,∆t]× [−∆x′,∆x′] and interpre-
tation of the source term

with the following Roe’s averages

ũk =
ui

√
hi+uj

√
hj

√
hi+

√
hj

, ṽk =
vi
√
hi+vj

√
hj

√
hi+

√
hj

, c̃k =
√
g cos(ψ)

hi+hj
2

(12.51)

The approximate matrices P̃, and P̃−1 diagonalize J̃k

P̃−1
k J̃n,kP̃k = Λ̃k (12.52)

with Λ̃k a diagonal matrix with eigenvalues λ̃mk in the main diagonal

Λ̃k =




λ̃1 0 0

0 λ̃2 0

0 0 λ̃3



k

(12.53)

The difference in vectorU across the grid edge is projected onto the matrix eigenvectors
basis

δUk = P̃kAk (12.54)

where Ak = ( α1 α2 α3 )Tk contains the set of wave strengths

α1,3
k =

δhk
2

± 1

2c̃k
(δqk − ũkδhk)nk α2

k =
1

2c̃k
(δqk − ũkδhk)nT,k (12.55)
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In order to link the source terms to the set of eigenvalues they are also projected onto
the matrix eigenvectors basis

(S̄nτ )k = (P̃Bτ )k (S̄nb)k = (P̃Bb)k (12.56)

with Bτ,k = (β1
τ , β

2
τ , β

3
τ )
T
k and Bb,k = (β1

b , β
2
b , β

3
b )
T
k leading to the following source

strengths

β1,3
τ,k = ∓ 1

2c̃k
(S̃2τnx + S̃3τny), β2

τ,k = 0

β1,3
b,k = ∓ 1

2c̃k
(S̃2bnx + S̃3bny), β2

b,k = 0
(12.57)

where source terms are expressed in a general form as S̄nτ = (0, S̃2τ , S̃3τ )
T and S̄nb =

(0, S̃2b, S̃3b)
T . Using (12.28), (12.48) and (12.56) matrix δMk can be expressed as

δMk = J̃n,kδUk − P̃k(Bτ +Bb)k =
3∑

m=1

(
λ̃ θαẽ

)m
k

(12.58)

with

θmk =

(
1− β

λ̃α

)m

k

β = βτ + βb (12.59)

or in matrix form

δMk = (P̃Λ̃ΘP̃−1)kδUk (12.60)

Therefore the value for the desired matrix Ln,k in (12.47) is

Ln,k = (P̃Λ̃ΘP̃−1)k (12.61)

where Θ is a diagonal matrix

Θk =




θ1 0 0
0 θ2 0
0 0 θ3



k

(12.62)

that relates fluxes and source terms and that becomes equal to the identity matrix in
absence of source terms.

Since the source terms are assumed at a fixed position, the solution will consist of 3
propagating waves of speed equal to the λ̃mk eigenvalues, and an extra wave located at
x′ = 0 and fixed in time.
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12.3.5 2D first order finite volume model

The definition of matrix Ln,k is of great importance. It allows to define directly right-
going and left-going wave propagations that provide the variation in time of the con-
served variables

δMk = δM−
i,k + δM+

j,k = L−
i,kδUk + L+

j,kδUk (12.63)

with

δM−
i,k = (P̃Λ̃−ΘP̃−1)kδUk δM+

j,k = (P̃Λ̃+ΘP̃−1)kδUk (12.64)

and Λ̃± = 1
2
(Λ̃± |Λ̃|), that can be expressed as

δM−
i,k =

3∑

m=1

(
λ̃−θαẽ

)m
k

δM+
j,k =

3∑

m=1

(
λ̃+θαẽ

)m
k

(12.65)

Following Godunov’s method, the updated value Un+1
i is defined cell averaging the

contributions of the local RP shaping the contour cell and Godunov first order method
is written as Murillo and Garćıa-Navarro (2010b)

Un+1
i = Un

i −
NE∑

k=1

δM−
i,k

∆t lk
Ai

(12.66)

with the following equivalent 1D formulation

Un+1
i = Un

i −
∆t

∆x
[δM−

i+1/2 + δM+
i−1/2] (12.67)

Superindex − becomes necessary to distinguish from outcoming fluxes to cell i at edge
k, that will be referred to as δM+

j,k, as they update the adjacent j cell sharing the k
edge.

12.3.6 Stability region

The time step limitation well known for the homogeneous case is not able to control
the numerical stability in complex cases woth wet/dry fronts over irregular and rough
topography. Only when implemented in combination with several numerical fixes can
be used to ensure a reliable stability control as in Murillo and Garćıa-Navarro (2012a).
Furthermore, the proposed numerical fixes enable the stability control avoiding the
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reduction of the time step below the size given by the classical CFL condition. In
approximate solutions of the homogeneous case, unphysical solutions are overcome
by means of well known entropy fixes. In Murillo and Garćıa-Navarro (2012a) it was
argued that in presence of source terms, the augmented approximate solvers require new
types of fixes, in particular a friction fix and a depth-positive ensuring fix. Source fixes
modify the source strength waves β if necessary and ensure correct estimations of the
source terms. The details can be found in Murillo and Garćıa-Navarro (2012a) and are
not repeated here. They are applied directly in this work when performing numerical
experiments, as were defined under a general framework. The careful understanding
of the extended Riemann solvers is useful to ensure robust finite volumes schemes
controlled by the classical CFL condition.

In the 2D framework, considering unstructured meshes, the relevant distance, that will
be referred to as χi in each cell i must consider the volume of the cell and the length
of the shared k edges.

χi =
Ai

maxk=1,NE lk
(12.68)

Considering that each k RP is used to deliver information to a pair of neighboring
cells of different size, the distance min(Ai, Aj)/lk is relevant. According to Murillo and
Garćıa-Navarro (2010b) the time step is limited by

∆t ≤ CFL ∆tλ̃ ∆tλ̃ =
min(χi, χj)

max |λ̃m|
(12.69)

with CFL=1/2, as the construction of finite volume schemes from direct application of
one-dimensional fluxes leads to reduced stability ranges (Toro, 2001).





Chapter 13

Mathematical model and numerical
scheme following global coordinates

13.1 Introduction

A mathematical model together with its numerical scheme for dry granular flow over
steep areas and using global coordinates, GC from now on, is presented in this Chapter.

13.2 Mathematical model

The 2D shallow equations are written following global coordinates (X, Y, Z) as follows

∂U

∂t
+
∂F(U)

∂X
+
∂G(U)

∂Y
= Sτ + Sb (13.1)

where

U = (H,HU,HV )T (13.2)

are the conserved variables with H representing granular material depth in the Z
coordinate and (U, V ) the depth averaged components of the velocity vector. The
fluxes are given by

F =

(
HU,HU2 +

1

2
gψH

2, HUV

)T

G =

(
HV,HUV,HV 2 +

1

2
gψH

2

)T
(13.3)
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with gψ = g cos2 ψ and ψ the direction cosine of the bed normal with respect to vertical,
as depicted in Figure 13.1.

g

X

Z

x

Zb(X)

z

H(X)h(x)

ψ

ψ

Figure 13.1: Relation among local and global coordinates

The term Sτ expresses bed frictional effects

Sτ =

(
0,−τb,X

ρ
,−τb,Y

ρ

)T
(13.4)

with τb,X , τb,Y the bed shear stress in the X and Y direction respectively, with ρ the
density of the fluid. If a Coulomb friction is considered, Sτ assumes the following form

Sτ = (0,−gψH tan θb,−gψH tan θb)
T (13.5)

being θb the dynamic friction angle between the bed and the flowing mass. The term
Sb

Sb =

(
0, −gψH

∂Zb
∂X

,−gψH
∂Zb
∂Y

)T
(13.6)

expresses the variation of the pressure force along the bottom in the X and Y direction
respectively.

In order to clarify the physical basis of gψ = g cos2 ψ a one-dimensional problem in-
volving a uniform slope is considered in Figure 13.1. Assuming that the surface level
is parallel to the bed, the pressure is hydrostatic in the local axis z,

p(z) = ρg cosψ(h− z) (13.7)

and the relation among local and global variables is given by

z = Z cosψ h = H cosψ (13.8)
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Hence the following pressure distribution in Z can be written

p(Z) = ρg cos2 ψ(H − Z) (13.9)

that, if integrated in Z, generates the pressure force gψH
2/2 present in the left hand

side of (13.1).

On the other hand, gravity and friction Coulomb forces exerted over the bed in the
local x direction over a length ∆x are given by

ρgh(sinψ − cosψ tan θb)∆x (13.10)

They can be simply projected in X by multiplying terms in (13.10) by cosψ. Consid-
ering that ∆X = ∆x cosψ and h = H cosψ they reduce to

ρgH cos2 ψ

(
∂Zb
∂X

− tan θb

)
∆X (13.11)

leading to the source term Sb in (13.1).

13.3 Finite Volume Model

The same steps used to define the finite volume scheme for system in (12.1) can be
applied to (13.1). For the sake of conciseness only the relevant differences will be
remarked here. Again, the piecewise representation of the variables and the definition
of gravity forces affected by the presence of uneven bed levels, are brought together to
ensure the well-balance property at each RP, and the angle ψ is now defined as

tanψ = Son = tan θnX + tan γnY (13.12)

where nX and nY are the components of the unit normal vector n outward to the cell
Ω.

Then, at each k edge a local RP along the X ′ direction is defined, being X ′ the
coordinate normal to the cell edge k. The problem is defined using a single angle ψ,
and the flux En can be approximated by

En ≈




H(U nX + V nY )
(H U2 + 1

2
gψH

2)nX +H U V nY
(H V 2 + 1

2
gψH

2)nY +H U V nX


 (13.13)
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with gψ = g cos2 ψ. The source terms are reformulated as

Snτ ≈ (0,−g cos2 ψ tan θbHnX ,−g cos2 ψ tan θbHnY )
T

Snb ≈ (0, −g cosψ sinψHnX ,−g cosψ sinψHnY )
T

(13.14)

Next, appropriate integrals of the source terms, S̄nτ and S̄nb, are defined.

13.3.1 Integration of the bed slope source term

As in local coordinates, it is necessary to ensure exact balance among fluxes and source
terms in steady state configurations. Quiescent frictionless equilibrium over a sloping
bed is represented in Figure 13.2.

X

x

Zb,i

Hi

Zb,j

Hj

θ

∆X

Figure 13.2: Frictionless quiescent equilibrium in global coordinates

For the sake of clarity, a one dimensional mesh with uniform cell size ∆X is considered.
Surface level is constant along X and the geometrical relation between variables H and
Zb in cells i and j is

δ(Zb +H) = 0 (13.15)

The momentum equation reduces to

δ

(
g cos2 ψ

H2

2

)
=

∫ ∆X/2

−∆X/2

−g cos2 θH tanψ dX = −g cos2 ψH̃δZb (13.16)

having used δZb = ∆X tanψ. Also using H̃ = 1/2(Hi +Hj),

g cos2 ψH̃δH = −g cos2 ψH̃δZb (13.17)

so condition in (13.15) is recovered. In 2D, H̄n is now defined as
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(H̄n)k =




0

−gψH̃δZbnx
−gψH̃δZbny




k

(13.18)

13.3.2 Integration of the friction stress source term

Bed friction τb must produce a resistance against the flow direction, so in case that
|Un| > 0, τb,k is computed as

τb,k =
Un

|Un|
|τb,k| (13.19)

otherwise, the sign is defined acting against the movement produced by the variation
of the surface level

τb,k =

{
|τb,k| if δ(Zb +H)k ≤ 0
−|τb,k| if δ(Zb +H)k > 0

(13.20)

In both cases |τb,k| is defined by

|τb,k| = gψρH̃ tan(θb) (13.21)

Figure 13.3 considers a one dimensional test case with friction quiescent equilibrium
over a sloping bed that involves Coulomb-type resistance forces.

X

x

Zb,i

Hi

Zb,j

Hj

θ

∆X

θb

Figure 13.3: Quiescent equilibrium involving Coulomb stress in global coordinates

In this case the level surface has a constant slope given by tan θb and the geometric
relation between variables H and Zb in cells i and j is

δ(Zb +H)

∆X
= tanθb (13.22)
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Under the hypothesis of smooth variation of the variables, the momentum equation
reduces to

δ

(
g cos2 ψ

H2

2

)
= −g cos2 ψH̃δZb + g cos2 ψH̃ tan θb∆X (13.23)

that can be written as follows

H̃δH = −H̃δZb + H̃ tan θb∆X (13.24)

leading to condition in (13.22). Then, S̄n,k is defined in a 2D mesh as follows

(S̄n)k =




0
− τb

ρ
dnnx

− τb
ρ
dnny




k

(13.25)

13.3.3 Approximate solution

The approximate solutions given to define numerical fluxes can be straightforward
followed by simply modifying Roe’s averages, (12.51), as follows

ũk =
Ui

√
Hi+Uj

√
Hj

√
Hi+

√
Hj

, ṽk =
Vi

√
Hi+Vj

√
Hj

√
Hi+

√
Hj

, c̃k =
√
g cos2 ψ

Hi+Hj

2
(13.26)

modifying accordingly wave strengths and source strengths using definitions of source
terms in (13.18) and (13.25).



Chapter 14

Results following local and global
coordinates

14.1 Introduction

In this Chapter the numerical solvers developed previously are tested against 1D and
2D experimental data in order to check the suitability of the mathematical models
described in this work allowing comparisons between results provided following global
and local system of coordinates.

14.2 Quiescent equilibrium and start/stop flow con-

ditions

In this section two different academic numerical test cases are performed in order to
prove that quiescent equilibrium and start/stop flow conditions are ensured for both
global and local system of coordinates over a irregular two-dimensional bed. In all
numerical experiments the bed level z and initial the free surface level d = h + z are
given by

z =
√

(x/2)2 + (y/2)2 d = −
√

(x/2)2 + (y/2)2 + 0.2 (14.1)

Therefore, the initial granular mass will not cover all the domain, as shown in Figure
14.1.

The initial mass is always in repose. The stress will be considered purely frictional.
In each test case a different value of internal friction angle θb will be imposed. The
computational domain, 0.3m × 0.3m, is defined setting the origin of coordinates in its
center. As quiescent equilibrium and adequate start/stop flow conditions are defined
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X Y

Z

H: 0.025 0.074 0.124 0.173 0.223 0.272 0.322 0.371

t = 0 s

Figure 14.1: 3D contour view of the initial free surface level using GC

in this work with independence of the type of mesh, the computational domain will
be discretizated in each case using rectangular, triangular structured and triangular
unstructured meshes that will be referred to as M1 (30.000 cells), M2 (30.000 cells),
M3 (30.000 cells).

In the first test case the internal friction angle is θb = 40o. As the free surface slope is
smaller than the maximum allowable slope that ensures static equilibrium, given by θb,
the initial configuration is supported by internal stresses. Thus, the initial shape has
to be retained in time and equal to the initial state. Figures 14.2 and 14.3 show the 3D
contour view and 2D contour view for the free surface level and velocity modulus at
times t = 0 s and t = 0.4 s when using GC and LC respectively in meshes M1, M2 and
M3. The temporal evolution of the maximum modulus of the flow velocity when using
the three meshes and the LC (left) and GC (right) formulations is shown in Figure
14.4. In all cases a nil value of velocity is ensured in time with independence of the
mesh topology employed. The numerical solutions do not change in time. Discrete
equilibrium is provided in time with independence of the type of mesh employed for
both coordinate systems.

The value of internal friction in the second test case is θb = 30o. The internal stresses
cannot support the initial free surface and it evolves in time. Figures 14.5 and 14.6
show the contour views for the computed free surface level and velocity modulus at
time t = 1.0 s when using GC and LC and meshes M1, M2 and M3. In each case
the initial mass has evolved until stop flow conditions are reached. Another static
surface level is computed, where the new slope is smaller than the equilibrium one,
defined by θb. Differences in the transient states appear depending on the type of mesh
employed. For the sake of clarity, differences among the computed surface elevations
will be discussed in a separate section. Figure 14.7 displays the temporal evolution of
the maximum modulus of the flow velocity when using the three meshes and the LC
(left) and GC (right) formulations. In all cases a nil value of velocity is ensured once
static equilibrium is computed with independence of the mesh topology employed.

It is worth noticing that contrary to Pirulli et al. (2007), the mesh influence in struc-
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Figure 14.2: Friction angle θb = 40o. 3D contour views for (left) the free surface level
and (right) velocity modulus at time t = 0.4 s using GC and (upper) meshM1, (middle)
mesh M2 and (lower) mesh M3

tured grids can not be reduced by increasing the number of cells involved in the numer-
ical computation. In Figure 14.8 is showed the numerical free surface level for meshes
M1 and M2 when using LC (left) and GC (right) formulations, but now involving
five times more cells, i.e., 150000 cells which implies a cell area equal to 2.4e-6 m2.
Computed results are also affected by the mesh topology.
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Figure 14.3: Friction angle θb = 40o. 2D contour views for (left) the free surface level
and (right) velocity modulus at time t = 0.4 s using LC and (upper) meshM1, (middle)
mesh M2, (lower) mesh M3
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Figure 14.6: Friction angle θb = 30o. 2D contour views for (left) the free surface level
and (right) velocity modulus at time t = 1 s using LC and (upper) mesh M1, (middle)
mesh M2 and (lower) mesh M3
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Figure 14.8: Friction angle θb = 30o. 3D and 2D contour views for the free surface
level at time t = 1 s when using LC (left) and GC (right) and (upper) mesh M1, and
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14.3 Dam break test cases with exact solution

Following earlier works in Faccanoni and Mangeney (2012); Mangeney, A. and Heinrich,
Ph. and Roche, R. (2000), the performance of the numerical scheme in (12.66) is
analyzed in dam break problems with exact solutions involving a constant bed slope
and a Coulomb frictional stress, using both local and global systems of coordinates. In
order to derive the exact solution, the system of equations in (12.1) in LC is written
in non-conservative form

ht + u hx + h ux = 0
ut + g cosϕhx + u ux = −g cosϕP (14.2)

with P = (tanϕ+ tan θb). Following Watson et al. (1992), and setting g′ = g cosϕ the
change of variables

X = X − g′ 1
2
Pt2 T = t

U = U − g′Pt H = h
(14.3)

leads to the following homogeneous system of equations,

HT + U HX +H UX = 0
UT + g′ HX + U UX = 0

(14.4)

. This result allows to obtain the exact solution of a dam break problem over variable
bed and friction, using the result of a frictionless dam break in a wide horizontal channel
over dry bed, given by the Ritter solution Ritter (1892)

H(X , T ) =
Ho

9

(
2− X

T √
g′Ho

)2

(14.5)

with Ho = ho the initial upstream water depth.

Alternatively, the equations formulated in global coordinates (13.1) can be written in
non-conservative form as

Ht + u HX +H UX = 0
Ut + g cos2 ϕHX + U UX = −g cos2 ϕ (tanϕ+ tan θb)

(14.6)

Calling g′ = g cos2 ϕ, the change of variables in (14.3) provides the analytical solution
in (14.5).

The definition of the direction cosine of the bed normal with respect to vertical is
estimated using the projection of the bed slope defined in the normal direction of the
edge. In these 1D test case the computational values of the direction cosine given by
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(12.18) and (13.12) are exact. Figure 14.9 shows the exact and numerical solutions of
a dam break problem over dry bed after 0.5 s in (left) LC and in GC (right) using a 1D
mesh, ∆x = 0.1m, setting ho = 10m, ϕ=40o and θb=24.5o. The plots are shown using
(left) h and x variables and (right) H and X variables. Note that the rarefaction tail
and the advancing front positions are accurately captured by both numerical schemes.
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Figure 14.9: Exact and numerical solutions of a dam break problem over dry bed after
0.5 s in (left) LC system and in GC (right) using a 1D mesh

This 1D exact solution is also useful to check the performance of the numerical schemes
presented in this work in 2D unstructured meshes. 2D rectangular structured meshes
are not tested, as 1D and 2D formulations are completely equivalent in this test. On the
other hand, even though the flow is 1D, unstructured meshes force the computation
of numerical fluxes in arbitrary directions. Then, 2D numerical discretization must
ensure correct 1D advance of the exact solution.

In order to allow correct comparisons among numerical results, the same mesh has been
used in both local and global formulations. The definition of the bed level surface is not
straightforward and requires adequate projections depending on the coordinate system
selected. Figure 14.10 shows the longitudinal profile of the solution in a centered section
in an unstructured 2D mesh with a cell area of approximately 3 cm2 using approaches
in (left) (12.18) and (right) (13.12). No noticeable differences appear with respect the
exact solution for both coordinate systems. The position of the advancing front wave
and the tail of the dam break are well captured by the numerical scheme.
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Figure 14.10: Exact and numerical solution in a longitudinal profile of the dam break
problem over dry bed after 0.5 s (left) in LC system and (right) in GC using a 2D
triangular unstructured mesh

14.4 Experimental 1D dam break

Experimental data are used to validate the models under realistic conditions. The
morphodynamic changes that take place during the dam break in a genuinely 1D flow,
the run out distance and the final height of the surface are numerically reproduced.
The experiment presented in this section was carried out by Mangeney et al. (2010)
in a straight narrow channel of 10 cm width with a rough rigid bed and an inclina-
tion angle equal to 30o. The granular material was composed by glass beads, with a
diameter ranging from 600 µm to 800 µm and an internal friction angle θb = 25o. The
granular material was released after the opening of a gate. A sketch of the experiment
is presented in Figure 14.11. The domain is discretized using a triangular unstructured
mesh, with a cell area of 1 mm2 and it was computed using CFL = 0.5. The same
mesh discretization has been used in both LC and GC computations.

20cm

300cm

14cm

Gate

Figure 14.11: Sketch of the 1D dam break experiment

Figure 14.12, shows a sequence of 3D views of the computed free surface level evolution
in time using the global system of coordinates. Glass beads move quickly, leading to a
symmetric flooding wave that saturates all the wide flume. At time t = 2.3 s most of
the morphodynamic changes have been produced.
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Figure 14.12: 3D contour plot of the free surface level using GC at times (a) t=0.3s,
(b) t=0.6s, (c) t=0.9s and (d) t=2.3s

Figure 14.13 compares the simulated and measured depth in a longitudinal profile at
times t = 0.32 s, t = 0.80 s and t = 2.30 s, using (left) LC and (right) GC. Both
reference systems, employing their corresponding source terms discretization, provide
similar numerical results.

The most important difference is found at t = 0.32 s. It is caused by the perturbation
generated during the experiment when part of the glass beads are dragged by the
vertical movement when opening the gate. As it is well known, the shallow water
equations neglect the vertical accelerations and are therefore unable to model this type
of situations. In the other two instants of time the numerical scheme is able to predict
accurately the temporal evolution of the surface level as well as the maximum spreading
of the experiment, at t = 2.3 s.
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Figure 14.13: Comparison of measured and computed longitudinal profiles at times t
= 0.32 s, t = 0.80 s and t = 2.30 s, using (left) LC and (right) GC
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14.5 Experimental spreading of cylindrical granu-

lar mass

In this section the numerical simulation of the spreading of a cylindrical granular mass
over a flat plane is considered, so both local and global formulations are equivalent.
Numerical results are compared with experimental data presented in Lajeunesse et al.
(2004) where glass beads were initially enclosed within a cylinder. The density of the
glass beads was ρ=2500 kgm−3, with a diameter d=350±50 µm. The material was
characterized by an internal friction angle tan θb=32o. Once the cylinder was removed,
the granular material collapsed and flowed over the horizontal plane which was made of
sandpaper substrate. The movement of this granular flow was recorded with high-speed
cameras.

Test Hi Ri a = Hi/Ri

A 0.03948 0.0705 0.56
B 0.05640 0.0705 0.80
C 0.15120 0.0280 5.40

Table 14.1: Summary of experimental cylindrical test cases

Table 14.1 summarizes the initial conditions of the glass beads within the cylinder in
terms of the different aspect ratios a = Hi/Ri used in the experiments, with Ri and
Hi, the radius and the height of the cylinder respectively. The variation in a allows to
check the limits of the mathematical model under the different regimes observed in the
experiments.

Before numerical schemes are applied, a suitable mesh must be defined. The symmetry
in the initial conditions makes this test case a good candidate for the analysis of the
influence of the mesh discretization in the numerical solution. To analyze this possible
dependence four different grids are defined: rectangular (M1), triangular bidiagonal
structured (M2A), triangular diagonal structured (M2B) and triangular unstructured
(M3). Triangular diagonal mesh M2B is presented here following Pirulli et al. (2007).
In all the cases, the squared domain 1m × 1m, was divided in 190000 cells. Figure
14.14 shows a detail of each mesh.

Test case A involves a small aspect ratio and, as a consequence most of the morpho-
dynamic changes take place in the flanks of the cylinder. Figure 14.15 compares the
measured data and numerical results in a centered cross-sectional area, at times t =
0s, t = 0.080s, t = 0.160s and t = 0.240s using M3. Computed results obtained in
Mangeney-Castelnau et al. (2005) have also been included for comparison. Most of the
significant changes take place in the first 0.080 seconds. The morphodynamic evolution
is captured accurately by the numerical scheme at all times. Even the numerical re-
sults provided here are similar to those obtained in Mangeney-Castelnau et al. (2005),
it is remarkable that, contrary to Mangeney-Castelnau et al. (2005), the present model
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Figure 14.14: Test case A. Detail of each mesh employed: (upper-left) M1, (upper-
right) M2A, (lower-left) M2B, (lower-right) M3

do not requires the definition of lower cutoff tolerances when computing the surface
elevation. 3D contour plots of the free surface level (left) and of the modulus of the
flow velocity (right) are depicted using meshes (upper) M1 and (lower) M2A in Figure
14.16, and using meshes (upper)M2B and (lower)M3 in Figure 14.17, at a time t=0.24s
after the cylinder removal. When comparing numerical results, it becomes clear that,
as it was remarked in Pirulli et al. (2007) with a mesh type equal to M2B, when using
structured meshes, the physical flows of the problem are masked by the propagation of
an external effect introduced artificially by the mesh. Only the triangular unstructured
mesh M3 avoids the misleading preference directions of flood propagation that appear
if using structured meshes. This behavior can be explained if considering that the
numerical scheme involves the normal direction at each cell edge of the computational
domain. In a structured mesh normal directions are orientated following the x or the y
axis, therefore flow can only develop from cell to cell following two directions. In case
of using an unstructured mesh an arbitrary distribution of the projections is provided,
and flow can evolve using multiple directions. In any case, the stopping conditions
are always ensured, resulting in a map of nil velocity with a non-uniform surface level.
Figure 14.18 provides the temporal evolution of the maximum modulus of the flow
velocity considering the four types of mesh studied, showing how at the final stage a
quiescent equilibrium condition is achieved with independence of the mesh topology
employed. It is worth noticing that as the numerical methods considered here, employ
a piecewise representation of the variables within each cell, when migrating to a 3D
view the information of the cells is extrapolated to the nodes and this is the reason of
the appearance of a slightly roughly surface level. When observing the cross sections in
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Figure 25, where the information has been taken from the center of each cell, a smooth
surface level is displayed.

In this work it is clearly shown how regular meshes provide privileged flow propaga-
tion directions, that can not be corrected by using refinements of the computational
mesh. In Pirulli et al. (2007), numerical experiments regarding the propagation of an
semi-spherical mass were done using a triangular diagonal mesh, as mesh M2B. The
distortion made in the evolved solution drove to misleading results, and authors in
Pirulli et al. (2007) concluded unfortunately that mesh dependency could be reduced
by further mesh refinement.

Test B, presenting a higher aspect relation, mobilizes a bigger quantity of material,
leading to a strong deformation both in the flanks and in the central part of the cylin-
der. Figure 14.19 compares the computed and experimental surface level in a centered
cross-sectional area usingM3. Computed results obtained in Mangeney-Castelnau et al.
(2005) have also been included for comparison. At times t=0.100s and t=0.180s, most
of the granular mass is put in motion. The numerical simulation is able to capture ac-
curately both maximum spread out and thickness of the layer. Differences are observed
at the stopping stage at t=0.240s, where the numerical results tend to overestimate
the sand peak with respect to the experimental one. Figure 14.20 shows 3D contour
plots of the free surface level (left) and of the modulus of the flow velocity (right) at
time t=0.24s, when the material reaches an static equilibrium. Figure 14.21 displays
the maximum modulus of the flow velocity against time when using M3. Bearing in
mind both Figures, it can be observed how the symmetry in the solution is preserved
and the velocity becomes nil in all the domain when obtaining the equilibrium stage
at time t=0.24s.

In test C, the aspect ratio a is not small enough to consider vertical accelerations neg-
ligible. Even though this case cannot be well modeled using shallow water hypothesis,
it is important to check whether the numerical scheme is robust enough in cases with
large variations in terms of surface elevation and spreading out. Numerical results ob-
tained for test case C are shown in Figure 14.22 at times t=0 s, t = 0.080 s, t = 0.200
s and t = 0.240 s using M3. As remarked in Mangeney-Castelnau et al. (2005), even
though large differences appear at the initial times, specially at time t = 0.080 s where
the vertical acceleration strongly affects the dynamic of the granular mass, the solver
is able to capture correctly the final stage. 3D contour plots of the free surface level
(left) and of the modulus of the flow velocity (right) at time t=0.24s, are displayed in
Figure 14.23. Again, the stopping conditions are achieved, keeping symmetry in the
solution and retaining a nil velocity in all the domain.
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Figure 14.15: Test case A. Comparison between experimental and computed results at
t = 0 s, t = 0.080 s, t = 0.160 s and t = 0.240 s using M3
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Figure 14.16: Test case A. 3D contour plot of the free surface level (left) and modulus of
the flow velocity (right) using rectangular mesh M1 (upper) and structured triangular
mesh M2A (lower) at time t=0.24s
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Figure 14.17: Test case A. 3D contour plot of the free surface level (left) and mod-
ulus of the flow velocity (right) using structured triangular mesh M2B (upper) and
unstructured triangular mesh M3 (lower) at time t=0.24s
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Figure 14.18: Test case A. Temporal evolution of the maximum modulus of flow velocity
using rectangular meshM1, structured triangular meshM2 and unstructured triangular
mesh M3
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Figure 14.19: Test case B. Comparison between experimental and computed results at
t = 0 s, t = 0.100 s, t = 0.180 s and t = 0.240 s using M3
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Figure 14.20: Test case B. 3D contour plot of the free surface level (left) and modulus
of the flow velocity (right) at time t=0.24s using M3
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Figure 14.21: Test case B. Temporal evolution of the maximum modulus of the flow
velocity using unstructured triangular mesh M3
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Figure 14.22: Test case C. Comparison between experimental and computed results at
t=0 s, t = 0.080 s, t = 0.200 s and t = 0.240 s using M3
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Figure 14.23: Test case C. 3D contour plot of the free surface level (left) and modulus
of the flow velocity (right) at time t=0.24s using M3

14.6 Experimental spreading of granular mass over

a fixed rough inclined plane

The set of experiments presented in this section were carried out over a rough inclined
plane, 2 m long and 70 cm wide, with different slopes as reported in Pouliquen and
Forterre (2002). Glass beads, with 0.5 mm ± 0.04 in diameter, were confined within
a spherical cap, Figure 14.24, with a maximum depth of 3.1 cm. The internal friction
angle was estimated equal to 18o. The temporal evolution of the free surface level in a
period of 6 s was obtained by analysis of the images taken with a CCD camera during
the flow. The numerical schemes will be used to predict the spreading of the granular
flow influenced by a uniform longitudinal slope. It is worth noticing that in the same
work, [4], numerical simulations were also performed but considering a friction law
more sophisticated than the simple Coulomb law.

Figure 14.24: 3D contour plot of the initial condition

Again, three different types of grids are defined: rectangular (M1), triangular structured
(M2) and triangular unstructured (M3). In all cases the cell area is 2 mm2, and
each mesh contains the same number of cells. The CFL is set equal to 0.4 in all
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cases. It is worth emphasizing that, the definitions of the bed level and initial layer
depth at the different cells depend on the coordinate system selected. Figure 14.25
shows the longitudinal profile of the initial condition for the layer thickness using
local coordinates and global coordinates. While symmetric initial conditions appear
in the local reference, initial conditions in the global reference present a deformation
associated to the projection of the layer thickness in the vertical direction, leading to
larger values of depth.

Figure 14.26 shows 3D contour plots of the numerical results for the free surface level
using (upper-left)M1, (upper-right)M2 and (lower)M3 at time t=0.96 s using GC. The
final shape of the spreading mass is strongly mesh dependent when using structured
meshes. Only unstructured mesh M3, characterized by an arbitrary definition of the
cell topology avoids undesirable effects in the solution. Therefore, only the numerical
solutions obtained using an unstructured are shown from now on.
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Figure 14.25: Longitudinal profile of the initial condition for the layer thickness using
LC and GC

Figure 14.27 shows the calculated free surface level at different times, with a bed slope
angle equal to 23o using (left) LC and (right) GC. Both coordinate systems provide
accurate results. In general, the temporal spreading of the granular flow is accurately
captured by both numerical schemes, allowing to predict reasonably well the thickness
layer evolution and the run out of the flow. Figure 14.28 shows the numerical results
at time t=6 s when stooping conditions have been reached.

A temporal sequence of plant views is plotted in Figure 14.29, numerically obtained
using the global coordinate system. In the first instants of time, the mass put in
motion spreads over the longitudinal and transversal direction before it is oriented to
the steeper direction which provokes the stretching of the flow. The tail of the flow
remains at rest whereas the front propagates down the initial stage.

Figure 14.30 shows the computational and experimental results obtained at rest condi-
tions, t=6s, using LC (left) and GC (right). Both measured and computed length and
thickness of the granular material change according to the inclination, ranging from
19o to 24o. Both local and global formulations provide similar accuracy and perform
adequately in all cases, predicting faithfully the thickness of the movable layer and the
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spreading over the rough plane as the inclination angle is augmented.

14.7 Experimental spreading of granular mass over

a initially static layer

Another experiment was also performed in Pouliquen and Forterre (2002), over the
same inclined plane but including a initially static layer, with a thickness of 2.7 mm.
If assuming that the initially static layer behaves as an erodible bed, extra equations
describing the interaction between layers are required and the definition of the approx-
imate solver changes (Rosatti et al., 2008b). Following Pouliquen and Forterre (2002)
in this work the evolution of the spreading mass is considered here assuming that local
thickness involves the initial static layer. The spherical cap was removed in this case
over this layer. Figure 14.31 presents the longitudinal profile for the free surface level
compared with the experimental data obtained in this test using local and global coor-
dinates. Both systems of coordinates provide to similar results. The largest differences
are noticed at time t=0.24 s. At times t=0.72 s an t=1.68 s numerical results provide
a good tendency with the experimental data driving to the final stage, at t=3.6 s.
Although the maximum run out tends to be slightly overestimated with respect the
measurement observed in the laboratory, the temporal evolution of the flow has been
tracked generally well by the numerical scheme.

Figure 14.32 shows a 3D view of the predicted thickness evolution considering the
presence of an initial deformable layer (right) and over rigid bed (left) at times t =
0.24, 0.72, 1.68 and 3.6 s using global coordinates. In both cases the slope angle is 23o.
The evolution of the granular mass in both cases is completely different. In presence
of an initial layer, the advancing front tends to decelerate and in this fashion the front
is widened until reaching certain shape and then it propagates down the slope. In case
of not having an initial layer the shape of the avalanche is better conserved during the
longitudinal run out.
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Figure 14.26: 3D contour plots of the free surface level using (upper-left) M1, (upper-
right) M2 and (lower) M3 at time t=0.96 s using GC
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Figure 14.27: Bed slope angle of 23o. Measured and computed thickness profiles along
y = 0 at times t = 0.24, 0.48, 0.96 and 2.40 s, using (left) LC and (right) GC
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Figure 14.28: Bed slope angle of 23o. Measured and computed thickness profiles along
y = 0 at time t = 6 s, using (left) LC and (right) GC
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Figure 14.29: Temporal evolution: contours of constant thickness every 0.5 mm at
times t = 0.24 s (a), t = 0.48 s (b), t = 0.96 s (c), t = 2.40 s (d) and t = 6 s (e) with
a slope angle of 23o using GC
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Figure 14.30: Measured and computed thickness profiles along y = 0 for the free level
surface obtained at t=6s with slope angles equal to 19o, 22o, 23o and 24o, using (left)
LC and (right) GC
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Figure 14.31: Bed slope angle 23o. Measured and computed thickness profiles along y
= 0 at times t = 0.24 s, t = 0.72 s, t = 1.68 s and t = 3.6 s with an initial static layer
using (left) LC and (right) GC
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(a)

(b)

(c)
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Figure 14.32: Bed slope angle 23o. 3D view of the surface level evolution at times t =
0.24 s (a), t = 0.72 s (b), t = 1.68 s (c), t = 2.40 s (d) and t = 3.6 s (right) over a
rough plane and (left) over an initial static layer using GC
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14.8 Spreading of granular mass over a rough parabolic

inclined plane

The developed numerical scheme has been further tested by comparison with a lab-
oratory experiment on a chute with a complex basal topography performed by Gray
et al. (1999). This experiment is of utmost importance for the validation of the pro-
posed model because the chute includes a longitudinal constant bed slope but also a
variable bed slope in the transversal direction. The geometry is defined departing from
a symmetric reference surface, 175 cm long, with an inclination angle of 40o. Over
this surface a parabolic function, Y 2/2R, with R=110 cm, is used to define the shape
of the chute. Next, a transition region, 215 cm long, smoothly links the chute with a
horizontal plane. A spherical cap, full of quartz chips of mean diameter 2-4 mm, is
located over the chute. The internal friction angle of the material is estimated equal to
40o and the basal angle of friction equal to δ = 30o (Gray et al., 1999). The projection
of this spherical surface over the slope plane drives to an elliptical shape. The major
axis has a length of 32 cm and the maximum height is 22 cm. This laboratory test case
was numerically reproduced in Pirulli et al. (2007) focusing on the differences when
dealing with an isotropic or anisotropic stress tensor. Following Pirulli et al. (2007) in-
ternal and basal friction are numerically modeled by considering isotropy and defining
an internal friction angle equal to 30o.

Figure 14.33 shows a 3D plot of the initial configuration. During the experiment, pho-
togrammetric techniques were used to obtained the position of the avalanche boundary
at different times. The mass moves rapidly downstream and reaches the horizontal
zone of run out. At that point the velocity of the front is reduced by the change in the
slope direction and consequently, the granular mass spreads transversally.

Figure 14.33: Initial configuration of the spherical cap over the parabolic chute

Numerical simulations are shown only on a triangular unstructured mesh, with a cell
area equal to 6 mm2, for both local and global formulations. Again, the definitions of
the bed level and initial layer depth at the different cells depend on the coordinate sys-
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tem selected. The generation of the initial conditions is not a trivial task, as transversal
sections in the chute do not present a uniform slope. In all simulations CFL is 0.5.

The computed evolution of the granular flow over the parabolic chute, using global
coordinates, is presented in Figure 14.34. The spreading of the granular mass is in
accordance with the description of the observed phenomena during experiments.

Figure 14.34: 3D contour views for the free surface level at times t = 0 s, t = 0.51 s, t
= 1 s, t = 1.79 s using GC

The predicted spreading evolution computed using GC is tested against experimen-
tal data in Figure 14.35, where a sequence of plant views is plotted. At the initial
times, t=0.51 s and t=1.00 s, inertial effects are more relevant than frictional ones and
the material mass rapidly accelerates. At time t=1.51 s, the spreading of the mass has
reached the horizontal zone and the material tends to deposit, evolving in the transver-
sal direction, up to a rest stage at time t=1.79s. Numerical results follow closely the
same experimental trend observed.

The results obtained using a local system of coordinates are presented in Figure 14.36.
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Despite the change in the value of the initial conditions and of the equivalent distances,
the numerical solution predicts accurately the time evolution of the spreading.

In order to check the performance of the numerical scheme presented in this work
in presence of stopping conditions over uneven 2D slopes, Figure 14.37 shows the
comparison between the computed results obtained in this work and the ones obtained
in Pirulli et al. (2007) when assuming isotropy or anisotropy of normal stresses and
using LC at time t=1.79 s. As it is displayed, the adequate discretization of the
source terms provides accurate results in the front and in the lateral sides. However,
the computed results located in the tail of the moving mass do not agree with the
experimental results.

In order to measure the influence of gravity projections, another numerical simulation
is performed not including the gravity projections in the global formulation. Numer-
ical results are plotted in Figure 14.38. Large difference appear if comparing with
experimental observations. This reduced model is not able to reproduce correctly the
stopping conditions observed in the experiment.
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Figure 14.35: Computed contours of surface level at times t = 0 s, t = 0.51 s, t = 1
s, t = 1.51 s, t = 1.79 s using GC. Dashed line indicates the position of the granular
mass during the experiment. Solid lines at X = 1.75 m and at X = 2.15 m indicate
the position of the transition zone
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Figure 14.36: Computed contours of surface level at times t = 0 s, t = 0.51 s and t
= 1.79 s using LC. Dashed line indicates the position of the granular mass during the
experiment. Solid lines at x = 2.28 m and at x = 2.71 m indicate the position of the
transition zone
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Figure 14.37: Computed contours of surface level at time t = 1.79 s using LC. Dashed
line indicates the position of the granular mass during the experiment. Solid lines
indicate the position of the transition zone
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Figure 14.38: Computed contours of surface level at times t = 0 s, t = 0.51 s, t = 1 s,
t = 1.51 s, t = 1.79 s using GC. Solid lines at X = 1.75 m and at X = 2.15 m indicate
the position of the transition zone





Chapter 15

Conclusions for the local and global
coordinates

In this work granular flow has been simulated using 2D finite volume schemes. Nu-
merical schemes have been constructed for both global and local coordinate system
involving complex topography. Each formulation has been developed focusing on the
projections of the gravity vector required in each case. Source term discretization is
based on the analysis of quiescent equilibrium, prior to be included in the approximate
RP.

Numerical assessment of the schemes proposed in this work is done using exact solutions
and both one and two-dimensional experimental test cases. Comparisons with exact
solutions and laboratory experimental data confirm that the numerical approaches for
vertical cosine in (12.18) and (13.12) are valid when dealing with unstructured mesh
in one and two-dimensional flows.

It has been checked how, in two-dimensional flows, structured meshes introduce arti-
ficial effects. In rectangular/triangular structured meshes, privileged spreading direc-
tions appear, distorting the numerical results.

Numerical experiments confirm the suitability of the numerical schemes when dealing
with a range of inclination angles. The thickness of the movable layer and the spreading
over the rough plane is well captured. The prediction of the final height of the deposit
is also accurately reproduced when incorporating an initially static layer. It has been
proved that the presented numerical schemes are able to reproduce experimental data
even in cases involving changes in both transversal and longitudinal bed slopes.

It is remarkable that when using a local systems of coordinates the definition of both
the topography and initial conditions is not a simple task. These additional efforts can
be avoided if using a global system of coordinates without compromising the quality
of the results. Moreover the majority of the topographic data for natural spaces are
based on digital elevation models (DEMs), which are referenced to a global framework.
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The complete understanding of the augmented Riemann solvers defined together with
the numerical fixes (entropy fix, friction fix and time step fix) allows to obtain accurate
numerical predictions even in cases of complex topography and with independence of
the reference coordinate system employed. The results and conclusions of this part of
the document have been published in Juez et al. (2013a).

15.1 Further research

Although in all the numerical experiments presented in this work simple friction laws
have been employed, the results presented can be used as the basis for the analysis of
more complex rheological models able to handle with more sophisticated fluids, such
as the ones made of a mixture of sand and water.

The presence of water within the land should be also carefully studied. The pore
pressure is the responsible of the mobilization of large amounts of material after intense
rainstorms. Moreover, the movement of the landslide provoke an important erosion of
the granular material already present on the bed. This fact can significantly modify the
behavior of the flow, leading to unexpected situations. Both processes, the infiltration
and the erosion, should be included in the mathematical model.



Chapter 16

Small-scale environmental problems

16.1 Introduction

Since a numerical scheme for dry granular flow has been developed and tested in pre-
vious Chapters, and following previous work, a series of laboratory studies which
constitute a further step in mimicking natural phenomena have been described and
simulated. Three situations have been considered with some common properties: a
two-dimensional configuration, variable slope of the topography and the presence of
obstacles. The setup and measurement technique employed during the development
of these experiments are deeply explained in Caviedes et al. (2014), where the author
of this thesis has also been involved. In this Chapter two issues are addressed: the
experimental setup employed during the development of the experimental work and
in addition, extra considerations about the friction law involved in the mathematical
model considered.

16.2 Experimental setup

The experimental setup is briefly addressed in this section as a detailed explanation is
provided in Caviedes et al. (2014). The laboratory experiment was carried out on an
inclined rough plane with a changing slope and without lateral walls. Three experi-
ments were carried out with this experimental facility. Each of them was defined by a
particular obstacle configuration. Experiment 1 consisted of a single semisphere obsta-
cle located on longitudinal axis of the slope. Experiment 2 had the same semisphere
obstacle as in the prior experiment but included also two smaller semisphere obstacles
positioned upstream. Experiment 3 had a square bar as obstacle across the transversal
direction of the slope. The initial condition was the same for the three experiments
and consisted of a semispheric cap full of sand at the upstream end of the facility. Sand
grain diameters ranged from 1 mm to 2 mm. The granular avalanche was triggered
by the sudden release of the semispheric deposit. A schematic representation of the
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experimental setup is displayed in Figure 16.1.

Figure 16.1: Schematic representation of the experimental setup

Three-dimensional temporal and spatial data of the moving mass was throughly col-
lected. The measurement technique employed included an RGB-D sensor on the top
of the experimental facility and a reflex camera which was set up from different views
to complete the data.

16.3 Extra considerations about the friction law

The description of the rheological laws which govern geophysical granular flows is not
a trivial task, as it is necessary to delve into their physical origins at the grain scale.
The main advantage of the depth averaged equations is precisely, that the dynamics
of the flowing layer can be predicted without knowing in detail the internal structure
of the flow (Pouliquen and Forterre, 2008). The complex three dimensional rheology
of the granular mass is mainly considered through the basal friction term. Assuming a
simple constant Coulomb-like basal friction is generally sufficient to capture the main
flow structures and has been widely used to describe granular motion (Pouliquen and
Forterre, 2002; Bouchut et al., 2003; Kerswell, 2005; Pirulli et al., 2007; Juez et al.,
2013b). This basal friction term is governed by a dynamic angle of friction which is
usually several degrees less than the traditional static friction angle (Cui and Gray,
2013).

However, when considering complex transient situations which involve realistic topog-
raphy and propagating shocks, more sophisticated basal friction laws may need to be
considered. The assumed dense quasi-static regime may fail and an intermediate liq-
uid regime can develop in which the collision forces take center stage. In the search
of accurate quantitative predictions several authors (Pouliquen and Forterre, 2002;
Forterre and Pouliquen, 2003; Pirulli et al., 2007) have studied in detail the onset and
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overall behavior of the gravity-driven flows. As it was stated in Pouliquen (1999);
Pouliquen and Forterre (2002), experimental works have proved the existence of two
critical angles: an initial static angle which governs the onset of the movement, θstart,
and another lower angle, which is in charge of the stopping phenomena, θstop. A rela-
tionship between both angles can be found in Pouliquen and Forterre (2002), providing
a way of explaining the hysteresis behavior of granular slope stability (Douady et al.,
1999). Additionally, Da Cruz et al. (2005) discussed another way of computing the
friction coefficient in terms of the relevant timescales controlling grain motion (mean
deformation and confining pressure). Both approaches, Pouliquen and Forterre (2002);
Da Cruz et al. (2005), despite of providing a full description of the granular behavior
at different regimes present the main drawback of requiring ad hoc parameters. In this
way, the accuracy of the predictions are tied to the accuracy of the calibration which
is usually supplied by small-scales laboratory test.

In order to avoid these calibration parameters, but pursuing a more sophisticated fric-
tion term we propose to consider new features. Regarding the fact that the conservation
equations in (8.1) are depth averaged, the tangential forces generated by the stresses
may have different and wide nature: turbulent stress τt, dispersive stress τd, Coulomb-
type frictional stress τf , yield stress τy and even viscous stress τµ. Not all stresses act
along or simultaneously at the same location of the material column. However, since
the conceptual model is depth-averaged, all terms may actually coexist and may be
mathematically lumped in the same formula. For this reason, and because the mathe-
matical structure of the equations is the same as the one of the shallow-water equations,
Manning’s law (Manning, 1895) is considered in the present work, additionally to the
dry frictional Coulomb’s law.

This empirical model is based on a power-law velocity model where the friction exerted
over the bed is written as the product of a friction coefficient and the square velocity
profile. Depth averaging this expression and considering turbulent flow on the basis of
the flow, Burguete et al. (2008a), drives to define the new tangential forces as

τt,x = ρgψ
n2u

√
u2+v2

h1/3

τt,y = ρgψ
n2v

√
u2+v2

h1/3

(16.1)

where n is the Manning-Strickler’s coefficient which is related to the bed topography
roughness. With the inclusion of this friction term in the momentum equations, the
effect of very thin layers where only a small number of grains are present in the vertical
column is taken into account. Since under these conditions only few layers of granular
material exist, and all of them are mobilized, the local dissipation of the potential
energy needs to be increased in such area. In this fashion, the stopping conditions of
the moving mass is not only reached when the slope of the surface level equals the
slope of the friction angle. Thanks to the mathematical structure of Manning’s law,
the smaller the granular depth is, more friction dissipation is generated at the base of
the flow. Hence, the sum of tangential forces of (12.4) applied over the moving mass
are evaluated as
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τb,x = τf,x + τt,x i.e. τb,x = ρgψh tan θb + ρgψ
n2u

√
u2+v2

h1/3

τb,y = τf,y + τt,y i.e. τb,y = ρgψh tan θb + ρgψ
n2v

√
u2+v2

h1/3

(16.2)



Chapter 17

Results for the small-scale
environmental problems

17.1 Introduction

The purpose of this section is twofold: first, we aim to validate the computed results
obtained by comparison against the experimental data. Therefore, the forecasting
capabilities of the shock-capturing scheme are explored when considering a fast 2D
transient condition with a variable topography which includes obstacles. Additionally,
a discussion on the physics involved in the granular flow behavior is developed. Some
fluid-mechanical characteristics are identified, providing useful information for future
design guidelines of dikes or other man-made civil elements.

All the simulations have been performed using an unstructured Delaunay triangular
mesh, since only this type of mesh avoids the presence of misleading preferential flow
directions as shown in the previous part of this thesis (Juez et al., 2013b). A maximum
cell area of 6 mm2 is considered with a stability condition of CFL = 0.5. The bed
domain is considered non-deformable and no boundary conditions are imposed.

Comparisons between experimental and computational results are based on quantita-
tive temporal 3D information detailed in Caviedes et al. (2014). 2D plan views and a
number of probes located at points of interest, shown in Table 17.1, are analyzed in
depth. A summary of all the probes is presented in Figure 17.1.
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S2
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Figure 17.1: Probes location

Probe X (mm) Y (mm)

PU 500 500
PD1 600 500
PD2 680 500
PS0 760 500
PS1 705 410
PS2 705 590
PSL 770 550
PSR 770 450
PS0L 814 570
PS0R 814 430

Table 17.1: Probe locations

17.1.1 Gravity driven flow facing up a single obstacle

The understanding of the flow behavior against obstacles gathers a great interest as it
is crucial in the design of elements which protect civil buildings and structures from
several types of material slides (snow avalanches, debris flows, rockfalls or pyroclastic
flows). Prior works have also pointed out the importance of this kind of configuration,
carrying out 1D laboratory experiments with cylindrical obstacles Gray et al. (2003);
Cui and Gray (2013) and with square blocks Hauksson et al. (2007). Being conscious
that a landslide is a genuinely 2D flow, although under particular circumstances it can
be constrained by bed topography driving to a 1D flow, we have developed a 2D exper-
imental case. For this purpose, in the experiment considered in this subsection a single
obstacle with semispherical shape is located within the flow region. This semisphere
can be seen as an obstacle and also as a characteristic of the bed topography. Figure
17.2 shows a three-dimensional plot of the initial configuration and Figure 17.3 shows
different views of the shock around the semisphere captured during the laboratory
work.
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Figure 17.2: Initial configuration with the sand deposit at the beginning of the slope
and the obstacle downwards
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Before comparing computed results with the experimental data, the influence of the
dynamical friction angle and the effect of the Manning’s term is studied. For this
purpose numerical results obtained by using two different dynamical angles, θb = 22o

and θb = 30o are shown in Figure 17.4 at the final stage of the experiment. As it
is observed, when using θb = 22o the friction term is diminished in comparison to
the inertia terms and the granular mass exceeds the obstacle, which results in two
symmetric sand deposits downwards. On the other hand, when applying θb = 30o, the
flow is stopped before overrunning the obstacle.

Additionally, the effect of the gravity projections considered in the numerical scheme is
also analyzed. For this purpose, Figure 17.5 displays the final stage with two different
dynamical angles, θb = 22o and θb = 30o and without considering the projections. As
it observed, the overall surface level is completely different from Figure 17.4 and an
important mismatch of a physically-based behavior is observed. Therefore, the effect
of the gravity projections is need it is retained from now on in all the computed results.

Bearing in mind the granular movement observed in the experiments, more accurate
results are obtained when using an intermediate dynamical angle equal to θb = 26o,
Figure 17.6 (a). Once the effect of the dynamical angle is clearly identified, the effect
of Manning’s law is taken into account in the friction term. In this fashion, the final
stage of the granular avalanche, shown in Figure 17.6 (b), displays some differences
with respect to 17.6(a): the front of the avalanche keeps the same maximum spreading
and the lateral movement is almost identical. However, noticeable discrepancies appear
in the tail of the avalanche: whereas with the unique existence of the friction angle
the effects of the thin layer are not taken into consideration and the tail is shortened,
when considering the Manning’s law the tail is enlarged, providing a better physical
description of the phenomena.
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(a) (b)

Figure 17.5: Final stage of the granular avalanche with two different dynamical friction
angles θb = 22o (a) and θb = 30o (b) and without considering the gravity projections
at the final stage of the movement

(a) (b)

Figure 17.6: Final stage of the granular avalanche when using only the dynamical
friction angle with θb = 26o (a) and when summing the Manning’s law (b) at the final
stage of the movement

A temporal sequence of 3D views, numerically obtained, is plotted in Figure 17.7. Addi-
tionally, in Figures 17.9 and 17.10 a temporal series of 2D plan views with experimental
data and computational results are presented. Since the sand cap is suddenly removed,
the overall granular mass is put in motion and the initial shape is lost quickly. The flow
spreads over the longitudinal and transversal direction until it reaches the obstacle, at
t = 540ms. At this point, two interesting flow structures are formed: a wake region



192 Results for the small-scale environmental problems

downslope from the semisphere, and a shock region upstream and to the sides of the
semisphere. The shock evolves symmetrically around the sphere until the avalanche
front remains at rest at t = 1000ms. From this temporal point, only the granular tail
is still in motion up to an equilibrium stage at t = 2000ms. An important phenomena
reported in Caviedes et al. (2014) is the existence of a stagnation area, i.e. an area
where the granular mass has a local zero velocity. This structure is also observed in
the computational results in Figure 17.8, and is temporally well described as it occurs
at the same time, t = 850ms, as it was observed in the laboratory. From a numerical
point of view, it is remarkable the robustness of the computed solution in the wet/dry
fronts: the computed solution is able to handle with these situations without ruining
the stability of the numerical solution. This characteristic is of utmost importance since
it is present during the movement of the granular mass and when impacting against
the obstacle: a part of the sand arrives to the top of the semispheric cap.

When analyzing the numerical results against the experimental data, the overall be-
havior of the granular mass is well described. Temporal evolution of the sand run
out is accurately tracked in time. Furthermore, although the shock is a genuinely 3D
structure, it is well reproduced by the depth averaged model considered in this work.
However, some differences appear around the shocks area and at the final stage, where
the computed results tend to overestimate the sand depth in the vicinity of the semi-
sphere. Both situations are explained by the fact that the mass located in the avalanche
tail is not stopped at the adequate position by the numerical scheme. Hence, an ex-
tra quantity of mass evolves downslope increasing the sand depth up to reach a rest
condition. This fact is clearly understood when computing the absolute error between
numerical and experimental results, Figure 17.11. Red areas, located at the sides of
the obstacle showed a higher prediction for the sand depth, whereas the blue areas
positioned at the avalanche tail show an underestimation of the mass. Nevertheless,
the error at the avalanche front is close to zero, which implies an accurate tracking of
the transient moving mass.

All the probes measured in the laboratory work (except PU, which in this experiment
was not recorded) are compared with the computed results, Figure 17.12. PD1 shows
a time lag with respect to the experimental measurement. This is due to the fact
that, during the experiment, the opening of the sand container was not instantaneous,
in contrast to the computational assumption under which a sudden dam break of
the initial sand cap is considered. Additionally, differences between experimental and
numerical results are observed from time t = 1100ms and are associated to the different
behavior of the avalanche tail observed with the experimental and computed results:
in the laboratory work the tail area is spatially stopped before and consequently, the
sand depth is stretched. In PD2, which is located downstream from PD1, the time
lag perturbation of the gate is less evident. Numerical results are in good agreement
with experimental data. An interesting phenomena is observed in the computational
solution: the sand depth grows quickly up to time t = 750ms, then drops up to time
t = 1100ms and then the sand layer is increased again. Since the avalanche front
moves quickly, the granular mass is split into two regions: the front and the tail. Once
the front remains at rest, the tail is still in motion and goes on traveling downslope.
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Therefore, the final height of the sand layer at point PD2 is the sum of two moving
masses: first the front and then the tail. PS1 and PS2 provide an accurate prediction
of the sand flow and the same explanations given for the jump in the sand depth at
PD2 is applicable here. PSL, PSR, PS0L, PS0R, PS0 are placed in the vicinity of
the obstacle, providing information of the shocks upstream and to the sides of the
semisphere. All of them tracked accurately the temporal evolution. Nevertheless, the
final sand depth is overestimated as a consequence of the extra granular mass which
comes from the tail area.

In addition to the probes, in Figure 17.13 a longitudinal profile at y = 500mm is shown.
The tendency of the experimental measurement is well reproduced by the computed
solution, although the predicted surface level is overestimated over the obstacle. This
larger amount of material located in the front of the avalanche comes from the tail
area.
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(a) Downstream view (b) Upstream view (c) Side view

(d) Upstream high view

Figure 17.3: Flow features and structures in Experiment 1

(a) (b)

Figure 17.4: Final stage of the granular avalanche with two different dynamical friction
angles θb = 22o (a) and θb = 30o (b) at the final stage of the movement
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Figure 17.7: 3D contour views for the free surface level at times t = 100 ms, t = 200
ms, t = 500 ms, t = 1000 ms, t = 1500 ms and t = 2000 ms
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Figure 17.8: 2D plant view of the computed velocity field at time t = 850 ms
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Figure 17.9: 2D plant views for the sand depth obtained experimentally (left side) and
computationally (right side) at times t = 540 ms, t = 600 ms, t = 700 ms
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Figure 17.10: 2D plant views for the sand depth obtained experimentally (left side)
and computationally (right side) at times t = 1000 ms, t = 1500 ms, t = 2000 ms
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Figure 17.11: 2D plant views displaying the absolute error at times t = 540 ms, t =
600 ms, t = 700 ms, t = 1000 ms, t = 1500 ms, t = 2000 ms
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Figure 17.12: Computational and experimental probe results
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Figure 17.13: Longitudinal section (y = 500mm) for Experiment 1 at the final stage
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17.2 Gravity driven flow facing up three obstacles

The next step in this work is considering a configuration which involves several ob-
stacles. In this situation the shock propagation is expected to be influenced by the
presence of other moving waves in their vicinity. To our knowledge, this particular
configuration has not been addressed in other works. Figure 17.14 displays a sketch of
the initial configuration of the experiment. In Figure 17.15 the images captured in the
laboratory work display the flow structures around the obstacles.

Figure 17.14: Initial configuration with the sand deposit at the beginning of the slope
and the three obstacle downwards

The temporal computed evolution of the mass spreading is plotted in 3D and 2D
plan views in Figures 17.16, 17.18, 17.19. The first instants of time, prior to the
sand reaching the obstacles, are similar to the ones obtained in the experiment with
one obstacle. The abrupt opening of the sand container triggers the sand avalanche.
The mass is accelerated rapidly downslope towards the obstacles. Both lateral and
longitudinal spreadings are observed. The impact of the sand flow against the small
semispheres is accurately tracked by the numerical model at time t = 460ms. At this
point the flow undergoes an abrupt transition in flow regimes, since a shock is derived
in front of each obstacle at time t = 640ms and t = 740ms. In the vicinity of the
shocks the horizontal scales of the phenomena no longer exceed the vertical scales,
which constitute a challenge for the shallow approach. Despite the complexity, the
computed results describe correctly this complex wave structure, which is generated
by the interactions of each obstacle. It is worth noting how the waves numerically
reproduced in this experiment, are significantly influenced among themselves. On the
other hand, once the flow overtakes the three obstacles, the maximum runout is quickly
reached and at time t = 1500ms the quiescent equilibrium stage is already achieved.
The final shape of the computational results is similar to the obtained in the previous
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experiment. However, when analyzing the experimental results, it is observed how
the surface angle described by the particles in the avalanche front is larger in the
three obstacles configuration. With this latter configuration the shocks developed have
significantly more influence in the flow behavior and make the sand grains move not
only by rolling, but also by salting. This grain mechanism of movement is not affordable
with the model proposed in this work and such behavior can not be mimicked.

On the other hand, it is interesting to observe how the numerical results are able to
reproduce the initial immersion of the small caps by the sand mass, time t = 640ms,
and the later reappearance of the obstacles, time t = 1500ms. Furthermore, the
stagnation area pointed out in the laboratory work at time t = 900ms is also well
reproduced with the simulated results, Figure 17.17.

The main differences between computational and experimental data are due to the
overestimated lateral spreading and by the fact that the mass located in the avalanche
tail is not adequately stopped. Figure 17.20 displays the absolute error and the major
differences are found in the lateral sides, the vicinity of the obstacles and the avalanche
tail. This behavior is fairly similar to the observed in the previous experiment.

The temporal accuracy of the computed results at particular locations during the devel-
opment of the sand avalanche is validated against the measurements developed during
the laboratory work at particular locations as it is described in Caviedes et al. (2014).
Figure 17.21 displays all probes plotted in Figure 17.1 except PU which is out of the
field of view in this experiment. The overall behavior of all the probes is similar to the
one observed during the experiment with one obstacle. The probes located closer to
the sand container, PD1 and PD2, are influenced by the sand release procedure, since,
from the computational point of view it is instantaneous, but experimentally it takes
a short period of time. This fact provokes a time lag between laboratory data and nu-
merical results. The differences at probes PS1 and PS2 are generated by the numerical
behavior of the avalanche: the moving mass is split into two groups: the front and
the tail. The tail spreads faster during the first instants of time and consequently, it
achieves the equilibrium stage earlier. Then, the mass coming from the tail arrives and
the final depth elevation is increased. This phenomena is also responsible for the higher
computational sand elevation at probes PSL, PSR, PS0L and PS0R. Nevertheless, the
numerical results are able to well reproduce the temporal evolution of this particular
avalanche which includes complex transient and local 3D shocks.

Figure 17.22 displays a longitudinal profile located at y = 500mm. The overestimated
computational sand depth is due to the differences in the tail of the avalanche, where
a larger downwards mobilization of the material has occurred. Notwithstanding, the
numerical prediction is able to reproduce the fact the the main obstacle is not over-
topped.
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(a) Shocks at S1 and S2 (b) Shock at S0

(c) Shocks
(d) S0 stagnation, S1 and S2 over-
flow

(e) Stagnation in S1 and S2 (f) Flow around S2

Figure 17.15: Flow features and structures in Experiment 2
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Figure 17.16: 3D contour views for the free surface level at times t = 100 ms, t = 200
ms, t = 500 ms, t = 600 ms, t = 1000 ms and t = 1500 ms
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Figure 17.17: 2D plant view of the computed velocity field at time t = 900 ms
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Figure 17.18: 2D plant views for the sand depth obtained experimentally (left side)
and computationally (right side) at times t = 460 ms, t = 500 ms, t = 640 ms
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Figure 17.19: 2D plant views for the sand depth obtained experimentally (left side)
and computationally (right side) at times t = 740 ms, t = 900 ms, t = 1500 ms
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Figure 17.20: 2D plant views displaying the absolute error at times t = 460 ms, t =
540 ms, t = 640 ms, t = 740 ms, t = 900 ms, t = 1500 ms
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Figure 17.21: Computational and experimental probe results
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Figure 17.22: Longitudinal section (y = 500mm) for Experiment 2 at the final stage



212 Results for the small-scale environmental problems

17.2.1 Gravity driven flow facing up a dike

Another important configuration in real applications is an oncoming flow against bar-
riers. The design and location of this type of structures highly governs the dynamical
description of the granular flow and its final shape. The two principal phenomena
observed in this configuration are the presence of deflection waves upstream of the dike
and the overtopping generated when the flow depth exceeds the height of the dike crest.
Previous works focused on small-scale laboratory experiments with dike structures and
granular flows such as the ones by Hakonardottir et al. (2003); Faug et al. (2008). In
both works, the granular material was confined in a 1D configuration and the start/go
mechanism was not studied in detail, as no data about the plan view spreading of the
material was provided.

Figure 17.23 shows a 3D view of the initial configuration of the experiment. The images
captured during the laboratory work around the dike are displayed in Figure 17.24

Figure 17.23: Initial configuration with the sand deposit at the beginning of the slope
and the dike downwards

Figure 17.25 displays a temporal sequence of 3D views. Once the sand is released on
the top of the slope the flow is accelerated downwards. The inertia of the moving mass
is high enough for it to fly over the dike, for example at times t = 490ms, t = 610ms.
Nevertheless, the most of the mass is retained by the dike structure, and the maximum
run out of the avalanche is highly shortened by the dike effect, see times t = 710ms
and t = 910ms. At time t = 1040ms most of the morphodynamic changes have taken
place and at time t = 2000ms the mass has reached an equilibrium stage.

Comparison with the experimental data is shown in Figures 17.26 and 17.27. At times
t = 490ms and t = 610ms the computational results are affected by the time lag of the
sand release procedure. Afterwards, differences among the instants of time are located
in the tail of the avalanche. In the computational results the tail moves faster than in
the experimental data and consequently, the depth elevation upstream from the dike is
higher and in the tail region it is smaller. These differences during the transient stage
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(c) Overtopping (d) Overflow

Figure 17.24: Flow features and structures for Experiment 3

of the avalanche are reduced once the equilibrium stage is reached, at time t = 2000ms.
The front and the tail of the avalanche are well reproduced by the numerical model.
The maximum run out obtained with the computational model tends to be slightly
underestimated. This can be justified by the high level of energy that the grains have
during the avalanche and that allow them to fly further downstream from the dike.
With the depth averaged assumption considered in this work, the vertical acceleration
is neglected and consequently, the vertical motion is underestimated.

The transient absolute errors are displayed in Figure 17.28. As it has been explained
above, the larger differences at times t = 490ms, t = 610ms and t = 710ms are
found at the front and at the tail, since in the computed results, the head of the
avalanche moves faster and the sand accumulates upstream from the dike and at the
tail. Nevertheless, the final stage provides a limited error all over the domain. At that
time, the main error area is located in the middle of the slope material accumulated
upstream from the dike. This is consistent with the phenomena observed at the plan
views, Figure 17.27 at time t = 2000ms, since in the numerical solution the area with
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constant slope is wider than in the experimental data. Moreover, the quasi zero error
area located on the top of the dike, i.e. the overtopping area, at the final stage is
remarkable. Computational and experimental data match accurately.

The computational results are also validated against the probe results obtained in
Caviedes et al. (2014), but excluding PS0R, PS0L and PS0 because they showed no
information in this experimental case, Figure 17.29. As it has been noted in the
previous experiments, the probes located upslope are more influenced by the sand
release procedure. Consequently, a temporal lag in the peak flow is observed at probes
PU and PD1. Probe PD2 display an accurate tracking of the temporal evolution of the
sand depth evolution. PS1 and PS2 present a good trend of the experimental dynamics
although the surface level is underestimated downwards the dike. This is coherent with
the 2D views shown in Figure 17.27 at time t = 2000ms: the maximum run out is
slightly shorten in the computational solution.

Figure 17.30 shows the longitudinal section at y = 500mm. Regarding the observed
computed and experimental bed topography differences, i must be noted that the
conceptual model is depth averaged and the region downstream from the dike can not
be correctly described. Therefore, it has been decided to design a vertical dike for the
simulation. Nevertheless, both computational and experimental data display the same
tendency, describing a uniform slope upstream from the dike. The main differences are
focused on the tail, where numerical solution presents a more severe slope. Additionally,
the maximum run out is overestimated with the computed prediction, which is justified
by the highly fluidized mass observed in the laboratory work, which allows the material
granular to fly further during the overtopping event.
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Figure 17.25: 3D contour views for the free surface level at times t = 490 ms, t = 610
ms, t = 710 ms, t = 910 ms, t = 1140 ms and t = 2000 ms
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Figure 17.26: 2D plant views for the sand depth obtained experimentally (left side)
and computationally (right side) at times t = 490 ms, t = 610 ms, t = 710 ms
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Figure 17.27: 2D plant views for the sand depth obtained experimentally (left side)
and computationally (right side) at times t = 910 ms, t = 1140 ms, t = 2000 ms
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Figure 17.28: 2D plant views displaying the absolute error at times t = 490 ms, t =
610 ms, t = 710 ms, t = 910 ms, t = 1140 ms, t = 2000 ms
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Figure 17.29: Computational and experimental probe results
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Figure 17.30: Longitudinal section (y = 500mm) for Experiment 3 at the final stage





Chapter 18

Conclusions for the small-scale
environmental problems

The dry granular flow has been simulated using a 2D Finite Volume scheme considering
the features of gravity projections derived for unstructured meshes previously developed
and validated in this work. Thanks to the reliability on the numerical scheme a series
of experimental cases which represent small-scale up-to-date environmental problems
have been studied.

The main singularity of the experiments is focused on the presence of obstacles, over a
rough and complex topography, which in turn implies shock formation. These moving
shocks are the key for the understanding of the flow behavior and are well reproduced by
the numerical scheme considered. Three experiments have been modeled and analyzed.

The first experiment is based on granular flow around a semispherical obstacle. The
computed results are able to accurately track in time the movement and spreading
of the mass. Additionally, the two phenomena observed during the development of
the experiment, namely the stagnation area upstream from the obstacle and the shock
around it, are also numerically reproduced.

The second experiment consists of granular flow around two small semispherical obsta-
cles and one semispherical obstacle located downstream. The complexity of this case
is larger, since the shock structure involves the presence of additional moving waves
which interact with each other. Nevertheless, the temporal prediction of the computed
results displays a good agreement in comparison with experimental data.

The third experiment is of granular flow over a square dike where a overflow takes
place. The temporal prediction and the maximum run out are well reproduced by the
numerical model.

The main flow structures are well captured in time and space by the numerical scheme
in the three experiments: the impact, the shock formation, the overflow and the max-
imum run out. The small differences in the shocks are justified by the depth av-



222 Conclusions for the small-scale environmental problems

eraged assumption considered, as the vertical accelerations around the obstacles are
neglected. Moreover, thanks to the robustness of the numerical scheme, able to handle
with complex stop/go conditions and wet/dry situations, distorting numerical effects
are avoided. Hence, the forecasting capabilities of the computed results can be used
for the future design of civil infrastructures or for the understanding of more complex
and ambitious rheological models.

18.1 Further research

Erosion processes seem to play a key role in the granular flow dynamics and conse-
quently, they have to be taken into account in natural flow modeling. However the
description of the erosion processes related to the flowing/static transition in granular
material is still a challenge. Furthermore, the inclusion of the water is required, since
the infiltration processes constitute a trigger mechanism for the landslides movements.
Experimental/numerical investigation is required for facing up both features.

Moreover the nature soil heterogeneity should be also addressed, since no experimental
studies have been carried out in this direction. The bed shear stress can be modified
by the interlocking among particles, leading to obtain different flow structures.
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Desarrollo de esquemas numéricos robustos y basados en modelos f́ısicos
para procesos de transporte y cambios geomorfodinámicos

Conclusiones generales

En la primera parte de esta tesis se han estudiado los cambios morfodinámicos que
se producen en los cauces de los ŕıos. El análisis cuantitativo acerca del compor-
tamiento de las distintas formulaciones de fondo ante situaciones 1D y 2D transitorias
ha permitido comprobar que la nueva interpretación de la fórmula de Smart obtiene
los resultados más precisos en todos los casos propuestos. Además, las diferencias con
respecto al resto de relaciones emṕıricas es mayor ante situaciones 1D. Por otra parte,
se ha comprobado que a través de la estrategia numérica propuesta para acoplar el
modelo hidrodinámico y el morfodinámico, el coste computacional se reduce significa-
tivamente, pero sin perder una buena precisión en los resultados obtenidos. Se ha
verificado cómo la solución computacional se inestabiliza si la nueva celeridad asociada
al fondo no se tiene en cuenta en el criterio de estabilidad. Como trabajo futuro se
incluiŕıa el estudio del transporte de sedimento en suspensión, el efecto provocado por
una granulometŕıa no uniforme y la variación temporal y espacial de la densidad de la
mezcla fluida.

Con respecto a la parte de deslizamientos de terreno, se ha comprobado como la in-
clusión de las proyecciones de la gravedad en los términos de presión y fricción son
necesarias para obtener soluciones precisas. La utilización de coordenadas locales o
globales proporciona resultados idénticos y permiten predecir de forma precisa desliza-
mientos granulares secos ante geometŕıas irregulares e importantes cambios de régimen
hidrodinámico. Además, ningún parámetro adicional es necesario para satisfacer las
condiciones de comienzo y parada del movimiento. El mismo esquema numérico es em-
pleado para reproducir computacionalmente los experimentos propuestos en la última
parte de la tesis. Los resultados obtenidos son satisfactorios y las estructuras complejas
de choques que se generan alrededor de los obstáculos son correctamente reproducidas.
Como trabajo futuro se propone la inclusión de granulometŕıa variable, la incorpo-
ración de agua en el flujo de material granular y el estudio de la erosión en la base del
deslizamiento.
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Hubbard, M. E. and Garćıa-Navarro, P. 2000. Flux difference splitting and the
balancing of source terms and flux gradients. Journal of Computational Physics 165,
89–125.

Hudson, J. 2001. Numerical techniques for morphodynamic modelling. Ph.D. thesis,
Department of Mathematics, The University of Reading, Whiteknigths, Reading.

Hudson, J. and Sweby, P. K. 2002. Formulations for Numerically Approximating
Hyperbolic Systems Governing Sediment Transport. Journal of Scientific Comput-
ing 19, 225–251.

Hudson, J. and Sweby, P. K. 2005. A high-resolution scheme for the equations gov-
erning 2D bed-load sediment transport. International Journal of Numerical Methods
in Fluids 47, 1085–1091.



BIBLIOGRAPHY 233

Iverson, R. and Denlinger, R. 2001. Flow of variably fluidized granular masses
across three-dimensional terrain. A Coulomb mixture theory. Journal of Geophysical
Research 106, B1, 537–552.
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Appendix A

Calculus of eigenvalues and
eigenvectors for the
coupled-Jacobian numerical scheme

The eigenvalues of matrix J̃n are the roots of the following polynomial:

(λ̃3 + a1 λ̃
2 + a2 λ̃+ a3) = 0 (A.1)

whose coefficients a1, a2 and a3 are given by:

a1 = −2ũ a2 = −pbzB̃ − c̃2 + ũ2 a3 = −pbzÃ (A.2)

Calling Q = (3a2 − a21)/9 and R = (9a1a2 − 27a3 − 2a31)/54, the eigenvalues are real if
Q3 +R2 < 0, and are given by

λ̃2 = 2
√−Q cos(θp/3)− a1/3

λ̃3 = 2
√−Q cos((θp + 2π)/3)− a1/3

λ̃4 = 2
√−Q cos((θp − 2π)/3)− a1/3

(A.3)

with θp = arccos(R/
√

−Q3). The eigenvectors ẽm, m = 1, 2, 3 associated to λ̃m,
m = 1, 2, 3 are given by

ẽm =




1

λ̃m

−c̃2+ũ2+λ̃m(λ̃m−2ũ)
pbz


 (A.4)





Appendix B

Conservation of the
coupled-Jacobian numerical scheme

For the sake of clarity the necessity of the last term in the numerical scheme, B.1, is
going to be explained. The lack of this term in the computed method may lead to a non
conservative solution, which has been misunderstood by some authors as a diffusivity
problem,

Un+1
i = Un

i −
NE∑

k=1

4∑

m=1

(λ̃−α− β−)mk ẽ
m
JI,klk

∆t

Ai
−

NE∑

k=1

δEIi,knklk
∆t

Ai
(B.1)

In case of having a set of equations

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= S(U,x,y) (B.2)

which can be manipulated as follows

∂U

∂t
+Mn

(
∂U

∂x
+
∂U

∂y

)
−Hn

(
∂U

∂x
+
∂U

∂y

)
= Ss(U,x,y) (B.3)

whereMn is the flux normal to a direction given by the unit vector n, En = Fnx+Gny,
defined as

Mn =
∂(En)

∂U
(B.4)

and Hn is the flux associated to the bed slope, projected onto the unit vector n,
Tbn = Sbnx + Sbny
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Hn =
∂(Tbn)

∂U
(B.5)

It is possible to define the following Jacobian matrix, Jn, through the definitions in
(B.4) and (B.5)

Jn = Mn −Hn (B.6)

which will allow us to define system (B.2) as belonging to the family of hyperbolic
systems.

∂U

∂t
+ Jn

(
∂U

∂x
+
∂U

∂y

)
= Ss(U,x,y) (B.7)

Due to the non linearity of the flow En, the Jacobian matrix has to be approximated in
order to generate a local linearization. Roe (1986), proposed an approximated Jacobian

matrix, J̃n,k, for clean water, imposing that

J̃n(Ui,Ui) = Jn(Ui) (B.8)

In Murillo and Garćıa-Navarro (2010a) an augmented Roe solver is proposed to allow
the inclusion of the sediment transport terms. Hence, it was developed the building of
an approximate Jacobian matrix J̃n,k at each k edge of each cell combining the normal
flux En = Fnx +Gny with the bed slope source term Tn,b at each cell edge,

(δE−Tb)knk = (M̃n − H̃n)k (Uj −Ui) (B.9)

(δE−Tb)knk = J̃n,kδUk (B.10)

with δ(En)k = (Ej −Ei)nk
, δUk = Un

j −Un
i , and Un

i and Un
j the initial values at cells

i and j sharing edge k. Figure B.1 collects the previous information in order to solve
the Riemann problem in a 2D situation.

On the other hand, the main difficulties in the definition of the approximate Jacobian
matrix (B.9) for sediment transport that allows the construction of approximate solu-
tions arises from the presence of a local Ag value, which is variable within each cell,
see Figure B.2.

For this reason the net exchange of flow between internal walls must include the differ-
ence between the value of the cell in its centroid, Ag,i, and the value close to the wall
within the cell Ag,I . This fact leads to new definitions of E at each pair of cells i and
j, connected through edge k, that will be referred to as
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Un
i Un

j

U

Un
i

Un
j

nk

x′

x′

x′ = 0

Figure B.1: Riemann problem in 2D along the normal direction to a cell side

EI = E(Ui, Ag,k) EJ = E(Uj, Ag,k) (B.11)

Ang,I,k

Ang,J,k

Ang,i
Ang,j

Figure B.2: Linear representation by cells.

Analyzing the flux term δEn drives to

δEn = Ej − Ei = EJ − EI + (Ej − EJ)− (Ei − EI) = (B.12)

= δEJI + δEjJ − δEiI =

= (δEJI + δEIi)− δEJj =

= (δE−
JI + δEIi) + δE+

JI − δEJj =

= (δE−
JI + δEIi)− (δE−

IJ + δEJj)



246 Conservation of the coupled-Jacobian numerical scheme

As it can be appreciated not only a flux crossing the wall, δE−
JI , is necessary to ensure

a conservative numerical scheme. A flux with information of the variation of AgI,i is
also necessary and this is the additional term which appears in the numerical scheme.
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