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5.3. Método numérico 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1. Construyendo la base: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2. Construyendo la matriz: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4. Comprobación de los métodos numéricos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5. Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1. Caso lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.2. Caso no lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6. Conclusiones 41

A. Cálculo de bandas de cadena infinita de osciladores acoplados 43

B. Cálculo de las bandas en topoloǵıa de tipo dientes de sierra para frecuencias iguales 45
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4.3. Bandas de enerǵıa J = 5, ∆Ω = −2 y ωa = 6 con ε+ → azul y ε− → rojo . . . . . . . . . . . . . . . 17
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Caṕıtulo 1

Introducción

En f́ısica aprendemos a modelizar de la forma más simple posible los fenómenos naturales. Intentamos capturar
lo esencial y escribirlo con letras griegas en un Hamiltoniano. Sabemos que nuestro modelo es aproximado y efectivo,
pero nos damos por satisfechos si explica el experimento. Pero, por muy simples que sean, los modelos relevantes rara
vez son fáciles de resolver. Más allá del oscilador armónico o un sistema de dos estados pocos problemas admiten una
solución exacta.

Es por ello que la f́ısica, además de esa búsqueda de la simplicidad, sea también una búsqueda de aproximaciones.
Teoŕıa de perturbaciones, aproximaciones armónicas, ĺıquidos de Fermi, etc ... conforman una serie de herramientas
que hacen resolubles esos modelos simples, pero dif́ıciles a la vez.

Una alternativa a las aproximaciones es la resolución numérica. Simulaciones por ordenador permiten explorar
modelos más allá de reǵımenes perturbativos aśı como comprobar las aproximaciones. La combinación de simulación
y aproximaciones forman la vida de la mayoŕıa de los f́ısicos teóricos. Como la vida no puede ser tan sencilla, las
simulaciones no son la solución final. Problemas muy importantes son demasiado “grandes” para solucionarlos con
ordenador. Cuando decimos “grandes” queremos decir que el número de grados de libertad necesarios son tantos que
los ordenadores no pueden con ellos. Un ejemplo t́ıpico es el plegamiento de protéınas. En mecánica cuántica este
problema es todav́ıa más grave. En materia condensada, por ejemplo, estamos acostumbrados a trabajar con objetos
con muchos grados de libertad (ej. un sólido). El éxito de esta f́ısica, inherentemente many body, ha sido desarrollar
teoŕıas donde los electrones son esencialmente libres. Si queremos atacar problemas donde las interacciones juegan un
papel estamos perdidos. El problema crece exponencialmente con el número de grados de libertad, y ¡tenemos muchos!
Para explicar esto un poco mejor, debemos pensar en que cada, por ejemplo, electrón “vive” en un espacio de Hilbert
de dimensión D. Para tratar N electrones usamos el producto tensorial que sabemos crece de manera exponencial
como DN . Es por ello, que dichos problemas no se puedan simular con ordenador [1].

La visión anterior es muy negativa. En realidad la dinámica de esos electrones interactuantes no va a visitar ese
enorme espacio de Hilbert. T́ıpicamente solo visitará una parte exponencialemente pequeña del mismo. Es por eso,
que no debe obsesionarnos el tamaño sino identificar ese pequeño subespacio relevante. Debemos buscar simetŕıas,
cantidades conservadas, f́ısica esperable, etc ... Si identificamos la parte relevante somos capaces de resolver el problema
[2].

En este Trabajo Fin de Grado presentamos un acercamiento numérico a un problema dif́ıcil. Se trata de bosones
interactuantes que viven en una topoloǵıa entre una y dos dimensiones. El problema tiene su interés en problemas
de frustración. Explicamos las cantidades conservadas del problema y generamos varios códigos que permiten resolver
el modelo exactamente en redes no tan pequeñas. Discutimos la teoŕıa de bandas del modelo en el régimen lineal,
donde es resoluble anaĺıticamente. Encontramos los parámetros del modelo donde existen bandas planas. Estudiamos
el papel de la interacción en estas bandas planas.
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1.1. Objetivos

Los principales objetivos que abordaremos a lo largo de este trabajo son los siguientes:

1. Estudiaremos un sistema de bosones interactuantes tanto el caso lineal como el no lineal.

2. En el caso lineal obtendremos las bandas de enerǵıa y las condiciones que han de cumplirse para su existencia.

3. Estudiaremos el sistema para diferente número de tamaños del mismo aśı como de excitaciones.

4. La resolución del caso no lineal nos obligará a obtener un método numérico eficiente que permita obtener la
dependencia del sistema con la no linealidad.

5. Todo esto permitirá obtener propiedades del sistema como la degeneración de los autoestados localizados de las
bandas planas, la dependencia con el tamaño del sistema etc.

2



Caṕıtulo 2

Oscilador Armónico

[3] En este trabajo centraremos principalmente nuestra atención en un modelo de bosones acoplados y sobre todo
la resolución numérica del mismo. Por completitud estudiaremos a modo introductorio, el caso de un solo bosón,
para aśı tener una visión general del problema el sistema más conocido en f́ısica, el oscilador armónico, empezaremos
brevemente recordando el caso clásico para a continuación meternos directamente el caso cuántico.

2.1. Oscilador Armónico Clásico

Un oscilador armónico clásico es aquel cuerpo cuyo movimiento viene determinado por el ya conocido potencial
cuadrático V (x), función del la posición x del mismo1:

V (x) =
1

2
kx2 (2.1)

Por lo tanto usando la relación entre fuerza y potencial y la segunda ley de Newton podemos obtener la ecuación
diferencial que determinará el movimiento:

m
d2x

dt2
= −dV

dx
= −kx (2.2)

Resolviendo la ecuación diferencial de coeficientes constantes se obtiene la ecuación del movimiento:

x = xM cos(ωt− φ) con ω =

√
k

m
(2.3)

En donde xM es la amplitud del movimiento y ω su frecuencia. Vamos a obtener su enerǵıa, sumando enerǵıa cinética
y potencial y observaremos que no depende del tiempo puesto que nos encontramos en un sistema conservativo:

E = T + V =
1

2
m

(
dx

dt

)2

+
1

2
mω2x2 = · · · = 1

2
mω2x2

M (2.4)

Que como se puede ver al sustituir la solución de la ecuación diferencial se obtiene una enerǵıa que se mantiene
constante en el tiempo tal y como es propia de los sistemas conservativos. Si ahora fijamos un valor de la enerǵıa total
E y expresamos la enerǵıa total en función del momento p y la posición x podemos escribir:

E =
p2

2m
+

1

2
mω2x2 =

p2

a2
+
x2

b2
con: a =

√
2m, b =

√
2

mω2
(2.5)

Es decir en el espacio de p y x es una elipse de semiejes a y b de manera que cuando la posición es máxima (xM )
el momento es mı́nimo (p = 0), o lo que es lo mismo cuando la enerǵıa potencial es máxima la cinética es mı́nima e
igualmente a la inversa.

1Consideraremos el caso del oscilador unidimensional para hacer más simple la discusión.
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2.2. Oscilador Armónico Cuántico

Veamos ahora el caso cuántico, para obtener el Hamiltoniano haremos uso del principio de correspondencia cam-
biando las variables clásica de la ecuación (2.5) x y p por sus correspondientes operadores X y P , con la relación de
conmutación [X, P ] = i~:

H =
P 2

2m
+

1

2
mω2X2 (2.6)

Es decir el problema de la obtención de los valores de la enerǵıa para este sistema se reduce al cálculos de los
autovalores y autovectores de la ecuación:

H |φ〉 = E |φ〉 (2.7)

Pero para resolver el problema más fácilmente definiremos un serie de nuevos operadores en primer lugar adimen-
sionalizaremos los ya existentes:

X̂ =

√
mω

~
X (2.8)

P̂ =
1√
m~ω

P (2.9)

Ĥ =
1

~ω
H (2.10)

Quedando la relación de conmutación [X̂, P̂ ] = i y el Hamiltoniano2:

Ĥ =
1

2
(X̂2 + P̂ 2) (2.11)

Si ahora definimos dos operadores a† y a conocidos como los operadores de creación y destrucción, por que, como
veremos más adelante crean y destruyen un cuanto de enerǵıa:

a† =
1√
2

(X̂ − iP̂ ) (2.12)

a =
1√
2

(X̂ + iP̂ ) (2.13)

Calculemos su conmutador teniendo en cuenta la relación de conmutación entre X̂ y P̂ tenemos:

[a, a†] = aa† − a†a =
1

2
((X̂ + iP̂ )(X̂ − iP̂ )− (X̂ − iP̂ )(X̂ + iP̂ )) = · · · = −i(X̂P̂ − P̂ X̂) = 1 (2.14)

Dándonos cuenta que: a†a = 1
2 (X̂2 + P̂ 2 − 1), podemos expresar el Hamiltoniano:

Ĥ = a†a+
1

2
, definimos el operador N , número, como: N = a†a (2.15)

De manera que si un estado es autovector del operador número también lo será del operador Hamiltoniano, es
decir el operador Hamiltoniano conmuta con el operador número ([H, N ] = 0), de manera que la ecuación a resolver
siendo ν un autovalor de N es:

H |φν〉 = (ν + 1/2)~ω |φν〉 (2.16)

El operador N se denomina operador número porque si lo aplicamos sobre un autoestado del Hamiltoniano |φn〉
de autovalor ~ω(n+ 1/2) se obtiene:

N |φn〉 =

(
H

~ω
− 1

2

)
|φn〉 = · · · = n |φn〉 (2.17)

Es decir su autovalor es el número de cuantos o excitaciones ~ω, puede además demostrar que los autovalores n
son valores reales enteros y iguales o mayores que cero n = 0, 1, 2, 3 . . . .

2 Donde: H = ~ωĤ

4



Pueden además demostrarse las siguientes relaciones de conmutación:

[N, a†] = a† (2.18)

[N, a] = −a (2.19)

Veamos ahora como actúan los operadores de creación y destrucción sobre los autovalores del Hamiltoniano.
Hagamos actuar en primer lugar el operador número sobre el estado a† |φn〉:

Na† |φn〉 = (a†N + a†) |φn〉 = (n+ 1)a† |φn〉

Luego a† |φn〉 ∝ |φn+1〉. Obtenemos la constante de proporcionalidad obteniendo la norma de a† |φn〉 suponiendo
que los |φn〉 están normalizados:

‖a† |φn〉 ‖2 = 〈φn| aa† |φn〉 = 〈φn| (N + 1) |φn〉 = (n+ 1) 〈φn|φn〉 = n+ 1

Es decir que:

a† |φn〉 =
√
n+ 1 |φn+1〉 (2.20)

Continuemos ahora con el operador destrucción. Para ello hagamos actuar en primer lugar el operador número
sobre el estado a |φn〉:

Na |φn〉 = (aN − a) |φn〉 = (n− 1)a |φn〉

Luego a |φn〉 ∝ |φn−1〉. Obtenemos la constante de proporcionalidad obteniendo la norma de a |φn〉 suponiendo
que los |φj〉 están normalizados:

‖a |φn〉 ‖2 = 〈φn| a†a |φn〉 = 〈φn|N |φn〉 = n 〈φn|φn〉 = n

Es decir que:

a |φn〉 =
√
n |φn−1〉 (2.21)

Es decir los operadores a† y a crean y destruyen respectivamente una “excitación” ~ω.

Sabiendo ya como actúan sobre los elementos de la base de autoestados del Hamiltoniano {|φ0〉 , |φ1〉 , |φ2〉 , |φ3〉 . . . },
N , a† y a podemos expresarlos matricialmente:

a =



0
√

1 0 0 . . . . . . . . .

0 0
√

2 0 . . . . . . . . .

0 0 0
√

3 . . . . . . . . .
...

...
...

...
. . .

0 0 0 0 0
√
n . . .

...
...

...
...

...
...


a† =



0 0 0 0 . . . . . . . . .√
1 0 0 0 . . . . . . . . .

0
√

2 0 0 . . . . . . . . .

0 0
√

3 0 . . . . . . . . .
...

...
...

...
. . .

0 0 0 0
√
n+ 1 0 . . .

...
...

...
...

...
...


(2.22)
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Caṕıtulo 3

Modelos Tight Binding Bosónicos

3.1. El método de cálculo de bandas Tight Binding - Funciones de Wan-
nier.

[5] Consideremos una situación t́ıpica en la cual contamos con varias part́ıculas, bosones, que se encuentran
sometidas a la acción de un potencial periódico por ejemplo de una red de átomos. El potencial será suficientemente
fuerte para que las part́ıculas que crean el potencial puedan considerarse localizadas. En este caso que las funciones
de onda tienen una cola que se extiende más allá del sitio n del átomo correspondiente de manera que la barrera entre
pozos sea alta pero no infinita. En otras palabras consideraremos un acoplamiento interatómico entre los primeros
vecinos es lo que se denomina la aproximación de enlace fuerte o Tight Binding. En dicha aproximación es conveniente
expandir la base del Hamiltoniano en una base local que dé cuenta de las funciones de onda de cada part́ıcula por
separado, los estados de Wannier:

|φ~Rn〉 ≡
1

N

∑
k

e−i
~k ~R |φ~kn〉 ↔ |φ~kn〉 =

1

N

∑
~R

ei
~k ~R |φ~Rn〉 (3.1)

En donde ~R es la coordenada que denota los centros de los átomos, el sumatorio en ~k está extendido a la primera
zona de Brillouin y “n” indica el ı́ndice del sitio o part́ıcula. Estas funciones de Wannier al aparecer un acoplamiento
entre los sitios de la red cada uno de los N niveles degenerados se separan y forman bandas de enerǵıa. Obtendremos
dichas bandas de enerǵıa primero en el caso más sencillo en geometŕıas de disposición de osciladores en una sola
dimensión y luego veremos un caso entre 1 y 2 dimensiones.

Figura 3.1: Potencial periódico al que se someten las part́ıculas y sus funciones de onda de part́ıculas localizadas.
(Imagen modificada de [4])
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3.2. Bandas de enerǵıa con el modelo Tight Binding para el caso de
cadena infinita de osciladores acoplados (1D).

Consideraremos el caso de una cadena infinita de osciladores bosónicos sometidos a un potencial periódico acoplados
a través de J que controla este acoplamiento entre primeros vecinos:

Figura 3.2: Cadena de osciladores.

Aśı el Hamiltoniano t́ıpico de este sistema haciendo uso de los ya mencionados operadores de creación y destrucción
de excitaciones es:

H =

N−1∑
j=0

[ωa†jaj − J(aja
†
j+1 + a†jaj+1)] (3.2)

En donde N → ∞, el número de osciladores. Para simplificarlo deberemos hacer uso de los estados de Wannier.
Para ello la ecuación (3.1) induce una transformación en los operadores al espacio Fourier, es decir el espacio de las k′s.
Para que sea dimensionalmente correcto tiene que aparecer el parámetro de red a en el exponente. Para evitar tantas
constantes podemos proceder como si el parámetro de red fuese a = 1 y con zona de Brillouin [−πa ,

π
a ] = [−π, π].

Con j indicamos el sitio o átomo de la red:

ak =
1√
N

N−1∑
j=0

eikjaj −→ aj =
1√
N

N−1∑
k=0

e−ikjak (3.3)

a†k =
1√
N

N−1∑
j=0

e−ikja†j −→ a†j =
1√
N

N−1∑
k=0

eikja†k (3.4)

Además de estas expresiones deberemos de hacer uso de las relaciones de conmutación:

[ak, a
†
k′ ] = δkk′ [ai, a

†
j ] = δij [ak, ak′ ] = 0 [a†k, a

†
k′ ] = 0 (3.5)

Podemos demostrar fácilmente estas relaciones de conmutación. Empecemos con la relación que nos indica el
carácter bosónico [ai, a

†
j ] = δij :

[ai, a
†
j ] = δij definiendo... ai =

1

2
(x̂i + ip̂i) a†i =

1

2
(x̂i − ip̂i) (3.6)

Sustituyendo:

[ai, a
†
j ] =

1

2
((x̂i + ip̂i)(x̂j − ip̂j)− (x̂j − ip̂j)(x̂i + ip̂i)) =

1

2
(x̂ix̂j − ix̂ip̂j + ip̂ix̂j + p̂ip̂j − x̂j x̂i − ix̂j p̂i + ip̂j x̂i − p̂j p̂i) =

= − i
2

([x̂i, p̂j ] + [x̂j , p̂i]) ≡ −
i

2
(iδij + iδij) = δij

Con:

x̂i =

√
mω

~
xi p̂i =

1√
mω~

pi −→ [xi, pj ] = i~δij −→ [x̂i, p̂j ] = iδij
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Continuemos con la siguiente relación de conmutación (recuerdo, N →∞):

[ak, a
†
k′ ] = δkk′ (3.7)

[ak, a
†
k′ ] = aka

†
k′ − a

†
k′ak =

1

N

N−1∑
jj′

[
aja
†
j′e

i(kj−k′j′) − a†j′aje
i(kj−k′j′)

]
=

1

N

N−1∑
jj′

ei(kj−k
′j′)[aja

†
j′ − a

†
j′aj ] =

=
1

N

N−1∑
jj′

ei(kj−k
′j′)δjj′ =

1

N

N−1∑
j=0

ei(k−k
′)j =

1

N
Nδ(k − k′) ≡ δkk′

Demostremos por último las dos que nos quedan. Empecemos por [ak, ak′ ]:

[ak, ak′ ] = akak′ − ak′ak =
1

2
[(x̂k + ix̂k)(x̂k′ + ix̂k′)− (x̂k′ + ix̂k′)(x̂k + ix̂k)] =

=
1

2
i([x̂k, p̂k′ ] + [p̂k, x̂k′ ]) = 0

Haciendo uso de [x̂k, p̂k′ ] = 0 si k 6= k′ y si k = k′ entonces [x̂k, p̂k] + [p̂k, x̂k] = [x̂k, p̂k] − [x̂k, p̂k] = 0,
quedan aśı demostradas todas las relaciones de conmutación. Por tanto si sustituimos las ecuaciones (3.3) y (3.4) en
el Hamiltoniano (3.2) y tenemos en cuenta las relaciones de conmutación ya demostradas (3.5), tenemos finalmente
simplificado y diagonalizado el Hamiltoniano:

H =

N−1∑
k=0

ωka
†
kak (3.8)

En donde a la banda de enerǵıa la hemos llamado: ωk = ω − 2J cos(k), los cálculos para la obtención de este
resultado pueden consultarse en el Apéndice A. Aśı las bandas de enerǵıa para por ejemplo una frecuencia ω = 2 y
un acoplamiento J = 1/2 tenemos:

Figura 3.3: Bandas de la cadena de osciladores acoplados. (Notar que k ∈ [−π, π], la primera zona de Brillouin.)
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Caṕıtulo 4

Modelos Tight Binding en una topoloǵıa
Diente de Sierra

En este caṕıtulo nos centraremos en la obtención teórica de las bandas de enerǵıa en un modelo tipo Tight Binding
con una distribución de osciladores en forma de diente de sierra. Obtendremos las bandas de manera teórica de
un modelo de osciladores acoplados linealmente, para luego desarrollar un método numérico que permita también
obtenerlo. Este desarrollo nos permitirá luego poder incluir interacciones no lineales que no son accesibles para una
resolución anaĺıtica. Los cálculos teóricos del modelo lineal nos permitirán compararlo con el numérico y comprobar el
funcionamiento correcto del método numérico planteado. Hemos escogido una disposición en diente de sierra porque
es un arreglo a caballo entre una disposición en una dimensión, como hemos visto en la sección anterior, y una red
geométrica en dos dimensiones; además de contener propiedades interesantes como bandas planas. En la literatura
también es conocido por mostrar el fenómeno de la frustración del esṕın.

4.1. Diente de sierra, caso de frecuencias iguales.

Consideremos tal y como hemos dicho que tenemos nuestros osciladores en una disposición de diente de sierra.
En este caso llamaremos a los operadores creación/destrucción de la fila superior como a†j y aj y a los de la fila de

abajo como b†j y bj . Consideraremos además que la frecuencia de oscilación de los osciladores de la fila superior y la
inferior es la misma, ω ya trataremos el caso de frecuencias distintas en la siguiente sección. En cuanto al acoplamiento,
será de carácter lineal igual que el usado en la sección anterior con dos constantes de acoplamiento: J ′ que regula el
acoplamiento entre los osciladores de la fila superior con la inferior y J que regula el acoplamiento entre los osciladores
de la fila inferior, como se muestra en la siguiente figura:

Figura 4.1: Disposición en diente de sierra de los sitios.

Con todo lo dicho hasta ahora el Hamiltoniano a trata, del cual obtendremos las bandas de enerǵıa:

H =

N−1∑
j=0

[
ω(a†jaj + b†jbj)

]
+ J

N−1∑
j=0

[
b†jbj+1 + b†j+1bj

]
+ J ′

N−1∑
j=0

[
a†jbj + a†jbj+1 + b†jaj + b†j+1aj

]
(4.1)

Notar que el carácter lineal de los acoplamientos permite que se siga conservando que el operador Hamiltoniano
conmute con el operador número Nj = a†jaj (igual para las b′s) cumpliéndose las relaciones de conmutación (3.5)

aśı como las combinaciones de operadores a′s y b′s ([aj , bj′ ] = [a†j , bj′ ] = [aj , b
†
j′ ] = 0, aśı como en el espacio Fourier,

con demostraciones análogas a la sección anterior).
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Aśı al tratarse de un modelos con acoplamientos a primeros vecinos tipo Tight Binding o de enlace fuerte podemos
simplificar nuestro Hamiltoniano si pasamos los operadores, tal y como hemos hecho en el anterior caṕıtulo, al espacio
Fourier como sigue1:

ak =
1√
N

N−1∑
j=0

eikjaj −→ aj =
1√
N

N−1∑
k=0

e−ikjak bk =
1√
N

N−1∑
j=0

eikjbj −→ bj =
1√
N

N−1∑
k=0

e−ikjbk (4.2)

a†k =
1√
N

N−1∑
j=0

e−ikja†j −→ a†j =
1√
N

N−1∑
k=0

eikja†k b†k =
1√
N

N−1∑
j=0

e−ikjb†j −→ b†j =
1√
N

N−1∑
k=0

eikjb†k (4.3)

Sustituyendo estas últimas expresiones en la ecuación (4.1) y haciendo uso de las relaciones de conmutación ya

demostradas [ai, a
†
j ] = [bi, b

†
j ] = δij [ai, b

†
j ] = 0, obtenemos la expresión:

H =

N−1∑
k=0

[
ωa†kak + b†kbk(ω + 2J cos k) + J ′(a†kbk(1 + e−ik) + b†kak(1 + eik))

]
Para diagonalizar la matriz podemos observar que si definimos los vectores:

~ck =

(
ak
bk

)
~c†k =

(
a†k b†k

)
Podemos expresarlo como:

H =

N−1∑
k=0

[
~c†k

(
ω 0
0 ω + 2J cos k

)
~ck + ~c†k

(
0 J ′(1 + e−ik)

J ′(1 + eik) 0

)
~ck

]
O lo que es lo mismo:

H =

N−1∑
k=0

~c†k

(
ω J ′(1 + e−ik)

J ′(1 + eik) ω + 2J cos k

)
~ck (4.4)

Es decir es una matriz diagonal por cajas, si diagonalizamos cada caja:∣∣∣∣ ω − ε J ′(1 + e−ik)
J ′(1 + eik) (ω + 2J cos k)− ε

∣∣∣∣ = 0

(ω − ε)(ω + 2J cos k − ε)− 2J ′
2
(1 + cos k) = 0

ε2 − ε(2ω + 2J cos k) + 2 cos k(Jω − J ′2) + (ω2 − 2J ′
2
) = 0

Resolviendo la ecuación de segundo grado obtenemos finalmente las bandas de enerǵıa buscadas:

ε = J cos k + ω ±
√
J2 cos2 k + 2J ′2(cos k + 1) (4.5)

Analizaremos la existencia de bandas planas en las siguientes secciones (4.3 y 4.4 ) en las que consideraremos un
caso más general en que las frecuencias de oscilación son distintas para los osciladores de la fila de arriba en relación
con los de abajo en la topoloǵıa de diente de sierra. Las bandas planas son aquellas en las que como su nombre indica
son niveles de enerǵıa “planos” en los que por tanto se caracterizan por una velocidad de grupo nula ( dεdk = 0). Además
en el caso de la cadena de infinitos osciladores estas bandas se caracterizan por estar infinitamente degeneradas. Para
ver los cálculos realizados en esta sección en más detalle consúltese el Apéndice B al final del escrito.

1Haciendo iguales consideraciones que caṕıtulo anterior en lo que respecta al parámetro de red con una primera zona de Brillouin
k ∈ [−π, π] (véase la página 8).
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4.2. Diente de sierra, caso de frecuencias distintas.

Por generalizar el modelo consideraremos ahora que las frecuencias de los osciladores de la fila de arriba2 tienen
una frecuencia ωa y los osciladores de la fila de abajo tienen una frecuencia ωb. Con estos retoques el Hamiltoniano
queda:

H =

N−1∑
j=0

[
ωaa

†
jaj + ωbb

†
jbj

]
+ J

N−1∑
j=0

[
b†jbj+1 + b†j+1bj

]
+ J ′

N−1∑
j=0

[
a†jbj + a†jbj+1 + b†jaj + b†j+1aj

]
(4.6)

Igual que en el caso anterior buscaremos obtener las bandas de enerǵıa y como se trata de un modelo Tight Binding
aplicaremos un método análogo a la sección anterior. Para ello empezaremos pasando los operadores de creación y
destrucción al espacio Fourier:

ak =
1√
N

N−1∑
j=0

eikjaj −→ aj =
1√
N

N−1∑
k=0

e−ikjak bk =
1√
N

N−1∑
j=0

eikjbj −→ bj =
1√
N

N−1∑
k=0

e−ikjbk (4.7)

a†k =
1√
N

N−1∑
j=0

e−ikja†j −→ a†j =
1√
N

N−1∑
k=0

eikja†k b†k =
1√
N

N−1∑
j=0

e−ikjb†j −→ b†j =
1√
N

N−1∑
k=0

eikjb†k (4.8)

Sustituyendo estas últimas expresiones en la ecuación (4.1) y haciendo uso de las relaciones de conmutación,
obtenemos la expresión:

H =

N−1∑
k=0

[
ωaa

†
kak + b†kbk(ωb + 2J cos k) + J ′(a†kbk(1 + e−ik) + b†kak(1 + eik))

]
Para diagonalizar la matriz podemos observar que si definimos los vectores:

~ck =

(
ak
bk

)
~c†k =

(
a†k b†k

)
Podemos expresarlo como:

H =

N−1∑
k=0

[
~c†k

(
ωa 0
0 ωb + 2J cos k

)
~ck + ~c†k

(
0 J ′(1 + e−ik)

J ′(1 + eik) 0

)
~ck

]
O lo que es lo mismo:

H =

N−1∑
k=0

~c†k

(
ωa J ′(1 + e−ik)

J ′(1 + eik) ωb + 2J cos k

)
~ck (4.9)

Es decir es una matriz diagonal por cajas, si diagonalizamos cada caja:∣∣∣∣ ωa − ε J ′(1 + e−ik)
J ′(1 + eik) (ωb + 2J cos k)− ε

∣∣∣∣ = 0

(ωa − ε)(ωb + 2J cos k − ε)− 2J ′
2
(1 + cos k) = 0

ε2 − ε((ωa + ωb) + 2J cos k) + 2 cos k(Jωa − J ′
2
) + (ωaωb − 2J ′

2
) = 0

Resolviendo la ecuación de segundo grado:

ε = J cos k +
ωa + ωb

2
±

√(
J cos k +

ωa + ωb
2

)2

− 2 cos k(Jωa − J ′2)− (ωaωb − 2J ′2) (4.10)

2Véase figura 4.1, página 11.
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Podemos obtener una ecuación más sencilla si lo podemos en función de la frecuencia media Ω:

Ω =
ωa + ωb

2
→ ωb = 2Ω− ωa

Obtenemos aśı finalmente una versión simplificada de las bandas de enerǵıa:

ε = J cos k + Ω±
√

(J cos k + (Ω− ωa))2 + 2J ′2(1 + cos k)) (4.11)

Para ver los cálculos realizados en más detalle consúltese el Apéndice C al final del escrito. Podemos a modo de
prueba representar las bandas para Ω = 2, J ′ = 1, J = 2 y ωa = 3 y ver aśı su aspecto:

Figura 4.2: Bandas de enerǵıa Ω = 2, J ′ = 1, J = 2 y ωa = 3 con ε+ → azul y ε− → rojo
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4.3. Cálculo de las bandas planas para dos frecuencias distintas

Como necesitamos comprobar que el cálculo numérico que desarrollaremos en el caṕıtulo siguiente obtendremos las
condiciones que hay que imponer a la ecuación anterior (4.11) para que aparezcan bandas planas y aśı precisar de una
manera más de comprobar que nuestro cálculo numérico es correcto. Además desarrollaremos por casos las distintas
condiciones que tienen que cumplirse para que aparezcan bandas planas y ver la dependencia de la enerǵıa con los
distintos parámetros del sistema. Por tanto partiendo de la última expresión:

ε± = J cos k + ∆Ω + ωa ±
√

(J cos k + ∆Ω)2 + 2J ′2(1 + cos k) (4.12)

En donde hemos expresado la ecuación anterior (4.11) en función de ∆Ω = Ω− ωa, para buscar las bandas planas
imponemos que la velocidad de grupo es nula es decir:

dε±
dk

= −J sin k ∓ J ′
2

sin k + J sin k(J cos k + ∆Ω)√
(J cos k + ∆Ω)2 + 2J ′2(1 + cos k)

= 0 (4.13)

Procedemos a despejar J ′ en función de J :

J2[(J cos k + ∆Ω)2 + 2J ′
2
(1 + cos k)] = J2(J cos k + ∆Ω)2 + J ′

4
+ 2JJ ′

2
(J cos k + ∆Ω)

2J ′
2
J2(1 + cos k) = J ′

4
+ 2J2J ′

2
(1 + cos k)− 2J2J ′

2
+ 2JJ ′

2
∆Ω

J ′
4 − 2J ′

2
J2 + 2J ′

2
J∆Ω = 0

Obteniendo finalmente para casos J ′ 6= 0, la relación:

J ′ = ±
√

2J(J −∆Ω) (4.14)

Notemos una cosa:

J ′
4 − 2J ′

2
J2 + 2J ′

2
J∆Ω = 0

J ′
2
(J ′

2 − 2J2 + 2J∆Ω) = 0

(
J ′

J

)2

= 2

(
1− ∆Ω

J

)

J ′ = J

√
2

(
1− ∆Ω

J

)
(4.15)

Luego si J > 0 entonces J ′ > 0 y viceversa, luego esta es en realidad la ecuación correcta. De hecho si se considera
que el signo de J ′ es arbitrario y no depende de J entonces cuando se procede a usar la fórmula 6 del art́ıculo [6] uno
encuentra problemas al calcular aśı los estados localizados. Podemos obtener el mismo resultado (Ecuación (4.14) y
(4.15)) con otros métodos alternativos de cálculo para ello véase el Apéndice D.
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Notemos que si las dos frecuencias son iguales (∆Ω = 0) entonces: J ′ =
√

2J es la condición para que aparezca
una banda plana. Se tiene que cumplir 2J(J −∆Ω) > 0 si y solo si:

Si: J > 0 −→ J > ∆Ω
Si: J 6 0 −→ J 6 ∆Ω

Sustituyendo (4.15) en (4.14) tenemos:

ε± = J cos k + Ω± | J cos k + 2J −∆Ω | (4.16)

Veamos los distintos casos:

Caso 1: Si J cos k + 2J −∆Ω > 0, obtenemos como soluciones:

a) ε+ = 2J cos k + 2J + ωa

b) ε− = −2J + ωb

Si llamamos ξ ≡ 2J −∆Ω. Entonces: J cos k + ξ > 0, imponiendo para que se cumpla ∀k tenemos:

Caso de J > 0: Si ξ > J −→ 2J −∆Ω > J −→ J > ∆Ω

Caso de J < 0: Si ξ > −J −→ 2J −∆Ω > −J −→ J > ∆Ω
3

Caso 2: Si J cos k + 2J −∆Ω < 0, obtenemos como soluciones:

a) ε+ = −2J + ωb

b) ε− = 2J cos k + 2J + ωa

Si llamamos ξ ≡ 2J −∆Ω. Entonces: J cos k + ξ < 0, imponiendo para que se cumpla ∀k tenemos:

Caso de J > 0: Si ξ < J −→ 2J −∆Ω < J −→ J < ∆Ω

Caso de J < 0: Si ξ < −J −→ 2J −∆Ω < −J −→ J < ∆Ω
3
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Recordando que se teńıa que cumplir que: 2J(J −∆Ω) > 0, tenemos:

Caso A: Se tiene que cumplir una de estas condiciones siguientes:

J ∈ [0, +∞) si ∆Ω < 0

J ∈ [∆Ω, +∞) si ∆Ω > 0

Tenemos dos casos posibles según lo dicho anteriormente:

Caso 1 de J > 0:

Entonces J > ∆Ω −→

{
ε+ = 2J cos k + 2J + ωa

ε− = −2J + ωb

Por ejemplo si tomamos J = 5, ωa = 6 y un valor de ∆Ω que nos garantice que ωb > 0 y que se cumple que
J < ∆Ω por ejemplo ∆Ω = −2 con estos datos tenemos:{

ε+ = 10 cos k + 16

ε− = −8

Si lo representamos en la primera zona de Brillouin pero usando directamente la ecuación (4.11) directamente
con los datos y condiciones impuestos obtenemos:

Figura 4.3: Bandas de enerǵıa J = 5, ∆Ω = −2 y ωa = 6 con ε+ → azul y ε− → rojo

Caso 2 de J > 0: Entonces J < ∆Ω −→ Caso imposible
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Caso B: Se tiene que cumplir una de estas condiciones siguientes:

J ∈ (−∞, ∆Ω] si ∆Ω < 0

J ∈ (−∞, 0] si ∆Ω > 0

Tenemos dos casos posibles según lo dicho anteriormente:

Caso 1 de J < 0: Entonces J > ∆Ω/3 −→ Caso imposible

Caso 2 de J < 0: Entonces J < ∆Ω/3 −→

{
ε+ = −2J + ωb

ε− = 2J cos k + 2J + ωa

Por ejemplo si tomamos J = −5, ωa = 6 y un valor de ∆Ω que nos garantice que ωb > 0 y que se cumple
que J < ∆Ω/3 por ejemplo ∆Ω = −2 con estos datos tenemos:{

ε+ = 12

ε− = −10 cos k − 4

Si lo representamos en la primera zona de Brillouin pero usando directamente la ecuación (4.11) directamente
con los datos y condiciones impuestos obtenemos:

Figura 4.4: Bandas de enerǵıa J = −5, ∆Ω = −2 y ωa = 6 con ε+ → azul y ε− → rojo
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Debemos darnos cuenta que si no se cumplen las condiciones para J de los casos Caso A y Caso B entonces no
existirá un J ′ ya que 2J(J −∆Ω) < 0 y no existirá la ráız, por lo tanto la introducción de dos frecuencias distintas
implica que han de cumplirse unas condiciones que restrinjan J para que puedan aparecer ondas planas. Podemos
hacer una representación conjunta del Caso A y el Caso B en tres dimensiones representando las ecuaciones (4.12)
imponiendo la condición (4.15) para valores fijos de ∆Ω = −2 y ωa = 6 en función de k ∈ [−π, π] y J ∈ [−10, 10],
aśı podemos ver la evolución de las bandas. Sin embargo hay un intervalo de la gráfica que no es válido cuando
J ∈ [−2, 0] ya que en ese intervalo 2J(J −∆Ω) < 0 y J ′ seŕıa complejo y no existiŕıa esa solución. Por tanto sabiendo
esto la representación seŕıa:

Figura 4.5: Bandas de enerǵıa J ∈ [−10, 10], ∆Ω = −2 y ωa = 6 con ε+ → rojo y ε− → azul
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4.4. Cálculo de las bandas planas para casos más particulares

Podemos ahora explorar algunos casos más sencillos. Empecemos por el ya mencionado caso de ∆Ω = 0, entonces
ωa = ωb ≡ ω y la ecuación (4.12) queda:

ε± = J cos k + ω ±
√

(J cos k)2 + 2J ′2(1 + cos k)

En donde como ya hemos mencionado antes la condición de que existan bandas planas es J ′ =
√

2J si hacemos
∆Ω = 0 en la ecuación (4.15). Sustituyendo la condición de banda plana en la ecuación anterior se obtiene:{

ε+ = 2J(cos k + 1) + ω

ε− = ω − 2J

Si parametrizamos J ′ como J ′ =
√
aJ con a una constante de manera que si a = 2 existirá una banda plana.

Podemos representar en 3D para el caso por ejemplo de ω = 1 y para dos casos de a, el primero para a = 0,5 y
el segundo para ver la banda plana en a = 2. Los intervalos de representación serán k ∈ [−π, π] (primera zona de
Brillouin) y J ∈ [−10 10] obteniendo:

Figura 4.6: Bandas de enerǵıa J ∈ [−10, 10], k ∈ [−π, π], ω = 1 y a = 0,1 con ε+ → rojo y ε− → azul

Figura 4.7: Bandas de enerǵıa J ∈ [−10, 10], k ∈ [−π, π], ω = 1 y a = 2 con ε+ → rojo y ε− → azul
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Otros casos son por ejemplo si J ′ = 0 es el caso de 1 dimensión con algunas sitios más que no están conectados a
nada. Entonces la expresión inicial para las bandas de enerǵıa queda (llamando ∆Ω ≡ Ω− ωa):

ε± = J cos k + Ω±
√

(J cos k + ∆Ω)2 = J cos k + Ω± | J cos k + ∆Ω |

Tenemos varios casos:

1. Si J > 0:

a) Si | J cos k + ∆Ω |> 0 ∀k ó ∆Ω > J :

{
ε+ = 2J cos k + ωb

ε− = ωa

b) Si | J cos k + ∆Ω |< 0 ∀k ó ∆Ω < J :

{
ε+ = ωa

ε− = 2J cos k + ωb

2. Si J < 0:

a) Si | J cos k + ∆Ω |> 0 ∀k ó ∆Ω < J :

{
ε+ = 2J cos k + ωb

ε− = ωa

b) Si | J cos k + ∆Ω |< 0 ∀k ó ∆Ω > J :

{
ε+ = ωa

ε− = 2J cos k + ωb

Veamos ahora el caso de J = 0 y J 6= 0, entonces la expresión general para las bandas queda:

ε± = Ω±
√

(Ω− ωa)2 + 2J ′2(1 + cos k)

Imponiendo que la velocidad de grupo es nula:

dε±
dk

= − J ′ sin k√
∆Ω2 + 2J ′2(1 + cos k)

En donde hemos supuesto que:

dΩ

dk
=
dJ ′

2

dk
=
d∆Ω

dk
= 0

Suponiendo esto a la vista de la expresión de la velocidad de grupo esta nunca se hará cero ∀k si no se incumplen
las condiciones anteriores, es decir en principio no tiene bandas plana para valores constantes de Ω, J ′ y ∆Ω.

Por último veamos el caso más sencillo si J = J ′ = 0 entonces (llamando ∆Ω ≡ Ω− ωa):

ε± = Ω± | ∆Ω |

Si ∆Ω > 0: ε± = ωb,a

Si ∆Ω < 0: ε± = ωa,b

Es decir en este caso no hay bandas, porque no existe transmisión. En el ĺımite en el que J y J ′ se aproximan a
cero las bandas tienden a hacerse cada vez más planas.
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Caṕıtulo 5

Diente de sierra con interacción no lineal

Uno de nuestros principales objetivos es obtener un método numérico que permita obtener los autovalores y
autovectores para el caso en el que acoplamiento de nuestra topoloǵıa en diente de sierra no sea lineal. El Hamiltoniano
no lineal que analizaremos en este caṕıtulos es:

H =

N∑
j=1

[
ωac
†
2jc2j + ωbc

†
2j−1c2j−1

]
+ J

N∑
j=1

[
c†2j−1c2j+1 + c†2j+1c2j−1

]

+ J ′
N∑
j=1

[
c†2jc2j−1 + c†2jc2j+1 + c†2j−1c2j + c†2j+1c2j

]
+
U

2

N∑
j=1

a†ja
†
jajaj

Con U la constante de acoplamiento del término no lineal. Si aplicamos un operador a†ja
†
jajaj sobre un estado

cualquiera |. . . , nj , . . .〉 obtenemos nj(nj − 1) |. . . , nj , . . .〉. Es decir en el caso de que nos encontremos en el caso de
una excitación nj = 1 y nj′ = 0 con j 6= j′ es cero. En otras palabras, el término no lineal no afecta cuando solo hay
una excitación.

En este caṕıtulo primero analizaremos el caso de una excitación para luego desarrollar los métodos numéricos
que nos permitirán abordar el Hamiltoniano no lineal. Explicaremos el método numérico usando el Hamiltoniano
lineal y cuando lo usemos para abordar el caso no lineal indicaremos las modificaciones pertinentes. A continuación
compararemos los resultados anaĺıticos del caṕıtulo anterior para comprobar que el método numérico es correcto.
Finalizaremos viendo, el comportamiento de los niveles de enerǵıa en el caso no lineal. Utilizando el método numérico
que desarrollaremos para resolverlo.

5.1. Single Excitation

Empecemos recordando que el Hamiltoniano a tratar para el caso de una excitación equivale al caso lineal como
acabamos de mencionar:

H =

N−1∑
j=0

[
ωaa

†
jaj + ωbb

†
jbj

]
+ J

N−1∑
j=0

[
b†jbj+1 + b†j+1bj

]
+ J ′

N−1∑
j=0

[
a†jbj + a†jbj+1 + b†jaj + b†j+1aj

]
(5.1)

Que representa la siguiente topoloǵıa en forma de diente de sierra que ya hemos mencionado:

Figura 5.1: Disposición en diente de sierra de los sitios.
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Empezaremos por el caso más sencillo. El caso de una única excitación en toda la red y por tanto como ya hemos
dicho que el Hamiltoniano conmuta con el operador número. Al ser el caso lineal en el que los operadores de creación
y destrucción van por parejas. Es decir conservan el número de excitaciones, entonces la base de autovectores de una
sola excitación es por ejemplo para el caso de 5 sitios:

{|1, 0, 0, 0, 0〉 , |0, 1, 0, 0, 0〉 , |0, 0, 1, 0, 0〉 , |0, 0, 0, 1, 0〉 , |0, 0, 0, 0, 1〉}

Puede observarse que los términos que acompañan a la constante J actúan sobre los sitios de la fila inferior
intercambiando una excitación con dos sitios contiguos de dicha fila, luego precisamos que el número de sitios sea
impar y a partir de un mı́nimo de 3 sitios para que aśı puedan actuar correctamente los operadores (ya que no
hemos definido condiciones de contorno periódicas). Aśı uno puede construirse “con lápiz y papel” o por los métodos
numéricos que hemos desarrollado, que explicaremos en las siguientes secciones, la matriz del Hamiltoniano usando la
base anterior: 

ωb J ′ J 0 0
J ′ ωa J ′ 0 0
J J ′ ωb J ′ J
0 0 J ′ ωa J ′

0 0 J J ′ ωb

 (5.2)

Cabe notar que hay unas dos cajas, si estuviéramos en el caso de 7 sitios seŕıan 3 cajas y aśı sucesivamente. Veamos
si se cumplen los resultados del caṕıtulo anterior. Para ello calcularemos los autovalores para distintos tamaños de
redes 3, 5, 7... y compararemos con un caso concreto de bandas de enerǵıa para ver si coinciden los cálculos teóricos
con los numéricos. Notar que en el caso teórico se ha supuesto que el número de sitios tiende a infinito. Sin embargo
este puede no ser nuestro caso ya que solo podremos obtener resultados numéricos para un número finito de sitios. Por
ello veremos si hay alguna dependencia de los niveles de enerǵıa para un número de sitios creciente. Luego si queremos
calcular para un número alto de sitios precisaremos de un método eficiente para obtener la matriz del Hamiltoniano
que crecerá conforme añadamos sitios y excitaciones. Veamos si puede haber alguna dependencia con el número de
sitios en nuestro caso de una excitación. Como sabemos como tiene que ser la matriz podemos construirla fácilmente
y usando un programa como Mathematica obtener de manera sencilla sus autovectores numéricamente para un caso
concreto. A partir de ahora numeraremos los nodos empezando por 1 en el primer nodo aśı hasta N , aśı los nodos de
abajo pasarán a ser nodos impares1 bj −→ c2j−1 y b†j −→ c†2j−1 e igualmente para los de “arriba” que serán los

nodos pares aj −→ c2j y a†j −→ c†2j . Siguiendo esta notación el Hamiltoniano quedaŕıa finalmente2:

H =

N∑
j=1

[
ωac
†
2jc2j+ωbc

†
2j−1c2j−1

]
+J

N∑
j=1

[
c†2j−1c2j+1 +c†2j+1c2j−1

]
+J ′

N∑
j=1

[
c†2jc2j−1 +c†2jc2j+1 +c†2j−1c2j+c†2j+1c2j

]
(5.3)

Vayamos con el caso concreto tomemos el Caso A de la página 17. Tomamos J = 5, ωa = 6 y ∆Ω = −2. Además
imponemos la condición que viene dada por la ecuación (4.15) obteniendo J ′ ' 8,37, con estos datos obtenemos:{

ε+ = 10 cos k + 16

ε− = −8
(5.4)

1Nota: El ı́ndice j empezará en 1 y no en cero 0
2Ahora N es el número de nodos.
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Si lo representamos en la primera zona de Brillouin obtenemos:

Figura 5.2: Bandas de enerǵıa J = 5, ∆Ω = −2 y ωa = 6 con ε+ → azul y ε− → rojo

Ahora calculamos, numéricamente usando Mathematica, los autovalores de las matrices del tipo (5.2) para numero
de sitios desde 5 hasta 21 obtenemos como resultado:

Cuadro 5.1: Autovalores con J = 5, ωa = 6, ∆Ω = −2 y J ′ = 8,37.

Sitios Autovalores

5 -8,00 -4,60 -4,00 12,60 22,00 - - - - - - - -
7 -8,00 -4,39 -4,24 9,84 17,24 23,56 - - - - - - -
9 -8,00 -4,34 -4,29 8,44 13,94 19,90 24,36 - - - - - -

11 -8,00 -4,32 -4,31 7,66 11,77 16,84 21,54 24,82 - - - - -
13 -8,00 -4,32 -4,31 7,20 10,34 14,52 18,86 22,60 25,11 - - - -
15 -8,00 -4,32 -4,32 6,90 9,35 12,80 16,63 20,31 23,33 25,31 - - -
17 -8,00 -4,32 -4,32 6,70 8,66 11,51 14,84 18,25 21,37 23,85 25,45 - -
19 -8,00 -4,32 -4,32 6,56 8,15 10,54 13,42 16,51 19,51 22,16 24,23 25,55 -
21 -8,00 -4,32 -4,32 6,46 7,78 9,79 12,29 15,05 17,86 20,49 22,77 24,52 25,62

Observamos a la vista de los datos que el autovalor más pequeño ε = −8 corresponde con la banda plana predicha
por la teoŕıa y el autovalor de mayor enerǵıa tiene conforme se acerca a valores cada vez más grandes del número
de sitios a su valor teórico3 ε = 26 (valor máximo de ε+ = 10 cos k + 16). Además la cuarta columna de autovalores
corresponden al autovalor más pequeño posible de la banda de enerǵıa que corresponde tal y como hemos visto antes
a ε = 6 (valor mı́nimo de ε+ = 10 cos k + 16), es decir podemos concluir que nuestro cálculo nos a hecho aparecer dos
niveles de enerǵıa entre las dos bandas calculadas de forma teórica que tienden a ser el mismo para valores altos del
número de sitios, que interpretamos como un efecto de las condiciones de borde abiertas de nuestra topoloǵıa.

3Véase ecuación (5.4) y figura 5.2
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Aśı, si representamos todo esto:

Figura 5.3: Bandas de enerǵıa obtenidas numéricamente J = 5, ∆Ω = −2 y ωa = 6 con Ĺınea Verde −→ Nivel de
enerǵıa máximo de la banda de enerǵıa superior, Ĺınea Rosa −→ Nivel de enerǵıa mı́nimo de la banda de enerǵıa
superior, Ĺıneas Azul y Rojo −→ niveles de enerǵıa intermedios que aparecen debido a condiciones de frontera libres
y Ĺınea Negra −→ Nivel de enerǵıa de la banda plana.

Podemos ahora representar el “gap” (“hueco”) de enerǵıa entre las dos bandas. Definido como la diferencia de
enerǵıas entre el nivel más inferior de la banda superior y el valor de la banda plana, observando nuevamente que
tiende al valor esperado que en este caso es 14:

Figura 5.4: Gap de enerǵıa J = 5, ∆Ω = −2 y ωa = 6

Por tanto podemos decir que los cálculos numéricos dependen del tamaño de la red aśı a mayor número de sitios
más se asemeja el cálculo teórico al numérico tendiendo al valor esperado para el tamaño del gap, es decir observamos
los efectos del numero finito de sitios.
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5.2. Método numérico 1

Empecemos con el primer método para obtener la matriz del Hamiltoniano para un número dado de excitaciones4

y de sitios. Usaremos el programa Mathematica para programar el método en cuestión. En primer lugar pensamos este
método que hemos llamado 1 pero podŕıamos llamarlo trivial en el sentido de que no presenta ninguna complicación
pero sin embargo este es muy ineficiente.

Para este método debemos recordar el aspecto de las matrices de los operadores de creación y destrucción que
tienen una dimensión “n+1” donde “n” es el número de excitaciones:

c =



0
√

1 0 0 . . . . . . . . .

0 0
√

2 0 . . . . . . . . .

0 0 0
√

3 . . . . . . . . .
...

...
...

...
. . .

0 0 0 0 0
√
n . . .

...
...

...
...

...
...


c† =



0 0 0 0 . . . . . . . . .√
1 0 0 0 . . . . . . . . .

0
√

2 0 0 . . . . . . . . .

0 0
√

3 0 . . . . . . . . .
...

...
...

...
. . .

0 0 0 0
√
n+ 1 0 . . .

...
...

...
...

...
...


(5.5)

Lo que haremos es lo siguiente, definiremos cada operador de creación de cada sitio (cada uno con su espacio)
y luego obtendremos su equivalente en el espacio completo de todos los sitios multiplicando tensorialmente cada
operador. Por ejemplo si estamos en un caso con 5 nodos de la red de diente de sierra tenemos que definir un operador
de creación y otro de destrucción para cada sitio en el espacio completo, es decir, el producto tensorial de los cinco
espacios, por ejemplo el operador c†3 del espacio completo seŕıa5: c†3 = I(1)× I(2)× c†3(3)× I(4)× I(5).

Una vez tenemos todos los operadores definidos los multiplicamos y sumamos de acuerdo con la expresión del Ha-
miltoniano (5.3). Podŕıa parecer que ya tenemos la matriz del Hamiltoniano, sin embargo el producto tensorial de las
bases de cada uno de los espacios no es la base del espacio de los estados de “n” excitaciones que es la que estamos bus-
cando. De hecho la base del espacio6 del sitio j en el caso de “n” excitaciones es Ajn ≡ {|0〉 , |1〉 , |2〉 , . . . , |n− 1〉 , |n〉}
y si tenemos N sitios el espacio del operador creación/destrucción del espacio completo es el producto tensorial de
espacios es decir B ≡ A1

n ×A2
n × · · · ×AN−1

n ×ANn︸ ︷︷ ︸
N veces

y este no es el espacio de los estados de “n” excitaciones ya que

por ejemplo volviendo al ejemplo de 5 sitios y 3 excitaciones la base B contiene |0, 1, 2, 0, 0〉 pero también contiene
estados como |0, 3, 3, 2, 0〉 en el que la red tiene más de 3 excitaciones7.

Por ello deberemos primero encontrar la base que proyecte el Hamiltoniano que hemos obtenido en el espacio de los
estados de “n” excitaciones. Deberemos obtener la base de ese espacio. Para ello podemos darnos cuenta del siguiente
hecho, los elementos de la base del espacio completo B ≡ {|0, 0, . . . , 0, 0〉 , . . . , |n, n, . . . , n, n〉} pueden ordenarse
como si fuesen una sucesión de números de N cifras y en la base numérica n + 1 desde el número 00 . . . 00 hasta el
nn . . . nn y de estos seleccionar aquellos cuya suma de cifras sea “n” aśı obtendremos los estados de “n” excitaciones.
Notar que de esta manera cada autoestado tiene asociado un número único. Aśı por ejemplo el estado |0, 1, 1, 1, 0〉
que en el caso de tres excitaciones equivale al número en base 4: 01110 o el número decimal 44 que es exclusivo de ese
estado, veremos que este hecho nos será útil para el segundo método numérico más eficiente.

Con la base obtenida se calcula la matriz de proyección y multiplicando el Hamiltoniano por esta se obtiene la
matriz del Hamiltoniano definitiva y de esta ya podemos obtener los autovalores y autovectores. Sin embargo tenemos
un problema que la dimensión de la matriz crece muy deprisa de hecho si tenemos “n” excitaciones y “N” sitios crece
como (n+ 1)N que por ejemplo para el caso de 3 excitaciones y 7 sitios es (3 + 1)7 = 16384 un tamaño por lo menos
respetable. Esto nos impide llegar a caso con muchos sitios lo que nos impide trabajar en sistemas con un gran número
de sitios no pudiendo observar efectos de tamaño finito, aśı como una gran lentitud en los cálculos numéricos. Para
ver una explicación más detallada del programa desarrollado en Mathematica consúltese el Apéndice E.

4Más de una excitación.
5Con: I(i) matriz identidad del espacio i-ésimo.
6Es decir el espacio de las matrices (5.5)
7En concreto 8.
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5.3. Método numérico 2

5.3.1. Construyendo la base:

Como hemos dicho el problema está en la dimensión de la matriz del Hamiltoniano que crece demasiado deprisa
para nuestros propósitos. Es por ello que precisamos de un método que reduzca dicho tamaño y aśı reduzca los
tiempos de cálculo. El método alternativo consistirá en calcular la matriz del Hamiltoniano directamente en la base de
los autovectores con “n” excitaciones. Para construir la matriz necesitamos construir la base, por ello hacemos uso de
lo expuesto en la sección anterior. Como en el conjunto de todos los estados de la base completa B se encuentran los
estados de la base buscada (es decir es un subespacio de B) podemos construir la base completa que va desde el estado
|0, 0, . . . , 0, 0〉 hasta el |n, n, . . . , n, n〉 y de ella seleccionar aquellos estados que contengan solo “n” excitaciones.

Para construir la base completa podemos recurrir a la propiedad de que esta puede ser ordenada como si cada
estado fuese un número de “N” cifras (si hay “N” sitios) en la base numérica “n+1” (si hay n excitaciones). Aśı el
estado |0, 0, . . . , 0, 1〉 equivale al número 00 . . . 01 de manera que la base completa es la sucesión de números en base
“n+1” de “N” cifras en orden ascendente desde el 00 . . . 00 hasta el nn . . . nn. Como Mathematica permite generar tanto
números como vectores de “N” componentes que sean un número en una base determinada generando esa sucesión de
vectores cuyas componentes son como las cifras de los números de la sucesión podemos seleccionar aquellos vectores
cuya suma de componentes sea “n” y tendremos aśı la base construida.

De esta manera la posición del número en la sucesión inicial desde el 00 . . . 00 hasta el nn . . . nn tiene asignado
un número que se corresponde con su posición en la lista menos uno. Aśı por ejemplo para una excitación base 2 el
|0, 0, . . . , 0, 0〉 ≡ 00 . . . 00 equivale en decimal 0 y suposición en la sucesión es la 1 ó |0, 0, . . . , 0, 1, 0〉 ≡ 00 . . . 010
equivale al número en decimal al 2 y su posición es la 3 en la sucesión, de manera que cada estado tiene asociado un
número propio y podemos “transformar” un estado en otro simplemente sumando la cantidad adecuada en cada caso.
Esta propiedad la usaremos más adelante.

Concluiré esta subsección con un ejemplo consideremos el caso de 5 sitios y una excitación (base 2), primero
construimos la base completa (sucesión inicial): 

|0, 0, 0〉
|0, 0, 1〉
|0, 1, 0〉
|0, 1, 1〉
|1, 0, 0〉
|1, 0, 1〉
|1, 1, 0〉
|1, 1, 1〉


Seguidamente seleccionamos los estados que tengan 1 excitación y creamos la sucesión complementaria de los

número decimales a los cuales equivalen:  1
2
4

↔
 (0, 0, 1)

(0, 1, 0)
(1, 0, 0)

 (5.6)

Aśı tenemos construida la base buscada.
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5.3.2. Construyendo la matriz:

Una vez que ya tenemos la base buscada tanto como una sucesión de vectores como una sucesión de números
tenemos ahora que construir la matriz. Para comenzar deberemos ver como actúan los operadores de creación y
destrucción recordemos que:

c |n〉 =
√
n |n− 1〉 (5.7)

c† |n〉 =
√
n+ 1 |n+ 1〉 (5.8)

Es decir que por ejemplo si: c†1 |1, 1, 0〉 =
√

2 |2, 1, 0〉 ó c2 |1, 1, 0〉 =
√

1 |1, 0, 0〉. En el método numérico modi-
ficaremos el estado | 〉 (un estado cualquiera) y luego multiplicaremos por el coeficiente

√
(un coeficiente cualquiera,

por ejemplo en (5.8) es
√
n+ 1). Podemos aśı darnos cuenta que el operador c†1 en nuestro caso equivale a sumar el

número en base 3: 100 al número en base 3 (estado de partida) 110 obteniendo 100 + 110 = 210 aśı mismos el caso de
c2 equivale a 110− 010 = 100, resta puesto que es el operador destrucción.

Ambos casos para simplificar los cálculos y no tener que sumar o restar vectores podemos hacerlo en su equivalente
decimal aśı: 9 + 12 = 21 y 12− 3 = 9. Es decir los operadores equivalen a los números: c†1 ≡ 9 y c2 ≡ −3. Por ello que
los operadores c† y c equivalen a las listas de números que representan todos los operadores creación y destrucción
respectivamente, aśı en nuestro ejemplo de 3 sitios y una excitación (base 2) seŕıan:

c† ≡

 4
2
1

 c ≡

 −4
−2
−1

 (5.9)

Aśı para el caso de c†, tenemos que c†1 ≡ 4 c†2 ≡ 2 y c†3 ≡ 1. Es decir los operadores de creación y destrucción están
asociados a las potencias ±(n+1)j donde “n+1” es la base numérica de los números de las sucesiones que coincide con
el número de excitaciones menos uno y j equivale a la posición de la cifra (o componente si es un vector) que indica
la posición del sitio en el arreglo usado y el signo viene a ser positivo si crea una excitación o negativo si la destruye.
Para poder construir la matriz debemos recordar la forma del Hamiltoniano (luego veremos el caso no lineal):

H =

N∑
j=1

[
ωac
†
2jc2j+ωbc

†
2j−1c2j−1

]
+J

N∑
j=1

[
c†2j−1c2j+1 +c†2j+1c2j−1

]
+J ′

N∑
j=1

[
c†2jc2j−1 +c†2jc2j+1 +c†2j−1c2j+c†2j+1c2j

]
Para obtener la matriz del Hamiltoniano en la base del subespacio de “n” excitaciones lo que haremos será dividirlo

en la suma de operadores más sencillos, consideraremos cada pareja de operadores de creación y destrucción como un
único operador: c†2jc2j , c

†
2j−1c2j−1, c

†
2j−1c2j+1, c

†
2j+1c2j−1, c

†
2jc2j−1, c

†
2jc2j+1, c

†
2j−1c2j y c†2j+1c2j . Para obtener la

matriz del Hamiltoniano obtendremos todas las imágenes de los elementos de la base, para ello haremos actuar los
operadores anteriores sobre cada elemento de la base sumando a cada componente del vector (5.6) las correspondientes
componentes de los vectores c† y c (Eq. (5.9)). Como estos operadores conservan el número de excitaciones la suma
de estos tres números (c†, c y (5.6)) será un número que este en la lista dada por (5.6) y por tanto un vector de la

base. Pongamos un ejemplo el operador c†1c3, para el caso de 3 sitios y 1 excitación, que actuará sobre los elementos
de la base en (5.6) {|0, 0, 1〉 , |0, 1, 0〉 , |1, 0, 0〉} que equivalen a los números (los estado son como número binarios)

(véase (5.6)) 1, 2, 4. Los operadores c†1 y c3 equivalen a sumar 4 y sumar -1 (haciendo uso de (5.9)). Aśı c†1c3 equivale
a sumar 3. De manera que las imágenes de los vectores de la base 1, 2, 4 son 4, 5, 7. Notar que 4 si que es un vector
de la base pero no lo son 5 y 7. Notemos que las imágenes de 2 y 4 ó |0, 1, 0〉 y |1, 0, 0〉 son cero ya que no tienen
excitaciones en el tercer sitio.

Usaremos este método con los seis últimos operadores 8 ya que los dos primeros (c†2jc2j y c†2j−1c2j−1) son matrices
diagonales como veremos. Una vez hallamos obtenido las imágenes de todos los vectores de la base sobre los seis tipos
de operadores para cada valor de j, para cada sitio, ya podŕıamos construir las matrices. Comparando las imágenes de
los vectores de la base con los vectores de la base. Aśı en el ejemplo anterior compararemos 1, 2, 4 con 4, 5, 7. De esta
manera podemos construir la matriz del operador c†1c3. Comparando la primera imagen 4 con la base colocaremos en

la primera columna de la matriz de c†1c3 1 si coincide con la imagen y 0 si no por tanto la primera columna es (0 0 1)T

(en vertical). El resto de imágenes 5 y 7 no coinciden con ningún vector de la base original y las columnas de la matriz
serán (0 0 0)T De esta manera quedan solucionados los problemas del tipo que c3 |0, 1, 0〉 = 0 y con nuestro método:
010− 001 = 001 ↔ 2− 1 = 1.

8c†2j−1c2j+1, c
†
2j+1c2j−1, c

†
2jc2j−1, c

†
2jc2j+1, c

†
2j−1c2j y c†2j+1c2j
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Por tanto la matriz del ejemplo c†1c3 queda:

c†1c3 ≡

 0 0 0
0 0 0
1 0 0

 (5.10)

Solo nos falta calcular los factores
√ ×√ , que aparecen al hacer actuar un operador destrucción ci y seguidamente

operador creación c†j , usando la sucesión de los vectores iniciales (5.6) antes de obtener sus imágenes y sabiendo como
actúan los operadores (5.8) y (5.9). De manera que, volviendo al ejemplo, usando ahora la lista de vectores (que no
de los números 1, 2 y 4):  (0, 0, 1)

(0, 1, 0)
(1, 0, 0)

 (5.11)

Usando (5.8) y (5.9) calculamos los factores
√ ×√ del ejemplo anterior usando (5.11), al aplicar c†1c3 sobre cada

elemento de la base, obteniendo:  √0 + 1
√

1√
0 + 1

√
0√

1 + 1
√

0

 =

 1
0
0

 (5.12)

Multiplicamos cada columna de la matriz (5.10) por su coeficiente
√ ×√ , en este caso queda igual pero no siempre

ocurre esto. Aśı, la primera columna la multiplicaŕıamos por el primer elemento de la lista anterior 1 y las otras dos
por 0. Si se diera el caso de que, al cambiar los operadores de creación y destrucción por sumas o restas de números
dieran una imagen que no es correcta al aplicarlo sobre un estado de la base. Como cuando el operador destrucción
actúa sobre un sitio donde no hay excitaciones, entonces el factor

√ ×√ es cero por (5.7).

Aśı construimos las matrices a partir de los estados de la base comparándolos con sus imágenes (notar que compa-
raremos números decimales entre śı ya que hemos reducido tanto la base como las imágenes de la misma a dos listas
de números decimales) y multiplicaremos cada elemento de la matriz recién construida por su factor correspondiente
√ ×√ . Aśı repitiendo el proceso para todo j obtenemos todos los operadores que como hemos dicho son las parejas

de operadores creación y destrucción. Solo quedan las matrices de los operadores c†2jc2j y c
†
2j−1c2j−1, que son dos

matrices diagonales. En la que en la primera los elementos impares de la diagonal son nulos y viceversa en la segunda
con sus correspondientes factores

√ ×√ .

El Hamiltoniano lo construimos finalmente multiplicando y sumando todas las matrices (las que representan a las

parejas: c†2jc2j , c
†
2j−1c2j−1, c

†
2j−1c2j+1, c

†
2j+1c2j−1, c

†
2jc2j−1, c

†
2jc2j+1, c

†
2j−1c2j y c†2j+1c2j) y a continuación podemos

obtener con la matriz ya construida los autovalores y autovectores, matriz que no tenemos que proyectar porque la
hemos construido en la base que nos interesaba.

Obtendremos ahora la dimensión de la matriz para compararla con el método anterior y ver si realmente hemos
simplificado el cálculo. Para ello necesitamos calcular el número de elementos de la base dado un “N” y un “n”. El
problema se puede simplificar a el número de combinaciones de meter “n” bolas (excitaciones) en “N” cajas (“sitios”), o
lo que es lo mismo ordenar (“N-1”) “separadores” y n “bolas” es decir (N−1+n)!, pero como podemos intercambiar dos
bolas o separadores entre śı sin cambiar de estado tenemos entonces que quitar las permutaciones de estos obteniendo:

(N − 1 + n)!

n!(N − 1)!
=

(
N − 1 + n

n

)
Que si lo comparamos con (n + 1)N se puede demostrar que

(
N − 1 + n

n

)
< (n + 1)N de hecho para n = 5 y

N = 7 tenemos que

(
7− 1 + 5

5

)
= 462� (5 + 1)7 = 279936. Esto solo es el tamaño del lado de la matriz cuadrada,

el total de números de cada matriz corresponde al cuadrado de esas cantidades. Podemos ver en detalle explicado el
programa hecho para Mathematica y para ello consúltese el Apéndice F.
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5.4. Comprobación de los métodos numéricos

Un primer chequeo que podemos hacer para comprobar que el nuevo programa calcula correctamente la matriz del
Hamiltoniano comparamos los valores de los autovalores en ambos casos. Usaremos como parámetros ωa = 2, J = 5,
∆Ω = −2 y 5 sitios compraremos para distinto número de excitaciones n = 1, 2, 3. Con esto en las tablas 5.2, 5.3 y
5.4 se puede notar, que la diferencia de los valores obtenidos es del orden del error numérico:

Cuadro 5.2: Caso de n = 1 excitaciones.

Método 2 Método 1 DIFERENCIA ( %)

18,00 18,00 0,00E+00
8,60 8,60 0,00E+00

-8,00 -8,00 0,00E+00
-8,60 -8,60 1,24E-13

-12,00 -12,00 0,00E+00

Cuadro 5.3: Caso de n = 2 excitaciones.

Método 2 Método 1 DIFERENCIA ( %)

36,00 36,00 2,76E-13
26,60 26,60 0,00E+00
17,20 17,20 0,00E+00
10,00 10,00 0,00E+00
9,40 9,40 9,45E-14
6,00 6,00 0,00E+00
0,60 0,60 1,99E-12

7,85E-15 -2,83E-16 103,61
-3,40 -3,40 3,01E-13

-16,00 -16,00 0,00E+00
-16,60 -16,60 0,00E+00
-17,20 -17,20 0,00E+00
-20,00 -20,00 0,00E+00
-20,60 -20,60 -4,83E-13
-24,00 -24,00 4,14E-13
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Cuadro 5.4: Caso de n = 3 excitaciones.

Método 2 Método 1 DIFERENCIA ( %)

54,00 54,00 -3,68E-13
44,60 44,60 0,00E+00
35,20 35,20 -3,03E-13
28,00 28,00 0,00E+00
27,40 27,40 3,76E-13
25,81 25,81 -3,99E-13
24,00 24,00 0,00E+00
18,60 18,60 0,00E+00
18,00 18,00 5,53E-13
14,60 14,60 0,00E+00
9,20 9,20 2,32E-13
8,60 8,60 -3,51E-13
5,20 5,20 0,00E+00
2,00 2,00 5,11E-13
1,40 1,40 0,00E+00
0,80 0,80 2,51E-13

-2,00 -2,00 0,00E+00
-2,60 -2,60 -3,92E-13
-6,00 -6,00 0,00E+00
-7,40 -7,40 -2,76E-13
-8,00 -8,00 0,00E+00
-8,60 -8,60 -1,24E-13

-11,40 -11,40 0,00E+00
-12,00 -12,00 -8,29E-13
-15,40 -15,40 0,00E+00
-24,00 -24,00 -4,14E-13
-24,60 -24,60 0,00E+00
-25,20 -25,20 0,00E+00
-25,81 -25,81 -3,99E-13
-28,00 -28,00 3,55E-13
-28,60 -28,60 0,00E+00
-29,20 -29,20 3,41E-13
-32,00 -32,00 3,11E-13
-32,60 -32,60 3,05E-13
-36,00 -36,00 0,00E+00

32



Otro método de comprobación que aplicaremos es calcular con el Método 2, los autovalores para el caso de “single
excitation” (una sola excitación) para los número de sitios desde 5 hasta 17 y comprobar la dependencia del gap con
el tamaño de la red de osciladores dispuestos en forma de diente de sierra. Es decir que conforme se va aumentando
el número de sitios el tamaño del gap tiende al valor teórico, para un número muy grande de sitios, asintóticamente.
Aśı tenemos que los autovalores son:

Cuadro 5.5: Autovalores calculados a través del Método 2 para distinto número de sitios y una excitación. Para
valores de ωa = 6, J = 5 y ∆Ω = −2. Aplicando las condiciones para J ′ para que exista una banda plana.

Sitios Autovalores

5 -8,00 -4,60 -4,00 12,60 22,00
7 -8,00 -4,39 -4,24 9,84 17,24 23,56
9 -8,00 -4,34 -4,29 8,44 13,94 19,90 24,36
11 -8,00 -4,32 -4,31 7,66 11,77 16,84 21,54 24,82
13 -8,00 -4,32 -4,31 7,20 10,34 14,52 18,86 22,60 25,11
15 -8,00 -4,32 -4,32 6,90 9,35 12,80 16,63 20,31 23,33 25,31
17 -8,00 -4,32 -4,32 6,70 8,66 11,51 14,84 18,25 21,37 23,85 25,45

Si se obtienen las diferencias con los ya calculados en la primera sección de este caṕıtulo que se calcularon constru-
yendo la matriz directamente por que se sab́ıa cual era su forma. No se obtienen diferencias superiores a 10−13 lo cual
verifica el correcto funcionamiento del método presentando exactamente la misma dependencia del gap con el tamaño
de la red. Este caso recordemos que corresponde al Caso A de la página 17, lo que nos sirve de conexión entre el
cálculo anaĺıtico y numérico.
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5.5. Resultados

5.5.1. Caso lineal

Entre los resultados que podemos comprobar primero para el caso no lineal se encuentra la fórmula citada en la
referencia [7] y [6] en la que nos dan una expresión anaĺıtica para obtener los autoestados localizados, es decir para
el caso de una única excitación y en el caso de que las filas superior e inferior de la topoloǵıa en diente de sierra con
frecuencias iguales, encontramos que los autoestados de la banda plana son:

|Γj〉 =
1

2
(c†2j + c†2j+2 −

√
2c†2j+1) |0〉 (5.13)

Notemos que la fórmula dada en bibliograf́ıa [6] no es la expresión de arriba. Es una errata que se subsana
consultando la bibliograf́ıa que proporciona ese art́ıculo que es [8]. Para comprobar el resultado con el programa es
sencillo, no hay más que construir el estado y obtener su imagen haciendo actuar el Hamiltoniano recién obtenido,
obtener la norma del vector imagen, dividirla por la norma del vector y obtener aśı el valor del autovector. En donde
aplicando estas modificaciones al Método 2 podemos comprobar que la expresión (5.10) funciona. Aśı por ejemplo
para un caso concreto de valores ωa = 6, J = −5 y ∆Ω = −2. Notar que los autoestados localizados tienen la forma
en la topoloǵıa de:

Figura 5.5: Un autoestado localizado.

De manera que para este caso particular de nueve sitios la degeneración de los autoestados localizados es de 3.
Veamos la degeneración del autoestado localizado para el caso de una excitación. Veremos en la siguiente sección para
el caso de más de una excitación. Si “m” es la degeneración el número de sitios “N” que es un número impar como ya
hemos mencionado antes sigue: N = 2m+3 empezando para el caso de 5 sitios que es el mı́nimo número de sitios en el
cual tiene sentido que puedan aparecer estos autoestados localizados tal y como se puede observar en el dibujo. Es decir
la degeneración es: m = N−3

2 en donde si obtenemos los autovalores para el caso de una excitación y varios sitios con
el Método 2 como en el cuadro 5.5 obtenemos que la degeneración del autoestado localizado9 coincide exactamente
con la expresión mencionada. Aśı en función del número de sitios (en el caso de una excitación) la degeneración del
autoestado localizado para el cuadro 5.5 obtuvimos con el Método 2, resultado válido solo para una excitación10:

Sitios Degeneración

5 1
7 2
9 3
11 4
13 5
15 6
17 7

Cuadro 5.6: Degeneración de los autoestados localizados obtenidos a través del Método 2 en función del número de
sitios y una excitación. Para valores de ωa = 6, J = −5 y ∆Ω = −2. Aplicando las condiciones para J ′ para que exista
una banda plana. (Caso de la tabla anterior 5.5)

Para ver cual es la modificación que hay que añadir al código del Método 2 para comprobar que (5.13) es un
autoestado localizado, consúltese el Apéndice G.

9El autoestado cuyo autovalor es el de la banda plana en el caso anterior era ε = −8.
10En la siguiente sección veremos el caso general.
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Nosotros vamos a intentar obtener una formula más general del caso anterior para los autoestados localizados para
el caso de dos frecuencias distintas de la fila superior e inferior de sitios del arreglo de diente de sierra para el caso
de una sola excitación. Para ello veamos el ejemplo de 5 sitos y una excitación que sabemos la forma de la matriz. Si
aplicamos uno de los autoestados (5.13) para el caso de frecuencias iguales obtenemos:

ωb J ′ J 0 0
J ′ ωa J ′ 0 0
J J ′ ωb J ′ J
0 0 J ′ ωa J ′

0 0 J J ′ ωb




0
1/2

−
√

2/2
1/2
0

 =
1

2


J ′ −

√
2J

ωa −
√

2J ′

J ′ −
√

2ωb + J ′

−
√

2J ′ + ωa
−
√

2J + J ′

 (5.14)

Que claramente no es autovector en el caso de frecuencias distintas como cabŕıa esperar. Definamos tres constantes
A, B y C, y veamos que valor podemos darles para que el anterior estado sea autovector del Hamiltoniano:

ωb J ′ J 0 0
J ′ ωa J ′ 0 0
J J ′ ωb J ′ J
0 0 J ′ ωa J ′

0 0 J J ′ ωb




0
A/2

−B
√

2/2
C/2

0

 =
1

2


AJ ′ −B

√
2J

Aωa −B
√

2J ′

AJ ′ −B
√

2ωb + CJ ′

−B
√

2J ′ + Cωa
−B
√

2J + CJ ′

 (5.15)

Con ello imponemos:

J ′A−B
√

2J = 0 (5.16)

J ′C −B
√

2J = 0 (5.17)

Es decir se tiene que cumplir que A = C. Con ello podemos hallar la relación entre A y B:

J ′A−B
√

2J = 0 −→ A

B
=
√

2
J

J ′
=

√
J

J −∆Ω
(5.18)

En donde hemos hecho uso de la condición de banda plana: J ′ = J

√
2

(
1− ∆Ω

J

)
. Por último establecemos la

condición para que los elementos del vector imagen sean proporcionales a los del vector inicial y aśı sea autoestado:

Aωa −B
√

2J ′

A
=
Bωb − J ′A+B√

2

B
(5.19)

Sustituimos la condición (5.18) para que dicha relación garantice que es un autoestado si se cumple (5.19), obte-
niendo:

−
√

2J2 + (
√

2(ωb − ωa) + J ′)J +
√

2J ′√
2J

= 0

Obteniendo la relación entre J y J ′ para que el estado sea autovector:

J ′ =

√
2J(J − 2∆Ω)

J +
√

2
(5.20)

Pero al mismo tiempo queremos que existan bandas planas, ya que estamos buscando los autoestados localizados.
Por ello a de cumplirse simultáneamente:

J ′ = J

√
2

(
1− ∆Ω

J

)
(5.21)

Igualando ambas expresiones:

J

√
2

(
1− ∆Ω

J

)
=

√
2J(J − 2∆Ω)

J +
√

2
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Podemos obtener aśı una relación que debe cumplirse entre J y ∆Ω para que se cumplan simultáneamente (5.20)

y (5.21) (siempre que ∆Ω 6= − 2
√

2
3 ):

J =
2∆Ω2 +

√
2∆Ω− 1±

√
1 + 2

√
2∆Ω + 4∆Ω2 + 4

√
2∆Ω3 + 4∆Ω4

2
√

2 + 3∆Ω

Luego las condiciones que han de cumplirse para que tengamos un autoestado localizado son:

J ′ = J

√
2

(
1− ∆Ω

J

)
(5.22)

J =
2∆Ω2 +

√
2∆Ω− 1±

√
1 + 2

√
2∆Ω + 4∆Ω2 + 4

√
2∆Ω3 + 4∆Ω4

2
√

2 + 3∆Ω
(5.23)

Además cumpliéndose:

A = C (5.24)

A

B
=
√

2
J

J ′
=

√
J

J −∆Ω
(5.25)

Aśı, el autoestado localizado es:

|Γj〉 =
1

2

(√
J

J −∆Ω
c†2j +

√
J

J −∆Ω
c†2j+2 −

√
2c†2j+1

)
|0〉 (5.26)

Para ver cual es la modificación que hay que añadir al código del Método 2 para comprobar que (5.26) es un
autoestado localizado, consúltese el Apéndice H. Con estos resultados de esta sección y sobre todo la Figura 5.5 no
ayudará enormemente en la sección siguiente a obtener la degeneración de los autoestados localizados, para un caso
general de “N” sitios y “n” excitaciones.
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5.5.2. Caso no lineal

Con el método numérico ya obtenido y comprobado su correcto funcionamiento y sus coincidencias con el caso no
lineal ya podemos obtener los niveles de enerǵıa del caso no lineal recuerdo que era:

H =

N∑
j=1

[
ωac
†
2jc2j + ωbc

†
2j−1c2j−1

]
+ J

N∑
j=1

[
c†2j−1c2j+1 + c†2j+1c2j−1

]

+ J ′
N∑
j=1

[
c†2jc2j−1 + c†2jc2j+1 + c†2j−1c2j + c†2j+1c2j

]
+
U

2

N∑
j=1

a†ja
†
jajaj

Observamos que si aplicamos un operador a†ja
†
jajaj sobre un estado cualquiera |. . . , nj , . . .〉 obtenemos como ya

dijimos nj(nj − 1) |. . . , nj , . . .〉, es decir son una matriz diagonal donde el elemento j de la diagonal es nj(nj − 1) con
nj el número de excitaciones del sitio j en el estado inicial. Por tanto una vez añadida esta matriz diagonal que le
corresponde al término no lineal podemos, usando el Método 2 de cálculo, obtener los autovalores del sistema que
queŕıamos estudiar. Podemos aśı obtener dichos autovalores en función de la constante de acoplamiento U . Por ejemplo

podemos ver el caso anterior de ωa = 6, J = −5 y ∆Ω = −2 y aplicaremos las condiciones para J ′ = J

√
2

(
1− ∆Ω

J

)
para que exista una banda plana. Nuestro caso constará de 7 sitios y 2 excitaciones. Aśı podremos observar como se
comportan los niveles degenerados que aparecen para U = 0 para valores distintos y podremos ver un caso con mayor
número de excitaciones en la que estas enerǵıas se sumarán. En nuestro caso para una excitación encontrábamos un
nivel degenerado de enerǵıa de 12 como se ve en la Figura 4.4, en el caso de dos, tenemos, 24 la suma de las enerǵıas de
ambas excitaciones cuando se encuentran degeneradas en el caso de U = 0. Veamos la dependencia de los autovalores:

Figura 5.6: Autovalores para el caso de 7 sitios y 2 excitaciones calculados por el Método 2 en función del parámetro
no lineal “U”. Para valores de ωa = 6, J = −5 y ∆Ω = −2. Aplicando las condiciones para J ′ para que exista una
banda plana.

Para ver cual es la modificación que hay que añadir al código del Método 2 para añadir el término no lineal,
consúltese el Apéndice I.
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Podemos ampliar la zona de interés, la banda plana de valor 24, con 3 autoestados degenerados para el caso de
U = 0:

Figura 5.7: Autovalores para el caso de 7 sitios y 2 excitaciones calculados por el Método 2 en función del parámetro
no lineal “U”. Para valores de ωa = 6, J = −5 y ∆Ω = −2. Aplicando las condiciones para J ′ para que exista una
banda plana.

Para el caso de 7 sitios pero tres excitaciones, observándose 4 autoestados degenerados en U = 0:

Figura 5.8: Autovalores para el caso de 7 sitios y 3 excitaciones calculados por el Método 2 en función del parámetro
no lineal “U”. Para valores de ωa = 6, J = −5 y ∆Ω = −2. Aplicando las condiciones para J ′ para que exista una
banda plana.

Pueden observarse que al aumentar el valor del parámetro U los niveles de enerǵıa que estaban degenerados se
separan con forme aumenta la no linealidad, puede observarse que la degeneración en el caso de dos y tres excitaciones
es respectivamente de tres y cuatro al contrario que en una excitación que para siete sitios recordando la Figura
5.5 tendŕıa una degeneración de 2. Puede observarse que el nivel degenerado en el caso lineal para dos excitaciones
corresponde con la suma de dos excitaciones de 12 (recordando la Figura 4.4 ) y el caso de tres excitaciones el nivel
degenerado en el caso lineal es 36, la suma de tres excitaciones de 12. Veamos ahora el caso equivalente de 9 sitios.
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Podemos aumentar también el número de sitios a el caso de 9 sitios y 2 excitaciones, observándose 6 autoestados
degenerados en U = 0:

Figura 5.9: Autovalores para el caso de 9 sitios y 2 excitaciones calculados por el Método 2 en función del parámetro
no lineal “U”. Para valores de ωa = 6, J = −5 y ∆Ω = −2. Aplicando las condiciones para J ′ para que exista una
banda plana.

Si aumentamos en el caso de 9 sitios a tres excitaciones, observándose 10 autoestados degenerados en U = 0:

Figura 5.10: Autovalores para el caso de 9 sitios y 3 excitaciones calculados por el Método 2 en función del parámetro
no lineal “U”. Para valores de ωa = 6, J = −5 y ∆Ω = −2. Aplicando las condiciones para J ′ para que exista una
banda plana.

Como vemos sucede como en el caso anterior sin apreciarse cambios cualitativos significativos. Los niveles de enerǵıa
en el caso lineal (24 y 36 en U = 0) son los mismos que en el caso de 7 sitios. Sin embargo mientras la degeneración
es 6 y 10 respectivamente para dos y tres excitaciones para 9 sitios, en el caso de 7 sitios es 3 y 4. Si recordamos
la Figura 4.4 para 7 sitios teńıa dos posibles “lugares” en la topoloǵıa donde pod́ıa existir un autoestado localizado.
Sin embargo tenemos 2 excitaciones es decir, tenemos que ver las maneras de repartir 2 excitaciones (indistinguibles)
en dos lugares distintos y lo mismo para el caso de 3 excitaciones o para los casos de 9 sitios en los que hay 3
“lugares”, donde puede haber un autoestado localizado. Si llamamos a N el número de lugares donde puede existir un
autoestado localizado en una topoloǵıa diente de sierra y a n el número de excitaciones entonces la degeneración es(
N − 1 + n

n

)
, expresión que se obtiene de manera equivalente a como lo hicimos en la Sección 5.3.2, por ejemplo

en el último caso:

(
9− 1 + 3

3

)
= 5!

3!2! = 10, tal y como hemos dicho.
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Caṕıtulo 6

Conclusiones

Un numero elevado de grados de libertad en modelos f́ısicos requiere aproximaciones para poder tratarlo. Cuando
esas son insuficientes, se recurre irremediablemente al calculo numérico adicional. Sin embargo, este camino se complica
innecesariamente, cuando no hacemos uso de las simetŕıas y cantidades conservadas del sistema.

Nuestro estudio se basaba en intentar obtener un método numérico que nos permitiese resolver un sistema de
bosones interactuantes. Desde un principio comenzamos recordando conceptos básicos como el oscilador armónico
cuántico y clásico. El hecho más importante fue que el Hamiltoniano cuántico conmutase con el operador número lo
que nos permitió encontrar una base de autovectores comunes de la cual haŕıamos uso a lo largo de todo el escrito.

Una vez repasados los conceptos básicos que guiaran nuestro recorrido, procedimos a estudiar un modelo simple:
Una cadena infinita de osciladores acoplados dispuestos en un arreglo de una dimension. Tras simplificarlo haciendo
uso de la aproximación Tight-Binding, pod́ıamos reducir los acoplamientos entre los osciladores a primeros vecinos.
El paso al espacio Fourier fue determinante para la diagonalización y la obtención de las bandas de enerǵıa. Tras
todo esto nos pusimos manos a la obra, ya por fin, en la topoloǵıa definitiva, en diente de sierra. Topoloǵıa a caballo
entre una y dos dimensiones de ah́ı nuestro interés. Generalizamos para frecuencias diferentes y obtuvimos de nuevo
pasando al espacio Fourier obteniendo las bandas de enerǵıa.

Pero ah́ı no termino nuestro estudio anaĺıtico del caso lineal sino que obtuvimos las condiciones para el caso más
general que deb́ıan de cumplir los niveles de enerǵıa para que fuesen bandas planas. Con todo esto ya estábamos
preparados para, una vez que desarrollásemos el método numérico para la resolución del caso no lineal, tener material
suficiente para comprobar nuestro método numérico.

El primer caso numérico concreto que estudiamos consistió en considerar una única excitación. En este caso no
hab́ıa ningún problema ya que sab́ıamos de antemano la forma de nuestro Hamiltoniano lineal para el caso de una
excitación. Esta sección nos permitió no solo observar la dependencia del sistema con el tamaño finito, ya que en
los cálculos anaĺıticos se hab́ıan considerado cadenas infinitas, sino que evidenció las consecuencias de haber usado
condiciones de contorno abiertas.

Una vez hilvanada toda la riqueza del caso lineal pretend́ıamos acercarnos al no lineal. Sin embargo antes de eso
deb́ıamos de desarrollar un método, que permitiese obtener el Hamiltoniano del sistema para más de una excitación. En
un primer intento pretendimos resolver el sistema obteniendo las matrices de los operadores de creación/destrucción
haciendo el producto tensorial de todos los espacios de cada uno de los sitios de nuestra red. El método estaba evocado
al fracaso ya que un aumento ligero en el número de sitios excitaciones disparaba el tamaño de la matriz. Además
requeŕıa proyectar la matriz al espacio de los autovalores comunes del Hamiltoniano y el operador número
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Llegados a este punto la respuesta para poder continuar parećıa clara deb́ıa de dar con un método que nos permitiese
obtener la base de ese subespacio, que conservaba el numero de excitaciones. Para aśı reducir el tamaño de nuestras
matrices aśı como del tiempo de cálculo. Una vez obtenido procedimos a comparar ambos métodos, aśı como con los
cálculos anaĺıticos, para comprobar que efectivamente calculaban correctamente la matriz del Hamiltoniano. Además
comprobamos usando una expresión para los autoestados localizados que encontramos en la bibliograf́ıa.

Finalmente usamos el método más eficiente para calcular los niveles de enerǵıa con el caso no lineal. Para ello no
tuvimos más que hacer una pequeña modificación al método para añadir el término no lienal. Obtenidos los niveles
de enerǵıa en función de la constante no lineal de acoplamiento pudimos observar el desdoblamiento de enerǵıa,
aśı como obtener la expresión anaĺıtica que daba la degeneración de los autoestados localizados. Para ello fue clave
tanto conocer la forma de los autoestados, que nos proporcionó la bibliograf́ıa, como el desdoblamiento que observamos
de los niveles de enerǵıa. Esta vez hab́ıamos obtenido la degeneración de los autoestados localizados para cualquier
número de excitaciones. Hemos aśı obtenido un método numérico que nos ha permitido resolver un caso no tratable
numéricamente, el caso no lineal.

Las principales conclusiones son: Primero el cálculo anaĺıtico de las bandas para el caso más general de frecuencias
distintas nos ha llevado al la conclusión que estas solo existen bajo determinadas condiciones. En segundo lugar en
cuanto al cálculo numérico del caso lineal teńıamos: El tamaño finito del sistema es importante, es decir conforme
aumentamos el tamaño del sistema se aprecia una mejor concordancia por ejemplo en el cálculo del gap con respecto
al cálculo anaĺıtico. En tercer lugar hemos concluido que deb́ıamos de llegar a un método que redujera los tiempos
de cálculo para poder abordar aśı casos de más excitaciones y sitios. En cuarto lugar en el caso no lineal vimos el
desdoblamiento de los niveles de enerǵıa degenerados en una banda plana para el caso lineal. Ello y el conocimiento
previo de la “topoloǵıa” de los autoestados localizados no permitió obtener la degeneración de los niveles de enerǵıa
de la banda plana en función del número de sitios del arreglo y de las excitaciones.
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Apéndice A

Cálculo de bandas de cadena infinita de
osciladores acoplados

Consideraremos el caso de una cadena infinita de osciladores bosónicos sometidos a un potencial periódico acoplados
a través de J que controla este acoplamiento entre primeros vecinos:

Figura A.1: Cadena de osciladores.

Vamos a obtener la bandas de enerǵıa del Hamiltoniano:

H =

N−1∑
j=0

[ωa†jaj − J(aja
†
j+1 + a†jaj+1)] (A.1)

Para ello haremos uso de las ecuaciones:

ak =
1√
N

N−1∑
j=0

eikjaj −→ aj =
1√
N

N−1∑
k=0

e−ikjak (A.2)

a†k =
1√
N

N−1∑
j=0

e−ikja†j −→ a†j =
1√
N

N−1∑
k=0

eikja†k (A.3)

Además de estas expresiones deberemos de hacer uso de las relaciones de conmutación:

[ak, a
†
k′ ] = δkk′ [ai, a

†
j ] = δij [ak, ak′ ] = 0 [a†k, a

†
k′ ] = 0 (A.4)
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Empecemos el desarrollo sustituyendo las ecuaciones (A.1) y (A.3) en el Hamiltoniano:

H =
1

N

N−1∑
j=0

[
ω

N−1∑
kk′

(
a†kak′e

i(k−k′)j
)
− J

N−1∑
kk′

(
aka
†
k′e

i(k′(j+1)−kj) + a†k′ake
i(k′j−k(j+1))

)]
=

=
1

N

{N−1∑
kk′

ωa†kak′
N−1∑
j=0

ei(k−k
′)j − J

N−1∑
kk′

aka
†
k′e

ik′
N−1∑
j=0

ei(k
′−k)j − J

N−1∑
kk′

a†k′ake
−ik

N−1∑
j=0

ei(k
′−k)j

}
=

Puede demostrarse que
∑N−1
j=0 ei(k−k

′)j = δ(k − k′). Haciendo uso de esta expresión podemos continuar el cálculo
anterior:

=
1

N

{N−1∑
kk′

ωa†kak′Nδ(k − k
′)− J

N−1∑
kk′

aka
†
k′e

ik′Nδ(k′ − k)− J
N−1∑
kk′

a†k′ake
−ikNδ(k′ − k)

}
=

=

N−1∑
k=0

[
ωa†kak − J(aka

†
ke
ik + a†kake

−ik)

]
=

N−1∑
k=0

[
ωa†kak − 2Ja†kak

(
eik + e−ik

2

)]
− J

N−1∑
k=0

e−ik =

=

N−1∑
k=0

[
ωa†kak − 2Ja†kak cos(k)

]
− JNδ(1) =

N−1∑
k=0

[
(ω − 2J cos(k))a†kak

]
=

N−1∑
k=0

ωka
†
kak

Obteniendo aśı la relación buscada:

H =

N−1∑
k=0

ωka
†
kak (A.5)
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Apéndice B

Cálculo de las bandas en topoloǵıa de
tipo dientes de sierra para frecuencias
iguales

Nuestro objetivo es encontrar las bandas de enerǵıa para el siguiente Hamiltoniano:

H =

N−1∑
j=0

[
ω(a†jaj + b†jbj)

]
+ J

N−1∑
j=0

[
b†jbj+1 + b†j+1bj

]
+ J ′

N−1∑
j=0

[
a†jbj + a†jbj+1 + b†jaj + b†j+1aj

]
(B.1)

Que representa un conjunto de osciladores de frecuencia ω acoplados a través de las constantes J ′ y J en un modelo
Tight Binding para una topoloǵıa tal y como se muestra en la figura:

Figura B.1: Disposición en diente de sierra de los sitios.

Para obtener las bandas de enerǵıa en primer lugar pasaremos los operadores de creación y destrucción al espacio
Fourier usando para ello:

ak =
1√
N

N−1∑
j=0

eikjaj −→ aj =
1√
N

N−1∑
k=0

e−ikjak bk =
1√
N

N−1∑
j=0

eikjbj −→ bj =
1√
N

N−1∑
k=0

e−ikjbk (B.2)

a†k =
1√
N

N−1∑
j=0

e−ikja†j −→ a†j =
1√
N

N−1∑
k=0

eikja†k b†k =
1√
N

N−1∑
j=0

e−ikjb†j −→ b†j =
1√
N

N−1∑
k=0

eikjb†k (B.3)
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Con todo esto sustituyendo las expresiones (B.2) y (B.3) en el Hamiltoniano (B.1) obtenemos, reorganizando los
sumatorios:

H =
1

N

(
ω

N−1∑
j=0

{N−1∑
kk′

[
eij(k−k

′)(a†kak′ + b†kbk′)

]}
+ J

N−1∑
j=0

{N−1∑
kk′

[
eij(k−k

′)(e−ikb†kbk′ + eikb†kbk′)

]}
+

+ J ′
N−1∑
j=0

{N−1∑
kk′

[
eij(k−k

′)(a†kbk′ + b†kak′) + eij(k−k
′)(a†kbk′e

−ik′ + b†kak′e
ik)

]})

Reorganizando los sumatorios, tenemos:

H =
1

N

(
ω

N−1∑
kk′

(a†kak′ + b†kbk′)

[N−1∑
j=0

eij(k−k
′)

]
+ J

N−1∑
kk′

(e−ikb†kbk′ + eikb†kbk′)

[N−1∑
j=0

eij(k−k
′)

]
+

+ J ′
N−1∑
kk′

(a†kbk′ + b†kak′)

[N−1∑
j=0

eij(k−k
′)

]
+ J ′

N−1∑
kk′

(a†kbk′e
−ik′ + b†kak′e

ik)

[N−1∑
j=0

eij(k−k
′)

])

Haciendo uso de la propiedad

N−1∑
j=0

eij(k−k
′) = Nδ(k − k′), tenemos:

H =
1

N

(
ω

N−1∑
kk′

(a†kak′ + b†kbk′)Nδ(k − k
′) + J

N−1∑
kk′

(e−ikb†kbk′ + eikb†kbk′)Nδ(k − k
′)+

+ J ′
N−1∑
kk′

(a†kbk′ + b†kak′)Nδ(k − k
′) + J ′

N−1∑
kk′

(a†kbk′e
−ik′ + b†kak′e

ik)Nδ(k − k′)

)

H = ω

N−1∑
k=0

(a†kak + b†kbk) + J

N−1∑
k=0

(e−ikb†kbk + eikb†kbk) + J ′
N−1∑
k=0

(a†kbk + b†kak) + J ′
N−1∑
k=0

(a†kbke
−ik + b†kake

ik)

En donde usamos las relaciones de conmutación:

[ai, a
†
j ] = [bi, b

†
j ] = δij [ai, b

†
j ] = 0

Continuando con el cálculo:

H = ω

N−1∑
k=0

(a†kak + b†kbk) + J

N−1∑
k=0

b†kbk2 cos k + J ′
N−1∑
k=0

(a†kbk + b†kak) + J ′
N−1∑
k=0

(a†kbke
−ik + b†kake

ik)

H =

N−1∑
k=0

[
ωa†kak + b†kbk(ω + 2J cos k) + J ′(a†kbk(1 + e−ik) + b†kak(1 + eik))

]
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Si ahora definimos los siguientes vectores:

~ck =

(
ak
bk

)
~c†k =

(
a†k b†k

)
(B.4)

Sustituyendo:

H =

N−1∑
k=0

[
~c†k

(
ω 0
0 ω + 2J cos k

)
~ck + ~c†k

(
0 J ′(1 + e−ik)

J ′(1 + eik) 0

)
~ck

]
Obteniendo finalmente una matriz que es diagonal por cajas:

H =

N−1∑
k=0

~c†k

(
ω J ′(1 + e−ik)

J ′(1 + eik) ω + 2J cos k

)
~ck (B.5)

Si no vemos claro que sea diagonal por cajas podemos definir estos vectores:

~h =



...
ak−1

bk−1

ak
bk
ak+1

bk+1

...


(B.6)

~h† =
(
. . . a†k−1 b†k−1 a†k b†k a†k+1 b†k+1 . . .

)
(B.7)

De manera que nos queda finalmente esta matriz:

H = ~h†



. . .
...

...
...

...
...

...

. . . ω J ′(1 + e−i(k−1)) 0 0 0 0 . . .

. . . J ′(1 + ei(k−1)) ω + 2J cos (k − 1) 0 0 0 0 . . .

. . . 0 0 ω J ′(1 + e−ik) 0 0 . . .

. . . 0 0 J ′(1 + eik) ω + 2J cos (k) 0 0 . . .

. . . 0 0 0 0 ω J ′(1 + e−i(k+1)) . . .

. . . 0 0 0 0 J ′(1 + ei(k+1)) ω + 2J cos (k + 1) . . .
...

...
...

...
...

...
. . .


~h

(B.8)
Con todo ello si diagonalizamos cada caja, obtenemos:∣∣∣∣ ω − ε J ′(1 + e−ik)

J ′(1 + eik) (ω + 2J cos k)− ε

∣∣∣∣ = 0

(ω − ε)(ω + 2J cos k − ε)− 2J ′
2
(1 + cos k) = 0

ε2 − ε(2ω + 2J cos k) + 2 cos k(Jω − J ′2) + (ω2 − 2J ′
2
) = 0

Resolviendo la ecuación de segundo grado, obtenemos finalmente las bandas de enerǵıas buscadas:

ε = J cos k + ω ±
√
J2 cos2 k + 2J ′2(cos k + 1) (B.9)
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Apéndice C

Cálculo de las bandas en topoloǵıa de
tipo dientes de sierra para frecuencias
distintas

Nuestro objetivo es encontrar las bandas de enerǵıa para el siguiente Hamiltoniano:

H =

N−1∑
j=0

[
ωaa

†
jaj + ωbb

†
jbj

]
+ J

N−1∑
j=0

[
b†jbj+1 + b†j+1bj

]
+ J ′

N−1∑
j=0

[
a†jbj + a†jbj+1 + b†jaj + b†j+1aj

]
(C.1)

Que representa un conjunto de osciladores de frecuencia ωa (fila superior de osciladores [Véase la siguiente figura])
y ωb (fila inferior de osciladores) acoplados a través de las constantes J ′ y J en un modelo Tight Binding para una
topoloǵıa tal y como se muestra en la figura:

Figura C.1: Disposición en diente de sierra de los sitios.

Para obtener las bandas de enerǵıa en primer lugar pasaremos los operadores de creación y destrucción al espacio
Fourier usando para ello:

ak =
1√
N

N−1∑
j=0

eikjaj −→ aj =
1√
N

N−1∑
k=0

e−ikjak bk =
1√
N

N−1∑
j=0

eikjbj −→ bj =
1√
N

N−1∑
k=0

e−ikjbk (C.2)

a†k =
1√
N

N−1∑
j=0

e−ikja†j −→ a†j =
1√
N

N−1∑
k=0

eikja†k b†k =
1√
N

N−1∑
j=0

e−ikjb†j −→ b†j =
1√
N

N−1∑
k=0

eikjb†k (C.3)

Con todo esto sustituyendo las expresiones (C.2) y (C.3) en el Hamiltoniano (C.1) obtenemos, reorganizando los
sumatorios:
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H =
1

N

(
N−1∑
j=0

{N−1∑
kk′

[
eij(k−k

′)(ωaa
†
kak′ + ωbb

†
kbk′)

]}
+ J

N−1∑
j=0

{N−1∑
kk′

[
eij(k−k

′)(e−ikb†kbk′ + eikb†kbk′)

]}
+

+ J ′
N−1∑
j=0

{N−1∑
kk′

[
eij(k−k

′)(a†kbk′ + b†kak′) + eij(k−k
′)(a†kbk′e

−ik′ + b†kak′e
ik)

]})

Reorganizando los sumatorios, tenemos:

H =
1

N

(
N−1∑
kk′

(ωaa
†
kak′ + ωbb

†
kbk′)

[N−1∑
j=0

eij(k−k
′)

]
+ J

N−1∑
kk′

(e−ikb†kbk′ + eikb†kbk′)

[N−1∑
j=0

eij(k−k
′)

]
+

+ J ′
N−1∑
kk′

(a†kbk′ + b†kak′)

[N−1∑
j=0

eij(k−k
′)

]
+ J ′

N−1∑
kk′

(a†kbk′e
−ik′ + b†kak′e

ik)

[N−1∑
j=0

eij(k−k
′)

])

Haciendo uso de la propiedad

N−1∑
j=0

eij(k−k
′) = Nδ(k − k′), tenemos:

H =
1

N

(
N−1∑
kk′

(ωaa
†
kak′ + ωbb

†
kbk′)Nδ(k − k

′) + J

N−1∑
kk′

(e−ikb†kbk′ + eikb†kbk′)Nδ(k − k
′)+

+ J ′
N−1∑
kk′

(a†kbk′ + b†kak′)Nδ(k − k
′) + J ′

N−1∑
kk′

(a†kbk′e
−ik′ + b†kak′e

ik)Nδ(k − k′)

)

H =

N−1∑
k=0

(ωaa
†
kak + b†kbk) + J

N−1∑
k=0

(e−ikb†kbk + eikb†kbk) + J ′
N−1∑
k=0

(a†kbk + b†kak) + J ′
N−1∑
k=0

(a†kbke
−ik + b†kake

ik)

En donde usamos las relaciones de conmutación:

[ai, a
†
j ] = [bi, b

†
j ] = δij [ai, b

†
j ] = 0

Continuando con el cálculo:

H =

N−1∑
k=0

(ωaa
†
kak + ωbb

†
kbk) + J

N−1∑
k=0

b†kbk2 cos k + J ′
N−1∑
k=0

(a†kbk + b†kak) + J ′
N−1∑
k=0

(a†kbke
−ik + b†kake

ik)

H =

N−1∑
k=0

[
ωaa

†
kak + b†kbk(ωb + 2J cos k) + J ′(a†kbk(1 + e−ik) + b†kak(1 + eik))

]
Si ahora definimos los siguientes vectores:

~ck =

(
ak
bk

)
~c†k =

(
a†k b†k

)
(C.4)
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Sustituyendo las anteriores expresiones:

H =

N−1∑
k=0

[
~c†k

(
ωa 0
0 ωb + 2J cos k

)
~ck + ~c†k

(
0 J ′(1 + e−ik)

J ′(1 + eik) 0

)
~ck

]
Obteniendo finalmente una matriz que es diagonal por cajas:

H =

N−1∑
k=0

~c†k

(
ωa J ′(1 + e−ik)

J ′(1 + eik) ωb + 2J cos k

)
~ck (C.5)

Si no vemos claro que sea diagonal por cajas podemos definir estos vectores:

~h =



...
ak−1

bk−1

ak
bk
ak+1

bk+1

...


(C.6)

~h† =
(
. . . a†k−1 b†k−1 a†k b†k a†k+1 b†k+1 . . .

)
(C.7)

De manera que nos queda finalmente esta matriz:

H = ~h†



. . .
...

...
...

...
...

...

. . . ωa J ′(1 + e−i(k−1)) 0 0 0 0 . . .

. . . J ′(1 + ei(k−1)) ωb + 2J cos (k − 1) 0 0 0 0 . . .

. . . 0 0 ωa J ′(1 + e−ik) 0 0 . . .

. . . 0 0 J ′(1 + eik) ωb + 2J cos (k) 0 0 . . .

. . . 0 0 0 0 ωa J ′(1 + e−i(k+1)) . . .

. . . 0 0 0 0 J ′(1 + ei(k+1)) ωb + 2J cos (k + 1) . . .
...

...
...

...
...

...
. . .


~h

(C.8)
Con todo ello si diagonalizamos cada caja, obtenemos:∣∣∣∣ ωa − ε J ′(1 + e−ik)

J ′(1 + eik) (ωb + 2J cos k)− ε

∣∣∣∣ = 0

(ωa − ε)(ωb + 2J cos k − ε)− 2J ′
2
(1 + cos k) = 0

ε2 − ε((ωa + ωb) + 2J cos k) + 2 cos k(Jωa − J ′
2
) + (ωaωb − 2J ′

2
) = 0

Resolviendo la ecuación de segundo grado, obtenemos finalmente las bandas de enerǵıas buscadas:

ε = J cos k +
ωa + ωb

2
±

√(
J cos k +

ωa + ωb
2

)2

− 2 cos k(Jωa − J ′2)− (ωaωb − 2J ′2) (C.9)

Podemos obtener una ecuación más sencilla si lo podemos en función de la frecuencia media Ω:

Ω =
ωa + ωb

2
→ ωb = 2Ω− ωa

ε = J cos k + Ω±
√

(J cos k + (Ω− ωa))2 + 2J ′2(1 + cos k)) (C.10)
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Apéndice D

Método Alternativo de cálculo de la
condición de Banda Plana

Si partimos de la ecuación (4.12) del caṕıtulo 4 tenemos:

ε± = J cos k + ∆Ω + ωa ±
√

(J cos k + ∆Ω)2 + 2J ′2(1 + cos k) (D.1)

Podemos obtener la misma condición de banda plana1 del apartado 4.3 del caṕıtulo 4 por otro método desa-
rrollando el cuadrado de dentro de la ráız:

J2 cos2 k + ∆Ω2 + 2J∆Ω cos k + 2J ′
2

+ 2J ′
2

cos k (D.2)

Si identificamos con (a+ b)2 = a2 + 2ab+ b2 tenemos:

a2 ≡ J2 cos2 k

2ab ≡ 2J∆Ω cos k

b2 ≡ 2J ′
2

+ 2J ′
2

cos k

Cogiendo la segunda ecuación y sustituyendo la primera obtenemos aśı b:

2J cos kb = 2J∆Ω cos k −→ b =
J∆Ω + J ′

2

J

Siempre y cuando cos k 6= 0. Teniendo en cuenta la tercera ecuación podemos obtener la relación entre J y J ′ para
que sea una suma al cuadrado:

b =
J∆Ω + J ′

2

J
= ±

√
2J ′2 + ∆Ω2

Elevando al cuadrado ambos miembros y siempre y cuando J ′ 6= 0, obtenemos de nuevo la relación buscada:

J ′ = ±
√

2J(J −∆Ω) (D.3)

1Ecuaciones: (4.14) y (4.15).
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Apéndice E

Método numérico 1

E.1. Explicación del programa

Necesitamos un programa que nos construya esta matriz:

H =

N−1∑
j=0

[
ωaa

†
jaj + ωbb

†
jbj

]
+ J

N−1∑
j=0

[
b†jbj+1 + b†j+1bj

]
+ J ′

N−1∑
j=0

[
a†jbj + a†jbj+1 + b†jaj + b†j+1aj

]
Para aśı poder obtener sus autovalores, sus autovectores y explorar algunos aspectos de no linealidad. Para ello

optamos por usar el programa de Mathematica y en primer lugar pensamos el método trivial. Es decir construir
cada uno de los operadores a, a† y b, b† mediante el producto tensorial de los distintos espacios. Para facilitar la
implementación no usaremos la notación de usar autovalores de “arriba” a y a† y de “abajo” b y b†. Según el operador
creación/destrucción pertenezca a un nodo de arriba o de abajo en la distribución de diente de sierra. Numeraremos
los nodos empezando por 1 en el primer nodo aśı hasta N , aśı los nodos de abajo pasarán a ser nodos impares1

bj −→ c2j−1 y b†j −→ c†2j−1 e igualmente para los de “arriba” que serán los nodos pares aj −→ c2j y a†j −→ c†2j .

Siguiendo está notación el Hamiltoniano quedaŕıa finalmente2:

H =

N∑
j=1

[
ωac
†
2jc2j+ωbc

†
2j−1c2j−1

]
+J

N∑
j=1

[
c†2j−1c2j+1 +c†2j+1c2j−1

]
+J ′

N∑
j=1

[
c†2jc2j−1 +c†2jc2j+1 +c†2j−1c2j+c†2j+1c2j

]

Figura E.1: Disposición en diente de sierra de los sitios.

Empecemos con el programa trivial, definiendo en primer lugar algunas variables:

sitios = 5;
dim = 4;
n = dim−1;
Id = IdentityMatrix[dim];

1Nota: El ı́ndice j empezará en 1 y no en 0
2Ahora N es el número de nodos.
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En donde “sitios” es el número de nodos de la distribución de diente de sierra y “dim” es la dimensión de las
matrices de cada subespacio aśı si recordamos el aspecto de las matrices de los operadores de creación y destrucción:

c =



0
√

1 0 0 . . . . . . . . .

0 0
√

2 0 . . . . . . . . .

0 0 0
√

3 . . . . . . . . .
...

...
...

...
. . .

0 0 0 0 0
√
n . . .

...
...

...
...

...
...


c† =



0 0 0 0 . . . . . . . . .√
1 0 0 0 . . . . . . . . .

0
√

2 0 0 . . . . . . . . .

0 0
√

3 0 . . . . . . . . .
...

...
...

...
. . .

0 0 0 0
√
n+ 1 0 . . .

...
...

...
...

...
...


Encontramos que una matriz de un operador de creación/destrucción en un espacio de “n” excitaciones tendrá la

matriz una dimensión de n + 1, tal y como lo hemos definido. Notar que Id es la matriz identidad. Definimos los
operadores de creación y destrucción:

a = Table[0, {i, 1,dim}, {j, 1,dim}];
For[i = 1, i < dim, i++, a[[i, i+ 1]] = Sqrt[i]; ]
adag = Transpose[a];

Donde “a” es operador de destrucción y “adag” el de creación (simplemente la traspuesta de la anterior).
Como estamos en un caso con 5 nodos de la red de diente de sierra tenemos que definir un operador de creación

y otro de destrucción para cada sitio en el espacio completo es decir en el producto tensorial de los cinco espacios es
decir por ejemplo el operador c†3 del espacio completo seŕıa3: c†3 = I(1)× I(2)× c†3(3)× I(4)× I(5). Por tanto:

a1 = SparseArray[KroneckerProduct[a, Id, Id, Id, Id]];
a1d = SparseArray[KroneckerProduct[adag, Id, Id, Id, Id]];
a2 = SparseArray[KroneckerProduct[Id, a, Id, Id, Id]];
a2d = SparseArray[KroneckerProduct[Id, adag, Id, Id, Id]];
a3 = SparseArray[KroneckerProduct[Id, Id, a, Id, Id]];
a3d = SparseArray[KroneckerProduct[Id, Id, adag, Id, Id]];
a4 = SparseArray[KroneckerProduct[Id, Id, Id, a, Id]];
a4d = SparseArray[KroneckerProduct[Id, Id, Id, adag, Id]];
a5 = SparseArray[KroneckerProduct[Id, Id, Id, Id, a]];
a5d = SparseArray[KroneckerProduct[Id, Id, Id, Id, adag]];

Como puede observarse si queremos obtener la matriz del hamiltoniano por este método para el caso de “n” ex-
citaciones y “N” sitios o nodos de la red de diente de sierra, la dimensión de la matriz del hamiltoniano será de:
(n + 1)N que por ejemplo para el caso de 3 excitaciones y 7 sitios es (3 + 1)7 = 16384 un tamaño por lo menos
respetable. Tras esto damos valores a ωa, ωb (que en el programa llamamos respectivamente ω1 y ω2), J y J ′ (que
en el programa llamamos respectivamente J1 y J2) pero el valor de ωb vendrá dado en función de el parámetro ya
definido ∆Ω = ωb−ωa

2 (que en el programa llamaremos Ω). Seguidamente definiremos el Hamiltoniano en función de
estos parámetros:

Ω = −2.; (*Ω ≡ ∆Ω*)
ω1 = 6.;
ω2 = 2. ∗ Ω + ω1;
J1 = −5;
J2 =

√
2 ∗ J1 ∗ (J1− Ω);

(*El Hamiltoniano*)

H = SparseArray[ω1 ∗ (a2d.a2 + a4d.a4) +ω2 ∗ (a1d.a1 + a3d.a3 + a5d.a5) + J1 ∗ (a1d.a3 + a3d.a1 + a3d.a5 + a5d.a3) +
J2 ∗ (a2d.a1 + a4d.a3 + a2d.a3 + a4d.a5 + a1d.a2 + a3d.a4 + a3d.a2 + a5d.a4)];

3Con: I(i) matriz identidad del espacio i-ésimo.
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Hay que notar que este Hamiltoniano esta definido para todo el espacio de autoestados del operador núme-
ro. Es decir la base del espacio completo es, para el caso de “N” sitios, como el producto tensorial de “N” bases
{|0〉 , |1〉 , |2〉 , ..., |n− 1〉 , |n〉} × ...(N veces)... × {|0〉 , |1〉 , |2〉 , ..., |n− 1〉 , |n〉}. Es decir la base del espacio “completo”
es:

{|0, 0, 0, ..., 0, 0〉 , |0, 0, 0, ..., 0, 1〉 , |0, 0, 0, ..., 0, 2〉 , ..., |n, n, n, ..., n, n− 1〉 , |n, n, n, ..., n, n〉}

Puede uno darse cuenta que cada ket consta de N números que indican el número de excitaciones en cada sitio y
que hay un total de tantos estados como la cantidad maneras de llenar un conjunto de N “cajas” (“sitios”) con pelotas
(“excitaciones”) indistinguibles si en cada caja caben como máximo “n” excitaciones, es decir (n+1)N elementos de la
base. Para generar la base completa puede darse uno cuenta que puede ordenarla pensando en que cada estado fuese
un número en base (n+1) de manera que por ejemplo el estado |0, 0, 0, ..., 0, 2〉 es el número en base (n+1): 000 . . . 02.
Aśı los estados pueden ordenarse de manera ascendente desde el 000 . . . 00 hasta el número nnn . . . nn en base (n+1), de
hecho se puede comprobar que la cantidad de números es: {n+n(n+1)+n(n+1)2+· · ·+n(n+1)N−2+(n+1)N−1}+1 =

1 +
∑N−1
k=0 (n + 1)k = (n + 1)N . De esta manera podemos generar la base del espacio completo usando la función de

Mathematica IntegerDigits[“número a combertir a vector”, “base a la que convertir el número”, “número de d́ıgitos”]
que genera un vector de un número determinado de d́ıgitos a partir de un número proporcionado en la base numérica
pedida. Aśı en la variable que llamaremos “Basis” tendremos la base completa:

Basis = Table
[
IntegerDigits[m,dim, sitios],

{
m, 0, (dim)sitios − 1

}]
;

Res = Table
[
If[Sum[Basis[[j]][[i]], {i, 1, sitios}] == n, j, 0],

{
j, 1, (dim)sitios

}]
;

Res2 = Select[Res,# 6= 0&];

En donde en las variables “Res” y “Res2” hemos seleccionado el conjunto de estados con solo “n” excitaciones en
total. Hay que darse que cuenta que en el vector “Res2” solo hemos guardado una serie de números que corresponden
con la posición que ocupan en la lista inicial que iba desde 000 . . . 00 hasta nnn . . . nn, aśı el 000 . . . 00 y el 000 . . . 01
representan los números 1 y 2 respectivamente en la lista de números “Res2” de estados con un número determinado
de excitaciones. A partir de estos deberemos contruir la matriz que proyecte el Hamiltoniano en este subespacio.

Proyec = Table
[
KroneckerDelta[m, i] ∗KroneckerDelta[m, j] ∗KroneckerDelta[i, j], {m,Res2},

{
i, 1, (dim)sitios

}
,{

j, 1, (dim)sitios
}]

;
Proyec2 = Sum[Proyec[[m]][[]][[]], {m, 1,Length[Res2]}];

En donde “Proyect2” es la matriz que proyectará el Hamiltoniano “H” en el subespacicio de estados con “n”
excitaciones. Finalmente proyectamos y obtenemos los autovalores y autovectores:

HProyec = Proyec2.H;
Eigenvalues[HProyec]
Eigenvectors[HProyec]

Aśı obtendŕıamos los autovalores y autovectores sin embargo el problema que tiene este método es que el tamaño
de la matriz crece rápidamente tal y como hemos dicho con (n+ 1)N , lo cual nos impide que podamos ejecutar casos
para un número apreciable de sitios y excitaciones.
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E.2. Resumen del código

El resumen de todo el código usado es:

sitios = 5;
dim = 4;
n = dim−1;
Id = IdentityMatrix[dim];

a = Table[0, {i, 1,dim}, {j, 1,dim}];
For[i = 1, i < dim, i++, a[[i, i+ 1]] = Sqrt[i]; ]
adag = Transpose[a];

a1 = SparseArray[KroneckerProduct[a, Id, Id, Id, Id]];
a1d = SparseArray[KroneckerProduct[adag, Id, Id, Id, Id]];
a2 = SparseArray[KroneckerProduct[Id, a, Id, Id, Id]];
a2d = SparseArray[KroneckerProduct[Id, adag, Id, Id, Id]];
a3 = SparseArray[KroneckerProduct[Id, Id, a, Id, Id]];
a3d = SparseArray[KroneckerProduct[Id, Id, adag, Id, Id]];
a4 = SparseArray[KroneckerProduct[Id, Id, Id, a, Id]];
a4d = SparseArray[KroneckerProduct[Id, Id, Id, adag, Id]];
a5 = SparseArray[KroneckerProduct[Id, Id, Id, Id, a]];
a5d = SparseArray[KroneckerProduct[Id, Id, Id, Id, adag]];

Ω = −2.; (*Ω ≡ ∆Ω*)
ω1 = 6.;
ω2 = 2. ∗ Ω + ω1;
J1 = −5;
J2 =

√
2 ∗ J1 ∗ (J1− Ω);

(*El Hamiltoniano*)

H = SparseArray[ω1 ∗ (a2d.a2 + a4d.a4) +ω2 ∗ (a1d.a1 + a3d.a3 + a5d.a5) + J1 ∗ (a1d.a3 + a3d.a1 + a3d.a5 + a5d.a3) +
J2 ∗ (a2d.a1 + a4d.a3 + a2d.a3 + a4d.a5 + a1d.a2 + a3d.a4 + a3d.a2 + a5d.a4)];

Basis = Table
[
IntegerDigits[m,dim, sitios],

{
m, 0, (dim)sitios − 1

}]
;

Res = Table
[
If[Sum[Basis[[j]][[i]], {i, 1, sitios}] == n, j, 0],

{
j, 1, (dim)sitios

}]
;

Res2 = Select[Res,# 6= 0&];

Proyec = Table
[
KroneckerDelta[m, i] ∗KroneckerDelta[m, j] ∗KroneckerDelta[i, j], {m,Res2},

{
i, 1, (dim)sitios

}
,{

j, 1, (dim)sitios
}]

;
Proyec2 = Sum[Proyec[[m]][[]][[]], {m, 1,Length[Res2]}];

HProyec = Proyec2.H;
Eigenvalues[HProyec]
Eigenvectors[HProyec]
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Apéndice F

Método numérico 2

F.1. Explicación del programa

Vamos ahora a presentar un método alternativo al programa anterior que consistirá en construir la matriz del
Hamiltoniano directamente en el espacio de los autovectores con un número “n” de excitaciones. Primero definimos
como antes los parámetros: dim1, n, sitios, ω1, ω2, Ω, J1 y J2.

Ω = −2.; (*Ω ≡ ∆Ω*)
ω1 = 6.;
ω2 = 2. ∗ Ω + ω1;
J1 = −5;
J2 =

√
2 ∗ J1 ∗ (J1− Ω);

También:

sitios = 3;
dim = 2;
dim2 = dim ∗ 1. 0;
n = dim2− 1;

Definimos la base del subespacio con “n” excitaciones:

Basis = SparseArray
[
Table

[
1,0 ∗ IntegerDigits[m,dim, sitios],

{
m, 0, (dim)sitios − 1

}]]
;

Res = SparseArray
[
Table

[
If[Sum[Basis[[j]][[i]], {i, 1, sitios}] == n, j − 1,0, 0,0],

{
j, 1, (dim)sitios

}]]
;

W = Select[Res,# 6= 0,0&];
Vec = Table

[
If[Sum[Basis[[j]][[i]], {i, 1, sitios}] == n, Basis[[j]][[]], 0,0],

{
j, 1, (dim)sitios

}]
;

Vec2 = Select[Vec,# 6= Cero&];
L = Length[Vec2];

Definimos de forma análoga al caso anterior en Basis la base del espacio completo, en W definimos una lista de
números que corresponden a todos los autoestados de un determinado número de excitaciones por ejemplo supongamos
que en Basis tenemos la base completa de una excitación como máximo por sitios y un conjunto de 3 sitios tendŕıamos
en este caso: 

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


1En donde dim2, juega el mismo papel que dim, solo que lo definimos como un real y no como un entero para agilizar los cálculos.
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Como se ve las filas son los estados: |0, 0, 0〉 , |0, 0, 1〉 , |0, 1, 0〉 , ..., notemos que estos los podemos interpretar
como números en base 2: 000, 001, 010, ..., (aqúı hay como máximo una excitación por sitios pero si hubiera “n”
excitaciones seŕıa una lista de números en base “n” desde el 000 hasta el nnn) que para agilizar los cálculos podemos
usar directamente sus números decimales: {0, 1, 2, 3, 4, 5, 6, 7}. Con ello en W es la lista de números decimales2

de esa lista que corresponden a un determinado estado con “n” excitaciones en nuestro caso 1 excitación. En nuestro
caso es:  1

2
4

↔
 0 0 1

0 1 0
1 0 0


En cuanto a la variable Vec2 corresponde con el conjunto de estados con “n” excitaciones y no sus corres-

pondientes números decimales que es W. En nuestro caso es la parte derecha de la anterior fórmula es decir:
{|0, 0, 1〉 , |0, 1, 0〉 , |1, 0, 0〉}. A continuación definimos los operadores creación A y destrucción a:

A = Table
[
(dim2)sitios−l, {l, 1, sitios}

]
;

a = Table
[
−(dim2)sitios−l, {l, 1, sitios}

]
;

Primero recordemos que:

c |n〉 =
√
n |n− 1〉 (F.1)

c† |n〉 =
√
n+ 1 |n+ 1〉 (F.2)

Es decir que por ejemplo si: c†1 |1, 1, 0〉 =
√

2 |2, 1, 0〉 ó c2 |1, 1, 0〉 =
√

1 |1, 0, 0〉. Con A y a solo modificaremos

el estado | 〉 el coeficiente
√

lo añadiremos a parte, podemos aśı darnos cuenta que el operador c†1 en nuestro caso

equivale a sumar el número en base 3: 100 al número en base 3 (estado de partida) 110 obteniendo 100 + 110 = 210
aśı mismos el caso de c2 equivale a 110− 010 = 100.

Ambos casos para simplificar los cálculos y no tener que sumar o restar vectores podemos hacerlo en su equivalente
decimal aśı: 9 + 12 = 21 y 12 − 3 = 9. Es decir los operadores equivalen a los números: c†1 ≡ 9 y c2 ≡ −3. Por ello
que las variables A y a equivalen a las listas de números que representan todos los operadores creación y destrucción
respectivamente, aśı en nuestro ejemplo de 3 sitios y una excitación (base 2) seŕıan:

A =

 4
2
1

 a =

 −4
−2
−1

 (F.3)

Para continuar con el programa debemos de recordar la forma del Hamiltoniano:

H =

N∑
j=1

[
ωac
†
2jc2j+ωbc

†
2j−1c2j−1

]
+J

N∑
j=1

[
c†2j−1c2j+1 +c†2j+1c2j−1

]
+J ′

N∑
j=1

[
c†2jc2j−1 +c†2jc2j+1 +c†2j−1c2j+c†2j+1c2j

]
Para obtener la matriz del Hamiltoniano en la base del subespacio de “n” excitaciones lo que haremos será dividirlo

en la suma de operadores más sencillos, consideraremos cada pareja de operadores de creación y destrucción como
un único operador: c†2jc2j , c

†
2j−1c2j−1, c

†
2j−1c2j+1, c

†
2j+1c2j−1, c

†
2jc2j−1, c

†
2jc2j+1, c

†
2j−1c2j y c†2j+1c2j . Para obtener

la matriz del Hamiltoniano obtendremos todas las imágenes de los elementos de la base, para ello haremos actuar
los operadores anteriores sobre cada elemento de la base sumando a cada componente del vector W las correspon-
dientes componentes de los vectores A y a. Como estos operadores conservan el número de excitaciones la suma de
estos tres números (A, a y W ) será un número que este en la lista dada por W y por tanto un vector de la base.
Será en el vector Imag-j (nombrando a los operadores anteriores j = 1, ..., 6)3 en donde guardaremos las imágenes
de cada uno de los elementos de la base al actuar el operador j. Sin embargo recordemos que c3 |0, 1, 0〉 = 0 y con
nuestro método: 010 − 001 = 001 ↔ 2 − 1 = 1. Para solucionar esto haremos uso de la variable Imagconst-j que
calculará los factores

√ ×√ del la imágenes del operador j haciendo uso de la matriz Vec2 que guarda los vectores
de los elementos de la base en sus filas, de manera que si se da el caso que si el método anterior arroja un número
que no corresponde realmente con la imagen del vector como cuando el operador destrucción actúa sobre un sitio

2La variable Res es una variable intermedia entre Basis y W
3Notar que hay un conjunto de 8 operadores pero el caso de los dos primeros es especial y son matrices diagonales que podremos

construir directamente, nuestro problema importante será determinar las 6 últimas matrices, para cada valor de j.
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donde no hay excitaciones entonces el factor es cero y cuando construyamos la matriz y multipliquemos los elementos
de la misma por estos factores obtendremos un cero, asegurándonos aśı que el método es correcto. Además por ase-
gurarnos todo elemento que sea negativo en el nuevo vector Imag-j se cambiará automáticamente por cero, aśı tenemos:

Imagconst1 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j − 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j + 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios+1

2 − 1
}]

;

Imag1 = Table
[
Table

[
If
[
Imagconst1[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j − 1]] + a[[2 ∗ j + 1]] +W [[m]])

]
,

{m, 1, L}],
{
j, 1, sitios+1

2 − 1
}]

;

Imagconst2 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j + 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j − 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios+1

2 − 1
}]

;

Imag2 = Table
[
Table

[
If
[
Imagconst2[[j]][[m]] < 10−10, 0,0, (a[[2 ∗ j − 1]] +A[[2 ∗ j + 1]] +W [[m]])

]
,

{m, 1, L}],
{
j, 1, sitios+1

2 − 1
}]

;

Imagconst3 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j − 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag3 = Table
[
Table

[
If
[
Imagconst3[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j]] + a[[2 ∗ j − 1]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imagconst4 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j + 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag4 = Table
[
Table

[
If
[
Imagconst4[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j]] + a[[2 ∗ j + 1]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imagconst5 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j − 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag5 = Table
[
Table

[
If
[
Imagconst5[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j − 1]] + a[[2 ∗ j]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imagconst6 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j + 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag6 = Table
[
Table

[
If
[
Imagconst6[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j + 1]] + a[[2 ∗ j]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

A continuación lo que hacemos es comparando los distintos vectores Imag-j con el vector original W para obtener la
matriz que representa a cada uno de los 6 operadores en la base de partida multiplicando cada elemento de la matriz
por los factores de Imagconst-j. Esto lo haremos para cada valor de j y luego sumaremos todas las matrices en cada caso:

MatImag1 = SparseArray
[
Table

[
Sum

[
If[Imag1[[j]][[m]] == W [[l]], Imagconst1[[j]][[m]], 0,0],

{
j, 1, sitios+1

2 − 1
}]
,

{l, 1, L}, {m, 1, L}]];

MatImag2 = SparseArray
[
Table

[
Sum

[
If[Imag2[[j]][[m]] == W [[l]], Imagconst2[[j]][[m]], 0,0],

{
j, 1, sitios+1

2 − 1
}]
,

{l, 1, L}, {m, 1, L}]];

MatImag3 = SparseArray
[
Table

[
Sum

[
If[Imag3[[j]][[m]] == W [[l]], Imagconst3[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];

MatImag4 = SparseArray
[
Table

[
Sum

[
If[Imag4[[j]][[m]] == W [[l]], Imagconst4[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];

MatImag5 = SparseArray
[
Table

[
Sum

[
If[Imag5[[j]][[m]] == W [[l]], Imagconst5[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];

MatImag6 = SparseArray
[
Table

[
Sum

[
If[Imag6[[j]][[m]] == W [[l]], Imagconst6[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];

Por último solo nos quedan las matrices de los operadores c†2jc2j y c
†
2j−1c2j−1 que son dos matrices diagonales en

la que en la primera los elementos impares de la diagonal son nulos y viceversa en la segunda, haciéndolo para cada
valor de j obtenemos:

MatId1 = SparseArray
[
Table

[
Sum

[
(If[l == m, 1,0, 0,0]) ∗Vec2[[m]][[2 ∗ j − 1]],

{
j, 1, sitios−1

2 + 1
}]
, {l, 1, L}, {m, 1, L}

]]
;

MatId2 = SparseArray
[
Table

[
Sum

[
(If[l == m, 1,0, 0,0]) ∗Vec2[[m]][[2 ∗ j]],

{
j, 1, sitios−1

2

}]
, {l, 1, L}, {m, 1, L}

]]
;
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Para finalizar solo nos queda definir el Hamiltoniano multiplicando y sumando todas las matrices y a continuación
obtener los autovalores y autovectores:

H = SparseArray[ω1 ∗ MatId2 + ω2 ∗ MatId1 + J1 ∗ (MatImag1 + MatImag2) + J2 ∗ (MatImag3 + MatImag4 +
MatImag5 + MatImag6)];

Eigenvalues[H]
Eigenvectors[H]

Si obtenemos la dimensión de la matriz para comparar con el método anterior para ver si realmente hemos simpli-
ficado el cálculo. Para ello necesitamos calcular el número de elementos de la base dado un “N” y un “n”. El problema
se puede simplificar a el número de combinaciones de meter “n” bolas (excitaciones) en “N” cajas (“sitios”), o lo que
es lo mismo ordenar (N-1) “separadores” y n “bolas” es decir (N −1 +n)!, pero como podemos intercambiar dos bolas
o separadores entre śı sin cambiar de estado tenemos entonces que quitar las permutaciones de estos obteniendo:

(N − 1 + n)!

n!(N − 1)!
=

(
N − 1 + n

n

)
Que si lo comparamos con (n + 1)N se puede demostrar que

(
N − 1 + n

n

)
< (n + 1)N de hecho para n = 5 y

N = 7 tenemos que

(
7− 1 + 5

5

)
= 462� (5 + 1)7 = 279936. Esto solo es el tamaño del lado de la matriz cuadrada

el total de números de cada matriz corresponde al cuadrado de esas cantidades.
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F.2. Resumen del código

El resumen de todo el código usado es:

Ω = −2.; (*Ω ≡ ∆Ω*)
ω1 = 6.;
ω2 = 2. ∗ Ω + ω1;
J1 = −5;
J2 =

√
2 ∗ J1 ∗ (J1− Ω);

sitios = 3;
dim = 2;
dim2 = dim ∗ 1. 0;
n = dim2− 1;

Basis = SparseArray
[
Table

[
1,0 ∗ IntegerDigits[m,dim, sitios],

{
m, 0, (dim)sitios − 1

}]]
;

Res = SparseArray
[
Table

[
If[Sum[Basis[[j]][[i]], {i, 1, sitios}] == n, j − 1,0, 0,0],

{
j, 1, (dim)sitios

}]]
;

W = Select[Res,# 6= 0,0&];
Vec = Table

[
If[Sum[Basis[[j]][[i]], {i, 1, sitios}] == n, Basis[[j]][[]], 0,0],

{
j, 1, (dim)sitios

}]
;

Vec2 = Select[Vec,# 6= Cero&];
L = Length[Vec2];

A = Table
[
(dim2)sitios−l, {l, 1, sitios}

]
;

a = Table
[
−(dim2)sitios−l, {l, 1, sitios}

]
;

Imagconst1 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j − 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j + 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios+1

2 − 1
}]

;

Imag1 = Table
[
Table

[
If
[
Imagconst1[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j − 1]] + a[[2 ∗ j + 1]] +W [[m]])

]
,

{m, 1, L}],
{
j, 1, sitios+1

2 − 1
}]

;

Imagconst2 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j + 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j − 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios+1

2 − 1
}]

;

Imag2 = Table
[
Table

[
If
[
Imagconst2[[j]][[m]] < 10−10, 0,0, (a[[2 ∗ j − 1]] +A[[2 ∗ j + 1]] +W [[m]])

]
,

{m, 1, L}],
{
j, 1, sitios+1

2 − 1
}]

;

Imagconst3 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j − 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag3 = Table
[
Table

[
If
[
Imagconst3[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j]] + a[[2 ∗ j − 1]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imagconst4 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j + 1]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag4 = Table
[
Table

[
If
[
Imagconst4[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j]] + a[[2 ∗ j + 1]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imagconst5 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j − 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag5 = Table
[
Table

[
If
[
Imagconst5[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j − 1]] + a[[2 ∗ j]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imagconst6 = Table
[
Table

[(
(Vec2[[m]][[2 ∗ j + 1]] + 1,0)0,5

)
∗
(
(Vec2[[m]][[2 ∗ j]])0,5

)
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

Imag6 = Table
[
Table

[
If
[
Imagconst6[[j]][[m]] < 10−10, 0,0, (A[[2 ∗ j + 1]] + a[[2 ∗ j]] +W [[m]])

]
, {m, 1, L}

]
,
{
j, 1, sitios−1

2

}]
;

MatImag1 = SparseArray
[
Table

[
Sum

[
If[Imag1[[j]][[m]] == W [[l]], Imagconst1[[j]][[m]], 0,0],

{
j, 1, sitios+1

2 − 1
}]
,

{l, 1, L}, {m, 1, L}]];

MatImag2 = SparseArray
[
Table

[
Sum

[
If[Imag2[[j]][[m]] == W [[l]], Imagconst2[[j]][[m]], 0,0],

{
j, 1, sitios+1

2 − 1
}]
,

{l, 1, L}, {m, 1, L}]];

MatImag3 = SparseArray
[
Table

[
Sum

[
If[Imag3[[j]][[m]] == W [[l]], Imagconst3[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];
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MatImag4 = SparseArray
[
Table

[
Sum

[
If[Imag4[[j]][[m]] == W [[l]], Imagconst4[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];

MatImag5 = SparseArray
[
Table

[
Sum

[
If[Imag5[[j]][[m]] == W [[l]], Imagconst5[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];

MatImag6 = SparseArray
[
Table

[
Sum

[
If[Imag6[[j]][[m]] == W [[l]], Imagconst6[[j]][[m]], 0,0],

{
j, 1, sitios−1

2

}]
,

{l, 1, L}, {m, 1, L}]];

MatId1 = SparseArray
[
Table

[
Sum

[
(If[l == m, 1,0, 0,0]) ∗Vec2[[m]][[2 ∗ j − 1]],

{
j, 1, sitios−1

2 + 1
}]
, {l, 1, L}, {m, 1, L}

]]
;

MatId2 = SparseArray
[
Table

[
Sum

[
(If[l == m, 1,0, 0,0]) ∗Vec2[[m]][[2 ∗ j]],

{
j, 1, sitios−1

2

}]
, {l, 1, L}, {m, 1, L}

]]
;

H = SparseArray[ω1∗MatId2+ω2∗MatId1+J1∗(MatImag1+MatImag2)+J2∗(MatImag3+MatImag4+MatImag5+
MatImag6)];

Eigenvalues[H]
Eigenvectors[H]
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Apéndice G

Código Método 2 - Modificación para
comprobar los auto estados localizados

No tenemos más que añadir el siguiente código al final del código del Apéndice F.

Identidad = Table[Table[KroneckerDelta[j,m], {j, 1, sitios}], {m, 1, sitios}];

AutoVector = Table
[(

Identidad[[2 ∗ j]]−
√

2 ∗ Identidad[[2 ∗ j + 1]] + Identidad[[2 ∗ j + 2]]
)
∗ 0,5,

{
j, 1, sitios−3

2

}]
;

MatrixForm[AutoVector]Normalizado = Table
[
Sum[AutoVector[[j]][[m]] ∗AutoVector[[j]][[m]], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[Normalizado]AutoVectorNorma = Table
[
Table[AutoVector[[j]][[m]]/Normalizado[[j]], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[AutoVectorNorma]Imag = Table
[
Table[Sum[H[[m]][[l]] ∗AutoVector[[j]][[l]], {l, 1, sitios}], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[Imag]AutoValTeo = Table
[
Sum[Imag[[j]][[m]] ∗AutoVector[[j]][[m]]/Normalizado[[j]], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[AutoValTeo]
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Apéndice H

Código Método 2 - Modificación para
comprobar los auto estados localizados,
frecuencias distintas

Deberemos añadir lo siguiente al código expuesto en el Apéndice F. Primero cambiaremos la condición inicial
para J1:

J1 = −1+
√

2Ω+2Ω2−
√

1+2
√

2Ω+4Ω2+4
√

2Ω3+4Ω4

2
√

2+3Ω

Segundo añadimos el siguiente código al final:

Identidad = Table[Table[KroneckerDelta[j,m], {j, 1, sitios}], {m, 1, sitios}];

AutoVector = Table
[(√

J1
J1−Ω ∗ Identidad[[2 ∗ j]]−

√
2 ∗ Identidad[[2 ∗ j + 1]]

+
√

J1
J1−Ω ∗ Identidad[[2 ∗ j + 2]]

)
∗ 0,5,

{
j, 1, sitios−3

2

}]
;

MatrixForm[AutoVector]Normalizado = Table
[
Sum[AutoVector[[j]][[m]] ∗AutoVector[[j]][[m]], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[Normalizado]AutoVectorNorma = Table
[
Table[AutoVector[[j]][[m]]/Normalizado[[j]], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[AutoVectorNorma]Imag = Table
[
Table[Sum[H[[m]][[l]] ∗AutoVector[[j]][[l]], {l, 1, sitios}], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[Imag]AutoValTeo = Table
[
Sum[Imag[[j]][[m]] ∗AutoVector[[j]][[m]]/Normalizado[[j]], {m, 1, sitios}],

{
j, 1, sitios−3

2

}]
;

MatrixForm[AutoValTeo]
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Apéndice I

Código Método 2 - Modificación para el
caso no lineal

La modificaciones que hay que hacer al código del Apéndice F son primero definir la matriz del término no lineal:

MatNolineal = Sum[Table[Table[KroneckerDelta[i, j]∗Vec2[[i]][[m]]∗(Vec2[[j]][[m]]−1), {i, 1, L}], {j, 1, L}], {m, 1, sitios}];

En segundo lugar añadir el término no lineal al Hamiltoniano:

H = ω1 ∗ MatId2 + ω2 ∗ MatId1 + J1 ∗ (MatImag1 + MatImag2) + J2 ∗ (MatImag3 + MatImag4 + MatImag5 +
MatImag6) +K ∗ 0,5 ∗MatNolineal;

En donde K equivale a U/2.
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