000156585 001__ 156585
000156585 005__ 20251017144613.0
000156585 0247_ $$2doi$$a10.1007/s11012-025-01959-7
000156585 0248_ $$2sideral$$a143926
000156585 037__ $$aART-2025-143926
000156585 041__ $$aeng
000156585 100__ $$0(orcid)0000-0001-8946-4829$$aLaita, Nicolás
000156585 245__ $$aOn the myocardium modeling under multimodal deformations: a comparison between costa’s, Holzapfel and Ogden’s formulations
000156585 260__ $$c2025
000156585 5060_ $$aAccess copy available to the general public$$fUnrestricted
000156585 5203_ $$aIn this study we evaluate the performance of different constitutive biomechanical models, focusing on their ability to reproduce the mechanical behavior of myocardial tissue under various deformation modes. Three constitutive models were analyzed assuming incompressible formulations: the invariant-based formulation of the Costa model, the Holzapfel–Ogden (HO) model, and its extended version (HOE). The study aimed to identify which model provides the best fit for different experimental data, including equibiaxial (EBx), true biaxial (TBx), simple triaxial shear (STS), and combined data sets (Equibiaxial + Shear, True biaxial + Shear). The results showed that the Costa model generally performed better when considering combined datasets, providing a good balance between fitting accuracy and parameter stability, while using the least number of parameters among the contrasted models. The HO model demonstrated reasonable fitting abilities but struggled with non-equibiaxial conditions and clearly orthotropic simple shear datasets. The extended HOE model improved the fitting performance of the standard HO formulation for more complex data, particularly in shear tests, but introduced additional complexity and a higher number of parameters. Therefore, our study highlights the importance of analyzing which validated constitutive formulation is able to adapt to the available experimental data, especially when mixed deformation modes are involved. While all the three models tested performed adequately, the Costa model proved to be the most versatile, especially when dealing with various experimental conditions, providing insights for future research on biomechanical modeling of cardiac tissue.
000156585 536__ $$9info:eu-repo/grantAgreement/EC/H2020/874827/EU/Computational biomechanics and bioengineering 3D printing to develop a personalized regenerative biological ventricular assist device to provide lasting functional support to damaged hearts/BRAV3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 874827-BRAV3$$9info:eu-repo/grantAgreement/ES/MCIN/PLEC2021-008127$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-140219OB-I00
000156585 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000156585 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000156585 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, Miguel Ángel$$uUniversidad de Zaragoza
000156585 700__ $$0(orcid)0000-0001-8741-6452$$aDoblaré, Manuel$$uUniversidad de Zaragoza
000156585 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefanía$$uUniversidad de Zaragoza
000156585 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000156585 773__ $$g(2025), [34 pp.]$$pMeccanica$$tMECCANICA$$x0025-6455
000156585 8564_ $$s1889492$$uhttps://zaguan.unizar.es/record/156585/files/texto_completo.pdf$$yVersión publicada
000156585 8564_ $$s1711115$$uhttps://zaguan.unizar.es/record/156585/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000156585 909CO $$ooai:zaguan.unizar.es:156585$$particulos$$pdriver
000156585 951__ $$a2025-10-17-14:18:15
000156585 980__ $$aARTICLE