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ESTUDIO DE TAMAÑO Y POTENCIA DE ALGUNOS CONTRASTES DE 

HETEROSCEDASTICIDAD 

 

  

Alberto Tafalla Sánchez  

 

 

RESUMEN 

 

Este trabajo lleva a cabo un análisis de tamaño y potencia de algunos contrastes de 

heterocedasticidad en el contexto del modelo de regresión lineal. Resulta muy 

importante que la detección del problema de la heterocedasticidad se realice de manera 

adecuada, ya que su presencia implica que los estimadores obtenidos dejan de tener 

propiedades deseables y, adicionalmente, invalida la inferencia habitual sobre los 

parámetros de los modelos. Por ello se analiza la adecuación de dos contrastes de 

heterocedasticidad: el contraste específico de Breusch-Pagan y el contraste general de 

White. El estudio del comportamiento de ambos contrastes se lleva a cabo en términos 

de tamaño y potencia de los mismos. Para llevar a cabo el análisis, se han diseñado dos 

experimentos de Monte Carlo en los que se asumen varios supuestos sobre la estructura 

de la varianza del error, distintos grados de heterocedasticidad y varios tamaños 

muestrales. A partir de estos experimentos se analiza el tamaño de error tipo I y la 

potencia calculadas. Se concluye que el contraste de Breusch-Pagan es el más eficaz 

para detectar la presencia de heterocedasticidad.  
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ENGLISH ABSTRACT 

 

ANALYSIS OF SIZE AND POWER OF SOME HETEROCEDASTICITY TEST’S  

 

  

Alberto Tafalla Sánchez 

 

 

ABSTRACT 

This paper examines the size and the power of some heterocedasticity tests in the 

context of the linear regression model. It is important that the detection of the problem 

of the heterocedasticity may be examined in a suitable way because their presence 

implies that the obtained estimators do not have desirable properties and the usual 

inference procedures about the parameters are no longer appropriate. Therefore, the 

Breusch-Pagan specific test and the White general test are analyzed. The study of the 

behavior of both tests is performed in terms of their size and power. The results show 

that Breusch-Pagan test has better properties than the White test. 

 

  

 

 

Key words: heterocedasticiy; econometrics; Monte Carlo experiment; gretl; Breusch-

Pagan; White. 
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1.  INTRODUCCIÓN  

En esta introducción, en primer lugar, se va a realizar una breve exposición del contexto 

en el que se va a desarrollar el trabajo y de su importancia en economía, con el objeto de 

explicar las motivaciones por las cuales se ha decido realizar el mismo. Posteriormente,  

en segundo lugar, se van a describir las líneas generales del trabajo, los objetivos del 

mismo y una breve ilustración de cómo está estructurado éste. 

1.1 . CONTEXTO DEL TRABAJO: LA ECONOMETRIA Y SU IMPORTANCIA 

EN ECONOMÍA. MOTIVACIONES DEL TRABAJO. 

Goldberger (1964) “La econometría se define como la ciencia social en la cual las 

herramientas de la teoría económica, las matemáticas y la inferencia estadística se 

aplican al análisis de los fenómenos económicos.”  

En economía, resulta fundamental el análisis de los fenómenos económicos y el 

comportamiento de los agentes económicos. Para ello, los economistas utilizan los 

modelos económicos teóricos y matemáticos como herramienta para darle soporte a 

tales fenómenos o relaciones que se producen. El grado de aceptación de las teorías 

deberá evaluarse mediante la confrontación de las implicaciones de estas teorías con la 

base empírica, es decir, con los datos. En este sentido, es crucial el papel de la 

econometría, ya que trata de suministrar las técnicas necesarias para llevar a cabo la 

mencionada confrontación. La dificultad radica en que al ser la economía una ciencia 

social, no se puede llevar a cabo la obtención de los datos mediante experimentos 

controlados sino que hay que utilizar los datos provenientes de la observación o de la 

simulación mediante ordenador.  

Las hipótesis a verificar se sitúan en el seno de los modelos económicos, pero la 

econometría no trabaja con ellos directamente, sino con los denominados modelos 

econométricos. Estos se definen como aquellos modelos económicos que contienen el 

conjunto de hipótesis necesarias para su aplicación empírica. Los modelos 

econométricos constituyen un instrumento que permite la confrontación entre teoría y 

realidad. No obstante, éstos pueden no estar correctamente especificados, por lo tanto, 

resulta fundamental elegir las técnicas más adecuadas para la detección de los 

problemas y que esa detección de los problemas se realice correctamente.  
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La aplicación de las habilidades adquiridas a lo largo del Grado de Economía en los 

campos de las matemáticas, la estadística y la econometría para resolver un problema 

determinado que afecta a las variables económicas, constituye la motivación 

fundamental del presente trabajo. De ésta manera, queda patente la importancia de 

otorgarle una mayor visibilidad práctica a un campo de la economía como es la 

econometría. 

Por lo tanto, la línea de este trabajo va dirigida principalmente a ilustrar la importancia 

de elegir bien las técnicas econométrico-estadísticas, que en nuestro caso serán los 

contrastes, a la hora de solucionar un problema, -heterocedasticad-, en un determinado 

contexto- Modelo Lineal General- con un tipo de datos –corte transversal-.  

La realización de éste trabajo puede resultar muy útil para entender la capacidad que 

diferentes contrastes tienen para captar un problema concreto, para analizar su utilidad 

bajo diferentes supuestos y su validez según la cantidad de información (tamaño 

muestral) disponible. 

1.2. LINEAS GENERALES DEL TRABAJO. 

Las propiedades del estimador mínimo cuadrático ordinario de los parámetros de 

posición de un modelo lineal general dependen de las propiedades del término de error o 

perturbación aleatoria del modelo. Entre los supuestos asumidos, se asume que las 

perturbaciones aleatorias tienen una esperanza igual a cero, una varianza constante, que 

son independientes entre sí y que se distribuyen según una Normal. 

En éste trabajo, a partir de la violación del supuesto de varianza constante también 

conocido como homocedasticidad, realizaremos un análisis de dos contrastes 

estadísticos (Breusch-Pagan y White) cuya finalidad consiste en detectar éste problema 

de varianza no constante o  heterocedasticidad. Mediante experimentos de Monte Carlo 

vamos a observar cómo se comportan los distintos contrastes, en términos de tamaño y 

potencia, para distintos patrones de heterocedasticidad. 

Por lo tanto, el objetivo del trabajo va a consistir en demostrar cuál de los dos contrastes 

estadísticos tiene una mayor potencia y un menor tamaño, es decir, si detectan mejor la 

presencia o no de heterocedasticidad bajo una serie de condiciones. 
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El contenido del presente trabajo, está estructurado en cinco bloques que se detallan a 

continuación:  

En primer lugar se va a realizar un repaso del marco teórico en el que se sitúa de forma 

especifica el trabajo; por un lado, de forma muy breve se va a explicar el modelo lineal 

general, el método de mínimos cuadrados y las propiedades de los estimadores mínimo 

cuadrático ordinarios bajo el cumplimiento de las hipótesis ideales. Por otro lado se 

introducirá al problema de la heterocedasticidad explicando para ello las causas y 

consecuencias de éste problema; por último se van a desarrollar los contrastes 

estadísticos objeto del análisis en el presente trabajo. 

En segundo lugar, en el apartado tres, para realizar un análisis del comportamiento de 

los contrastes,  se va a repasar algunos conceptos de interés, como el de tamaño y la 

potencia de un contraste estadístico por un lado, y por otro lado se va a explicar la 

metodología de análisis del trabajo, es decir, los estudios de Monte Carlo. 

En el apartado cuatro, se presentarán los resultados de los experimentos de Monte 

Carlo. 

Por último, en el apartado cinco, nos centraremos en las conclusiones del trabajo. 

 

2. MARCO TEÓRICO.  

2.1. MODELO LINEAL GENERAL. PROPIEDADES DE LOS ESTIMADORES 

MINIMO CUADRÁTICOS. 

2.1.1. Modelo clásico de regresión lineal: supuestos básicos. 

El modelo de Gauss o modelo clásico de regresión lineal es el cimiento de la mayor 

parte de la teoría econométrica y plantea siete supuestos.  Dado un modelo general: 

Y X u    

Donde Y  es el vector N ×1 de observaciones de la variable endógena, X  es 

una matriz N × k  que recoge las N observaciones de las k variables explicativas, 

  el vector de parámetros de orden k ×1 y u el vector N ×1 de perturbaciones 

aleatorias  
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1) El modelo de regresión es lineal en los parámetros, aunque puede o no ser 

lineal en las variables. 

2) Valores de X independientes del término de error: Lo que supone que la(s) 

variable(s) X  y el término de error son independientes, esto es, (X ,u ) 0.i iCov 

Esto puede entenderse como que los valores adoptados por las X , se consideran 

fijos en muestras repetidas. 

3) La esperanza matemática de las perturbaciones iu   es igual a cero: Dado el 

valor de iX , la media o el valor esperado del término de perturbación aleatoria 

ui  es cero. 

4) Homoscedasticidad o varianza constante de u: La varianza del término de 

error, o de la perturbación, es la misma sin importar el valor de X. 

5) No hay autocorrelación entre las perturbaciones: Dados dos valores 

cualesquiera de   y , ,i jX X X i j la correlación entre dos iu  y 
ju  cualesquiera 

( )i j  es cero.  

6) El número de observaciones N debe ser mayor que el número de 

parámetros por estimar. 

7) Ausencia de multicolinealidad: las variables explicativas del modelo son 

linealmente independientes lo que implica que el rango de la matriz X  es k. 

2.1.2. Propiedades de los estimadores MCO de los parámetros de posición 

Dados los supuestos del modelo clásico de regresión lineal, la estimación de mínimos 

cuadrados de los parámetros de posición  poseen algunas propiedades ideales u óptimas, 

las cuales están contenidas en el teorema de Gauss-Markov. Primero analizaremos las 

propiedades para muestras finitas  y en segundo lugar las propiedades asintóticas. 

2.1.2.1 Propiedades para muestras finitas 

 

1) Linealidad, es decir, los estimadores son una función lineal de la variable 

dependiente Y .  

2) Insesgadez, es decir, el valor esperado del estimador es igual al valor del 

parámetro objeto de estimación. 

3) ELIO (Estimadores lineales insesgados óptimos), es decir, de los 

estimadores lineales e insesgados, además son los de menor varianza.  
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4) Eficiencia, es decir, de entre todos los estimadores insesgados, son los 

estimadores que tienen menor varianza. 

2.1.2.2. Propiedades asintóticas 

1) Insesgadez asintótica. Dado que en muestras finitas ya cumplen esta 

propiedad, esto implica que asintóticamente también van a ser insesgados: 

ˆlim (
N

E  


   

Es decir, la esperanza matemática del estimador, cuando el tamaño muestral 

tiende a infinito, es el verdadero valor. 

2) Consistencia. Un estimador es consistente cuando converge a su valor 

verdadero conforme el tamaño muestral tiende a infinito. Las condiciones 

suficientes para que ̂  sea consistente son las siguientes: 

a. Insesgadez asintótica. 

b. ˆlim ( ) 0
N

V 


   

3) Eficiencia asintótica. El estimador MCO posee la menor varianza asintótica 

de entre todos los estimadores consistentes del parámetro desconocido. 

 

2.1. EL PROBLEMA DE LA HETEROCEDASTICIDAD. CAUSAS Y 

CONSECUENCIAS 

Un supuesto importante del modelo clásico de regresión lineal es que la varianza de 

cada término de perturbación iu  condicionada a los valores seleccionados de las 

variables explicativas, es un valor constante igual a 2 , es decir, las perturbaciones 

aleatorias son homocedasticas. Los problemas de heterocedasticidad se darán cuando no 

se cumpla éste supuesto de varianza constante.  

2.2.1. Causas de la heterocedasticidad. 

Existen diversas causas de la heterocedasticidad, esto es, razones por las cuales la 

dispersión del modelo deja de ser invariable. Las más frecuentes son las siguientes: 

1) La presencia de datos atípicos, entendiendo por tales aquellas 

observaciones que son muy diferentes (o muy grandes o muy pequeñas) 

con relación a las demás observaciones de la muestra. De manera más 
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precisa, un dato atípico es una observación que proviene de una 

población distinta a la que genera las demás observaciones de la muestra. 

La inclusión o exclusión de una observación de este tipo, en especial si el 

tamaño de la muestra es pequeño, puede alterar sustancialmente los 

resultados del análisis de regresión. 

2) Errores de especificación en el modelo.  La omisión de variables 

relevantes o una incorrecta forma funcional elegida, constituyen 

ejemplos en los que se puede ver alterada la varianza.  

3) El hecho habitual de que cuantos mayores son los valores de alguna de 

las variables del modelo cabe esperar que mayor será la dispersión 

absoluta del mismo. 

El problema de heterocedasticidad es quizá más común en la información de corte 

transversal que en la de series de tiempo, por lo tanto, en el presente trabajo solamente 

vamos a referirnos de manera específica al primer tipo de datos. 

 

2.2.2 Consecuencias de la  heterocedasticidad. 

Las consecuencias de la presencia de heterocedasticidad en el contexto de un modelo 

lineal general se pueden resumir en los siguientes puntos: 

1)  Los estimadores MCO de los parámetros de posición seguirán siendo 

insesgados, pero a pesar de esto ya no serán ELIO ni eficientes. 

2) En el caso de utilizar la expresión habitual de ˆ(V    : 

12ˆ( ) (X'X)V  


  

Obtendremos una mala aproximación de las varianzas y covarianzas de los 

estimadores de los parámetros de posición,  porque la verdadera matriz de 

varianzas y covarianzas vendrá dada por la siguiente expresión: 

2 1 1ˆ( ) ( ' ) ' ( ' )V X X X X X X      

Siendo 2   la matriz de varianzas y covarianzas de las perturbaciones del 

modelo. 

3) El estimador MCO de 2  será sesgado. 
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4) Como consecuencia de que el estimador MCO de 2  será sesgado, obtendremos 

unos estimadores sesgados de las varianzas y covarianzas de los estimadores 

MCO de los parámetros de posición. 

5) La utilización de los estadísticos habituales de la t y la F para la estimación por 

intervalo, región de confianza y contrastes de hipótesis tan importantes como los 

de significatividad individual y conjunta respectivamente de los parámetros de 

posición, carecerá de validez debido a que ya no podrá definirse que estos 

estadísticos se distribuyen como una t de Student o una F de Snedecor. 

Como podemos observar, las implicaciones del incumplimiento del supuesto de 

homocedasticidad son muy importantes. Por lo tanto, resulta fundamental detectar de 

manera precisa la presencia de heterocedasticidad para actuar en consecuencia y,  tratar 

de que la especificación del modelo se ajuste lo máximo posible a los supuestos básicos 

del Modelo Clásico de regresión lineal. 

 

2.3. DIAGNÓSTICO DE LA HETEROCEDASTICIDAD. CONTRASTES 

Aunque existen diversos contrastes en la literatura como la prueba de Park, la prueba de 

Glejser, el contraste de Godlfeld-Quandt, el test de Levene , el contraste de White o el 

contraste de Breusch-Pagan entre otros, solamente vamos a centrarnos en estos dos 

últimos: el contraste de White y el contraste de Breusch-Pagan. La razón por la cual 

vamos a centrarnos en estos dos contrastes, reside en que nos interesa comparar un 

contraste general –contraste en el cual no se exige determinar a priori las variables que 

causan la heterocedasticidad- como es el de White con uno específico- contraste en el 

cual se exige determinar las variables que causan la heterocedasticidad- como es el de 

Breusch-Pagan. 

 

2.3.1. Contraste de White 

White (1980) derivó un contraste asintótico que no precisa especificar las variables que 

provocan la heterocedasticidad. Como ilustración de la idea básica, se considera el 

siguiente modelo lineal simple: 
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1 2 2i iY X u     

Donde la hipótesis nula y alternativa son las siguientes: 

HO: Homocedasticidad 

HA: Heterocedasticidad 

Para realizar la prueba de White se procede de la siguiente forma: 

1) Se estima el modelo especificado anteriormente por MCO y se obtienen los 

residuos ˆ
iu . 

2) Con el cuadrado de los residuos de la regresión original, se efectúa una regresión 

(auxiliar) sobre las variables X  originales, sobre sus valores al cuadrado y 

sobre el (los) producto(s) cruzado(s) de las variables explicativas.  Debe de 

incluirse también un término constante. Obtenemos el 2R o coeficiente de 

determinación de la regresión (auxiliar). 

2 2

1 2 2 3 2
ˆ

i i i iu X X         

La hipótesis nula y alternativa en términos de la regresión auxiliar quedarán 

formuladas de la siguiente forma: 

0 2 3: 0H      

0:  No HAH  

 

3) Bajo la hipótesis nula de que no hay heterocedasticidad (homocedasticidad), 

puede demostrarse que el tamaño de la muestra (N) multiplicado por el R
2
 

obtenido de la regresión auxiliar, asintóticamente sigue la distribución Chi-

cuadrado con un numero de grados de libertad (p) igual al número de variables 

explicativas (sin el termino constante) de la regresión auxiliar. 

2 2· (p)a asW N R    

4) Fijando un nivel de significación  , la regla de actuación será la siguiente: 

   

2W   => Aceptación de la hipótesis nula de homocedasticidad. 

2W   =>  Rechazo de la hipótesis nula de homocedasticidad. (Aceptación de 

heterocedasticidad) 
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En el caso de que la homoscedasticidad resulte rechazada, no existe indicación alguna 

de la forma de la heterocedasticidad  y por consiguiente como reespecificar el modelo 

para solucionar el problema. 

 

2.3.2. Contraste de Breusch-Pagan 

En los trabajos de Breusch y Pagan (1979), se construyó una prueba en el que la idea 

fundamental consiste en comprobar si se puede encontrar una variable o un conjunto de  

variables Z que sirvan para explicar la evolución de la varianza de las perturbaciones 

aleatorias 

Para ilustrar esta prueba, se considera un modelo de regresión lineal de k variables: 

1 2 2i i k ki iY X X u         

Se supone que la varianza del error 2

i se describe como 

2

1 2 2( ..... )i i m mif Z Z         

Es decir, 2

i  es algún tipo de función de las variables Ζ no estocásticas; algunas de las 

X  o todas ellas, del modelo especificado, pueden servir como Z. Específicamente se va  

a suponer que: 

2

1 2 2 .....i i m miZ Z         

Por tanto, se está  suponiendo 2

i
 
es una función lineal de las variables Z (aunque cabe 

destacar que la forma funcional podría ser distinta a la lineal). Sí 2 ... 0m    , 

2

1i   que es una constante. Por consiguiente para probar si 2

i
 
es homocedástica, se 

puede contrastar la hipótesis de que 2 ... 0m    . 

La hipótesis nula y alternativa serán las siguientes: 

0 2: ... 0mH     ; Homocedasticidad 

0:  No HAH ;  Heterocedasticidad 

El procedimiento de la prueba es el siguiente: 
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1) Estimar el modelo especificado por MCO y  obtener los residuos. 

2) Obtener el estimador máximo verosímil del parámetro de dispersión del modelo, 

es decir 
2 ˆ /iu N    

3) Construir la variable ip  definida como: 2 2ˆ /i ip u    

4) Efectuar la regresión de la ip  así construida sobre las Z como 

1 2 2 .....i i m mi ip Z Z v        

Donde iv  es el término de perturbación para esta regresión. 

5) Calcular la suma explicada (SE) de la regresión construida y definir el 

estadístico: 

1

2
BP SE  

6) Bajo la hipótesis nula de homocedasticidad el estadístico sigue asintóticamente 

una distribución chi-cuadrado con (m-1) grados de libertad, donde m es el 

numero de parámetros de posición de la regresión auxiliar. 

21
( 1)

2
asBP SE m   

7) Fijado un nivel de significación ε, la regla de actuación será la siguiente: 

2

/2BP   => Aceptación de la hipótesis nula de homocedasticidad. 

2

/2BP  =>  Rechazo de la hipótesis nula de homocedasticidad. (Aceptación 

de heterocedasticidad) 

 

El contraste de Breusch-Pagan, requiere conocer tanto la forma funcional como las 

variables que causan la heterocedasticidad. La ventaja del contraste de Breusch-Pagan 

frente al de White, es que se trata de un contraste constructivo, es decir,  en caso de 

rechazar la hipótesis nula de homocedasticidad, el contraste de Breusch-Pagan sí que 

indica la variable o variables que están causando la heterocedasticidad . 
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3. ANÁLISIS DEL COMPORTAMIENTO DE LOS CONTRASTES 

3.1. CONCEPTOS DE INTERÉS.  

Dado que nuestro objetivo va a ser el de decidir cuál de los dos contrastes considerados, 

White o Breusch-Pagan, detecta mejor la presencia o no de heterocedasticidad bajo 

distintos supuestos, resulta fundamental la utilización de dos conceptos muy 

importantes como son el tamaño y la potencia de un contraste.  

 

3.1.1. Tamaño y potencia de un contraste. 

Un contraste de hipótesis es un procedimiento estadístico que sirve para decidir si una 

hipótesis nula se rechaza o no. Puesto que no se sabe si la hipótesis a contrastar es cierta 

o no, y es por eso precisamente por lo que se contrasta, entonces se pueden cometer dos 

errores: rechazar la hipótesis cuando es cierta y aceptarla cuando es falsa. Un contraste 

será bueno si minimiza, en algún sentido, la posibilidad de cometer estos dos errores. 

Podemos definir los conceptos de tamaño y potencia de un contraste de la siguiente 

manera: 

El tamaño de error tipo I de un contraste es la  probabilidad de rechazar la hipótesis 

nula siendo ésta cierta. Un buen contraste debería rechazar la hipótesis nula cuando ésta 

es cierta, el menor número de veces posible. 

La potencia de un contraste es la probabilidad de rechazar la hipótesis nula siendo 

ésta falsa. Un buen contraste debería rechazar la hipótesis nula cuando ésta sea falsa el 

mayor número de veces posible. 

En nuestro caso en concreto, lo que buscamos es que el tamaño del contraste sea el más 

próximo posible al tamaño nominal que hemos fijado a priori, y que la potencia de éste 

sea elevada. 

 

3.2. LA METODOLOGÍA DE ANÁLISIS: ESTUDIOS DE MONTE CARLO. 

Para llevar a cabo el análisis de los contrastes estadísticos, se van a realizar 

experimentos de Monte Carlo mediante el software econométrico Gretl. En primer lugar 
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se va a explicar en qué consisten los experimentos de Monte Carlo y se van a repasar las 

características de éstos mediante un ejemplo; Posteriormente se concretara la 

metodología  a seguir en el presente trabajo. 

3.2.1. Introducción a los estudios de Monte Carlo. 

Como se ha destacado anteriormente, en econometría, es de vital importancia la 

elección de las técnicas más adecuadas para la detección de los problemas y que la 

detección de estos problemas se realice correctamente.  

Una forma de averiguar que una técnica de detección de los problemas como son los 

contrastes de hipótesis funciona correctamente, es mediante la observación del 

comportamiento del mismo en diferentes situaciones y bajo determinados supuestos. 

Esta evaluación del comportamiento de un contraste, requiere una gran cantidad de 

datos y la realización de cálculos matemáticos que pueden resultar muy costosos. En 

este contexto la simulación de Monte Carlo ofrece una alternativa al análisis matemático 

para realizar ésta evaluación y su comportamiento en muestras aleatorias. 

El concepto básico de los experimentos de Monte Carlo consiste en realizar sucesivas 

repeticiones aleatorias de un determinado proceso cuya base está contenido en un 

modelo con unas condiciones establecidas previamente. El objetivo fundamental de la 

simulación de Monte Carlo, es la obtención de numerosos resultados de forma aleatoria 

en base a unos supuestos. 

Podemos definir el estudio de Monte Carlo como “un ejercicio de simulación diseñado 

para analizar las propiedades en muestras pequeñas de estadísticos alternativos”. 

(Kennedy, 2003) 

Con carácter general un experimento de Monte Carlo sigue la estrategia siguiente: 

a) Especificar un modelo “verdadero” o Proceso Generador de Datos (PGD). 

En el marco del MLG, esto implicaría especificar la distribución del término de 

perturbación aleatoria, las variables explicativas, los coeficientes del modelo y el 

tamaño muestral. 

b) Generar un conjunto de datos usando éste PGD. 

c) Calcular el contraste estadístico objeto de análisis con ésta muestra generada 

artificialmente. 
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d) Repetir las etapas b) y c) un elevado número de veces. Cada generación de un 

nuevo conjunto de datos se denomina réplica. 

e) Evaluar el resultado obtenido con el experimento planteado. 

 

Con el objeto de ilustrar el procedimiento antes descrito para diseñar un experimento de 

Monte Carlo, se va a proceder mediante un ejemplo. 

El primer paso es especificar el proceso generador de datos (PGD), como por ejemplo 

un modelo lineal simple: 

1 2 2i i iY X u     

Donde iY  es la variable dependiente, iX  la variable explicativa, y iu  la perturbación 

aleatoria del modelo. 

Esta especificación requiere: 

Primero.  

1) Seleccionar los valores verdaderos de β1 y β2. 

2) Especificar el tamaño muestral y generar los valores de X para cada 

observación. 

3) Especificar la distribución de probabilidad de u  y generar sus valores a 

partir de tal distribución. 

Segundo. Generar los valores de Y  en, cada observación utilizando la expresión del 

modelo especificado inicialmente y los valores de β1, β2, 2iX  y u. 

Tercero. Con esta muestra generada artificialmente, se calcula el estadístico o 

estadísticos objeto de análisis. 

Se repite este procedimiento un gran número de veces y se evalúan los resultados 

obtenidos. 
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3.3.  OBJETIVO Y DISEÑO DEL ESTUDIO DE MONTE CARLO. 

 El diseño de los experimentos de Monte Carlo, se ha realizado con el objeto de analizar 

el comportamiento de los contrastes de heterocedasticidad de White y de Breusch-Pagan 

en términos de tamaño y potencia cuando el PGD corresponde a dos modelos distintos 

en los cuales se han planteado diferentes estructuras de la varianza del error tanto en 

muestras pequeñas como en muestras grandes. 

 

- Se asumen dos posibles PGD’s: 

M1: 1 2 2i i iY X u      

M2: 1 2 2 3 3i i i iY X X u       

 

- Los tamaños muestrales considerados son N=50, 100 y 1000. 

- Los valores de los coeficientes son: 1 , i i     

- Las variables X  se han generado como una distribución uniforme (0,10) 

- La perturbación del modelo se genera como una 2(0, )iN  . 

- Dado nuestro objetivo, se deberán establecer diferentes supuestos sobre 2

i . En 

concreto: 

a) 2

210 ·i iv X    => SUPUESTO A-1 

b) 2 2

2(10 · )i iv X   => SUPUESTO B-1 

c) 2

2exp(10 · )i iv X   => SUPUESTO C-1 

 

- De forma específica para el modelo M2, se considerará también que ambas variables 

puedan ser las causantes de la heterocedasticidad. Por lo tanto, los supuestos 

específicos además de los indicados anteriormente, para M2 serán los siguientes: 

d) 2

2 310 ·( )i i iv X X    => SUPUESTO A-2 

e) 2 2

2 3(10 ·( ))i i iv X X    => SUPUESTO B-2 

f) 2

2 3exp(10 ·( )i i iv X X    => SUPUESTO C-2 

 

- Se proponen cinco grados de heterocedasticidad asignando valores a v (gravedad de 

la heterocedasticidad) desde 1 hasta 5 y el valor v=0 que implicaría 

homocedasticidad. 
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- El tamaño de error tipo I, se calcula como el porcentaje de casos en los que se 

rechaza la hipótesis nula de homocedasticidad siendo ésta cierta (v=0). 

 

- La potencia de los contrastes se calcula como el porcentaje de casos en los que se 

rechaza la hipótesis nula de homocedasticidad siendo ésta falsa (v=1, 2, 3,4 y 5). 

-  

- Por último, las réplicas (R) realizadas para cada experimento serán 1000. 

El soporte en el cual se han desarrollado todos los pasos descritos en el diseño del 

experimento ha sido la consola de ejecución de comandos que incorpora el software 

econométrico Gretl. Por ello a través del uso de los “scripts” (guiones de instrucciones) 

como lenguaje de programación se han podido llevar a cabo los experimentos. 

[En el anexo se incorporan los guiones de instrucciones utilizados en los experimentos] 

 

Finalmente para que hubiera homogeneidad en la aleatoriedad de los datos para cada 

experimento, se ha utilizado como semilla de números aleatorios o valor inicial, el 

número 123. 

 

4. RESULTADOS DE LOS EXPERIMENTOS DE MONTE CARLO. 

Los resultados de los experimentos de Monte Carlo están estructurados en primer lugar 

en función del PGD seleccionado y en segundo lugar, en función del supuesto sobre  

2

i , es decir, el patrón de heterocedasticidad considerado en cada caso. 

 Los resultados se van a presentar en dos formatos: mediante una tabla en la que se 

podrá observar los resultados de los cálculos de la potencia y tamaño del error tipo I de 

cada uno de los contrastes para cada tamaño muestral y para cada nivel de 

heterocedasticidad. Seguidamente, con el objeto de realizar el análisis de una forma más 

ilustrativa, se van a representar las curvas de potencia de los contrastes, en función del 

valor de v (grado de heterocedasticidad), y para diferentes tamaños muestrales. 
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4.1. EXPERIMENTO DE MONTE CARLO PARA EL MODELO LINEAL 

SIMPLE (M1).  1 2 2i i iY X u     

4.1.1. Supuesto A-1. 2

210 ·i iv X    

La tabla 1.1 muestra el tamaño y la potencia de los contrastes de Breusch-Pagan (BP) y 

White (W) para tres tamaños muestrales diferentes (N= 50, 100 y 1000) y para distintos 

valores de v (grado de heterocedasticidad), suponiendo que el PGD es el modelo M1 y 

que la estructura de la varianza de las perturbaciones hace referencia al supuesto de que 

2

210 ·i iv X   . 

Tabla 1.1  

SUPUESTO A-1 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 
BP 0,054 0,122 0,304 0,271 0,438 0,534 

W 0,048 0,087 0,178 0,159 0,262 0,345 

N=100 
BP 0,059 0,24 0,503 0,606 0,803 0,794 

W 0,041 0,189 0,35 0,416 0,655 0,688 

N=1000 
BP 0,052 0,987 1 1 1 1 

W 0,058 0,976 1 1 1 1 

Fuente: Elaboración propia. 

 

Cabe destacar  en primer lugar que para ambos contrastes, el tamaño de error tipo I es 

aproximadamente el mismo para los tres tamaños muestrales y muy próximo al nivel de 

significación del 5% seleccionado a priori. No obstante, Breusch-Pagan sobreestima el 

tamaño nominal mientras que White lo subestima, salvo para T=1000 donde el 

comportamiento es el contrario. En segundo lugar, la potencia de ambos contrastes, a 

medida que el tamaño muestral va aumentando, es mayor. 

La figura 1.1 muestra la potencia de los contrastes de Breusch-Pagan y White para 

distintos tamaños muestrales y para cada valor de v (grado de heterocedasticidad). 

A la vista de la figura 1.1, para un mismo valor de v, para tamaños muestrales de N=50 

y N=100 la potencia del contraste de Breusch-Pagan es en todo momento superior al de 
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White y para un tamaño de N=1000 la potencia es máxima e igual 1 para ambos 

contrastes, es decir, de las 1000 replicas realizadas, ambos contrastes detectan la 

presencia de heterocedasticidad el 100% de las veces. 

Figura 1.1 

 

Fuente: Elaboración propia. 

 

4.1.2. Supuesto B-1 2 2

2(10 · )i iv X    

En la tabla 1.2 se mantiene la misma estructura que la tabla anterior pero bajo el 

supuesto de que la varianza de las perturbaciones aleatorias es 2 2

2(10 · )i iv X   . En 

ella se puede observar las mismas pautas de comportamiento que en caso anterior. Por 

otro lado, en comparación con el supuesto anterior la potencia de ambos contrastes es 

superior para la mayoría de los casos. 

4.1.3. Supuesto C-1 2

2exp(10 · )i iv X    

La tabla 1.3 muestra los resultados para el supuesto de que la varianza de las 

perturbaciones aleatorias sigue la forma 2

2exp(10 · )i iv X   . 
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 Fijándonos en los resultados de la tabla 1.3, se puede observar que para éste supuesto, 

la potencia de ambos contrastes de heterocedasticidad es máxima para todo tamaño 

muestral. 

Tabla 1.2 

SUPUESTO B-1 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 
BP 0,054 0,41 0,818 0,735 0,906 0,972 

W 0,048 0,236 0,588 0,484 0,684 0,844 

N=100 
BP 0,059 0,744 0,971 0,997 1 0,99 

W 0,041 0,568 0,904 0,956 0,994 0,993 

N=1000 
BP 0,052 1 1 1 1 1 

W 0,058 1 1 1 1 1 

Fuente: Elaboración propia. 

 

Figura 1.2  

 

Fuente: Elaboración propia. 
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Tabla 1.3 

SUPUESTO C-1 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 
BP 

0,054 1 1 1 1 1 

W 
0,048 0,998 0,984 0,99 0,99 0,99 

N=100 
BP 

0,059 1 1 1 1 1 

W 
0,041 1 1 1 1 1 

N=1000 
BP 

0,052 1 1 1 1 1 

W 
0,058 1 1 1 1 1 

Fuente: Elaboración propia. 

 

Los resultados más destacados de estos experimentos se pueden resumir en los 

siguientes puntos: 

1.- El tamaño de error tipo I es similar al nominal para ambos contrastes. 

2.- La potencia del contraste de Breusch-Pagan es superior en general, al de 

White, independientemente del grado de heterocedasticidad asumido y el tamaño 

muestral. 

3.- Se verifica que la potencia de los contrastes se incrementa conforme el patrón 

de heterocedasticidad es más fuerte, lo cual queda reflejado en la forma 

funcional asumida para 
2

i . 

 

4.1. EXPERIMENTO DE MONTE CARLO PARA EL MODELO LINEAL 

GENERAL (M2).  1 2 2 3 3i i i iY X X u      

Tomando como PGD un modelo lineal con dos variables, consideramos distintos 

supuestos sobre la posible variable o variables causantes de la heterocedasticidad, es 

decir: una sola variable ( 2iX  o 3iX  ) o conjuntamente 2 3,i iX X  . En este caso 

presentaremos los resultados de tres posibles contrastes de Breusch-Pagan dependiendo 

de la variable que consideremos causante de la heterocedasticidad: BP1 2( )iX , BP2 
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3( )iX  y BP3 2( iX , 3 )iX  [entre paréntesis las variables causantes de la 

heterocedasticidad] 

 

4.2.1. Supuesto A-1 2

210 ·i iv X    

La figura 2.1, indica el tamaño de error tipo I de cada contraste de heterocedasticidad 

para cada tamaño muestral. De la misma manera que en el modelo anterior, los 

resultados en términos de tamaño, son comunes para todos los patrones de 

heterocedasticidad considerados. 

Como puede observarse en la figura 2.1, el contraste de White en términos de error tipo 

I conduce a sobrereachazar la hipótesis nula cuando es cierta. Por el contrario, el tamaño 

de los contrastes de Breusch-Pagan de forma general, se aproxima más al tamaño 

nominal del 5%. 

 
Fuente: Elaboración propia 

Nótese que para un tamaño muestral de N=1000, el contraste BP1 presenta un tamaño 

más bajo del 5%. Esto se explica por el componente aleatorio de los datos simulados lo 

que no significa que para muestras asintóticas no tienda al valor nominal. Para 

comprobar que éste dato es fruto de la aleatoriedad, se han realizado varios 

experimentos para tamaños muestrales superiores a N = 1000 y se ha observado que 

asintóticamente se aproxima al 5%.  
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En términos de potencia, para el experimento en el que se supone que la 

heterocedasticidad es causada por la variable 2iX , como se puede observar en la tabla 

2.1, el contraste BP1, que tiene en cuenta que la variable 2iX  causa la 

heterocedasticidad, presenta mejores resultados de forma general que el resto. 

Tabla 2.1 

SUPUESTO A-1 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 

BP1 0,044 0,128 0,201 0,381 0,406 0,605 

BP2 0,036 0,042 0,068 0,042 0,07 0,085 

BP3 0,045 0,087 0,17 0,3 0,318 0,482 

W 0,079 0,116 0,163 0,253 0,233 0,35 

N=100 

BP1 0,05 0,237 0,526 0,654 0,824 0,865 

BP2 0,052 0,051 0,055 0,085 0,082 0,074 

BP3 0,055 0,186 0,421 0,556 0,716 0,78 

W 0,093 0,213 0,324 0,45 0,547 0,65 

N=1000 

BP1 0,028 0,992 1 1 1 1 

BP2 0,045 0,056 0,071 0,075 0,069 0,079 

BP3 0,044 0,981 1 1 1 1 

W 0,094 0,967 1 1 1 1 

Fuente: Elaboración propia. 

 

4.2.2. Supuesto A-2 2

2 3(10 ·( ))i i iv X X     

Bajo el supuesto de que la heterocedasticidad está causada conjuntamente por las 

variables 2iX  y 3iX  se puede observar en la tabla 2.2 que, para muestras pequeñas, tanto 
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el contraste de Breusch-Pagan, que tiene en cuenta que ambas variables causan la 

heterocedasticidad (BP3), como el contraste de White, se comportan bastante bien, lo 

cual es coherente con el hecho de que ambos contrastes consideren que son las dos 

variables explicativas del modelo las causantes del problema.  

Tabla 2.2 

SUPUESTO A-2 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 

BP1 
0,044 0,104 0,094 0,176 0,13 0,208 

BP2 
0,036 0,09 0,104 0,221 0,201 0,153 

BP3 
0,045 0,092 0,128 0,264 0,248 0,251 

W 
0,079 0,125 0,132 0,226 0,208 0,209 

N=100 

BP1 
0,05 0,135 0,268 0,291 0,481 0,28 

BP2 
0,052 0,139 0,263 0,302 0,434 0,285 

BP3 
0,055 0,17 0,369 0,434 0,588 0,452 

W 
0,093 0,209 0,304 0,376 0,462 0,348 

N=1000 

BP1 
0,028 0,924 0,994 0,996 1 0,99 

BP2 
0,045 0,891 0,984 0,999 0,998 1 

BP3 
0,044 0,988 1 1 1 1 

W 
0,094 0,979 1 1 1 1 

Fuente: Elaboración propia. 

Como se puede observar en la tabla 2.2, cabe destacar que, para un nivel bajo de 

heterocedasticidad (v=1), el contraste de White presenta una potencia superior, mientras 

que para niveles superiores el contraste BP3 es el de mayor potencia. 

Por otro lado, también cabe destacar que los contrastes BP1 y BP2 presentan un 

comportamiento semejante, puesto que tanto uno como otro reflejan que una de las 
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variables al menos, está causando la heterocedasticidad a pesar de que la estén causando 

ambas. 

Finalmente, para un tamaño muestral grande (N=1000), la potencia de los contrastes 

BP3 y White es bastante similar, aunque cabe resaltar que de nuevo para niveles bajos 

de heterocedasticidad, el contraste BP3, se comporta un poco mejor que el de White. 

Por otro lado, la potencia de los contrastes BP1 y BP2 mejora sustancialmente con 

respecto a muestras pequeñas. 

 

4.2.3. Supuesto B-1 2 2

2(10 · )i iv X    

Suponiendo que la varianza de las perturbaciones aleatorias tiene una forma funcional 

cuadrática en función de 2iX  de acuerdo con los resultados de la tabla 2.3 en primer 

lugar, para muestras pequeñas y para niveles de heterocedasticidad bajos (v=1,2) 

podemos observar que el contraste que mejores resultados de potencia presenta es el 

contraste BP1 dado que tiene en cuenta que la heterocedasticidad está causada por la 

variable 2iX . No obstante también cabe destacar el buen funcionamiento del contraste 

BP3. Ambos contrastes (BP1 y BP3) presentan mejores resultados que el contraste de 

White y la divergencia de potencia con éstos es mayor  a medida que el valor de v 

aumenta. A medida que el tamaño muestral aumenta,  se puede observar que estos tres 

contrastes, alcanzan una potencia máxima. 

Por otro lado, el comportamiento del contraste BP2, que supone que la 

heterocedasticidad está causada por la variable 3iX , es bastante malo tanto para 

muestras pequeñas como para muestras grandes. 

 

4.2.4. Supuesto B-2 2 2

2 3(10 ·( ))i i iv X X     

En el caso de que la de que la varianza de las perturbaciones aleatorias sigue la forma 

2 2

2 3(10 ·( ))i i iv X X     el comportamiento en general de los contrastes en términos 

de potencia es bastante irregular para muestras pequeñas como puede observarse en la 

tabla 2.4.  
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La potencia de los contrastes, a medida que el tamaño muestral aumenta y en concreto 

para N=100, es bastante aceptable, aunque continúa presentando un comportamiento 

irregular a partir de grados de heterocedasticidad superiores a v=2.  

Cabe destacar, que el contraste de Breusch-Pagan BP3 se comporta  mejor que el 

contraste de White tanto para muestras pequeñas como para muestras grandes, en 

términos de potencia. 

También se puede observar que la potencia tanto del contraste BP1 como de BP2, que 

suponen que la heterocedasticidad la causa 2iX  y 3iX  respectivamente, se comportan de 

manera similar. 

Tabla 2.3 

SUPUESTO B-1 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 

BP1 
0,044 0,407 0,591 0,877 0,895 0,981 

BP2 
0,036 0,053 0,082 0,059 0,114 0,133 

BP3 
0,045 0,32 0,509 0,794 0,825 0,964 

W 
0,079 0,229 0,406 0,615 0,572 0,727 

N=100 

BP1 
0,05 0,677 0,968 0,992 1 1 

BP2 
0,052 0,06 0,084 0,139 0,167 0,143 

BP3 
0,055 0,566 0,952 0,981 1 1 

W 
0,093 0,5 0,833 0,942 0,967 0,989 

N=1000 

BP1 
0,028 1 1 1 1 1 

BP2 
0,045 0,064 0,096 0,159 0,116 0,124 

BP3 
0,044 1 1 1 1 1 

W 
0,044 0,407 0,591 0,877 0,895 0,981 

Fuente: Elaboración propia. 
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Tabla 2.4 

SUPUESTO B-2 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 

BP1 
0,044 0,303 0,275 0,429 0,321 0,617 

BP2 
0,036 0,237 0,267 0,621 0,502 0,444 

BP3 
0,045 0,344 0,388 0,753 0,663 0,717 

W 
0,079 0,258 0,308 0,529 0,478 0,518 

N=100 

BP1 
0,05 0,388 0,726 0,746 0,924 0,769 

BP2 
0,052 0,389 0,684 0,73 0,885 0,698 

BP3 
0,055 0,574 0,895 0,929 0,976 0,949 

W 
0,093 0,507 0,773 0,846 0,937 0,841 

N=1000 

BP1 
0,028 1 1 1 1 1 

BP2 
0,045 1 1 1 1 1 

BP3 
0,044 1 1 1 1 1 

W 
0,094 1 1 1 1 1 

Fuente: Elaboración propia. 

 

4.2.5. Supuesto C-1 2

2exp(10 · )i iv X    

Suponiendo que la varianza de las perturbaciones aleatorias siga una función 

exponencial que depende de 2iX  , podemos observar en la tabla 2.5 que, para todo 

tamaño muestral, los contrastes de Breusch-Pagan BP1 y BP3 presentan un 

comportamiento excelente siendo la potencia de éstos máxima.  Por otro lado, a pesar de 

que la potencia del contraste de White para muestras pequeñas presenta una cierta 

irregularidad, conforme el tamaño muestral aumenta, ésta potencia se iguala a la de los 
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contrastes BP1 y BP3. Por último cabe destacar que el contraste BP3, que supone que la 

variable que causa la heterocedasticidad es 3iX  no presenta una potencia adecuada. 

Tabla 2.5 

SUPUESTO C-1 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 

BP1 
0,044 1 1 1 1 1 

BP2 
0,036 0,413 0,53 0,768 0,997 0,181 

BP3 
0,045 1 1 1 1 1 

W 
0,079 0,974 0,992 1 0,998 0,895 

N=100 

BP1 
0,05 1 1 1 1 1 

BP2 
0,052 0,385 0,528 0,544 0,727 0,649 

BP3 
0,055 1 1 1 1 1 

W 
0,093 1 1 1 0,996 1 

N=1000 

BP1 
0,028 1 1 1 1 1 

BP2 
0,045 0,715 0,505 0,689 0,618 0,72 

BP3 
0,044 1 1 1 1 1 

W 
0,094 1 1 1 1 1 

Fuente: Elaboración propia. 

 

4.2.6 Supuesto C-2 2

2 3exp(10 ·( ))i i iv X X     

Finalmente, de acuerdo con que la estructura de la varianza de las perturbaciones 

aleatorias sigue la forma de una exponencial pero que en este caso depende de las 

variables 2iX  y 3iX  , como se puede observar en la tabla 2.6, la potencia de los 

contrastes de Breusch-Pagan y de White es máxima para todo tamaño muestral y para 

todos los grados de heterocedasticidad.  
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Tabla 2.6 

SUPUESTO A-1 
TAMAÑO POTENCIA 

v=0 v=1 v=2 v=3 v=4 v=5 

N=50 

BP1 0,044 1 1 1 1 1 

BP2 0,036 1 1 1 1 1 

BP3 0,045 1 1 1 1 1 

W 0,079 0,986 0,99 1 0,898 0,988 

N=100 

BP1 0,05 1 1 1 1 1 

BP2 0,052 1 1 1 1 1 

BP3 0,055 1 1 1 1 1 

W 0,093 1 1 1 1 1 

N=1000 

BP1 0,028 1 1 1 1 1 

BP2 0,045 1 1 1 1 1 

BP3 0,044 1 1 1 1 1 

W 0,094 1 1 1 1 1 

Fuente: Elaboración propia 

 

Los resultados más destacados de éste segundo experimento, se pueden resumir en los 

siguientes puntos: 

1.- Los contrastes de Breusch-Pagan (BP1, BP2 y BP3), presentan un tamaño de 

error tipo I, más próximo al tamaño nominal del 5% para cualquier patrón de 

heterocedasticidad y para cualquier tamaño muestral, que el contraste de White. 

2.- Los diferentes contrastes de Breusch-Pagan se comportan adecuadamente, en 

términos de potencia, siendo capaces de determinar la variable causante de la 

heterocedasticidad. 



32 

 

3.- De forma general el contraste de Breusch-Pagan BP3 presenta mejores 

resultados de potencia que el de White independientemente de la forma 

funcional asumida y el grado de heterocedasticidad, es decir, el contraste BP3 

rechaza un mayor número de veces la hipótesis nula cuando esta es falsa. 

 

5. CONCLUSIONES 

Como se indicaba al principio de éste trabajo, el objetivo del mismo era analizar en 

términos de tamaño de error tipo I y potencia, cuál de los dos contrastes de 

heterocedasticidad presentaba mejores resultados de acuerdo con cada supuesto 

realizado. Para ello mediante experimentos de Monte Carlo, se han generado dos 

modelos- un modelo lineal simple y un modelo lineal general con dos variables-, y para 

cada modelo, se han hecho distintos supuestos sobre la varianza de las perturbaciones 

aleatoria con diferentes grados de heterocedasticidad y para distintos tamaños 

muestrales. Para analizar el comportamiento de los contrastes se ha calculado la 

potencia y el tamaño de error tipo I de cada contraste en todos los casos. 

A continuación se va a exponer las conclusiones generales que se pueden extraer de los 

resultados  de los experimentos llevados a cabo: 

1.- De forma general cuanto mayor es el grado de heterocedasticidad mayor es la 

potencia de los contrastes. De la misma manera se observa que, cuanto mayor es 

el tamaño muestral, mayor es la potencia de los contrastes. 

2.-  Todos los contrastes tienen un nivel de significación próximo al nominal 

aunque sí que se observa que Breusch-Pagan tiende a rechazar menos de lo que 

debería y el de White a sobre rechazar.  

3.- El contraste de Breusch-Pagan BP3, que podría entenderse como un contraste 

general puesto que tiene en cuenta que todas las variables causan la 

heterocedasticidad, en comparación con el contraste de White presenta mejores 

resultados en términos de potencia y en términos de tamaño.  

4.- Cuando se plantea un contraste de Breusch-Pagan en el que se indica que la 

variable que causa la heterocedasticidad es distinta a la que realmente la causa, 

los resultados en términos de potencia son bastante pésimos, debido a que el 

contraste tiende a no rechazar la hipótesis nula cuando ésta es falsa. 
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Finalmente, para concluir se pueden hacer las siguientes valoraciones: 

1.- En el caso de un modelo lineal simple independientemente de la forma funcional 

de la varianza de las perturbaciones aleatorias, se obtendrán mejores resultados 

con el contraste de Breusch-Pagan. 

2.- Si nos encontramos con un modelo lineal general, independientemente de la 

forma y la gravedad de la heterocedasticidad, en caso de que no se tengan claras 

las variables que causan la heterocedasticidad, el contraste de Breusch-Pagan, 

que considera que todos los regresores del modelo causan el problema (BP3) nos 

dará mejores resultados en términos de tamaño y potencia, y para cualquier 

tamaño muestral, que el contraste de White.  

3.- Si la variable causante del problema es distinta a la supuesta en el contraste de 

Breusch-Pagan, este tendrá una potencia muy baja.   
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