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Capitulo 1

Introduccion

En fisica aprendemos a modelizar de la forma mas simple posible los fenémenos naturales. Intentamos capturar
lo esencial y escribirlo con letras griegas en un Hamiltoniano. Sabemos que nuestro modelo es aproximado y efectivo,
pero nos damos por satisfechos si explica el experimento. Pero, por muy simples que sean, los modelos relevantes rara
vez son féciles de resolver. Mas alla del oscilador armoénico o un sistema de dos estados pocos problemas admiten una
solucién exacta.

Es por ello que la fisica, ademads de esa busqueda de la simplicidad, sea también una busqueda de aproximaciones.
Teoria de perturbaciones, aproximaciones arménicas, liquidos de Fermi, etc ... conforman una serie de herramientas
que hacen resolubles esos modelos simples, pero dificiles a la vez.

Una alternativa a las aproximaciones es la resolucién numeérica. Simulaciones por ordenador permiten explorar
modelos més alld de regimenes perturbativos asi como comprobar las aproximaciones. La combinacion de simulacion
y aproximaciones forman la vida de la mayoria de los fisicos tedricos. Como la vida no puede ser tan sencilla, las
simulaciones no son la solucién final. Problemas muy importantes son demasiado “grandes” para solucionarlos con
ordenador. Cuando decimos “grandes” queremos decir que el niimero de grados de libertad necesarios son tantos que
los ordenadores no pueden con ellos. Un ejemplo tipico es el plegamiento de proteinas. En mecanica cuantica este
problema es todavia mas grave. En materia condensada, por ejemplo, estamos acostumbrados a trabajar con objetos
con muchos grados de libertad (ej. un sélido). El éxito de esta fisica, inherentemente many body, ha sido desarrollar
teorias donde los electrones son esencialmente libres. Si queremos atacar problemas donde las interacciones juegan un
papel estamos perdidos. El problema crece exponencialmente con el nimero de grados de libertad, y jtenemos muchos!
Para explicar esto un poco mejor, debemos pensar en que cada, por ejemplo, electréon “vive” en un espacio de Hilbert
de dimensién D. Para tratar N electrones usamos el producto tensorial que sabemos crece de manera exponencial
como D¥. Es por ello, que dichos problemas no se puedan simular con ordenador [1].

La visién anterior es muy negativa. En realidad la dindmica de esos electrones interactuantes no va a visitar ese
enorme espacio de Hilbert. Tipicamente solo visitard una parte exponencialemente pequena del mismo. Es por eso,
que no debe obsesionarnos el tamano sino identificar ese pequeno subespacio relevante. Debemos buscar simetrias,
cantidades conservadas, fisica esperable, etc ... Si identificamos la parte relevante somos capaces de resolver el problema

[2].

En este Trabajo Fin de Grado presentamos un acercamiento numérico a un problema dificil. Se trata de bosones
interactuantes que viven en una topologia entre una y dos dimensiones. El problema tiene su interés en problemas
de frustracion. Explicamos las cantidades conservadas del problema y generamos varios cédigos que permiten resolver
el modelo exactamente en redes no tan pequenas. Discutimos la teoria de bandas del modelo en el régimen lineal,
donde es resoluble analiticamente. Encontramos los pardmetros del modelo donde existen bandas planas. Estudiamos
el papel de la interaccién en estas bandas planas.



1.1. Objetivos

Los principales objetivos que abordaremos a lo largo de este trabajo son los siguientes:

1. Estudiaremos un sistema de bosones interactuantes tanto el caso lineal como el no lineal.
2. En el caso lineal obtendremos las bandas de energia y las condiciones que han de cumplirse para su existencia.
3. Estudiaremos el sistema para diferente nimero de tamafnos del mismo asi como de excitaciones.

4. La resolucién del caso no lineal nos obligard a obtener un método numérico eficiente que permita obtener la
dependencia del sistema con la no linealidad.

5. Todo esto permitira obtener propiedades del sistema como la degeneracion de los autoestados localizados de las
bandas planas, la dependencia con el tamano del sistema etc.



Capitulo 2

Oscilador Armonico

[3] En este trabajo centraremos principalmente nuestra atencién en un modelo de bosones acoplados y sobre todo
la resoluciéon numérica del mismo. Por completitud estudiaremos a modo introductorio, el caso de un solo bosén,
para asi tener una visién general del problema el sistema més conocido en fisica, el oscilador armoénico, empezaremos
brevemente recordando el caso clasico para a continuacién meternos directamente el caso cudntico.

2.1. Oscilador Armonico Clasico

Un oscilador arménico clasico es aquel cuerpo cuyo movimiento viene determinado por el ya conocido potencial
cuadrético V(z), funcién del la posicién z del mismo':

V(z) = %kﬁ (2.1)

Por lo tanto usando la relacion entre fuerza y potencial y la segunda ley de Newton podemos obtener la ecuacién
diferencial que determinard el movimiento:

Lo dV

e 2.2
e dr v (2:2)

Resolviendo la ecuacién diferencial de coeficientes constantes se obtiene la ecuacién del movimiento:

k
x = xp cos(wt — @) con w=4/— (2.3)
m
En donde z )/ es la amplitud del movimiento y w su frecuencia. Vamos a obtener su energia, sumando energia cinética
y potencial y observaremos que no depende del tiempo puesto que nos encontramos en un sistema conservativo:

1 (dz\* 1 5, 1 5,
E:T+V=§m T +§mwx == gmwiEly (2.4)

Que como se puede ver al sustituir la solucién de la ecuacion diferencial se obtiene una energia que se mantiene
constante en el tiempo tal y como es propia de los sistemas conservativos. Si ahora fijamos un valor de la energia total
E y expresamos la energia total en funcién del momento p y la posicién x podemos escribir:

2 P a2
E:%+§mw2x2:¥+b—2 con: a=+vV2m, b=

2
mw?

(2.5)

Es decir en el espacio de p y « es una elipse de semiejes a y b de manera que cuando la posicién es maxima (x )
el momento es minimo (p = 0), o lo que es lo mismo cuando la energia potencial es méxima la cinética es minima e
igualmente a la inversa.

1Consideraremos el caso del oscilador unidimensional para hacer més simple la discusién.



2.2. Oscilador Armoénico Cuantico

Veamos ahora el caso cuantico, para obtener el Hamiltoniano haremos uso del principio de correspondencia cam-
biando las variables cldsica de la ecuacién (2.5) & y p por sus correspondientes operadores X y P, con la relacién de
conmutacién [X, P|=ih:

P2 1

H= o + 2mcu2X2 (2.6)

Es decir el problema de la obtencién de los valores de la energia para este sistema se reduce al cdlculos de los
autovalores y autovectores de la ecuacion:

Hl|¢) =E|9) (2.7)

Pero para resolver el problema més facilmente definiremos un serie de nuevos operadores en primer lugar adimen-
sionalizaremos los ya existentes:

X=,/™x (2.8)
h

[ — (2.9)

 Vmhw )
N |

H=.—H (2.10)

Quedando la relacién de conmutacién [X , ]5] =i y el Hamiltoniano?:

H= %(X%P?) (2.11)

Si ahora definimos dos operadores a' y a conocidos como los operadores de creacién y destruccién, por que, como
veremos mas adelante crean y destruyen un cuanto de energia:

al = —( —iP) (2.12)

a=-—=(X+iP) (2.13)

sm

Calculemos su conmutador teniendo en cuenta la relacién de conmutacién entre X y P tenemos:

1 . N A . A A A A
[a, a'] = aa’ —d'a 5((X +iP)(X —iP) — (X —iP)(X +iP))=--- = —i(XP - PX) =1 (2.14)
Déndonos cuenta que: afa = %( + P2 - 1), podemos expresar el Hamiltoniano:
N 1
H=ad'a+ 2 definimos el operador N, niimero, como: N = a'a (2.15)

De manera que si un estado es autovector del operador nimero también lo serd del operador Hamiltoniano, es
decir el operador Hamiltoniano conmuta con el operador nimero ([H, N] = 0), de manera que la ecuacién a resolver
siendo v un autovalor de N es:

El operador N se denomina operador niimero porque si lo aplicamos sobre un autoestado del Hamiltoniano |¢,,)
de autovalor hw(n + 1/2) se obtiene:

hw

Es decir su autovalor es el nimero de cuantos o excitaciones Aw, puede ademéas demostrar que los autovalores n
son valores reales enteros y iguales o mayores que ceron =0, 1, 2, 3....

Nin) = (505~ ) 16n) =+ =nlon) (2.17)

2 Donde: H = hwH



Pueden ademéas demostrarse las siguientes relaciones de conmutacion:
[N, af] = af (2.18)

[N, a] = —a (2.19)

Veamos ahora como actian los operadores de creacién y destruccién sobre los autovalores del Hamiltoniano.
Hagamos actuar en primer lugar el operador niimero sobre el estado a' |¢,,):

Na'|¢y) = (a'N +al) [¢n) = (n + 1)a" ¢n)

Luego a' [¢,,) o |#n11). Obtenemos la constante de proporcionalidad obteniendo la norma de a' |¢,) suponiendo
que los |¢,,) estdn normalizados:

la® |¢n) I = (dulaa® [$n) = (@ul (N +1)[64) = (n+1) (duldn) =1 + 1

Es decir que:

al[¢n) = Vn+T|dni1) (2.20)

Continuemos ahora con el operador destruccién. Para ello hagamos actuar en primer lugar el operador ntimero
sobre el estado a |¢y,):

Na|pn) = (aN = a)[én) = (n —1)a|dn)

Luego a|¢,) x |¢n—1). Obtenemos la constante de proporcionalidad obteniendo la norma de a|$,) suponiendo
que los |¢;) estan normalizados:

lalgn) > = (dn] ala|dn) = (dn| N |dn) = n{dn|dn) =n

Es decir que:

\a |6n) = Vit |$n-1) \ (2.21)

Es decir los operadores af y a crean y destruyen respectivamente una “excitacién” hw.

Sabiendo ya como actiian sobre los elementos de la base de autoestados del Hamiltoniano {|¢g) , |¢1), |¢2), |¢3) .-},
N, a' y a podemos expresarlos matricialmente:

0o Vi 0 o0 0 0 0 0
Vi 0 0 0
0 0 V2 0 0 Vi 0 0
0.0 0 V3 0 0 V3 0
a=|. . : . af = (2.22)
0 0 9 9 0 ﬁ 0 0 0 0 axi 0







Capitulo 3

Modelos Tight Binding Bosoénicos

3.1. El método de calculo de bandas Tight Binding - Funciones de Wan-
nier.

[5] Consideremos una situacién tipica en la cual contamos con varias particulas, bosones, que se encuentran
sometidas a la accién de un potencial periédico por ejemplo de una red de atomos. El potencial serd suficientemente
fuerte para que las particulas que crean el potencial puedan considerarse localizadas. En este caso que las funciones
de onda tienen una cola que se extiende mas alld del sitio n del atomo correspondiente de manera que la barrera entre
pozos sea alta pero no infinita. En otras palabras consideraremos un acoplamiento interatémico entre los primeros
vecinos es lo que se denomina la aproximacién de enlace fuerte o Tight Binding. En dicha aproximacion es conveniente
expandir la base del Hamiltoniano en una base local que dé cuenta de las funciones de onda de cada particula por
separado, los estados de Wannier:

1 oy 1 -
05n) = d e i or) e ép,) = N > e g (3.1)
k R

En donde R es la coordenada que denota los centros de los atomos, el sumatorio en k estd extendido a la primera
zona de Brillouin y “n” indica el indice del sitio o particula. Estas funciones de Wannier al aparecer un acoplamiento
entre los sitios de la red cada uno de los N niveles degenerados se separan y forman bandas de energia. Obtendremos
dichas bandas de energia primero en el caso maés sencillo en geometrias de disposiciéon de osciladores en una sola

dimensién y luego veremos un caso entre 1 y 2 dimensiones.

lH—a—Hd—a—bH——a—b-H——a—i-l
] 1 ] 1

Figura 3.1: Potencial periddico al que se someten las particulas y sus funciones de onda de particulas localizadas.
(Imagen modificada de [4])



3.2. Bandas de energia con el modelo Tight Binding para el caso de
cadena infinita de osciladores acoplados (1D).

Consideraremos el caso de una cadena infinita de osciladores bosénicos sometidos a un potencial periédico acoplados
a través de J que controla este acoplamiento entre primeros vecinos:

i-2 i1 1 itl j+2

Figura 3.2: Cadena de osciladores.

Asi el Hamiltoniano tipico de este sistema haciendo uso de los ya mencionados operadores de creacién y destruccién
de excitaciones es:

—

N—

H= [wa;aj - J(aja;r-_H + a;ajﬂ)] (3.2)

Il
=]

J

En donde N — oo, el nimero de osciladores. Para simplificarlo deberemos hacer uso de los estados de Wannier.

Para ello la ecuacién (3.1) induce una transformacién en los operadores al espacio Fourier, es decir el espacio de las k's.

Para que sea dimensionalmente correcto tiene que aparecer el parametro de red a en el exponente. Para evitar tantas
us us

constantes podemos proceder como si el pardmetro de red fuese a = 1 y con zona de Brillouin [-%, Z] = [-7, n].
Con j indicamos el sitio o dtomo de la red:

o — 1 Nﬁleikja' N G,':L]\fzileiikjak (3.3)
VN 2O T TR 2

aJf = —1 N_lefikjaf — aT» = LNz_:l eikjaT (34)

k VN = J i VN ~ k

Ademads de estas expresiones deberemos de hacer uso de las relaciones de conmutacion:

[ak, CL};,] = 6kk’ [CLZ‘, CL;] = §ij [ak, ak./] =0 [a};, aL,] =0 (35)

Podemos demostrar facilmente estas relaciones de conmutacién. Empecemos con la relacién que nos indica el
cardcter bosénico [a;, a;] = 0;;:

[a;, al

1 1
j} = (Sij definiendo... a; = 5(.’%1 + Zﬁ,) aj = 5(.%1 — Zﬁl) (36)

Sustituyendo:
las, aj) = 5 (& + i) (&5 — 1B;) — (&7 — D;)(%i + ipi)) = 5 (Zidy — idaD; + 1Piy + pibj — Ly&i — i5P; + 15 — Djbi) =
T, . . 1, .
= —5 (&0, B5] + (25, Bil) = —5(i0i; +1bij) = b
Con:

mw . 1

Txi bi = 7mpz‘

— @i, pj] =ihdy; — [&i, D] = idy



Continuemos con la siguiente relacién de conmutacién (recuerdo, N — 0):

lak, ] = O (3.7)
1 N- L Nl
lar, al,] = axal, — al,a), = N Z [ iki=k'3") —a cajelki=k )] =N Z kiK' [a;al jas —a},aj] =
Ji Ji’
1= e 1
NZ k5, = L Z““ No(k — k') = Spp
Jj §=0
Demostremos por tltimo las dos que nos quedan. Empecemos por [ag, aj]:
1. N . R N L
[ak, ak/] = apQr — A QR = 5[(xk + Z"Ek:)(l'k’ + lxk/) — (!l?k/ + zxk/)(xk + ka)] =
1.0 . L
= U@k, Pe]+[pr, 2w]) =0
Haciendo uso de [Z, pr] = 0si k # k' y si k = k' entonces [Zx, Pr] + [Pk, k] = [Tk, Dr] — @k, Px] = 0,

quedan asi demostradas todas las relaciones de conmutacién. Por tanto si sustituimos las ecuaciones (3.3) y (3.4) en
el Hamiltoniano (3.2) y tenemos en cuenta las relaciones de conmutacién ya demostradas (3.5), tenemos finalmente

simplificado y diagonalizado el Hamiltoniano:

N-—
H= wkakak
k=0

,_.

(3.8)

En donde a la banda de energfa la hemos llamado: wy = w — 2.J cos(k), los célculos para la obtencién de este
resultado pueden consultarse en el Apéndice A. Asi las bandas de energia para por ejemplo una frecuencia w = 2 y

un acoplamiento J = 1/2 tenemos:

o=
L
T

Figura 3.3: Bandas de la cadena de osciladores acoplados. (Notar que k € [—

7], la primera zona de Brillouin.)
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Capitulo 4

Modelos Tight Binding en una topologia
Diente de Sierra

En este capitulo nos centraremos en la obtencién tedrica de las bandas de energia en un modelo tipo Tight Binding
con una distribucién de osciladores en forma de diente de sierra. Obtendremos las bandas de manera tedrica de
un modelo de osciladores acoplados linealmente, para luego desarrollar un método numérico que permita también
obtenerlo. Este desarrollo nos permitira luego poder incluir interacciones no lineales que no son accesibles para una
resolucién analitica. Los cédlculos tedricos del modelo lineal nos permitiran compararlo con el numérico y comprobar el
funcionamiento correcto del método numérico planteado. Hemos escogido una disposicién en diente de sierra porque
es un arreglo a caballo entre una disposiciéon en una dimensién, como hemos visto en la secciéon anterior, y una red
geométrica en dos dimensiones; ademas de contener propiedades interesantes como bandas planas. En la literatura
también es conocido por mostrar el fenémeno de la frustraciéon del espin.

4.1. Diente de sierra, caso de frecuencias iguales.

Consideremos tal y como hemos dicho que tenemos nuestros osciladores en una disposicion de diente de sierra.
En este caso llamaremos a los operadores creacién/destruccién de la fila superior como a; y a; y a los de la fila de

abajo como b;( y b;. Consideraremos ademds que la frecuencia de oscilacién de los osciladores de la fila superior y la
inferior es la misma, w ya trataremos el caso de frecuencias distintas en la siguiente seccién. En cuanto al acoplamiento,
serd de cardcter lineal igual que el usado en la seccién anterior con dos constantes de acoplamiento: J' que regula el
acoplamiento entre los osciladores de la fila superior con la inferior y J que regula el acoplamiento entre los osciladores
de la fila inferior, como se muestra en la siguiente figura:

aj . A A A A »

JANANANINANAN

i-3 2 i i i1 2

Figura 4.1: Disposicién en diente de sierra de los sitios.

Con todo lo dicho hasta ahora el Hamiltoniano a trata, del cual obtendremos las bandas de energia:

-1 N—-1 N—-1
H = Z [w(a;f.aj + b;b]):| + J Z |:b3-bj+1 + b;r»+1bj:| + J/ Z [a;bj + a;bﬁ_l + b;aj + b;r»+1aj (41)
j=0 7=0 =0

Notar que el caracter lineal de los acoplamientos permite que se siga conservando que el operador Hamiltoniano
conmute con el operador numero N; = agaj (igual para las b’s) cumpliéndose las relaciones de conmutacién (3.5)
asi como las combinaciones de operadores a’s y V's ([a;, bj/] = [af byl = [aj, b;,] = 0, as{ como en el espacio Fourier,

VE
con demostraciones andlogas a la seccién anterior).
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Asi al tratarse de un modelos con acoplamientos a primeros vecinos tipo Tight Binding o de enlace fuerte podemos
simplificar nuestro Hamiltoniano si pasamos los operadores, tal y como hemos hecho en el anterior capitulo, al espacio
Fourier como sigue':

N— ;| Nl ;| Nl 1 Nl
— ekla; — aj=—= e, by = — e*ib; — by = —— e~ (4.2)
\/ Z ! N N “ ! N
j=0 k=0 j=0 k=0
| Nl ;N ;| Nl | N-n
T ikj 1 T ikj 1 T —ikjpt T ikjpt
a, = —— e a;, — a — e"a b, = — bl — b — e b 4.3
* VN j=0 ! ! N3 * * VN j=0 VN i3 )

Sustituyendo estas ultimas expresiones en la ecuacién (4.1) y haciendo uso de las relaciones de conmutacién ya
demostradas [a;, a}} = [bi, b;] =0;; |, b;r] = 0, obtenemos la expresion:

N—-1
H= Z [walak + bLbk(w +2Jcosk) + J/(azbk(l +e )+ bLak(l + eik))}
k=0
Para diagonalizar la matriz podemos observar que si definimos los vectores:

- a 4
G- () d=Cal o)

Podemos expresarlo como:

N-1
H=X |

& 0 I 0 J(+e) .
e Ck( 0 w+2Jcosk>ck“k< J'(1+ ety 0 o

O lo que es lo mismo:

N—1 .
J/(l +e—zk) .
H= Zo ( J 1+e“‘3) w+2Jcosk )P (4:4)

Es decir es una matriz diagonal por cajas, si diagonalizamos cada caja:

w—e¢ J'(1 4 e7 k)

‘J’(l—i—eik) (w+2Jcosk) —e =0

(w—€)(w+2Jcosk —e) —2J°(1 + cosk) =0

e — (2w +2J cosk) + 2cos k(Jw — J'?) + (w2 —2J%) =0

Resolviendo la ecuacién de segundo grado obtenemos finalmente las bandas de energia buscadas:

e:JCOSk—l—wj:\/J2cos2k+2J’2(cosk+1) (4.5)

Analizaremos la existencia de bandas planas en las siguientes secciones (4.8 y 4.4) en las que consideraremos un
caso mas general en que las frecuencias de oscilacion son distintas para los osciladores de la fila de arriba en relacién
con los de abajo en la topologia de diente de sierra. Las bandas planas son aquellas en las que como su nombre indica
son niveles de energia “planos” en los que por tanto se caracterizan por una velocidad de grupo nula (E = 0). Adem4s
en el caso de la cadena de infinitos osciladores estas bandas se caracterizan por estar infinitamente degeneradas. Para

ver los cédlculos realizados en esta seccién en mas detalle consultese el Apéndice B al final del escrito.

lHaciendo iguales consideraciones que capitulo anterior en lo que respecta al pardmetro de red con una primera zona de Brillouin
k € [—m, m] (véase la pégina 8).
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4.2. Diente de sierra, caso de frecuencias distintas.

Por generalizar el modelo consideraremos ahora que las frecuencias de los osciladores de la fila de arriba? tienen
una frecuencia w, y los osciladores de la fila de abajo tienen una frecuencia wy. Con estos retoques el Hamiltoniano
queda:

N-1 N-—-1 N-1
H = Z {waa G,J + wbbTb :| + J Z |:bTb 41 + bj+1 :| —+ J’ Z |:a;[bj + G,;r-ijrl + b;aj + b}+1aj (46)
Jj= j=0 j=0

Igual que en el caso anterior buscaremos obtener las bandas de energia y como se trata de un modelo Tight Binding
aplicaremos un método andlogo a la seccién anterior. Para ello empezaremos pasando los operadores de creacién y
destruccién al espacio Fourier:

1 N-n N-1 | N-o =
ikj —ikj _ otki _ —ikj
ap = —— ea; — aj = —= Z e ay, b = — by — bj=— e b (4.7)
N Jj=0 k= VN j=0 VN k=0
= 1 N-1 ;N ;N
T_ —ikj T lkj T T_ —ikjpt T ikj T
a; = — e al a b, = — e b, — bl = — b 4.8
k \/N = J J ZO k k \/N = J J \F kz k ( )

Sustituyendo estas tltimas expresiones en la ecuacién (4.1) y haciendo uso de las relaciones de conmutacidn,
obtenemos la expresién:

N—-1
H= Z {waalak + b,tbk(wb +2J cosk) + J'(aLbk(l + efik) + b;fcak(l + eik))]
k=0

Para diagonalizar la matriz podemos observar que si definimos los vectores:

e O oy
Ck_(bk> Go="(a, b )
Podemos expresarlo como:

N— )
. 4 [ Wa 0 o, o 0 J'(1+e ™)\
a= [Ck< 0wy +2Jcosk )C’“Lck( J(1+e®) 0 G

k=0

—

O lo que es lo mismo:

N-1 .
J/(l +efzk) R
7= 2) ( J' 1—|—e”“) wy + 2J cosk ) F (4.9)

Es decir es una matriz diagonal por cajas, si diagonalizamos cada caja:

Wg — € J' (14 e~ )
J'(1+e*) (wp+2Jcosk) —e

(wa — €)(wp + 2J cosk — €) — 2> (1 + cos k) = 0

€ — e((wa + wp) +2J cos k) + 2 cos k(Jwa — J') + (wawp — 2J%) = 0

Resolviendo la ecuaciéon de segundo grado:

2

2
e=Jcosk+ w + \/(Jcosk + w) —2cos k(Jwg — J?) — (wawp — 2J'%) (4.10)

2Véase figura 4.1, pagina 11.
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Podemos obtener una ecuacion mas sencilla si lo podemos en funcién de la frecuencia media €2:

Q:w = wp =20 —w,

Obtenemos asi finalmente una versién simplificada de las bandas de energia:

e=Jcosk+ Q=+ \/(Jcosk + (2 —wa))?2 +2J%(1 + cosk)) (4.11)

Para ver los calculos realizados en maés detalle constltese el Apéndice C al final del escrito. Podemos a modo de
prueba representar las bandas para Q =2, J' =1, J =2 y w, = 3 y ver asi su aspecto:

3
2 8 A
A { é}f\\ I,l'f\\- [
[\ f [ A f \
[ [ [ 1 [ [
||II IIlI |I|l I', .'I 6 r II| Ill III |III II|
| | |'I 'I |'I | I|' II|I ||l I'.
I| \ | I'|I II||'|I \ Ill | |'I h { I|I
;.' \\ ;f.' ‘-\\ /o4t \ / \ f,. ".\\
J; \L/ l\'~—'/ = / \\/ A
2 L
— I]_S N i_O / "'_'lls N SI,/"_“‘\ ]_IO TN ]_IS k
.' \ ,.-"f \ .,-"'r .\'\ / .-'f. \'-.
x .I.I | \ .I.I B 2 \ / Y
i/ Ay /:"ll .\\ ! ."'\___"l AN /"llll \

Figura 4.2: Bandas de energla Q =2, J' =1, J=2yw, =3 con e, — azul y e. — rojo
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4.3. Calculo de las bandas planas para dos frecuencias distintas

Como necesitamos comprobar que el calculo numérico que desarrollaremos en el capitulo siguiente obtendremos las
condiciones que hay que imponer a la ecuacién anterior (4.11) para que aparezcan bandas planas y asi precisar de una
manera mas de comprobar que nuestro calculo numérico es correcto. Ademaés desarrollaremos por casos las distintas
condiciones que tienen que cumplirse para que aparezcan bandas planas y ver la dependencia de la energia con los
distintos pardametros del sistema. Por tanto partiendo de la ultima expresion:

ex =Jcosk+AQ+w, £ \/(Jcosk + AQ)2 +2J(1 + cos k) (4.12)

En donde hemos expresado la ecuacién anterior (4.11) en funcién de AQ = Q — w,, para buscar las bandas planas
imponemos que la velocidad de grupo es nula es decir:

J?sink + Jsink(J cos k + AQ)
\/(Jcosk + AQ)2 4 2J"%(1 4 cos k)

de4 .
T —Jsink F

=0 (4.13)

Procedemos a despejar J' en funcién de J:

J2[(J cosk + AQ)? + 27 (1 + cos k)] = J>(J cosk + AQ)? + J'* + 270 (J cos k + AQ)
22T (1+ cosk) = J'™* 4+ 27202 (1 + cos k) — 2J20"° + 27 AQ

T 27?12 £ 2% JAQ = 0

Obteniendo finalmente para casos J' # 0, la relacién:

J' = +/2J(J — AQ) (4.14)

Notemos una cosa:

T 227272 £ 202 JAQ = 0

J2I? =272 +2JAQ) =0

J =17 2<1 - AQ) (4.15)

Luego si J > 0 entonces J’ > 0y viceversa, luego esta es en realidad la ecuacién correcta. De hecho si se considera
que el signo de J' es arbitrario y no depende de .J entonces cuando se procede a usar la férmula 6 del articulo [6] uno
encuentra problemas al calcular asi los estados localizados. Podemos obtener el mismo resultado (Ecuacién (4.14) y
(4.15)) con otros métodos alternativos de calculo para ello véase el Apéndice D.
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Notemos que si las dos frecuencias son iguales (AQ = 0) entonces: J' = V/2J es la condicién para que aparezca
una banda plana. Se tiene que cumplir 2J(J — AQ) > 0 si y solo si:

Si: J =20 — J2>=AQ
Si: J <0 — J<AQ

Sustituyendo (4.15) en (4.14) tenemos:

ex =Jcosk+ Q£ | Jeosk +2J — AQ | (4.16)

Veamos los distintos casos:

Caso 1: Si Jcosk + 2J — AQ > 0, obtenemos como soluciones:

a) € =2Jcosk +2J + w,
b) e~ =—2J+wp

Si llamamos £ = 2J — AQ. Entonces: J cosk + £ > 0, imponiendo para que se cumpla Vk tenemos:

Casode J>0: Sié>J — 2J-AQ>J — J>AQ
Casode J<0:Si&>—J — 2J-AQ>-J — J>4a2

Caso 2: Si Jcosk +2J — AQ < 0, obtenemos como soluciones:

a) e = —=2J +wp
b) e =2Jcosk+2J + w,

Si llamamos £ = 2J — AQ. Entonces: J cosk + £ < 0, imponiendo para que se cumpla Vk tenemos:

Casode J>0: Sié<J — 2J-AQ<J — J<AQ
Casode J<0: Sié<—J — 2J-AQ<-J — J<A&2
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Recordando que se tenfa que cumplir que: 2J(J — AQ) > 0, tenemos:
Caso A: Se tiene que cumplir una de estas condiciones siguientes:

= Je[0, +00)si AQ <O
n Je[AQ, +00)si AQ >0

Tenemos dos casos posibles segiin lo dicho anteriormente:

Caso 1 de J > 0:
ey =2Jcosk +2J + w,

Entonces J > AQ —
e =—2J+wyp

Por ejemplo si tomamos J = 5, w, = 6 y un valor de A2 que nos garantice que w, > 0 y que se cumple que
J < AQ por ejemplo AQ = —2 con estos datos tenemos:

€y = 10cosk + 16
e_ =-8

Si lo representamos en la primera zona de Brillouin pero usando directamente la ecuacién (4.11) directamente
con los datos y condiciones impuestos obtenemos:

3

25
AT

204 e
% 15¢ N

S _
A 10} N

Figura 4.3: Bandas de energia J =5, AQ= -2y w, =6 con ¢, — azul y e. — rojo

Caso 2 de J > 0: Entonces J < AQQ  — Caso imposible
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Caso B: Se tiene que cumplir una de estas condiciones siguientes:

n Je(—o0, AQsi AQ <O
m Je(—o0, 0]si AQ >0

Tenemos dos casos posibles segin lo dicho anteriormente:

Caso 1 de J < 0: Entonces J > AQ}/3 — Caso imposible

Caso 2 de J < 0: Entonces J < AQ2/3 — {

€+ =—2J 4wy

e_ =2Jcosk +2J 4+ w,

Por ejemplo si tomamos J = —5, w, = 6 y un valor de Af) que nos garantice que wy, > 0 y que se cumple
que J < AQ/3 por ejemplo AQ) = —2 con estos datos tenemos:

€+:12
e_ = —10cosk — 4

Si lo representamos en la primera zona de Brillouin pero usando directamente la ecuacién (4.11) directamente

con los datos y condiciones impuestos obtenemos:

Figura 4.4:

E
104

. 5t o

. i ,/
1 L 1 | L r’z 1 k
-3 =2 -1 [ 1 2 3
Ay _5 ; ‘,r:/
—10f S
AN P
Bandas de energia J = -5, AQ= -2y w, =6 con e, — azuly e. — rojo
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Debemos darnos cuenta que si no se cumplen las condiciones para J de los casos Caso A y Caso B entonces no
existird un J' ya que 2J(J — AQ) < 0 y no existird la raiz, por lo tanto la introduccién de dos frecuencias distintas
implica que han de cumplirse unas condiciones que restrinjan J para que puedan aparecer ondas planas. Podemos
hacer una representacién conjunta del Caso A y el Caso B en tres dimensiones representando las ecuaciones (4.12)
imponiendo la condicién (4.15) para valores fijos de AQ = —2 y w, = 6 en funcién de k € [—n, 7]y J € [-10, 10],
asi podemos ver la evoluciéon de las bandas. Sin embargo hay un intervalo de la grafica que no es valido cuando
J € [—2, 0] ya que en ese intervalo 2.J(J — AQ) < 0y J' serfa complejo y no existirfa esa solucién. Por tanto sabiendo
esto la representacion seria:

-10

Figura 4.5: Bandas de energia J € [-10, 10], AQ = -2 y w, =6 con e, — rojoy e_ — azul
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4.4. Calculo de las bandas planas para casos mas particulares

Podemos ahora explorar algunos casos més sencillos. Empecemos por el ya mencionado caso de A2 = 0, entonces
we = wp = w y la ecuacién (4.12) queda:

e+ =Jcosk+w=t \/(Jcosk)2+2J’2(1+cosk)

En donde como ya hemos mencionado antes la condicién de que existan bandas planas es J' = v/2J si hacemos
AQ =0 en la ecuacién (4.15). Sustituyendo la condicién de banda plana en la ecuacién anterior se obtiene:

er =2J(cosk+1)+w
- =w—2J

Si parametrizamos J' como J' = y/aJ con a una constante de manera que si a = 2 existird una banda plana.
Podemos representar en 3D para el caso por ejemplo de w = 1 y para dos casos de a, el primero para a = 0,5 y
el segundo para ver la banda plana en a = 2. Los intervalos de representacién serdn k € [—m, 7| (primera zona de
Brillouin) y J € [—10 10] obteniendo:

Figura 4.6: Bandas de energia J € [-10, 10], k € [-7, 7], w=1ya=0,1 con e, — rojoy e_ — azul

Figura 4.7: Bandas de energia J € [-10, 10], k € [-7, 7], w=1ya=2con ey — rojoy e_ — azul
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Otros casos son por ejemplo si J' = 0 es el caso de 1 dimensién con algunas sitios mds que no estan conectados a
nada. Entonces la expresion inicial para las bandas de energfa queda (llamando AQ = Q — w,):

€x =Jcosk+ Q=+ (Jcosk +AQ)2 = Jcosk + Q£ | Jcosk + AQ |
Tenemos varios casos:
1. SiJ >0:

=2
a) Si|Jcosk+AQ[>0 VkéAQ>J;{ Jcosk + wy

:w{l
b) Si|Jcosk+ AQ|<0 Vk 6 AQ < J:
=2Jcosk + wyp

=2Jcosk + wyp

:wa

€+
€_
€4 = Wq
€_

a) Si|Jeosk+AQ|>0 Vk6AQ < J: {F

€_

2. 85iJ <0

b) Si|Jeosk+AQ|<0 Yk 6AQ> J: T ¥
e_ =2Jcosk + wp

Veamos ahora el caso de J =0y J # 0, entonces la expresién general para las bandas queda:

e =0+ \/(Q —wa)2 +2J2(1 + cos k)
Imponiendo que la velocidad de grupo es nula:
dey J' sink
\/AQ2 +2J%(1 + cos k)

dk
En donde hemos supuesto que:
dQ  dJ?  dAQ .
dk  dk  dk
Suponiendo esto a la vista de la expresion de la velocidad de grupo esta nunca se hara cero Vk si no se incumplen
las condiciones anteriores, es decir en principio no tiene bandas plana para valores constantes de Q, J y AQ.

Por tltimo veamos el caso més sencillo si J = J' = 0 entonces (llamando AQ = Q — w,,):
er =0+ | AQ |

" SIAQ >0 ex =wpq

n SiAQ <0 ex =wqp

Es decir en este caso no hay bandas, porque no existe transmisién. En el limite en el que J y J’ se aproximan a
cero las bandas tienden a hacerse cada vez mas planas.
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Capitulo 5

Diente de sierra con interaccion no lineal

Uno de nuestros principales objetivos es obtener un método numérico que permita obtener los autovalores y
autovectores para el caso en el que acoplamiento de nuestra topologia en diente de sierra no sea lineal. El Hamiltoniano
no lineal que analizaremos en este capitulos es:

N
H = Z [wacgjczj + wbc;jlc%q} + JZ |:C;j102j+1 + C;j+162j_1:|
j=1

=1
N X
+J chocoiir+chcojir e et e+ = alalaja;
2525 -1 25¢25+1 2j—1¢2j 25+1¢27 2 St A ]
=1 j=1
Con U la constante de acoplamiento del término no lineal. Si aplicamos un operador a}a;r-ajaj sobre un estado
cualquiera |..., nj,...) obtenemos n;(n; —1)|..., n;,...). Es decir en el caso de que nos encontremos en el caso de

una excitaciéon n; = 1 y n;; = 0 con j # j' es cero. En otras palabras, el término no lineal no afecta cuando solo hay
una excitacion.

En este capitulo primero analizaremos el caso de una excitaciéon para luego desarrollar los métodos numéricos
que nos permitirdn abordar el Hamiltoniano no lineal. Explicaremos el método numérico usando el Hamiltoniano
lineal y cuando lo usemos para abordar el caso no lineal indicaremos las modificaciones pertinentes. A continuacién
compararemos los resultados analiticos del capitulo anterior para comprobar que el método numérico es correcto.
Finalizaremos viendo, el comportamiento de los niveles de energia en el caso no lineal. Utilizando el método numérico
que desarrollaremos para resolverlo.

5.1. Single Excitation

Empecemos recordando que el Hamiltoniano a tratar para el caso de una excitacion equivale al caso lineal como
acabamos de mencionar:

-1

N-1 N-1
H="Y" {waa}aj - wbbj.bj] +IY {b}bﬁl + b}+1bj] +7 3 {a;bj +albjir +bla; + 0l a; (5.1)

Jj=0 Jj=0 Jj=0

Que representa la siguiente topologia en forma de diente de sierra que ya hemos mencionado:

Va A A a a\l

TZANANANZNANAN

i3 2 i i i1 2

Figura 5.1: Disposicién en diente de sierra de los sitios.
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Empezaremos por el caso mas sencillo. El caso de una tnica excitacién en toda la red y por tanto como ya hemos
dicho que el Hamiltoniano conmuta con el operador ntimero. Al ser el caso lineal en el que los operadores de creacién
y destruccion van por parejas. Es decir conservan el nimero de excitaciones, entonces la base de autovectores de una
sola excitacién es por ejemplo para el caso de 5 sitios:

{|1, 0, 0, 0, 0), |0, 1, 0, 0, 0), [0, 0, 1, 0, 0), [0, 0, 0, 1, 0), [0, 0, 0, 0, 1)}

Puede observarse que los términos que acompanan a la constante J actian sobre los sitios de la fila inferior
intercambiando una excitacion con dos sitios contiguos de dicha fila, luego precisamos que el nimero de sitios sea
impar y a partir de un minimo de 3 sitios para que as{ puedan actuar correctamente los operadores (ya que no
hemos definido condiciones de contorno periédicas). Asi uno puede construirse “con ldpiz y papel” o por los métodos
numéricos que hemos desarrollado, que explicaremos en las siguientes secciones, la matriz del Hamiltoniano usando la
base anterior:

w, J'J 0 0
Jow, J 0 0
J T o JJ (5.2)
0 0 J w, J

0 0 J J’ Wy

Cabe notar que hay unas dos cajas, si estuviéramos en el caso de 7 sitios serian 3 cajas y asi sucesivamente. Veamos
si se cumplen los resultados del capitulo anterior. Para ello calcularemos los autovalores para distintos tamanos de
redes 3, 5, 7... y compararemos con un caso concreto de bandas de energia para ver si coinciden los calculos teéricos
con los numéricos. Notar que en el caso tedrico se ha supuesto que el nimero de sitios tiende a infinito. Sin embargo
este puede no ser nuestro caso ya que solo podremos obtener resultados numéricos para un nimero finito de sitios. Por
ello veremos si hay alguna dependencia de los niveles de energia para un nimero de sitios creciente. Luego si queremos
calcular para un ntimero alto de sitios precisaremos de un método eficiente para obtener la matriz del Hamiltoniano
que crecerd conforme afiadamos sitios y excitaciones. Veamos si puede haber alguna dependencia con el nimero de
sitios en nuestro caso de una excitacién. Como sabemos como tiene que ser la matriz podemos construirla facilmente
y usando un programa como Mathematica obtener de manera sencilla sus autovectores numéricamente para un caso
concreto. A partir de ahora numeraremos los nodos empezando por 1 en el primer nodo asi hasta NV, asi los nodos de
abajo pasaran a ser nodos impares! b; — ;-1 ¥ b} — c;];l e igualmente para los de “arriba” que serdn los

t

nodos pares a; — g5y a; — cgj. Siguiendo esta notacién el Hamiltoniano quedarfa finalmente?:

N N N
H = Z |:wacgj02j+wbcgj_162j—1:| +JZ |:C;j—102j+1 +C£j+162j—1:| +J/ Z |:c£j02j_1 +C£j02j+1 +C$j_102j +C£j+102j
j=1 j=1 j=1

(5.3)

Vayamos con el caso concreto tomemos el Caso A de la pagina 17. Tomamos J = 5, w, = 6 y AQ = —2. Ademas
imponemos la condicién que viene dada por la ecuacién (4.15) obteniendo J' ~ 8,37, con estos datos obtenemos:

€+ = 10cosk + 16

. — 8 (5.4)

INota: El indice j empezard en 1 y no en cero 0
2Ahora N es el niimero de nodos.
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Si lo representamos en la primera zona de Brillouin obtenemos:

25

o204 NG

Figura 5.2: Bandas de energia J =5, AQ= -2y w, =6 con ¢, — azuly e. — rojo

Ahora calculamos, numéricamente usando Mathematica, los autovalores de las matrices del tipo (5.2) para numero
de sitios desde 5 hasta 21 obtenemos como resultado:

Cuadro 5.1: Autovalores con J =5, w, =6, AQ = -2y J = 8,37.

Sitios Autovalores

5 8,00 -4,60 -4,00 12,60 22,00 -
7 8,00 -439 -424 984 17,24 23,56 -
9 800 -434 -429 844 1394 1990 24,36 §
11 -8,00 -4,32 -431 7,66 11,77 16,84 21,54 24,82 -
13 8,00 -4,32 431 720 10,34 14,52 18,86 22,60 25,11 .
15 -8,00 -4,32 -432 690 9,35 12,80 16,63 20,31 23,33 25,31 -
17 -8,00 -4,32 -4,32 6,70 866 11,51 14,84 1825 21,37 2385 2545 -
19 8,00 -4,32 -432 6,56 815 10,54 1342 16,51 19,51 22,16 24,23 25,55 .
21 8,00 -432 -432 646 7,78 9,79 1229 1505 17,86 20,49 22,77 24,52 25,62

Observamos a la vista de los datos que el autovalor mas pequeno € = —8 corresponde con la banda plana predicha
por la teoria y el autovalor de mayor energia tiene conforme se acerca a valores cada vez méas grandes del nimero
de sitios a su valor teérico® € = 26 (valor maximo de e, = 10cosk + 16). Ademés la cuarta columna de autovalores
corresponden al autovalor mas pequenio posible de la banda de energia que corresponde tal y como hemos visto antes
a € = 6 (valor minimo de e, = 10cos k + 16), es decir podemos concluir que nuestro célculo nos a hecho aparecer dos
niveles de energia entre las dos bandas calculadas de forma tedrica que tienden a ser el mismo para valores altos del
nimero de sitios, que interpretamos como un efecto de las condiciones de borde abiertas de nuestra topologia.

3Véase ecuacién (5.4) y figura 5.2
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Asi, si representamos todo esto:

—— Autovalor Banda Plana
—@— Autovalor Inter1

—A— Autovalor Inter2

—W— Autovalor Min. Banda

) —4@— Autovalor Max. Banda
25 - W—‘l+ |
o
| -~
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15
) 1 W
g 101 Sy
© ] I e e S
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5 51
< |
04
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) | i L L L L i i L
-10 ; ; —— . , —
4 6 8 10 12 14 16 18 20 22
Sitios
Figura 5.3: Bandas de energia obtenidas numéricamente J = 5, AQ = —2 y w, = 6 con Linea Verde —> Nivel de

energia maximo de la banda de energia superior, Linea Rosa — Nivel de energia minimo de la banda de energia
superior, Lineas Azul y Rojo — niveles de energia intermedios que aparecen debido a condiciones de frontera libres
y Linea Negra — Nivel de energia de la banda plana.

Podemos ahora representar el “gap” (“hueco”) de energfa entre las dos bandas. Definido como la diferencia de
energias entre el nivel méas inferior de la banda superior y el valor de la banda plana, observando nuevamente que
tiende al valor esperado que en este caso es 14:

21

20+

Q
@©
O 17
n
16
| |
\.
15 e ==
—m
—
14 4
T T T T T T T
4 6 8 10 12 14 16 18 20 22
Sitios

Figura 5.4: Gap de energfa J =5, AQ=-2y w, =6
Por tanto podemos decir que los calculos numéricos dependen del tamano de la red asi a mayor nimero de sitios

mas se asemeja el calculo tedrico al numérico tendiendo al valor esperado para el tamano del gap, es decir observamos
los efectos del numero finito de sitios.
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5.2. Método numérico 1

Empecemos con el primer método para obtener la matriz del Hamiltoniano para un nimero dado de excitaciones*

y de sitios. Usaremos el programa Mathematica para programar el método en cuestion. En primer lugar pensamos este
método que hemos llamado 1 pero podriamos llamarlo trivial en el sentido de que no presenta ninguna complicacion
pero sin embargo este es muy ineficiente.

Para este método debemos recordar el aspecto de las matrices de los operadores de creaciéon y destruccién que

tienen una dimensién “n+1” donde “n” es el nimero de excitaciones:

0 0 0 0
0 VI 0 0 Vi o 0 0
0 0 Vv2 o0 Y
0 0 0 V3 0 2 0 0
c= : = 0 0 V30 (5.5)
00 0 0 0 \/ﬁ 0 0 0 0 axi 0

Lo que haremos es lo siguiente, definiremos cada operador de creacién de cada sitio (cada uno con su espacio)
y luego obtendremos su equivalente en el espacio completo de todos los sitios multiplicando tensorialmente cada
operador. Por ejemplo si estamos en un caso con 5 nodos de la red de diente de sierra tenemos que definir un operador
de creacion y otro de destruccion para cada sitio en el espacio completo, es decir, el producto tensorial de los cinco
espacios, por ejemplo el operador cg del espacio completo serfa®: c;r, =1I(1) x I(2) x cg(?)) x I1(4) x I(5).

Una vez tenemos todos los operadores definidos los multiplicamos y sumamos de acuerdo con la expresion del Ha-
miltoniano (5.3). Podria parecer que ya tenemos la matriz del Hamiltoniano, sin embargo el producto tensorial de las
bases de cada uno de los espacios no es la base del espacio de los estados de “n” excitaciones que es la que estamos bus-
cando. De hecho la base del espacio® del sitio j en el caso de “n” excitaciones es A7 = {|0), [1), [2), ..., [n—1), |n)}
y si tenemos N sitios el espacio del operador creacién/destruccién del espacio completo es el producto tensorial de
espacios es decir B = Al x A% x ... x AN71 x AN y este no es el espacio de los estados de “n” excitaciones ya que

N veces

por ejemplo volviendo al ejemplo de 5 sitios y 3 excitaciones la base B contiene |0, 1, 2, 0, 0) pero también contiene

estados como [0, 3, 3, 2, 0) en el que la red tiene mds de 3 excitaciones’.

Por ello deberemos primero encontrar la base que proyecte el Hamiltoniano que hemos obtenido en el espacio de los
estados de “n” excitaciones. Deberemos obtener la base de ese espacio. Para ello podemos darnos cuenta del siguiente
hecho, los elementos de la base del espacio completo B = {|0, 0, ..., 0, 0), ..., |n, n, ..., n, n)} pueden ordenarse
como si fuesen una sucesién de nimeros de N cifras y en la base numérica n + 1 desde el nimero 00...00 hasta el
nn...nn 'y de estos seleccionar aquellos cuya suma de cifras sea “n” asi obtendremos los estados de “n” excitaciones.
Notar que de esta manera cada autoestado tiene asociado un niimero tnico. As{ por ejemplo el estado |0, 1, 1, 1, 0)
que en el caso de tres excitaciones equivale al nimero en base 4: 01110 o el ntimero decimal 44 que es exclusivo de ese

estado, veremos que este hecho nos serd ttil para el segundo método numérico més eficiente.

Con la base obtenida se calcula la matriz de proyecciéon y multiplicando el Hamiltoniano por esta se obtiene la
matriz del Hamiltoniano definitiva y de esta ya podemos obtener los autovalores y autovectores. Sin embargo tenemos
un problema que la dimensién de la matriz crece muy deprisa de hecho si tenemos “n” excitaciones y “N” sitios crece
como (n + 1)V que por ejemplo para el caso de 3 excitaciones y 7 sitios es (3 + 1)” = 16384 un tamaiio por lo menos
respetable. Esto nos impide llegar a caso con muchos sitios lo que nos impide trabajar en sistemas con un gran niimero
de sitios no pudiendo observar efectos de tamano finito, asi como una gran lentitud en los célculos numéricos. Para

ver una explicacién mas detallada del programa desarrollado en Mathematica consiltese el Apéndice E.

4Més de una excitacién.

5Con: I(i) matriz identidad del espacio i-ésimo.
6Es decir el espacio de las matrices (5.5)

"En concreto 8.
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5.3. Meétodo numérico 2

5.3.1. Construyendo la base:

Como hemos dicho el problema estd en la dimensién de la matriz del Hamiltoniano que crece demasiado deprisa
para nuestros propésitos. Es por ello que precisamos de un método que reduzca dicho tamano y asi reduzca los
tiempos de calculo. El método alternativo consistira en calcular la matriz del Hamiltoniano directamente en la base de
los autovectores con “n” excitaciones. Para construir la matriz necesitamos construir la base, por ello hacemos uso de
lo expuesto en la seccion anterior. Como en el conjunto de todos los estados de la base completa B se encuentran los
estados de la base buscada (es decir es un subespacio de B) podemos construir la base completa que va desde el estado

[13e})

[0, 0, ..., 0, 0) hasta el |n, n, ..., n, n)y de ella seleccionar aquellos estados que contengan solo “n” excitaciones.

Para construir la base completa podemos recurrir a la propiedad de que esta puede ser ordenada como si cada
estado fuese un nimero de “N” cifras (si hay “N” sitios) en la base numérica “n+1” (si hay n excitaciones). Asf el
estado |0, 0, ..., 0, 1) equivale al niimero 00...01 de manera que la base completa es la sucesién de niimeros en base
“‘n+1” de “N” cifras en orden ascendente desde el 00. . .00 hasta el nn . ..nn. Como Mathematica permite generar tanto
numeros como vectores de “N” componentes que sean un nimero en una base determinada generando esa sucesién de
vectores cuyas componentes son como las cifras de los numeros de la sucesién podemos seleccionar aquellos vectores

[}

cuya suma de componentes sea “n” y tendremos asi la base construida.

De esta manera la posicién del nimero en la sucesion inicial desde el 00...00 hasta el nn...nn tiene asignado
un ndmero que se corresponde con su posicion en la lista menos uno. Asi por ejemplo para una excitacién base 2 el
[0, 0, ..., 0, 0) =00...00 equivale en decimal 0 y suposicién en la sucesién esla 1610, 0, ..., 0, 1, 0) =00...010
equivale al nimero en decimal al 2 y su posicién es la 3 en la sucesién, de manera que cada estado tiene asociado un
namero propio y podemos “transformar” un estado en otro simplemente sumando la cantidad adecuada en cada caso.
Esta propiedad la usaremos mas adelante.

Concluiré esta subseccién con un ejemplo consideremos el caso de 5 sitios y una excitacién (base 2), primero
construimos la base completa (sucesién inicial):

|0, 0, 0)
0, 0, 1)
0, 1, 0)
|0, 1, 1)
|1, 0, 0)
[1, 0, 1)
|1, 1, 0)
11, 1, 1)
Seguidamente seleccionamos los estados que tengan 1 excitacién y creamos la sucesién complementaria de los

nimero decimales a los cuales equivalen:

1 (0, 0, 1)
2 |« | (0, 1, 0 (5.6)
4 (1, 0, 0)

Asf tenemos construida la base buscada.
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5.3.2. Construyendo la matriz:

Una vez que ya tenemos la base buscada tanto como una sucesién de vectores como una sucesién de ntimeros
tenemos ahora que construir la matriz. Para comenzar deberemos ver como actiian los operadores de creacion y
destruccién recordemos que:

cln) = v/nln —1) (5.7)
iy =vn+1n+1) (5.8)

Es decir que por ejemplo si: ci 11, 1, 0) =212, 1, 0) 6 2|1, 1, 0) = /1|1, 0, 0). En el método numérico modi-
ficaremos el estado | ) (un estado cualquiera) y luego multiplicaremos por el coeficiente va (un coeficiente cualquiera,

por ejemplo en (5.8) es v/n + 1). Podemos asi darnos cuenta que el operador CJ{ en nuestro caso equivale a sumar el

ntimero en base 3: 100 al nimero en base 3 (estado de partida) 110 obteniendo 100 4+ 110 = 210 as{ mismos el caso de
co equivale a 110 — 010 = 100, resta puesto que es el operador destruccion.

Ambos casos para simplificar los cdlculos y no tener que sumar o restar vectores podemos hacerlo en su equivalente
decimal asi: 9+ 12 =21y 12 — 3 = 9. Es decir los operadores equivalen a los ntimeros: c]; =9y ¢y = —3. Por ello que
los operadores ¢! y ¢ equivalen a las listas de nimeros que representan todos los operadores creacién y destruccién
respectivamente, asi en nuestro ejemplo de 3 sitios y una excitacién (base 2) serfan:

4 —4
= 2 c=| -2 (5.9)
1 -1

Asi para el caso de ¢f, tenemos que =4 cg =2y c;g = 1. Es decir los operadores de creacion y destruccién estan
asociados a las potencias +(n+1)7 donde “n+1” es la base numérica de los niimeros de las sucesiones que coincide con
el nimero de excitaciones menos uno y j equivale a la posicién de la cifra (o componente si es un vector) que indica
la posicion del sitio en el arreglo usado y el signo viene a ser positivo si crea una excitacion o negativo si la destruye.
Para poder construir la matriz debemos recordar la forma del Hamiltoniano (luego veremos el caso no lineal):

N

N N
H= Z [wacngQj +Wbc£j1C2j_1:| +JZ [c;jlc%q_l +c£j+102j_1} +J' Z |:C£jC2j_1 +C;j62j+1 +C;j7162j —|—c;j+102j
j=1 j=1 j=1

Para obtener la matriz del Hamiltoniano en la base del subespacio de “n” excitaciones lo que haremos serd dividirlo
en la suma de operadores més sencillos, consideraremos cada pareja de operadores de creaciéon y destruccién como un
Unico operador: ngCQj, cgj_lcgj,l, C;j_lc2j+1, c;j_HcQj,l, cngQj,l, ng62j+1, ng_ngj y cgj_HCQj. Para obtener la
matriz del Hamiltoniano obtendremos todas las imédgenes de los elementos de la base, para ello haremos actuar los
operadores anteriores sobre cada elemento de la base sumando a cada componente del vector (5.6) las correspondientes
componentes de los vectores ¢ y ¢ (Eq. (5.9)). Como estos operadores conservan el niimero de excitaciones la suma
de estos tres nimeros (cf, ¢y (5.6)) serd un nimero que este en la lista dada por (5.6) y por tanto un vector de la
base. Pongamos un ejemplo el operador cJ{Cg,7 para el caso de 3 sitios y 1 excitacién, que actuara sobre los elementos
de la base en (5.6) {|0, 0, 1), |0, 1, 0),]1, 0, 0)} que equivalen a los nimeros (los estado son como nimero binarios)
(véase (5.6)) 1,2,4. Los operadores ¢ y ¢3 equivalen a sumar 4 y sumar -1 (haciendo uso de (5.9)). Asf ¢les equivale
a sumar 3. De manera que las imégenes de los vectores de la base 1,2,4 son 4,5,7. Notar que 4 si que es un vector
de la base pero no lo son 5 y 7. Notemos que las imdgenes de 2 y 4 6 |0, 1, 0) y |1, 0, 0) son cero ya que no tienen
excitaciones en el tercer sitio.

/ P P 8 . T ) T ) .
Usaremos este método con los seis tltimos operadores ® ya que los dos primeros (cy;c; y ¢h;_jc2j—1) son matrices

diagonales como veremos. Una vez hallamos obtenido las imagenes de todos los vectores de la base sobre los seis tipos
de operadores para cada valor de j, para cada sitio, ya podriamos construir las matrices. Comparando las imagenes de
los vectores de la base con los vectores de la base. Asi en el ejemplo anterior compararemos 1,2,4 con 4,5,7. De esta
manera podemos construir la matriz del operador c{c;;. Comparando la primera imagen 4 con la base colocaremos en
la primera columna de la matriz de c]; c3 1 si coincide con la imagen y 0 si no por tanto la primera columna es (0 0 1)7
(en vertical). El resto de imdgenes 5 y 7 no coinciden con ningin vector de la base original y las columnas de la matriz
serdn (0 0 0)7 De esta manera quedan solucionados los problemas del tipo que c3|0,1,0) = 0 y con nuestro método:
010 —001 =001 < 2—-1=1.

8 .t ) T . t . T ) T ) T )
Cgj—1€2j+1, C9j41C2j—1s C2;C2j—1, C9;C2j+1, Co; 1C25 Y Coj41C2j
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Por tanto la matriz del ejemplo 0103 queda:

0 00
des=[ 0 0 0 (5.10)
1 00

Solo nos falta calcular los factores v/ X/ s que aparecen al hacer actuar un operador destruccién ¢; y seguidamente

operador creacién c;f usando la sucesién de los vectores iniciales (5.6) antes de obtener sus imédgenes y sabiendo como

actian los operadores (5.8) y (5.9). De manera que, volviendo al ejemplo, usando ahora la lista de vectores (que no
de los nimeros 1, 2 y 4):

0, 0, 1)
(0, 1, 0) (5.11)
(1, 0, 0)

Usando (5.8) y (5.9) calculamos los factores ,/~x ,/~ del ejemplo anterior usando (5.11), al aplicar cles sobre cada

elemento de la base, obteniendo:

VO+1V1 1
VO+1V0 | = 0 (5.12)
VI+1V0 0

Multiplicamos cada columna de la matriz (5.10) por su coeficiente X/ s en este caso queda igual pero no siempre
ocurre esto. Asi, la primera columna la multiplicariamos por el primer elemento de la lista anterior 1 y las otras dos
por 0. Si se diera el caso de que, al cambiar los operadores de creacion y destrucciéon por sumas o restas de nimeros
dieran una imagen que no es correcta al aplicarlo sobre un estado de la base. Como cuando el operador destruccién
actia sobre un sitio donde no hay excitaciones, entonces el factor /X y/ es cero por (5.7).

Asf construimos las matrices a partir de los estados de la base compardndolos con sus imdgenes (notar que compa-
raremos numeros decimales entre si ya que hemos reducido tanto la base como las imagenes de la misma a dos listas
de nimeros decimales) y multiplicaremos cada elemento de la matriz recién construida por su factor correspondiente
NEIVE Asi repitiendo el proceso para todo j obtenemos todos los operadores que como hemos dicho son las parejas

y .2 . + +
de operadores creacién y destruccién. Solo quedan las matrices de los operadores ¢y;ca; y ¢g;_1¢2j—1, que son dos
matrices diagonales. En la que en la primera los elementos impares de la diagonal son nulos y viceversa en la segunda
con sus correspondientes factores NERSVE

El Hamiltoniano lo construimos finalmente multiplicando y sumando todas las matrices (las que representan a las
S | ) T ) | ) T T | . , : -
parejas: Cy;Caj, Cy;_1C25j—1, Cj_1C2j4+1, Coj1C2j—1, C;C2j—1, C3;C2j41, Co;_1C25 Y cQchQj) y a continuacién podemos
obtener con la matriz ya construida los autovalores y autovectores, matriz que no tenemos que proyectar porque la
hemos construido en la base que nos interesaba.

Obtendremos ahora la dimension de la matriz para compararla con el método anterior y ver si realmente hemos
simplificado el calculo. Para ello necesitamos calcular el nimero de elementos de la base dado un “N” y un “n”. El
problema se puede simplificar a el ntimero de combinaciones de meter “n” bolas (excitaciones) en “N” cajas (“sitios”), o
lo que es lo mismo ordenar (“N-17) “separadores” y n “bolas” es decir (N —14n)!, pero como podemos intercambiar dos
bolas o separadores entre si sin cambiar de estado tenemos entonces que quitar las permutaciones de estos obteniendo:

o= ()

Que si lo comparamos con (n + 1)V se puede demostrar que < N _; o ) < (n+ 1) de hecho paran =5y
N =7 tenemos que - é o) 462 < (5+1)7 = 279936. Esto solo es el tamaiio del lado de la matriz cuadrada,

el total de niimeros de cada matriz corresponde al cuadrado de esas cantidades. Podemos ver en detalle explicado el
programa hecho para Mathematica y para ello consultese el Apéndice F.
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5.4. Comprobacion de los métodos numéricos

Un primer chequeo que podemos hacer para comprobar que el nuevo programa calcula correctamente la matriz del
Hamiltoniano comparamos los valores de los autovalores en ambos casos. Usaremos como parametros w, = 2, J = 5,
AQ = —2 y 5 sitios compraremos para distinto ntimero de excitaciones n = 1, 2, 3. Con esto en las tablas 5.2, 5.3 y
5.4 se puede notar, que la diferencia de los valores obtenidos es del orden del error numérico:

Cuadro 5.2: Caso de n = 1 excitaciones.

Método 2 Método 1 DIFERENCIA (%)

18,00 18,00 0,00E-+00
8,60 8,60 0,00E+00
-8,00 -8,00 0,00E+00
-8,60 -8,60 1,24F-13
-12,00 -12,00 0,00E-+00

Cuadro 5.3: Caso de n = 2 excitaciones.

Método 2 Método 1 DIFERENCIA (%)

36,00 36,00 2,76E-13
26,60 26,60 0,00E-+00
17,20 17,20 0,00E+00
10,00 10,00 0,00E+00
9,40 9,40 9,45E-14
6,00 6,00 0,00E-+00
0,60 0,60 1,99F-12
785E-15  -2,83E-16 103,61
-3,40 -3,40 3,01E-13
-16,00 -16,00 0,00E+00
-16,60 -16,60 0,00E-+00
17,20 17,20 0,00E-+00
-20,00 -20,00 0,00E-+00
-20,60 -20,60 -4,83E-13
-24,00 24,00 4,14E-13
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Cuadro 5.4: Caso de n = 3 excitaciones.

Método 2 Método 1 DIFERENCIA (%)

54,00 54,00 -3,68E-13
44,60 44,60 0,00E-+00
35,20 35,20 -3,03E-13
28,00 28,00 0,00E-+00
27,40 27,40 3,76E-13
25,81 25,81 -3,99E-13
24,00 24,00 0,00E-+00
18,60 18,60 0,00E-+00
18,00 18,00 5,53E-13
14,60 14,60 0,00E-+00
9,20 9,20 2,32E-13
8,60 8,60 3,51E-13
5,20 5,20 0,00E-+00
2,00 2,00 511E-13
1,40 1,40 0,00E-+00
0,80 0,80 2,51E-13
-2,00 -2,00 0,00E-+00
-2,60 -2,60 -3,92E-13
-6,00 -6,00 0,00E-+00
7,40 7,40 2,76E-13
-8,00 -8,00 0,00E-+00
-8,60 -8,60 1,24E-13
11,40 11,40 0,00E-+00
12,00 12,00 8,29E-13
-15,40 -15,40 0,00E-+00
24,00 -24,00 4,14E-13
24,60 -24,60 0,00E-+00
25,20 25,20 0,00E-+00
25,81 25,81 -3,99E-13
-28,00 -28,00 3,55E-13
-28.,60 -28,60 0,00E-+00
-29,20 -29,20 3,41E-13
-32,00 -32,00 3,11E-13
-32,60 -32,60 3,05E-13
-36,00 -36,00 0,00E-+00
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Otro método de comprobacién que aplicaremos es calcular con el Método 2, los autovalores para el caso de “single
excitation” (una sola excitacién) para los ntimero de sitios desde 5 hasta 17 y comprobar la dependencia del gap con
el tamano de la red de osciladores dispuestos en forma de diente de sierra. Es decir que conforme se va aumentando
el nimero de sitios el tamano del gap tiende al valor tedrico, para un ntimero muy grande de sitios, asintéticamente.
Asi tenemos que los autovalores son:

Cuadro 5.5: Autovalores calculados a través del Método 2 para distinto nimero de sitios y una excitacién. Para
valores de w, = 6, J =5 y AQ = —2. Aplicando las condiciones para J' para que exista una banda plana.

Sitios Autovalores

5 8,00 -4,60 -4,00 12,60 22,00

7 800 -439 -424 984 17,24 23,56

9 800 -434 -429 844 13,94 19,90 24,36

11 -800 -432 -431 7,66 11,77 16,84 21,54 24,82

13 -8,00 -432 -431 720 10,34 1452 18,86 22,60 25,11

15 -8,00 -432 -432 6,90 935 1280 16,63 2031 23,33 2531

17 -8,00 -432 -432 6,70 8,66 11,51 14,84 1825 21,37 2385 2545

Si se obtienen las diferencias con los ya calculados en la primera seccién de este capitulo que se calcularon constru-
yendo la matriz directamente por que se sabia cual era su forma. No se obtienen diferencias superiores a 107! lo cual
verifica el correcto funcionamiento del método presentando exactamente la misma dependencia del gap con el tamano
de la red. Este caso recordemos que corresponde al Caso A de la pagina 17, lo que nos sirve de conexién entre el
calculo analitico y numérico.
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5.5. Resultados

5.5.1. Caso lineal

Entre los resultados que podemos comprobar primero para el caso no lineal se encuentra la férmula citada en la
referencia [7] y [6] en la que nos dan una expresién analitica para obtener los autoestados localizados, es decir para
el caso de una tnica excitacion y en el caso de que las filas superior e inferior de la topologia en diente de sierra con
frecuencias iguales, encontramos que los autoestados de la banda plana son:

1
IT;) = 5(0% + C;j+2 - \/icngrl) 0) (5.13)

Notemos que la férmula dada en bibliograffa [6] no es la expresién de arriba. Es una errata que se subsana
consultando la bibliografia que proporciona ese articulo que es [8]. Para comprobar el resultado con el programa es
sencillo, no hay mas que construir el estado y obtener su imagen haciendo actuar el Hamiltoniano recién obtenido,
obtener la norma del vector imagen, dividirla por la norma del vector y obtener asi el valor del autovector. En donde
aplicando estas modificaciones al Método 2 podemos comprobar que la expresién (5.10) funciona. As{ por ejemplo
para un caso concreto de valores w, = 6, J = —5 y AQ = —2. Notar que los autoestados localizados tienen la forma
en la topologia de:

2J+2 2j+4 2J+?

2j+3 2j+5 2j+8

Figura 5.5: Un autoestado localizado.

De manera que para este caso particular de nueve sitios la degeneraciéon de los autoestados localizados es de 3.
Veamos la degeneracién del autoestado localizado para el caso de una excitacion. Veremos en la siguiente seccién para
el caso de mas de una excitacién. Si “m” es la degeneracion el nimero de sitios “N” que es un niimero impar como ya
hemos mencionado antes sigue: N = 2m + 3 empezando para el caso de 5 sitios que es el minimo nimero de sitios en el
cual tiene sentido que puedan aparecer estos autoestados localizados tal y como se puede observar en el dibujo. Es decir
la degeneracién es: m = N N=3 en donde si obtenemos los autovalores para el caso de una excitacién y varios sitios con
el Método 2 como en el cuadro 5.5 obtenemos que la degeneracién del autoestado localizado” coincide exactamente
con la expresiéon mencionada. Asf en funcién del ntimero de sitios (en el caso de una excitacién) la degeneracién del
autoestado localizado para el cuadro 5.5 obtuvimos con el Método 2, resultado valido solo para una excitacién'®:

Sitios Degeneracién

) 1
7
9
11
13
15
17

N O Uk W N

Cuadro 5.6: Degeneracion de los autoestados localizados obtenidos a través del Método 2 en funcién del nimero de
sitios y una excitacién. Para valores de w, = 6, J = —5 y AQ) = —2. Aplicando las condiciones para J’ para que exista
una banda plana. (Caso de la tabla anterior 5.5)

Para ver cual es la modificacién que hay que anadir al cédigo del Método 2 para comprobar que (5.13) es un
autoestado localizado, constiltese el Apéndice G.

9El autoestado cuyo autovalor es el de la banda plana en el caso anterior era ¢ = —8.
10En la siguiente seccién veremos el caso general.
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Nosotros vamos a intentar obtener una formula mas general del caso anterior para los autoestados localizados para
el caso de dos frecuencias distintas de la fila superior e inferior de sitios del arreglo de diente de sierra para el caso
de una sola excitacion. Para ello veamos el ejemplo de 5 sitos y una excitacién que sabemos la forma de la matriz. Si
aplicamos uno de los autoestados (5.13) para el caso de frecuencias iguales obtenemos:

wy JJ 0 0 0 J —2J

J ow, J 0 0 1/2 I we — V2J'

J J ow J T —V2/2 | ==z | J V2w +J (5.14)
0 0 J w, J 1/2 —V2J' + w,

0 0 J J w 0 —2J +J

Que claramente no es autovector en el caso de frecuencias distintas como cabria esperar. Definamos tres constantes
A, By C,y veamos que valor podemos darles para que el anterior estado sea autovector del Hamiltoniano:

w, J'J 0 0 0 AJ — BV2J

J w, J 0 0 A2 ) Aw, — BV2J'

J T ow, JJ -BvV2/2 | == | AJ —BV2w, +CJ’ (5.15)

0 0 J w, J C/2 —BV2J' + Cuw,

0 0 J J w 0 —BV2J+CJ

Con ello imponemos:

JJA—BV2J =0 (5.16)
J'C—BV2J =0 (5.17)

Es decir se tiene que cumplir que A = C. Con ello podemos hallar la relacién entre A y B:

A J J
'"A— BV2J = — = =V2— = 1
J V2J =0 5 V2 = RO (5.18)
En donde hemos hecho uso de la condicién de banda plana: J' = J 2< - AJQ> Por dltimo establecemos la

condicion para que los elementos del vector imagen sean proporcionales a los del vector inicial y asi sea autoestado:

Aw, — BV By — J'A50
A B
Sustituimos la condicién (5.18) para que dicha relacién garantice que es un autoestado si se cumple (5.19), obte-
niendo:

(5.19)

—V2J2 + (V2(wy —wa) +J')J +V2J'
V2J B

Obteniendo la relacién entre J y J' para que el estado sea autovector:

0

g V2J(J —2A0)
o T+V2

Pero al mismo tiempo queremos que existan bandas planas, ya que estamos buscando los autoestados localizados.
Por ello a de cumplirse simultdneamente:

(5.20)

J' =17 2<1 — ) (5.21)
Igualando ambas expresiones:

AQ\  V2J(J —2A0Q)
/ 2(1_J)_ J+2
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Podemos obtener as{ una relacién que debe cumplirse entre J y AQ para que se cumplan simultdneamente (5.20)

y (5.21) (siempre que AQ # —%ﬁ):

2002 +V2A0 — 1+ /1 4+ 2V2A0 + 4402 + 4V/2A03 + 4AQ4

J
2v/2 + 3AQ

Luego las condiciones que han de cumplirse para que tengamos un autoestado localizado son:

_2A0% +V2AQ — 1+ /1+ 2V2A0 + 4AQ2 + 4/2A03 + 4AQ!

J
2v/2 + 3AQ
Ademaés cumpliéndose:
A=C
A J J
B \@7 J—AQ

Asi, el autoestado localizado es:

1 J J
;) = 3 (\/J — AQCEJ' + \/J_AQCEJ'JFQ - \/§C£j+1> 10)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

Para ver cual es la modificacién que hay que anadir al cédigo del Método 2 para comprobar que (5.26) es un
autoestado localizado, consiltese el Apéndice H. Con estos resultados de esta seccion y sobre todo la Figura 5.5 no
ayudara enormemente en la seccidén siguiente a obtener la degeneracién de los autoestados localizados, para un caso

[13eb]

general de “N” sitios y “n” excitaciones.
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5.5.2. Caso no lineal

Con el método numeérico ya obtenido y comprobado su correcto funcionamiento y sus coincidencias con el caso no
lineal ya podemos obtener los niveles de energia del caso no lineal recuerdo que era:
N N
_ P T . T ) T )
H= E |:wac2jC2J +Wb02j—1021—1] + JE , |:c2j—102]+1 +Czj+1C2J—1]
j=1 =1
N X
+J Ahocoiir+chcojirtch et |+ = alalaja;
2525 -1 25¢2j+1 25—1¢2j 25+1¢25 2 UG5 %
Jj=1 Jj=1

T,0 ;
‘ajaja; sobre un estado cualquiera |..., ny,...) obtenemos como ya

Observamos que si aplicamos un operador a;
dijimos nj(n; —1)|..., n;,...), es decir son una matriz diagonal donde el elemento j de la diagonal es n;(n; — 1) con
n; el nimero de excitaciones del sitio j en el estado inicial. Por tanto una vez anadida esta matriz diagonal que le
corresponde al término no lineal podemos, usando el Método 2 de calculo, obtener los autovalores del sistema que

queriamos estudiar. Podemos asi obtener dichos autovalores en funcién de la constante de acoplamiento U. Por ejemplo

podemos ver el caso anterior de w, =6, J = —5 y AQ = —2 y aplicaremos las condiciones para J' = J, /2 (1 - %)
para que exista una banda plana. Nuestro caso constard de 7 sitios y 2 excitaciones. Asi podremos observar como se
comportan los niveles degenerados que aparecen para U = 0 para valores distintos y podremos ver un caso con mayor
nimero de excitaciones en la que estas energias se sumaran. En nuestro caso para una excitacién encontrdbamos un
nivel degenerado de energia de 12 como se ve en la Figura 4.4, en el caso de dos, tenemos, 24 la suma de las energias de
ambas excitaciones cuando se encuentran degeneradas en el caso de U = 0. Veamos la dependencia de los autovalores:

Autovalor

1
I
1
1
'
1
1
1
1
'
1
"

R s - T
S it e LA e et R ()]
. =

-
IR S S £ -4

=
- R

| — ._._.—.—-—_::r_i.—l--l""‘
e -
-———

\ st PP
- _Er__ﬁzrg_.px—_'-+=._'_'_'.—._—.+-—-x—_r_':1’:'_': p _:I'-_"Iﬁ:%
1 . ._'_‘__'_..:f_‘-l-o—-""""#—f—'

B - S

Figura 5.6: Autovalores para el caso de 7 sitios y 2 excitaciones calculados por el Método 2 en funcién del pardmetro
no lineal “U”. Para valores de w, = 6, J = —5 y AQ) = —2. Aplicando las condiciones para J' para que exista una
banda plana.

Para ver cual es la modificacién que hay que anadir al cédigo del Método 2 para anadir el término no lineal,
consultese el Apéndice 1.
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Podemos ampliar la zona de interés, la banda plana de valor 24, con 3 autoestados degenerados para el caso de
U=0:

W
i
.
P
. —— P—
-——  —
el el P—

20 :
o

s & .
e ]

I — —
._——'—_'-___.__

_.__-__l__l_—l

1] SEEPEEES———— -

L I 1 T | I 1 T
0.0 0.3 1.0 1.3 2.0 2.5 3.0

Figura 5.7: Autovalores para el caso de 7 sitios y 2 excitaciones calculados por el Método 2 en funcién del pardmetro
no lineal “U”. Para valores de w, = 6, J = —5 y A = —2. Aplicando las condiciones para J’' para que exista una
banda plana.

Para el caso de 7 sitios pero tres excitaciones, observandose 4 autoestados degenerados en U = 0:

05 1.0

Figura 5.8: Autovalores para el caso de 7 sitios y 3 excitaciones calculados por el Método 2 en funcién del pardmetro
no lineal “U”. Para valores de w, = 6, J = —5 y A = —2. Aplicando las condiciones para J' para que exista una
banda plana.

Pueden observarse que al aumentar el valor del pardmetro U los niveles de energia que estaban degenerados se
separan con forme aumenta la no linealidad, puede observarse que la degeneracién en el caso de dos y tres excitaciones
es respectivamente de tres y cuatro al contrario que en una excitacién que para siete sitios recordando la Figura
5.5 tendria una degeneracién de 2. Puede observarse que el nivel degenerado en el caso lineal para dos excitaciones
corresponde con la suma de dos excitaciones de 12 (recordando la Figura 4.4) y el caso de tres excitaciones el nivel
degenerado en el caso lineal es 36, la suma de tres excitaciones de 12. Veamos ahora el caso equivalente de 9 sitios.
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Podemos aumentar también el nimero de sitios a el caso de 9 sitios y 2 excitaciones, observandose 6 autoestados
degenerados en U = 0:

2 8 T T T T T

26

E 24

22
20_ AT SR SRS SRS R T n—‘—*“'."'-._.-.-‘--:‘-
0.0 0.5 1.0 1.5 2.0 2.5 3.0
u

Figura 5.9: Autovalores para el caso de 9 sitios y 2 excitaciones calculados por el Método 2 en funcién del pardmetro
no lineal “U”. Para valores de w, = 6, J = —5 y AQ) = —2. Aplicando las condiciones para J' para que exista una
banda plana.

Si aumentamos en el caso de 9 sitios a tres excitaciones, observandose 10 autoestados degenerados en U = 0:

44
421
40

E
38l

Figura 5.10: Autovalores para el caso de 9 sitios y 3 excitaciones calculados por el Método 2 en funcién del pardmetro
no lineal “U”. Para valores de w, = 6, J = —5 y AQ) = —2. Aplicando las condiciones para J' para que exista una
banda plana.

Como vemos sucede como en el caso anterior sin apreciarse cambios cualitativos significativos. Los niveles de energia
en el caso lineal (24 y 36 en U = 0) son los mismos que en el caso de 7 sitios. Sin embargo mientras la degeneracion
es 6 y 10 respectivamente para dos y tres excitaciones para 9 sitios, en el caso de 7 sitios es 3 y 4. Si recordamos
la Figura 4.4 para 7 sitios tenia dos posibles “lugares” en la topologia donde podia existir un autoestado localizado.
Sin embargo tenemos 2 excitaciones es decir, tenemos que ver las maneras de repartir 2 excitaciones (indistinguibles)
en dos lugares distintos y lo mismo para el caso de 3 excitaciones o para los casos de 9 sitios en los que hay 3
“lugares”, donde puede haber un autoestado localizado. Si llamamos a N el nimero de lugares donde puede existir un
autoestado localizado en una topologia diente de sierra y a n el nimero de excitaciones entonces la degeneracién es
( N—-1+4+n

n ), expresion que se obtiene de manera equivalente a como lo hicimos en la Seccidn 5.3.2, por ejemplo

9—1+3> .

3 = 515 = 10, tal y como hemos dicho.

en el dltimo caso: <
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Capitulo 6

Conclusiones

Un numero elevado de grados de libertad en modelos fisicos requiere aproximaciones para poder tratarlo. Cuando
esas son insuficientes, se recurre irremediablemente al calculo numérico adicional. Sin embargo, este camino se complica
innecesariamente, cuando no hacemos uso de las simetrias y cantidades conservadas del sistema.

Nuestro estudio se basaba en intentar obtener un método numérico que nos permitiese resolver un sistema de
bosones interactuantes. Desde un principio comenzamos recordando conceptos bésicos como el oscilador arménico
cuantico y clasico. El hecho mas importante fue que el Hamiltoniano cuantico conmutase con el operador nimero lo
que nos permitié encontrar una base de autovectores comunes de la cual harfamos uso a lo largo de todo el escrito.

Una vez repasados los conceptos bésicos que guiaran nuestro recorrido, procedimos a estudiar un modelo simple:
Una cadena infinita de osciladores acoplados dispuestos en un arreglo de una dimension. Tras simplificarlo haciendo
uso de la aproximacién Tight-Binding, podiamos reducir los acoplamientos entre los osciladores a primeros vecinos.
El paso al espacio Fourier fue determinante para la diagonalizacién y la obtencion de las bandas de energia. Tras
todo esto nos pusimos manos a la obra, ya por fin, en la topologia definitiva, en diente de sierra. Topologia a caballo
entre una y dos dimensiones de ahif nuestro interés. Generalizamos para frecuencias diferentes y obtuvimos de nuevo
pasando al espacio Fourier obteniendo las bandas de energia.

Pero ahi no termino nuestro estudio analitico del caso lineal sino que obtuvimos las condiciones para el caso maés
general que debian de cumplir los niveles de energia para que fuesen bandas planas. Con todo esto ya estabamos
preparados para, una vez que desarrollasemos el método numérico para la resolucion del caso no lineal, tener material
suficiente para comprobar nuestro método numérico.

El primer caso numérico concreto que estudiamos consistié en considerar una unica excitacion. En este caso no
habfa ningin problema ya que sabfamos de antemano la forma de nuestro Hamiltoniano lineal para el caso de una
excitacion. Esta seccién nos permitié no solo observar la dependencia del sistema con el tamano finito, ya que en
los céalculos analiticos se habian considerado cadenas infinitas, sino que evidencié las consecuencias de haber usado
condiciones de contorno abiertas.

Una vez hilvanada toda la riqueza del caso lineal pretendiamos acercarnos al no lineal. Sin embargo antes de eso
debiamos de desarrollar un método, que permitiese obtener el Hamiltoniano del sistema para mas de una excitacién. En
un primer intento pretendimos resolver el sistema obteniendo las matrices de los operadores de creacién/destruccién
haciendo el producto tensorial de todos los espacios de cada uno de los sitios de nuestra red. El método estaba evocado
al fracaso ya que un aumento ligero en el nimero de sitios excitaciones disparaba el tamano de la matriz. Ademads
requeria proyectar la matriz al espacio de los autovalores comunes del Hamiltoniano y el operador nimero
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Llegados a este punto la respuesta para poder continuar parecia clara debia de dar con un método que nos permitiese
obtener la base de ese subespacio, que conservaba el numero de excitaciones. Para asi reducir el tamano de nuestras
matrices asi como del tiempo de calculo. Una vez obtenido procedimos a comparar ambos métodos, asi como con los
célculos analiticos, para comprobar que efectivamente calculaban correctamente la matriz del Hamiltoniano. Ademas
comprobamos usando una expresién para los autoestados localizados que encontramos en la bibliografia.

Finalmente usamos el método mads eficiente para calcular los niveles de energia con el caso no lineal. Para ello no
tuvimos méas que hacer una pequena modificaciéon al método para anadir el término no lienal. Obtenidos los niveles
de energia en funcién de la constante no lineal de acoplamiento pudimos observar el desdoblamiento de energia,
asi como obtener la expresién analitica que daba la degeneracién de los autoestados localizados. Para ello fue clave
tanto conocer la forma de los autoestados, que nos proporcioné la bibliografia, como el desdoblamiento que observamos
de los niveles de energia. Esta vez habiamos obtenido la degeneracién de los autoestados localizados para cualquier
numero de excitaciones. Hemos asi obtenido un método numérico que nos ha permitido resolver un caso no tratable
numéricamente, el caso no lineal.

Las principales conclusiones son: Primero el calculo analitico de las bandas para el caso mas general de frecuencias
distintas nos ha llevado al la conclusién que estas solo existen bajo determinadas condiciones. En segundo lugar en
cuanto al calculo numérico del caso lineal teniamos: El tamano finito del sistema es importante, es decir conforme
aumentamos el tamano del sistema se aprecia una mejor concordancia por ejemplo en el calculo del gap con respecto
al calculo analitico. En tercer lugar hemos concluido que debiamos de llegar a un método que redujera los tiempos
de célculo para poder abordar asi casos de més excitaciones y sitios. En cuarto lugar en el caso no lineal vimos el
desdoblamiento de los niveles de energia degenerados en una banda plana para el caso lineal. Ello y el conocimiento
previo de la “topologia” de los autoestados localizados no permitié obtener la degeneracién de los niveles de energia
de la banda plana en funcién del ntimero de sitios del arreglo y de las excitaciones.
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Apéndice A

Calculo de bandas de cadena infinita de
osciladores acoplados

Consideraremos el caso de una cadena infinita de osciladores bosénicos sometidos a un potencial periédico acoplados
a través de J que controla este acoplamiento entre primeros vecinos:

j2 j-1 j j+l i+

Figura A.1: Cadena de osciladores.

Vamos a obtener la bandas de energia del Hamiltoniano:

[

H= [wa;aj - J(aja;f»Jrl + a}aj_H)] (A1)
=0
Para ello haremos uso de las ecuaciones:
;] Nl ;N
_ ikj _ —ikj
ar = —= ea; — a4 = — e "ay (A.2)
VN =0 VN k=0
= | Nl
T —ikj 1 T ikj T
a; = —— e "Va; — a; = —= ea (A.3)
VN =0 VN k=0

Ademas de estas expresiones deberemos de hacer uso de las relaciones de conmutacion:

[ak, a%,] = 0pr  |ay, a}] =0;; |ag, aw] =0 [al, al,} =0 (A.4)
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Empecemos el desarrollo sustituyendo las ecuaciones (A.1) y (A.3) en el Hamiltoniano:

1 N-1 N-1 N—1 ‘ , ‘ . ‘ ‘
{ Z <a ak/ez(k k)]) —J Z <aka£,el(k (j+1)—kj) +a£/akez(k ]—k(]+1))>:| _
7=0 kk’ Kk’
1 N—-1 N-1
— N{ wa}tak” Z i(k—k") ‘]Z akak/ zk Z (k' =k)j _ JZ ay axe —ik Z i(k k)]}
kK’ 7=0 kk' Lk’

Puede demostrarse que Z;V 01 ¢!(k=F)j = §(k — k). Haciendo uso de esta expresién podemos continuar el célculo

anterior:

1 (N2 N—1 N—1

= N{ walap No(k — k) = J > aral,e™ No(K' — k) — J Y al,are *No(K — k;)} =
Kk’ Kk’ Kk’

N-—-1 N—-1 eik +e _ik N-—1
= [wa};ak — J(aka};eik + a;ake ik } Z [wak_ak — 2Jakak <>] J e~

k=0 k=0 =0

N-1 N—-1 N—1
= [walak - 2Ja;2ak cos(k)} JN6(1 Z [ w—2J cos(k))alak} = wka,tak

k=0 k=0 k=0

Obteniendo asi la relacién buscada:
N—
H = Z wkalak (A~5)
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Apéndice B

Calculo de las bandas en topologia de
tipo dientes de sierra para frecuencias
iguales

Nuestro objetivo es encontrar las bandas de energia para el siguiente Hamiltoniano:

N-1 N-1 N-1
H = Z [w(a;aj + b];bj):| +J Z |:b;bj+1 + b;+1bj:| + J' Z [a;b] + a;ij + b;aj + b}+1aj (Bl)
7=0 3=0 j=0

Que representa un conjunto de osciladores de frecuencia w acoplados a través de las constantes J’ y J en un modelo
Tight Binding para una topologia tal y como se muestra en la figura:

/’\ /’ /’ /’ //. //. i
/NN NZNZN AN
w | LN VAR VA 1B VAR VAR RN
j-3 i-2 -1 J i+l 2

Figura B.1: Disposicién en diente de sierra de los sitios.

Para obtener las bandas de energia en primer lugar pasaremos los operadores de creacién y destruccion al espacio
Fourier usando para ello:

;| Nl ;] Nl ;| Nl ;N
ikj _ —ikj _ ikj _ —ikj
ap = —— ea; — a4 = — e ai bk——Ze by — bj=—= e b (B.2)
VN =0 N = VN =0 N =
;| Nl | Nl | Nl ;| Nl
T_ —ikj T T_ ikj T To_ —ikjpt T ikjpt
a, = — e "al — al = — ea b, = — e "h, — bl=— e"™b,  (B.3)
* \/Nj:() ! ! N = ; ’ \/N; ! ! N = ’
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Con todo esto sustituyendo las expresiones (B.2) y (B.3) en el Hamiltoniano (B.1) obtenemos, reorganizando los
sumatorios:

1 N-1 N-1 N-1 N-1 3 . .
o= N<w { 3 [ 30K (of ap + bLbk’)] } sy { 3 |:ew(k—k (e~ by +ezkblbk,)] }+
=0

7=0 kK’

N—-1 N—-1
e { 95K (g1 by + Bl a) + 90K (al e + blape )]}>

Reorganizando los sumatorios, tenemos:

1 N—-1 N-1 N-—-1 N-—-1
ij(k—k' —ik ik ij(k—k'
H: N(w Z(a’tak/—f—bzbk/)[zej( ):| +JZ(€ bzbkl"_e b-};bk/)[zej( ):|+

KK/ 3=0 Kk j=0

= N-Lo N-1 _ CopN-1
+ J’ Z (a};bk/ + blzak/) |: Z elﬂ(kfk ):| 4 J Z (a;ibk/efzkr + bLak/ezk) |: Z ezj(kfk ):|>

kk’ 7=0 kE’ 7=0

N—-1
Haciendo uso de la propiedad Z el h=F) = N§(k — k'), tenemos:
7=0
1 N—1 N-1 '
=y ( S (aows + b INO(k — K) 4 7 3 (e Mt + 5[ No(h — K+
kk/ Kk

N-1 N-1
+ I (afbr + bLaw)No(k — k) + 7> (afbre™™ + blape™)No(k — k’))
kK’ kk'

N-1 N-1 N-1 N—
H=w> (afay+bfbp) + 7> (e *bfby + e®bbr) + Y (afbi + blar) + Z Tope ™ 4 blage'™)
k=0 k=0 k=0 k=0

En donde usamos las relaciones de conmutacion:

lai, al] = [bs, bI] =085 [as, bI] =0

Continuando con el célculo:

N-1 N-1 N-1 N—
H=uw Z akak + bTbk )+ J Z bJr br2cosk + J' Z(aLbk + bzak Z Tbke ik Lakeik)
k=0 k=0 k=0 k=0
N-1 ‘ _
H= {wazak + blbr(w + 2J cosk) + J' (albe(1 4 e7™) + blag (1 + e”“))]
k=0

46



H=ht

Si ahora definimos los siguientes vectores:

- a -
ck:(b:> & =(af o) (B.4)

Sustituyendo:

N—-1 '
_ it w 0 . i 0 ‘ J/(l—‘re_’k) )
H_kz—o[ck(o L‘“LQJCOS]‘“>Ck+c’€(J’(1+e”“) 0 i

Obteniendo finalmente una matriz que es diagonal por cajas:

N-1 4
XL e sy
H= I;) “k ( J'(1+e*) w+2Jcosk k (B.5)

Si no vemos claro que sea diagonal por cajas podemos definir estos vectores:

ak—1
br—1
h=| (B.6)
b
A+1
b+1
S (R S S S N S SR (B.7)
De manera que nos queda finalmente esta matriz:
w J (14 e ik=1) 0 0 0 0
J(14e* D)y w42Jcos(k—1) 0 0 0 0
0 0 w J'(1+e %) 0 0
0 0 J'(1+e*) w4 2Jcos (k) 0 0
0 0 0 0 w J' (14 e i+D)
0 0 0 0 J 14Dy w4 27cos (k4 1)
(B.8)
Con todo ello si diagonalizamos cada caja, obtenemos:
w—€ J' (14 e~ k) _0
J(1+e*) (wH+2Jcosk)—e |
(W—e)(w—+2Jcosk —€) —2J°(1 + cosk) =0
2 — (2w + 2J cosk) + 2cos k(Jw — J'%) + (w? — 2J°%) =0
Resolviendo la ecuacién de segundo grado, obtenemos finalmente las bandas de energias buscadas:
e:JcosIH—wj:\/J2cos2k:+2,]’2(cosk+1) (B.9)
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Apéndice C

Calculo de las bandas en topologia de
tipo dientes de sierra para frecuencias

distintas

Nuestro objetivo es encontrar las bandas de energia para el siguiente Hamiltoniano:

N—
H= {waa}aj + Wbbj-bj:| +J
Jj=0 j

2

I
<

N-—

{b bjs1 + bl b ] Iy { b+ albjyr +bla; + b1, a; (C.1)

7=0

Que representa un conjunto de osciladores de frecuencia w, (fila superior de osciladores [Véase la siguiente figura])
y wp (fila inferior de osciladores) acoplados a través de las constantes J' y J en un modelo Tight Binding para una

topologia tal y como se muestra en la figura:

aj

P | AN yii

hi |& ® ®

Figura C.1: Disposicion en diente de sierra de los sitios.

Para obtener las bandas de energia en primer lugar pasaremos los operadores de creacién y destruccién al espacio

Fourier usando para ello:

2= 2=
MZ

ag

’lk}j _ 77,](7.]
a; — a; = \ﬁ g ar

?E

e~ ki gt

1k]
%‘—”‘a ﬁze af,

<.
I
=)

Con todo esto sustituyendo las expresiones (C.2) y

sumatorios:

N—-1
1

b = —— e*ib; — bj = e g C.2

k ﬁNZ ﬁz k (C.2)

7=0
N-1
-
b, =

2

o 1 ..
—zk T T kgt
W b= ;:o:e i) (C.3)

=0

(C.3) en el Hamiltoniano (C.1) obtenemos, reorganizando los
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N-1 , N-1
1 ij(k—k')(,—i i
HN< {§ [e 1=K (waafars + wpblbrs) ]}+J§ {§ { 1=K (e ’“bLbk/+e’“bLbk/)]}+

kE' kE’
-1

+

S
SN Z
Il |
<
—N
>

l:e j(k— k)( Tbk/+bkak/)+€w(k k)( Tb e —ik’ +bk&k/€ ):|}>
k/

Reorganizando los sumatorios, tenemos:

1 N-1 N-1 N1 | | No
"= ( D (wnagai + wbiby) { > el )] +73 (e oLy + bl [ Y etk >] N

KE! j=0 kK’ =0
N-1 N-1 N-1
+J Z (aLbkf + blak/) [ Z eij(k—k,)] +J' Z (aLbkfe_ik akfe [ Z el k=k )]>
Kk’ §=0 Kk
N-1
Haciendo uso de la propiedad Z ¢ =K) = N§(k — k'), tenemos:
j=0

N-1 N-1
1 i ”
H = N( ;k/ (waahap + wpblbp )NO(k — k') + J kEk/ (e~ bl by + e™bLb )N (k — k' )+

N-1 N-1
+J Z (aLbk/ + b;reak/)N(S(k' — k/) +J Z (a;rcbkleiikl + b};ak/eik)N(S(k — k/)>
kk’ kk’

N-1 N-1 N—1 N-1
H= Z waakak + b} wbk) +J Z ﬂkab + etkp! wok) +J Z (azbk + bLak) +J Z (a,tbkefik + bLakeik)
k=0 k=0 k=0 k=0

En donde usamos las relaciones de conmutacién:

lai, al] = [bi, bl] = bi;  [ai, b)) =

Continuando con el célculo:

N-1 N-1 N-1 N-1

H= Z (waaiak + wbblbk) +J Z blka cosk +J' Z (a%bk + b%ak) +J Z (albke_ik + b%akeik)
k=0 k=0 k=0 k=0
N-1

H= Z {waalak + bLbk(wb +2Jcosk) + J’(albk(l +e ) 4 b%ak(l + e”“))}
k=0

Si ahora definimos los siguientes vectores:
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Sustituyendo las anteriores expresiones:

N—-1
n-y
k=0

it Wq 0 7 4 it 0 J'(l +67ik) N
U0 wp+2Jcosk ) FTE T+ etk 0 ck

Obteniendo finalmente una matriz que es diagonal por cajas:

1

N A wa  J(L+e™)
H= ;Ck ( J'(1+e*) w,+2Jcosk ) F (C.5)
Si no vemos claro que sea diagonal por cajas podemos definir estos vectores:
ak—1
br—1
e ag
h= by (C.6)
Ak+1
br+1
S (S A S A G S SR (C.7)
De manera que nos queda finalmente esta matriz:
Wa J'(14 e k=) 0 0 0 0
J 1+ D) wy +2Jcos (k—1) 0 0 0 0
= 1/ —1k
g7t 0 0 / Wa . J(1+e7*%) 0 0
0 0 J(14¢€)  wy+ 2J cos (k) 0 0
0 0 0 0 Wa J (14 ety
0 0 0 0 J (14 e * Dy, +2Jcos (k+1)
(C.8)
Con todo ello si diagonalizamos cada caja, obtenemos:
Wy — € J'(1 4 e7k) _0
J'(1+e*) (wp+2Jcosk)—e |
(wa — €)(wy + 2J cosk — €) — 2J'*(1 + cos k) = 0
€2 — e((wq +wp) +2J cosk) + 2 cos k(Jw, — J/2) + (wawp — 2J’2) =0
Resolviendo la ecuacién de segundo grado, obtenemos finalmente las bandas de energias buscadas:
Wq + W Wq + W 2
€= Jcosk + — 5 v+ (Jcosk + = 5 b) —2cos k(Jwa — J'?) — (wawp, — 2J7%) (C.9)
Podemos obtener una ecuacién maés sencilla si lo podemos en funcién de la frecuencia media :
Q=22 =20,
e = Joosk +Q £/ (Jcosk+ (2 —wa))? +2J(1 + cos k) (C.10)
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Apéndice D

Método Alternativo de calculo de la
condicion de Banda Plana

Si partimos de la ecuacién (4.12) del capitulo 4 tenemos:

ex =Jcosk+AQ+w, £ \/(Jcosk + AQ)2 +2J(1 + cos k) (D.1)

Podemos obtener la misma condicién de banda plana'! del apartado 4.3 del capitulo 4 por otro método desa-
rrollando el cuadrado de dentro de la raiz:

J?cos? k+ AQ? 4+ 2JAQcosk + 2% + 2J'% cosk (D.2)

Si identificamos con (a + b)? = a® + 2ab + b* tenemos:
a® = J?cos® k
2ab=2JAQcos k

b2 =2J"% £ 27 cosk

Cogiendo la segunda ecuacién y sustituyendo la primera obtenemos asi b:

_JAQ+J”
T

Siempre y cuando cos k # 0. Teniendo en cuenta la tercera ecuacién podemos obtener la relacién entre J y J' para
que sea una suma al cuadrado:

2Jcoskb =2JAQcosk — b

AQ + J*
b:%:i 2% + AQ?

Elevando al cuadrado ambos miembros y siempre y cuando J’ # 0, obtenemos de nuevo la relacién buscada:

J' = +/2J(J — AQ) (D.3)

IEcuaciones: (4.14) y (4.15).
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Apéndice E

Método numeérico 1

E.1. Explicaciéon del programa

Necesitamos un programa que nos construya esta matriz:

N-—-1 N—-1 N-—-1
- [waa;aj ' wbb;bj] S [b;bm " b;+1bj] Yy [a;bj Falbyer + blay + b1,y
Jj=0 j=0 =0

Para asi poder obtener sus autovalores, sus autovectores y explorar algunos aspectos de no linealidad. Para ello
optamos por usar el programa de Mathematica y en primer lugar pensamos el método trivial. Es decir construir
cada uno de los operadores a, a' y b, bT mediante el producto tensorial de los distintos espacios. Para facilitar la
implementacién no usaremos la notacién de usar autovalores de “arriba” a y a y de “abajo” by bf. Segiin el operador
creacién/destruccién pertenezca a un nodo de arriba o de abajo en la distribucién de diente de sierra. Numeraremos
los nodos empezando por 1 en el primer nodo asi hasta N, asi los nodos de abajo pasardn a ser nodos impares’
bj — c2j1y b} — C;jq e igualmente para los de “arriba” que seran los nodos pares a; — ca; y a;- — c;j.
Siguiendo est4 notacién el Hamiltoniano quedaria finalmente?:

N N N
U
H=Y" [wﬂcngQj +wbc£j—102j—1:| +IY [ng—102j+1+cgj+102j—1:| +JYy {ng%—l +ebieajiitel;_jea el e
j=1 j=1 j=1

2j 2j+2 2j+4 2§47 2j+9 2j+11

A A A
J'/ 4 b b / b X &
/ J & \

2j-1 2j+1 2j+3 2j+5 2j+8 2j+10 2j+12

Figura E.1: Disposicién en diente de sierra de los sitios.
Empecemos con el programa trivial, definiendo en primer lugar algunas variables:

sitios = 5;

dim = 4;

n = dim —1;

Id = IdentityMatrix[dim];

INota: El indice j empezard en 1 y no en 0
2Ahora N es el ntiimero de nodos.
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En donde “sitios” es el ntimero de nodos de la distribucién de diente de sierra y “dim” es la dimensién de las
matrices de cada subespacio asi si recordamos el aspecto de las matrices de los operadores de creacion y destruccién:

0 0 0 0
0 vI 0 0 Vi 0 0 0
0 0 Vv2 0 0 Vi 0 0

62000\/5 o 0 vEo

el
o
o

(.) \/ﬁ 0 0 0 0 +/n+1 0

Encontramos que una matriz de un operador de creacién/destruccién en un espacio de “n” excitaciones tendra la
matriz una dimensién de n + 1, tal y como lo hemos definido. Notar que Id es la matriz identidad. Definimos los
operadores de creacién y destruccion:

a = Tablel0, {i, 1,dim}, {j, 1, dim}];
For[i = 1,4 < dim, i++, a[[i, 7 + 1]] = Sqrt[d];]
adag = Transpose[al;

Donde “a” es operador de destruccién y “adag” el de creacién (simplemente la traspuesta de la anterior).

Como estamos en un caso con 5 nodos de la red de diente de sierra tenemos que definir un operador de creacién
y otro de destruccién para cada sitio en el espacio completo es decir en el producto tensorial de los cinco espacios es
decir por ejemplo el operador ¢} del espacio completo serfa’: ¢k = I(1) x I(2) x ¢(3) x I(4) x I(5). Por tanto:

al = SparseArray[KroneckerProduct|a, Id, Id, Id, Id]];

ald = SparseArray[KroneckerProduct[adag, Id, Id, Id, Id]];
a2 = SparseArray[KroneckerProduct[Id, a, Id, Id, Id]];
a2d = SparseArray[KroneckerProduct([Id, adag, Id, Id, Id]];
a3 = SparseArray[KroneckerProduct[Id, Id, a, Id, Id]];
a3d = SparseArray[KroneckerProduct[ld, Id, adag, Id, Id]];
ad = SparseArray[KroneckerProduct[Id, Id, Id, a, Id]];
add = SparseArray[KroneckerProduct[Id, Id, Id, adag, I1d]];
ab = SparseArray[KroneckerProduct([Id, Id, Id, Id, a]J;
abd = SparseArray[KroneckerProduct([Id, Id, Id, Id, adag]];

Como puede observarse si queremos obtener la matriz del hamiltoniano por este método para el caso de “n” ex-
citaciones y “N” sitios o nodos de la red de diente de sierra, la dimensién de la matriz del hamiltoniano serd de:
(n 4+ 1)N que por ejemplo para el caso de 3 excitaciones y 7 sitios es (3 + 1)” = 16384 un tamaifio por lo menos
respetable. Tras esto damos valores a wg, wp (que en el programa llamamos respectivamente wl y w2), J y J' (que
en el programa llamamos respectivamente J1 y J2) pero el valor de w, vendrd dado en funcién de el pardmetro ya
definido AQ = #5#« (que en el programa llamaremos ). Seguidamente definiremos el Hamiltoniano en funcién de
estos parametros:

Q=-2; (*Q=AQ%

wl =6
w2 =2.%xQ+wl;
J1 = -5;

J2 = /2% J1 % (J1 —Q);

(*El Hamiltoniano*)

H = SparseArray[wl * (a2d.a2 + add.ad) + w2 * (ald.al + a3d.a3 + abd.a5) + J1 x (ald.a3 + a3d.al 4+ a3d.ab + abd.a3) +
J2 % (a2d.al + ad4d.a3 + a2d.a3 + add.ab + ald.a2 + a3d.a4 + a3d.a2 + abd.ad)];

3Con: I(i) matriz identidad del espacio i-ésimo.
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Hay que notar que este Hamiltoniano esta definido para todo el espacio de autoestados del operador nume-
ro. Es decir la base del espacio completo es, para el caso de “N” sitios, como el producto tensorial de “N” bases
{10),11),12) , ..., In — 1), In)} X ...(N veces)... x {|0),[1),]2),...,|n — 1), |n)}. Es decir la base del espacio “completo”
es:

{l0,0,0,...,0,0),10,0,0,...,0,1) ,10,0,0, ...,0,2) , ..., [n,n, n, ..., n,n — 1) , |0, m,n, ..., n,n) }

Puede uno darse cuenta que cada ket consta de N nimeros que indican el niimero de excitaciones en cada sitio y
que hay un total de tantos estados como la cantidad maneras de llenar un conjunto de N “cajas” (“sitios”) con pelotas
(“excitaciones”) indistinguibles si en cada caja caben como méximo “n” excitaciones, es decir (n+1)" elementos de la
base. Para generar la base completa puede darse uno cuenta que puede ordenarla pensando en que cada estado fuese
un nimero en base (n+ 1) de manera que por ejemplo el estado |0, 0,0, ...,0,2) es el nimero en base (n+1): 000...02.
Asf los estados pueden ordenarse de manera ascendente desde el 000 . . . 00 hasta el ntimero nnn ... nn en base (n+1), de
hecho se puede comprobar que la cantidad de niimeros es: {n+n(n+1)+n(n+1)2+- - +n(n+ 1)V 24 (n+ 1)V 1141 =
1+ ZkN:_Ol (n 4+ 1)¥ = (n+ 1)V. De esta manera podemos generar la base del espacio completo usando la funcién de
Mathematica IntegerDigits[“ntimero a combertir a vector”, “base a la que convertir el niimero”, “nimero de digitos”|
que genera un vector de un nimero determinado de digitos a partir de un nimero proporcionado en la base numérica
pedida. Asi en la variable que llamaremos “Basis” tendremos la base completa:

Basis = Table [IntegerDigits[m, dim, sitios], {m, 0, (dim)** —1}];
Res = Table [If[Sum(Basis[[5]][[]], {i, 1, sitios}] == n, 4, 0], {4, 1, (dim)™*s } ] ;
Res2 = Select[Res, # # 0&];

En donde en las variables “Res” y “Res2” hemos seleccionado el conjunto de estados con solo “n” excitaciones en
total. Hay que darse que cuenta que en el vector “Res2” solo hemos guardado una serie de niimeros que corresponden
con la posiciéon que ocupan en la lista inicial que iba desde 000...00 hasta nnn...nn, asi el 000...00 y el 000...01
representan los nimeros 1 y 2 respectivamente en la lista de nimeros “Res2” de estados con un ntimero determinado
de excitaciones. A partir de estos deberemos contruir la matriz que proyecte el Hamiltoniano en este subespacio.

Proyec = Table [KroneckerDelta[m, i] * KroneckerDelta[m, j] * KroneckerDeltali, j], {m, Res2}, {4, 1, (dim)sitios} |

{j 1’ (diIH)SitiOS}} :
Proyec2 = Sum[Proyec[[m]][[]][[]], {m, 1, Length[Res2] }];

En donde “Proyect2” es la matriz que proyectara el Hamiltoniano “H” en el subespacicio de estados con “n”
excitaciones. Finalmente proyectamos y obtenemos los autovalores y autovectores:

HProyec = Proyec2.H;
Eigenvalues[HProyec]
Eigenvectors[HProyec]

Asi obtendriamos los autovalores y autovectores sin embargo el problema que tiene este método es que el tamafio

de la matriz crece rdpidamente tal y como hemos dicho con (n + 1)V, lo cual nos impide que podamos ejecutar casos
para un numero apreciable de sitios y excitaciones.
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E.2. Resumen del cédigo

El resumen de todo el cédigo usado es:

sitios = b;

dim = 4;

n = dim —1;

Id = IdentityMatrix[dim];

a = Table[0, {4, 1,dim}, {7, 1, dim}];
For[i = 1,7 < dim, i++, a[[i, 7 + 1]] = Sqrt[i];]
adag = Transpose[al;

al = SparseArray[KroneckerProduct|a, Id, Id, Id, Id]];

ald = SparseArray[KroneckerProduct[adag, Id, Id, Id, Id]];
a2 = SparseArray[KroneckerProduct([Id, a, Id, Id, Id]];
a2d = SparseArray[KroneckerProduct[Id, adag, Id, Id, Id]];
a3 = SparseArray[KroneckerProduct[Id, Id, a, Id, Id]];
a3d = SparseArray[KroneckerProduct[Id, Id, adag, Id, Id]];
ad = SparseArray[KroneckerProduct([Id, Id, Id, a, Id]];
add = SparseArray[KroneckerProduct[Id, Id, Id, adag, I1d]];
ab = SparseArray[KroneckerProduct[Id, Id, Id, Id, al];
abd = SparseArray[KroneckerProduct[Id, Id, Id, Id, adag]];

Q=-2; (*Q=AQ¥%

wl =6
w2 =2.%xQ+wl;
J1 = -5;

J2=/2%J1%(J1-Q);
(*El Hamiltoniano*)

H = SparseArray[wl * (a2d.a2 + add.a4) + w2 * (ald.al + a3d.a3 + abd.a5) + J1 x (ald.a3 + a3d.al + a3d.ab + abd.a3) +
J2 % (a2d.al + ad4d.a3 + a2d.a3 + add.ab + ald.a2 + a3d.ad + a3d.a2 + abd.ad)];

Basis = Table [IntegerDlglts[m dim, sitios], {m 0, (dim)sitios 1}]
Res = Table [If[Sum(Basis([5]][[4]], {7, 1,51‘5105}] ==n, 5,0}, {7, 1, (dim)ts } | ;
Res2 = Select[Res, # # 0&];

Proyec = Table [KroneckerDelta[m, i] * KroneckerDelta[m, j] * KroneckerDeltali, j], {m, Res2}, {4, 1, (dim)sitios} |

{j, dlm bltios}] :
ProyecQ = Sum/[Proyec[[m]][[J][[]], {m, 1, Length[Res2] }];

HProyec = Proyec2.H;

Eigenvalues[HProyec]
Eigenvectors[HProyec]
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Apéndice F

Método numeérico 2

F.1. Explicacién del programa

Vamos ahora a presentar un método alternativo al programa anterior que consistird en construir la matriz del
Hamiltoniano directamente en el espacio de los autovectores con un nimero “n” de excitaciones. Primero definimos
como antes los pardmetros: dim!, n, sitios, wl, w2, Q, J1y J2.

Q=-2; (*Q=A0%

wl =6
w2 =2.%xQ+wl;
J1 = —5;

J2 = /2% J1 % (J1 — Q);

También:

sitios = 3;

dim = 2;

dim2 = dim *x 1. 0;
n = dim2 — 1;

[13e )}

Definimos la base del subespacio con “n” excitaciones:

Basis = SparseArray [Tdbl( [1 0 * IntegerDigits[m, dim, sitios], {m 0, (dim)sitios I}H

Res = SparseArray [Table [If{Sum[Basis[[j]][[i]], {7, 1, sitios}] == n, j —1,0,0,0], {4, 1, (dim)"t*s }|] ;
W = Select[Res, # # 0,0&];
Vec = Table [If[Sum[Basis[[j]][[]], {¢, 1, sitios}] == n, Basis[[j]][[]],0,0], {J, 1, (dim)its}] ;

Vec2 = Select[Vec, # # Cero&];
L = Length[Vec2];

Definimos de forma andloga al caso anterior en Basis la base del espacio completo, en W definimos una lista de
ntimeros que corresponden a todos los autoestados de un determinado ntimero de excitaciones por ejemplo supongamos
que en Basis tenemos la base completa de una excitacién como méximo por sitios y un conjunto de 3 sitios tendriamos
en este caso:

i = i e i e B o B e

= OO~k OO
_ OO = O OO

1En donde dim2, juega el mismo papel que dim, solo que lo definimos como un real y no como un entero para agilizar los calculos.
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Como se ve las filas son los estados: |0, 0, 0), |0, 0, 1), |0, 1, 0),..., notemos que estos los podemos interpretar

[{e})

como numeros en base 2: 000, 001, 010, ..., (aqui hay como méximo una excitacién por sitios pero si hubiera “n

excitaciones serfa una lista de niimeros en base “n” desde el 000 hasta el nnn) que para agilizar los célculos podemos

usar directamente sus niimeros decimales: {0, 1, 2, 3, 4, 5, 6, 7}. Con ello en W es la lista de niimeros decimales?
[13}}

de esa lista que corresponden a un determinado estado con “n” excitaciones en nuestro caso 1 excitacién. En nuestro
caso es:

1 0 0 1
2 |1« 010
4 1 00

[13e )}

En cuanto a la variable Vec2 corresponde con el conjunto de estados con “n” excitaciones y no sus corres-
pondientes numeros decimales que es W. En nuestro caso es la parte derecha de la anterior férmula es decir:
{l0, 0, 1), |0, 1, 0), |1, O, 0)}. A continuacién definimos los operadores creacién A y destruccién a:

A = Table [(dim2)sitios=t {7 1 sitios}] ;
a = Table [f(dim2)smosfl, {11, sitios}} ;

Primero recordemos que:

cln) = v ln — 1) (F.1)
c'n)y=vn+1|n+1) (F.2)

Es decir que por ejemplo si: CI 11, 1, 0) =212, 1, 0) 6 c2|1, 1, 0) = /1|1, 0, 0). Con A y a solo modificaremos
el estado | ) el coeficiente va lo anadiremos a parte, podemos asi darnos cuenta que el operador cJ{ en nuestro caso
equivale a sumar el nimero en base 3: 100 al nimero en base 3 (estado de partida) 110 obteniendo 100 4+ 110 = 210
asi mismos el caso de ¢y equivale a 110 — 010 = 100.

Ambos casos para simplificar los calculos y no tener que sumar o restar vectores podemos hacerlo en su equivalente
decimal asi: 94+ 12 =21 y 12 — 3 = 9. Es decir los operadores equivalen a los niimeros: c]; =9y co = —3. Por ello
que las variables A y a equivalen a las listas de niimeros que representan todos los operadores creacién y destruccion
respectivamente, asi en nuestro ejemplo de 3 sitios y una excitacién (base 2) serfan:

4 —4
A=| 2 a=| -2 (F.3)
1 ~1

Para continuar con el programa debemos de recordar la forma del Hamiltoniano:

N

N N
H = Z |:waC£j62j+wa£j_102j—1:| +JZ |:C£j—102j+1 +C£j+102j—1:| +J/ Z |:C£j02j_1 +C£_j62j+1 +C;j—102j +C£j+102j

Jj=1 Jj=1 Jj=1

Para obtener la matriz del Hamiltoniano en la base del subespacio de “n” excitaciones lo que haremos serd dividirlo
en la suma de operadores més sencillos, consideraremos cada pareja de operadores de creacién y destrucciéon como
un unico operador: cgj@j, C;j_lcgj_l, C;j_1C2j+17 C;j_,'_lCQj_l, c;j@j_l, c;jczj_H, c;j_lcgj y c£j+162j. Para obtener
la matriz del Hamiltoniano obtendremos todas las imédgenes de los elementos de la base, para ello haremos actuar
los operadores anteriores sobre cada elemento de la base sumando a cada componente del vector W las correspon-
dientes componentes de los vectores A y a. Como estos operadores conservan el nimero de excitaciones la suma de
estos tres nimeros (A, a y W) serd un numero que este en la lista dada por W y por tanto un vector de la base.
Sera en el vector Imag-j (nombrando a los operadores anteriores j = 1,...,6)% en donde guardaremos las imagenes
de cada uno de los elementos de la base al actuar el operador j. Sin embargo recordemos que ¢3]0,1,0) = 0 y con
nuestro método: 010 — 001 = 001 < 2 — 1 = 1. Para solucionar esto haremos uso de la variable Imagconst-j que
calculard los factores NESVA del la imagenes del operador j haciendo uso de la matriz Vec2 que guarda los vectores
de los elementos de la base en sus filas, de manera que si se da el caso que si el método anterior arroja un nimero
que no corresponde realmente con la imagen del vector como cuando el operador destruccién actia sobre un sitio

2La variable Res es una variable intermedia entre Basis y W
3Notar que hay un conjunto de 8 operadores pero el caso de los dos primeros es especial y son matrices diagonales que podremos
construir directamente, nuestro problema importante serd determinar las 6 dltimas matrices, para cada valor de 7.
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donde no hay excitaciones entonces el factor es cero y cuando construyamos la matriz y multipliquemos los elementos
de la misma por estos factores obtendremos un cero, asegurandonos asi que el método es correcto. Ademés por ase-
gurarnos todo elemento que sea negativo en el nuevo vector Imag-j se cambiard automaticamente por cero, asi tenemos:

Imagconst1 = Table [Table [((Vec2[[m]][[2 * j — 1]] + 1,0)°5) = ((Vec2[[m]][[2 * j + 1]])®5) , {m, 1, L}], {3, 1, St — 1}];
Imagl = Table [T_able [If [Imagconst1[[j]][[m]] < 1071°,0,0, (A[[2xj — 1]] + a[[2 * j + 1]] + W[[m]])],
{m,1,L}],{j,1, 88 —1}];

Imagconst2 = Table [Table [((Vec2[[m]][[2 * j + 1]] + 1,0)%7) = ((Vec2[[m]][[2 * j — 1]])®5) , {m, 1, L}], {;, 1, %=t — 1}];
Imag2 = Table [Table [If [Imagconst2[[j]][[m]] < 1071°,0,0, (a[[2 % j — 1] + A[[2 % j + 1]] + W[[m]])],
{m,1,L}], {j,1, 88+ —1}];

Imagconst3 = Table [Table [ ((Vec2[[m]][[2 * j]] 4+ 1,0)%5)  ((Vec2[[m]][[2 * j — 1]])*®

) {m, 1, L}], {5, 1, 295} ;
Imag3 = Table [Table [If [Imagconst3[[j]][[m]] < 10719,0,0, (A[[2 % j]] + a[[2* j — 1]] + W]

m’”)] a{m,LLH ’{j71’ %}] ;

m1 )] {1, ey
W(m])],{m, 1, L}],{5,1, S95=}];

1)) ey
)], {m,1,L}], {4,1, 2Ug=L1}];

m, 15LH ,{j7 1’ Sitio;—l}} : N
Wim])] ,{m, 1, L}], {5.1, #55=}];

Imagconst4 = Table [Table [((Vec2[[m]][[2 * j]] + 1,0)°?) % ((Vec2[[m]][[2 * j + 1]])%7)
Imag4 = Table [Table [If [Imagconst4|[;]][[m]] < 1071°,0,0, (A[[2 * ]H —|— al2%j7+ 1))+

Imagconsts = Table [Table [((Vec2[[m]][[2 % j — 1] + 1,0)%7)  ((Vec2[[m]][[2 * 4]])°) , {m
Imag5 = Table [Table [If [Imagconst5[[j]][[m]] < 10719,0,0, (A[[2 % j — 1]] al[2 x ]l + W]
Imagconst6 = Table [Table [((Vec2[[m]][[2 * j + 1]] + 1,0)%®) = ((Vec2[[m]][[2 * 4]])*7) , {
Imag6 = Table [Table [If [Imagconst6[[j]][[m]] < 10719,0,0, (A[[2 % j + 1]] + a[[2 * 7]] +

A continuacion lo que hacemos es comparando los distintos vectores Imag-j con el vector original W para obtener la
matriz que representa a cada uno de los 6 operadores en la base de partida multiplicando cada elemento de la matriz
por los factores de Imagconst-j. Esto lo haremos para cada valor de j y luego sumaremos todas las matrices en cada caso:

MatImagl = SparseArray [Table [Sum [If[Imag1[[j]][[m]] == W{[l]], Imagconst1[[j]][[m]],0,0], {j, 1, St%+tL —1}]
{l’ 1, L}v {m7 1, L}]]?

MatImag2 = SparseArray [Table [Sum [If[Imag2[[j]][[m]] == W[I]], Imagconst2[[j]][[m]],0,0], {j, 1, %+t — 1}]
{l’ 17 L}7 {m7 17 L}]]?

MatImag3 = SparseArray [Table [Sum [If[lmag3[[j]][[m]] == W [[I]], Imagconst3([5]][[m]], 0,0], {4, 1, LHF=} ],
{1,1,L},{m, 1, L}]];

MatImag4 = SparseArray [Table [Sum [If[Imag4([[j]][[m]] == W{[I]], Imagconst4[[j]][[m]],0,0], {j, 1, #t%e=L1]
{L, 1, L}, {m, 1, L}]];

MatImag5 = SparseArray [Table [Sum [If[Imag5[[5]][[m]] == W[1]], Imagconst5([7]]([m]], 0,0}, {j, 1, *9F=*}] ,
{l7 L, L}’ {m> L, L]’]]?

MatImag6 = SparseArray [Table [Sum [If[Imag6[[j]][[m]] == W{[l]], Imagconst6[[j]][[m]],0,0], {j, 1, ==L 1]
{1, L}, {m, 1, L}]];

Por tdltimo solo nos quedan las matrices de los operadores cgj c25 Y C;j_chj—l que son dos matrices diagonales en
la que en la primera los elementos impares de la diagonal son nulos y viceversa en la segunda, haciéndolo para cada

valor de j obtenemos:

Matldl = SparseArray [Table [Sum [(If[l == m,1,0,0,0]) * Vec2[[m]][[2 % j — 1]], {7, 1, Sti=L + 1}].{,1, L}, {m,1, L}]];
MatId2 = SparseArray [Table [Sum [(If[l == m,1,0,0,0]) * Vec2[[m]][[2 * j]], {J, 1, Smos 1 H 1, LY, {m,1,L}]];
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Para finalizar solo nos queda definir el Hamiltoniano multiplicando y sumando todas las matrices y a continuacién
obtener los autovalores y autovectores:

H = SparseArray[wl * MatId2 + w2 x Matldl + J1 * (Matlmagl + MatImag?2) + J2 % (Matlmag3 + MatImag4 +
MatImagb + MatImag6)];

Eigenvalues[H]
Eigenvectors[H]

Si obtenemos la dimensién de la matriz para comparar con el método anterior para ver si realmente hemos simpli-
ficado el calculo. Para ello necesitamos calcular el nimero de elementos de la base dado un “N” y un “n”. El problema
se puede simplificar a el nimero de combinaciones de meter “n” bolas (excitaciones) en “N” cajas (“sitios”), o lo que
es lo mismo ordenar (N-1) “separadores” y n “bolas” es decir (N —1+n)!, pero como podemos intercambiar dos bolas
o separadores entre si sin cambiar de estado tenemos entonces que quitar las permutaciones de estos obteniendo:

o= (L)

Que si lo comparamos con (n + 1)V se puede demostrar que < N _2 o ) < (n+1)Y de hecho paran =5y
7T—1+5 7 - .
N =7 tenemos que 5 =462 < (54 1)" = 279936. Esto solo es el tamafio del lado de la matriz cuadrada

el total de nimeros de cada matriz corresponde al cuadrado de esas cantidades.
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F.2. Resumen del cédigo

El resumen de todo el cédigo usado es:

Q=-2; (*Q=AQ%

wl =6
w2 =2.%xQ+wl;
J1 = -5;

J2= /2% J1%(J1 —Q);

sitios = 3;

dim = 2;

dim2 = dim = 1. 0;
n =dim2 — 1;

Basis = SparseArray [Table [1,0 * IntegerDigits[m, dim, sitios], {m, 0, (dim)ties —1}]];

Res = SparseArray [Table [If[Sum[Basis([j]][[i]], {¢, 1, sitios}] == n, j —1,0,0,0], {j, 1, (dim)s'*s}]] ;
W = Select[Res, # # 0,0&];

Vec = Table [If[Sum(Basis[[4]][[]], {i, 1, sitios}] == n, Basis[[j]][[]],0,0], {4, 1, (dim)s"**s}];

Vec2 = Select[Vec, # # Cero&];

L = Length[Vec2];

A = Table [(dim2)tios=! {7 1 sitios}] ;
a = Table [—(dim2)ts~! {1 1 sitios}] ;

Imagconst1 = Table [Table [((Vec2[[m]][[2 # j — 1] + 1,0)%°) * ((Vec2[[m]][[2  j + 1]))*®) , {m, 1, L}] , {j, 1, 2t — 1}];
Imagl = Table [Table [If [Imagconst1[[j]][[m]] < 10719,0,0, (A[[2 % j — 1] + a[[2 * j + 1]] + W[[m]])]
{m 1 L} {] 1, 51t105+1 1}]

Imagconst2 = Table [Table [((Vec2[[m]][[2 * j + 1] + 1,0)%°) * ((Vec2[[m]][[2 * j — 1]))*®) , {m, 1, L}] , {j, 1, it — 1}];
Imag2 = Table [Table [If [Imagconst2[[j]][[m]] < 10719,0,0, (a[[2 % j — 1] + A[[2 % j + 1]] + W[[m]])],
{mlL}} {]1 thS-‘rl 1}]7

Imagconst3 = Table [Table [ ((Vec2[[m]][[2 * j]] + 1,0)%°) « ((Vec2[[m]][[2 = j — 1]])®) , {m, 1, L}], {4, 1, stios=L 1] ;

Imag3 = Table [Table [If [Imagconst3[[j]][[m]] < 1071°,0,0, (A[[2 = j]] + a[[2 = j — 1]] + W[[m]])] ,{m,1,L}] , {4, 1, st==L1}];

Imagconst4 = Table [Table [((Vec2[[m]][[2 * j]] 4+ 1,0)%°) * ((Vec2[[m]][[2 * j + 1]])*5) , {m, 1, L}] , {j, 1, SH==L 1],
Imag4 = Table [Table [If [Imagconst4[[j]][[m]] < 1071°,0,0, (A

Imagconst5 = Table [Table [((Vec2[[m]][[2 * j — 1]] + 1,0)%7) = ((Vec2[[m]][[2 * 4]])*°) , {m, 1, L}] , {j, 1, St==L 1],
Imag5 = Table [Table [If [Imagconst5[[;]][[m]] < 10_10 0,0,(A

Imagconst6 = Table [Table [((Vec2[[m]][[2 * j + 1]] + 1,0)%7) = ((Vec2[[m]][[2 * 4]])*°) , {m, 1, L}] , {j, 1, Stio==L 11,

[[2 % J]] + all2+ 5+ 1]+ W(mD] . {m. 1, L}], {5,1, =8F=}];

(25— 1H +al[2# 5]+ Wml))], {m, 1 LH {71, #g=1];

Imag6 = Table [Table [If [Imagconst6[;]][[m]] < 10_10 0,0, (A[[2 % j + 1] + a[[2 = j]] + W[[m]])] ,{m,1,L}], {5, 1, st8%e=L1];

MatImagl = SparseArray [Table [Sum [If[Imag1{[j]][[m]] == W[[I]], Imagconst1[[j]][[m]],0,0], {j, 1, %+t —1}]
{l’ 17 L}7 {m7 17 L}]]’

MatImag2 = SparseArray [Table [Sum [If[Imag2[[j]][[m]] == W{[l]], Imagconst2[[j]][[m]], 0,0], {j, 1, St%+tL —1}]
{la 1, L}’ {m7 1, LH]?

MatImag3 = SparseArray [Table [Sum [If[Imag3([[j]][[m]] == W{[I]], Imagconst3[[j]][[m]],0,0], {j, 1, Et%e=L1]
{l’ 1’ L}7 {m7 17 L}]];
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MatImag4 = SparseArray [Table [Sum [If[lmag4([;]][[m]] == W]}, Imagconst4[[5]][[m]], 0,0], {j, 1, =43} ],
{l7 1, L}’ {mv L L}H;

Matlmagh = SparseArray [Table [Sum [If[ImagE)[[j]][[m]] == WI[l]], Imagconst5[[4]][[m]], 0,0], {j, 1, %H ,
{lv 1, L}, {m7 1, L}H;

MatImag6 = SparseArray [Table [Sum [If[lmagG[[j]][[m]] == WI[[l]], Imagconst6[[7]][[m]], 0,0], {j, 1, %H ,
{l7 17 L}’ {m7 1’ L}]}’

Matld1l = SparseArray [Table [Sum [(If[l == m,1,0,0,0]) * Vec2[[m]][[2 % j — 1]], {7, 1, #8%==L 4 1}] {1,1, L}, {m, 1, L}]];
MatId2 = SparseArray [Table [Sum [(If[l == m,1,0,0,0]) * Vec2[[m]][[2 * j]], {j, 1, %}] AL LY, {m,1,L}]];

H = SparseArray|wl«Matld2+w2«Matld1 4+ J1x(MatImagl +MatImag2) + J2* (MatImag3+ MatImagd + MatImagh+
MatImag6)];

Eigenvalues|[H ]
Eigenvectors[H|
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Apéndice G

Cdédigo Método 2 - Modificacion para
comprobar los auto estados localizados

No tenemos més que anadir el siguiente cédigo al final del cédigo del Apéndice F.
Identidad = Table[Table[KroneckerDelta[j, m], {j, 1, sitios}], {m, 1, sitios}];
AutoVector = Table [(Identidad[[2 * j]] — v/2 * Identidad[[2 * j + 1]] + Identidad[[2 * j + 2]]) = 0,5, {j, 1, tio=3 11"
MatrixForm[AutoVector]Normalizado = Table [Sum[AutoVector[[5]][[m]] * AutoVector[[5]][[m]], {m, 1, sitios}], {7, 1, #1%e=31];
MatrixForm[Normalizado] AutoVectorNorma = Table [Table[AutoVector|[5]][[m]] /Normalizado[[j]], {m, 1,sitios}], {7, 1, 2t5=31] ;
MatrixForm[AutoVectorNorma|lmag = Table [Table[Sum[H [[m]][[]] * AutoVector[[j]][[1]], {I, 1, sitios}], {m, 1,sitios}], {j, 1, tios=2 1
MatrixForm[Imag]AutoValTeo = Table [Sum[Imag][j]][[m]] * AutoVector[[;]][[m]]/Normalizado[[5]], {m, 1, sitios}], {7, 1, #1%=31}] ;

MatrixForm[AutoValTeo]
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Apéndice H

Cdédigo Método 2 - Modificacion para
comprobar los auto estados localizados,
frecuencias distintas

Deberemos anadir lo siguiente al cédigo expuesto en el Apéndice F. Primero cambiaremos la condicién inicial
para J1:

J1 — —14v20+20% — /142204402 +4/203 +404
B o 2v2430 ]
Segundo anadimos el siguiente cédigo al final:

Identidad = Table[Table[KroneckerDelta[j, m], {7, 1, sitios}], {m, 1, sitios}];

AutoVector = Table [(, [ 725 * Identidad[[2 * j]] — v/2 x Identidad[[2 x j + 1]]
/7 *Identidad[[2 + j + 2[]) + 0,5, {j,1, 2ig=2}

MatrixForm[AutoVector]Normalizado = Table [Sum[AutoVector|[5]][[m]] * AutoVector[[5]][[m]], {m, 1, sitios}], {7, 1, stie==31]

MatrixForm[Normalizado] AutoVectorNorma = Table [Table[AutoVector[[j]][[m]]/Normalizado[[5]], {m, 1, sitios}], {7, 1, #t%=31}] .
MatrixForm[AutoVectorNorma]lmag = Table [ Table[Sum[H [[m]][[/] * AutoVector[[j]][[1]], {I, 1, sitios}], {m, 1,sitios}], {j, 1, =%8=3}
MatrixForm[Imag]AutoValTeo = Table [Sum[Imag][j]][[m]] * AutoVector[[j]][[m]]/Normalizado[[5]], {m, 1, sitios}], {7, 1, t%==31}]

MatrixForm[AutoValTeo]
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Apéndice 1

Cdédigo Método 2 - Modificacion para el
caso no lineal

La modificaciones que hay que hacer al cédigo del Apéndice F son primero definir la matriz del término no lineal:
MatNolineal = Sum|[Table[Table[KroneckerDeltali, j]«Vec2[[i]][[m]]*(Vec2[[j]][[m]]-1), {i, 1, L}], {J, 1, L}], {m, 1, sitios}];
En segundo lugar anadir el término no lineal al Hamiltoniano:

H = wl * Matld2 + w2 % Matldl + J1 * (Matlmagl + Matlmag2) + J2 % (Matlmag3 + Matlmag4 + Matlmagb +
MatImag6) + K * 0,5 * MatNolineal,

En donde K equivale a U/2.
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