
 
43 

6. ANEXOS 

 

6.1 ANEXO I. Cálculo de una solución particular de una ecuación no 

homogénea de orden 1 

 

Para el cálculo de las soluciones particulares vamos a proceder por el método 

de los coeficientes indeterminados. Se plantean los casos más relevantes. 

 

Caso (1): ( )g t  es una constante. 

En este caso, la ecuación (3.2.1.1) se convierte en 

 1 1t ty a y B−+ = , (I.1) 

dónde B  es una constante dada. Como solución se prueba con una constante 

indeterminada, a la que se llama µ . Sustituyendo en la ecuación (I.1) se obtiene 

1(1 )a Bµ+ = , de donde 

 1/ (1 )B aµ = + ,  

y de este modo 1/ (1 a )p
ty B= +  es una solución particular de la ecuación completa. 

 

Este método no sirve si 11 0a+ = , es decir, si 1 1a = − 21.  

 

En este caso la ecuación (I.1) puede escribirse como 

 1t ty y B−− = . (I.2) 

 

Como solución particular probamos ahora con tµ . Sustituyendo en (I.2) 

tenemos 

  ( 1)t t Bµ µ− − = , 

de dónde 

 Bµ = .  

 

Una solución particular es entonces p
ty Bt= . 

 

                                                           
21 Esto significa que � = 1 es raiz de la ecuación característica asociada a la ecuación en diferencias. 
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Es importante señalar que el tratamiento anterior es un ejemplo de la siguiente 

norma general en el método de coeficientes indeterminados para calcular una 

solución particular de la ecuación completa: Si la función que se prueba como 

solución particular no nos sirve ( 1λ =  es solución de la ecuación característica), 

se debe intentar a renglón seguido con esa misma función multiplicada por t . 

 

Caso (2): ( )g t  es una función exponencial. 

Cuando ( ) tg t Bd= , en dónde B  y d  son constantes dadas, se debe probar 

como solución particular tdµ , siendo µ  una constante indeterminada. 

Sustituyendo en (3.2.1.1) tenemos 

 1
1

t t td a d Bdµ µ −+ = .  

 

Por tanto 

 1
1( ) 0td d a Bdµ µ− + − = , 

 1 0d a Bdµ µ+ − = , 

 
1

Bd

d a
µ =

+
.  

 

Una solución particular será 

 
1

p t
t

Bd
y d

d a
=

+
.  

 

Este método no sirve si 1 0d a+ = , es decir, si d  es raíz de la ecuación 

característica. Probamos entonces con tt dµ  como solución particular. Sustituyendo 

en (3.2.1.1) obtenemos: 

 1
1( 1)t t tt d a t d Bdµ µ −+ − = ,  

 1
1 1[( ) ] 0td d a t a Bdµ µ− + − − = , 

como 1 0d a+ =  

 1 0a Bdµ− − = , 

por tanto 

 1/ aBdµ = − .  



 
45 

 

En este caso una solución particular sería 

 
1

p t
t

Bd
y

a
td

−= .  

 

Caso (3): ( )g t  es una función polinomial de grado m 

Por ejemplo, sea 0 1( )g t B B t= +  en donde oB  y 1B  son constantes 

determinadas. En este caso se prueba con p
ty tα β= + , como solución particular, 

siendo α  y β constantes indeterminadas. Sustituyendo en (3.2.1.1) tenemos 

 1 0 1( ) [ ( 1)]t a t B B tα β α β+ + + − = + ;  

 1 1 1 0 1(1 ) (1 )a t a a B B tβ α β+ + + − = + . 

 

Igualando coeficientes de los dos polinomios nos queda este sistema: 

 1 1

1 1 0

( 1)

( 1)

a B

a a B

β
α β

+ =
 + − =

,  

cuya solución determina los valores de α  y β , siempre que este sistema tenga 

solución22. 

 

Caso (4): ( )g t  es una función trigonométrica del tipo seno-coseno. 

En este caso, 1 2( ) cos seng t B t B tω ω= + , donde 1B , 2B  son constantes 

conocidas. Como solución particular se debe probar la función cos sint tα ω β ω+ , 

en donde α  y β  son constantes indeterminadas. Sustituyendo en (3.2.1.1) 

obtenemos 

1 1 1 2cos sen cos( ) sen( ) cos sent t a t a t B t B tα ω β ω α ω ω β ω ω ω ω+ + − + − = + . 

 

Por trigonometría se sabe que: 

 cos( ) cos cos sen sent t tω ω ω ω ω ω± = ∓   

 sin( ) sin cos cos sent t tω ω ω ω ω ω± = ± . 

 
                                                           

22 Siempre que � 0 �� + 1
�� + 1 −�� � = −(�� + 1)� ≠ 0. Esto se cumple si 1 no es solución de la ecuación 

característica. 
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Entonces, con una transformación de la ecuación anterior se obtiene: 

1 1 1 1 1 2[(1 cos ) sen ]cos [ sen (1 cos ) ]sen 0a a B t a a B tω α β ω ω α ω ω β ω+ − − + + + − =  

 

Ambos sumandos tienen que ser 0 dando lugar al sistema: 

 1 1 1

1 1 2

(1 cos ) sen

sen (1 cos )

a a B

a a B

ω α ωβ
ωα ω β

+ − =
+ + =

, 

que nos permitirá determinar α  y β .  

 

6.2 ANEXO II. Cálculo de una solución particular de la ecuación no 

homogénea de orden 2 

Como ejemplo planteamos la forma de obtener una solución particular  con el 

método de los coeficientes indeterminados en el caso más sencillo. En el resto de 

casos posibles, la forma de proceder es análoga a la seguida en el ANEXO I . 

 

Supongamos que ( )g t B= , supongamos entonces que 

 1 1 2 2t t ty a y a y B− −+ + = . (II.1) 

 

Como solución particular se puede probar p
ty µ= , en donde µ  es una 

constante indeterminada. Sustituyendo directamente en (II.1) se obtiene 

1 2a a Bµ µ µ+ + = , a partir de lo cual 

 
1 21

B

a a
µ =

+ +
. 

 

Si 1 21 0a a+ + = , es decir, 1 es raíz de la ecuación característica, se prueba con 

la solución particular p
ty tµ= . Sustituyendo queda 

 1 2( 1) ( 2)t a t a t Bµ µ µ+ − + − =  

 21 1 2(1 ) ( 2 )a a t a a Bµ µ+ + − + = , 

 
1 22

B

a a
µ −=

+
. 
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Si también 1 22 0a a+ = , 1 es raíz doble de la ecuación característica. Se prueba 

entonces con 2p
ty tµ= . Tras sustituir y con transformaciones se obtiene en este 

caso: 

 
2

Bµ = . 

 

6.3 ANEXO III. Condiciones de estabilidad para ecuaciones lineales de orden 

n 

Sea  

 1
1 1( ) ... 0n n

n np a a aλ λ λ λ−
−≡ + + + + =  (III.1) 

 la ecuación característica asociada a (3.4.1.1) con 0na ≠ .  

 

Existen criterios basados en cálculos con los coeficientes de esta ecuación que 

son condiciones necesarias y suficientes para que las soluciones de la ecuación 

característica tengan módulo menor que 1. Aquí enunciaremos el criterio de Shur-

Cohn23 aunque existen otras formulaciones alternativas como la de Samuelson o la 

de Shur24. 

 

Condiciones de Shur-Cohn 

 

Todas las raíces de la ecuación característica (III.1) tienen módulo menos que 1 

si, y sólo si, se verifican las condiciones: 

I. (1) 0p > . 

II.  ( 1) ( 1) 0n p− − > . 

III.  Los menores interiores de las matrices25 

                                                           
23

 Fernández, Vásquez y Vegas (2003). 
24 Gandolfo (1976). 
25 Dada una matriz cuadrada de orden �, sus menores interiores son aquellos que resultan de eliminar 
simultáneamente las � primeras filas y columnas  y las � últimas filas y columnas (con 0 ≤ � ≤ �/2). 
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1 1

1 2 1

4 3

2 2 1 1 3 2

1 0 0 ... 0 0 ... 0 0

1 0 ... 0 0 ... 0

1 ... ... ... ... ... ... ...

... ... ... ... 0 0 ...

... 1 ...

n

n n

n

n

n n n

a

a a a

p a a

a a a

a a a a a a a

−
±
−

− −

   
   
   
   = ±
   
   
   
   

  

son todos positivos. 

 

6.4 ANEXO IV. Sistemas de ecuaciones lineales de primer orden con n 

ecuaciones 

Un sistema lineal de primer orden de n ecuaciones  en diferencias lineales 

autónomas será 

 

1, 1 11 1 12 2 1 1

2, 1 21 1 22 2 2 2

, 1 1 1 2 2

...

...

..

...

.

t t t n nt

t t t n nt

n t n t n t nn nnt

y a y a y a y b

y a y a y a y b

y a y a y a y b

+

+

+

= + + + +
= + + + +

= + + + +

. 

 

En notación matricial 
1, 1 1 1

, 1

... ... ...
t t

n t nt n

y y b

A

y y b

+

+

     
     = +     

    
    

  con 
11 1

1

...

... ... ...

...

n

n nn

a a

A

a a

 
 =  
 
 

 . 

 

El estado estacionario será ( )
1

1
... ...

e

e
n

y b

I A

y b

−

   
   = −   

     

 que existe si, y sólo si,

| | 0nI A− ≠ . 

 

Este equilibrio será asintóticamente estable si, y solo si, todos los valores 

propios de A  (soluciones de la ecuación | | 0nA Iλ− = ) son en módulo menores 

que 1. 

 

La aplicación de las condiciones de estabilidad exige que el  determinante  

| |nA Iλ−  sea desarrollado hasta obtener un polinomio explícito, y este 

desarrollo es muy trabajoso si n es grande. Existen condiciones que pueden ser 
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aplicadas directamente con los coeficientes sin tener que desarrollar el 

determinante. Hay que señalar, que todas las condiciones siguientes, excepto la 

primera, son, o bien suficientes (pero no necesarias) o necesarias (pero no 

suficientes), lo cual debe de ser tenido muy en cuenta a la hora de aplicarlas a 

los modelos económicos26. 

 

I. Sea 0ija ≥ . En este caso para que exista estabilidad asintótica la 

condición necesaria y suficiente es que se cumplan las siguientes 

desigualdades. 

  111 0a− > ,                 11 12

21 22

1
0

1

a a

a a

− −
>

− −
,    

 
11 12 13

21 22 23

31 32 33

1

1 0

1

a a a

a a a

a a a

− − −
− − − >
− − −

,

11 12 1

21 22 2

1 22

1 ...

1 ...
0

..... ..... ..... .....

... 1

n

n

n nn

a a a

a a a

a a a

− − −
− − −

>

− − −

. 

II.  Sea 0ija ≥  (los coeficientes deben de ser positivos). Se forman las n  

sumas 
1

n

j ij
i

S a
=

=∑ , 1,2,...,j n= . En este caso un conjunto de condiciones 

suficientes de estabilidad consiste en que ningún jS sea mayor que 1, y 

que al menos uno de ellos, sea menor que 1. 

III.  Sea 0ija ≥ . En este caso un conjunto de condiciones suficientes de 

inestabilidad es que todas las jS  (con 
1

n

j ij
i

S a
=

=∑ , 1,2,...,j n= ) sean 

mayores que la unidad. 

IV.  Sean los ija  arbitrarios. Se forman las sumas 
1

| | | |
n

j ij
i

S a
=

=∑ , 1,2,...,j n=

. El que todos los | |jS  sean menores que 1 constituye un conjunto de 

condiciones suficientes de estabilidad. 

V. Una condición necesaria  de estabilidad es que 
1

Traza( )
n

ii
i

aA n
=

= <∑ . 

VI.  Una condición necesaria de estabilidad es que Det( ) 1A < . 

                                                           
26

 Fernández, Vásquez y Vegas (2003). 


