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Efficient explicit finite volume schemes for the

shallow water equations with solute transport

Abstract

This work is concerned with the design and the implementation of efficient and

novel numerical techniques in the context of the shallow water equations with solute

transport, capable to improve the numerical results achieved by existing explicit

approaches. When dealing with realistic applications in Hydraulic Engineering, a

compromise between accuracy and computational time is usually required to simu-

late large temporal and spatial scales in a reasonable time. With the aim to improve

the existent numerical methods in such a way to increase accuracy and reduce com-

putational time. Three main contributions are envisaged in this work: a pressure-

based source term discretization for the 1D shallow water equations, the analysis

and development of a Large Time Step explicit scheme for the 1D and 2D shallow

water equations with source terms and the numerical coupling between the 1D and

the 2D shallow water equations in a 1D-2D coupled model. The first improvement

roughly consists of exploring the pressure and bed slope source terms that appear in

the 1D and 2D shallow water equations to discretize them in an intelligent way to

avoid extremely reductions in the time step size. On the other hand, the implemen-

tation of a Large Time Step scheme is carried out. In order to relax the stability

condition associated to explicit schemes and to allow large time step sizes, reducing

consequently the numerical diffusion associated to the original explicit scheme. Fi-

nally, two 1D-2D coupled models are developed. They are demonstrated to be fully

conservative and are able to approximate well the results obtained by a fully 2D

model in terms of accuracy, while the computational effort is clearly reduced. All

the advances are analysed by means of different test cases, including not only aca-

demic configurations but also realistic applications, in which the numerical results

achieved by the new numerical techniques proposed in this work are compared with

the conventional approaches.





Esquemas expĺıcitos eficientes en volúmenes

finitos para las ecuaciones de aguas poco

profundas con transporte de soluto

Resumen

El objetivo de este trabajo consiste en el diseño y la implementación de nuevas

técnicas numéricas eficientes para las ecuaciones de las aguas poco profundas con

transporte de soluto, capaces de mejorar los resultados numéricos que proporcionan

los métodos expĺıcitos existentes. En aplicaciones realistas relacionadas con la Inge-

nieŕıa Hidráulica, normalmente se requiere un compromiso entre precisión y tiempo

de cálculo para simular problemas a grandes escalas temporales y espaciales en un

tiempo asumible. Sin embargo, es posible mejorar los métodos numéricos existentes

de tal manera que sean capaces de aumentar la precisión y reducir el tiempo de

cálculo. En este trabajo destacan tres contribuciones principales: una discretización

de los términos fuente, basada en el cálculo de las fuerzas de presión para las ecua-

ciones 1D de aguas poco profundas, el análisis y el desarrollo de un esquema Large

Time Step expĺıcito para las ecuaciones 1D como 2D de aguas poco profundas con

términos fuente y el acoplamiento numérico entre las ecuaciones 1D y 2D de aguas

poco profundas mediante un modelo acoplado 1D-2D. La primera mejora consiste

en explorar los términos fuente de fondo y presión que aparecen en las ecuaciones

1D y 2D de aguas poco profundas y discretizarlos de una manera inteligente para

evitar reducciones extremas en el tamaño del paso de tiempo. Por otra parte, se

propone la implementación de un esquema de tipo Large Time Step. Este método

consigue relajar la condición de estabilidad asociada a los esquemas expĺıcitos y

permite pasos de tiempo más grandes, reduciendo por tanto la difusión numérica

asociada al esquema expĺıcito convencional. Por último, se desarrollan dos modelos

acoplados 1D-2D. Se demuestra que son totalmente conservativos y que son capaces

de aproximar bien los resultados obtenidos por un modelo completo 2D en términos

de precisión, al mismo tiempo que se reduce la carga computacional. Todos los

avances se analizan usando distintos casos test, incluyendo no solo configuraciones

académicas sino aplicaciones realistas, en las que los resultados numéricos obtenidos

con las nuevas técnicas propuestas en este trabajo se comparan con los esquemas

convencionales.
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Javier Fernández, Samuel Ambroj y Borja Latorre. Todos ellos han contribuido de
alguna manera a este trabajo.

Por último, mis amigos y mi familia también merecen un agradecimiento. En parti-
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Introduction

Computational Hydraulics is concerned with the study of free surface flow dynamics

using numerical solutions of non-linear equations that are assumed to govern the

involved physical processes. The fluid movement is modelled by fundamental con-

servation laws that can be expressed in mathematical terms in the form of partial

differential equations.

Hydraulic models can be classified according to the number of dimensions in which

they represent the spatial domain as 1D, 2D or 3D. In general, 3D approaches may

not be adequate to practical cases using the available information: topography,

experimental measurements and real observed flooded areas and also due to the

unacceptable computational cost required for simulating large scale and time prob-

lems. Moreover, certain questions concerning boundary conditions, the validity of

turbulence models or pressure hypothesis are open nowadays [49]. For that reason,

1D and 2D models are preferred. Numerical models (1D and 2D) based on the

Shallow Water Equations (SWE) have been widely used independently to simulate

geophysical free surface flows [16, 19, 13, 14, 90, 10, 11].

One dimensional (1D) models are usually applied in long rivers and open channels

with additional equations for hydraulic structures [16, 55, 1, 108, 105] due to their

computational efficiency, particularly for river network systems. Their limitation

arise in modelling floodplains. This restriction can be nevertheless avoided with the

use of 2D shallow water models [31, 13, 12]. Depth-integrated 2D hydrodynamic

models have been used for many years for predicting free surface flows. The increas-

ing availability of digital topographic data in recent years provides this type of model

with scope for wider application. Although 1D approximations require less informa-

tion and are computationally time saving, 2D models give more precise results when

dealing with a multidimensional flow pattern. However, in real world applications,

2D models can require refined grids resulting in costly and slow simulations.

The non-linear hyperbolic system of equations representing the hydrodynamic phe-

nomena can be extended in order to include the solute transport. The controllability
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of contaminant releases in a river has become an important issue in environmental

impact analysis. The impact of human activity on surface stream habitats has

been extensively studied throughout the world [66, 104], forming the basis for many

stream restoration efforts [128]. In this context, the implementation of a predictive

tool able to simulate the transport of substances in a shallow water model is clearly

justified.

Being a hyperbolic system, the 1D and 2D SWE including the solute transport are

a good candidate to apply upwind methods. In particular, a finite volume explicit

Godunov’s type method [54, 119] is the basis of the advances presented in this thesis.

This kind of methods compute the numerical flux that updates the value of each

cell by averaging the values of the different approximate solutions that appear when

defining a local Riemann Problem between the involved cell and its neighbouring

cells. The explicit choice of the numerical fluxes is related to its conceptual simplicity

instead of implicit schemes, which require the resolution of an algebraic system of

equations. However, in the explicit approach, the time step is restricted by stability

criteria. Although the formulation of the numerical schemes is usually written in

terms of a numerical flux, another point of view will be considered in this thesis.

Following the upwind philosophy, which discriminates the sense of propagation of

the information, the updating of a single cell can be seen as computing the in-going

contributions that arrive to the cell. Therefore, the corresponding scheme can be

described by means of different waves travelling to the left or the right side of each

Riemann Problem defined at each edge or interface.

Most of the efforts of the last decade in solving the SWE have been devoted to

an adequate source term discretization. The application to realistic scenarios where

extreme slopes, important roughness and strong changes in the irregular topography

play an important role is not a straightforward procedure. In fact, one of the most

important issues in the 2D shallow water model is the correct formulation of wet/dry

fronts, which is closely related to, but goes beyond the source term discrezation. The

technique of projecting the average source term onto the eigenvector basis is widely

accepted as leading to well balanced numerical solutions [122, 65]. The reason behind

the treatment of the source terms as a sum of waves defined at the cell edge is related

to the necessity of ensuring a perfect balance between flux derivatives and source

terms in steady state. This has been previously discussed in [92]. For this purpose, a

Roe’s Augmented Riemann Solver is adopted in this work to include the presence of
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source terms in the numerical resolution of the system of equations. While the Roe’s

approach [109] is used to decouple the original system and to define approximate

Jacobian matrix at each edge to solve the approximate Riemann Problems, the

Augmented technique [52, 92, 47] adds a stationary jump discontinuity acting as a

source term, reinterpreting the effect associated to the source term in a discrete level.

In fact, the Roe’s scheme for the augmented system written in a wave propagation

form results a special version of the path-conservative scheme proposed in [24, 103]

and further developed in [41, 21, 43].

However, a simple source term discretization in complicated test cases involving

wetting and drying and extreme slope and/or friction terms could lead to a time step

reduction below the classical Courant-Friedrichs-Lewy (CFL) condition [32, 117, 72]

required to ensure numerical stability and positivity of the scheme [17, 97, 92]. In

order to avoid this, the integral formulation of the source term vector proposed in

[92] is extended in this work. This good integration, not only applied on the bed

slope source term but also on the friction term, combined with a limitation in the

amount of numerical source is able to avoid reducing the time step size. More details

relating to this procedure can be found in [92, 93].

The main goal of this work is the development of efficient numerical methods based

on existing explicit upwind schemes, able to improve their results in terms of accu-

racy and computational time. For this purpose, three main contributions, corres-

ponding to three clearly differentiated parts, are envisaged: the extension of the

source term integral formulation to the 1D SWE with irregular geometries (part I),

the development of Large Time Step (LTS) explicit schemes for the 1D and the 2D

frameworks in square and triangular grids (part II) and the numerical coupling of

both 1D and 2D models in a 1D-2D model, able to make the best of them (part III).

The aim of Part I will be the integral formulation of the pressure source terms present

in the 1D SWE with irregular cross sections. However, this part is also conceived to

describe and detail the whole process involving the numerical resolution of a scalar

or a system of hyperbolic conservation laws with source terms. The focus is put

on upwind explicit finite volume schemes and the Roe’s Augmented Approximate

Riemann Solver, which are applied to the 1D and 2D SWE with solute transport.

Source terms discretization plays an important role in the shallow water context.

Apart from maintaining the C-property and the discrete balance between flux and

source terms giving rise to well-balanced schemes [122, 72, 117, 118], an adequate



4 Introduction

numerical integration of the pressure force terms associated to the change in the

river/channel geometry will be explored. In particular, the philosophy developed in

[92] for rectangular cross sections will be extended for variable widths and irregular

geometries in the 1D SWE.

In Part II, a Large Time Step (LTS) scheme is developed for scalar conservation laws

as well as for systems of conservation laws with source terms. It is mainly based

on relaxing the CFL condition, associated to the explicit resolution of hyperbolic

conservation laws, to allow larger time step sizes. The implementation of the LTS

scheme initially developed by Leveque [70, 71, 72] for the linear and non-linear scalar

equations will be first performed. When applied to non-linear scalar cases, the

proposed LTS scheme requires the discrete representation of the rarefaction wave

in the form of several discontinuities travelling at different speeds if an accurate

solution is sought at large CFL values. A simple rule to estimate these speeds will

be proposed. The inclusion of source terms in the equations will be widely analysed,

and a straightforward procedure similar to the homogeneous case will be provided.

The extension to systems of conservation laws will be proposed in a general way and

then particularly applied to the 1D shallow water equations [87]. The source term

treatment and boundary conditions will be extended to this method.

The extension of the LTS scheme to the 2D configuration will be achieved in a

first step by means of quadrilateral structured meshes. One general method to

accomplish the 2D extension is the dimensional splitting where the equations are

simplified to solve them many times in a 1D configuration. While the simplicity of

solving 1D equations and the advances related to boundary conditions and source

terms are preserved, the disadvantage of the computational time associated with the

splitting formulation [115] is significantly reduced because of using large time step

sizes in the numerical resolution of the equations [88].

In a second step, the LTS scheme is developed for triangular grids for the 2D con-

figuration. The idea developed in the 1D case or in the dimensional splitting must

be modified due to the flow orientation and the geometry/area of each triangle. In

particular, the amount of information from each edge must be packed in a certain

way, rescaling it conservatively according to the neighbouring edges. Moreover, not

only the information is compacted in a particular way but also it is sent following the

flow direction across the wall edges, defining branches and preferential paths to be

able to reproduce correctly the velocity field. The heterogeneity in the area of each
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element is also considered when dealing with unstructured triangular meshes hence

cumbersome retriangularizations as in [94] are avoided. Both approaches (square

and triangular grids) are validated using linear and non-linear equations and then

extended to the 2D SWE. The wet/dry treatment an the source term discretization

becomes crucial in the 2D framework thus an adequate formulation is presented,

based on the previous advances.

Part III deals with the numerical coupling between the 1D and the 2D SWE. The

implementation of a complete 1D-2D model seems to be a good solution to eliminate

not only the limitations of the 1D model related with the underlying mathemati-

cal hypothesis which introduce some errors when modelling flooding waves over 2D

domains, but also the uncertainty in the 2D model associated to the discrete repre-

sentation of the topography. Moreover, the computational time should be reduced

with the 1D-2D coupled model, not only because a large number of cells from the 2D

model are eliminated from the computation but also because these cells are usually

the responsible for the time step size.

Two different 1D-2D models will be presented in this work. Although both ap-

proaches require a careful meshing procedure in the sense that each 1D cell should

be connected with and exact number of 2D cells (coupling zone), they are based on

different techniques.

As a first approach, the requirement of common quantities in the junction zone be-

tween both models will be performed [86]. It will be called FC (Forced Conservative)

1D-2D coupled model. The OMC (Only Mass Conservation) technique evaluates

the total water volume existing at the coupling zone and imposes a common water

level surface. The MMC (Mass and Momentum Conservation) strategy, considered

as an extension of the OMC, enforces not only a new common level at the coupling

zone, but also the water velocity components. The use of each strategy will not be

transparent to the boundary conditions of the 1D and the 2D models. They have

to be revisited and, according to the flow regime, the OMC and/or MMC strategy

must be used to avoid non-physical results. Both strategies will be based on the

fully conservation property which considers the information that crosses the limits

of the 1D or 2D domains [20]. The same philosophy will be applied to the solute

transport equation, computing the total solute mass at each coupling zone and then

imposing an average concentration.
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Another 1D-2D numerical coupled model, called RCE (Riemann Coupled Edges)

will be developed. When transforming the 1D conserved variables into 2D quantities

in a conservative way, it is possible to apply the Roe’s linearization [109] and to

solve the corresponding Riemann Problem across each 1D-2D edge separating both

models. Apart from resulting always conservative in the sense of Roe, the RCE 1D-

2D coupled model allows to formulate the numerical method for both 1D and 2D

cells in a simpler way, considering the contributions arriving from 1D-1D edges, 1D-

2D edges and 2D-2D edges. The solute transport equation will be also formulated

in terms of the RCE coupled model, defining an adequate numerical flux at each

1D-2D edge.

All the proposed numerical methods and strategies to increase accuracy and effi-

ciency are validated not only with analytical solutions [63, 78, 79] but also with

experimental and field data [85, 125]. They have been used to reproduce all kind

of flow conditions and their performance has been illustrated using test cases with

exact solution of steady and unsteady open channel flow problems. Academic con-

figurations and real world applications in which the source terms play an important

role are computed, and the efficiency in terms of computational time consumed by

these new numerical methods is evaluated in contrast to the conventional schemes.



Part I

Finite volume schemes for

conservations laws with source

terms





Chapter 1

Conservation laws

1.1 Differential and integral formulation

Conservation laws are used to formulate the dynamics of different physical quantities

such as mass, momentum or energy within a physical system. They are directly

related to principles of symmetry and wave propagation serving consequently as

a strong constraint on any theory in any branch of science [114]. They can be

mathematically expressed in the form of a partial differential equation or a system

of n partial differential equations:

Ut +∇ · F(U) = S(U) (1.1)

Here U is the conserved or vector of conserved variables, F(U) the flux or vector of

fluxes of these conserved variables and S(U) represents the source terms. As a flux

is used and partial derivatives appear in (1.1), the conservation law is named the

conservative differential form, which assumes smooth solutions. However, equation

(1.1) can also be written in a non-conservative formulation:

Ut + J(U) ∇ ·U = S(U) (1.2)

where J(U) =
∂F(U)

∂U
is the transport speed or n × n Jacobian Matrix. The

Jacobian eigenvalues and eigenvectors characterize the speed of propagation and

the structure of the disturbances respectively. We will focus on the Shallow Water

Equations (SWE), which is a non-linear hyperbolic system of equations. While the

hyperbolicity of the system is associated to the real nature of the eigenvalues of the

Jacobian matrix, the non-linearity represents the manner that the information is
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propagated.

Equation (1.1) can be integrated over a fixed volume Ω so that the change in the

amount of U will be only due to the flux contributions through the boundary Γ and

the source term contribution inside the considered volume:

∂

∂t

∫

Ω

UdΩ +

∮

Γ

FndΓ =

∫

Ω

SdΩ (1.3)

where n is the unit outward normal vector on the boundary Γ and the Gauss Diver-

gence Theorem has been applied. Equation (1.3) is the so-called integral formulation

of the conservation law. It is usually considered in problems admitting discontinuous

solutions in which the smoothness hypothesis underlying the differential formulation

is no longer true. Moreover, this formulation is deeply related to the numerical re-

solution of the equations from a finite volume point of view. In this approach the

domain is discretized in a finite number of control volumes or computational cells

over which the variables are locally conserved.

Both differential and integral formulations are equivalent if the solution is smooth,

i.e, continuously differentiable. In non-linear hyperbolic problems the notion of

classical solution is not sufficient because of the occurrence of discontinuities in the

solution. In fact, when solving the corresponding discretized system of equations,

discontinuities are always present hence the interest is put on the solution of the

more general system (1.3) which is completely equivalent to seek a weak solution to

(1.1) [53, 72, 123]. Therefore, the main effort will reside in the correct resolution in

time of the original system of partial differential equations (1.1) with a discontinuous

initial value problem, that is, the Riemann Problem.

1.2 The Riemann Problem for scalar conservation

laws

In order to introduce the Riemann Problem concept, the one dimensional homoge-

neous scalar equation is first examined:

∂u

∂t
+

∂f(u)

∂x
= 0 (1.4)
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where f(u) is a linear or non-linear function of u. The resolution of (1.4) leads to

the evolution in time and space of the conserved variable u given an initial condition

defined as follows:

u(x, 0) = u0(x) =

{
uL if x < 0

uR if x > 0
(1.5)

where uL and uR are two constant values. This piecewise constant initial value

problem for equation (1.4) is called the Riemann Problem, from now on RP (see Fig

1.1).

uR

uL

x
x = 0

u0(x)

Figure 1.1: Riemann Problem (RP) for the scalar case

1.2.1 Linear scalar equation

The homogeneous linear scalar equation can be expressed as follows:

∂u

∂t
+

∂f(u)

∂x
= 0 → ∂u

∂t
+ λ

∂u

∂x
= 0 (1.6)

where f(u) = λu and λ is a constant wave propagation speed. Let consider λ > 0

(the reasoning is analogous for λ < 0). When solving this equations, characteristic

curves or simply characteristics arise naturally. They are curves in the x− t plane

satisfying an interesting property: the change of the variable u along them is zero,

that is, u is constant along the characteristics. In other words, the partial differential

equation reduces to an ordinary differential equation along the characteristic line:

du

dt
= 0 along

dx

dt
= λ (1.7)
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In the linear case, the family of characteristics is a set of parallel straight lines as

shown in Figure 1.2 for λ > 0. This can be understood as any point of the x-domain

is propagated a distance d = λt in a time t.

x

t

x0

x = x0 + λt

Figure 1.2: Family of characteristics for the linear scalar equation with λ > 0 in the x− t

plane

Given a RP as defined in (1.5), the exact solution can be consequently formulated

as:

u(x, t) = u0(x− λt) =

{
uL if x− λt < 0

uR if x− λt > 0
(1.8)

Figure 1.3 illustrates the solution in the x− t plane.

x

t x = λt

uR

x− λt < 0

uL

x− λt > 0

Figure 1.3: Solution in the x− t plane of the RP (1.5) for the linear scalar equation with

λ > 0
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1.2.2 Non-linear scalar equation

The non-linear scalar equation emerges when assuming that f(u) is a non-linear

convex function in (1.4). It is possible to define an advection velocity

λ =
df

du
λ = λ(u) (1.9)

where λ(u) is no longer constant. The solution of the RP (1.5) will consist of a set of

waves emerging from the initial jump [118, 72]. From a classical point of view, there

are only two different types of genuinely non-linear waves: compressive or shock

waves and rarefaction or fan waves [123]. As an example to illustrate how shocks

and rarefactions arise, let consider the inviscid Burgers’ equation.

The inviscid Burgers’ equation is a particular case of scalar conservation law of the

type (1.4) with f(u) = 1
2u

2. This equation can be written as

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 or

∂u

∂t
+ u

∂u

∂x
= 0 (1.10)

Two different situations appear depending on the relative value of uL and uR. When

uL > uR a right moving shock develops (see Figure 1.4).

uR

uL

x

u

x

t Sλ

Figure 1.4: Initial data (dashed) and solution (solid) of a shock (left) and map of

characteristic lines of a shock (right)

The discontinuous solution of the RP in this case is

u(x, t) =

{
uL if x− Sλt < 0

uR if x− Sλt > 0
(1.11)

where Sλ is the speed of the discontinuity that can be derived from the so-called
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Rankine-Hugoniot conditions, defined by

[f ] = Sλ [u] (1.12)

where the brackets [·] denote the jump in the quantity across the discontinuity. They

describe the relationship between the states on both sides of a Riemann Problem

consisting of a shock. In the Burgers case, the speed of the discontinuity has the

following expression:

Sλ =
1

2
(uL + uR) (1.13)

Related to the speed of the discontinuity in this kind of waves is another relevant

concept: the entropy condition. The main difficulty when seeking weak solutions of

a non-linear hyperbolic equation or system of equations is the lack of uniqueness.

In fact, for any given RP, many weak solutions may exist and additional conditions

are required to select the physically relevant solution. These conditions are called

entropy conditions, making reference to the gas dynamics. For instance in the scalar

case, the Lax entropy conditions [72, 123] state that a shock wave satisfying the

Rankine-Hugoniot conditions is admissible only if

f ′(uL) > Sλ > f ′(uR) (1.14)

Regarding the RP in the Burgers’ equation, when uL < uR (Figure 1.5) the solution

consists of a smooth rarefaction wave connecting the two constant states uL an uR:

u(x, t) =





uL if x/t ≤ uL

x/t if uL < x/t < uR

uR if x/t ≥ uR

(1.15)
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uR

uL

x

u

x

t

Figure 1.5: Initial data (dashed) and solution (solid) of a rarefaction (left) and map of

characteristic lines of a rarefaction (right)

1.3 The Riemann Problem for systems of conser-

vation laws

1.3.1 Linear systems

The linear hyperbolic system of equations is expressed:

∂U

∂t
+

∂F(U)

∂x
= 0 F = JU (1.16)

The extension of the analysis developed for the scalar case to solve the Riemann

Problem

∂U

∂t
+

∂F(U)

∂x
= 0 U(x, 0) = U0(x) =

{
UL if x < 0

UR if x > 0
(1.17)

can be achieved using the Jacobian matrix. In fact, we have to solve a set of n

hyperbolic PDE’s of the form:

∂U

∂t
+ J

∂U

∂x
= 0 (1.18)

where all the coefficients in the Jacobian matrix J are constant. Furthermore, J has

n real eigenvalues λi and n linearly independent eigenvectors ei. The eigenvalues

can be ordered:

λ1(U) ≤ λ2(U) ≤ · · · ≤ λn(U) (1.19)
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Let consider the matrix E, whose columns are the right eigenvectors of J correspon-

ding to the eigenvalues λi. It is possible to diagonalise matrix J using E:

Λ = E−1JE (1.20)

where Λ is a diagonal matrix containing the eigenvalues. Now, a new set of inde-

pendent variables W called characteristic variables is defined via

W = E−1U (1.21)

Since E is constant, (1.18) can be directly re-written after the left multiplication by

E−1 as:

∂W

∂t
+Λ

∂W

∂x
= 0 (1.22)

and the system is totally decoupled into n linear scalar equations with an initial

condition defined by

W0(x) = E−1U0(x) (1.23)

Consequently, as an extension of the scalar case, the general solution in the x − t

plane will consist of n waves arising from the origin, each one associated with the

eigenvalue λi as illustrated in Figure 1.6 [118, 53, 123].

x

t

λ1

λ2
λp

λn−1

λn

UR

UL

Figure 1.6: Solution in the x− t plane of the Riemann Problem (1.17) for the n× n

linear system of equations
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The analytical expression can be deduced by expanding the initial states UL and

UR into the eigenvectors basis as:

UL =

n∑

k=1

akek UR =

n∑

k=1

bkek (1.24)

The difference UR −UL is evaluated

δU = UR −UL =

n∑

k=1

(bk − ak)ek =

n∑

k=1

αkek = E δW (1.25)

and following the previous analysis for the scalar case and by simple algebraic ma-

nipulation, it is possible to arrive to the expression defining the analytic solution

[118]:

U(x, t) =





UL if x/t < λ1

UL + α1e1 if λ1 < x/t < λ2

UL + α1e1 + α2e2 if λ2 < x/t < λ3
...

...

UL +

p∑

k=1

αkek if λp < x/t < λp+1

...
...

UL +

n∑

k=1

αkek = UR if λn < x/t

(1.26)

The initial jump in the Riemann Problem is projected onto the characteristic field

and each wave strength αkek is propagated according to its own characteristic speed

λk. As an example, the solution of the 2 × 2 linear system is illustrated in Figure

1.7. It consists of three states (UL, U
∗ and UR) delimited by two eigenvalues λ1

and λ2 where

U∗ = UL + α1e1
(1.25)
= UR − α2e2 (1.27)

Therefore the solution is expressed as follows:



18 Conservation laws

x

t

λ1 λ2

URUL
U∗

Figure 1.7: Sketch of the solution in the x− t plane of the Riemann Problem for the

2× 2 linear system of equations

U(x, t) =





UL if x/t < λ1

U∗ = UL + α1e1 = UR − α2e2 if λ1 < x/t < λ2

UR if λ2 < x/t

(1.28)

1.3.2 Non-linear systems

The solution of the Riemann Problem (1.17) where F(U) is a non-linear vector

of fluxes will consist of n + 1 piecewise constant states separated by n elementary

waves, each one related to each eigenvalue λi, similar to the linear system. However,

in contrast to the linear system, the waves may contain discontinuities or smooth

transitions and the general solution of the Riemann Problem should be carefully

analysed by discriminating each particular type of wave. Shocks and rarefactions

may arise when dealing with non-linearities. While rarefactions emerge when look-

ing for piecewise constant continuous solutions or expansions, shocks accompany

compressions or piecewise constant discontinuous solutions. The names for this

waves and its meaning are borrowed from gas dynamics, where the gas propagates

in a contracting or expanding way. However, they are not the unique waves that

can appear in a non-linear system of conservation laws. For example, in the Euler

equations, there exist waves across which both pressure and velocity are constant

but there is a discontinuous jump in density and other density-dependent variables.

More information can be found in [117, 118, 123].

As an example, Figure 1.8 illustrates a sketch of the solution of a non-linear Riemann

Problem in the x− t plane for a 2× 2 system.
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x

t

λ1(U) λ2(U)

URUL

U∗

Figure 1.8: Example of solution in the x− t plane of the Riemann Problem for a 2× 2

non-linear system of equations

It shows a rarefaction associated to the first eigenvalue λ1 and a right moving shock

associated to λ2. The solution will consist of three constant states separated by the

moving waves. In this case, apart from the initial data UL and UR, an intermediate

state denoted by U∗ is generated. The elucidation for the explicit expression of

the middle star state, the effect of including source terms as well as the numerical

resolution of the system of conservation laws by means of a certain solver will be

deeply analysed in the following chapter.





Chapter 2

Finite volume schemes and the

Augmented Roe’s solver

2.1 Finite volume schemes

Three classical choices stand out for the resolution of problems in the context of

fluid dynamics: finite difference (FD), finite element (FE) and finite volume (FV)

methods [82]. The main advantage of FD codes is the easy way to work with

high order of approximation at the extra cost of increasing the computational time.

Moreover, the formulation becomes an arduous task when dealing with complex

geometries in multiple dimensions. On the other hand, FE and FV methods are

characterized by a relative simplicity when dealing with complex geometries. In

particular, in the FE method, the problem domain is divided into elements with

finite area. The solution is based on a function of space and varies between the

nodes of elements. In a FV method the domain is composed of computational cells

or control volumes Ωi over which the conserved variables are integrated, achieving

an approximation to the average value of the true solution. Accordingly, they offer

an intuitive approach for solving system of conservation laws.

The application to the shallow water equations has been traditionally carried out

by means of FV schemes [4, 6, 12, 5, 7, 112, 14] although several works have been

developed in the context of FE [58, 59, 2, 36, 130] and even in FD, emphasizing

the idea of locally and globally conservation [129, 101, 100]. In this work, the focus

will be put on Godunov-type explicit upwind first order schemes [54, 119]. This

means that the solution from time tn to time tn+1 = tn+∆t is achieved by solving a

sequence of local Riemann Problems and by assuming a piecewise constant data at

each cell i. Moreover, the numerical integration of the temporal derivative is based
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on the Euler forward rule. In fact, when evaluating the unknown values at the

following time tn+1 using only the known values in time tn, the family of methods

are called explicit and are extensively used in Computational Fluids Dynamics. On

the other hand, the discretization of the spatial derivative is performed by means of

an upwind method, which discriminates the sense of propagation of the information.

2.1.1 1D finite volume schemes

Considering the one dimensional homogeneous scalar conservation law written in

differential form:

∂u

∂t
+

∂f(u)

∂x
= 0 (2.1)

In order to obtain a numerical solution, the spatial domain of length L is discretized

into a set of N grid cells Ωi = [xi−1/2, xi+1/2] of size ∆x. For simplicity, we assume

a regular mesh (see Figure 2.1).

x

x1 · · · xi−1 xi xi+1 · · · xn

xi−1/2 xi+1/2

x = 0 x = L
∆x

Figure 2.1: Mesh: discretization of the domain in N computational cells of size ∆x

Integrating (2.1) over a control volume [xi−1/2, xi+1/2] × [tn, tn+1] where tn+1 =

tn +∆t:

∫ xi+1/2

xi−1/2

u(x, tn+1) dx−
∫ xi+1/2

xi−1/2

u(x, tn) dx +

∫ tn+1

tn
f(u(xi+1/2, t) dt−

∫ tn+1

tn
f(u(xi−1/2, t) dt = 0

(2.2)

The finite volume method considers the spatially averaged value of the conserved

variable u(x, t) in cell i at a fixed time t = tn, defined as
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uni =
1

∆x

∫ xi+1/2

xi−1/2

u(x, tn) dx (2.3)

and the time-averaged fluxes at the cell interfaces:

f∗i±1/2 =
1

∆t

∫ tn+1

tn
f(u(xi±1/2, t) dt (2.4)

Therefore, the numerical resolution of (2.1) for the updating of a single cell i from

time tn to time tn+1 can be expressed generally by means of:

un+1
i = uni − ∆t

∆x
(f∗i+1/2 − f∗i−1/2) (2.5)

where f∗i±1/2 are the so-called numerical fluxes, that is, the numerical approximation

of the exact flux integral through the cell interfaces. The choice of the numerical

fluxes in (2.5) will determine the diverse numerical schemes described in the litera-

ture.

There exists an equivalent way of formulating a conservative scheme by using the

flux difference splitting procedure. From the non-conservative form of (2.1)

∂u

∂t
+ λ(u)

∂u

∂x
= 0 λ = λ(u) =

df

du
(2.6)

and the upwind approach, which discriminates the sense of propagation according

to sign of the speeds, it is feasible to define the following quantities:

λ± =
λ± |λ|

2
δf± = λ±(u)δu (2.7)

and to express the numerical fluxes in (2.5) in terms of them:

f∗i+1/2 = fi + λ−δui+1/2 f∗i−1/2 = fi − λ+δui−1/2 (2.8)

Accordingly, the cell updating for (2.1) can be written:

un+1
i = uni − ∆t

∆x
(δf+

i−1/2
+ δf−

i+1/2
) (2.9)
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The meaning of this expression is very simple: cell i will be updated from time tn

to time tn+1 according to the arriving contributions from the left and from the right

computational edges. In the explicit scheme the time step is restricted by stability

reasons [32]:

∆t = CFL min
i

(
∆x

|λ|ni

)
, CFL ≤ 1 (2.10)

where CFL is the Courant-Friedrich-Lewy number. The extension to 1D homoge-

neous systems of conservations laws is a straightforward procedure. As an example,

the 2× 2 non-linear hyperbolic system of conservation is again examined:

∂U

∂t
+

∂F(U)

∂x
= 0

∂U

∂t
+ J(U)

∂U

∂x
= 0 (2.11)

where J(U) is the Jacobian Matrix. According to the integral formulation and the

finite volume approach explained for the scalar case in (2.2), (2.3) and (2.4), the

numerical scheme is formulated analogous to (2.5):

Un+1
i = Un

i − ∆t

∆x
(F∗

i+1/2 − F∗
i−1/2)

n (2.12)

With a similar reasoning, it is possible to formulate the analogous flux difference

splitting procedure:

Un+1
i = Un

i − ∆t

∆x
(δF+

i−1/2
+ δF−

i+1/2
)n (2.13)

where δF± = J±(U) δU.

2.1.2 2D finite volume schemes

In order to explain the finite volume scheme applied over a 2D configuration, the

two dimensional scalar equation is first considered, written in differential form:

∂u

∂t
+∇ · f(u) = 0 , f(u) = (fx, fy) , (2.14)

The domain is divided into computational cells Ωi with area Ai. Integrating (2.14)

over a control volume Ωi,
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∂

∂t

∫

Ωi

u dΩ +

∫

Ωi

∇ · f(u) dΩ = 0 (2.15)

it is possible to apply the Gauss theorem to arrive to the following expression:

∂

∂t

∫

Ωi

u dΩ +

∮

Γ

fndΓ = 0 (2.16)

where n = (nx, ny) is the outward unit normal vector to the volume Ωi and Γ

denotes the surface surrounding the volume Ωi, i.e., the boundaries of Ωi. In order

to obtain a numerical solution from time tn to time tn+1 = tn +∆t, equation (2.16)

is integrated over [tn, tn+1]:

∫

Ωi

u(x, y, tn+1) dΩ−
∫

Ωi

u(x, y, tn) dΩ+

∫ tn+1

tn

NE∑

k=1

fknklk dt = 0 (2.17)

where the last contour integral in (2.16) has been replaced by the sum of the fluxes

through the edges k of length lk, separating cell i and the NE neighbouring cells jk

(NE = 4 for quadrilaterals and NE = 3 for triangular cells). Figure 2.2 includes the

mentioned variables in the case of a triangular grid.

lk

nk2
nk1

nk3

uj1
uiuj2

uj3

Figure 2.2: Sketch of the 2D finite volume approach

The finite volume considers the spatially averaged value of the variable u(x, y, t) in

the i-th cell at time tn

uni =
1

Ai

∫

Ωi

u(x, y, tn) dΩ (2.18)

and the time-averaged fluxes at each edge k:
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f∗knk =
1

∆t

∫ tn+1

tn
fk(u(x, y, t))nk dt (2.19)

Thus, the numerical scheme can be written in terms of the numerical fluxes f∗k as

follows:

un+1
i = uni − ∆t

Ai

NE∑

k=1

f∗knklk (2.20)

As described for the 1D framework, there exists another formulation called flux

difference splitting formulation which is presented here for the 2D scalar case. The

non-conservative formulation of (2.14)

∂u

∂t
+ λ∇ · u = 0 , λ =

df

du
(2.21)

allows to define the following quantities:

λ
± =

λ± λ

2
(2.22)

Analogous to the 1D case, the numerical fluxes in (2.20) can be expressed in terms

of (2.22):

f∗knk = fknk + λ
−nkδuk︸ ︷︷ ︸
(δfn)−k

(2.23)

where δuk = uj − ui. According to [53], the following property is satisfied:

NE∑

k=1

nklk = 0 (2.24)

hence (2.20) is rewritten using (2.24) to achieve the flux difference formulation

un+1
i = uni − ∆t

Ai

NE∑

k=1

(δfn)−k lk (2.25)
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whose meaning is clear: cell i is updated from time tn to time tn+1 according to the

in-going contributions arriving from the neighbouring edges. The time step size is

restricted again by the CFL condition [32] that can be expressed [92]:

∆t = CFL min
k

(χi, χj)

|λn|nk
CFL ≤ 0.5 (2.26)

where

χi =
Ai

maxk=1,NE
lk

(2.27)

The formulation of these ideas for 2D homogeneous systems or conservations laws

is briefly commented. Considering the 3× 3 system:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= 0

∂U

∂t
+
−→∇E = 0 (2.28)

where E=(F,G), the numerical scheme can be formulated by means of the numerical

flux approach:

Un+1
i = Un

i − ∆t

Ai

NE∑

k=1

E∗
knklk (2.29)

or with the flux difference splitting formulation:

Un+1
i = Un

i − ∆t

Ai

NE∑

k=1

(δE n)−k lk (2.30)

2.2 Approximate Riemann Solvers

Exact Riemann Solvers such as the original Godunov’s method require the resolution

in time of each Riemann Problem at every cell edge or interface, i.e., they have to

be fully aware of the states U(xi±1/2, t) to evaluate the corresponding flux. For

many applications, specially under non-linear problems, costly iterative methods

are necessary to converge to the solution, strategies that have fallen into disuse

[118, 53, 72].
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On the contrary, approximate Riemann solvers have been extensively developed dur-

ing the last three decades, resulting an attractive strategy to face up this kind of

problems. One of the most widespread approximate Riemann solver is due to Roe,

and was presented in 1981 [109]. It briefly consists of computing the approximate

linear solution from a local linearized formulation. This Roe’s solver and, in par-

ticular, its weak formulation due to Toumi [120] will be the basis of the present

work.

2.2.1 Roe’s approximate Riemann solver

In order to explain Roe’s solver, let consider (2.11), expressed in the non-conservative

form and the Riemann Problem:

U(x, 0) = U0(x) =

{
UL if x < 0

UR if x > 0
(2.31)

When examining the numerical method in (2.12) or (2.13), the problem arises for

the estimation of the numerical fluxes or the Jacobian matrix (respectively) at the

interface defining the Riemann Problem, above all in the presence of non-linear

fluxes.

The idea of Roe resides on replacing the Jacobian matrix J(U) by a locally linearized

matrix J̃, function of the left and right states of each Riemann Problem:

J̃ = J̃(UL,UR) (2.32)

Consequently, the problem reduces to solving the Riemann Problem for a linear sys-

tem of equations, which can be determined exactly (see Chapter 1). This linearized

Jacobian matrix J̃ must satisfy the following properties:

• hyperbolicity, that is, it should be diagonalisable with real eigenvalues.

• consistency

J̃(U,U) = J(U) (2.33)

• Conservation across discontinuities
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F(UR)− F(UL) = J̃(UR −UL) (2.34)

The construction of these matrices J̃ for the particular case of the shallow water

equations as well as the entropy fix needed when linearizing the system will be

discussed in Chapter 3.

2.2.2 The source terms: Augmented Roe’s Riemann Solver

Most of the numerical methods have been firstly developed in the context of the

homogeneous equation or system of equations. However, the incorporation of the

source terms in the corresponding Riemann solvers does not represent a trivial task

and should be carefully investigated.

The SWE with irregular geometries have been widely studied and great efforts have

been put on developing source term treatments able to preserve the C-property or

well-balanced property, that is, the exact conservation of quiescent flow. For this

purpose, an upwind treatment of the source term was first proposed by Vázquez-

Cendón [122] and later explored in [50, 65, 14, 13].

Another point of view was introduced by George [52], where a class of augmented

Riemann solvers was presented. This approach consists of defining a proper steady

state wave, i.e., a stationary jump discontinuity that acts as a source term. A simpler

Riemann solver for a n × n system of conservation laws contains n discontinuities

separating n+1 states or regions. In this procedure, the augmented Riemann solver

uses n+2 states where the extra state corresponds to the steady wave associated to

the source term. Furthermore, it is proved to maintain the well-balanced property.

It is possible to adapt the ideas of a steady jump discontinuity acting as a source term

inside a Roe’s approximate Riemann solver combined with an upwind treatment of

the source terms. It was initially examined by Murillo et al. [92], where it was used

to provide a rule to estimate the intermediate states that are generated inside a

Riemann Problem (see Figure 1.8).

In order to illustrate the procedure and formulate the numerical scheme including

the presence of source terms, let consider the 1D hyperbolic of conservation laws

defined as in (2.11). The idea of an upwind treatment of the source terms will
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allow to define a suitable vector Si+1/2 at each interface i + 1/2 and to apply the

difference splitting procedure leading to two vectors S+
i+1/2

and S−
i+1/2

. Thus, the

numerical scheme can be formulated for the updating of a cell i for time tn to time

tn+1 according to the in-going contributions of fluxes and source terms:

Un+1
i = Un

i − ∆t

∆x

(
(δF− S)+

i−1/2
+ (δF− S)−

i+1/2

)n
(2.35)

This expression can be seen as the equivalent of (2.13) but including the presence of

source terms. For the 2D framework, the strategy will be completely analogous: the

upwind approach is applied to the vector of source terms, which allows to define a

suitable matrixT and to project it to each wall k according to the splitting procedure

(Tn)−k . This last term, accounting for the in-going contributions coming from the

vector of source terms projected over each wall k, is incorporated to the numerical

scheme in (2.30) as follows:

Un+1
i = Un

i − ∆t

Ai

NE∑

k=1

(δE n−Tn)−k lk (2.36)

The same analysis of that carried out in [92] is performed here and approximate

Riemann solutions are developed in the following sections for 2 × 2 and the 3 × 3

non-linear hyperbolic system of conservation laws, that will be the basis for the 1D

and the 2D shallow water equations. As a matter of fact, the wet/dry treatment

applied in this work is closely linked to the intermediate states or regions that appear

in these mentioned approximate solutions.

2.3 1D system of conservation laws

2.3.1 Numerical scheme

The differential formulation of the 2× 2 non-linear homogeneous hyperbolic system

of conservation laws is first considered

∂U

∂t
+

∂F

∂x
= 0 → ∂U

∂t
+ J(U)

∂U

∂x
= 0 (2.37)
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In order to obtain the numerical solution, the domain is divided into N computa-

tional cells Ωi = [xi−1/2, xi+1/2] of constant size ∆x. We are therefore interested in

weak solutions of the local Riemann Problem

∂U

∂t
+

∂F

∂x
(Ui,Ui+1) = 0

U(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(2.38)

from a generic time tn = 0 to time tn+1 = ∆t. The solution of each Riemann

Problem is obtained from exactly integrating over a control volume [xi, xi+1]×[0,∆t]:

∫ xi+1

xi

U(x,∆t) dx = ∆x (Ui+1 +Ui)− (F(Ui+1)− F(Ui)) (2.39)

On the other hand, in the Roe’s approach (2.37) is linearized

∂Û

∂t
+ J̃

∂Û

∂x
= 0

Û(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(2.40)

hence the solution Û of the linearized Riemann Problem (2.40) must satisfy:

∫ xi+1

xi

Û(x,∆t) dx = ∆x (Ui+1 +Ui)− J̃ (Ui+1 −Ui) (2.41)

where J̃ is the locally linearized matrix approximating the Jacobian Matrix J(U) in

(2.37). The consistency condition of the Roe’s approximate Riemann solver allows

to link (2.39) and (2.41) as follows:

∫ xi+1

xi

Û(x,∆t) dx = ∆x (Ui+1 +Ui)− (F(Ui+1)− F(Ui)) (2.42)

revealing an agreement with (2.34): δF = J̃δU. From the original Roe’s solver,

the approximate eigenvalues λ̃1, λ̃2 and eigenvectors ẽ1, ẽ2 of the locally linearized

matrix J̃ satisfy the following property:
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J̃i+1/2 = P̃i+1/2Λ̃i+1/2P̃
−1
i+1/2

(2.43)

where P̃ = (ẽ1, ẽ2) and Λ̃i+1/2 is a diagonal matrix with eigenvalues λ̃1, λ̃2 in the

main diagonal. The difference in the vector of conserved variables can be linearized

using the eigenvectors basis:

δUi+1/2 = P̃i+1/2Ãi+1/2 → Ãi+1/2 = P̃−1
i+1/2

δUi+1/2 (2.44)

with Ãi+1/2 =
(
α̃1, α̃2

)T
i+1/2

. Therefore, the difference in fluxes can be expressed:

δFi+1/2 = (P̃Λ̃ P̃−1δU︸ ︷︷ ︸
Ã

)i+1/2 =

2∑

m=1

(
λ̃ α̃ ẽ

)m
i+1/2

(2.45)

With this definition, the scheme can be formulated according to the flux difference

splitting formulation in (2.13) just defining

δF±
i+1/2

=

2∑

m=1

(
λ̃± α̃ ẽ

)m
i+1/2

(2.46)

A similar procedure can be done when incorporating the presence of source terms.

Considering a 2× 2 non-linear hyperbolic system of equations with source terms:

∂U

∂t
+

∂F

∂x
= S (2.47)

The domain is again divided into N computational cells Ωi = [xi−1/2, xi+1/2] of

constant size ∆x. The local Riemann Problem

∂U

∂t
+

∂F

∂x
(Ui,Ui+1) = S(Ui,Ui+1)

U(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(2.48)

is considered from time tn = 0 to time tn+1 = ∆t. The solution of each Riemann

Problem is achieved by integrating over a control volume [xi, xi+1]× [0,∆t]:



1D system of conservation laws 33

∫ xi+1

xi

U(x,∆t) dx = ∆x (Ui+1 +Ui)− (F(Ui+1)− F(Ui)) +

∫ ∆t

0

∫ xi+1

xi

S dx dt

(2.49)

For the last integral involving the source term S, the following linearization in time

is assumed

∫ ∆t

0

∫ xi+1

xi

S dx dt =

∫ xi+1

xi

S(x, 0) dx = Sn
i+1/2 (2.50)

where Sn
i+1/2 is a suitable numerical source vector. In the Roe’s approach, (2.48) is

approximated by the homogeneous linearized Riemann Problem

∂Û

∂t
+ J̃∗

∂Û

∂x
= 0

Û(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(2.51)

where J̃∗ = J̃∗(Ui,Ui+1) is a suitable constant matrix. Integrating over the same

control volume,

∫ xi+1

xi

Û(x,∆t) dx = ∆x (Ui+1 +Ui)− J̃∗ (Ui+1 −Ui) (2.52)

the consistency condition connects again (2.49) and (2.52) leading to the following

expression:

∫ xi+1

xi

Û(x,∆t) dx = ∆x (Ui+1 +Ui)−
(
F(Un

i+1)− F(Un
i )− Sn

i+1/2

)
(2.53)

with the constraint

J̃∗δUi+1/2 = δFn
i+1/2 − Sn

i+1/2 = (J̃δU)i+1/2 − Sn
i+1/2 (2.54)

Apart from the difference in the vector of conserved variables as in (2.44), the vector

of source terms can be linearized using the eigenvectors basis:
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Si+1/2 = P̃i+1/2B̃i+1/2 (2.55)

with B̃i+1/2 =
(
β̃1, β̃2

)T
i+1/2

. Therefore, the difference in fluxes and the contribu-

tions due to the source terms are expressed compactly:

δFi+1/2 − Si+1/2 = (P̃Λ̃ P̃−1δU︸ ︷︷ ︸
Ã

)i+1/2 − (P̃B̃)i+1/2 =

P̃Λ̃
(
Ã− Λ̃−1B̃

)
i+1/2

=

2∑

m=1

(
λ̃ γ̃ ẽ

)m
i+1/2

(2.56)

where γ̃mi+1/2 =

(
α̃− β̃

λ̃

)m

i+1/2

. According to (2.35), the numerical scheme can be

formulated by means of the difference splitting formulation:

Un+1
i = Un

i − ∆t

∆x

(
(δF− S)+

i−1/2
+ (δF− S)−

i+1/2

)n
(2.57)

where

(δF− S)±
i+1/2

=

2∑

m=1

(
λ̃± γ̃ ẽ

)m
i+1/2

(2.58)

2.3.2 1D Augmented Approximate Riemann Solutions

According to the previous analysis, three approximate solutions satisfying (2.53)

appear depending on the sign of the eigenvalues λ̃1, λ̃2. As a consequence of the

philosophy of Augmented Roe’s solver, each solution Û(x, t) will consist of four states

or regions: apart from the two initial states and the corresponding star intermediate

state, the fourth state comes from the assumption that there exists a stationary

wave will null velocity acting as a source term. In order to examine all the cases,

the eigenvalues can be ordered

λ̃1 ≤ λ̃2 (2.59)

and three possibilities arise [92]:
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1. λ̃1 < 0, λ̃2 > 0. The solution is given by (see Figure 2.3) :

Û(x, t) =





Un
i if x− λ̃1t < 0

U∗
i if x− λ̃1t > 0 and x < 0

U∗∗
i+1 if x > 0 and x− λ̃2t < 0

Un
i+1 if x− λ̃2t > 0

(2.60)

with

U∗
i (Ui+1,Ui,Si+1/2) = Un

i + (γ̃ẽ)1i+1/2

U∗∗
i+1(Ui+1,Ui,Si+1/2) = Un

i+1 − (γ̃ẽ)2i+1/2

(2.61)

✲

✻

�
�
��

❅
❅

❅❅

Un
i

Un
i

Ui+1

Un
i+1

U∗∗
i+1

U∗
i

λ̃2λ̃1

x

t

0

Figure 2.3: Values of the solution Û(x, t) in each wedge of the (x, t) plane for λ̃1 < 0,

λ̃2 > 0

2. λ̃1 > 0, λ̃2 > 0. The solution is given by (see Figure 2.4):

Û(x, t) =





Un
i if x < 0

U∗
i+1 if x > 0 and x− λ̃1t < 0

U∗∗
i+1 if x− λ̃1t > 0 and x− λ̃2t < 0

Un
i+1 if x− λ̃2t > 0

(2.62)

with U∗∗
i+1 defined as in (2.61) and

U∗
i+1(Ui+1,Ui,Si+1/2) = U∗∗

i+1 − (γ̃ẽ)1i+1/2 (2.63)
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✲

✻
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✟✟✟✟✟✟✟

Un
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Un
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i+1

Un
i+1

U∗∗
i+1

U∗
i+1

λ̃1 λ̃2

x

t

0

Figure 2.4: Values of the solution Û(x, t) in each wedge of the (x, t) plane for λ̃1 > 0,

λ̃2 > 0

3. λ̃1 < 0, λ̃2 < 0. The solution is characterized by (see Figure 2.5):

Û(x, t) =





Un
i if x− λ̃1t < 0

U∗
i if x− λ̃1t > 0 and x− λ̃2t < 0

U∗∗
i if x− λ̃2t > 0 and x < 0

Un
i+1 if x > 0

(2.64)

with U∗
i defined as in (2.60) and

U∗∗
i (Ui+1,Ui,Si+1/2) = U∗

i + (γ̃ẽ)2i+1/2 (2.65)

2.4 2D system of conservation laws

2.4.1 Numerical scheme

The ideas presented for the 1D case can be extended to obtain approximate solutions

in 3× 3 non-linear hyperbolic system of conservation laws with source terms of the

form:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(U) (2.66)
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✲
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U∗
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Figure 2.5: Values of the solution Û(x, t) in each wedge of the (x, t) plane for λ̃1 < 0,

λ̃2 < 0

The domain is divided again into computational cells Ωi with area Ai. In particular,

the projection in (2.29) or (2.30) suggests that Roe’s linearization is applied in the

direction x′ given by the normal vector nk at each wall or edge k [92] hence the

ideas presented for the 1D system of conservation laws can be extended (see Figure

2.6).

✲✲

✻

❄

❅
❅

❅
❅❅

�
�

�
��

✟
✟
✟
✟
✟
✟
✟
✟✟

❍❍❍❍❍❍❍❍❍

x′

lk

0Ui Uj

nk

Figure 2.6: Riemann Problem in 2D projected through the normal direction to a cell

edge.

Therefore, we are interested in achieving an approximate linearized solution Û(x′, t)

of the Riemann Problem defined at each edge k
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Û(x′, 0)k =

{
Ui if x′ < 0

Uj if x′ > 0
(2.67)

that fulfils the Roe’s consistency condition integrated over a suitable control volume

[x′1, x
′
2]× [0,∆t]:

∫ x′

2

x′

1

Û(x′,∆t) dx′ = ∆x′ (Uj +Ui)− δEn+

∫ ∆t

0

∫ x′

2

x′

1

S dx′ dt (2.68)

Considering the following linearization in time of the vector of source terms

∫ ∆t

0

∫ x′

2

x′

1

S dx′ dt =

∫ x′

2

x′

1

S(x′, 0) dx′ = (Tn)nk (2.69)

for a suitable matrix T, the consistency condition is re-written:

∫ x′

2

x′

1

Û(x′,∆t) dx′ = ∆x′ (Uj +Ui)− (δE−T)knk (2.70)

Following Roe’s linearization, the original Jacobian matrix Jnk of the flux normal

to a direction given by the unit vector nk = (nx, ny), En, with E = Fnx +Gny

Jnk =
∂En

∂U
=

∂F

∂U
nx +

∂G

∂U
ny (2.71)

can be locally linearized by constructing approximate matrices J̃nk for each local

Riemann Problem, whose eigenvalues λ̃mk and eigenvectors ẽmk satisfy:

J̃nk = P̃kΛ̃kP̃
−1
k (2.72)

with m = 1...3, P̃ = (ẽ1, ẽ2, ẽ3) and Λ̃k is a diagonal matrix with eigenvalues λ̃mk in

the main diagonal. The difference in the vector of conserved variables as well as the

vector of source terms at each edge k can be projected again onto the eigenvectors

basis:

δUk = P̃kÃk (Tn)k = P̃kB̃k (2.73)
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with Ãk =
(
α̃1, α̃2, α̃3

)T
k
and B̃k =

(
β̃1, β̃2, β̃3

)T
k
. Consequently, the difference in

fluxes and the contributions of source terms can be expressed in a compact way as

in the 1D case:

δ(En)k − (Tn)k = (P̃Λ̃ P̃−1δU︸ ︷︷ ︸
Ã

)k − (P̃B̃)k =

P̃Λ̃
(
Ã− Λ̃−1B̃

)
k
=

3∑

m=1

(
λ̃ γ̃ ẽ

)m
k

(2.74)

with γ̃mk =

(
α̃− β̃

λ̃

)m

k

. According to (2.36), the numerical scheme is formulated

using the difference splitting approach:

Un+1
i = Un

i − ∆t

Ai

NE∑

k=1

(δE n−Tn)−k lk (2.75)

where

(δE n−Tn)−k =

3∑

m=1

(
λ̃− γ̃ ẽ

)m
k

(2.76)

2.4.2 2D Augmented Approximate Riemann Solutions

Depending on the sign of the eigenvalues, λ̃m, a set of solutions is analysed. Each

solution Û(x, t) will consist of five states or regions intrinsically related to the eigen-

values: the two initial states and the three intermediate states generated by the three

eigenvalues plus the steady wave associated to the source term in the augmented

philosophy. Let reorder the eigenvalues:

λ̃1 ≤ λ̃2 ≤ λ̃3 (2.77)

Four possibilities are derived from a simple reasoning [92]:

1. λ̃1 < 0, λ̃2, λ̃3 > 0. The suggested solution is shown in Figure 2.7 (left) and

is written as follows:
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Û(x′, t) =





Un
i if x′ − λ̃1t < 0

U∗
i if x′ − λ̃1t > 0 and x′ < 0

U∗∗
j if x′ > 0 and x′ − λ̃2t < 0

U∗∗∗
j if x′ − λ̃2t > 0 and x′ − λ̃3t < 0

Un
j if x′ − λ̃3t > 0

(2.78)

where

U∗
i (Uj ,Ui, (Tn)k) = Un

i + (γ̃ẽ)1k
U∗∗∗

j (Uj ,Ui, (Tn)k) = Un
j − (γ̃ẽ)3k

U∗∗
j (Uj ,Ui, (Tn)k) = U∗∗∗

j − (γ̃ẽ)2k

(2.79)

2. λ̃1, λ̃2 < 0, λ̃3 > 0. The solution is given by (see Figure 2.7 (right)):

Û(x′, t) =





Un
i if x′ − λ̃1t < 0

U∗
i if x′ − λ̃1t > 0 and x′ − λ̃2t < 0

U∗∗
i if x′ − λ̃2t < 0 and x′ < 0

U∗∗∗
j if x′ > 0 and x′ − λ̃3t < 0

Un
j if x′ − λ̃3t > 0

(2.80)

with

U∗
i (Uj ,Ui, (Tn)k) = Un

i + (γ̃ẽ)1k
U∗∗

i (Uj ,Ui, (Tn)k) = U∗
i + (γ̃ẽ)2k

U∗∗∗
j (Uj ,Ui, (Tn)k) = Un

j − (γ̃ẽ)3k

(2.81)

3. λ̃1, λ̃2, λ̃3 > 0. The proposed solution is formulated:

Û(x′, t) =





Un
i if x′ < 0

U∗
j if x′ > 0 and x′ − λ̃1t < 0

U∗∗
j if x′ − λ̃1t > 0 and x′ − λ̃2t < 0

U∗∗∗
j if x′ − λ̃2t > 0 and x′ − λ̃3t < 0

Un
j if x′ − λ̃3t > 0

(2.82)

with
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Figure 2.7: Values of the solution Û(x, t) in each wedge of the (x, t) plane for λ̃1 < 0,

λ̃2, λ̃3 > 0 (left) and λ̃1, λ̃2 < 0, λ̃3 > 0 (right)

U∗
j (Uj ,Ui, (Tn)k) = U∗∗

j − (γ̃ẽ)1k (2.83)

It is depicted in Figure 2.8 (left).

4. λ̃1, λ̃2, λ̃3 > 0. A sketch of the solution is plotted in Figure 2.8 (right) and the

explicit expression can be easily found:

Û(x′, t) =





Un
i if x′ − λ̃1t < 0

U∗
i if x′ − λ̃1t > 0 and x′ − λ̃2t < 0

U∗∗
i if x′ − λ̃2t > 0 and x′ − λ̃3t < 0

U∗∗∗
i if x′ − λ̃3t > 0 and x′ < 0

Un
j if x′ > 0

(2.84)

where

U∗∗∗
i (Uj ,Ui, (Tn)k) = U∗∗

i + (γ̃ẽ)3k (2.85)
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Chapter 3

The Shallow Water Equations

3.1 Introduction

The shallow water equations are able to model different phenomena such as tsunami

waves, dam break problems, open channel hydraulics, overland run-off or simply the

flooding wave in a river with floodplain areas. In summary, they model the prop-

agation of disturbances in water and other incompressible fluids. The underlying

assumption is that the water depth is small in comparison with the wave length of

the disturbance.

The equations describing the three dimensional free surface flow can be derived from

the Navier-Stokes equations, being sufficient to use the physical principles of mass

and momentum conservation in the three space dimensions. Furthermore, closure

hypothesis and boundary conditions referred to the fluid-solid (bottom) and fluid-

fluid (free surface) interfaces have to be considered to totally deduce these equations.

Once the three dimensional free surface flow equations are determined, it is possible

to derive the three dimensional shallow water equations by studying the characteris-

tic scales of the problem. The three main hypothesis of the shallow water principles

are summarized in:

• The pressure distribution in the vertical direction is hydrostatic, i.e., the waves

produced in the free surface interface vary smoothly.

• Friction losses in unsteady flow do not differ from the same losses in steady

flow.

• The average slope of the topography is small and the tangent of the angle can

be approximated by the angle.
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From the three dimensional shallow water equations it is possible to obtain both the

1D and 2D shallow water equations, just integrating them in the cross section or

in the vertical direction respectively. The full derivation of the 1D and 2D shallow

water equations can be found in [126, 35] and the direct expression of both models

is addressed in the subsequent section.

3.2 Hydrodynamic equations

3.2.1 1D shallow water equations

Equations can be derived from mass and momentum control volume analysis:

∂U(x, t)

∂t
+

dF(x,U)

dx
= H(x,U) (3.1)

U =

(
A

Q

)
, F =

(
Q

Q2

A + gI1

)
, H =

(
0

g
[
I2 + A

(
S0 − Sf

)]
)

(3.2)

where Q is the discharge, A is the wetted cross section area, g = 9.8 m/s2 is the

acceleration due to the gravity, S0 is the bed slope

S0 = −∂zb
∂x

(3.3)

where zb is the bed level. Sf is the friction slope here represented by the empirical

Manning law

Sf =
Q2n2

A2R4/3
(3.4)

being R the hydraulic radius and n the Manning roughness coefficient. I1 represents

a hydrostatic pressure force term

I1(x, t) =

∫ h(x,t)

0

(h− η)σ(x, η) dη (3.5)

in a section of water depth h = zs − zb, water surface level zs and width σ(x, η) at

a position η from the bottom (see Figure 3.1).



Hydrodynamic equations 45

(0,0)

✻

✲

z

y

❆
❆
❆
❆
❆
❆PPPPPP❍❍❍❍❍❍❍❍

✲✛ σ
✻

❄
η

✻

❄

zs

�
�
�
�

✻

❄

h

✻

❄

zb

✟✟✟✟✟✟�
�
�
�
�

Figure 3.1: Coordinate system in a cross section as used in the 1D model

Therefore, the cross sectional wetted area can be expressed as follows:

A(x, t) =

∫ h(x,t)

0

σ(x, η) dη (3.6)

On the other hand, I2 accounts for the pressure force due to the longitudinal width

variations:

I2(x, t) =

∫ h(x,t)

0

(h− η)
∂σ(x, η)

∂x
dη (3.7)

3.2.2 2D shallow water equations

The volume and momentum conservation are expressed as follows:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= H(U) (3.8)

where the conserved variables:

U = (h, qx, qy)
T (3.9)

qx = uh, qy = vh and (u, v) are the averaged components of the velocity vector u

along the x and y coordinates respectively. The fluxes of these variables are:
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F =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

)T

, G =

(
qy,

qxqy
h

,
q2y
h

+
1

2
gh2
)T

(3.10)

The source terms of the momentum are due to the bed slope and friction

H =
(
0, gh(S0x − Sfx), gh(S0y − Sfy)

)T
(3.11)

where the bed slopes of the bottom level zb are

S0x = −∂zb
∂x

, S0y = −∂zb
∂y

(3.12)

and the friction losses are written in terms of the Manning’s roughness coefficient n:

Sfx =
n2u

√
u2 + v2

h4/3
, Sfy =

n2v
√
u2 + v2

h4/3
(3.13)

3.3 Numerical scheme

The ideas developed for the numerical resolution of non-linear hyperbolic system

of conservation laws with source terms by means of approximate Riemann solvers

(2.35) and (2.36) are going to be applied to the SWE in both 1D (3.1) and 2D (3.8)

configurations.

3.3.1 1D numerical scheme

It is possible to express the equations (3.1) and (3.2) in a non-conservative form as

in [16]:

dF(x,U)

dx
=

∂F(x,U)

∂x

∣∣∣∣
U=const

+
∂F(x,U)

∂U

∣∣∣∣
x=const

∂U(x, t)

∂x
(3.14)

considering the subtlety that F(x,U) is not only function of U but also of x. Using

(3.14), the 1D shallow water equations can be formulated as follows :
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∂U(x, t)

∂t
+ J(x,U)

∂U(x, t)

∂x
= H′(x,U) (3.15)

being H′(x,U) the vector related with the sources expressed in the non-conservative

form:

H′(x,U) = H(x,U)− ∂F(x,U)

∂x

∣∣∣∣
U=const

(3.16)

and J the Jacobian matrix of the original system

J =
∂F

∂U

∣∣∣∣
x=const

=

(
0 1

c2 − u2 2u

)
(3.17)

with u = Q/A and c =
√

g A/B (B is the top width at the free surface).

Following the Leibniz rule, it is possible to express the link between I1 and I2 in

this manner [35]:

∂I1
∂x

= I2 + A
∂h

∂x
(3.18)

As stated in [16, 19], there exists a difference between the partial and the total deriva-

tives when discretizing the equation: the discrete increments approach actually the

total derivatives and not the partial derivatives. Therefore, prior to discretization,

all terms have to be carefully expressed in total derivatives. In particular:

dh

dx
=

∂h

∂x
+

∂h

∂A

∂A

∂x
=

∂h

∂x
+

1

B

∂A

∂x
(3.19)

leading to:

∂h

∂x
=

dh

dx
− 1

B

∂A

∂x
(3.20)

From (3.18) and (3.20), the non-conservative source term is expressed as follows:

H′(x,U) = H(x,U)− ∂F(x,U)

∂x

∣∣∣∣
U=const

=




0

gA

(
S0 − Sf − dh

dx
+

1

B

dA

dx

)



(3.21)
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where the equivalence between the partial and total x-derivatives of the conserved

variable A has been used. The Jacobian matrix (3.17) can be diagonalized and the

resulting diagonal matrix Λ is formed by the eigenvalues of J, and P is constructed

with its eigenvectors.

P =

(
1 1

λ1 λ2

)
, Λ =

(
λ1 0

0 λ2

)
,

ek =

(
1

λk

)
, λ1 = u− c, λ2 = u+ c

(3.22)

The equations in non-conservative form can be discretized in a regular mesh of size

∆x by means of the first order explicit scheme. Let consider the interface i + 1/2,

between cells i and i+1. As stated in (2.43)-(2.56), Roe’s linearization [109] allows

to express the differences in the conserved variables and in the source terms across

the grid edge i+ 1/2 as a sum of waves:

δUi+1/2 = Ui+1 −Ui =

2∑

m=1

(α̃m ẽm)i+1/2,

(H̃′∆x)i+1/2 =

2∑

m=1

(β̃m ẽm)i+1/2 (3.23)

with

λ̃1 = ũ− c̃, λ̃2 = ũ+ c̃, α̃1 =
λ̃2 δA− δQ

2c̃
, α̃2 =

−λ̃1 δA+ δQ

2c̃
,

β̃1 = − 1

2c̃

{
gÃ

[(
S̃0 − S̃f

)
∆x− δh+

1

B̃
δA

]}
, β̃2 = −β̃1,

ũi+1/2 =

√
Aiui +

√
Ai+1ui+1√

Ai +
√
Ai+1

, c̃i+1/2 =

√
g
Ai + Ai+1

Bi +Bi+1

(3.24)

where the tilde variables represent an average state at each edge. The average states

Ã, B̃, S̃0 and S̃f can be easily defined as arithmetic averages [16] in the conventional

formulation.
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The contributions due to the fluxes and the source terms can be expressed in a

compact formulation as follows:

γ̃mi+1/2 =

(
α̃− β̃

λ̃

)m

i+1/2

(3.25)

Therefore, the first order explicit upwind numerical scheme is formulated [87] ac-

cording to (2.57) and (2.58):

Un+1
i = Un

i − ∆t

∆x



(
∑

m

λ̃+γ̃ẽ

)m

i−1/2

+

(
∑

m

λ̃−γ̃ẽ

)m

i+1/2



n

(3.26)

where λ̃±m
i+1/2

=
1

2
(λ̃± |λ̃|)mi+1/2 provides the upwind discretization of the flux. Figure

3.2 shows a sketch of the 1D numerical scheme. It illustrates that the in-going

contributions from left and right walls are used to update the value of the conserved

variables at every cell. The scheme so built has proved to be robust, conservative,

well-balanced and positivity preserving [16].

Figure 3.2: Sketch of the 1D numerical scheme

The time step ∆t is dynamically chosen following [16]:

∆t = CFL min
i,m

(
∆x∣∣λ̃m
∣∣n
i

)
, CFL ≤ 1 (3.27)

where CFL is the Courant-Friedrich-Lewy number.
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3.3.2 2D numerical scheme

It is possible to define a Jacobian matrix of the normal flux in the 2D model:

J =
∂(E · n)

∂U
=




0 nx ny

c2 nx − uu · n u nx + u · n u ny

c2 ny − v u · n v nx v ny + u · n


 (3.28)

with n = (nx, ny)
T the outward normal vector, u = qx/h, v = qy/h, c =

√
g h

and u · n = u nx + v ny. Following the same philosophy, the Jacobian matrix (3.28)

is diagonalized in terms of matrices Λ and P formed by its eigenvalues λm and

eigenvectors em respectively:

P =




1 0 1

u− c nx −cny u+ c nx

v − c ny c nx v + c ny


 , Λ =




λ1 0 0

0 λ2 0

0 0 λ3


 ,

e1 =




1

u− c nx

v − c ny


 , e2 =




0

−c ny

c nx


 , e3 =




1

u+ c nx

v + c ny


 ,

λ1 = u · n− c, λ2 = u · n, λ3 = u · n+ c

(3.29)

Applying Roe’s linearization [109, 110] it is possible to express locally the difference

in vector U across grid edge k projected onto the matrix eigenvectors basis [92]:

δUk = Uj −Ui = P̃kÃk (3.30)

where i, j are the indexes of the cells sharing the edge k and Ãk = (α̃1, α̃2, α̃3)
T
k

contains the set of wave strengths:
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α̃1 =
δh

2
− 1

2c̃
(δq · n− ũ · n δh) , α̃2 =

1

c̃
[δqy − ṽ δh)nx − (δqx − ũ δh)ny)],

α̃3 =
δh

2
+

1

2c̃
(δq · n− ũ · n δh),

ũk =

√
hi ui +

√
hj uj√

hi +
√

hj
, ṽk =

√
hi vi +

√
hj vj√

hi +
√

hj
, c̃k =

√
g
hi + hj

2

(3.31)

Following the linearization concept, the source term is included in the Riemann

solver as a singular source. Considering that source terms are not necessarily con-

stant in time, the following linearization of the non-conservative term is applied as

in (2.69) [92]:

Hn
k =




0

−gh̃(δz + Sf,n)nx

−gh̃(δz + Sf,n)ny


 (3.32)

The source term is next projected onto the matrix eigenvectors basis [92]

H̃k = P̃kB̃k (3.33)

where B̃k = (β̃1, β̃2, β̃3)
T
k contains the source strengths:

β̃1 = − 1

2c
(δz + Sf,n), β̃2 = 0, β̃3 = −β̃1 (3.34)

where ũ · n = ũ nx + ṽ ny, δq · n = δqx nx + δqy ny and the averages states at each

wall k are represented with the tilde variables. Sf,n accounts for the discretized and

projected friction term, which is expressed as follows [92]:

Sf,n =
n2 ũn min(|ui|, |uj|)

max(hi, hj)4/3
dn (3.35)

where n =
1

2
(ni + nj) is the averaged Manning’s coefficient and dn is the normal

distance between cell centers. The contributions due to the fluxes and the source

terms are combined in a compact expression:
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γ̃mk =

(
α̃− β̃

λ̃

)m

k

(3.36)

and defining (λ̃−)mk as

(λ̃−)mk =
1

2
(λ̃− |λ̃|)mk (3.37)

the 2D numerical upwind explicit scheme is formulated using the finite volume ap-

proach for the updating of a single cell whose area is Ai, dealing with the contribu-

tions that arrive to the cell [89]:

Un+1
i = Un

i − ∆t

Ai

NE∑

k=1

3∑

m

[
(λ̃−γ̃ẽ)mk lk

]n
(3.38)

In this expression, NE indicates the number of edges in cell i and lk is the length of

each edge (see Figure 3.3). This scheme has been proved to be robust, conservative,

well-balanced and positivity preserving over irregular bed [92].

(λ̃−γ̃ẽ)mk3

Uj1

UiUj2

Uj3

(λ̃
− γ̃
ẽ
)
m

k 2

(̃λ −
γ̃
ẽ) m

k
1

Figure 3.3: Sketch of the 2D numerical discretization

When considering unstructured meshes in the 2D scheme, a distance χi is defined

by using the area of the cell as well as the length of the k edges:

χi =
Ai

maxk=1,NE
lk

(3.39)

Therefore, the time step is again chosen by using the following rule [92]:
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∆t = CFL
min(χi, χj)

maxm |λ̃m|
CFL ≤ 0.5 (3.40)

Although it is worth noting that the CFL value could be chosen over this value in

certain triangular Delaunay meshes, it should preferable remain under the value of

0.5 in the 2D model.

3.3.3 Entropy fix

Roe’s scheme may produce non-physical results due to the procedure of linearization.

To avoid this, the version of the Harten-Hyman entropy fix [118] is used in this work.

It is formulated without loss of generality for the edge k, between cells i and j.

Let define λmi = λm(Ui) and λmj = λm(Uj). In the case of a transonic rarefaction

where λmi < 0 < λmj , the jump associated to λ̃mk is decomposed into two new jumps,

λ̄mk = λmi
(λmj − λ̃mk )

(λmj − λmi )
λ̂mk = λmj

(λ̃mk − λmi )

(λmj − λmi )
(3.41)

with λ̄mk + λ̂mk = λ̃mk , and λ̄mk < 0 and λ̂mk > 0 by definition.

This idea can be applied to the decomposition of the source term associated to

βm
k into two new values, β̄m

k and β̂m
k . As the amount of source term has to be

conservative, the splitting must satisfy β̄m+β̂m = βm. In order to avoid undesirable

results and reduction of the time step size [92], the choice used is

β̄m = βm β̂m = 0 (3.42)

that preserves the stability region in (3.40), simply replacing λ̃mk by λ̄mk [92].

3.3.4 Boundary conditions

Boundary conditions discretization becomes a very important issue when designing a

finite volume scheme. In the case of a hyperbolic system, the theory of characteristics

provides clear information about the number of external boundary conditions to be
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imposed at the inlet or at the outlet domain [67]. The set of possibilities is illustrated

for the 1D case in Figure 3.4 and can be summarized as follows [20, 13]:

1. Subcritical inlet flow: One of the variables is enforced and the other is calcu-

lated numerically.

2. Supercritical inlet flow: All the variables have to be imposed, no information

is provided from the inner cells.

3. Subcritical outlet flow: As in the subcritical inlet flow, one of the variables is

required to complete the information at the boundary cell.

4. Supercritical outlet flow: No extra information apart from that computed

numerically is needed.
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a) b) c) d)

Figure 3.4: Type of 1D open boundaries: a) Subcritical inlet, b) Supercritical inlet, c)

Subcritical outlet, d) Supercritical outlet

It it worth remarking that boundary conditions are enforced by requiring that the

boundary cells adopt the desired values of the imposed variables.

The extension of the philosophy presented above in the 1D case for the 2D shallow

water system is not a straightforward procedure. The characterisation of the flow

regime at the inlet or outlet boundary is not an easy task and it requires to convert

cross section average quantities such as discharge or water surface level to water

depth or velocity at each cell. Additionally, in realistic problems with irregular

and complex geometries, the distribution of these average quantities demands a fine

treatment. This was precisely carried out in [90].

When dealing with closed or solid boundaries, the 2D scheme requires that no flow

must cross the boundary, i.e., u · n = 0 where u is the cell velocity and n is the
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solid outward normal direction. It is imposed in the cell velocity once the contribu-

tions coming from the inner walls have been computed and added to the cell. The

conservation is also ensured in all kind of flow conditions.

3.4 Solute transport

The study of solute transport phenomena and river mixing has become a great con-

cern in hydraulic and environmental problems. A solute is defined as any substance

that is advected by water flows. In fact, a solute may be not only a reactive pollutant

such as fertilizer or pesticide, but also dissolved gasses or tracer substances. The in-

terest is usually put on the time evolution of a solute concentration within a complex

hydrodynamic system, that is, given the solution concentration at a specific time

and space, the aim is to know the spatial distribution of the solute concentrations

at some future time. This physical process is modelled by means of the advection

equation and can incorporate the effect of reaction (with the water and with other

solutes) and solute diffusion. It can be coupled with both 1D and 2D hydrodynamic

equations detailed above.

3.4.1 Governing equations

For the sake of clarity, the transport of only one solute is presented coupled to each

model, even though it is possible to define more than one solute and to establish

connections between them. It is worth noting that the solute transport equations

will be expressed in a conservative form, assuming that the velocities and the water

depth could not vary smoothly in space and time.

3.4.1.1 1D shallow water equations with solute transport

The 1D shallow water equations and the solute transport can be expressed coupled

in a single system of equations:
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U =




A

Q

Aφ


 , F =




Q
Q2

A + gI1

Qφ


 , H =




0

g
[
I2 + A

(
S0 − Sf

)]

0




R =




0

0

−KAφ


 D =




0

0

∂

∂x

[
DA

∂φ

∂x

]




(3.43)

where the third equation in (3.43) represents the transport of a substance with a

cross-section average concentration of φ, an uptake constant K and diffusion coeffi-

cient of D.

3.4.1.2 2D shallow water equations with solute transport

Correspondingly, the 2D shallow water model with solute transport can be written

in a unique coupled system:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= H(U) +R(U) +D(U) (3.44)

where

U = (h, qx, qy, hφ)
T

F =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

, hφu

)T

, G =

(
qy,

qxqy
h

,
q2y
h

+
1

2
gh2, hφv

)T

H =
(
0, gh(S0x − Sfx), gh(S0y − Sfy), 0

)T
(3.45)

and φ is the depth-average solute concentration. The source terms associated to the

solute transport equation are expressed as follows:

R = (0, 0, 0,−Khφ)T D =
(
0, 0, 0,

−→∇(Dh
−→∇φ)

)T
(3.46)

where K is the uptake constant and D is an empirical diffusion matrix.
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3.4.2 Numerical scheme

In the present work, the solute transport has been considered leaving aside the con-

sideration concerning diffusion terms. However many strategies such as splitting and

computing separately the advection and the diffusion terms or solving the diffusion

implicitly [91, 95], have been developed to avoid small values in the time step size

due to the combination of the CFL and Peclet number.

The numerical resolution of the solute transport equation under an explicit finite

volume method is frequently performed by solving the depth-averaged concentra-

tion apart from the shallow water equations, that is, using a simpler decoupled

algorithm. The scheme is easy: once the hydrodynamic equations have been solved,

the corresponding substances or solutes are advected with these flow field quanti-

ties previously computed. However, careless numerical techniques lead to numerical

troubles and do not preserve the conservation property [95], providing non-physical

results in certain cases.

In order to get a fully conservative method, the complete system including the hydro-

dynamic and the transport equations is considered. Mathematically, the complete

system conserves the hyperbolicity property, implying the existence of a 3 × 3 or

4 × 4 Jacobian matrix for the 1D or the 2D model respectively. On this basis we

can apply the procedure described above, allowing a Roe’s local linearization and

expressing the contributions that arrive to the cell as a sum of waves. This scheme

guarantees the conservation but it can lead to unbounded values in the final so-

lute concentration in extreme cases. For this purpose, a strategy that avoids these

situations by enforcing a conservative redistribution of the solute mass fluxes was

proposed in [90].

It is feasible to decouple the solute transport equation from the hydrodynamic sys-

tem in a conservative way as in [29], using a high resolution scheme that provides

bounded solutions. However the time step is restricted to achieve the max-min

property. A different technique is used in this work for the solute transport. A

thorough analysis of the augmented Riemann solver, considering all the set of pos-

sible approximate solutions in all kind of different flow situations for the volumetric

concentration was presented in [98]. This huge analysis allowed to define in essence

a single numerical flux q↓, directly related to the Roe’s linearization, which is able

to completely decouple the solute transport from the hydrodynamic system in a
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conservative way.

In the 1D framework, q↓ at interface i+1/2 (between cells i and i+1) is defined as:

q↓
i+1/2

= Qi +

2∑

m=1

(
λ̃− γ̃ ẽ1

)m
i+1/2

(3.47)

and the numerical scheme for the solute transport equation becomes:

(Aφ)n+1
i = (Aφ)ni − ∆t

∆x

[
(qφ)↓

i+1/2
− (qφ)↓

i−1/2

]
(3.48)

where

φ↓
i+1/2

=

{
φi if q↓

i+1/2
> 0

φi+1 if q↓
i+1/2

< 0
(3.49)

In the 2D configuration, the ideas are extended by projecting the problem onto the

normal direction of the edge k separating cells i and j. Therefore,

q↓k = qi +

3∑

m=1

(
λ̃− γ̃ ẽ1

)m
k

(3.50)

where qi = (hun)i and the numerical scheme for the solute transport equation is

written as:

(hφ)n+1
i = (hφ)ni − ∆t

Ai

NE∑

k=1

(qφ)↓klk (3.51)

where

φ↓k =

{
φi if q↓k > 0

φj if q↓k < 0
(3.52)

From a physical point of view, the new solute mass at a fixed cell can be merely seen

as exchanging water volumes with certain concentration through the neighbouring

walls and mixing them (finite volume Godunov’s type method) with the former mass

existing in the previous time (Figure 3.5). According to this philosophy, the outlet
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i− 1 i i+ 1

q↓
i−1/2

q↓
i+1/2

i− 1 i i+ 1

i− 1 i i+ 1

Figure 3.5: Physical representation of mass solute exchange for the novel solute

transport technique with q↓
i−1/2

, q↓
i+1/2

> 0

boundary cells will require a special treatment when applying this technique. As the

concept of numerical flux has been recovered in such way for the solute transport

equation, it is necessary to define a numerical flux also at the outlet boundary wall

in order to ensure the solute conservation. For that purpose, q↓ = (hun)BC and

φ↓ = φBC are defined at the boundary wall for the updating of the boundary cell

BC (Figure 3.6).

As shown, the formulation in both 1D and 2D cases reduces to computing a nu-

merical flux q↓ using the already computed averaged values at each edge for the

hydrodynamic part. Apart from ensuring a perfect conservation and bounded non-

oscillatory solutions [98], the simple discretization decreases substantially the num-
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nBC

(hu)BC

φBC

Figure 3.6: Numerical flux at the outlet boundary cell for the solute transport

ber of computations that would be necessary for the complete coupled system.



Chapter 4

Source terms, time step size and wet/dry

treatment

The numerical treatment of source terms in the context of upwind schemes has

been widely discussed in the literature during the last decade. Given a numerical

scheme in a finite volume approach, the main focus has been put on elucidating how

the source term discretization affects the numerical solution. In the particular case

of a system of hyperbolic conservation laws, the preservation of the steady-state

property such as still water equilibrium has been widely analysed when developing

new techniques to discretize the source terms. An upwind discretization of the

source terms has been generally adopted [122, 50]. However, these careful analysis

developed for the preservation of steady states, may produce unsatisfactory results

when dealing with unsteady scenarios, mainly related to the stability condition and

the automatic computation of the time step size.

The numerical treatment of wet/dry fronts was considered a secondary issue before

the development and the popularity of 2D models. However, when they emerged

two decades ago, the tracking of a flooding advance over complex and irregular

topographies was poorly captured. Furthermore, spurious oscillations and extreme

velocities appeared frequently in the vicinity of wet/dry fronts leading to wrong

and non-physical numerical results. Much efforts have been done mainly in the 2D

framework in the last decade [6, 62, 64, 73] always based on the construction of

well-balanced schemes able to preserve steady state of still water in the presence

of irregular complex geometries. Other approaches related to semi-explicit high-

resolution techniques [26] or high-order discontinuous-Galerkin methods [131] to

ensure positivity preserving schemes have been explored in the context of well-

balanced property.
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Realistic configurations usually involve strong favourable and adverse slopes and

high roughness that represent a challenge when trying to predict the evolution in

space and time of a flooding event. In fact, wet/dry interfaces are considered as

moving boundaries in the two dimensional depth-averaged shallow models and their

resolution entails considerable difficulties: small water depths near dry cells can lead

to numerical instabilities, non-physical high velocities or negative water depths.

The problem has been faced from different points of views: Liang et al. [75, 74]

balanced the slope source terms by multiplying an average of water levels and a

difference of bottom elevation on the faces. In [23, 37, 30, 99] a null velocity at

the wet cell of the wet/dry front is considered, in order to compute the fluxes and

source terms as usual. From the conservation property, Brufau et al. [13, 14]

proposed a new intuitive way of locally redefining the bottom level difference across

the corresponding interfaces to guarantee the equilibrium condition. A cell was

considered as dry if its water depth was under 10−6 m.

This chapter emphasizes the idea of a correct bed slope and friction treatment from

the study of the local Riemann Problem inside the augmented Roe’s solver and

applies these ideas to the correct strategy to handle wet/dry interfaces.

4.1 Source terms limitation

There are many situations such as transient flow over complex bed and/or friction

surfaces in which the source terms play a leading role over the convective terms. In

these scenarios, negative water depths in wet/dry or even in wet/wet problems and

unrealistic non-physical solutions can appear due to the wrong estimation of the

source amount, not only of the bed slope but also of the friction terms even when

using the upwind discretization. The current tendency to avoid these unrealistic

numerical solutions is reducing the time step size until the problems disappear.

However, this approach could lead to decrease the time step size in many orders

of magnitude hence rising the number of time steps done, and consequently the

physical time needed to compute the solution. Therefore, a good philosophy could

be to adopt a correct estimation of the source amount instead of reducing the time

step size. This may help to reproduce accurately the expected numerical solution

with a considerable saving in the computational time.
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These non-physical situations were already detected by Murillo et al. [97] and

Burguete et al. [17]. In the second one, the friction term discretization was analysed

and a limitation in the time step size was added to the classical CFL condition

in order to prevent producing a change of sign in the water velocity in cases of

high relative roughness. In [97], the bed slope terms are mainly examined, using

scalar equations with source terms as a first step. The reasoning is performed by

evaluating a parameter that measures the relative influence of the source terms over

the convective part. If the source terms dominates the flux, a limitation in time step

is proposed according to the jump in the conserved variable.

Another possibility consists of inspecting the approximate augmented solutions pre-

sented in chapter 2, for the SWE [92, 93] and to transform the physical constraints

such as the positivity of the water depth into mathematical requirements over the

intermediate star states that are part of the average approximate solution. This

procedure, which is essentially related to the basic stability condition in the homo-

geneous case, is adopted in this work.

Without loss of generality, the analysis is first presented for the 1D SWE over ir-

regular geometries for the subcritial case. The reason is intrinsically related to the

nature of the Godunov cell averaging method in supercritical flow, that avoids neg-

ative values in the water depth since the bed slope source term does not participate

in the updating of the water depth [13]. The proposed fix will be only applied to

wet/wet problems with inadequate estimation of source amount. Wet/dry fronts

will be later examined. A second analysis will be carried out for the correction of

the friction terms, which will be applied to all kind of flow regimes (subcritical and

supercritical) and situations (wet/wet and wet/dry).

Following the derivation of the finite volume approach and Roe’s linearization pre-

viously done, the upwind first order numerical method was expressed:

Un+1
i = Un

i − ∆t

∆x



(
∑

m

λ̃+γ̃ẽ

)m

i−1/2

+

(
∑

m

λ̃−γ̃ẽ

)m

i+1/2



n

(4.1)

for the updating of a single cell i from time tn to time tn+1 = tn +∆t according to

the contributions from left and right edges. It exists however another point of view

based on Godunov’s approach, which consists of cell-averaging the intermediate star

quantities that appear in the Riemann Problem to obtain a new piecewise solution



64 Source terms, time step size and wet/dry treatment

in time tn+1. It can be easily derived from (4.1) for a subcritical situation (λ̃1 < 0,

λ̃2 < 0). In that case:

Un+1
i = Un

i − ∆t

∆x

[(
λ̃+2 γ̃2ẽ

)
i−1/2

−
(
λ̃−1 γ̃1ẽ

)
i+1/2

]n
(4.2)

where U = (A,Q)T . From (2.61):

U∗
i = Un

i + (γ̃1ẽ)i+1/2 → (γ̃1ẽ)i+1/2 = U∗
i −Un

i

U∗∗
i = Un

i − (γ̃2ẽ)i−1/2 → (γ̃2ẽ)i−1/2 = Un
i −U∗∗

i

(4.3)

and (4.2) becomes:

Un+1
i = Un

i − ∆t

∆x

[
(λ̃2)

+
i−1/2

(Un
i −U∗∗

i )− (λ̃1)
−
i+1/2

(U∗
i −Un

i )
]

(4.4)

The sketch of the updating (4.4) of cell i from left and right contributions is displayed

in Figure 4.1. Finally, gathering correctly the terms:

Un+1
i ∆x = U∗∗

i (λ̃2i−1/2∆t)+Un
i (∆x−λ̃2i−1/2∆t+λ̃1i+1/2∆t)+U∗

i (−λ̃1i+1/2∆t) (4.5)

✲

✻

x

t
t = ∆t

0

∆x
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❚
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❚

❚
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❚

✡
✡
✡
✡
✡✡

U∗∗
i

Un
i U∗

i

Un
i−1 Un

i Un
i+1

λ̃1i−1/2 λ̃2i−1/2 λ̃1i+1/2 λ̃2i+1/2

Figure 4.1: Control volume in the Godunov method
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4.1.1 Bed slope limitation

Non-negative values of wetted area in the intermediate states A∗∗
i and A∗

i are sought

in order to ensure a non-negative cell-averaged solution Un+1
i . With that goal, let

consider the Riemann Problem at the edge i + 1/2 and the approximate solution

given in (2.60) and (2.61). For the sake of clarity, sub-indexes referred to average

quantities (tilde variables) at edge i + 1/2 are eliminated. Considering ẽ11 = 1 and

λ̃1 < 0, the positivity requirement over A∗
i :

A∗
i = An

i + (γ̃)1i+1/2 = An
i + α̃1 −

(
β̃

λ̃

)1

≥ 0 (4.6)

constrains the amount of source for β̃1

β̃1 ≥
(
An
i + α̃1

)
λ̃1 = β̃1

min (4.7)

Remembering now that ẽ21 = 1 and λ̃2 > 0, the derivation of the constraint for β2 is

straightforwardly achieved:

A∗∗
i+1 = An

i+1−(γ̃)2i+1/2 = An
i+1− α̃2+

(
β̃

λ̃

)2

≥ 0 → β̃2 ≥
(
−An

i+1 + α̃2
)
λ̃2 = β̃2

min

(4.8)

Therefore:

• If A∗
i < 0 and A∗∗

i+1 > 0, β̃1 is redefined using (4.7), not only ensuring conser-

vation, i.e., β̃2 = −β̃1 but also a non-negative value A∗∗
i+1:

β̃1 =

{
β̃1
min if −β̃1

min ≥ β̃2
min

β̃1 otherwise
, β̃2 = −β̃1 (4.9)

• If A∗
i > 0 and A∗∗

i+1 < 0, β̃2 is redefined according to (4.8):

β̃2 =

{
β̃2
min if −β̃2

min ≥ β̃1
min

β̃2 otherwise
, β̃1 = −β̃2 (4.10)
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With this redistribution of the source terms, the appearances of negative water

depths in wet/wet problems are eliminated. They are mainly related to the advanc-

ing of a slow flow over strong bed slope gradients. The cases where both A∗
i < 0 and

A∗∗
i+1 < 0 are not considered. Rare exceptions near the “vacuum state” or where

there is a strong expansion may produce negative values hence the proposed solution

consists of reducing the time step size.

4.1.2 Friction limitation

The other unrealistic solution that should be avoided is related to the infeasibility

of the flow resistance (friction terms) to change the sign of the velocity within one

time step. Firstly, as the source terms are due to bed slope and friction terms, we

can split them into a sum of two components:

βm = βm
F + βm

S (4.11)

where βm
S accounts for the bed slope terms and βm

F includes the friction terms. When

analizing the RP at interface i+1/2, as stated in [93], the intermediate stars states

referred to the discharge are equal Q∗
i = Q∗∗

i+1 in both subcritical or supercritical

situations and can be expressed:

Q∗
i = Qn

i + (γ̃ẽ2)
1 = Qn

i + α̃1λ̃1 − β̃1 (4.12)

According to (4.11), a new quantity can be defined, isolating the bed slope effects

and disregarding the friction contributions:

Q▽i = Qn
i + α̃1λ̃1 − β̃1

S (4.13)

In case that Q▽i Q
∗
i < 0 the effect of friction terms is overestimated to the extent

that flow could move back, resulting in an impossible situation. Accordingly, the

friction terms should be redefined as:

β̃1
F =

{
Q▽i if Q▽i Q

∗
i < 0

β̃1
F otherwise

, β̃2
F = −β̃1

F (4.14)
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Figure 4.2: Sketch of the intermediate states in the (x, t) plane for the subcritical case.

Wet/dry interfaces and negative value in the intermediate state A∗∗
i+1

.

in order to ensure a non-negative value in Q∗
i . These cheap and simple corrections

when discretizing the source terms allow to build robust solutions recovering the

conventional CFL condition, avoiding large reductions in the time step size to ensure

positivity solutions [93].

4.2 Wet/dry treatment

The advances suggested in [92] are applied in this work for the numerical treatment

of wet/dry interfaces. Considering again the Riemann Problem at the interface

i+1/2, let assume that i is the wet cell and i+1 is the dry cell (water depth under

the machine accuracy). Negative water depth or wetted area values can appear in

cell i + 1 due to the Godunov’s cell-averaging process. The direct responsible for

this undesirable phenomenon is the intermediate value A∗∗
i+1 as illustrated in Figure

4.2.

Considering that cell i+ 2 is also dry, the contributions from the right edge i+ 3/2

are null hence applying (4.5) over cell i+1, in the particular case of the wetted area,

results:

An+1
i+1 ∆x = A∗∗

i+1(λ̃
2
i+1/2∆t) + An

i+1(∆x− λ̃2i+1/2∆t + λ̃1i+3/2∆t) + A∗
i+1(−λ̃1i+3/2∆t)

= A∗∗
i+1(λ̃

2
i+1/2∆t) < 0

(4.15)
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Regarding (4.15), the time step should be reduced to zero in order to achieve a

non-negative value. As this option is considered as absurd, it is automatically left

aside.

Therefore, the unique physical solution satisfying the positivity of the solution con-

sists of considering the edge i+ 1/2 as a solid wall, i.e., the information should not

cross this interface in the current time step. In order for the scheme to remain mass

conservative, the information related to the mass that the numerical method foresees

to be sent to the cell i + 1 is reflected and necessarily sent to the cell i (see Figure

4.3). The contributions related to the momentum are disregarded. Additionally,

null normal velocity to the edge is enforced to ensure conservation.

An
i

A∗
i A∗∗

i+1

An
i+1 = 0

zi zi+1i+ 1/2

solid wall

An
i

An
i+1 = 0 = An+1

i+1

zi zi+1i+ 1/2

Figure 4.3: Wet/dry treatment

As an example, the expression for the updating of the cross section wetted area at

cells i and i+ 1 (assuming that the cell i+ 2 is also dry) is addressed:

An+1
i = An

i − ∆t

∆x



(
∑

m

λ̃+γ̃ẽ

)m

i−1/2

+

(
∑

m

λ̃−γ̃ẽ

)m

i+1/2

+

(
∑

m

λ̃+γ̃ẽ1

)m

i+1/2



n

An+1
i+1 = 0

(4.16)

Although this technique seems ’a priori’ to be sophisticated, it becomes nevertheless

simple and clear when the algorithm goes over the computational walls or edges and

decides to which cell the contributions should be sent. It can be summarized in the

Algorithm 1.
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Algorithm 1 Compute and send the fluxes

for k = 0 to NWALLS do

Compute the average tilde values at each wall: λ̃mk , α̃m
k , β̃m

k , ẽmk
Friction terms redistribution according to (4.14)

Bed slope wet/wet redistribution according to (4.9) and (4.10)

Compute A∗
i and A∗∗

i+1

if (A∗
i < 0 and An

i = 0) then

Send mass contributions to cell i+1

else

if (A∗∗
i+1 < 0 and An

i+1 = 0) then

Send mass contributions to cell i

else

Send mass/momentum contributions according to the sign of λ̃mk (up-

wind)

end if

end if

end for

As shown, the problem has been deeply studied in this work from a one dimensional

point of view. However, it is feasible to extend all the reasoning and strategies

specified above to the 2D framework. As stated before, the extension is achieved

by projecting the local Riemann Problem to the normal direction given by the

computational edge or wall and simply replacing in the previous analysis the edge

i+ 1/2, the cells i, i+ 1, the wetted area A and the discharge Q by the edge k, the

cells i, j, the water depth h and the unit discharge q respectively. This extension is

extensively described in [92, 93].





Chapter 5

Pressure source term integration:

formulation

The source terms included in the shallow water formulation (both in 1D and 2D

versions) can be split into friction terms and pressure terms. Pressure terms are

related to bed variations in the 2D model and to bed and width changes in the 1D

model.

The differential shallow water equations are valid on the hypothesis of continuous

and differentiable solution and they do not make sense for non-differentiable solu-

tions or in the presence of discontinuities. However, practical and realistic scenarios

such as channels with an important bed slope, rivers flowing in mountain valleys,

profound excavations or sills describe situations in which the bed may be discon-

tinuous and the water depth comparable with the bed step. Apart from that, the

finite volume method represents in particular the topography into piecewise con-

stant functions in each cell, a feature that enables the incessant appearance of these

previously mentioned discontinuities. Therefore, a wrong discretization in the pres-

sure terms for these cases could lead to wrong and non-physical solutions that could

erroneously predict the flow conditions.

As described in the previous chapter, different limitations in the bed slope such

as (4.9) and (4.10) and in the frictions terms (4.14) are required to prevent non-

physical numerical solutions and to avoid undesirable reductions in the time step

size. However, this strategy is actually independent of what is developed in this

chapter: the correct integration of pressure terms in the context of discontinuous

solutions and the adequate choice to model and discretize the physical phenomena

that are taking place. For the sake of clarity, friction terms will be omitted.

The focus will be consequently put on the computation of the pressure integral
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T =

∫

S

(
pb
ρw

)
dS (5.1)

where S is the surface over which the pressure forces are not null. As an example,

Figure 5.1 shows a sudden width variation in a rectangular channel (left) and in a

trapezoidal channel (right) with a bed step.

Figure 5.1: Sudden narrowing in a rectangular channel (left) and in a trapezoidal

channel with an adverse bed step (right). The shadow surface represents the surface S

over which the integral pressure is performed

This topic is not new and many papers can be found in the literature regarding

different approaches of the Riemann Problem over a bed step. Firstly, it is mainly

accepted that there exists a stationary wave positioned over the bed step which

accounts for a jump discontinuity in the flow variables [111, 3, 48]. However, there

is awareness that existence and uniqueness of solutions are not guaranteed and some

assumptions must be done. The physical principles connecting the flow variables are

controversial and two essential schools of thought can be distinguished: one based

on mass and energy conservation over the bed step and the other based on mass

and momentum conservation.

The former approach states that the energy conservation must be used as a clo-

sure when the slope becomes infinite, that is, in a bed step [3, 15]. However, as

known, energy losses and dissipation exist from a physical point of view due to flow

recirculating processes or in the presence of hydraulic jumps for instance, and mo-

mentum conservation equations should be recovered. On the other hand, mass an

momentum point of view with a hydrostatic pressure distribution at the bed step

is found in [8, 111, 92, 33]. A careful analysis is performed over an infinitesimal

control volume including the step where the multiplicity of solutions is avoided by

imposing a constraint over the energy across the step, which must be dissipated
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according to these authors. Other works as [69] presented a detailed description of

the Riemann Problem over a step, providing existence and uniqueness under certain

energy assumptions.

It is notable that, apart from maintaining the well-balanced or C-property as stated

in chapter 4, several numerical solvers are concerned about an adequate source term

discretization in the presence of bed discontinuities. Stelling et al. [113] designed a

numerical scheme able to switch between momentum conservation or energy head

conservation depending on the flow conditions. In Murillo et al. [96], energy constant

states are prioritized when possible so that the numerical integration of bed slope

terms is combined with energy constraints to construct a robust energy balanced

method.

In the present work, the derivation of the differential and integral discretizations for

the bed slope source terms is presented from a control volume point of view. As the

integral formulation of the shallow water equations, which allows to correctly resolve

a bed or narrowing discontinuity, implies an assumption on the pressure which is not

always valid for all situations, the expression will be formulated in a general way,

leaving open the possibility of choosing one or another approach. Although all the

previous works found in the literature only consider 1D rectangular constant width

cases or 2D simple configurations, the analysis will be firstly performed over these

geometries and subsequently extended to one dimensional cases over abrupt width

variations and cumbersome cross sections bathymetry.

5.1 1D rectangular cross section

The 1D SWE can be expressed in a rectangular cross section configuration, assuming

constant width along the rectangular channel and neglecting the friction losses:

∂

∂t

(
h

hu

)
+

∂

∂x

(
hu

hu2 + 1
2gh

2

)
=

(
0
pb
ρw

)
(5.2)

where h represents the water depth, u the depth averaged component of the velocity

vector, g is the acceleration of the gravity, pb is the pressure source term along the

bottom and ρw the density of water. According to (3.2) and (3.3), and assuming
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I2 = 0 (rectangular constant width channel),
pb
ρw

= −gh
∂zb
∂x

.

Let consider a control volume delimited by xL and xR as in Figure 5.2, where pL

and pR are the resultants of the pressure distributions on sections left and right

respectively and T illustrates the pressure force along the bed step.

z

x

L R

pL

pR

T

hR

hL
zR

zL

∆x

u

Figure 5.2: 1D control volume in a rectangular channel

As stated before, when dealing with abrupt or sudden variations, the integral formu-

lation of the shallow water equations is required to be able to evaluate the behaviour

of the solution. They are expressed as follows:

∫ xR

xL

(
h(x, tn+1)− h(x, tn)

)
dx+

∫ tn+1

tn
(hu(xR, t)− hu(xL, t)) dt = 0

∫ xR

xL

(
hu(x, tn+1)− hu(x, tn)

)
dx+

+

∫ tn+1

tn

((
hu2 +

1

2
gh2
)

xR,t

−
(
hu2 +

1

2
gh2
)

xL,t

)
dt =

∫ tn+1

tn

∫

S

(
pb
ρw

)
dS

︸ ︷︷ ︸
T

(5.3)

where S represents the bed step surface. As a matter of fact, these equations

represent the formulation of the mass and momentum conservation over the control

volume of fluid illustrated in Figure 5.2. In order to examine them, it is possible to

choose a system of reference that moves with the speed of the discontinuity located

between xL and xR in tn. With this assumption, the time derivatives of the integral
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terms in (5.3) become null and the Rankine-Hugoniot conditions are derived:

[hu]xR

xL
= 0

[(
hu2 +

1

2
gh2
)]xR

xL

=

∫ zR

zL

(
pb
ρw

)
dz

(5.4)

where the brackets [·] represent the jump discontinuity and zL, zR indicate the

elevations to the left and right sides (respectively) of the bottom discontinuity. The

integral of the bottom pressure is a question of interest [92].

5.1.1 Differential formulation

The first approach can be derived from the differential expression (3.2) and (3.3). It

is based on the assumption that the variations in the existing variables are smooth

inside the control volume and the pressure is hydrostatic. The pressure integral

related to the bottom change can be easily approximated as:

∫ zR

zL

pb
ρw

= −gh
∂zb
∂x

(5.5)

and the discretization results consequently a straightforward estimation

∫ zR

zL

pb
ρw

= −gh
∂zb
∂x

≈ Tdiff = −gh̃
δz

∆x
(5.6)

where h̃ =
hL + hR

2
and δz = zR−zL. This formulation, which will be referred with

the sub-index diff , is the most exploited in the literature although it may produce

inaccurate results in the presence of big discontinuities [92].

5.1.2 Integral formulation

The second approach or integral formulation consists of performing an accurate

evaluation of the pressure integral of (5.4), assuming discontinuities not only in the

water level surface but also in the bed level. In the same way, an assumption of the

pressure distribution has to be done. The lack of experimental studies related to this
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topic prevents a reliable choice of the pressure distribution based on experimental

data. Nonetheless, a hydrostatic assumption is adopted in this work, keeping in

mind that this hypothesis may be valid for a wide range of situations but not for all

[111]. Therefore, the pressure integral (5.4) is approximated by:

∫ zR

zL

pb
ρw

= −g

∫ z⋆

0

(h⋆ − η)dη (5.7)

where z⋆ and h⋆ have to be determined. Different flow situations can be considered

depending on the sign of the bed discontinuity, that is, and upward or a downward

step and the water depths or levels on both sides.

Two particular situations can be singled out in which the height of the bed step is

greater than or equal to the level in contact to the step. These cases are illustrated

in Figures 5.3 and 5.4 for adverse and favourable bed step respectively. The left

state is coloured in blue while the right state is in red. The yellow surface with a

filled line pattern shows the surface on the step over which the integral is performed.

Figure 5.3: Adverse bed step (δz ≥ 0) in a rectangular channel with dL < zR

It is possible to formulate what is illustrated in the mentioned figures:

• If δz ≥ 0 and dL < zR then z⋆ = hL and h⋆ = hL and

Tint = −g

∫ hL

0

(hL − η)dη (5.8)

• If δz ≤ 0 and dR < zL then z⋆ = hR and h⋆ = hR and
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Figure 5.4: Favourable bed step (δz ≤ 0) in a rectangular channel with dR < zL

Tint = −g

∫ hR

0

(hR − η)dη (5.9)

where d = h+ z is the level surface.

When the level of the side in contact to the step is greater than the step height, the

surface over which the pressure force is exerted will be related to the height of the

step as illustrated in Figures 5.5 and 5.6 (yellow surface with line pattern), that is,

z⋆ = δz.

Figure 5.5: Adverse bed step (δz ≥ 0) in a rectangular channel with dL ≥ zR

However, the difficulty resides in the estimation of h⋆. In [92, 96, 93, 111], h⋆ is

chosen according to the sign of the bed step discontinuity:

h⋆ =

{
hL if δz ≥ 0

hR if δz < 0
(5.10)
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Figure 5.6: Favourable bed step (δz ≤ 0) in a rectangular channel with dR ≥ zL

while in [113], h⋆ is assumed as a linear combination of the right and left states:

h⋆ = γhL + (1− γ)hR (5.11)

with 0 ≤ γ ≤ 1.

In the present work, the choice of h⋆ will be open for these situations. Mathe-

matically, the limit when xL approaches xR leads to an indeterminate form in the

pressure integral of (5.4). Furthermore, although the hypothesis that considers the

lower side of the step as the direct responsible for the pressure force is reasonably

consistent [92], there is no experimental evidence of this exactly because of this a

moderate position has been adopted in this dissertation.

All the possible situations can be condensed in the following formula, which refer

to the integral formulation of the source term in the presence of a bed step in a

rectangular channel with constant width (sub-index int):

Tint = −g

∫ z⋆

0

(h⋆ − η)dη = −gz⋆(h⋆ − z⋆

2
) (5.12)

where

h⋆ =





hL if δz ≥ 0 and dL < zR

hR if δz < 0 and dR < zL

f(hL, hR, δz) otherwise

z⋆ =





hL if δz ≥ 0 and dL < zR

hR if δz < 0 and dR < zL

δz otherwise

(5.13)
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5.2 1D irregular cross section

Let consider the 1D shallow water equations omitting the influence of friction source

terms:

∂

∂t

(
A

Q

)
+

∂

∂x




Q

Q2

A
+ gI1


 =

(
0

gI2 + gAS0

)
(5.14)

and a control volume similar to that considered for the rectangular cross section

case, bounded by xL and xR. Integral relationships can be established for system

(5.14) for the propagation of a discontinuity initially located between xL and xR:

∫ xR

xL

(
A(x, tn+1)− A(x, tn)

)
dx+

∫ tn+1

tn
(Q(xR, t)−Q(xL, t)) dt = 0

∫ xR

xL

(
Q(x, tn+1)−Q(x, tn)

)
dx +

+

∫ tn+1

tn

((
Q2

A
+ gI1

)

xR,t

−
(
Q2

A
+ gI1

)

xL,t

)
dt =

∫ tn+1

tn

∫

S

(
pb
ρw

)
dS

︸ ︷︷ ︸
T

(5.15)

where T condenses the terms gI2 + gAS0 into a pressure integral over the bottom

surface S . Analogously, the Rankine-Hugoniot conditions are expressed:

[Q]xR

xL
= 0

[(
Q2

A
+ gI1

)]xR

xL

=

∫

S

(
pb
ρw

)
dS

(5.16)

From the original conservative differential formulation, as described in (3.14), it is

feasible to obtain the non-conservative formulation

∂U(x, t)

∂t
+ J(x,U)

∂U(x, t)

∂x
= H′(x,U) (5.17)

where
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H′(x,U) = H(x,U)− ∂F(x,U)

∂x

∣∣∣∣
U=const

= gI2 + gAS0 − g
∂I1
∂x

∣∣∣∣
U=const

(5.18)

5.2.1 Differential formulation

The differential formulation assumes smooth variations in the conserved variables as

well as in the bottom surface. It is worth remarking that only under this hypothesis,

the Leibnitz rule [35] is used in (3.18). As the discrete increments approach actually

the total derivatives instead of the partial derivatives, all terms have to be carefully

expressed in total derivatives (as stated in [16, 19, 86]) as in (3.19) to arrive to this

expression:

H′(x,U) =




0

gA

(
−dzb

dx
− dh

dx
+

1

B

dA

dx

)

 (5.19)

where the partial and total x-derivatives applied over the conserved variables are

equivalent. It is important to remark the appearance of the term
1

B

dA

dx
, ignored in

the majority of the 1D shallow water models.

The differential way of discretizing (5.19) is carried out by approximating the deriva-

tives as discrete increments and the values at each interface as the average of the

states right and left. Consequently,

Tdiff = gÃ

(
−δz

δx
− δh

δx
+

1

B̃

δA

δx

)
(5.20)

where Ã =
1

2
(AL + AR), δzb = zR − zL, δh = hR − hL, B̃ =

1

2
(BL + BR) and

δA = AR − AL.

Although the assumption of smooth variations does not apply in every case, the

differential formulation is the most used for the 1D shallow water equations over

irregular geometries.
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5.2.2 Integral formulation

The assumptions lying beneath the differential formulation are not always valid

and must be re-analysed. In particular, over irregular geometries and/or abrupt

variations in the river bed bathymetry, the hypotheses related to gradually varied

functions and variables is wrong and another approach has to be considered.

As in the previous analysis for the rectangular cross section channel, an assumption

for the pressure distribution has be to be adopted. Although it is well known that

a hydrostatic pressure distribution does not cover all possible flow conditions, it is

able to approximate correctly a wide range of situations. Therefore, assuming a

hydrostatic pressure distribution, it is possible to express T in (5.15) as:

T =

∫ z⋆

0

(h⋆ − η) σ⋆(η) dη

︸ ︷︷ ︸
Tb

+

∫ z⋆⋆2

z⋆⋆1

(h⋆⋆ − η)(σR(η)− σL(η)) dη

︸ ︷︷ ︸
Tw

(5.21)

where σ is the width.

Tb accounts for pressure term related to the bottom and seems to be very similar

to that analysed for the rectangular case. As in the previous simplified case, the

choice of z⋆ will be given by the sign and the relative height of the bed step with

respect to the water depth on both sides of the discontinuity. The choice of σ⋆ will

be correspondingly determined by the sign of the bed step, that is, the width of

the side which is in contact to the surface. Furthermore, h⋆ will be open as in the

rectangular case, following the same argument. Therefore Tb is compactly written:

Tb =

∫ z⋆

0

(h⋆ − η) σ⋆(η) dη (5.22)

where
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h⋆ =





hL if δz ≥ 0 and dL < zR

hR if δz < 0 and dR < zL

f(hL, hR, δz) otherwise

σ⋆ =

{
σL if δz ≥ 0

σR if δz < 0

z⋆ =





hL if δz ≥ 0 and dL < zR

hR if δz < 0 and dR < zL

δz otherwise

(5.23)

On the other hand, Tw is the pressure term due to the width variation on both

sides of the discontinuity and is not null in the presence of an abrupt contraction

or enlargement of a channel or river. Figure 5.7 shows an adverse step followed by

a narrowing in a trapezoidal channel (left) and a triangular channel (right). The

surface in yellow with black diagonal lines illustrates the surface over which the

integral pressure is performed.

Figure 5.7: Adverse step and narrowing in a trapezoidal channel (left) and a triangular

channel (right)

The computation of Tw requires to know not only the limits z⋆⋆1 and z⋆⋆2 but also

the value of h⋆⋆. The value of h⋆⋆ will be open in this work as we are not able to

exactly determine it when dealing with a discontinuity in the free surface. However,

the limits of the integral can be characterized depending not only on the bed step

but also on the width variation signs.

Four possibilities arise, which are going to be illustrated by means of a rectangu-
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lar channel (for simplicity) with a positive/negative bed step and a sudden nar-

row/enlargement. As in the previous figures, the left states are plotted in blue and

the right states are coloured in red. Furthermore, the yellow surfaces filled with a

pattern will refer to the surface over which each pressure term is integrated: Tb in

black squares and Tw in straight lines.

1. Case 1: δz ≥ 0 and δσ ≤ 0. An adverse step combined with a sudden

narrowing.

Figure 5.8: Plant view (left) and front view (right) of case 1: δz ≥ 0 and δσ ≤ 0

In this case z⋆⋆1 = δz and z⋆⋆2 = hL.

2. Case 2: δz ≥ 0 and δσ ≥ 0. An adverse step combined with a sudden

enlargement.

Figure 5.9: Plant view (left) and front view (right) of case 2: δz ≥ 0 and δσ ≥ 0
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In this case z⋆⋆1 = 0 and z⋆⋆2 = hR.

3. Case 3: δz ≤ 0 and δσ ≤ 0. A favourable step combined with a sudden

narrowing.

Figure 5.10: Plant view (left) and front view (right) of case 3: δz ≤ 0 and δσ ≤ 0

In this case z⋆⋆1 = 0 and z⋆⋆2 = hL.

4. Case 4: δz ≤ 0 and δσ ≥ 0. A favourable step combined with a sudden

enlargement.

Figure 5.11: Plant view (left) and front view (right) of case 4: δz ≤ 0 and δσ ≥ 0

In this case z⋆⋆1 = δz and z⋆⋆2 = hR.

As stated before, the value of h⋆⋆ remains open in this work. However, it can be

chosen according to the bed step sign, that is, from the side which is in contact to the
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bed step or simply averaging the left and right free surface levels of the discontinuity.

This analysis is extended in a general way for irregular geometries and the formula-

tion of the pressure width term is compactly expressed as follows:

Tw =

∫ z⋆⋆2

z⋆⋆1

(h⋆⋆ − η)(σR(η)− σL(η)) dη (5.24)

where

h⋆⋆ = f(hL, hR, δz) z⋆⋆1 =

{
0 if δzδσ ≥ 0

δz if δzδσ < 0
z⋆⋆2 =

{
hR if δσ ≥ 0

hL if δσ < 0

(5.25)

5.2.2.1 Numerical approach: hydraulic table

In a general case involving irregular cross sections, the numerical approximation of

T requires the computation of the various integrals of the form

I =

∫ a2

a1

(a3 − η)σ(η) dη (5.26)

which can be an arduous task in irregular topographies. Hydraulic tables will be

helpful for this issue.

The numerical resolution of the 1D SWE far from academic configurations, i.e., in

realistic test cases (rivers) with complex cross sections, requires the use of hydraulic

relations between the variables that participate in the computation. In order to

achieve a bijective association between them, the procedure consist of constructing

one hydraulic table for each section. Therefore, given a cross section defined by N

points (see Figure 5.12), and once the elevation points are reordered from the lowest

z0 to the highest zN , the goal is to fill a table composed by N rows and six columns

with the following information:

zk hk σk dBzk Ak Wk (5.27)

where zk is the level, hk is the water depth, σk is the width, dBzk is the side slopes,

Ak is the wetted area and Wk represents the following integral
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W (z) =

∫ zk

0

ησ(η)dη (5.28)

which will be useful to compute the pressure integral (5.26).

z

y

σ

dBzz0

zk

zN

Figure 5.12: 1D cross section. Construction of the hydraulic table

With the following relation

σk+1 = σk + dBzk(zk+1 − zk) (5.29)

it is possible to obtain the consequent expressions for A and W :

Ak+1 = Ak +

∫ zk+1

zk

σ(η) =

∫ zk+1

zk

[σk + dBzk(η − zk)] dη =

Ak + σkη +
1

2
dBzk(η − zk)

2)

∣∣∣∣
zk+1

zk

= Ak + σk(zk+1 − zk) +
1

2
dBzk(zk+1 − zk)

2

(5.30)
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Wk+1 = Wk +

∫ zk+1

zk

η σ(η)dη = Wk +

∫ zk+1

zk

[
η(σk − dBzkzk) + η2dBzk)

]
dη =

Wk +
1

2
(σk − dBzkzk)(z

2
k+1 − z2k) +

1

3
(z3k+1 − z3k)dBzk =

Wk +

[
1

2
σk(zk+1 + zk) +

1

6
(2z2k+1 − zk+1zk − z2k)dBzk

]
(zk+1 − zk)

(5.31)

In the knowledge that hk = zk − z0 and

h0 = A0 = σ0 = 0 (5.32)

the hydraulic table can be easily constructed using the geometric information that

allows to calculate dBz. As a consequence of this, the computation of the integral

I in (5.26) becomes a systematic procedure.

As mentioned above, the discretization of the pressure integral T = Tb + Tw will

actually approach the terms gI2+ gAS0 related to the change in width and bottom

respectively. However, from the non-conservative formulation in (5.18), g
∂I1
∂x

∣∣∣∣
A=const

must be discretized and evaluated correctly. Being a partial derivative, the strategy

consist of converting this quantity into total derivative by means of:

dI1
dx

=
∂I1
∂x

∣∣∣∣
A=const

+
∂I1
∂A

∂A

∂x
=

∂I1
∂x

∣∣∣∣
A=const

+
A

B

∂A

∂x
(5.33)

where B is the top width of the free surface. Providing the partial derivatives applied

over the conserved variables are equivalent to the total derivatives, the following

expression can be written for the discretization of the term g
∂I1
∂x

∣∣∣∣
A=const

:

∂I1
∂x

∣∣∣∣
A=const

≈ 1

∆x

(
δI1 −

Ã

B̃
δA

)
(5.34)

where δI1 = (I1)R − (I1)L, δA = AR −AL, Ã =
1

2
(AR +AL) and B̃ =

1

2
(BR +BL).





Chapter 6

Pressure source term integration: Test

cases

The behaviour of the numerical solution using the differential and integral formu-

lations is tested through different test cases in this chapter. Many of them have

analytical solutions, nevertheless there are other whose exact or analytical solutions

depend on assuming certain hypothesis of the energy over bed steps that are not

analysed in this work. Furthermore, the integral formulation requires the choice

of the free parameters in several situations. For the sake of simplicity, an average

between left and right states is considered.

Different configurations are firstly investigated to corroborate the well-balanced

property in the case of still water with a complex topography or width variations.

They have exact solution which is the initial condition and their description is sum-

marized in Table 6.1. All of them represent a channel 100 m long, with closed

boundaries at x = 0 m and at x = 100 m and with a null Manning coefficient. The

simulations are performed with a spatial discretization of ∆x = 1 m until t = 100 s.

Test Case Cross Section Discontinuity Description

1 Rectangular x=50 m Adverse Bed step

2 Rectangular x=50 m Narrowing

3 Trapezoidal x=35 m Favourable Bed step

x=70 m Enlargement

4 Trapezoidal x=50 m Adverse Bed step + Enlargement

5 Irregular x=50 m Sudden change in section

Table 6.1: Test cases 1-5: still water under sudden bed and width variations
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Figure 6.1: Test case 1: Cross sections (upper left), longitudinal profile of the width

(upper right) and initial condition and bed level (lower middle)

Test case 1 consists of a rectangular channel with a constant width of 10m and a

bed step of 2 m located at x = 50 m (see Figure 6.1).

z(x) =

{
0 if x < 50 m

2 if x ≥ 50 m
(6.1)

The initial condition is still water with a discontinuity in the water level surface

d = h+ z defined as:

d(x, 0) =

{
1.8 if x < 50 m

0 if x ≥ 50 m
(6.2)

The final state at t = 100 s is plotted in Figure 6.2. The water should remain

quiescent (left) with a constant level of d = 1.8 m at the left side of the discontinuity.
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Figure 6.2: Test case 1: Longitudinal profile of water level surface (left) and discharge

(right)

Futhermore, the discharge (right) is null below the machine accuracy.

In the second test case, a flat rectangular channel is considered in which a sudden

narrowing from a cross sections of 10 m width to 5 m width takes place at x = 50 m:

σ(x) =

{
10 if x < 50 m

5 if x ≥ 50 m
(6.3)

The initial condition consists of a still constant water level surface of 1 m. The

detail of this test case 2 is condensed in Figure 6.3.

After the simulation time, the water is consequently at rest as displayed in Figure

6.4 using both the differential and integral formulations.

Test case 3 considers a trapezoidal cross section channel (see Figure 6.5, left) with

two abrupt discontinuities. The first corresponds to a bed step discontinuity located

at x = 35 m and the second is a sudden cross section enlargement at x = 70 m:

z(x) =

{
0.6 if x < 30 m

0 if x ≥ 30 m
σ(x) =

{
10 if x < 70 m

15 if x ≥ 70 m
(6.4)

The initial condition is water at rest with a constant level of d = 1 m. The set-up

of the case is plotted in Figure 6.5.

The numerical results achieved by both the differential and the integral formulations

are displayed in Figure 6.6 for the water level surface (left) and the discharge (right).

As expected, the water remains at rest.
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Figure 6.3: Test case 2: Cross sections (upper left), longitudinal profile of the width

(upper right) and initial condition and bed level (lower middle)
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Figure 6.4: Test case 2: Longitudinal profile of water level surface (left) and discharge

(right)

Test case 4 represents a trapezoidal channel with a combined bed and width discon-

tinuity located at x = 50 m given by:
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Figure 6.5: Test case 3: Cross sections (upper left), longitudinal profile of the width

(upper right) and initial condition and bed level (lower middle)
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Figure 6.6: Test case 3: Longitudinal profile of water level surface (left) and discharge

(right)

z(x) =

{
0 if x < 50m

1.2 if x ≥ 50m
σ(x) =

{
10 if x < 50m

15 if x ≥ 50m
(6.5)
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The initial condition are still water with a constant level of d = 2 m. The cross

sections, the longitudinal profiles for the width variation and for the bed level as well

as the initial condition are shown in Figure 6.7. Analogously to the previous cases,

the numerical results displayed in Figure 6.8 demonstrate again the well-balanced

property in the case of sudden both bed and width variations.
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Figure 6.7: Test case 4: Cross sections (upper left), longitudinal profile of the width

(upper right) and initial condition and bed level (lower middle)

In order to evaluate the still water property for the integral formulation with com-

pletely irregular cross sections, test case 5 considers a reach of a channel/river with

a winding cross section that changes suddenly at x = 50 m becoming another cross

section completely different. Not only the lowest point of the section changes but

also the width, as plotted in Figure 6.9 (upper left and right). In this figure the

initial condition is also displayed (lower middle), which consists of a constant still

water level of d = 3 m.

Despite the irregular geometries, the well-balanced property is also satisfied for this
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Figure 6.8: Test case 4: Longitudinal profile of water level surface (left) and discharge

(right)
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Figure 6.9: Test case 5: Cross sections (upper left), longitudinal profile of the width

(upper right) and initial condition and bed level (lower middle)

test case (Figure 6.10), with both integral and differential formulations, achieving a

constant water level surface and discharge all over the domain in the order of the
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Figure 6.10: Test case 5: Longitudinal profile of water level surface (left) and discharge

(right)

machine accuracy.

Although this five test cases presented above could seem simple and easy-to-achieve,

a careless discretization of the source term leads instantaneously to spurious oscilla-

tions and non-physical solutions like moving water from the previous configurations.

With these verifications, the integral formulation is able to preserve the well-balanced

property in the case of still water. Let consider now two of the problems that were

firstly proposed by MacDonald in [78] and after extended in [79]. They represent

academic 1D configurations for open channel flow supplied with analytical solution

in the steady state. The first one (test case 6) consists of a trapezoidal channel 300m

long with a bed level in the form of several concatenated smooth dunes. A constant

Manning friction coefficient of n = 0.03 s/m1/3 is imposed all over the domain. The

inlet boundary condition corresponds to a constant discharge of 20 m3/s and a fixed

water depth hout = 0.71 m is considered as outlet boundary. The analytical solution

for the water depth is given by:

h(x) = 0.71 + 0.25sin

(
2πx

300

)
(6.6)

and it corresponds to an entirely subcritical case. The discretization is done by

means of a regular mesh of size ∆x = 1.0 m and the simulation is carried out until

t = 2000 s. The results in terms of water level surface and discharge along the

domain are plotted in Figure 6.11. Although the water level as well as the bed level

are differentiable and smooth, the integral formulation approximates very well the
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Figure 6.11: Test case 6: Longitudinal profile of water level surface (left) and discharge

(right)

exact solution.

The second MacDonald-type case which will be called test case 7, consists of a

rectangular 10 m width channel of a length of 150 m. The analytical solution for

the water depth is of the form:

h(x) = 0.741617− 0.25

tanh(3)
tanh

(
3
x− 50

50

)
(6.7)

and it changes smoothly from subcritical to supercritical flow before a sudden

transition again to subcritical via a hydraulic jump. A Manning coefficient of

n = 0.03 s/m1/3 is used, a constant discharge of 20 m3/s is enforced at the in-

let and a constant water depth of hout = 1.700225 m is imposed as outlet boundary.

The domain is discretized into 150 cells ( ∆x = 1.0 m) and the simulation time

is set to t = 4000 s. The results are shown in Figure 6.12. It is worth remarking

the peak in the discharge when a hydraulic jump occurs, which is reproduced in

both integral and differential formulations. It is related to the Roe’s solver and the

upwind discretization.

The error in norm L1 achieved by both formulations in test cases 7 and 8 is also

examined. Table 6.2 shows that the error produced by each discretization for the

water surface elevation and for the discharge are very similar and anyhow in the

same order of magnitude.

Therefore, the integral formulation has been demonstrated to behave at least as well

as the differential formulation not only in still water cases but also under smooth
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Figure 6.12: Test case 8: Longitudinal profile of water level surface (left) and discharge

(right)

Test Case Variable Integral L1 error Differential L1 error

7 h 6.096e-05 6.050e-05

Q 3.260e-10 2.636e-10

8 h 4.335e-03 4.335e-03

Q 4.754e-03 4.754e-03

Table 6.2: Test cases 7-8: L1 error for h and Q

assumptions in steady states.

Test case 9 consists of a steady flow over a bump. The rectangular channel has a

length of 6 m, a constant width of 0.24 m and the bottom level is characterized as

follows:

z(x) =

{
0.13 if x < 3.25 m

0.13− 0.0472(x− 3.25) if x ≥ 3.25 m
(6.8)

A semicircular obstacle with a length of 0.317 m and a height of 0.073 m is placed

at x = 0.97 m. From a constant water depth as initial condition, an inlet discharge

of 4 m3/h is introduced until the steady state is reached. A free outlet boundary

and a constant Manning roughness coefficient of n = 0.0115 s/m1/3 is imposed, and

the domain is divided into 300 regular cells each 0.02 m. The results in terms of

longitudinal profile of water level surface as well as discharge are shown in Figure

6.13.

As observed, the location of the hydraulic jump is slightly different when comparing
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Figure 6.13: Test case 9: Longitudinal profile of water level surface (left) and discharge

(right)

the differential and the integral discretization. It is due to how the formulation is

perceiving the bump and performing the pressure integral mentioned in the previous

chapter. The peak in the discharge corresponds again to the hydraulic jump.

Furthermore, an inaccurate source term integration could contribute to the appea-

rance of negative water depth values, which are unacceptable for the numerical

method. In this case, the time size is chosen as half the previous one and the vari-

ables are again computed. This procedure is repeated until the value of the water

depth is positive or null.

The evolution of the time step size for both integral and differential approaches

during the first 50 seconds is displayed in Figure 6.14. The reason for plotting

only the first 50 seconds is easy: the convergence from the initial condition to the
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steady state condition is critical and after that the time step size remains almost

constant. As can be observed, the number of reductions with the integral formulation

is considerable fewer than the differential approach, making faster the computation

of the former one.
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Figure 6.14: Test case 9: Evolution of the time step size

Test cases 10-12 illustrate different dam-break problem types, i.e, problems defined

by discontinuous free surface initial conditions. The evolution in time of this kind

of conditions generates unsteady flow [92] that is going to be anaylsed. Although

several authors propose exact solutions for the dam break problems over a bed step,

these exact solutions are based on assuming certain hypothesis over the pressure and

the energy through the bed step. As there still exists some controversy about this

topic, no exact solution related to this kind of problems is provided in this work.

The geometry of test case 10 is the same as that in test case 3, that is, a trapezoidal

channel with a discontinuity in the bed step at x = 35 m and a sudden width

expansion at x = 70 m. The initial condition is given by:

h(x) =

{
0.6 if x < 30 m

0.3 if x ≥ 30 m
(6.9)

and is plotted in Figure 6.15. The numerical results achieved by both the differential

and the integral formulations at t = 4 s and at t = 18 s are displayed in Figure 6.16

for the water surface elevation and in Figure 6.17 for discharge.
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Figure 6.15: Test case 10: Bed level and initial condition
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Figure 6.16: Test case 10: Longitudinal profile of water level surface at t = 4 s (upper)

and at t = 18 s (lower)

A rarefaction is moving back and a shock is propagated forward from x = 30m while

two different steady discontinuities related to the bottom and the width variation

are devised at x = 35 m and at x = 70 m respectively. As can be seen, the

differential and the integral formulation are moderately similar, above all at the
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Figure 6.17: Test case 10: Longitudinal profile of discharge at t = 4 s (upper) and at

t = 18 s (lower)

beginning of the dambreak problem. Although there is not any evidence about the

exact solution, the integral formulation seems to be more physically reliable while in

the differential formulation a steepened wave appears just after the shock that could

be a consequence of a overestimation of the pressure term related to the bottom.

Test cases 11 and 12 adopt the geometry and topography of test case 4 hence a

trapezoidal channel with a discontinuity at x = 50 m consisting of an adverse bed

step of 1.2 m and a sudden enlargement are considered. For test case 11, the initial

condition (Figure 6.18) is expressed as follows:

d(x) = h(x) + z(x) =

{
2 if x < 30 m

0.8 if x ≥ 30 m
(6.10)

Therefore, the discontinuity at the free surface is placed at the same location as

the bottom and width discontinuities. The results for the water surface elevation

and for the discharge at t = 1 s and t = 3 s are plotted in Figures 6.19 and 6.20

respectively. As can be seen, the differential and integral formulations produce again

different numerical results.
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Figure 6.18: Test case 11: Bed level and initial condition
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Figure 6.19: Test case 11: Longitudinal profile of water level surface at t = 1 s (upper)

and at t = 3 s (lower)

The initial condition for test case 12 consists of two concatenated dam-break prob-

lems (see Figure 6.21), upstream (x = 20 m) and just over (x = 50 m) the bottom-

width discontinuity respectively:
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Figure 6.20: Test case 11: Longitudinal profile of discharge at t = 1 s (upper) and at

t = 3 s (lower)

d(x) = h(x) + z(x) =





1.5 if x < 20 m

0.5 if 20 m ≤ x < 50 m

1.7 if x ≥ 50 m

(6.11)

For both the differential and integral formulation, Figure 6.22 shows the numerical

results at t = 1 s and at t = 3 s for the water level surface while Figure 6.23 displays

the longitudinal profile for the discharge.

At x = 20 m, a rarefaction moves back and a shock front moves forward while at

the same time, at x = 50 m, a rarefaction propagates to the end of the channel and

a shock develops in the other direction. The differences between both formulations

are highlighted, although the integral formulation is able to provide a numerical

solution smoother than the differential approach.

The last test case considered in this section (test case 13) represents a triangu-

lar/trapezoidal channel of length 1000 m characterized by the following bottom

geometry:



105

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

w
at

er
 le

ve
l s

ur
fa

ce
 (

m
)

x (m)

Initial condition Channel bed

Figure 6.21: Test case 12: Bed level and initial condition
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Figure 6.22: Test case 12: Longitudinal profile of water level surface at t = 1 s (upper)

and at t = 3 s (lower)

z(x) =

{
0.0 if x < 250 m

0.5− 0.0004(x− 250) if x ≥ 250 m
(6.12)

Therefore, the channel has an abrupt discontinuity at x = 250 m and afterwards a
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Figure 6.23: Test case 12: Longitudinal profile of discharge at t = 1 s (upper) and at

t = 3 s (lower)

smooth bottom favourable slope. The cross section evolution along the longitudinal

coordinate is plotted in Figure 6.24: the channel has a triangular section at the

beginning with the same slope from the left and the right side (section 1), that

changes suddenly at x = 250 m and becomes asymmetric (section 2). Afterwards, it

changes smoothly to turn into a trapezoidal section at the end of the channel (cross

section 3).

In this test case, the convergence to a steady state of 1 m3/s is sought. It is a

challenging test case because of the rapid varying flow over a bed step and the

appearance of wet/dry fronts. A Manning coefficient of n = 0.01s/m1/3 is set

constant for all the channel and a free boundary condition is enforced at the outlet.

The initial condition (see Figure 6.25) is still water depth defined by:

h(x) =

{
0.5 if x < 250 m

0 if x ≥ 250 m
(6.13)

The domain is discretized in 1000 cells with ∆x = 1 m and the simulation is carried

out until steady state is reached. The numerical results achieved by the integral
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Figure 6.24: Test case 13: Cross sections

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  200  400  600  800  1000

w
at

er
 le

ve
l s

ur
fa

ce
 (

m
)

x (m)

Initial condition Channel bed

Figure 6.25: Test case 13: Bed level and initial conditions

and the differential formulation are displayed in Figure 6.26 and Figure 6.27 for the

water surface elevation and for the discharge respectively.
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Figure 6.26: Test case 13: Longitudinal profile of water level surface
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Figure 6.27: Test case 13: Longitudinal profile of discharge

A hydraulic jump develops after the bed step (close to x = 325 m) and is reflected in

the peak produced by both formulations in the discharge profile. As can be observed,

there are not many differences between integral and differential formulations in the

final state. However, the convergence to steady state is not achieved in the same

manner. As stated before, the appearance of negative values of water depth can be

dramatic and, although they should have been reduced with the techniques to avoid

non-physical values, the proposed solution when they appear consist of reducing the

time step until the water depth becomes positive or null.
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Figure 6.28: Test case 13: Evolution of the time step size

In this case, an incorrect estimation of the source term could lead to minuscule time

step sizes as displayed in Figure 6.28 for the differential formulation. This fact makes

consequently the simulation slower. As an example, while the simulation using the

integral formulation is carried out in 11 seconds, the simulation with the differential

formulation spends 386 seconds to reach the final steady state. This problem was

also reported in [92] inside the two dimensional framework.



Chapter 7

Conclusions

A review of scalar and systems of conservation laws has been developed. The dif-

ferential and integral formulation for these hyperbolic conservation laws as well as

several concepts such us the Riemann Problem are introduced. The Roe’s Approx-

imate Riemann Solver is presented for the homogeneous case and the augmented

version of the scheme is proposed for system of conservation laws with source terms.

Furthermore, approximate Riemann solutions are proposed for the 1D and the 2D

case, exploring all the possibilities related to the eigenvalues.

Being the shallow water equations a system of conservation laws with source terms,

they are a good candidate to apply the previous ideas developed in a general man-

ner. Both the 1D and 2D shallow water equations are presented in chapter 3. The

numerical scheme applied to the hydrodynamic equations is explained, paying atten-

tion to the boundary conditions and the entropy fix. The solute transport equations

are presented coupled to the hydrodynamic system and a technique consisting of

decoupling the solute equations in a conservative way is illustrated.

The focus is subsequently put on the source term treatment and the wet/dry fronts.

Taking into account the ideas of the approximate Riemann solutions, it is feasible

to limit and distribute intelligently the source term amount when discretizing the

equations in order to reduce the number of negative values of water depth and to

entirely avoid the non-physical solutions. The wet/dry fronts are examined from

the same point of view and an algorithm is proposed to limit and distribute the

numerical flux in the wet/dry interfaces to remain the scheme conservative.

A novel source term discretization coming from the integral formulation of the con-

servative equations is presented. In contrast to the classical approach, called here

differential formulation, the integral formulation is able to better approximate the
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flow through discontinuities, where the differential formulation is not valid at all.

This integral approach is firstly presented in a 1D rectangular cross section con-

figuration for the flow over a bed step. These ideas can be extended to the 2D

shallow water equations. It is worth noting that a parameter is left open in this

work when performing the integral of the pressure related to the bottom step due

to the controversial in the literature about the flow over a step.

The extension to the 1D shallow water equations with irregular geometries is deeply

analysed in section 5.2. The differential formulation is presented before, remarking

the extra term that appear when passing to the non-conservative formulation. The

propagation of discontinuities should be studied from the integral point of view

hence the integral formulation is developed for irregular geometries. As performing

the pressure integrals implies again doing several assumptions on the energy through

a discontinuity, a free parameter is again left open in this work. Hydraulic tables

are used to implement these pressure integrals related to the bottom and the width

variations.

Finally, the advances related to the source term discretization are applied to different

test cases to corroborate the well-balanced property, the validity of the integral

formulation under smooth conditions and the behaviour of both differential and

integral formulations in the case of sudden strong discontinuities not only related

to the bottom level but also to the width contractions or expansions. Although

analytical solutions for these kind of problems are open, the integral formulation

seems to be more robust in the presence of abrupt discontinuities and is able to

compute the numerical solution using time step sizes bigger than the differential

formulation.



Part II

Large Time Step upwind explicit

scheme (CFL >1)





Introduction

According to the discretization of the temporal derivative, there exist two main

classes of numerical methods: implicit and explicit schemes. Implicit schemes offer

unconditional numerical stability at the extra cost of having to deal with the reso-

lution of an algebraic system. In fact, the updating of a variable in the following

time step in the implicit schemes will depend not only on the value of the variable

in the previous time step but also on the value at the current time. On the other

hand, conceptual simplicity is the most valuable characteristic of explicit schemes.

Variables are updated taking into account the information at the previous time step.

However, the size of the time step is restricted by stability reasons to fulfil the CFL

condition when dealing with a hyperbolic system of conservation laws.

When dealing with the shallow water equations, the great majority of the schemes

have been developed using a explicit technique. However, different approaches in the

1D, 2D and 3D frameworks for implicit or semi-implicit models have been explored

during the last decades. In [18] a 1D robust implicit scheme is presented for the

simulation of river hydraulics. Several corrections are done related to the numerical

resolution (bidiagonal and tridiagonal) of the complete system concerning implicit

and semi-implicit schemes with suitable CFL numbers. Following this philosophy, in

[34] the focus is put on the adopting semi-implicit schemes with local CFL numbers

and equivalent cross sections which are computationally saving, to improve efficiency

in real engineering problems. In the 2D framework, Casulli [25] proposed a semi-

explicit finite difference scheme analysing which terms have to be discretized in an

explicit or implicit way. Different improvements and modifications of this method

related to high-order and discontinuous-Galerkin schemes can be found in [42, 116].

On the same way, 3D semi-implicit approaches have been carried out in [27, 28].

It is possible to relax the condition over the time step size when using explicit

schemes. A generalization of the first order Goudnov’s explicit upwind scheme ,

modified to allow large time steps, was explored by Leveque [70, 71] (Large Time

Step, LTS) first in the scalar non-linear case and then adapted to systems of equa-
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tions. It is stable for CFL values larger than 1 and provides accurate and correct

solutions of shocks. Some difficulties can be met when a rarefaction is present in the

solution so that adjustments are necessary. Other class of large time step explicit

schemes based on TVD properties [57] have been analysed and tested mainly for

the scalar equations or systems of equations without source terms. These will not

be considered in the present work.

Engineering applications related with atmospheric dynamics [102] and Euler equa-

tions [106, 107] have been recently published. Apart from retaining most of the

advantages offered by explicit schemes, they are able to increase not only the ef-

ficiency in terms of computational burden, but also the accuracy of the numerical

results. As long as fewer time steps are required to complete the simulation, the

numerical diffusion associated with the numerical scheme is reduced, obtaining more

accurate results.

The shallow water equations, being a hyperbolic system of partial differential equa-

tions, are also a good candidate for the application of the LTS scheme. A deep

analysis of the application of this kind of LTS scheme to scalar equations and sys-

tems of conservation laws with source terms can be found in [87] with a particular

application to the 1D shallow water equations.

As related before, the source term treatment and the boundary conditions discretiza-

tion are crucial to allow stability in presence of large CFL values in realistic cases.

On the one hand, the idea of using a stationary jump discontinuity representing the

source term in the Riemann solution [52] and the corresponding augmented approx-

imate Riemann solvers for the shallow water equations [92] is incorporated to the

LTS scheme.

On the other hand, the boundary conditions discretization is another issue of im-

portance in the development of a numerical model. In the context of the shallow

water equations, open boundaries and closed boundaries can appear and must be

explored. From the structure of the LTS scheme, information is transmitted not

only to the immediate neighbouring cells but also to a number of other cells growing

as the CFL value increases. Therefore, some information can cross the boundaries

and a careful consideration is required in order to reproduce all kind of scenarios

such as subcritical, supercritical and closed boundaries.

Before applying the LTS scheme to the 1D shallow water equations, the discretiza-
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tion is described first, for 1D scalar equations with and without source terms. In

the non-linear case, the treatment of the rarefaction waves is explored. Then, the

scheme is extended to 1D systems of equations, in particular to solve the 1D shallow

water equations where bed slope and friction source terms are incorporated into the

proposed procedure. This method is proposed to be a general tool for solving the

1D shallow water equations for open channel and river flow problems, allowing the

increase of the CFL value when possible. However, several issues that were totally

solved in the context of the first order upwind scheme such as wet/dry fronts or the

entropy correction have to be analysed.

The extension of the LTS scheme to the 2D shallow water equations was firstly men-

tioned in [94]. Other recent applications in connection with atmospheric dynamics

[102] and Euler equations [106] have been extended to more than one dimension

using the dimensional splitting technique. In this work, the extension of the men-

tioned LTS scheme to the 2D shallow water equations is firstly achieved by means

of this dimensional splitting procedure on structured grids. While the advances re-

lated to source term discretization are preserved, boundary conditions require some

adjustments concerning the dimensional splitting procedure and the characteristic

line information. Then a novel technique is proposed to formulate the Large Time

Step scheme on triangular grids, accounting for the maximum information allowed

to be sent from each computational wall and defining appropriate paths to send the

information across them.

Another issue of importance that appears explicitly in the 2D shallow water system

is the formulation of wet/dry fronts. The proper discretization of wet/dry fronts

to ensure positivity without drastic time step reduction below the CFL condition

was presented in [92, 93] and detailed in part I. The extension of the LTS scheme

to situations with wet/dry fronts in 1D was previously discussed in [87] suggesting

to recover the conventional first order upwind scheme in those cases. When moving

to 2D models of inundation problems, the likely presence of wet/dry fronts requires

another approach. The definition of wet/dry solid interfaces and the correct send-

ing of information should lead to an adequate wet/dry treatment, not excessively

restricting the time step size and avoiding the appearance of negative water depth

values.





Chapter 8

LTS scheme for 1D scalar equations

8.1 Scalar equations

8.1.1 Linear scalar equation

The basic ideas underlying the Large Time Step (from now on LTS) scheme can be

introduced by examining first the linear scalar equation,

∂u

∂t
+

∂f(u)

∂x
= 0 (8.1)

where u is the conserved variable and f(u) is a linear function, f(u) = λu, λ =

constant.

The numerical resolution of (8.1) by means of the first order upwind finite volume

method scheme can be written as follows:

un+1
i = uni − ∆t

∆x
(δf+

i−1/2
+ δf−

i+1/2
) (8.2)

This is a finite volume point of view centered at the cells which accumulates the

i i+1i−1

f

f

f

f

δ

δ

δ

δ

i+1/2

i+1/2

i−1/2

i−1/2

++

−−

Figure 8.1: Contributions from left and from right in cell i
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arriving signals to update the value of the function at every cell. There is another

way to consider this situation by looking where the signals go from each interface

[70]. For example, at interface (i, i + 1) the quantity ν δui+1/2, where ν =
∆t

∆x
λ

can be defined and it is sent according to the sign of λ following the algorithm:

if λ > 0 ⇒ ν δui+1/2 updates i+ 1

if λ < 0 ⇒ ν δui+1/2 updates i

(8.3)

Both versions of the scheme are equivalent if

CFL =
∆t

∆x
λ ≤ 1 (8.4)

The second approach is nevertheless preferable to extend the scheme to CFL > 1.

As described by Leveque [70], the extension of the scheme to larger time steps is

achieved by allowing each wave or signal to propagate independently from all other

waves according to the following algorithm:

If λ > 0

δui+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ) δui+1/2 updates i+ µi+1/2 + 1

(8.5)

If λ < 0

δui+1/2 updates i, · · · , i+ µi+1/2 + 1

(ν − µ) δui+1/2 updates i+ µi+1/2

(8.6)

where µ = int(ν). Figure 8.2 shows how the information is sent from interface

(i, i+ 1) to the involved cells when λ > 0 (a) and when λ < 0 (b).

The proposed scheme is explicit and remains conservative. This is the basic formu-

lation of what is called LTS scheme in this work. It is important to remark that if

CFL 61 the scheme becomes the original first order explicit upwind scheme (8.2).
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(a)

i+1 i+2 i+... i+µ i+µ+1
i+3/2 i+5/2 i+µ+1/2
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(ν − µ)i+1/2 δui+1/2

(b)

i+µ i+µ+1 i+... i-1 i
i+µ+1/2 i-3/2 i-1/2 i+1/2

δui+1/2

δui+1/2
δui+1/2

δui+1/2

|ν − µ|i+1/2 δui+1/2

Figure 8.2: Scheme of the contributions from intercell i+1/2 for λ > 0 (a) and for λ < 0

(b)

8.1.2 Non-linear scalar equation

Consider now the conservation law:

∂u

∂t
+

∂f(u)

∂x
= 0 (8.7)

where f(u) is a convex non-linear function of u. So that:

λ =
df

du
λ = λ(u). (8.8)

which is no longer constant. The LTS scheme, when applied to (8.7), requires the

definition of an approximate advection celerity at the intercell as follows:
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λ̃i+1/2 =
f(ui+1)− f(ui)

ui+1 − ui
(8.9)

Certain new elements appear in this case that are going to be explored using the

Burgers equation as an example.

8.1.2.1 Burgers equation and the Riemann Problem

The inviscid Burgers equation is a particular case of scalar conservation law of the

type (8.7) with f(u) = 1
2u

2. This equation can be written as

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 or

∂u

∂t
+ u

∂u

∂x
= 0 (8.10)

Considering the following initial value problem or Riemann Problem (RP)

u(x, 0) =

{
uL if x < 0

uR if x > 0
(8.11)

two different situations appear depending on the relative value of uL and uR. When

uL > uR a right moving shock develops (see Figure 8.3). Otherwise, the solution of

the RP consists of a smooth rarefaction wave connecting the two constant states uL

an uR.

✲

✻

✑
✑
✑
✑
✑

uL

uL

uR

uR

λ̃

x

t

0

Figure 8.3: Discontinous solution of (8.11) when uL > uR

As described in [70, 71], the LTS scheme can be used to provide an accurate and

correct solution of shocks. In presence of a rarefaction, the explicit upwind scheme
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replaces several characteristic lines with a single line and only one intermediate state

u∗ is defined (see Figure 8.4 (a)). This approximation is effective in the conventional

upwind explicit method but can fail when using CFL > 1. The proposed LTS

includes several intermediate states u∗1, ..., u
∗
Np

u∗j =
(Np − j)uL + juR

Np
j = 1, · · · , Np (8.12)

corresponding to several discontinuities travelling at different speeds (Figure 8.4(b)).

The required number of discontinuities Np is related with the strength of the RP. A

good approximation could be:

Np = int(
δu ∆t

δx
) (8.13)

where δu = uR − uL. The proposed way of handling rarefaction waves is always

conservative.
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Figure 8.4: (a) Classical treatment of rarefaction waves in the upwind scheme; (b)

Splitting treatment of rarefaction waves in the LTS scheme

In order to illustrate the performance of LTS in presence of a rarefaction, consider

(8.10) with the initial data:

u(x, 0) =

{
1.0 if x < 50.0

4.0 if x > 50.0
(8.14)

The exact solution for this case is
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u(x, t) =





1.0 if
x

t
≤ 1.0

x

t
if 1.0 <

x

t
< 4.0

4.0 if
x

t
≥ 4.0

(8.15)

Figure 8.5(a) shows the exact solution at t = 5s together with the numerical results

obtained with the LTS scheme on a regular mesh of ∆x = 1.0. The discretization of

the rarefaction in a single wave has been used and different CFL values are associated

to different number of time steps (TS) as summarized in Table 8.1. Only in the case

of CFL=1.0 an accurate solution is achieved although using 20 TS.

Figures 8.5(b) and 8.5(c) show the exact solution at t = 5s and the numerical results

obtained with the LTS scheme on the same grid, now supplied with the splitting

wave treatment. Different CFL values have been used and are summarized in Table

8.1. The number of time steps used to compute the numerical solution and the

number of pieces Np the discontinuity has been split into are also indicated.

The larger the CFL value is, the more accurate the numerical solution is. Moreover,

in this problem there is no upper bound in the choice of the CFL value apart from

that imposed by the finite length of the computational domain. Only one time step,

of size equal to the total simulation time, can provide the exact solution when the

simulation time is less than the time required for the wave to reach the boundaries.

In that case, the maximum CFL value would be built with the time increment equal

to the total computational time.

CFL value Time steps (TS) Np

No splitting waves 1.0 20 -

2.0 10 -

4.0 5 -

10.0 2 -

20.0 1 -

Splitting waves 1.0 20 1

2.0 10 2

4.0 5 3

10.0 2 7

20.0 1 15

Table 8.1: Summary of numerical solutions
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Figure 8.5: Exact and numerical solution of (8.10) (a) No splitting rarefaction wave;

(b),(c) Splitting rarefaction wave
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8.1.3 Non-linear scalar equation with source terms

Consider now the nonlinear scalar equation with source terms:

∂u

∂t
+

∂f(u)

∂x
= s (8.16)

where s is a source term and the local RP:

u(x, 0) =

{
uL = ui if x < 0

uR = ui+1 if x > 0
(8.17)

According to Roe’s approach and following the ideas developed in Part I, section 2,

the solution of the RP is achieved from an approximate solution û(x, t) of the locally

linearized problem that must fulfil the Consistency Condition [72]. Integrating over

a suitable control volume [−∆x
2 , ∆x

2 ] × [0,∆t]

∫ ∆x
2

−∆x
2

û(x,∆t)dx = ∆x (uni+1 + uni )− (f(uni+1)− f(uni ))∆t + si+1/2∆t (8.18)

For the last integral involving the source term s, the following linearization in time

is assumed

∫ ∆t

0

∫ ∆x
2

−∆x
2

s(x, t) dx dt =

∫ ∆x
2

−∆x
2

s(x, 0) dx = si+1/2 (8.19)

Following [92], a weak solution of the linear RP in (8.16),(8.17) that satisfies (8.18)

in the case λ̃i+1/2 > 0 was proposed [92]:

û(x, t) =





ui if x < 0

u∗∗i+1 if 0 < x < λ̃i+1/2 t

ui+1 if x > λ̃i+1/2 t

(8.20)

where λ̃ is the advection velocity as in (8.9). Note that one wave is associated to

the celerity λ̃ and the other wave is steady and also that

u∗∗i+1 = ui+1 − (θ̃δu)i+1/2 (8.21)
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with

θ̃i+1/2 = 1−
si+1/2

f(ui+1)− f(ui)
(8.22)

measuring the relative influence of the source and flux terms

Figure 8.6 is a sketch of the approximate solution when λ̃i+1/2 > 0.
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Figure 8.6: Approximate solution for û(x, t).

In case that λ̃i+1/2 < 0, the procedure is analogous, and the approximate solution

is:

û(x, t) =





ui if x < λ̃i+1/2 t

u∗i if λ̃i+1/2 t < x < 0

ui+1 if x > 0

(8.23)

with

u∗i = ui + (θ̃δu)i+1/2 (8.24)

Therefore, the LTS scheme could be written as follows:

If λ̃i+1/2 > 0

(θ̃ δu)i+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ)i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2 + 1

(8.25)
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If λ̃i+1/2 < 0

(θ̃ δu)i+1/2 updates i, · · · , i+ µi+1/2 + 1

(ν − µ)i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2

(8.26)

where νi+1/2 =
λ̃∆t

∆x
and µi+1/2 = int(νi+1/2)

8.1.3.1 First approach: application to Burger’s equation with source

terms

Consider Burgers’s equation including source terms as in [92]:

∂u

∂t
+

1

2

∂u2

∂x
= −u

∂z

∂x
(8.27)

with the initial data

u(x, 0) = uo(x) =

{
uL if x < 0

uR if x > 0
z(x) =

{
zL if x < 0

zR if x > 0
(8.28)

The same RP in [92] are going to be presented here, using ∆x = 1 at t = 15s. The

source term discretization used is

si+1/2 = −1

2
(ui+1 + ui)(zi+1 − zi) (8.29)

enforcing equilibrium in steady states [92]. All the cases are summarized in Table

8.2. More information about the nature and the exact solution of each test case can

be found in [92].

Figures 8.7–8.9 plot the results for each test case using different values of CFL. The

source term is represented in dashed line, the numerical solutions with CFL=1.0

using (−△−), the numerical solution with CFL=5.0 using (−�−) and that with

CFL=30.0 using (− ◦ −). They are compared with the exact solution (—–).

Note that CFL=30.0 is the largest value possible leading to one single time step. As

can be observed, these test cases are very extreme, particularly the cases 5 and 6

where the source term dominate the convective term. The numerical solution from
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Table 8.2: Summary of test cases.

Test case uL uR zL zR

1 2.0 1.0 0.0 0.5

2 2.0 1.0 0.0 -0.5

3 1.0 2.0 0.5 0.0

4 1.0 2.0 0.0 0.5

5 2.0 1.0 0.0 1.5

6 1.0 2.0 1.5 0.0
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Figure 8.7: Exact (—–) and computed solutions at t = 15s for test case 1 (left) and test

case 2 (right) using CFL=1.0 (−△−), CFL=5.0 (−�−) and CFL=30.0 (− ◦ −)
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Figure 8.8: Exact (—–) and computed solutions at t = 15s for test case 3 (left) and test

case 4 (right) using CFL=1.0 (−△−), CFL=5.0 (−�−) and CFL=30.0 (− ◦ −)

the LTS scheme when using CFL>1 is able to approximate the classical upwind

explicit (FOU) scheme using CFL=1.0, mainly in the test cases 1, 2, 3 and 4, but is
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Figure 8.9: Exact (—–) and computed solutions at t = 15s for test case 5 (left) and test

case 6 (right) using CFL=1.0 (−△−), CFL=5.0 (−�−) and CFL=30.0 (− ◦ −)

not able to approximate the exact solution in a single time step. The main advantage

of the LTS scheme is that the time step is not restricted by the CFL condition

allowing large ∆t values. From FOU, the speed celerity λ̃ is estimated as in the

homogeneous case (8.9). The fact is that, in several situations with large source

terms that influence the convective term, using the LTS scheme, this linearization

could lead to a wrong solution because of an overestimation or underestimation of

this value. A way to overcome this situation is proposed.

8.1.3.2 Accurate estimation of the wave celerity

Let se be the exact value of the integral of the source term in the control volume

se =

∫ ∆t

0

∫ ∆x
2

−∆x
2

s dx dt (8.30)

A better wave celerity λ̂i+1/2 can be estimated by using directly the information pro-

vided by the analytical solution, constructed by means of the appropriate Rankine-

Hugoniot (hereafter RH) conditions.

Assuming the RP in (8.17), a weak solution satisfying (8.18) for the case λ̂i+1/2 > 0

is proposed (the case λ̂i+1/2 < 0 is analogous):
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û(x, t) =





ui if x < 0

u∗∗i+1 if 0 < x < λ̂i+1/2 t

ui+1 if x > λ̂i+1/2 t

(8.31)

Figure 8.10 is a sketch of the approximate solution in this situation. Enforcing

Rankine-Hugoniot conditions across the two waves:

{
f(ui+1)− f(u∗∗i+1) = λ̂i+1/2(ui+1 − u∗∗i+1)

f(u∗∗i+1)− f(ui)− se = λs(u
∗∗
i+1 − ui) = 0

(8.32)

✲

✻

�
�
��

si

ui

ui

si+1

ui+1

ui+1

u∗∗i+1

λ̂

x

t

0

Figure 8.10: Approximate solution for û(x, t).

where λs = 0 is the wave celerity associated to the steady discontinuity at x = 0.

The first RH condition leads to:

λ̂i+1/2 =
f(ui+1)− f(u∗∗i+1)

ui+1 − u∗∗i+1

(8.33)

In order to apply the method described in (8.25) and (8.26), the consistency condi-

tion using the exact integration of the source term over the control volume (8.18)

must be checked. Taking into account the second RH condition in (8.32) :

se = f(u∗∗i+1)− f(ui) (8.34)

Using definitions (8.21), (8.33) and (8.34):
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λ̂i+1/2 θ̃i+1/2 δu = λ̂i+1/2

(
ui+1 − u∗∗i+1

δu

)
δu =

f(ui+1)− f(u∗∗i+1)

ui+1 − u∗∗i+1

(ui+1 − u∗∗i+1) =

f(ui+1)− f(u∗∗i+1)− f(ui) + f(ui) = δfi+1/2 − se
(8.35)

Hence the consistency of our numerical scheme is proved. Next step is to replace λ̃

by λ̂ in (8.25) and (8.26) leading to the following algorithm:

If λ̂i+1/2 > 0

(θ̃ δu)i+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ)i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2 + 1

(8.36)

If λ̂i+1/2 < 0

(θ̃ δu)i+1/2 updates i, · · · , i+ µi+1/2 + 1

|ν − µ|i+1/2 (θ̃ δu)i+1/2 updates i+ µi+1/2

(8.37)

where νi+1/2 =
λ̂∆t

∆x
and µi+1/2 = int(νi+1/2)

8.1.3.3 Second approach: application to the Burgers equation with source

terms

Considering (8.27), the RP in (8.28) and the test cases in table 8.2, the performance

of the first and second approaches of the wave celerity is evaluated at t = 15s and

computed with ∆x = 1. The same source term discretization as in (8.29) is used,

representing it in dashed line. The numerical solutions with CFL=1.0 (−△−), with

CFL=30.0 using λ̃ as wave celerity (− ◦ −) and with CFL=30.0 using λ̂ as wave

celerity (− • −) are going to be compared with the exact solution (—–) in Figures

8.11–8.13. Also the splitting rarefaction treatment as explained in (8.12) has been

used for computing the numerical solutions with the LTS scheme.

The main conclusion is that the LTS scheme, including a good source term treatment

is less diffusive than the conventional explicit upwind scheme and it can be able to
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Figure 8.11: Exact (—–) and computed solutions at t = 15s for test case 1 (left), and

test case 2 (right) using CFL=1.0 (−△−), CFL=30.0 with λ̃ as wave celerity (− ◦ −)

and CFL=30.0 with λ̂ as wave celerity (− • −)
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Figure 8.12: Exact (—–) and computed solutions at t = 15s for test case 3 (left), and

test case 4 (right) using CFL=1.0 (−△−), CFL=30.0 with λ̃ as wave celerity (− ◦ −)

and CFL=30.0 with λ̂ as wave celerity (− • −)

reproduce the exact solution. However, if no correction in the estimation of the

wave celerity is applied, the numerical solution is not able to approximate the exact

solution. Maybe, when using the FOU scheme there is no noticeable difference

between the two approaches of the wave celerity, because the method is forced

to work with small time steps but the LTS scheme allows larger time steps, and

therefore important error is introduced if a careless estimation of the wave celerity

is applied. Note that this improvement has been possible in the particular case of a

scalar equation with known exact solution.
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Figure 8.13: Exact (—–) and computed solutions at t = 15s for test case 5 (left), and

test case 6 (right) using CFL=1.0 (−△−), CFL=30.0 with λ̃ as wave celerity (− ◦ −)

and CFL=30.0 with λ̂ as wave celerity (− • −)



Chapter 9

LTS scheme for the 1D shallow water

equations

9.1 1D systems of conservation laws with source

terms

The extension of the proposed LTS scheme to systems of equations with source

terms is discussed in this section. A 2× 2 hyperbolic nonlinear system of equations

can be expressed in the form

∂U

∂t
+

∂F

∂x
= S (9.1)

where U is the vector of conserved variables, F is the vector of fluxes of these

conserved variables and S represents the vector of source terms. A Jacobian matrix

J can be defined

J =
dF

dU
(9.2)

The strictly hyperbolicity property of the system ensures that the two eigenvalues

λ1, λ2 of the Jacobian are real and different and it is possible to define two matrices

P = (e1, e2) and P−1, with e1, e2 the eigenvectors of J, achieving the diagonaliza-

tion:

J = PΛP−1 (9.3)

Provided that Roe’s linearization [109] is used to uncouple the homogeneous part of
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the system, an approximate Jacobian matrix J̃i+1/2 can be built whose eigenvalues

λ̃1, λ̃2 and eigenvectors ẽ1, ẽ2 allow to express the difference in vector U as well as

in the linearized source term Si+1/2:

δUi+1/2 =

2∑

m=1

(α ẽ)mi+1/2 Si+1/2 =

2∑

m=1

(β ẽ)mi+1/2 (9.4)

Therefore, the first order upwind (FOU) explicit scheme can be written as in Part

I, 2.57:

Un+1
i = Un

i − ∆t

∆x

(
(δF− S)+

i−1/2
+ (δF− S)−

i+1/2

)n
(9.5)

where

(δF− S)±
i+1/2

=

2∑

m=1

(
λ̃± γ̃ ẽ

)m
i+1/2

γ̃mi+1/2 =

(
α̃− β̃

λ̃

)m

i+1/2

(9.6)

Following the analogy developed for the expression of the LTS scheme for the scalar

case, it can be formulated for systems of conservation laws as follows:

If λ̃i+1/2 > 0

(γ ẽ)mi+1/2 updates i+ 1, · · · , i+ µi+1/2

(ν − µ)mi+1/2 (γ ẽ)mi+1/2 updates i+ µi+1/2 + 1

(9.7)

If λ̃i+1/2 < 0

(γ ẽ)mi+1/2 updates i, · · · , i+ µi+1/2 + 1

(ν − µ)mi+1/2 (γ ẽ)mi+1/2 updates i+ µi+1/2

(9.8)

where νmi+1/2 =
∆t

∆x
λ̃mi+1/2 and µmi+1/2 = int(νmi+1/2). It is worth indicating that

the assumption of Leveque’s original LTS scheme consisting of a linear interaction

between the waves underlies the proposed LTS scheme, introducing also some source

of inaccuracy and the risk of losing robustness (TVD property) in the presence of

strong discontinuities. However, other approaches considering the formulation of the

non-linear interactions of waves in terms of colliding times and distances are also

explored in the literature (see [106],[107]).
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9.2 Application to the 1D shallow water equa-

tions

The 1D shallow water equations are a good candidate to apply these techniques. As

a reminder, they are written in a differential conservative form as follows:

U =

(
A

Q

)
, F =

(
Q

Q2

A + gI1

)
S =

(
0

g
[
I2 + A

(
S0 − Sf

)]
)

(9.9)

The approximate Jacobian J̃ is

J̃i+1/2 =

(
0 1

c̃2 − ũ2 2ũ

)

i+1/2

(9.10)

with [16]

c̃ =

√
g
(A/b)i + (A/b)i+1

2
ũ =

Qi+1
√
Ai+1 +Qi

√
Ai√

Ai+1 +
√
Ai

(9.11)

where b is the top width. The resulting set of approximate eigenvalues and eigen-

vectors is

λ̃1 = ũ− c̃ λ̃2 = ũ+ c̃

ẽ1 =

(
1

ũ− c̃

)
ẽ2 =

(
1

ũ+ c̃

) (9.12)

Different questions related to the nature of the 1D shallow water equations arise

such as the rarefaction splitting technique or the boundary conditions.

9.2.1 Rarefaction splitting treatment

Using the LTS scheme (9.7), (9.8), when a rarefaction appears in the context of the

SWE, it can be split in several waves travelling at different speeds ensuring exact
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conservation in the sense of Roe. This is demonstrated here in the particular case

of a rarefaction wave split in two pieces.

When representing a rarefaction through a unique wave λ̃ at interface i + 1/2,

the quantity (νγẽ)i+1/2 =
λ̃i+1/2∆t

∆x
(γẽ)i+1/2 is sent. The aim of the splitting is

originating two waves, λ̃ai+1/2 and λ̃bi+1/2, that, in order to be conservative verify

λ̃i+1/2∆t

∆x
(γẽ)i+1/2 =

λ̃ai+1/2∆t

∆x
(γaẽ)i+1/2 +

λ̃bi+1/2∆t

∆x
(γbẽ)i+1/2 (9.13)

Therefore enforcing

(λ̃γ)i+1/2 = (λ̃aγa)i+1/2 + (λ̃bγb)i+1/2 (9.14)

According to (9.14), the definition of γai+1/2 and γbi+1/2 follows

γai+1/2 = γi+1/2

(
λ̃b − λ̃

λ̃b − λ̃a

)

i+1/2

γbi+1/2 = γi+1/2

(
λ̃− λ̃a

λ̃b − λ̃a

)

i+1/2

(9.15)

There is some freedom for the choice of λ̃ai+1/2 and λ̃bi+1/2 for example, they could

be defined as follows:

λ̃ai+1/2 = ε (λi + λ̃i+1/2) λ̃bi+1/2 = (1− ε) (λi+1 + λ̃i+1/2) (9.16)

where ε is a free parameter (preferably close to 0.5). The choice of the number of

pieces Np that the rarefaction is split into is again related to the integer part of the

wave strength, that is,

Np ≈ int

(
γi+1/2ẽ1 ∆t

∆x
,
γi+1/2ẽ2 ∆t

∆x

)
(9.17)

As mentioned above, this procedure has been described for the splitting of a wave

into two waves in a conservative way. When splitting the wave in a general number

of pieces Np, the strategy could become tedious. An alternative way consisting of

using the previous information is adopted in this work. Given Np, computed with an

equality in (9.17), it is rounded to a number of the form Np = 2k being k an integer.

Therefore, the procedure reduces to apply the previous algorithm recursively (each
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wave into two sub-waves, each sub-wave into two sub-sub-waves and so on) to split

the initial wave into a number of travelling waves Np, similar to the strength of the

wave.

9.2.2 Boundary conditions

The boundary conditions dicretization is another issue of importance and requires a

careful consideration. In the context of the shallow water equations, open boundaries

and closed boundaries can appear and are going to be analyzed.

In the case of open boundaries, two flow situations can be distinguished: subcritical

and supercritical. When dealing with a supercritical outlet boundary, no external

information is required. In fact, the boundary cell receives the information coming

from the inner cells according to the scheme provided in (9.7) and (9.8). If some of

the contributions cross the boundary they are stored at inlet and outlet ’ghost bags’

in order to control the conservation property but they do not affect the updated

solution of the boundary cell (Figure 9.1).

1 2

Inlet bag

N-1 N

Outlet bag

Figure 9.1: Open boundaries in the LTS scheme

In case of having subcritical inlet or outlet boundary, one variable is externally

imposed as physical boundary conditions and the other variable is calculated us-

ing the updating information arriving from the inner interfaces. Also some of the

contributions cross the boundary, so they are stored as in the supercritical case.

At closed boundaries, two possible techniques are proposed: an accumulation tech-

nique and a reflection technique. Consider the downstream boundary at node N (the

reasoning for the upstream boundary is analogous) and the information from edge

i+1/2 (λ̃i+1/2 > 0). If i+µi+1/2+1 > N , some of the contributions from i+1/2 go

out of the downstream end of the domain. As the solid wall condition requires that

no information crosses the boundary and the method must remain conservative, the
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accumulation technique stores these contributions at the downstream boundary cell

N as shown in Figure 9.2 (a). On the other hand, the reflection technique considers

the downstream outlet edge as a mirror, sending the information that would cross

the boundary back to the corresponding cell. It can be seen in Figure 9.2 (b).

(a) N-2 N-1 N (b)
N-1 N

Figure 9.2: Closed boundary treatment: (a) Accumulation technique and (b) Reflection

technique

9.2.3 Entropy fix, source terms, CFL limit and the choice

of the target CFL

The LTS scheme formulated in this work is actually an alteration of the basic Roe

scheme where larger CFL values can be used. As it is well known, the basic explicit

scheme requires some kind of correction in order to avoid non-physical situations

near sonic points. This correction, called entropy fix, must also be applied in the

proposed LTS scheme. The version of the Harten-Hyman entropy fix [118], detailed

in Part I, section 3.3.3 has been adopted.

As detailed in the previous chapters, an upwind discretization for the source term

related not only with the bed slope but also with the friction term is adopted accord-

ing to [92] . This treatment is able to satisfy the preservation of steady-states in the

context of the shallow water equations providing discrete evaluations of the source

term that ensure energy dissipating solutions when demanded. Also the wet/dry

front has been formulated following [92], avoiding the appearance of negative val-

ues of water depth. A more accurate estimation of the wave celerities in presence

of strong source terms or big discontinuities could be based on the three Rankine-

Hugoniot conditions associated to the approximate solution, according to the idea

suggested in the non-linear scalar case. However, due to the mutual dependence
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between the waves celerities and the intermediate states U∗ and U∗∗, there is not

a simple or straightforward procedure [111] to achieve an accurate solution at very

high CFL numbers (associated to only one or two time steps in total). Therefore,

instead of seeking a correction in the wave speeds in presence of strong source terms

or big discontinuities, the present work is focused on applying a reduction on the

CFL value. This is next explained.

A parameter that includes the influence not only of the size of the discontinuity in

the water cross section but also of the initial values is considered as proposed in [97]:

ξ1 =
mini{|Ai|, |Ai+1|, |δAi+1/2|}

|δAi+1/2|
1 ≤ i ≤ N (9.18)

where 0 ≤ ξ1 ≤ 1. Also, a second parameter ξ2 is defined incorporating the equiva-

lent influence of the bed slope source term as follows:

ξ2 =
mini{|di|, |di+1|, |δdi+1/2|}

|δdi+1/2|
1 ≤ i ≤ N (9.19)

where 0 ≤ ξ2 ≤ 1 and d = h + z is the water surface level. Let ξ be the minimum

of these two parameters,

ξ = min(ξ1, ξ2) (9.20)

If A or d are gradually varied functions, ξ = 1 and it is not necessary to diminish

the CFL value. Otherwise, a reduction in the CFL initial value, i.e., in the time

step, is required in order to achieve a good solution. In this work, the value ξ = 0.25

is proposed as a limit. Under this value, the CFL number will be reduced to 1.0

recovering the original Roe’s method and over this value, a linear interpolation

between 1.0 and the CFL number chosen initially according to the parameter ξ is

submitted. Therefore, the final CFL value (CFLl) can be expressed as follows:

CFLl =





1.0 if ξ < 0.25

1.0 +
CFL− 1.0

0.75
(ξ − 0.25) if ξ ≥ 0.25

(9.21)

An alternative way to proceed could be to establish the limit in ξ = 1.0. Under this

number the CFL value will be reduced to 1.0. Also in the case where a flow regime
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transitions occur (mainly in hydraulic jumps) the CFL number is reduced to ensure

the correct solution of the problem.

The initially chosen CFL value is a very important part in the LTS scheme because

it is responsible not only for an accurate and non-oscillatory numerical solution but

also for the computational speed. It is not clear ’a priori’ what is the optimum CFL

target in each case, but some factors should be taken into account when choosing it

and there are some restrictions and recommendations to be made. One of them is the

number of cells, and there is an obvious geometrical restriction in that the CFL value

must be less than the number of cells involved. The performance of the LTS scheme

shows that the information is sent to a number of neighbouring cells according to

the CFL value, so that if no restriction is imposed over the ratio CFL/number of

cells, the relevant information is lost through the boundaries. Apart from that, in

the case of convergence to steady states, a suitable choice for the target CFL value

could be one order of magnitude below the number of cells. In cases of convergence

to discontinuous steady state, the initial CFL target value will be internally reduced

by the proposed algorithm (9.21), slowing accordingly the speed of the calculation

but not affecting the global stability. In unsteady flow simulations, the time stepping

does not work as an iterative method and the recommendation is to choose a CFL

target value two orders of magnitude below the number of cells.

9.3 Numerical results

A set of cases is proposed in this chapter to test the proposed LTS scheme in 1D

shallow water context. Steady and unsteady scenarios are considered and different

problems where the bed slope and the friction terms play a leading role are analysed.

9.3.1 Test case 1: Subcritical dambreak

This test case is firstly proposed with the intention of examining the performance

of the rarefaction splitting technique. A flat frictionless rectangular channel 100 m

long, 1 m wide is considered, with initial conditions of zero velocity and a disconti-

nuity in the water level surface
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h(x, t = 0) =

{
4m if x < 50m

1m if x > 50m
(9.22)

Two numerical solutions using the LTS scheme computed with CFL=5.0 and ∆x =

1.0m are compared with the exact solution (—–). The results from the LTS scheme

with rarefaction splitting are plotted using (− • −), those from the LTS without

splitting are plotted using (− ◦ −) in Figure 9.3 (upper) and (lower) for the water

depth and discharge respectively after t = 3s. Although oscillations appear in

the presence of the shock wave in both numerical solutions, the LTS scheme using

the split rarefactions is more accurate than the LTS scheme without the splitting

treatment.
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Figure 9.3: Test case 1: Exact (—–) and numerical solutions at t = 3s for the depth

(upper), and the discharge (lower) using splitting (− • −) and no splitting (− ◦ −)

rarefaction treatment

9.3.2 Test case 2: Dambreak with closed boundaries

Test case 2 deals with the same geometry and initial conditions as the previous

test case and its main purpose is to evaluate the performance of the accumulation
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and reflection technique proposed when dealing with closed boundaries. Thus, solid

walls at x = 0 m and at x = 100 m are considered.

After several seconds the shock and the rarefaction waves arrive to the end of the

domain and rebound. The numerical solutions with the LTS scheme are computed

again with CFL=5.0 and ∆x = 1.0m. The two ways of dealing with the closed

boundaries, accumulation (− ◦ −) and reflection (− • −) technique are compared

with the exact solution (—–) at t=10.5s (Figure 9.4) and at t=16.5 (Figure 9.5) for

the water depth (left) and for the discharge (right)).
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Figure 9.4: Test case 2: Exact (—–) and numerical solutions at t = 10.5s for the depth

(left) and the discharge (right) using the accumulation (− ◦ −) and reflection (− • −)

technique
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Figure 9.5: Test case 2: Exact (—–) and numerical solutions at t = 16.5s for the depth

(left) and the discharge (right) using the accumulation (− ◦ −) and reflection (− • −)

technique
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The results highlight that the reflection technique achieves more accurate solutions

than the accumulation technique mainly near the time when the waves collide with

the solid walls. After the reflection, the two techniques provide similar results.

Therefore, the reflection technique is preferred here because the LTS scheme using

very large CFL numbers in closed boundaries could lead the boundary cells to accu-

mulate excessive information in a time step producing oscillations and non-physical

situations.

9.3.3 Test case 3, 4 and 5: application to steady flow with

source terms

Three examples from [79, 78], considering open channel flow with analytical solu-

tions, are used here. They both apply a Manning friction coefficient n = 0.03, have

been simulated with ∆x = 1.0 and the inlet discharge is 20 m3/s. In test case 3 the

flow is subcritical all along the 150 m length and the 10 m wide rectangular channel.

The downstream boundary condition is a fixed height. The steady water depth is:

h(x) = 0.8 + 0.25 exp

(
33.75

( x

150
− 0.5

)2)
(9.23)

Test case 4 corresponds to a trapezoidal channel with 10 m bottom width and 200

m length. The side slope of the channel is 2, and there is not downstream boundary

condition. Hence, a smooth transition between subcritical flow upstream (at the

first half of the reach) and supercritical flow downstream (at the second half) takes

place. Here, the steady water depth is expressed as follows:

h(x) = 0.706033− 0.25 tanh

(
x− 100

50

)
(9.24)

In test case 5, the 10 m wide rectangular channel steepens and then flattens out

again along the 150 m lenght. The solutions changes smoothly from subcritical flow

to supercritical flow at x = 50m. After it return via a hydraulic jump to subcritical

flow at x = 100m. The downstream boundary condition is a fixed height of 1.700225

m and the steady water depth is:
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h(x) = 0.741617− 0.25

tanh(3)
tanh

(
3
x− 50

50

)
(9.25)

The results for these test cases can be observed in Figures 9.6, 9.7 and 9.8 where the

numerical solution using CFL = 60.0 (− ◦ −) is compared with the exact solution

(—–). The bed level is represented in dashed line.
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Figure 9.6: Test case 3: Exact (—–) and numerical (− ◦ −) solution using CFL 60.0
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Figure 9.7: Test case 4: Exact (—–) and numerical (− ◦ −) solution using CFL 60.0

The results indicate that the LTS scheme is really valid for computing steady states

with very large CFL numbers only accessible for the implicit methods. In fact, the
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Figure 9.8: Test case 5: Exact (—–) and numerical (− ◦ −) solution using CFL 60.0

L1-error obtained for the discharge is in the order or magnitude of the machine

accuracy for test cases 4 and 5 (10−16) and 3.12 × 10−3 due to the wrong peak

generated in the upwind Roe’s scheme in the presence of hydraulic jumps (see part

I).

The CFL limiter presented before is also activated in order to ensure the correct

solution of the numerical approach. Figure 9.9 provides the information about the

evolution of the time step in each test case.

The time step value using CFL=1.0 in test case 1 is near 0.18 in comparison with the

LTS scheme using CFL=60.0 where the time step value is near 8.91. In the second

test case, the time step using CFL 1.0 is near 0.16 whereas using CFL=60.0, after

several oscillations related with the CFL limiter and the smooth transition, arrives

to 7.95 approximately. In test case 3 a hydraulic jump occurs, and the CFL value

is suddenly limited to 2.0, so there is no much difference between the time step in

the LTS scheme using CFL=60.0 (the actual CFL value used is near 2.0) and the

conventional explicit upwind method with CFL=1.0.

9.3.4 Test cases 6-11: application to dambreak problem over

a step

The unsteady flow induced by and ideal dambreak is the most widely used test

case for numerical schemes of the kind considered here. Combining it with large
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Figure 9.9: Evolution of the time step: (a) test case 3, (b) test case 4 and (c) test case 5

source terms represented by discontinuous bed becomes a powerful tool to evaluate

how robust and accurate a numerical scheme can be. The results are going to

be presented as follows: the numerical solution provided by the LTS scheme with

CFL=5.0 (− • −) is compared with the numerical solution obtained with the FOU

(first order upwind) scheme with CFL=1.0 (−◦−) and also with the exact solution

of each problem (—).

As detailed in part I, due to the controversy around the integration of the bed

step in a dambreak problem, there exists multiplicity of solutions. For these test

cases, the philosophy followed by Murillo in [92] is adopted: assuming a piecewise

representation of the bed level and a hydrostatic pressure distribution, the force

exerted over the bed step is enforced to depend only on the free surface side in

contact to the bed step. This hypothesis acts as a closure for the dambreak problem

over a bed step and allows to deduce analytical solutions for these kind of situations.

The same philosophy when computing the numerical solution is adopted for the bed

slope source term not only for the LTS scheme but also for the FOU scheme.

The geometry of all of them is a rectangular frictionless 100m long channel with a
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bottom step at x = 0 and a variable height at each side of the bed discontinuity. All

of this test cases are included in [92] and more information about the nature and the

exact solution can be found there. The test cases computed here are summarised

in Table 9.1 and do not include wet/dry front since, in those cases, the LTS simply

reduces to the FOU scheme.
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Figure 9.10: Test case 6: Exact (—) and numerical solutions at t = 5s using CFL=1.0

(− ◦ −) and CFL=5.0 (− • −) for the water level surface (left) and the discharge (right)
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Figure 9.11: Test case 7: Exact (—) and numerical solutions at t = 5s using CFL=1.0

(− ◦ −) and CFL=5.0 (− • −) for the water level surface (left) and the discharge (right)

All the numerical solutions are computed with ∆x = 1.0. Also, for the numerical

solution provided by the LTS scheme, the parameter ξ in (9.20) using to reduce the

time step at big discontinuities has been applied.

The results are presented in the form of plots of the water level surface and discharge

for each test case (Figures 9.10–9.15). The topography is represented in dashed line.



148 LTS scheme for the 1D shallow water equations

Table 9.1: Summary of test cases.

Test Case hL hR uL uR zL zR

6 1.0 0.30179953 0.0 0.0 0.0 0.05

7 4.0 0.50537954 0.1 0.0 0.0 1.5

8 2.5 2.49977381 1.5 0.0 0.0 0.25

9 1.5 0.16664757 2.0 0.0 0.0 2.0

10 1.0 0.04112267 0.2 0.0 0.25 0.0

11 0.6 0.02599708 0.35 0.0 1.2 0.0
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Figure 9.12: Test case 8: Exact (—) and numerical solutions at t = 5s using CFL=1.0

(− ◦ −) and CFL=5.0 (− • −) for the water level surface (left) and the discharge (right)
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Figure 9.13: Test case 9: Exact (—) and numerical solutions at t = 5s using CFL=1.0

(− ◦ −) and CFL=5.0 (− • −) for the water level surface (left) and the discharge (right)

The test cases proposed here are really extreme cases where the source term plays

a leading role. Also discontinuities in the initial height and discharge make these

situations in fact suitable to examine the power of a numerical method.
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Figure 9.14: Test case 10: Exact (—) and numerical solutions at t = 5s using CFL=1.0

(− ◦ −) and CFL=5.0 (− • −) for the water level surface (left) and the discharge (right)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

-20 -10  0  10  20  30

le
ve

l(m
)

x(m)

 0

 0.2

 0.4

 0.6

 0.8

-20 -10  0  10  20  30

di
sc

ha
rg

e(
m

3/
s)

x(m)

Figure 9.15: Test case 11: Exact (—) and numerical solutions at t = 5s using CFL=1.0

(− ◦ −) and CFL=5.0 (− • −) for the water level surface (left) and the discharge (right)

The results provided by the LTS scheme are as good or more accurate than those

from the FOU scheme. As the time steps are larger, less of them are necessary to

compute the numerical solution, so it is less diffusive. Moreover, the influence of ξ

is presented above all in test cases 9, 10 and 11 where this parameter is frequently

less than 1 (and generally less also than 0.25). The aim of the parameter ξ is to

detect when a strong discontinuity or large source term are present and to be able to

generalise the LTS scheme. The examples show that in the extreme test cases, the

CFL number is reduced when a large discontinuity is present. For all test cases the

number of time steps necessary to compute the numerical solution is indicated in

Table 9.2. Figure 9.16 (a) and (b) shows also the evolution of the time step for test

cases 6,7,8 and 9,10,11 respectively using the LTS and FOU scheme. The shading

symbols represents the conventional upwind explicit scheme and the empty symbols
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the LTS scheme.

Test case LTS scheme FOU scheme

6 5 19

7 12 34

8 8 33

9 30 30

10 19 25

11 16 20

Table 9.2: Test cases 6-11: Time steps done by each numerical method

(a)
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Figure 9.16: Evolution of the time step (a) for test cases 6, 7, 8 and (b) for test cases 9,

10, 11

9.3.5 Test case 12: unsteady flow over complex topography

A rectangular channel 1500m long with strong changes in breadth and bed slope

(see Figure 9.17) as used in [122] is next considered.

The initial conditions are zero flow and 12m uniform surface level. The boundary

conditions are an upstream time-variable height

h(0, t) = 12.0 + 4 + 4 sin

(
(t− 10800)π

21600

)
(9.26)

and a downstream zero-flow. The exact solution and more information about this

test case can be found in [65] or [122]. In figure 9.18, the numerical solutions

at t=10800s, computed on a regular 1500-cell grid with target values of CFL=1.0
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Figure 9.17: Breadth and bed variation for the complex topography test case

(− ◦ −) , CFL=3.59 (−△−) and CFL=7.18 (−�−) are compared with the exact

solution (—) in terms of longitudinal profile of water surface level and unit discharge

all along the channel.
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Figure 9.18: Exact (—) and numerical solutions at t = 10800s using target values of

CFL=1.0 (− ◦ −), CFL=3.59 (−△−) and CFL=7.18 (−�−) for the water level surface

(left) and the discharge (right)
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The use of CFL>1 with the LTS scheme implies a reduction in the computational

time. However, due to the flow conditions induced by the rapidly varying irregular

geometry, the parameter ξ suggested in Section 9.2.3 forces the target CFL to be

re-adjusted ensuring an accurate and stable numerical solution. Figure 9.19 shows

the time evolution of the actual time step size used by the method in the numerical

simulation with target CFL=1.0 (—), CFL=3.59 (−△−) and CFL=7.18 (−�−).

As can be seen, in the case of using target values of CFL=3.59 and CFL=7.18,

the time step value is frequently reduced to that of CFL=1.0 according to the ξ

parameter.
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Figure 9.19: Time evolution of the time step with target values of CFL=1.0 (—),

CFL=3.59 (−△−) and CFL=7.18 (−�−)

Therefore, a computational gain is achieved when increasing the target value of CFL

but it is not proportional to the CFL value itself because of the discontinuities in

the solution. In order to assert this, Table 9.3 shows the total CPU time used by

the computations based on the three different target CFL values and the respec-

tive speed-up achieved. The real computational gain should be 3.59 in the case of

CFL=3.59 and 7.18 in the case of CFL=7.18. However, the presence of discontinu-

ities and the complexity of the topography reduce the time step according to the

parameter ξ and makes the speed-up to be 2.268 and 2.67 respectively instead.

CFL CPU time (s) Speed-up

1.0 701 -

3.59 309 2.268

7.18 262 2.67

Table 9.3: CPU time and speed-up



Chapter 10

LTS scheme for 2D scalar equations

10.1 2D scalar equation

In order to introduce the 2D LTS scheme, the 2D linear scalar equation is used:

∂u

∂t
+∇ · f(u) = 0 , f(u) = (fx, fy) , (10.1)

where u represents the conserved variable and f(u) is a linear function, f = λu and

λ = (λx, λy) is constant. The first order upwind (FOU) explicit scheme can be

formulated for the updating of cell i, by means of the in-going contributions that

arrive to the cell:

un+1
i = uni − ∆t

Ωi

NE∑

k=1

(λ · n)−k δuklk (10.2)

where δuk = unj − uni and i, j are the indexes of the cells sharing edge k. Being an

explicit scheme, the time step for the conventional FOU approach is restricted by

stability reasons in order to fulfil the CFL condition, which will be expressed later for

square and triangular grids. This stability condition can be relaxed in the case of 2D

problems and two techniques will be used in this work depending on the geometry

of the mesh: when dealing with a structured square grid, a dimensional splitting

technique will be adapted to the LTS scheme whereas a novel original technique is

proposed to extend the LTS scheme in the case of triangular unstructured grids.
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10.2 2D LTS scheme on square grids

10.2.1 Dimensional splitting

One general method to accomplish the 2D extension is the dimensional splitting

where the equations are simplified to solve them many times in a 1D configuration

and to project onto the grid following the space directions. The procedure is very

easy to follow in a quadrilateral Cartesian structured mesh. In order to solve (10.1)

let πx denote the evolution operator in the x direction

∂u

∂t
+

∂fx
∂x

= 0 (10.3)

and Rx
τ the numerical resolution of (10.3) by means of the chosen solver with a time

step size of τ (analogously for the y-component). The Strang splitting formulation

[115] can be expressed as follows:

u(x, y)n+1 = [πxRx
∆t/2 ◦ πyR

y
∆t ◦ πxRx

∆t/2]
n . (10.4)

As the interfaces are looped over in the x- or y-direction, a 1D problem is considered

when running along a row or a column respectively. Therefore, the computational

time is increased compared to (10.2) because of the cost of covering twice all the

edges of each of the main directions.

When dealing with the same numerical scheme to solve the problems in both direc-

tions, the resulting solution could be influenced by the mesh. For example, if the

chosen solver is the FOU scheme and the Strang splitting formulation is used liter-

ally as expressed in (10.4), the particular problem in x-direction is being solved twice

with a time step size of exactly half of that for the y-direction: hence the numerical

results will be more diffusive in the x-direction. In order to improve the Strang

splitting technique, the solution proposed in this work consists of distributing the

numerical diffusion due to the chosen solver alternating the x- and the y-directions

in (10.4). Therefore, the numerical solution will be computed for example as follows:

u(x, y)n+1 =

{
[πxRx

∆t/2 ◦ πyR
y
∆t ◦ πxRx

∆t/2]
n if n is even

[πyRy
∆t/2

◦ πxRx
∆t ◦ πyR

y
∆t/2

]n if n is odd
(10.5)
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where n is the index of the time step. This combined strategy can handle any

numerical scheme to solve the one-dimensional problems associated with the splitting

formulation. The time step is usually defined as follows in the particular case of a

quadrilateral structured mesh whose elements have length l and area Ω:

∆t = CFL
Ω/l

λ · n (10.6)

With this definition of the time step size, the CFL number is chosen equal or below

0.5 in the case of the FOU scheme on square grids. However, it is feasible to relax

this CFL number, allowing to select larger values and consequently, increasing the

time step size.

The LTS scheme explained before in the 1D configuration is a good candidate to be

implemented inside this combined dimensional splitting technique. While the sim-

plicity of solving 1D equations and the advances related to boundary conditions and

source terms are preserved, the disadvantage of the computational time associated

with the splitting formulation is significantly reduced because of using large time

step sizes in the numerical resolution of the equations. In consequence, the 2D LTS

scheme for the scalar equation is formulated simply by splitting each time step into

three “sub-steps” and applying the procedure described in (8.5) and (8.6), replacing

∆x by Ω/l. It is summarized in the following algorithm for the n even case:

Step 1

• Compute the discrete values at each computational interface and determine

the time step size using (10.6).

• Send the x-direction contributions with time step ∆t/2 according to (8.5) and

(8.6), only from interfaces for which n = (nx, 0) (where nx = ±1).

• Update boundaries and cells.

Step 2

• Compute the discrete values at the computational interfaces for which n =

(0, ny) (where ny = ±1).
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• Send the y-direction contributions with time step ∆t according to (8.5) and

(8.6), only from interfaces for which n = (0, ny) (where ny = ±1).

• Update boundaries and cells.

Step 3

• Compute the discrete values at each computational interfaces for which n =

(nx, 0) (where nx = ±1).

• Send the x-direction contributions with time step ∆t/2 according to (8.5) and

(8.6), only from interfaces for which n = (nx, 0) (where nx = ±1).

• Update boundaries and cells.

A corresponding algorithm is applied for n odd.

10.2.1.1 Boundary conditions for the scalar case

The boundary conditions treatment has to be reconsidered if formulating a LTS

scheme. In particular, when combining large time steps with time-dependent bound-

ary conditions, a special handling is necessary in order to be accurate.

Characteristic line analysis is a useful tool to determine how many cells are involved

in the boundary stencil. The CFL value chosen for the computation gives the

information about the number of cells in the interior to be updated with information

coming from the boundaries. In fact, this number of boundary cells is related to the

integer part of the target CFL value,

µCFL = int(CFL) . (10.7)

Moreover, in the case of considering non-integer CFL values, the solution proposed

is to consider the last cell (µCFL+1) “partially” as a boundary cell and the fraction

of the boundary information used to be the decimal part of the CFL number.

Once the number of boundary cells is determined, the information to be updated at

each cell is obtained from the extrapolation of the boundary information through

the characteristic lines. This treatment can be understood as the imposition of ghost

cells, considered in [57] or [106] in the context of LTS schemes.
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Apart from that, the imposition of boundary conditions on 2D structured grids using

the LTS scheme is performed by taking into account the dimensional splitting. Note

that each sub-iteration inside a complete time step that solves the 1D sub-problem

must be considered as an independent computation. Therefore, boundary cells have

to be updated after each sub-step inside the dimensional splitting, hence improving

accuracy.

10.2.2 Numerical results

10.2.2.1 Test case 1: Pure advection simulation of a circular shape

A circular shape advection test case is proposed in order to evaluate the performance

of the LTS scheme in combination with the dimensional splitting. A square domain

[0, 330m]2 discretized on a fine quadrilateral mesh of 108 900 cells is chosen for this

test case, where a circular shape of radius 25m, centered at (50,50) is set as the

initial condition:

u(x, y, 0) =

{
1.0 if

√
(x− 50)2 + (y − 50)2 ≤ 25

0.0 otherwise .
(10.8)

A constant advection velocity of λ = (1, 1) and open boundaries are set all over

the domain and the numerical results are examined after t=200 s. The conventional

upwind scheme (FOU) with a CFL=0.5 is compared with the LTS scheme with

different CFL numbers in Figure 10.1. Using even CFL values, the exact solution is

achieved hence odd CFL numbers (1.0, 5.0, 25.0, 75.0 and 151.0) have been chosen in

this case. Results highlight that the higher the CFL value chosen, the more accurate

the numerical solution is. There are several reasons for this. The main reason is

that characteristics are straight lines of constant slope, the temporal error is almost

negligible and therefore the spatial accuracy dominates the temporal accuracy. As a

consequence, when increasing the CFL number, fewer time steps are done, hence the

numerical diffusion associated with the scheme (only first-order accurate) decreases.

Apart from that, there is no upper limit to the choice of the CFL number in this

case.
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Figure 10.1: Numerical results for test case 1: FOU scheme CFL 0.5 (upper left), LTS

CFL 1.0 (upper right), LTS CFL 5.0 (middle left), LTS CFL 25.0 (middle right), LTS

CFL 75.0 (lower left) and LTS CFL 151.0 (lower right)

10.2.2.2 Test case 2: Advection simulation for a rotating cone

A square 2m × 2m domain discretized using 8 464 cells (92 × 92) is used as a

quadrilateral structured mesh to simulate the circular advection of a “cone” defined

as follows [63]:
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(-1,-1)

(1,1)(-1,1)

(1,-1)

Figure 10.2: Test case 2: Initial condition and detail of the quadrilateral structured mesh

(left) and velocity field (right) in x-direction (upper) and in y-direction (lower)

u(x, y, 0) =

{
cos2(2πr) r ≤ 0.25

0.0 otherwise ,
(10.9)

where r =
√

(x+ 0.5)2 + y2. The mesh and the initial conditions, as well as the

non-constant velocity field, λ = (−2πy, 2πx), are plotted in Figure 10.2. After one

period T (where T=1 s in this case), the cone should return to its original position,

recovering the initial condition. Also the analytical solution at times T/4, T/2 and

3T/4 can be easily computed.

The numerical results computed with the FOU scheme with a CFL=0.5 and with

the LTS scheme with CFL numbers of 1.0, 3.0, 10.0, 20.0 and 60.0 are shown in

Figure 10.3 at T=1. The peak value of each numerical scheme is also highlighted at

the top of each figure.

As can be seen, the FOU scheme is not able to reproduce very well the rotating cone

due to the excessive loss of information coming from the numerical diffusion. Even

the LTS scheme with a CFL of 1.0 approximates better the solution, though it is still

not very accurate. When increasing the CFL value, two phenomena occur. Firstly,

the peak value, one indicator of the accuracy of the numerical solution, increases

because the time step size is bigger and fewer steps are required to compute the
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Figure 10.3: Numerical results for test case 2 at t=T: FOU scheme CFL 0.5 (upper left),

LTS CFL 1.0 (upper right), LTS CFL 3.0 (middle left), LTS CFL 10.0 (middle right),

LTS CFL 20.0 (lower left) and LTS CFL 60.0 (lower right)
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solution. It is worth remarking that the numerical results improve on those obtained

in [63] where a sophisticated 2D TVD method is used. On the other hand, the

solution is deviating due to the non-uniform velocity field. As fewer time steps are

done, the larger magnitude of the time steps means that the dimensional splitting

loses too much information about the velocity field to be able to follow completely

the correct “pathway”. This deviation is most obvious when using the LTS scheme

with a CFL of 60.0, but it is also visible to a lesser extent when the same scheme is

applied with with a CFL of 20.0.

In order to evaluate the quality of the results more fully, the L1 error between the

numerical and the exact solution is plotted in Figure 10.4.
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LTS CFL 1.0
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LTS CFL 10.0

LTS CFL 20.0
LTS CFL 60.0

Figure 10.4: Test case 2: L1 errors for the LTS scheme using different CFL numbers.

The LTS scheme with CFL=20.0 is the most accurate in terms of this norm, pro-

viding the best results. Also, as could be conjectured from examining Figure 10.3,

the least accurate choice is the LTS with a CFL=60.0, even though it achieves the

highest peak value. It is not able to reproduce either the exact location or the shape

of the rotating cone due to the fact that it is losing important information related

to the velocity field when doing these huge time steps.

The optimal CFL value is therefore a question of interest. It is not known a priori

what this optimum is, that is, from which CFL value the accuracy starts to de-

crease. Four different quadrilateral meshes, derived by uniform mesh refinement (as
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described by grid refinement 1, Table 10.1), have been used to clarify which CFL

value computes the most accurate solution.

Mesh Number of elements

1 92×92=8464

2 184×184=33856

3 368×368=135424

4 736×736=541696

Table 10.1: Test case 2. Grid refinement 1. Meshes and elements.

At t=T, the comparison between the numerical solutions computed by the four grids

using different CFL values has been carried out. The results in terms of the L1 norm

are shown in Table 10.2. The symbol ”-” in Table 10.2 indicates that the results

achieved in these cases are the same as for the previous CFL number.

Mesh CFL L1 Peak value

1 20.0 2.08e-03 0.862

1 30.0 5.12e-03 0.893

1 40.0 1.22e-02 0.924

1 60.0 2.15e-02 0.912

1 100.0 2.51e-02 0.867

1 160.0 - -

2 20.0 1.46e-03 0.937

2 30.0 1.42e-03 0.954

2 40.0 2.99e-03 0.963

2 60.0 4.76e-03 0.971

2 100.0 1.57e-02 0.978

2 160.0 2.51e-02 0.964

Mesh CFL L1 Peak value

3 20.0 6.37e-04 0.968

3 30.0 6.00e-04 0.977

3 40.0 8.40e-04 0.983

3 60.0 1.21e-03 0.988

3 100.0 3.55e-03 0.993

3 160.0 1.23e-02 0.995

4 20.0 3.06e-04 0.984

4 30.0 2.37e-04 0.988

4 40.0 2.23e-04 0.992

4 60.0 4.37e-04 0.994

4 100.0 1.17e-03 0.996

4 160.0 2.92e-03 0.998

Table 10.2: Test case 2. Grid refinement 1. Comparison between CFL values and error

norms on each mesh.

When increasing the number of grid cells, the error in the L1 norm decreases, hence

ensuring the convergence. Moreover, the peak value increases not only when refining

the mesh but also when increasing the CFL value due to the fact that fewer time

steps are done, making the scheme less diffusive and allowing higher peak values.
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When observing the error in the L1 norm, it is clear that very large CFL values

increase the error. However, it is also clear that an optimal CFL value exists for

which the error is minimal. This optimal CFL number is related not only to the

spatial operator (first order) but also to the mesh, being higher when it is refined.

For example, for mesh 1, the optimum value is close to 20.0, for mesh 2 and 3,

between 20.0 and 30.0 and, for mesh 4, between 30.0 and 40.0. In order to check

this hypothesis, an exhaustive grid refinement 2 is proposed.

The number of cells of each mesh is summarized in Table 10.3, running each one

with different CFL values from CFL=10.0 to CFL=35.0 (0.5 by 0.5).

Mesh Number of elements

1 50×50=2500

2 55×55=3025

3 60×60=3600

... ...×...=...

99 540×540=291600

100 545×545=297025

101 550×550=302500

Table 10.3: Test case 2. Grid refinement 2. Meshes and elements.

The considerable amount of data is condensed in Figure 10.5 for the L1 norm, where

the error and the CFL value for which the norm is at a minimum are plotted against

the square root of the number of cells.

When moving towards the right along the x-axis in Figure 10.5, the number of

cells increases hence the accuracy should be (and is) higher. Moreover, the CFL

value for computing the numerical solution with less error (cut-off) grows generally

when the mesh increases in number of elements. The more direct implication of

this resides in the fact that the CFL value can be increased when refining the mesh.

It is worth remarking that the CFL cut-off represents the point at which temporal

error is dominating spatial error. Being a first order scheme, the temporal error

can become quite high and still not dominate the spatial error. Moreover, in case

of having a similar test case with more sharply varying advection speeds, this CFL

cut-off would be much lower.

A rate of convergence slightly better than first order is observed in Figure 10.6 where
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Figure 10.6: Test case 2. Grid refinement 2. Log-log L1 error

a log-log graph of the error using the optimal values shown in Figure 10.5 and the

square root of the number of cells is plotted comparing it with the first order and

second order.

10.3 2D LTS scheme on triangular grids

The extension of the LTS scheme to 2D unstructured triangular grids requires a

deep awareness of how the numerical scheme is sending the information through

the computational edges in the conventional 2D FOU scheme. Not only the wall
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orientation of the normal directions in the edges plays an important role but also

the disparity of the length of these edges and the cell areas becomes an essential

factor when trying to develop the LTS scheme.

The unique approach in this topic was done by Murillo et al. [94], where the scheme

was implemented in unstructured triangular grids. The scheme was based on spread-

ing the information from each computational wall to the neighbouring cells according

to a criterion related to the cell area of the involved cells. Although the method

remained conservative, the computations required cumbersome re-triangularizations

in order to allow larger CFL values and to preserve bounded solutions. Consequently,

the advantage of using this kind of scheme was reduced.

Another strategy is proposed in this work. A special interest is put on finding the

way of packing the information in such a way that allows to compute the numerical

solution in Cartesian triangular grids or unstructured Delaunay grids used generally.

Besides, the information from each wall or edge will be sent cleverly according to

the average discrete velocity at this wall and the orientation of the edges of the

neighbouring cells involved.

10.3.1 The idea to pack the information

Let consider here the linear scalar equation in order to simplify the following rea-

soning:

∂u

∂t
+ λ∇ · u = 0 (10.10)

where λ = (λx, λy) is constant. The idea developed in the 1D case or in the di-

mensional splitting must be modified due to the flow orientation and the geometry

of each triangle, as mentioned above. In particular, the definition of the param-

eters νk and δuk should be reconsidered. In the 1D model, the idea to send the

information was based on splitting the total contribution νkδuk in µk packages of

δu where µk = int(νk) and, what is left, i.e, (νk − µk)δuk to the last cell, so that

the scheme remains conservative. In this algorithm underlies the assumption that

the information is exchanged through walls whose normal direction and length are

always the same. When dealing with triangular cells, this hypothesis is not true

and some modifications must be done. In other words, it is necessary to pack the
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information in a certain way in order to adapt the LTS scheme to triangular grids.

Let consider the edge k shared by cells i and j as displayed in the Figure 10.7, where

the normal direction of the edge k, nk, is defined from cell i to cell j.
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Figure 10.7: Edge k sharing cells i and j

A new quantity Lmax
M is computed for each computational cell M

Lmax
M = max

k
((λn)− l)k k = 1, · · ·NE (10.11)

where NE is the number of edges in cell M . It is worth noting that Lmax
M only

accounts for the ingoing contributions. This parameter gives an estimation of the

maximum amount of information that arrives to the cell from the neighbouring walls

and can be used to homogenize or normalize the information sent form each wall by

means of ζk

ζk =
(λn l)k
Lmax
M

M =

{
j if λn > 0

i if λn < 0
(10.12)

As a matter of fact, this parameter ζk provides a measure expressed on a per unit

basis of the total amount of information that the wall k is able to send to the

neighbouring cell according to its own length and normal direction. It is going to

be used to rescale the maximum information to be sent from each wall and to adapt

the algorithm to the philosophy developed in the 1D case. So, the quantities δu and

ν are re-defined according to this parameter
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δuk = ζk δuref,k νk =
νref,k
ζk

(10.13)

where δuref,k = uj − ui and νref,k =
(λn)k∆t lk

AM
are the usual definitions for these

quantities. As known, the time step size in the case of unstructured grids is restricted

by the CFL condition and is chosen as follows:

∆t = CFL
min(χi, χj)

maxm=1,2,3 |λ̃m|
χi =

Ai

maxk=1,NE lk
(10.14)

In the conventional FOU scheme, it is recommended to select a value of CFL=0.5 in

general although, according to the computational experience, the CFL value could

be chosen close to 1 in the case of unstructured triangular Delaunay grids.

The new redefinition of δu and ν will be the basis of the 2D LTS scheme, which

will allow the choice of a larger CFL value. The amount of information is now

rescaled according to the maximum allowed in the conventional scheme due to the

orientation of the wall edges and the flow direction. Furthermore, the conservation

is guaranteed as can be deduced from (10.13).

10.3.2 The idea to send the information

Once the parameters needed for the LTS scheme are normalized at each wall as

described in the previous discussion, we are in a position to send the information.

The main objective will consist of sending the information in an intelligent manner,

discriminating between valid (V ) or partially valid (PV ) and not valid (NV ) paths.

The ’candidate’ paths are constructed by evaluating the discrete average velocity at

the edge from which we are sending the information, and computing the dot product

between this velocity and the outward neighbour normal directions. These walls are

considered as the paths ’candidates’ to send the information across them. From

each edge, two possible paths arise which are denoted as P1 and P2:

P1 = λkn1 P2 = λkn2 (10.15)

• If P1 < 0, it is labelled as NV and the information is totally sent across
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the other wall, i.e., to the neighbouring cell provided by P2. Moreover, P2 is

labelled as V .

• If P2 < 0, it is labelled as NV and the information is totally sent across

the other wall, i.e., to the neighbouring cell provided by P1. Moreover, P1 is

labelled as V .

• If P1 > 0, P2 > 0, they are labelled as PV and the information is distributed

according to weights θ1 and θ2 which are closely related to these dot products:

θ1 =
P1

P1 + P2
θ2 =

P2

P1 + P2
(10.16)

The case of both P1 and P2 negative is absurd because of geometric considerations.

Once the path or paths are discriminated, the procedure is repeated µk = int(νk)

times for the subsequent edges which are labelled as V or PV . The last step will

follow the same strategy but sending only (νk − µk) times of the information.

Before characterizing the concept of information, which has been used up to now

in this paragraph, and also before formulating these ideas in a compact algorithm

valid for all kind of triangular grids, let consider a toy triangular Cartesian grid and

an advection velocity of λ = (2, 1). The notation for the normal direction is chosen

as follows: ni,j will represent the outward normal direction from cell i to cell j ; the

dot product between these outward directions ni,j and the velocity will be denoted

as Px. Figure 10.8 shows an sketch of the mesh considered and the reasoning will

be referred to this mesh numbering.

Once situated at wall k, let assume the information to send is, for instance, νkδuk =

3.6δuk. The algorithm can be summarized in the following steps:

1. Send δuk to cell 2.

2. Two possibles paths

P1 = λkn2,4 = 1 P2 = λkn2,3 = 2 (10.17)

• As P1, P2 > 0, define
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Figure 10.8: Toy triangular Cartesian mesh used to illustrate the procedure to send the

information in the 2D LTS scheme

θ1 =
P1

P1 + P2
= 1/3 θ2 =

P2

P1 + P2
= 2/3 (10.18)

3. The information is sent according to θ1 and θ2: send θ1δuk to cell 4 and θ2δuk

to cell 3.

4. Four possibles paths

P1,1 = λkn4,7 = −2 P1,2 = λkn4,8 = 3

√
2

2
(10.19)

P2,1 = λkn3,5 = −1 P2,2 = λkn3,6 = 3

√
2

2
(10.20)

• As P1,1 < 0, the information will be completely sent to cell 6.

• As P2,1 < 0, the information will be completely sent to cell 8.

5. Send θ1δuk to cell 6. Send θ2δuk to cell 8.

6. Four possibles paths

P1,2,1 = λkn8,11 = 1 P1,2,2 = λkn8,10 = 2 (10.21)

P2,2,1 = λkn6,10 = 1 P2,2,2 = λkn6,9 = 2 (10.22)
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• As P1,2,1, P1,2,2 > 0, define

θ1,2,1 =
P1,2,1

P1,2,1 + P1,2,2
= 1/3 θ1,2,2 =

P1,2,2

P1,2,1 + P1,2,2
= 2/3 (10.23)

7. The information is sent according to θ1,2,1 and θ1,2,1: send 0.6 θ1,2,1θ1δuk to

cell 10 and 0.6 θ1,2,2θ1δuk to cell 11.

• As P2,2,1, P2,2,2 > 0, define

θ2,2,1 =
P2,2,1

P2,2,1 + P2,2,2
= 1/3 θ2,2,2 =

P2,2,2

P2,2,1 + P2,2,2
= 2/3 (10.24)

8. The information is sent according to θ2,2,1 and θ2,2,1: send 0.6 θ2,2,1θ2δuk to

cell 9 and 0.6 θ2,2,2θ2δuk to cell 10.

The way of sending the information for this triangular Cartesian grid can be schema-

tized in Figure 10.9.

When dealing with triangular unstructured grids, the information sent to each co-

rresponding valid or partially valid cell L is governed also by the cell area AL.

Following the finite volume approach, the information sent to the involved cell L

has to be scaled by
AM

AL
where M is defined in (10.12). Note that this factor is equal

to 1 in the case of Cartesian triangular grids.

As can deduced form the previous discussion, the strategy to send adequately the

information is not straightforward. The easiest way to understand it is by means of

a recursive function able to represent the ’tree structure’ that follows the procedure

of sending the information. It is summarised in Algorithm 2, which shows the way

of sending the total contribution νkδuk from wall k to the cell M and its subsequent

neighbouring cells. Figure 10.10 clarifies the neighbouring cells and walls given a

wall wc. When handling boundary cells, the procedure becomes simpler because

there is no possible choice to send the information far from its unique neighbour.

As a summary, the neighbouring walls that are labelled as valid V or partially valid

PV are used to send the information through them; this leads to new neighbouring

walls labelled as V or PV ... and so on. This strategy will be applied a number of

levels or steps equal to µk = int(νk) and, in the last step, the information has to be

sent according to the parameter (νk − µk) as in the 1D LTS scheme.
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Algorithm 2 Sending the flux in the 2D LTS scheme

1: send δuk to cell M

2: contrib=δuk

3: level=µk − 1

4: wc=k

5: sendFlux(wc,contrib,level)

6:

7:

8: function sendFlux(wc,contrib,level)

9: if level ≥ 0 then

10: set 1 and 2 neighbouring cells of wall wc

11: set wc1 and wc2 neighbouring walls of wall wc

12: evaluate P1 = λkn1 and P2 = λkn2

13: label P1 and P2 as V , PV and NV according to its own sign.

14:

15: if P1 is V then

16: if level > 0 then

17: send

(
contrib

AM

A1

)
to cell 1

18: sendFlux(wc1, contrib, level − 1)

19: else

20: send

(
(νk − µk) contrib

AM

A1

)
to cell 1

21: end if

22: end if

23:

24: if P2 is V then

25: if level > 0 then

26: send

(
contrib

AM

A2

)
to cell 2

27: sendFlux(wc2, contrib, level − 1)

28: else

29: send

(
(νk − µk) contrib

AM

A2

)
to cell 2

30: end if

31: end if

32:
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Algorithm 2 Sending the flux in the 2D LTS scheme (continued)

33: if P1 and P2 are PV then

34: evaluate θ1 =
P1

P1 + P2
θ2 =

P2

P1 + P2
35: if level > 0 then

36: send

(
θ1contrib

AM

A1

)
to cell 1

37: send

(
θ2contrib

AM

A2

)
to cell 2

38: sendFlux(wc1, θ1contrib, level − 1)

39: sendFlux(wc2, θ2contrib, level − 1)

40: else

41: send

(
(νk − µk) θ1contrib

AM

A1

)
to cell 1

42: send

(
(νk − µk) θ2contrib

AM

A2

)
to cell 2

43: end if

44: end if

45: end if

46: end function

10.3.3 Numerical results

10.3.3.1 Test case 1: Pure advection simulation of a rectangular shape

in a Cartesian triangular grid

The advection of rectangle defined as (see Figure 10.11, upper left):

u(x, y, 0) =

{
1.0 if 2 ≤ x ≤ 6, 2 ≤ y ≤ 4

0.0 otherwise .
(10.25)

with a constant advection velocity λ = (0.5, 1) and open boundaries all over the

domain is performed in this test case. A domain of [0, 50] × [0, 50] is discretized

into 20000 triangles of area 0.25 m2. The numerical results after t=35 s achieved

by the conventional FOU with CFL=0.5 (Figure 10.11, upper right) are compared

with those obtained by the proposed 2D LTS scheme with CFL=2.9 and CFL=6.9

(Figure 10.11, lower left and lower right respectively). Moreover the peak achieved
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by each scheme is also highlighted.
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Figure 10.11: Initial condition (upper left) and numerical results for test case 1 at

t=35 s: FOU scheme CFL 0.5 (upper right), LTS CFL 2.9 (lower left) and LTS CFL 6.9

(lower right)

As observed, the LTS scheme improves the results obtained by the FOU scheme not

only in terms of maximum peak achieved but also in terms of numerical diffusion.

The small gain between the results obtained by the LTS with CFL 2.9 and CFL 6.9

is due to the implementation of the 2D LTS scheme. It has been done by giving

priority to positivity of the scheme: when a value lower than the initial minimum

or greater than the initial maximum is produced, the CFL value is automatically

halved in order to ensure a robust scheme. This can be seen as a similar procedure

to those performed when negative values in the water depth appear in the context
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of the shallow water equations.

10.3.3.2 Test case 2: pure advection of a cone in a unstructured trian-

gular grid

A domain [−1, 3] × [−1, 3], discretized into 33632 unstructured triangles is used to

perform the advection with λ = (1, 1) of a cone centered at (-0.65,-0.65) during t=3.

The cone is mathematically expressed as follows:

u(x, y, 0) =

{
cos2(2πr) r ≤ 0.25

0.0 otherwise ,
(10.26)

Open boundaries are set all over the domain. The initial condition as well as the

exact solution are plotted in Figure 10.12, upper left and right respectively. This

figure also shows the numerical results achieved by the FOU scheme with CFL=0.9

(middle left) and the mentioned LTS scheme with CFL’s 1.5, 3.0 and 4.5 (middle

right, lower left and lower right respectively).

Apart from the maximum peak reached by each numerical scheme, the L1-error

is also shown in the middle of each plot. The numerical diffusion, mainly in the

direction of the advection velocity, is reduced, achieving a larger value in the cone

peak. Accordingly, the L1-error is diminished when increasing the CFL value.

10.3.3.3 Test case 3: Doswell frontogenesis

An initial condition

u(x, y, 0) = −tanh

(
y − 4

8

)
(10.27)

defined in a domain [0, 8] × [0, 8] is deformed, influenced by the following velocity

field [40, 60]:

λ =
tanh(d)

0.385 d cosh2(d)
(4− y, x− 4) (10.28)

where d denotes the distance to the center of the domain
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Figure 10.12: Initial condition (upper left), exact solution (upper right) and numerical

results for test case 2 at t=3 s: FOU scheme CFL 0.9 (middle left), LTS CFL 1.5 (middle

right), LTS CFL 3.0 (lower left) and LTS CFL 4.5 (lower right)
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d =
√

(x− 4)2 + (y − 4)2 (10.29)

The initial condition as well as the velocity field can be observed in Figure 10.13.

The domain is discretized into 246453 unstructured triangular cells, open boundaries

are assumed all over the domain and the simulation is carried out during t=8. The

numerical results are shown in Figure 10.14, where the exact solution (upper left)

is compared against the conventional FOU scheme with CFL 0.5 (upper right), the

LTS scheme with CFL 5 (lower left) and CFL 20 (lower right).

Figure 10.13: Test case 3: Initial condition and velocity field

The results seem to be similar in terms of the general shape of the numerical solution

due to the fine discretization of the domain. However, the main differences can be

observed in the region close to the center of the spiral, over which a sharper and less

diffusive solution is achieved at the same time that the CFL number is increased.

The exact solution [40] allows to compute the error in norm L1 for the mentioned

numerical results. Moreover, although it is a short simulation, it is possible to

evaluate the computational time spent to compute the solution. Both metrics are

condensed in Table 10.4.

L1-error CPU time

FOU CFL 0.5 4.54183e-3 165.24 s

LTS CFL 5.0 4.41325e-3 25.98 s

LTS CFL 20.0 4.37861e-3 10.2 s

Table 10.4: Test case 3: L1-error and CPU time achieved by each numerical scheme
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Figure 10.14: Test case 3: Exact solution (upper left) and numerical results achieved by

the FOU scheme with CFL 0.5 (upper right) and the LTS scheme with CFL 5 (lower

left) and CFL 20 (lower right) at t=8

Observing the table and admitting that the error in norm L1 decreases slowly and

does not scale at all with the CFL value, it can be concluded that not only a less

diffusive solution is achieved when increasing the CFL number but also in less time.

10.3.3.4 Test case 4: 2D Burgers’s equation

The 2D Burgers’s equation is a non-linear scalar equation that can be formulated

from (10.1), assuming f(u) = (u2/2, u2/2). The test case presented here consists of
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a initial square (Figure 10.15, left) defined by

u(x, y, 0) =

{
1 if x ∈ (−0.5, 0) and y ∈ (−0.5, 0)

0 otherwise
(10.30)

in a domain of [−1, 1] × [−1, 1] discretized into 61906 triangular unstructured cells

with open boundary conditions. The evolution in time of the square shape under the

influence of the velocity field induced by the Burgers’s equation has exact solution

at t=1 (Figure 10.15, right) and can be found in [127].

Figure 10.15: Test case 4: Initial condition and exact solution

Figure 10.16 compares the numerical results obtained by the conventional FOU

scheme with CFL=0.5 (upper left) with those achieved by the LTS scheme with

CFL=2.4 (upper right), CFL=5.1 (lower left) and CFL=8.35 (lower right).

The results in terms of maximum peak and L1-error with respect to the exact

solution are condensed in Table 10.5. As can be deduced form the results, the

maximum peak increases when choosing a higher value of the CFL number although

the error in norm L1 does not change accordingly. However, it is worth noting that

all the computations performed with the LTS scheme improve the results obtained

by the conventional FOU scheme in terms of maximum peak and L1-error.
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Figure 10.16: Test case 4: Numerical results achieved by the FOU scheme with CFL 0.5

(upper left) and the LTS scheme with CFL 2.4 (upper right), CFL 5.1 (lower left) and

CFL 8.35 (lower left)

Max Peak L1-error

FOU CFL 0.5 8.98496e-01 4.30107e-03

LTS CFL 2.4 9.28572e-01 3.79609e-03

LTS CFL 5.1 9.39219e-01 3.81847e-03

LTS CFL 8.35 9.60093e-01 3.75952e-03

Table 10.5: Test case 4: Maximum peak and L1-error achieved by each numerical scheme



Chapter 11

LTS scheme for the 2D shallow water

equations

11.1 2D systems of conservation laws with source

terms

A 2D hyperbolic non-linear system of equations with source terms can be written

in the form:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= H(U) (11.1)

or:

∂U

∂t
+∇ · E = H , (11.2)

in which E=(F,G). Equation (11.2) is integrated in a volume or grid cell Ω with

area Ai:

∂

∂t

∫

Ai

U dΩ+

NE∑

k=1

(δE− S)k · nklk = 0 . (11.3)

where nk = (nx, ny) is the outward unit normal vector to cell edge k, δEk = Ej−Ei, i

and j being the indices of the cells sharing the edge k, lk is the edge length, NE is the

number of edges in cell i and S is a suitable matrix accounting for the linearization

in time of the vector of source terms.
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Applying a Roe’s local linearization of the problem at each edge, it is possible to

define an approximate Jacobian matrix J̃n,k satisfying:

δ(E · n)k = J̃n,kδUk . (11.4)

Using two approximate matrices P̃ = (ẽ1, ẽ2, ẽ3), and P̃−1, built using the eigen-

vectors of the Jacobian, that diagonalize J̃n,k, giving

P̃−1
k J̃n,kP̃k = Λ̃k , (11.5)

where Λ̃k is a diagonal matrix with eigenvalues λ̃mk in the main diagonal. According

to the local linearisation, the conserved variables as well as the source terms are

projected onto the matrix eigenvectors basis:

δUk = P̃kÃk (S̃ · n)k = P̃kB̃k (11.6)

where Ãk = (α̃1, α̃2, α̃3)
T
k and B̃k = (β̃1, β̃2, β̃3)

T
k contain the sets of wave

and source strengths, respectively. Therefore, the 2D numerical first order upwind

(FOU) scheme can be formulated as follows, dealing with the contributions that

arrive to the cell:

Un+1
i = Un

i − ∆t

Ai

NE∑

j=1

3∑

m=1

(
(λ̃−γ̃ ẽ)ml

)n
k
. (11.7)

where γ̃mk =

(
α̃− β̃

λ̃

)m

k

.

11.2 Application to the 2D shallow water equa-

tions

The two-dimensional shallow water system of equations can be expressed as in (11.1).

In particular, U represents the conserved variables

U = (h, qx, qy)
T , (11.8)
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where qx and qy are the unit discharge in the x- and y-direction, respectively, and

the fluxes of these variables are given by

F =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

)T

, G =

(
qy,

qxqy
h

,
q2y
h

+
1

2
gh2
)T

, (11.9)

where g is the acceleration due to gravity. The source terms of the momentum are

due to bed slope and friction

H =
(
0, gh(S0x − Sfx), gh(S0y − Sfy)

)T
, (11.10)

The time step size for the standard first order upwind scheme is governed by the

discrete wave celerities defined at each computational cell interface and expressed,

in the particular case of a quadrilateral structured grid, as

∆t = CFL min
k,m

(
Ai

lk |λ̃mk |

)
, CFL ≤ 0.5 . (11.11)

However, its is feasible to extend the ideas developed for the scalar equations either

applied over rectangular structured grids or triangular grids and to relax the CFL

condition in (11.11) to allow bigger time step sizes. The corresponding procedures

that will be later described are based on those explained for the scalar case although

several corrections are needed in the context of the shallow water equations.

11.3 2D LTS on square grids

Adopting a correct formulation of the source term discretization as detailed in part

I, the restriction in (11.11) can be relaxed when using the 2D LTS scheme and the

dimensional splitting technique. Once the time step size is calculated, the procedure

consists of computing the contributions at each interface and sending them along

the x- or y-direction with their corresponding time step size according to (10.5).

The information is sent from each computational cell interface in a similar way to

the 1D case, replacing ∆x by Ai/lk in the case of quadrilateral structured grids.

Consequently, in the x-direction, when considering an interface k sharing the cells
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i and j, the interface can be relabelled as i+ 1/2 (based on the evolution operator

πx) and cell j as i + 1, simplifying the notation when referring to the previous or

subsequent neighbouring cells. With this notation:

If λ̃mi+1/2 > 0

(γ̃ ẽ)mi+1/2 is subtracted from cells i+ 1, · · · , i+ µmi+1/2

(ν − µ)mi+1/2 (γ̃ ẽ)mi+1/2 is subtracted from cell i+ µmi+1/2 + 1

(11.12)

If λ̃mi+1/2 < 0

(γ̃ ẽ)mi+1/2 is subtracted from cells i, · · · , i+ µmi+1/2 + 1

(ν − µ)mi+1/2 (γ̃ ẽ)mi+1/2 is subtracted from cell i+ µmi+1/2

(11.13)

where m = 1, 2, 3, γ̃mk =

(
α̃− β̃

λ̃

)m

k

, νmk =
∆t lk
Ai

λ̃mk and µmk = int(νmk ). After each

sub-iteration inside the whole time step, the cells have to be updated also considering

the information from the boundaries. The procedure for one time step is the same

as that presented in Section 9, sending the information according to (11.12) and

(11.13). Furthermore, the strategy of splitting the rarefaction into several pieces

travelling at different speeds is also applied in each of the three sub-iterations. More

information can be found in [88].

On the other hand, a parameter ξ was introduced in (9.20) for the 1D analysis to

internally reduce the initial target CFL value in the presence of sharp discontinuities

or large source terms. The LTS proposed using the splitting technique may produce

wrong results in the presence of strong discontinuities in the solution behaving as

shocks due to the similarity to the 1D model. To avoid that, at the beginning of

every time step the relative size of the discontinuities is evaluated and the target

CFL is adjusted accordingly. Then, it is used globally as in any other time step so

that the calculations run always with a global time step that is controlled by the

most restrictive cell.

The new wet/dry strategy requires a revision of the mentioned parameter in order

to avoid undesirable reductions in the target CFL value. In fact, ξ = min(ξ1, ξ2),

with
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ξ1 =
mini{hi, hi+1, |δhi+1/2|}

|δhi+1/2|
, ξ2 =

mini{|di|, |di+1|, |δdi+1/2|}
|δdi+1/2|

(11.14)

for 1 ≤ i ≤ N , where h is the water depth, d = h+ z is the water surface level and

0 ≤ ξ ≤ 1. This parameter ξ gives again a measure of the size of the discontinuity,

being closer to 0.0 when the discontinuity is strong and around 1.0 when the variables

h and d are smooth or gradually varying.

However, the evaluation of ξ in (11.14) when hi or hi+1 is zero enforces the recovery

of the FOU scheme. Therefore, wet/dry fronts must be reformulated inside (11.14)

in order to refrain from reducing the CFL initially chosen and a tolerance (TOL)

for the variables is proposed. For example, the parameter ξ1 will only act if

min{hi, hi+1, |δhi+1/2|} > TOL , (11.15)

with an analogous condition imposed for parameter ξ2, replacing h by d. In this

work, TOL = 0.05m.

11.4 2D LTS on triangular grids

The philosophy described for the scalar configuration in the case of triangular un-

structured grids is extended to the 2D shallow water equations. The total contribu-

tion from each wall k shared by cells i and j is

λ̃mk ∆t lk
AM

(γ̃ ẽ)mk (11.16)

where

M =

{
j if λ̃mk > 0

i if λ̃mk < 0
(11.17)

is packed according to the maximum allowed quantity that arrives to the cell using

the following factor ζk
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ζk =
(λ̃m l)k
Lmax
M

(11.18)

with

Lmax
M = max

k,m
(λ̃m l)k k = 1, ..., NE m = 1, ..., 3 (11.19)

Therefore the quantities used to describe the LTS scheme are defined as follows:

νmk =
λ̃mk ∆t lk
AMζk

(γ̃ ẽ)mk =

((
α̃− β̃

λ̃

)
ẽ

)m

k

ζk (11.20)

where m = 1, 2, 3. With this notation, it is possible to apply the Algorithm 2,

expressed for the scalar case, replacing δuk by (γ̃ ẽ)mk and λk by the average velocity

ũk = (ũ, ṽ). The way of sending the information for the 2D LTS scheme applied to

the shallow water equations is included in Algorithm 3.

Algorithm 3 Sending the flux in the 2D SWE LTS scheme

1: send (γ̃ ẽ)mk to cell M

2: contrib=(γ̃ ẽ)mk
3: level=µk − 1

4: wc=k

5: sendFlux(wc,contrib,level)

6:

7:

8: function sendFlux(wc,contrib,level)

9: if level ≥ 0 then

10: set 1 and 2 neighbouring cells of wall wc

11: set wc1 and wc2 neighbouring walls of wall wc

12: evaluate P1 = ukn1 and P2 = ukn2

13: label P1 and P2 as V , PV and NV according to its own sign.

14:
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Algorithm 3 Sending the flux in the 2D SWE LTS scheme (continued)

15: if P1 is V then

16: if level > 0 then

17: send

(
contrib

AM

A1

)
to cell 1

18: sendFlux(wc1, contrib, level − 1)

19: else

20: send

(
(νk − µk) contrib

AM

A1

)
to cell 1

21: end if

22: end if

23:

24: if P2 is V then

25: if level > 0 then

26: send

(
contrib

AM

A2

)
to cell 2

27: sendFlux(wc2, contrib, level − 1)

28: else

29: send

(
(νk − µk) contrib

AM

A2

)
to cell 2

30: end if

31: end if

32:

33: if P1 and P2 are PV then

34: evaluate θ1 =
P1

P1 + P2
θ2 =

P2

P1 + P2
35: if level > 0 then

36: send

(
θ1contrib

AM

A1

)
to cell 1

37: send

(
θ2contrib

AM

A2

)
to cell 2

38: sendFlux(wc1, θ1contrib, level − 1)

39: sendFlux(wc2, θ2contrib, level − 1)

40: else

41: send

(
(νk − µk) θ1contrib

AM

A1

)
to cell 1

42: send

(
(νk − µk) θ2contrib

AM

A2

)
to cell 2

43: end if

44: end if

45: end if

46: end function
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As a reminder, the contributions from wall k will be sent adequately according the

projection of the average velocity uk over the candidate neighbouring walls. The

dot product between this average velocity and the outward normal direction of this

walls will provide a measure of where the information has to be sent. Depending

on the sign, valid V , not valid NV and partially valid PV paths are distinguished.

The information is sent only across the valid and partially valid walls. Then, the

technique is applied over this walls, creating a recursive algorithm that spreads out

the information by means of different paths originated at the initial wall k.

11.5 Boundary conditions and wet/dry treatment

in the 2D LTS scheme

Boundary conditions are an essential concern and they must be carefully analysed

when developing a numerical scheme. Furthermore, as stated in part I, another

issue of importance in the 2D shallow water equations is the correct formulation

of the wet/dry treatment. The mentioned techniques for the conventional FOU

scheme must be adapted to the 2D LTS scheme to avoid instabilities and to prevent

negative values of water depth. As the procedure for the boundary conditions and

the wet/dry treatment is intrinsically the same for both the square and the triangular

configurations, it is presented in a general way in the following sections.

11.5.1 Boundary conditions

The formulation of the boundary conditions in the 2D LTS scheme can be considered

as an extension of the treatment described for the 1D framework. In the context

of the shallow water equations, open and closed boundaries arise. When dealing

with open boundaries, no extra conditions have to be enforced except computing

the contributions coming from the inner cells that leave out the domain. In fact, the

designed algorithms in the LTS scheme are the responsible for sending the informa-

tion out of the computational domain and these contributions have to be carefully

computed in order to guarantee the mass conservation.

The analysis developed in the 1D configuration in section 9.2.2 revealed that the

reflection technique is the adequate strategy to deal with closed boundaries in the
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LTS scheme. This technique is also applied to the 2D configuration: each closed

boundary wall is considered as a mirror that reflects the contributions and sends

them back to the inner cells. In the case of the square grids, the dimensional split-

ting technique makes the procedure completely equivalent to the 1D configuration,

sending back the information to the inner cells in the corresponding row or column.

The case of triangular grids is slightly different due to the multiplicity of paths

when sending back the information. As described above, the way of sending the

information requires the definition of an average velocity that is projected over the

normal direction defined by the candidate edges. The dot product between them

determines the paths over which the information is sent. Each path may split into

two different paths and so on, creating the structure of an algorithm in the form of

a tree. When one of these paths finds a closed boundary wall, the average velocity

must be redefined ensuring that the dot product between the initial average velocity

and the normal direction of the boundary wall is null. With this redefinition, the

path is able to send back the contributions appropriately.

11.5.2 Wet/Dry treatment

The treatment of wet/dry fronts in the LTS scheme was previously mentioned in

[87] where a reduction in the time step size is enforced to recover the conventional

upwind scheme when a wet/dry front appears in the 1D model. This technique

results absurd in the context of the 2D shallow water equations considering that

the wet/dry fronts may be entirely present in each time step of this framework. In

order to avoid reducing the time step size in all these situations, a short procedure

consisting of two steps is proposed in this work, following the reasoning developed

in part I. The first step has to be carried out during the computation of the fluxes

and it consists of identifying the wet/dry interfaces. Assume that the potential

wet/dry front is located at edge k, between cells i and j. The requirement of the

positivity of the intermediate states derived from the Riemann Problem (see Figure

11.1) between cells i and j allows the determination of the wet/dry interfaces. These

intermediate star states are expressed as follows for the subcritical case:

U∗
i = Un

i + (γ̃ẽ)1k
U∗∗

j = Un
j − (γ̃ẽ)2k

(11.21)
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Figure 11.1: Wet/dry front: 3D view (left) and sketch of the Riemann Problem in the

(x, t) plane for the subcritical case (right)

A more detailed explanation can be found in part I. In this case, the following rule

is adopted:

• If hnj = 0 and h∗∗j < 0 set k as a solid interface.

• If hni = 0 and h∗i < 0 set k as a solid interface.

where h∗∗j and h∗i are defined in (11.21).

Once all the contributions are computed and the wet/dry solid interfaces are iden-

tified, the second step is applied: the information from each computational edge

is sent depending on the character (solid or not solid) of the involved interfaces.

Accordingly, before sending to the subsequent cell, if the neighbour wall is identified

as a solid interface, the contribution will be reflected and sent back. Otherwise, the

information will be sent as usually.

For the sake of clarity, let reduce to the 1D model and consider the interface i+1/2

between cells i and i + 1. Let assume that, for instance, νi+1/2 = 4.3 and the

interface i + 5/2 is labelled as a solid wet/dry interface. The contributions will be

typically sent to cell i+1 and to cell i+2. However, as i+5/2 is detected as a solid

interface, information cannot pass through this edge and hence is sent back to the

corresponding cells as in the reflection technique explained for the in 1D case [87].

It is illustrated in Figure 11.2.

As in the case of closed boundary conditions, the strategy results to some extent

different when dealing with triangular grids. The information is sent according
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i i+1 i+2 i+3i+3

i+3/2 i+5/2

solid interface

Figure 11.2: Example of the procedure to send the information with a wet/dry solid

interface considering a reduced 1D problem

.

to Algorithm 3, unless the corresponding valid or partially valid wall ks is at the

same time labelled as a solid wall. In that case, the average velocity ũ = (ũ, ṽ)

is redefined enforcing ũ nks = 0 and the information is sent back, reflecting the

waves and creating the same tree algorithm in the opposite direction of the normal

direction to the solid wall ks.

solid wall

ks

nks

Figure 11.3: Sketch of the procedure to send the information with the interaction of a

solid wall

The overall procedure presented here reduces the appearance of negative water depth
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values. However, the labelling of the wet/dry interfaces as solid or not comes from

a local analysis of the Riemann Problem, but the information is sent far from the

neighbouring cells in the LTS scheme. Therefore, the problem of negative values for

the water depth is not totally eliminated. In these extreme cases, an option is to

reduce the time step to half the size and to recompute.

11.6 Numerical results

In this section, different challenging time-dependent test cases are presented to test

the performance of the 2D LTS scheme and to introduce the wet/dry treatment

explored in this work. They are performed either on square grids or on triangular

grids.

11.6.1 2D LTS on square grids

11.6.1.1 Test case 1: Circular dam break

Dam break problems are widely used to test the behaviour of a numerical scheme.

Consider a square frictionless domain Ω = [0, 200m]2 discretized in a quadrilateral

regular mesh of 40 000 cells (200×200) with flat bed and closed boundaries. The

initial condition consists of still water of depth 1m over all the domain except a

circular sector in the lower left corner which has a 4m depth of water (see Figure

11.4):

h(x, y, 0) =

{
4.0 if

√
x2 + y2 ≤ 100m

1.0 otherwise .
(11.22)

The boundary treatment was previously considered for the 1D shallow water equa-

tions. As the information is sent by rows or columns in the 2D LTS scheme, the

same technique is adopted. In particular, when dealing with closed boundaries, the

reflection technique, that considers the corresponding downstream edge as a mirror

and reflects the waves, is utilised in this example. The numerical results achieved by

the conventional FOU scheme with a CFL=0.5 are compared with those obtained

by the LTS scheme with CFLs of 2.0, 4.0 and 8.0 at t = 12 s and t = 20 s (Figures

11.5 and 11.6 respectively) for the water depth.
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Figure 11.4: Test case 1: Initial state and sampling line

Figure 11.5: Test case 1. Numerical results for water depth at t = 12 s. FOU CFL 0.5

(upper left), LTS CFL 2.0 (upper right), LTS CFL 4.0 (lower left) and LTS CFL 8.0

(lower right).
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Figure 11.6: Test case 1. Numerical results for water depth at t = 20 s. FOU CFL 0.5

(upper left), LTS CFL 2.0 (upper right), LTS CFL 4.0 (lower left) and LTS CFL 8.0

(lower right).

Although spurious oscillations are detected near the location of the shock when in-

creasing the CFL number, the solutions seem to be less diffusive, not only in the

shock front but also near the rarefaction. In order to corroborate this hypothesis,

the comparison through the line plotted in Figure 11.4 is considered, where a high

resolution numerical solution (from now on called ’exact’) can be computed evalu-

ating the problem as a 1D problem on the radial direction [117]. Figures 11.7 and

11.8 show the exact and numerical results at t = 12 s for the water depth and for the

x- and y-unit discharge respectively. The LTS scheme becomes visibly less diffusive

as the CFL number is increased, although several oscillations appear. However, the
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velocity field tends to be more sensitive and larger oscillations near the shock fronts

are clearly visible in Figure 11.8.
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Figure 11.7: Test case 1: Exact and numerical results for water depth at t = 12 s.
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Figure 11.8: Test case 1: Exact and numerical results at t = 12 s for x-unit discharge

(left) and y-unit discharge (right).

11.6.1.2 Test case 2: Dam break over adverse slope

When incorporating friction and an adverse slope, the dam break problem becomes

an example of unsteady flow with source terms. Also, if the initial discontinuity is

over a dry bed, the test case contains all the elements that represent a challenge in

shallow flow modelling. A test case, consisting of a dam break over dry bed with

adverse slope, is performed as a good measure of the behaviour of the wet/dry front

treatment in unsteady flow. Consider the same domain and discretization as the

previous test case. The friction is modelled now using a Manning friction coefficient
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n = 0.03 s/m
1

3 . The initial condition and the bed level (see Figure 11.9) are set to

h(x, y, 0) =





2.0 if
√

x2 + y2 < 100

0.0 if 100 <
√

x2 + y2 <
√
2 100.0

0.0 if x >
√
2 100.0 ,

(11.23)

z(x, y) =





0.0 if
√

x2 + y2 < 100

0.0 if 100 <
√

x2 + y2 <
√
2 100.0√

2(x2 + y2)

100
− 2 if x >

√
2 100.0 .

(11.24)

Figure 11.9: Test case 2: Initial condition and bed level. Plan view (left) and 3D view

(right).

The convergence to an equilibrium state has been simulated over 40 000 s. The time

evolution of the longitudinal profile along the diagonal (as in the previous test case)

is plotted in Figure 11.10 at t = 10 s, t = 50 s and t = 100 s comparing the numerical

results achieved by the FOU scheme and the LTS scheme with an arbitrarily chosen

CFL value of 3.7. Also the final state at t = 40 000 s is shown in Figure 11.10 (lower

right).

The results illustrate that the location of the wet/dry front is well reproduced by the

LTS scheme in comparison with the FOU scheme, as well as the still water surface

final state. It is worth remarking that the well-balanced property is demonstrated,

as expected, due to the careful discretization of the source terms.
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Figure 11.10: Test case 2. Longitudinal profile along the diagonal line achieved by the

FOU scheme and the LTS scheme with a CFL of 3.7 at t = 10 s (upper left), at t = 50 s

(upper right), at t = 100 s (lower left) and at t = 40000 s (lower right)

11.6.1.3 Test case 3: tsunami test case

The simulation of a tsunami event modelled in a 1/400 laboratory scale [81, 77] is

used to demonstrate the applicability of the LTS scheme to unsteady real problems.

Gauging points were located at

P1 = (4.52, 2.196) , P2 = (4.52, 1.696) , P3 = (4.52, 1.196) , (11.25)

where the evolution in time of the water level surface is registered. Figure 11.11

shows the bathymetry of the reduced model as well as the location of the gauging

points mentioned. According to the reported bed material, the friction is modelled

with a Manning coefficient of n = 0.01 s/m
1

3 . More details about the description

and the experimental data can be found in [77, 17].

The initial condition is fixed as a constant water surface level of h + z = 0.0 and
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Figure 11.11: Test case 3: Bed elevation and probe locations.

the domain ([0, 5.488]× [0, 3.388]) has been discretized with a mesh of 23 716 cells

(196 × 121). The boundary conditions are considered as closed vertical sidewalls

(as in the laboratory model) except the incident wave coming from offshore, defined

as a variation in time of the water depth (see Figure 11.13). It is worth remarking

that, in this finite volume implementation, the information given as the boundary

condition is imposed at the center of the boundary cells.

The numerical simulation has been carried out using the FOU scheme with a CFL=0.5

and the LTS scheme with three different CFL values: 2.4, 4.8 and 7.2. As an exam-

ple, two states corresponding to times t = 13 s and t = 18 s are illustrated in Figure

11.12, simulated with the LTS scheme with a CFL=4.8. At t = 13 s the shoreline is

moving backward due to the depression wave, but by t = 18 s the wave has reached

the end of the domain and has been reflected.

The time evolution registered experimentally at measured points P1, P2 and P3 is

also compared with the numerical results obtained by the FOU scheme and the LTS

scheme with the mentioned CFL values in Figure 11.13.

Wet/dry boundaries are present throughout this test case. However, the results

achieved by the LTS scheme with different CFL values are very similar to those

obtained by the FOU scheme with a CFL=0.5 with respect to the experimental

measurements. Also the results achieved by the three different CFL values used

for the LTS scheme do not generate ’a priori’ many differences. It is due to the

internal reduction in the time step size during the computation to avoid negative

water depth values.

In order to strengthen this hypothesis, the time evolution L1-error in these probes

P1, P2, and P3 relative to a grid converged solution (the maximum available reso-
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Figure 11.12: Test case 3: 3D plot of the water level surface at t = 13 s (upper) and

t = 18 s (lower)
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Figure 11.13: Test case 3: Inlet boundary condition (upper left) and experimental vs.

numerical results at probe 1 (upper right), probe 2 (lower left) and probe 3 (lower right)
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lution data, 392 × 242 cells) is plotted in Figure 11.14. Firstly, as probes are placed

in a critical location, just behind the island, with wet/dry transitions, the L1-error

can provide a very local estimation of the error made. Observing the graph, a clear

tendency of the error cannot be detected . Results with the LTS CFL 2.4 and even

CFL 4.8 improves those obtained by the FOU scheme, mainly at probes P1 and P2.

However, P3 registers a better behaviour when using the FOU scheme. Results with

the LTS scheme CFL 7.2 are usually worse than with the other schemes. However,

the error remains under acceptable values in comparison with the FOU scheme.
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Figure 11.14: Test case 5: L1-error at probes P1, P2, and P3 relative to a grid converged

solution

11.6.1.4 Test case 4: Real world configuration: Ebro river

The proposed LTS scheme is now applied to a realistic test case in order to evaluate

its uncertainty in the flooding prediction. For this purpose, a meandering reach of

the Ebro river (Spain) is used [89]. The Digital Terrain Model (DTM) including the

bathymetry was provided by the Ebro River Basin Administration (www.chebro.es).
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Figure 11.15: Test case 4: Topography and location of the boundaries

The domain (3 × 2 km2) is discretized in 300 × 200 square cells, integrating the

information coming from the DTM. This grid will be used for the simulation of a

flooding event with the LTS scheme with CFL=4.2 and with the FOU scheme with

CFL=0.5. A steady state of 100 m3/s is computed and set as the initial condition

before the flooding event. In fact, the inlet boundary condition consists of a one

day abrupt hydrograph raising to 1400 m3/s in 180 s and decreasing afterwards

linearly during the rest of the day (see Figure 11.16, left). With this choice, all kind

of scenarios such as sharp shocks, wetting and drying situations, are present. A

free flow condition is chosen as the outlet boundary. The location of the inlet and

outlet boundary conditions, as well as the topography of the test case are displayed

in Figure 11.15. According to the aerial photograph of the domain, a Manning’s

roughness map is considered, shown in Figure 11.16 (right).
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Figure 11.16: Test case 4: Inlet hydrograph and Manning’s roughness map

In addition, the simulation of the same configuration with a very fine grid of 1500000
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Figure 11.17: Test case 4: Map error of water depth for the FOU scheme (upper left)

and for the LTS scheme (upper right) at t=3h. Map error of velocity magnitude for the

FOU scheme (lower left) and for the LTS scheme (lower right) at t=3h.

(1500 × 1000) squared cells using the first order upwind scheme with CFL 0.5 is

chosen as a reference solution in order to compare the schemes mentioned above.

The comparison is firstly done using map errors. Therefore, a mapping from the

coarse to the fine grid is performed to be able to extract the spatial distribution

of the error. The relative error with respect to the reference solution is analysed

for the variables h and velocity magnitude (modU). As an example, a map error is

included corresponding to t=3h (Figure 11.17) for the FOU scheme (left) and for

the LTS scheme (right). The meaning is as follows: 0.0 means no differences, 1.0 has

to be understood as the scheme (FOU or LTS) is wetting a cell that is completely

dry on the reference solution and -1.0 is a dry zone for the scheme (FOU or LTS)

that is wetted on the reference solution.

As can be seen, the error for both schemes is almost totally located at the flood-

plain, where the coarse grid is overestimating the flooding area, possibly due to the

incorrect definition of levees. It can be concluded that in terms of water depth, at

t=3h, the LTS scheme computes a more accurate solution than the FOU scheme.

The main factor responsible for this is the wet/dry treatment, which seems to be

more restrictive in this situation. The velocity magnitude is overall well-reproduced
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in the main river, while the flooding extension overestimates it in the floodplain.

In order to have a quantitative measure of the error, Figure 11.18 shows two graphs.

On the left, the evolution of the L1-error along the domain over the 24h hydrograph

is extracted for the water depth and for the velocity magnitude. On the right,

the evolution of the flooded area computed by each model is compared against the

flooded area achieved by the reference solution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5  10  15  20

L 1
 e

rr
or

time (h)

h L1-error FOU
h L1-error LTS

modU L1-error FOU
modU L1-error LTS

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0  5  10  15  20

flo
od

ed
 a

re
a 

(m
2 )

time (h)

Reference
FOU
LTS

Figure 11.18: Test case 6: Evolution of the L1-error (left) and flooded area (right) with

respect to the reference solution

Observing the figures, the LTS scheme approximates better the results obtained by

the reference solution although both models overestimate the flooded area.

11.6.2 2D LTS on triangular grids

11.6.2.1 Test case 5: The spilling of a column of water

The simulation of the flow induced by the spilling of a column of water defined by

h(x, y, 0) =

{
4.0 if 45 < x < 55 , 45 < y < 55

2.0 otherwise
(11.26)

is performed (see Figure 11.19) over a flat frictionless surface.

It is placed in the middle of a domain [0, 100] × [0, 100] discretized into 79326 tri-

angular unstructured cells which is assumed to be a closed box, that is, zero flow

is enforced all over the right, left, upper and lower boundaries. The simulation is
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Figure 11.19: Test case 5: Initial condition

carried out during 80 s and the results at t=10 s, t=20 s, t=40 s and t=80 s are dis-

played in Figure 11.20 for the conventional FOU scheme with CFL 0.9 (left) and for

the proposed LTS scheme with CFL 5.0 (right).

A qualitative analysis shows that the numerical diffusion associated to the FOU

scheme is widely reduced if using a LTS scheme. Moreover, the technique to manage

the closed boundaries seems to be effective due to the absence of oscillations and the

large number of rebounds that take place during the simulation. On the other hand,

shock and rarefaction are entirely present and interact, and no extra correction is

required in the LTS scheme over triangular grids.

11.6.2.2 Test case 6: Dambreak with triangular bump

This test case deals with the simulation of a dambreak over a dry bed with irregular

topography. A rectangular cross section channel is considered, 1 m wide and 7 m

long, with two triangular bumps with symmetric slopes. More information of the

description of the test case is found in [85]. The initial condition is given by

h(x, y, 0) =

{
0.45 if x < 2.25

0 if otherwise
(11.27)

and is displayed in Figure 11.21 (upper left) in a 3D view with the channel geometry.

The domain is discretized into 40033 unstructured triangles and the simulation is

carried out during 15 s. Zero flow is assumed all over the boundaries and a constant

Manning roughness coefficient of 0.007 s/m1/3 is considered according to the ex-
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Figure 11.20: ]

Test case 5. Numerical results for water depth with FOU CFL 0.9 (left) and LTS

CFL 5.0 (right). From upper to lower: t=10 s, t=20 s, t=40 s and t=80 s
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perimental specifications. As an example, three snapshots of the complete channel

simulated with the LTS scheme with CFL 4.78 at times t=2 s, t=5 s and t=10 s are

also shown in (11.21) (upper right, lower left and lower right respectively).

Figure 11.21: Test case 6. Initial condition (upper left) and numerical results achieved

by the LTS scheme with CFL 4.78 at times t=2 s (upper right), t=5 s (lower left) and

t=10 s (lower right)

On the other hand, the evolution in time of the water depth at points P1 = (1.4, 0.5),

P2 = (2.25, 0.5) and P3 = (4.5, 0.5) as well as the velocity in the x-direction at probe

P1 is registered. Therefore, the numerical results achieved by the LTS scheme with

a value of CFL=4.78 and the FOU scheme with CFL 0.5 are compared with those

experimental measurements (see Figure 11.22).

Numerical results and experimental measurements have a good agreement. Al-

though several differences are present, maybe related to the nature of the equations

and the hydrostatic hypothesis assumed by the 2D shallow water equations, the

overall behaviour of the numerical results is very similar to the recorded data. As a

consequence, the LTS scheme is proved to be able to handle wet/dry boundaries in

unsteady situations, with complex topography.
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Figure 11.22: Test case 6: Experimental measurements and numerical results achieved

by the FOU scheme with CFL 0.5 and the LTS scheme with CFL 4.78. Evolution in

time of water depth at probe P1 (upper left), velocity at probe P1 (upper right) and

water depth at probes P2 and P3 (lower left and lower right respectively)

11.6.2.3 Test case 7: Filling depressions

The last test case performed with the 2D LTS scheme with unstructured triangular

grid consists of a square 2000m × 2000m with smooth cavities or depressions all

over the domain (see Figure 11.23), discretized in a coarse mesh composed by 10376

cells. It is designed to examine the capability of the model to predict the inundation

extent in a slow unsteady flow. The details of the configuration of the test case can

be found in [121].

From a dry initial state, a flood hydrograph with a peak flow of 20m3/s during 1h

25min is introduced as inlet boundary condition (see Figure 11.24, left) in a 100

m line on the North-Western corner of the domain (Figure 11.24, right). Different

probes located at the deepest point of each depression will be considered to compare

the numerical results achieved by the FOU and by the LTS scheme.

The simulation is carried out during 48 h until the flow has filled the mentioned
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Figure 11.23: Test case 7: Topography
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Figure 11.24: Test case 7: Inflow hydrograph (left) and location of the inlet boundary

conditions and the probes (right)

depressions. As an example, four snapshots simulated by the LTS scheme with CFL

2.9 corresponding to times t=1h, t=4h, t=8h and t=48h (end) are shown in Figure

11.25. Moreover, the evolution in time at each probe defined in Figure 11.24 of the

water depth predicted by both the FOU scheme with CFL 0.5 and the LTS scheme

with a value of CFL=2.9 is represented in Figure 11.26.

The comparison at each probe reveals that the LTS scheme achieves the same results

in terms of water depth than the FOU scheme. All probes are well reproduced even

those which are dry (probes 9, 13, 14, 15 and 16). The wet/dry fronts under slow

flow and subcritical conditions are also well captured by the LTS scheme, achieving

promising results in terms of accuracy.
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Figure 11.25: Test case 7. 3D view of the filling process with the LTS scheme with CFL

2.9 at t=1h (upper left), t=4h (upper right), t=8h (lower left) and at t=48h (end of the

simulation, lower right)

11.6.3 Computational time

The use of a LTS scheme with larger CFL values than the conventional schemes

should imply a reduction in the computational burden. Table 11.1 summarizes the

CPU time consumed by each scheme (FOU and LTS) in each test case of relevance

(test case 1 has been omitted due to the short computational time). Note that

the CFL value of 0.5 (the maximum allowable in squared meshes) is used for the

computation with the FOU scheme for test cases 2-4 and for test case 6-7 with the

triangular unstructured grid. In test case 5, the FOU scheme is simulated with a

CFL=0.9. The number of cells in both models (FOU and LTS) is obviously the

same for each test case.

As can be seen, the results show a computational gain associated to the LTS scheme.

However, the correspondence between the speed-up and the choice of the CFL value

does not scale linearly. Two main factors affect considerably this response. First, it

is important to highlight the complexity of the algorithms to send appropriately the

information: shocks and rarefactions in the square grid, solid and not-solid wet/dry
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Figure 11.26: Test case 7: Time evolution of water depth at probes 1-4 (upper left),

probes 5-8 (upper right), probes 9-12 (lower left) and probes 13-16 (lower right) achieved

by the LTS scheme with CFL 2.9 and the FOU with CFL 0.5

Test case FOU time (s) LTS Speed-up

CFL number time (s)

2 11227 CFL 3.7 5105 2.199

3 72 CFL 2.4 48 1.5

CFL 4.8 40 1.8

CFL 7.2 46 1.565

4 22380 CFL 4.2 7405 3.022

5 357 CFL 5.0 138 2.587

6 424 CFL 4.78 128 3.31

7 233 CFL 2.9 101 2.307

Table 11.1: CPU time consumed by the each model in each test case of relevance

interfaces, closed boundaries, in addition to the reduction of the CFL value or the

appearance of negative depths in the presence of large discontinuities and complex
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topographies.

Secondly, in the case of square grids, the structure of the dimensional splitting pro-

cedure doubles the interface accessing and triples the cell updating, making the

process slower due to the memory access. In the case of the triangular grid, the

distinction between valid, not valid and partially valid paths in the triangular con-

figurations and the adequate way to send the information far from the neighbouring

cells increase considerable the computational time.

Summing up, although the number of time steps carried out is reduced, the cost of

each one is increased.





Chapter 12

Conclusions

In this part, an extension of the Large Time Step (LTS) scheme developed by Lev-

eque has been presented in order to complete and generalise this method first for

scalar equations and then for the shallow water equations with source terms.

The proposed LTS scheme, when applied to 1D non-linear scalar cases, requires the

discrete representation of the rarefaction wave in the form of several discontinuities

travelling at different speeds if an accurate solution is sought at large CFL values.

A simple rule to estimate these speeds has been proposed. When incorporating the

presence of a source term in 1D non-linear scalar equations, the LTS scheme can be

extended following the same procedure as in the homogeneous case provided that

the original explicit scheme was already well-balanced. However, it is important to

remark that the quality of the numerical solution deteriorates as the CFL grows

in presence of relatively important source terms due to the fact that the scheme is

based on the advection speed of the homogeneous system. The 1D inviscid Burgers

equation with source term has been used to propose a second estimation of the

advection speed that takes into account the presence of the source term in the form

of an intermediate state. The effectiveness of this treatment has been illustrated for

the 1D Burgers equation with source term achieving accurate numerical solutions

in a single time step.

The extension to one dimensional non-linear systems of equations with source terms

has been explored and applied to the 1D shallow water system. The splitting tech-

nique required in rarefactions has been extended to systems and shown to produce

good results that preserve conservation. The bed slope and friction source terms

have been incorporated in a compact formulation. From that formulation of the

well-balanced explicit scheme, the extension leading to the LTS scheme has been

possible. In the case of systems, the LTS shows a good performance for CFL>1 but,
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as in the scalar case, the solution is worse as the CFL grows in presence of strong

discontinuities and/or relatively important source terms. Looking for a compro-

mise between accuracy and efficiency in the method, instead of devising a complex

procedure to improve the estimation of the advection speeds in presence of strong

discontinuities and/or relatively important source terms, a new parameter ξ is pro-

posed in order to detect these situations and to reduce accordingly the initial target

CFL number. This target CFL value should be chosen always smaller then the

number of grid cells and, as a rule of thumb, one order of magnitude less than it in

cases of convergence to steady flow and two orders of magnitude smaller in cases of

unsteady computations.

The treatment of open and closed boundary conditions in the 1D configuration

has been explored, and two possible techniques are provided for the second case.

Among them, the reflection technique, that sends back the information that would

cross the boundary when using large CFL values, is recommended in the case of

closed boundaries. At open boundaries, no special treatment is required for the

information going out of the computational domain apart from the logical control

of the conservation.

With the proposed modifications, the LTS scheme has been used to reproduce all

kind of flow conditions. Its performance has been illustrated using test cases with

exact solution of steady and unsteady open channel flow problems. In the steady

open channel flow test cases, the LTS scheme has proved efficient and accurate al-

lowing the use of very high CFL values. The technique proposed to control the

size of the CFL in presence of discontinuities has been effective in the steady flow

problems with hydraulic jump. A series of frictionless dam break problem with all

kind of discontinuous geometry have been used as validation test cases. Again, the

LTS has been supplied with the parameter dynamically controlling the appearance

of strong discontinuities and/or important source terms that has been able to ad-

just accordingly the maximum allowable CFL value to produce accurate and stable

numerical solutions at the cost of reducing the proportional gain that the LTS offers

in linear cases.

The extension to the 2D framework is performed distinguishing between square

and triangular grids. The implementation on square grids is achieved by means

of the dimensional splitting technique. Previous advances related to the source

term discretization and boundary conditions treatment detailed for the 1D case are
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preserved due to the splitting procedure, solving “by rows” or “by columns” three 1D

problems per time step. The 2D LTS scheme on square grid has been presented for

the scalar case, dealing with constant and variable velocity fields and with boundary

conditions. An easy to follow algorithm is detailed. Some considerations have been

highlighted connected to the boundary treatment and information provided by the

characteristic curves has been utilised. The scheme is less diffusive than the first

order upwind (FOU) scheme with a CFL of 0.5 for the 2D scalar equation.

When dealing with triangular grids, the LTS scheme has to be reformulated. The

previous 1D reasoning to pack and send the information is based on assuming certain

hypothesis related to the uniformity in the normal direction of the computational

edges and in the cell size. When dealing with triangular grids, this assumption

is not valid and the contributions have to be homogenized at each wall according

not only to the length but also to the orientation of the normal direction of the

edge. Once the information is packed with this technique, an algorithm to send the

information is proposed, taking into account the velocity field and the orientation

of the edges. It is described for the 2D scalar equation and some test cases are

considered to illustrate the behaviour of the proposed LTS scheme in comparison to

the FOU scheme.

The extension to systems of equations has been described generally, and is then

applied to the 2D shallow water equations with source terms. The ideas advanced

for the scalar case on square grids as well as on triangular grids are extended.

Wet/dry fronts are of interest in any 2D shallow water model. A short procedure

based on the reflection technique at closed boundaries is proposed here for dealing

with them. It consists of identifying the wet/dry solid interfaces and ensuring that

information is not sent through them. The proposed wet/dry treatment, combined

with a careful source term discretization, ensures the well-balanced property and

makes the reduction in the time step size and the appearance of negative values of

the water depth less extreme.

Realistic and notably complex test cases have been suggested to evaluate the per-

formance of the 2D LTS scheme under exacting conditions. As expected, it is

demonstrated to be less diffusive than the standard FOU scheme, although sev-

eral oscillations appear in the most extreme situations in square grids, as in the 1D

case. In the case of triangular grids, the information is spread out in many direc-

tions and the oscillations are partially eliminated. In general, the wet/dry fronts are
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well reproduced, achieving results which are as good as those of the conventional

first order upwind scheme, but with the larger CFLs giving the potential for faster

computation.

The computational time is assessed briefly for six test cases. An appreciable gain is

achieved when dealing with the 2D LTS scheme although the improvement is less

than the ratio of the respective CFL numbers. It is important to note that, in the

context of the shallow water equations, moderate CFL value are recommended to

be used.

Finally, this LTS scheme is an explicit method, and the advantages related with this

kind of schemes are conserved. Moreover, the CFL condition is relaxed and larger

time steps can be used, so that a computational gain and less diffusive results can

be achieved in most cases. The obtained results point out that the LTS scheme is

able to predict faithfully the overall behaviour of the solution.



Part III

1D-2D coupled models





Introduction

To combine the advantages of each model, coupled 1D-2D models have been pro-

posed. The first simplified 1D-quasi 2D model dates to 1975 with the Mekong river

delta model [35], where a 1D model of looped channel flow, solving the SWE with

the Preissmann scheme, was integrated with a storage cell algorithm using the mass

conservation equation to link domains. The storage cell approach was later adopted

also by Blade et al. [9] on academic test cases. In a similar way Kuiry et al [68] ap-

plied a simplified 1D-quasi 2D model to a stretch of River Severn, solving 1D SWE in

the river channel and using a storage cell method to compute the overbank flow. The

link between 1D and 2D models is represented by deriving the flow rate exchange

from the diffusive wave approximated equation. Villanueva and Wright integrated

a 1D model with two 2D models [124], the first based on a storage cell approach

and the second on a Riemann solver. These models were linked via spills between

the main channel and the floodplain with mass transfer. In [83] two strategies were

reviewed to improve urban flood forecasting. The first consists of a simplification

of the mathematical formulation using an efficient 2D raster storage cell approach

coupled to a 1D channel model. The second one used a sub-grid parametrization

to represent the effects of buildings and micro topography on flow pathways and

floodplain storage. The two strategies were evaluated through a numerical exper-

iment designed to reconstruct a flood in the city of Linton, England. Castellarin

et al. developed and tested the applicability of a quasi 2D hydraulic model [22] to

aid the identification of large scale flood risk mitigation strategies. This approach

considered the interaction between the channel and the floodplains only by mass

transfer, completely neglecting the momentum exchange.

1D-2D models have been applied to large and complex river systems [38] where the

1D model is used only to predict flow velocity and water level in the main river.

Most of the proposed models are linked by a weir equation, in which the volume

exchanged between the 1D and the 2D domain is evaluated according to the water

level difference [76]. The same idea was applied in [56] to solve a levee break. The
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authors coupled a full 1D model based on SWE solved by Preissman method with

a 2D model which solves the diffusion wave equation by a finite difference method.

The overflow through the broken levee is treated as an internal boundary condition.

Yin et al. coupled a 1D solution of the full form of the SWE and a 2D floodplain

flow model to predict the Huangpu river flood and inundation extent [132]. In

[39] the hybrid methodology was also used on a 28km reach of Reno River: flows

through the lateral weir and simulated breaches were computed by a 1D approach

and then adopted as the inflow boundary condition for a 2D model of the flood-

prone area. Horritt and Bates [61] compared two approaches to model floodplain

inundation: a raster-based approach, with channel flow being resolved separately

from the floodplain using either a kinematic or diffusive wave approximation, and a

finite-element hydraulic model aiming to solve the full 2D SWE. The approaches are

tested on a flood event on a short reach of the upper River Thames in the UK, and

are validated against the inundation extent as determined from satellite synthetic

aperture radar (SAR) imagery.

Another form to couple 1D-2D hydrodynamic models consists of a transformation of

2D quantities to 1D quantities just averaging the 2D terms along the cross sections

and imposing continuity at the 1D-2D interfaces. After that, an iterative procedure

is carried out to solve the each coupled 1D-2D problem [44, 84]. This technique turns

out to be a reliable strategy only for simple configurations (e.g. a straight channel

or a river bifurcation). Yu and Lane [133] proposed a loosely coupled approach

where the 1D model is used to provide boundary conditions to the 2D model at the

floodplain interface prior to the initialisation of the 2D model. This study showed

that, if the exchange between river and floodplain is not represented correctly, it is

likely that flood inundation extent will not be modelled correctly. The importance

of boundary conditions for flood inundation predictions is also emphasized.

The idea of a local zoom model superimposed over an open channel network global

model is elaborated in [51, 45]. The zoom model (2D SWE) describes additional

physical phenomena which are not represented by the global model (1D SWE). The

application of this model is only shown for toy test cases. The same model was

further developed in [80] showing results for simple test cases.

Recent research has advanced in exploring 1D-2D coupling strategies to combine

the best attributes of each model. In [46], a coupled 1D-2D model was presented,

in which the momentum transfer between the main channel and the floodplain is
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taken into account. The model is first applied to simple test cases and then to a

real world configuration.

In this work, two coupled 1D-2D models are proposed. Although the principle

of conservation is the basis for both models, they are completely different in the

construction. With respect to the geometric linking, both consist of ’sewing’ the 1D

and the 2D explicit finite volume models presented in Part I, chapter 3, by means

of coupling zones composed by one 1D cell and a finite number of 2D cells.

The first approach achieves mass or mass/momentum conservation over the coupling

zones depending on the flow conditions, enforcing averaged quantities that are shared

in both 1D and 2D models. On the other hand, in the second approach the Riemann

Problem is solved at the 1D-2D interfaces that separates the models. This novel

technique must define appropriately the average values at the coupled edges. With

this procedure, the Riemann Solver becomes easier given that it consists of solving

the Riemann Problem at the 1D-1D walls, at the 2D-2D walls and at the coupled

1D-2D walls and sending the information accordingly. The philosophy of the 1D-2D

coupled hydrodynamic model will be also extended to the solute transport equation,

in which each coupled model will be linked in a conservative way according to its

own coupling philosophy.





Chapter 13

Numerical schemes and geometric

coupling

13.1 Review of numerical schemes for the 1D and

2D model

The governing equations as well as the numerical scheme applied in this work for

the 1D model and for the 2D model must be reminded to better understand the

coupling techniques proposed. In particular, the 1D shallow water equations were

expressed in a conservative form as follows:

∂U(x, t)

∂t
+

dF(x,U)

dx
= H(x,U) (13.1)

U =

(
A

Q

)
, F =

(
Q

Q2

A + gI1

)
H =

(
0

g
[
I2 + A

(
S0 − Sf

)]
)

(13.2)

On the other hand, the 2D shallow water equations are displayed again in a conser-

vative formulation

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= H(U) (13.3)

where U are the conserved variables,

U = (h, qx, qy)
T (13.4)
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F,G are the fluxes of these variables,

F =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

)T

, G =

(
qy,

qxqy
h

,
q2y
h

+
1

2
gh2
)T

(13.5)

and the source terms in (13.3) correspond to the bed and friction slopes

H =
(
0, gh(S0x − Sfx), gh(S0y − Sfy)

)T
(13.6)

Both 1D and 2D shallow water models are based on an upwind first order finite

volume schemes. The system can be written compactly:

∂U

∂t
+
−→∇E = S (13.7)

where E=F and S = H′ in the 1D model and E=(F,G) and S = H in the 2D case.

This equation can be integrated in a grid cell Ω :

∂

∂t

∫

Ω

UdΩ+

∫

Ω

(
−→∇E)dΩ =

∫

Ω

SdΩ ⇒ ∂

∂t

∫

Ω

UdΩ+

∮

T

E ndT =

∫

Ω

SdΩ (13.8)

where n is the outward normal vector, E n is the normal flux and T denotes the

surface surrounding the volume Ω.

The normal flux E n and its Jacobian Jn are a question of interest. Moreover Jn

can be diagonalized

Jn = PΛnP
−1, Λn = P−1JnP

where the diagonal matrix Λn is formed by the eigenvalues of Jn, and P is con-

structed with its eigenvectors. More information can be found in part I, section

3.3.

Applying Roe’s linearization [109] it is possible to decouple the original hyperbolic

system (13.7) and to define locally an approximate matrix J̃n at each wall k whose

eigenvalues λ̃m and eigenvectors ẽm can be used to express the 1D numerical scheme

[86, 16]:
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Un+1
i = Un

i − ∆t1D
∆x



(
∑

m

λ̃+γ̃ẽ

)m

i−1/2

+

(
∑

m

λ̃−γ̃ẽ

)m

i+1/2



n

(13.9)

where i+1/2 represents the computational edge between cells i and i+1 (analogous

with i−1/2 and cells i−1 and i, γ̃mi+1/2 =

(
α̃− β̃

λ̃

)m

i+1/2

and λ̃±m
i+1/2

=
1

2
(λ̃± |λ̃|)mi+1/2.

As stated in the previous chapters, the scheme is proved to be conservative, well-

balanced and positivity preserving.

The time step ∆t is dynamically chosen following

∆t1D = CFL
∆x

maxm,i |λ̃m|i
CFL ≤ 1 (13.10)

Analogously, the 2D numerical upwind explicit scheme can be formulated using the

finite volume approach for the updating of a single cell whose area is Si, dealing

with the contributions that arrive to the cell from the neighbouring walls (see Part

I, section 3.3):

Un+1
i = Un

i − ∆t2D
Si

NE∑

k=1

∑

m

[
(λ̃−γ̃ẽ)mk lk

]n
(13.11)

In this expression, m = 3, NE indicates the number of involved neighbouring walls

in the computation and lk is the length of each edge. When considering unstructured

meshes in the 2D scheme, χi is defined in each cell by using the area of the cell as

well as the length of the k edges:

χi =
Si

maxk=1,NE lk
(13.12)

Therefore, the time step is chosen by using the following rule:

∆t2D = CFL
min(χi, χj)

maxm |λ̃m|
CFL ≤ 1 (13.13)

The transport of a solute with a concentration of φ is expressed for the 1D framework:

∂(Aφ)

∂t
+

∂(Qφ)

∂x
= −KAφ (13.14)
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and the numerical scheme is formulated in a decoupled way as in part I, section

3.4.2:

(Aφ)n+1
i = (Aφ)ni − ∆t

∆x

[
(qφ)↓

i+1/2
− (qφ)↓

i−1/2

]
(13.15)

where

q↓
i+1/2

= Qi +

2∑

m=1

(
λ̃− γ̃ ẽ1

)m
i+1/2

φ↓
i+1/2

=

{
φi if q↓

i+1/2
> 0

φi+1 if q↓
i+1/2

< 0
(13.16)

In the same manner, the 2D transport equation is written as follows:

∂(hφ)

∂t
+

∂(huφ)

∂x
+

∂(hvφ)

∂y
= −Khφ (13.17)

The numerical scheme is analogously decoupled from the hydrodynamic equations

using a conservative formulation (see part I, section 3.4.2):

(hφ)n+1
i = (hφ)ni − ∆t

Ai

NE∑

k=1

(qφ)↓klk (13.18)

where

q↓k = qi +

3∑

m=1

(
λ̃− γ̃ ẽ1

)m
k

φ↓k =

{
φi if q↓k > 0

φj if q↓k < 0
(13.19)

13.2 Coupling strategy and meshing: coupling zones

A new element of discretization for the 1D-2D coupled model is defined from the

discretizations of each model. This new element called coupling zone will always

contain one 1D cell and a number NC of 2D cells. The reason behind assuming

this standpoint is easy: as the advantage of the 1D model resides in the power of

obtaining very good results without using a large number of cells, it is not necessary
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to do a one-by-one assignment between 1D and 2D cells. Figure 13.1 shows two

examples of coupling zones composed by only one 1D cell and some unstructured

triangular 2D cells. As can be seen, two possible configurations may be defined

with respect to the 1D model: frontal and lateral coupling. Moreover, the lateral

configuration will contain left and right coupled cells.

1D

2D
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o
u
p
lin
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 z

o
n
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δx

n
j

2D

Figure 13.1: Frontal and lateral coupling zones

The most direct implication of having an exact number of 2D cells at each coupling

zone is the mesh discretization for the 2D model. The proposed strategy to achieve

an adequate mesh for the 2D model is schematized in Figure 13.2 for the lateral

configuration: once the full domain is characterized as a part of the 1D or of the

2D model (a), the 1D domain is discretized into a number of cells (b). This fact

will provide a left bank and a right bank polylines (c) that will be used as input

information for the 2D model. As each node defining the mentioned polylines belongs

to the 2D model, an exact number of triangles will be defined for each 1D cell (d).

Finally, the 1D cell and the 2D cells that belong to the same coupling zone are

labelled with the same marker in order to simplify the linkage (e).
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(a) (b) (c)

(d) (e)

Figure 13.2: Sketch of an adequate meshing procedure for the 2D domain in the coupled

model



Chapter 14

The Forced Conservative (FC) 1D-2D

coupled model

14.1 Model interaction and time step choice

The main goal is not to build a new coupled model starting from scratch but to link

two pre-existent 1D and 2D models hence the information provided by each model

must be used in the best way. The procedure is simple: once the data reading is

carried out separately by the models, we are able to build the coupling zones and

to connect the 1D cells with its own 2D adjacent cells. Initial conditions are read

and assigned to the corresponding cells to start the simulation. A common element

in both 1D and 2D models is the evaluation of the time step. When dynamically

computed from the CFL condition, ∆t can be different in both models. The global

∆t taken is the minimum value of the two models, that is:

∆t = min(∆t1D,∆t2D) (14.1)

Once ∆t is calculated, each model computes separately their own conserved vari-

ables according to (13.9) and (13.11). The resulting values, not including yet the

interaction between the two models will be called from now on star variables. So,

in each coupling zone, (A,Q)∗ and (h, hu, hv)∗ are provided by the 1D and the

2D model respectively. Then, mass and/or momentum conservation is enforced so

that the variables can be updated and finally ∆t is increased. The flowchart of the

coupled model is summarized in Figure 14.1.

In the frontal configuration, the 1D and the 2D models will always exchange infor-

mation provided they are wet. On the opposite, in the lateral configuration, both



230 The Forced Conservative (FC) 1D-2D coupled model

Figure 14.1: Flowchart of the FC 1D-2D scheme

models will obviously interact only when a flooding at the coupling zone is regis-

tered, whether by the 1D model or by the 2D model. Consequently, it is necessary

to establish an ’overflow level’ for each lateral coupling zone, which will be split

into two levels (left overflow and right overflow). In this work, a simple linear inter-

polation between the extreme left and right points of the each 1D cross section is

established as the left and right overflow levels respectively. Four possibilities arise:

• No overflow. There is not interaction between the models (Figure 14.2, (a)).

• Left overflow. The models exchange information between the 1D cell and

the 2D adjacent cells which are on the left side of the coupling zone (Figure

14.2, (b)).
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• Right overflow. The models exchange information between the 1D cell and

the 2D adjacent cells which are on the right side of the coupling zone (Figure

14.2, (c)).

• Left and right overflow. The models exchange information between the 1D

cell and all the 2D adjacent cells involved at the coupling zone (Figure 14.2,

(d)).

(a) No overflow (b) Left overflow

(c) Right overflow (d)Left and right overflow

Figure 14.2: Possibilities for the interaction between the 1D and the 2D models in a

lateral configuration

Two different coupling strategies are presented on the basis that the computational

domains connect at each coupling zone and the boundary conditions and their treat-

ment must be continuously revisited. This is a strong point that justifies the novelty

of this work in terms of mass and momentum conservation and that will be also im-
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portant when choosing the adequate coupling strategy providing the flow regime at

the boundary.

14.2 Only Mass Conservation (OMC)

This technique consists of imposing an average water level in the coupling zone con-

sidering the involved cells (1D and 2D computational cells) as a single domain where

the water volume conservation is enforced. The common water level is based on a

strict mass conservation. Both models are coupled by considering the information

that crosses the internal boundaries of the coupling zone as relevant in terms of

mass conservation [20]. Figure 14.3 illustrates the contributions to be considered in

a frontal coupling and in a pure lateral coupling.

Figure 14.3: Contributions to be considered in mass conservation: frontal coupling (left)

and lateral coupling (right)

The total water volume of a coupling zone, VCZ can be written as follows:

VCZ = A∗
1D ∆x︸ ︷︷ ︸

1D volume

+

NC∑

i

h∗i Si

︸ ︷︷ ︸
2D volume

+ Qn
1D n1D︸ ︷︷ ︸
1D flow

∆t +

NC∑

i

(Fn
1i · ni li)

︸ ︷︷ ︸
2D flow

∆t (14.2)
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where A∗
1D ∆x is the volume of water in the 1D cell,

NC∑

i

h∗i Si accounts for the

water volume in the NC 2D cells (Si is the 2D cell size), Qn
1D n1D ∆t represents the

volume due to the 1D-flow that crosses the ’discontinuous line’ separating the two

models and

NC∑

i

(Fn
1i · ni li) ∆t gives information about the water volume provided

by the 2D-flow going across the boundaries, where Fn
1i = (qx, qy), ni the outward

normal direction and li the length of each wall taking part in the coupling zone. It

is easy to see that n1D = ±1 in the frontal coupling and n1D = 0 in pure lateral

coupling.

Once VCZ is computed, a new common water level surface zn+1
s is imposed in the

coupling zone by distributing correctly the water volume in the 1D and the 2D

system:

VCZ = An+1
1D ∆x+

NC∑

i

hn+1
i Si (14.3)

where

An+1
1D = An+1

1D (zn+1
s ) hn+1

i = zn+1
s − zbi (14.4)

The computation of the new water surface level zn+1
s is not a trivial task when

dealing with complex topography. As a matter of fact, the meticulous technique

proposed before should also be combined with a careful computation of the common

level once the total water volume of the coupling zone, VCZ , has been calculated. The

aim is building a level-volume table for each coupling zone in the pre-process and,

during the computation, to assign the corresponding level of such water volume.

The procedure will be similar to those used for the computation of the pressure

integrals and the hydraulic tables in part I, section 5.2.2.1. Note that the 2D cells

are involved in this case.

Let consider a coupling zone as in Figure 14.4 (a), composed by one 1D irregular

cell, two coupled 2D cells called 1 and 2 on the left side and three coupled 2D cells

called 3, 4 and 5 respectively on the right side. Figure 14.4 (b) shows a sliced sketch

of the mentioned coupling zone, where the straight lines represent the bottom or

elevation of the corresponding 2D coupled cells.
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(a) (b)

Figure 14.4: Coupling zone (a) and sliced sketch (b)

First of all, it is necessary to construct a vector of N levels zsk , where N represents

the sum of the 1D points defining the irregular cross sections for the 1D model as

well as the elevation of the 2D coupled cells. Then, this vector of levels is sorted

from lower to higher and a table with the information included in (14.5)

zsk bk Sk dBzk Vk (14.5)

must be filled. As displayed in Figure 14.4, k indicates the vector index, zs is the sur-

face level, b is the corresponding width in the 1D model, S includes the accumulated

2D cell sizes, dBz is the corresponding side slopes and V is the water volume. While

the construction of zsk , bk, Sk and dBzk is a straightforward geometric procedure,

the volume is achieved following the rule (14.6):

Vk+1 = Vk + Ck(zsk+1
− zsk) +

1

2
dBzk∆x (zsk+1

− zsk)
2 (14.6)

being ∆x the 1D cell size and C = b∆x + S. This table (14.5) is built in the

pre-process of the information.

A water volume VCZ is computed from (14.2) at the coupling zone, whose corres-

ponding correct level zn+1
s will be imposed there. In order to do this assignment,

the second order (in zn+1
s ) equation (14.7) should be solved:

VCZ = Vj + Cj(z
n+1
s − zsj) +

1

2
dBzj∆x (zn+1

s − zsj)
2 (14.7)

where j is the immediately lower index from that VCZ is located in the table (14.5).
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Finally, the unique solution for zn+1
s which stays between zsj and zsj+1

is imposed

as the common water surface level.

It is important to remark that this technique provides good accuracy in the presence

of irregular geometries, allowing to discern which are the 2D cells that must be wet

or dry when imposing a common level surface.

14.3 Mass and Momentum Conservation (MMC)

The OMC strategy can be extended in order to achieve, apart from the mass con-

servation, also the exact global momentum conservation. For this purpose, not only

a common water level surface is imposed at the coupling zone but also average

velocities in x and y-direction. This will be called from now on MMC.

In the MMC strategy, the information about the flow direction is of interest, hence

an angle θ is introduced in the 1D model in order to express the discharge Q as a

vector:

Q (Qx, Qy) = (Q cos θ,Q sin θ) (14.8)

Using the same procedure as in OMC and also involving the same information, it

is possible to define the amount of momentum in x-direction, Mx, as

Mx = Q∗
x ∆x︸ ︷︷ ︸
1D

+

NC∑

i

(qx)
∗
i Si

︸ ︷︷ ︸
2D

+ En
x n1D︸ ︷︷ ︸

1D flux

∆t +

NC∑

i

(Fn
2i · ni li)

︸ ︷︷ ︸
2Dflux

∆t (14.9)

where Qx
∗
1D ∆x is the momentum in the 1D-system,

NC∑

i

(qx)
∗
i Si in the 2D-system

and En
x and Fn

2i account for the corresponding fluxes that cross the boundary shared

by 1D and 2D models respectively.

En
x =

(
(Qx)

2

A
+ gI1

)n

Fn
2i =

(
q2x
h

+
1

2
gh2,

qxqy
h

)n

i

(14.10)

The momentum considering the y-direction:
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My = Qy
∗ ∆x︸ ︷︷ ︸
1D

+

NC∑

i

(qx)
∗
i Si

︸ ︷︷ ︸
2D

+ En
y n1D︸ ︷︷ ︸

1D flux

∆t +

NC∑

i

(Fn
3i · ni li)

︸ ︷︷ ︸
2D flux

∆t (14.11)

where

En
y =

(
(Qy)

2

A
+ gI1

)n

Fn
3i =

(
qxqy
h

,
q2y
h

+
1

2
gh2
)n

i

(14.12)

It is clear again that n1D = ±1 in the frontal coupling and n1D becomes nil in pure

lateral coupling.

Once Mx and My are computed, average velocity components in x-direction, u, and

in y-direction, v, can be derived from the total water volume in the coupling zone

VCZ using

VCZ u = Mx VCZ v = My (14.13)

Finally, the conserved variables are updated for both the 1D and the 2D models as:

(qx)
n+1
i = hn+1

i u (qy)
n+1
i = hn+1

i v

Qn+1
1D = An+1

1D (u cos θ + v sin θ)

14.4 Boundary conditions and the choice of the

adequate coupling strategy

When detailing the coupling strategies presented before (OMC, MMC), the infor-

mation that crosses the internal line that links both models has been included in

order to contemplate a fully conservative method. However, it is not the only point

to be considered. For example, in a frontal coupling configuration, where the end

of the 1D domain connects with the beginning of the 2D system, the boundary con-

ditions are entirely present and it is relevant whether a supercritical or subcritical
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flow is present at the coupling zone. On the same manner, the 2D domain always

ends up at each coupling zone either frontal or lateral.

This information must be carefully handled for building the coupled model. In this

work, the choice of the adequate strategy (OMC or MMC ) will depend on the flow

regime that is taking place at the coupling zone. In order to decide, average Froude

numbers are evaluated separately in both models, at each coupling zone:

Fr1D =
Q

A

√
g
A

B

Fr2D =
1

NC

NC∑

i

Fri (14.14)

where i runs the 2D cells at the coupling zone. When either the 1D or the 2D

model is supercritical in the coupling zone, the MMC strategy, which accounts for

mass and momentum conservation must be imposed. Otherwise, the OMC strategy,

where only one of the variables (a common water surface level) is enforced, must be

used. It can be summarized in Algorithm 4. According to it, the adequate coupling

strategy is dynamically chosen at each coupling zone in each time step.

Algorithm 4 Choosing the adequate strategy

for each CZ do

Evaluate Fr1D at the 1D cell

Evaluate the average Froude number of all the involved 2D cells

Fr2D =
1

NC

NC∑

i

Fri

if ((Fr1D > 1.0) or (Fr2D > 1.0)) then

Use MMC

else

Use OMC

end if

end for

The MMC strategy is designed so that it reduces automatically to the OMC when

less boundary conditions have to be imposed at the coupling zone. Indeed, theMMC

strategy seems a priori to be more sophisticated than OMC due to the fact that it

is being exchanging information not only related to the mass in both 1D and 2D
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models but also related to the momentum. However, when dealing with subcritical

flow at the coupling zone, only one variable (the common water level surface, OMC

strategy) has to be imposed. Otherwise, if enforcing the MMC technique, more

information than necessary is provided so that the system is “overdetermined” in a

certain way and may produce non-physical results.

14.5 Solute transport

The coupling strategy can be easily applied to the solute transport equation. Let

consider the transport of a substance with a concentration of φ. Analogously of

computing the existent water volume at the coupling zone, the solute volume V φ

can be evaluated as follows:

V φ
CZ = (Aφ)∗1D ∆x +

NC∑

i

(hφ)∗i Si + (Qφ)n1D n1D ∆t+

NC∑

i

(Fs
n
1i ·ni li) ∆t (14.15)

where Fn
1i = (qxφ, qyφ), the n-superscript represents the previous time step and the

∗-superscript indicates the current time step, understood as the result of computing

each numerical method separately, i.e., without any interaction between the models.

As the total volume of water inside the coupling zone VCZ is known, it is feasible to

define an average concentration φ

φ =
V φ
CZ

VCZ
(14.16)

that will be imposed at both the 1D and the 2D cells as follows:

(Aφ)n+1
1D = An+1

1D φ (hφ)n+1
i = hn+1

i φ (14.17)

It is worth remarking that An+1
1D and hn+1

i are previously computed according to

(14.4).



Chapter 15

The Riemann Coupled Edges (RCE)

1D-2D model

15.1 Model interaction: Riemann Problem across

the coupled edges

The FC approach is able to ensure mass or mass/momentum conservation when

necessary but the technique of imposing the same level along the coupling zone and,

in the case of momentum conservation, also the same average velocities, may distort

the phenomena that occur at the 1D-2D frontier. This chapter deals with the con-

struction of a new 1D-2D coupled model by approximating the interaction between

the models using a different point of view: the definition of local Riemann Prob-

lem across the edges that separate the 1D and the 2D models and their numerical

resolution.

As in the FC 1D-2D coupled model, the geometric link between the models is per-

formed by using coupling zones. Figure 15.1 shows an example of a lateral coupling

zone, representing the irregular bathymetry that can be found in a river channel in

a 3D view (left) and in plant view (right).

The identification of each coupling zone is done in the pre-process. Afterwards,

the set of initial conditions for each model is applied and the computation starts.

This approach is based on computing the fluxes at each interface, whether 1D-1D

edge, 2D-2D edge or 1D-2D edge. As the computation of the numerical fluxes for

the 1D-1D and the 2D-2D edges is performed by using the conventional first order

upwind scheme explained in (13.9) and (13.11) respectively, the focus will be put on

the 1D-2D edges.
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Figure 15.1: Lateral coupling zone: 3D view (left) and plant view (right)

The strategy is based on the resolution of the local Riemann Problems at each 1D-2D

interfaces, which requires the definition of discrete averaged values at each coupling

edge. The idea developed in this work consists of transforming the 1D quantities

into 2D quantities to solve the corresponding Riemann Problem as if it was a 2D-2D

interface. Although the problem is undetermined in a certain way, estimations of

the velocity field, the water depth and the bottom are required to define the local

Riemann Problem and to be able to define the averaged quantities.

First, the bed level is set to the lowest point in the 1D cell and the water depth

is chosen as the water depth of the 1D cell. Furthermore, the discharge in the 1D

model, Q1D, can be converted into a vector according to the coupling zone angle θ

as in (14.8) and consequently, the velocity vector u1D and the unit discharge vector

q1D are easily estimated as:

u1D = (u1D, v1D) = (

(
Q

A

)

1D

cos θ,

(
Q

A

)

1D

sin θ)

q1D = (qx1D, qy1D) = (

(
Q

B

)

1D

cos θ,

(
Q

B

)

1D

sin θ)

(15.1)

where A1D and B1D are the wetted area and the top width surface respectively. It is

worth noting that, in the case of the lateral configuration, this angle is characterized
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for each coupling zone side θL or θR (left or right). Therefore, each Riemann Problem

can be projected over the direction x′ given by the normal vector nκ at each 1D-2D

wall or edge κ (see Figure 15.2)

2D
1D 2D

U

Un
2D

Un
1D

nκ

θLθR

x′

x′

x′ = 0

Figure 15.2: Riemann problem in the 1D-2D edge

The average quantities that allow to define the local Riemann Problem are conse-

quently written as follows:

ũ =

√
h2D u2D +

√
h1D u1D√

h2D +
√
h1D

, ṽ =

√
h2D v2D +

√
h1D v1D√

h2D +
√
h1D

, c̃ =

√
g
h2D + h1D

2
(15.2)

where δh = h1D − h2D, δz = z1D − z2D, δqx = qx1D − qx2D , δqy = qy1D − qy2D ,

ũ · n = ũ nx + ṽ ny, δq · n = δqx nx + δqy ny and the average states at each coupled

1D-2D wall κ are represented with the tilde variables. The local eigenvalues λ̃m

and eigenvectors ẽm, as well as the contributions due to the fluxes and the source

terms are defined as in the 2D case (part I, (3.31) and (3.34)). Note that Sf,n in
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Part I, (3.32) requires the definition of an average Manning roughness coefficient

between cells 1D and 2D and also the computation of the normal distance between

the centroid of the involved cells.

Once the averaged quantities for the 1D-2D edges are defined, the time step size is

question of interest. It should be chosen as the minimum of the time step sizes of

the three mentioned interfaces:

∆t = min(∆t1D,∆t2D,∆t1D2D) (15.3)

where ∆t1D and ∆t2D are the time step sizes for the 1D-1D edges and for the 2D-2D

edges, as defined in (13.10) and (13.13) respectively. Given a 1D-2D edge κ with

length lκ, separating a 1D cell and a 2D adjacent cell with area S2D, ∆t1D2D is

defined as:

∆t1D2D = CFL
χκ

maxm,κ |λ̃m|κ
χκ = min(∆x1D , S2D/lκ) (15.4)

with κ runs over the coupling edges and the CFL number is chosen as the more

restrictive between the CFL’s selected for the 1D and the 2D models:

CFL = min(CFL1D,CFL2D) (15.5)

Once the contributions due to the fluxes and sources terms are sent, the conserved

variables are updated and the time is increased as usual, according to the time step

size. The procedure can be summarized in Figure 15.3, where a flowchart of the

RCE 1D-2D model is included.

15.2 Extended numerical scheme

The numerical resolution of the RCE coupled model is indeed composed by three

sub-solvers, each one in charge of a different type of edges. As mentioned above,

the 1D-1D edges as well as the 2D-2D edges are solved as usual, i.e., sending the

information as if there were not any connection between the models. The third one

involves the 1D-2D interfaces and is fairly similar to the resolution of the 2D-2D
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Figure 15.3: Flowchart of the RCE 1D-2D scheme

edges. Figure 15.4 shows a sketch of the contributions from each type of edge in the

RCE 1D-2D coupled model.

The expression of the numerical scheme for the updating of a 2D triangular cell,

including the contributions from the 2D-2D edges k as well as those coming from

the 1D-2D edges κ is

Un+1
i = Un

i − ∆t

Si

NE∑

k=1

∑

m

[
(λ̃−γ̃ẽ)mk lk

]n

︸ ︷︷ ︸
2D−2D edges

− ∆t

Si

∑

m

[
(λ̃−γ̃ẽ)mκ lκ

]n

︸ ︷︷ ︸
1D−2D edges

(15.6)

where m = 1..3 and NE represents the number of neighbouring 2D cells. In the case

of inner cells, NE = 3; otherwise NE = 2 if the cell is a non-corner boundary cell
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Figure 15.4: Sketch of the contributions in the RCE 1D-2D model

and NE = 1 if it is a corner boundary cell.

On the contrary, the 1D numerical scheme including both the contributions of the

1D-1D and the 1D-2D edges must be split into two expressions, representing the

updating of the wetted area:

An+1
i = An

i − ∆t

∆x



(
∑

m1

λ̃+γ̃ẽ1

)m1

i−1/2

+

(
∑

m1

λ̃−γ̃ẽ1

)m1

i+1/2



n

︸ ︷︷ ︸
1D−1D edges

− ∆t

∆x

NC∑

i=0

3∑

m2=1

[
(λ̃−γ̃ẽ1)

m2

κ lκ
]n

︸ ︷︷ ︸
1D−2D edges

(15.7)

and of the discharge:
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Qn+1
i = Qn

i − ∆t

∆x



(
∑

m1

λ̃+γ̃ẽ2

)m1

i−1/2

+

(
∑

m1

λ̃−γ̃ẽ2

)m1

i+1/2



n

︸ ︷︷ ︸
1D−1D edges

− ∆t

∆x

NC∑

i=0

3∑

m2=1

[
(λ̃−γ̃ẽ2)

m2

κ lκ
]n

cosθ − ∆t

∆x

NC∑

i=0

3∑

m2=1

[
(λ̃−γ̃ẽ3)

m2

κ lκ
]n

sinθ

︸ ︷︷ ︸
1D−2D edges

(15.8)

where m1 = 1..2 and NC is the number of adjacent 2D cells associated to the 1D

cell in the coupling zone.

All techniques explained in part I for the correction of the source amount in the

case of wet/wet problems, friction issues and the algorithm to handle wet/dry fronts

must be applied to the 1D-2D edges. Furthermore, it should be noted that, in the

lateral configuration, the contribution from the 1D-2D edges are non-zero when an

overflow occurs. Otherwise, solid wall or zero flow has to be imposed over the 2D

cells that could have water depth greater than zero.

15.2.1 Solute transport

The RCE strategy to couple the 1D and the 2D models can be conveniently extended

to the solute transport equations using the separate conservative approach explained

in part I, section 3.4. Let consider a solute with a concentration φ. The numerical

flux for the solute equation can be written for the 1D-2D edges κ

q↓κ = q2D +

3∑

m=1

(
λ̃− γ̃ ẽ1

)m
κ

φ↓κ =

{
φ2D if q↓κ > 0

φ1D if q↓κ < 0
(15.9)

where q2D = (qxnx + qyny)2D is the normal unit discharge of the 2D cell. The

complete 2D numerical scheme, combining the contributions coming from the 2D-

2D edges and those arriving from the 1D-2D edges, is formulated in a conservative

way
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(hφ)n+1
i = (hφ)ni − ∆t

Ai

NE∑

k=1

(qφ)↓klk

︸ ︷︷ ︸
2D−2D edges

− ∆t

Ai
(qφ)↓κlκ

︸ ︷︷ ︸
1D−2D edges

(15.10)

The 1D scheme can be expressed compactly again, adding to (13.15) the contribu-

tions from the NC adjacent 2D cells associated to the 1D cell through the corres-

ponding coupling zone:

(Aφ)n+1
i = (Aφ)ni − ∆t

∆x

[
(qφ)↓

i+1/2
− (qφ)↓

i−1/2

]

︸ ︷︷ ︸
1D−1D edges

− ∆t

∆x

NC∑

κ=1

(qφ)↓κlκ

︸ ︷︷ ︸
1D−2D edges

(15.11)



Chapter 16

Numerical results

The main objective of this chapter is to test the two 1D-2D coupled models presented

in the previous chapters by means of different test cases. One test has been chosen

for calibration corresponding to a extreme dam break in a channel propagating into

a flood plain [125]. Being a test case without almost influence of source terms, the

hydrodynamic of the system can be deeply analysed when coupling both models.

Then, a trapezoidal channel connected laterally with a floodplain area is used as

validation test case including steady and unsteady flow scenarios and comparing the

numerical results with a fully 2D model in terms of time evolution at several probes

over the domain. The behaviour of the coupled models is also tested in a Y-shape

junction problem, with two geometry configurations that have an impact on the

flow regime. The implementation of the solute transport coupling is also tested by

means of the same trapezoidal channel described above, with a simplified nitrogen

Water Quality Model. After, it is applied to the Ebro river, a real meandering river

with complex topography where the numerical results of the coupled model in terms

of flooding extension and longitudinal profiles are compared with those obtained

with a fully 2D modelization. Finally a realistic simulation of a five day flooding

event in the Tiber river (Italy) combined with the transport of a passive solute is

performed. The numerical results are compared with field measurements as well as

with a refined fully 2D model.

The computational gain achieved by the proposed 1D-2D coupled models is also

estimated in all the test cases presented, analysing the results in terms of speed-up

in comparison with a complete 2D model.
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16.1 Test case 1: Experimental dam-break in a

channel with a floodplain

In this section, the simulation of a dam break in a channel that ends into a flood plain

[125] is presented. The test case was designed and measured in the National Lab-

oratory of Civil Engineering in the IST in Portugal. Initial conditions are h=0.504

m at the reservoir and h=0.003 m in the rest of the channel and flood plain [125].

Solid walls are all around except at the outlet that is free (see Figure 16.1). A flat

bed level is assumed all over the domain and the friction was previously calibrated

with a Manning coefficient of n=0.009 s/m
1

3 . The time evolution of the water depth

was measured at probes P1, P2, P3, P4, P5 and P6 displayed in Figure 16.1.

5

5

10.20 m

1.70 m

0.25 m

0.30 m

1.05 m

5.50 m

Figure 16.1: Description of the test case 1. Geometrical data. Gauge points location

Figure 16.2 illustrates the discretization used for both frontal and lateral config-

urations. The mesh used in the 2D domain of the coupled model is unstructured

triangular grid. Apart from experimental data, the fully 2D model, used as reference

solution whose discretization is composed by 8760 unstructured triangular cells and

the fully 1D model, discretized with ∆x=0.1 m are also included in order to evaluate

the relative behaviour of the proposed coupled model. It is worth emphasizing here

that the main objective of this work is to evaluate whether a coupled model is able

to produce numerical results at least of the same accuracy of those from the 2D

numerical model but at a reduced computational cost.

Despite the apparent simplicity, this test case involves large Froude numbers (near

to 4) at the location of the wave front. The measurements of the water depth
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1D 125 cells

2D 6195 cells

Figure 16.2: Test case 1: Upper: discretization of the frontal coupling domain. Lower:

discretization of the lateral coupling domain

contain an experimental uncertainty. As the water depth values are relatively small

in this test case (around centimetres) the experimental error is rather noticeable

in some probes showing oscillatory experimental data. As already noticed in [125],

the numerical models are sometimes unable to reproduce exactly these experimental

measurements.

Figure 16.3 shows the comparison of the numerical results obtained with the FC

1D-2D frontal and lateral coupling, the fully 1D model, the fully 2D model and the

experimental measurements in time evolution of the depth of water at the gauge

points. The same evaluation is carried out for the RCE 1D-2D model in Figure

16.4. As the results between both coupled models (FC and RCE) are very similar,

the following discussion of the results will be referred to the 1D-2D coupled model

in general.

Attending to probes P2 and P6, both the 1D-2D frontal and lateral coupling models

are able to reproduce faithfully the experimental measurements being very similar to

the fully 2D approach. However, at probe P6, the RCE 1D-2D model approximate

slightly better the rebound. At probe P1, located within the narrow region, the

predictions of all models almost coalesce but they are all unable to approximate

well the experimental data. This was already noticed in the original work [125].

The same happens at probe P4, where unexpected oscillatory measurements are not

reproduced by any model. The behaviour at probe P3 is slightly different. The

1D-2D lateral coupling model does not approximate accurately the experimental

data at this probe due to the 1D cross section averaging and the 1D-2D frontal

coupling strategy propagates the flood wave slower than the fully 2D model or the

experimental data. Probe 5 is located near the lateral wall were the shock wave

reflects so that it shows first the arrival of the front and then the arrival of the
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Figure 16.3: Test case 1: Comparison of numerical results (FC 1D-2D model) and

experimental measurements for the water depth at the gauge point P1 to P6, from upper

left to lower down respectively

reflected wave. The fully 2D model and the 1D-2D frontal coupled model, with all

the floodplain considered as a 2D domain, show the best results. They compare to

those reported in [125]. The 1D-2D lateral coupled model performs worse due to

the forced average values introduced along the 1D domain.

On the other hand, as expected, the fully 1D model, which represents the floodplain
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Figure 16.4: Test case 1: Comparison of numerical results (RCE 1D-2D model) and

experimental measurements for the water depth at the gauge point P1 to P6, from upper

left to lower down respectively

as a sudden enlargement, propagates a flood wave faster than the 2D model, giving

unrealistic results and providing the worst numerical approximation.

Therefore, both 1D-2D models are able to estimate reasonably the results obtained

by the 2D model. In particular, the FC 1D-2D model is able to detect dynamically

the Froude numbers at each side of the coupling zone and determine the adequate
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technique at each moment. For example, the nature of this test case indicates that,

during the simulation time, the coupling technique internally adopted by the model

is always the MMC strategy due to the supercritical flow regime.

It is worth emphasizing that boundary conditions play an important role in the FC

1D-2D coupled model proposed in this work. Therefore, a remarkable statement

derived from the information needed at the boundaries is that not all strategies are

valid for computing certain scenarios. For this purpose, the same dambreak test case

is simulated enforcing a OMC strategy everywhere all the time. Results are shown

in Figure 16.5, plotting the experimental measurements at the known gauge points

against the OMC approach results. The OMC strategy is unable to approximate

the experimental data at almost any of the gauge points, providing also non-physical

results as a consequence of a wrong boundary treatment at the coupling zone where

less information than the necessary is provided.

16.2 Test case 2: Channel with a lateral flood-

plain area

This academic test case deals with a 2000 m long and 60 m base wide trapezoidal

channel connected laterally with a floodplain area (Figure 16.6). A longitudinal

slope of 1/1000 is assumed and the friction is modelled by using different Man-

ning coefficients: n=0.015 s/m
1

3 in the river bed and n=0.035 s/m
1

3 in the lateral

floodplain.

Being a synthetic test case, the numerical results obtained by both coupled models

will be compared with a fully 2D model through 10 probes situated in the floodplain

area. A sketch of the test case containing the location of the probes can be observed

in Figure 16.7.

The comparison with a fully 2D model is only a good measure of the behaviour of a

new coupled model when the mesh is fine enough. Contrary to the previous test case,

the channel and floodplain are not flat. The 2D grid refinement should represent

faithfully the topography. In this case, the topography is represented by the 2D

model through computational cells covering all the domain and the representation

of the terrain is as accurate as the mesh resolution.
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Figure 16.5: Test case 1: Comparison of numerical results with an OMC strategy and

experimental measurements for the water depth at the gauge point P1 to P6, from upper

left to lower down respectively

The trapezoidal cross section is represented by unstructured triangular cells (Figure

16.8) so that, if a fine discretization is not applied, some errors can be derived from

this aspect.

Two scenarios involving lateral coupling are simulated in order to evaluate again the

performance of the scheme: steady and unsteady flow.
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Figure 16.6: Description of the test case 2: a channel connected laterally with a

floodplain area

Figure 16.7: Test case 2: Position of the probes

60m2m2m 2m 2m

2m

6m

Figure 16.8: Test case 2: channel cross section geometry and 2D discretization into

triangular cells

16.2.1 Steady flow

A constant discharge of 600 m3/s is introduced as the upstream inlet boundary

condition and the model is run until convergence to steady state. A gauging curve
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is used as outlet boundary condition at the end of the channel. The numerical results

obtained by the FC and RCE 1D-2D models are compared with a fully 2D model

in terms of longitudinal profile along the channel center line once the steady state

is reached (Figure 16.9) and also registering the time evolution of the water depth

at each probe (Figures 16.10 and 16.11).
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Figure 16.9: Test case 2 steady flow: longitudinal profile along the channel
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Figure 16.10: Test case 2 steady flow: probes 1-5. 1D-2D (points) , fully 2D (lines)



256 Numerical results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000

de
pt

h 
(m

)

time (s)

probe6 FC 1D-2D
probe6 RCE 1D-2D

probe6 2D
probe7 FC 1D-2D

probe7 RCE 1D-2D

probe7 2D
probe8 FC 1D-2D

probe8 RCE 1D-2D
probe8 2D

probe9 FC 1D-2D

probe9 RCE 1D-2D
probe9 2D

probe10 FC 1D-2D
probe10 RCE 1D-2D

probe10 2D

Figure 16.11: Test case 2 steady flow: probes 6-10. 1D-2D (points) , fully 2D (lines)

Observing the results, an almost constant difference is appreciated between the fully

2D numerical model and the proposed 1D-2D coupling models. As the difference is

almost constant in all the probes it may indicate that the deviation is due to the

Manning roughness coefficient in the river bed and its adjustment for each model.

In both simulations, the choice of this coefficient has the same value but, however,

it is underestimated by the 1D approach (included in the coupled model) achieving

a lower water depth in the time evolution of each probe.

In order to corroborate this hypothesis, a new simulation has been carried out by

tuning manually the Manning coefficient to n=0.0155 s/m
1

3 in the river bed for the

coupled model. The results can be observed in Figure 16.12 plotting the longitudinal

profile all along the channel and in Figures 16.13 and 16.14, where the water depth

time evolution is registered for the three models.

As shown, the results obtained by both coupled models coalesce almost exactly with

the same obtained with the fully 2D model. In particular, the behaviour at probe 6

that is always ’dry’ is emulated in both models.

The Froude number is less than one in all the domain, so the test case is always

developed in a subcritical regime. Therefore, the FC 1D-2D coupled model is auto-

matically using the OMC strategy during all the simulation in order to compute the

water surface level at each coupling zone. In order to check again the importance of
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Figure 16.12: Test case 2 steady flow: longitudinal profile along the channel
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Figure 16.13: Test case 2 steady flow: probes 1-5. n=0.0155 s/m
1

3 in the river bed.

1D-2D (points) , fully 2D (lines)

the boundary treatment, the same case is simulated enforcing the MMC strategy.

Results are shown in terms also of longitudinal profile and time evolution of water

depth at each measurement point in Figures 16.15, 16.16 and 16.17. When using the

MMC strategy in presence of a subcritical regime, more information than necessary
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Figure 16.14: Test case 2 steady flow: probes 6-10. n=0.0155 s/m
1
3 in the river bed.

1D-2D (points) , fully 2D (lines)

is provided, and the numerical solution achieved by the FC 1D-2D coupled model

is far from that obtained by the fully 2D model arriving to non-physical results.
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Figure 16.15: Test case 2 steady flow: longitudinal profile along the channel. MMC

strategy
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Figure 16.16: Test case 2 steady flow: probes 1-5. n=0.0155 s/m
1
3 in the river bed.

MMC strategy. 1D-2D (points) , fully 2D (line)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  5000  10000  15000  20000  25000  30000  35000  40000

de
pt

h 
(m

)

time (s)

probe1 2D
probe1 MMC 1D2D

probe2 2D
probe2 MMC 1D2D

probe3 2D
probe3 MMC 1D2D

probe4 2D
probe4 MMC 1D2D

probe5 2D
probe5 MMC 1D2D

Figure 16.17: Test case 2 steady flow: probes 6-10. n=0.0155 s/m
1
3 in the river bed.

MMC strategy. 1D-2D (points) , fully 2D (lines)

16.2.2 Unsteady flow

Adopting the modified Manning roughness coefficient n=0.0155 s/m
1

3 in the river

bed for the coupled model, a new comparison is proposed by using the same test
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case now considering unsteady flow. A triangular inlet discharge hydrograph (Figure

16.18) with a peak discharge of 600 m3/s is introduced to the system. The water

depth time evolution at the gauge points (Figure 16.7) resulting from the coupled

models is compared again with a fully 2D model in Figures 16.19 and 16.20.
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Figure 16.18: Test case 2: Triangular inlet hydrograph
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Figure 16.19: Test case 2 unsteady flow: probes 1-5. 1D-2D (points) , fully 2D (lines)

A good agreement is achieved between both sets of numerical results. Not only the

shape of the probes registering some water is respected but also the absence of water

at probes 1, 6 and 7 is well reproduced by the coupled model.
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Figure 16.20: Test case 2 unsteady flow: probes 6-10. 1D-2D (points) , fully 2D (lines)

16.3 Test case 3: Convergence to steady state in

a Y junction

Two cases of numerical simulation of the evolution of flow towards steady state at

a junction of three channels of large slope are next presented. The interest of this

test case lies in the changing flow regime due to the configuration of the system.

The dynamical choice of the adequate strategy (OMC or MMC) for the FC 1D-2D

coupled model will be evaluated as well as the ability of RCE 1D-2D model to solve

the Riemann Problem under these conditions.

A rectangular cross section channel 1m wide (channel 1) branching into two channels

of the same geometry (channels 2 and 3) are considered. A constant discharge of 3

m3/s is assumed at the inlet point to channel 1 and a fixed Froude number of 0.14

is enforced at the outlet of channels 2 and 3, starting from the initial conditions of

uniform water depth of 2 m.

As experimental data are not available for this test case, a fully 2D model is used

to compare with the results achieved by the proposed 1D-2D coupled models. The

comparison will be made through the longitudinal profiles achieved by each model as

well as through several probes or gauge points placed all along the domain, including

the three channels and the junction location. The exact position of the probes is
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shown in Figure 16.21.
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Figure 16.21: Description of the test case 3. Location of the gauge points. Plain

background: 1D zone in the coupled model. Gray background: 2D zone in the coupled

model made of 1033 triangular cells

Two configurations are proposed by changing the bed slope of each channel, leading

to different flow regimes. The Manning roughness coefficient is uniformly chosen as

n=0.009 s/m
1

3 .

16.3.1 Supercritical junction

In this example, the values of bed slope are

S01 = S02 = S03 = 0.01 (16.1)

The steady state is reached starting from a fully subcritical flow due to the initial

condition. When convergence to steady state is achieved, the flow is supercritical
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all over the domain except for the downstream part of channels 2 and 3, in which

identical hydraulic jumps develop to connect with the outlet boundary condition at

these locations (Figure 16.22). The results in terms of water level surface at each

probe are plotted in Figure 16.23 where the both the FC and RCE 1D-2D models

are represented with points and the fully 2D model in lines as before.

As can be observed, there is a good agreement between both numerical 1D-2D

approaches and the complete 2D model, not only in all the probes but also regarding

the longitudinal profile.

16.3.2 Subcritical junction

With another choice of the bed slope,

S01 = 0.01 S02 = S03 = 0.001 (16.2)

the equilibrium flow reached is subcritical at the junction but discontinuous in chan-

nel 1, where a hydraulic jump connects the two regimes. Therefore, channels 2 and

3 remain always in a subcritical regime. The longitudinal profile for this configura-

tion, when the steady state is reached, is plotted in Figure 16.24. Also numerical

results concerning the evolution in time of the water level surface from the FC and

the RCE coupled models and the fully 2D model are shown in Figure 16.25.

The results are almost the same in the fully 2D model and in both the coupled

models. In particular some oscillations appear in probes 3 to 8 due to the proximity

of the hydraulic jump which are well reproduced by the proposed FC and RCE

1D-2D coupled models.

16.4 Test case 4: Transport of two solutes

This case is designed to compare the proposed FC and RCE 1D-2D schemes with

the transport of two substances: nitrate (NO3) and ammonium (NH4). These

substances represents a simplified Water Quality Model for the nitrogen cycle, are

interdependent and usually, the NO3 concentration increases in the detriment of

NH4. In fact, the solute equations can be written for the 1D configuration:
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Figure 16.22: Test case 3: Longitudinal profiles of channel 1 (upper), channel 2

(intermediate) and channel 3 (lower). Supercritical junction. 1D-2D (points), fully 2D

(lines)
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Figure 16.23: Test case 3: Comparison in terms of water level surface between the

coupled models and the fully 2D model at each probe. Supercritical junction. 1D-2D

(points), fully 2D (lines)

and for the 2D framework:

∂(hφ1)

∂t
+

∂(huφ1)

∂x
+

∂(hvφ1)

∂y
= −K1Aφ1

∂(hφ2)

∂t
+

∂(huφ2)

∂x
+

∂(hvφ2)

∂y
= K1Aφ1 −K2Aφ2

(16.4)

where φ1, φ2 are the ammonium and nitrate concentration respectively and K1, K2

are the uptake constants expressed as follows:

K1 = KNH4
100.0293T K2 = KNO3

1.0698 100.0293T (16.5)

being T the water temperature (oC) and KNH4
, KNO3

the nitrification and denitri-

fication rate coefficients at T = 20 oC.
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Figure 16.24: Test case 3: Longitudinal profiles of channel 1 (upper), channel 2

(intermediate) and channel 3 (lower). Subcritical junction. 1D-2D (points), fully 2D

(lines)

Following the same geometric configuration of test case 2, a constant discharge of

600 m3/s with constant ammonium (φ1 = 0.2) and nitrate concentration (φ2 =
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Figure 16.25: Test case 3: Comparison in terms of water level surface between the

coupled models and the fully 2D model at each probe. Subcritical junction. 1D-2D

(points), fully 2D (lines)

3.0) is introduced as inlet boundary condition. Once the steady state is reached,

a rapid change in both concentrations (φ1 = 2.0, φ2 = 5.5) is injected to the

system emulating a dump upstream the river reach considered. After one hour,

the concentrations turn back to their initial configuration. Figure 16.26 shows the

evolution in time of the inlet ammonium and nitrate concentration.

The simulation is carried out during 12h. Figure 16.27 shows two snapshots at

t=7.5h for the ammonium concentration (left) and at t=12h for the nitrate concen-

tration (right). The numerical schemes used are the fully 2D model (upper), the FC

1D-2D model (middle) and the RCE 1D-2D model (lower). As displayed in these

figures, the RCE 1D-2D coupled model is qualitative able to approximate the re-

sults achieved by the 2D model. However, the FC 1D-2D model does not represent

correctly the advances of the solute front.

In order to corroborate this conjecture, the evolution in time of each probe defined
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Figure 16.26: Test case 4: Evolution in time of the inlet nitrate and ammonium

concentration

Figure 16.27: Test case 4: Snapshots at t=7.5h for the ammonium concentration (left)

and at t=12h for the nitrate concentration (right). Fully 2D model (upper), FC 1D-2D

model (middle) and RCE 1D-2D model (lower)
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for the system in 16.6 is again registered for the ammonium and for the nitrate

concentration in Figures 16.28 and 16.29 respectively.
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Figure 16.28: Test case 4: Numerical solution of the time evolution of the ammonium

concentration at probes 1-5 (left) and at probes 6-10 (right)
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Figure 16.29: Test case 4: Numerical solution of the time evolution of the nitrate

concentration at probes 1-5 (left) and at probes 6-10 (right)

The FC 1D-2D model behaves worse than the RCE 1D-2D model when observing

the spatial distribution of the solute concentrations. Although some probes are well

characterized, the peaks for the nitrate and for the ammonium arrive beforehand at

probe 2, probe 8 and probe 9. The solute transport equation is indeed very sensitive

to the velocity field hence little changes in these variable may produce large changes

in the spatial and temporal distribution of the solute. Moreover, contrary to the

water surface level, the averaging process between the 1D cell and the 2D adjacent

cells to compute a common solute concentration for both models does not seem to
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be adequate in this kind of scenarios.

On the other hand, the RCE 1D-2D model registers some delays at probes 8 and 9

and arrives earlier than the 2D model at probe 3. These wrong estimations can be

attributed to the velocity field for the RCE 1D-2D model, that is slightly different

from the 2D complete model and does not capture the partial bidimensionality of

the main channel an the end of the floodplain. However, the overall behaviour is

very similar to the 2D model, achieving very good results in terms of accuracy.

16.5 Test case 5: A meandering river reach. The

Ebro river

A case study based on a reach of the Ebro river near urban area (see Figure 16.30) has

been selected to evaluate the uncertainty in the flooding predictions introduced by

the choice of the proposed coupled models. The Digital Terrain Model (DTM) used

in this work was provided by the Ebro River Basin Administration (www.chebro.es).

It had been obtained using the Laser Induced Direction And Ranging (LIDAR)

data, by means of a test programme using a single pulse scanning sensor, with 0.10

m vertical accuracy and 1 m horizontal resolution. The DTM provides data of great

accuracy, but does not furnish any information of the region covered by the water.

However, the uncertainty on the particular shape of the river bed under the water

surface has been eliminated by reconstructing the river able to convey the water

discharge that was flowing in the moment of the LIDAR measurements and so that

it reproduces the water surface extension and slope as measured. The DTM plus the

river bed reconstruction were used as a full bed topography to provide information

to both 2D and coupled models.

Two scenarios have been carried out in order to see the performance of the coupled

schemes: steady and unsteady flow. Not having an exact solution or measured data

in this river reach, the numerical solution from a fully tested 2D simulation model

with a fine grid of 200000 unstructured triangular cells (Figure 16.31 (left)) has

been used as a reference solution. In both the FC and the RCE coupled models, the

floodplain inundation is clearly complex hence requiring a 2D model when numerical

simulation is sought as more than one flow direction are relevant. Therefore, the

river bed will be simulated with a 1D model laterally connected with the 2D model.
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Figure 16.30: Description of the test case 4

A detail of the coupling model domains is shown in Figure 16.31 (right). The

discretization in the 1D model is made of 113 cross sections and 112 computational

cells, and the 2D domain is covered by almost 46000 triangular cells. It is worth

noting that the discretization of the pressure integrals in the 1D model has been done

using the integral formulation and the developments described in part I, section 5.

Figure 16.31: Test case 5: 2D model (left) and 1D-2D coupled model (right) for the Ebro

river reach

The 2D computations use a single Manning coefficient n = 0.035 s/m
1

3 all over

the domain. However, the 1D scheme ’inside’ the coupled models needs a greater

coefficient in order to diminish the differences with a 2D model. For this purpose,
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n = 0.035 s/m
1

3 has been chosen all along the 2D sub-domain and n=0.038 s/m
1

3

in the 1D sub-domain of the coupled models.

16.5.1 Steady flow

The generation of steady state conditions in the river reach has been achieved by

convergence to the steady state starting from an empty or dry river. It consists of

applying a constant upstream discharge of 600 m3/s until the river reach fills up

and the outlet discharge is equal to the inlet discharge. Figure 16.33 illustrates the

flooding map predicted by the 2D model (upper), by the FC 1D-2D model (middle)

and by the RCE 1D-2D model (lower). In the 1D-2D representation, the 1D sub-

domain shows the cross sectional basis whereas the 2D sub-domain is meshed in

triangles. A zoom view of the flooding area has been highlighted.

Both coupled models approach very finely the results predicted by the fully 2D model

respecting the wet and the dry regions. Moreover, having a coarse representation of

the information in the 1D domain (only 112 sections), the color scale for the river

bed elevation is almost exactly reproduced. In order to corroborate this hypothesis,

the longitudinal profiles along the river centerline, achieved by each numerical model

is plotted in Figure 16.32. As can be appreciated, there is a good agreement between

the 2D numerical model and the both the FC and the RCE coupled schemes.
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Figure 16.32: Test case 5: longitudinal profile along the river bed for the steady case
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Figure 16.33: Test case 5: Numerical simulation of a steady flow of 600 m3/s in the Ebro

river. Flooded area in the fully 2D model (upper), in the FC 1D-2D model (middle) and

in the RCE 1D-2D model (lower)
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The flooded area predicted by each model represents another measurement of the

quality of the results. Table 16.1 contains the information about the flooded area

computed by the 1D-2D coupled models proposed as well as by the 2D model. The

relative error (less than 3%) shows that the coupled schemes are able to approximate

well the results achieved by the 2D model.

16.5.2 Unsteady flow

From a 75 m3/s steady state, unsteady calculations were performed by assuming a

triangular shape inlet discharge hydrograph rising to 1300 m3/s in 12 hours. The

predicted flood inundations at t=50000 s are shown in Figure 16.35, computed with

a fully 2D model (upper), by the FC 1D-2D model (middle) and also calculated with

the proposed RCE 1D-2D model (lower).

The numerical results indicate that there is a good adjustment between the fully 2D

model and both the coupled model, respecting mainly the wet and dry zones. Small

differences are observed in the first part of the river reach, upstream the island,

where the flooded zone predicted by the fully 2D model is larger than that provided

by the FC and the RCE 1D-2D coupled models. The overall color scale used shows

a good agreement not only along the river bed but also over the floodplain.
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Figure 16.34: Test case 5: longitudinal profile along the river bed for the unsteady case

at t=50000 s

The longitudinal profile (see Figure 16.34) as well as the flooded area predicted by

each model (Table 16.1) display the quality of the results obtained by the coupled
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Figure 16.35: Test case 5: Numerical simulation of a unsteady flow in the Ebro river.

Flooded area in the fully 2D model (upper), in the FC 1D-2D model (middle) and in the

RCE 1D-2D model (lower) at t=50000 s
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model in comparison with the complete 2D model. Both coupled models are able

to reproduce all kind of flow situations and predict faithfully the water level surface

as presented before hence it may be a 2D model overestimation of the flooding due

to the spatial discretization of the river bed bathymetry.

Flooded area (m2) 2D

Flooded area (m2) /

Relative error (%)

FC 1D-2D

Flooded area (m2) /

Relative error (%)

RCE 1D-2D

Steady 9.60089e+05 9.81052e+05 / 2.18% 9.81622e+05 / 2.24%

Unsteady 1.47066e+06 1.48577e+06 / 1.02% 1.49124e+06 / 1.39%

Table 16.1: Test case 5: Flooded area computed by the FC and RCE 1D-2D coupled

models and the 2D model and relative error

16.6 Test case 6: Flooding event in the Tiber

river with solute transport

Developments in GIS software and in computer processing allow the use of high-

resolution DEMs in hydraulic simulations. Hydraulic variables like flow depth and

velocity components can be highly variable over small spatial scales and, as such, are

extremely sensitive to terrain discretization in topography-based simulation models.

Small errors in specifying bed elevation may have a large impact on the prediction

of the flooding area.

The data available for this study were a cartography (scale 1:10000) covering the bot-

tom of the valley together with aerial photographs. Moreover a 2 m x 2 m resolution

digital elevation model (DEM) was also available together with 600 cross sections

coming from land surveys. The topography used by the authors was obtained inte-

grating the DEM with the land surveyed cross sections (10 for the considered reach

displaced in orange in Figure 16.36) in order to describe correctly the floodplain and

the main channel.

The geometric description of the river channel and surrounding topography was
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Figure 16.36: Aerial photograph of Ponzano area with original and interpolated 1D cross

sections

essential for creating a computational mesh consistent with the surface of the study

area. It can significantly affect the numerical results. In this case, first, the banklines

were delineated to separate the river from the flooding area. Then, the 2D domain

was built in order to guarantee the best match between land surveyed cross section

in the river and DEM extracted cross sections. As an example, Figure 16.37 shows a

particular 1D cross section coming from the land survey and the corresponding one

extracted by the modified DEM. Since the comparison is reasonable, the modified

DEM was used in this work.
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Figure 16.37: Comparison between the land surveyed and the DEM reconstructed

extraction for section 5 in Ponzano reach
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16.6.1 Tiber river flood

Tiber river is one of the most important Italian rivers: the catchment area at Rome

is about 17000 km2. It is 406 km long, flowing from the Apennine Mountains to

the Tyrrhenian Sea. Its mean discharge is 267 m3/s while the discharge for a return

period of 200 years is 3200 m3/s. For this study, a 6 × 2 km reach is considered,

which will be referred to in what follows as the Ponzano reach. The flood here

simulated occurred between the 27th of November and the 1st of December 2005.

Its estimated return period is 50 years. The maximum discharge in the Ponzano

reach was about 1440m3/s and the surrounding area was almost completely flooded.

As a result, several measurements were registered at different sections. Figure 16.38

shows the inflow hydrograph (left) imposed as upstream boundary condition. The

recorded evolution in time of the water level surface as well as the discharge at the

outlet section were used to build the downstream boundary condition in the form

of a gauging curve (see Figure 16.38, right).
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Figure 16.38: Ponzano reach: upstream (left) and downstream (right) boundary

conditions

In order to simulate a passive solute transport (chlorine) associated to this particular

flooding event, the solute concentration is also introduced as boundary condition,

mimicking the dump of a substance upstream the river reach of study. The evolution

in time of this solute concentration is also plotted in Figure 16.38 (left).

The water surface elevation was measured in two sections in the Ponzano reach (S1

and S2), located inside the main channel. Besides the observed data, five probes

were selected in order to compare all the proposed numerical models. The location
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of sections and probes as well as the topography of the Ponzano reach are shown in

Figure 16.39 (left).

Two different Manning coefficients are used: 0.035 m/s1/3 for the main channel and

0.0446 m/s1/3 for the floodplain (Figure 16.39, right).
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Figure 16.39: Test case 6. Ponzano reach: Topography and location of section and

probes (left) and Manning roughness map (right)

For the simulation of this event, two numerical models are used: a fully 2D numerical

model and the suggested coupled FC and RCE 1D-2D models. A refined mesh only

in the main channel is used as reference, made of 26895 elements while a coarse

mesh covers the floodplain in the fully 2D model as well as the 2D sub-domain in

the 1D-2D coupled models. The detail of the two meshes used for the computation

is displayed in Figure 16.40. Note that the pressure integrals in the 1D model are

approximated by means of the integral formulation and the developments explained

in part I, section 5.

Figure 16.40: Test case 6. Fully 2D mesh (left) and 1D-2D coupled mesh (right)

The recorded water elevations in sections S1 and S2 are compared, in Figure 16.41,

with the numerical results on the fully 2D model and with the FC and RCE 1D-2D

models.

The numerical models can be also compared by using the information of the evolution

in time registered at the probes P1-P5 by each numerical scheme for the water depth
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Figure 16.41: Test case 6: Comparison between measured and computed data for

sections S1 and S2

(Figure 16.42, left) and for the chlorine concentration (Figure 16.42, right).

As displayed in the previous figures, both the FC and the RCE 1D-2D models

and the fully 2D model generate almost the same results. Not only the maximum

peaks in water surface elevation are fairly captured in comparison to the measured

information but also the peak times are well reproduced and the flooding wave

comes almost at the same time in all the models. This behaviour is also observed at

probes P1-P5 if compared to the 2D complete model for the water depth and for the

solute evolution in time. All the numerical results underestimate the water peaks

in section 2 hence it could be an effect of the downstream boundary condition, the

Manning roughness coefficient (assumed constant along the main river) or even a

bad representation of the bathymetry near this zone.

In general, both the FC and the RCE 1D-2D coupled models achieve reasonable

results, compared to those obtained by the fully 2D simulation. In terms of timing

they predict similar results at sections S1 and at all the observations points P1-

P5. However, the water depth is sometimes underestimated (mainly probe P4).

With respect to the chlorine concentration, results are very similar in all the probes

excluding P1, in which the solute is accumulated when using the FC and the RCE

1D-2D models.

This analysis is based on local measurements (sections and probes) along the domain.

However, the differences can be estimated in terms of inundation maps generated

by each numerical model. As an example, two snapshots during the flood at times

t=72h and t=113h (final state) are plotted at Figures 16.43 and 16.44.
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Figure 16.42: Test case 6: Comparison of water depth (left) and chlorine concentration

(right) among the different numerical models at probes P1-P5
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Figure 16.43: Test case 6: Flooded area (left) and solute distribution (right) at time

t=72 h, computed by the fully 2D model(upper), FC 1D-2D codel (middle) and RCE

1D-2D model (lower)

As can be observed, the flooding extension is almost well captured by all the schemes

presented. Indeed, both coupled schemes are able to reproduce appropriately the

overall behaviour of the water surface elevation achieved by the 2D reference solu-

tion. However, at the right side of the end of the river reach, there is an area which

is flooded by the 2D model and dried by both the coupled models.
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Figure 16.44: Test case 6: Flooded area (left) and solute distribution (right) at time

t=113 h, computed by the fully 2D model(upper), FC 1D-2D codel (middle) and RCE

1D-2D model (lower)

Two main factors can be responsible for this: the outlet boundary condition, which is

slightly different between the fully 2D model and the coupled 1D-2D models, and the

discretization of the river bathymetry in the 2D configuration, which may increase

the water level surface in the main river and, as a consequence, may overflow the

right bank. Regarding the spatial distribution of the solute concentration, it can be

concluded that is also well propagated by using the 1D-2D coupled models, although

several regions are partially overestimated, closed to the boundaries.



284 Numerical results

16.7 Computational time

The previous test cases are useful to test the accuracy of the numerical results

achieved by the proposed FC and RCE coupled model. As seen, they are able

to approach satisfactorily the results offered by the pure 2D model. However, the

2D model has a clear disadvantage associated to the topography discretization due

to the fact that the computational time is governed by the cell sizes. Therefore,

a compromise between the CPU time and the topography representation must be

achieved. In particular, when dealing with a flood scenario, a wrong representation

of the bottom bathymetry in the river bed entails wrong results concerning the

extension of the flooding. Therefore, a fine discretization should be considered in

order to ensure reasonable results with the extra cost in terms of CPU time.

The 1D-2D coupled models eliminates this fine discretization associate to the river

bed topography since the 1D model is able to reproduce it very accurately, requir-

ing less information and saving computational time. Not only a lot of cells which

discretized the river bed are discarded for the 2D domain, but also they are possibly

the cells which limited the time step size. Therefore, the computational time should

be reduced ’a priori’ when dealing with a 1D-2D coupled model.

In order to compare the CPU time consumed, the Table 16.2 is attached where each

test case enclosed its computational time is analysed for the simulations computed

by the fully 2D model, by the FC 1D2D model and also by the RCE 1D-2D model

presented before. The maximum triangle cell area constraint in the fully 2D model

has been chosen equal from that of the 2D domain of the coupled model for each

test case hence the uncertainty related with the choice of different computational

cell sizes is eliminated. All the simulations were carried out in a Intel Core 2 Duo

Quad Core Q9550 2.83 GHz.

The results highlight a computational gain achieved by using the proposed coupled

model. Test case 1 is the less representative in terms of speed-up due to the simu-

lation time (only 10 seconds) as well as the number of cells in the fully 2D model

in comparison with the coupled models. However, when dealing with test cases 2,

3 and 4, the speed-up reached by the both coupled models is not inconsiderable at

all. In test case 4, involving the transport of two substances, the performance of

both coupled models decreases in terms of speed-up with respect to the complete

2D model. On the other hand, in a real configuration (test case 5) where the 1D
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Fully 2D FC 1D-2D RCE 1D-2D

Test case Time (s) Time (s) Speed-up Time (s) Speed-up

1 31 17 1.82 15 2.06

2 Steady 66341 2032 32.65 2120 31.29

Unsteady 11155 376 29.66 369 30.23

3 Supercritical 38416 966 39.77 950 40.43

Subcritical 32521 1013 32.1 1021 32.49

4 39180 1832 21.38 1496 26.19

5 Steady 31952 117 273.09 108 295.85

Unsteady 50368 439 114.73 438 114.95

6 120223 5231 22.98 5006 24.01

Table 16.2: CPU time consumed by the 2D model, the FC 1D-2D model and the RCE

1D-2D model in each test case

model represents only the river bed and the adjacent low-laying areas are covered

by a 2D discretization, the gain observed is particularly noticeable, always achieved

without essentially loss of accuracy. Test case 6, which involves solute transport

achieves a lower gain than the previous test cases due to the discretization in the

fully 2D model.

It is worth noting the similarity in terms of computational time between the two

strategies proposed to couple the 1D and the 2D models. When the solute transport

participates, the FC 1D-2D model increases its computational time with respect to

the RCE 1D-2D model.





Chapter 17

Conclusions

Two 1D-2D numerical coupled models built from existing both 1D and 2D models

are presented in this work. The implementation of these kind of 1D-2D model seems

a good solution to eliminate not only the limitations of the 1D model related with the

underlying mathematical hypothesis which introduce some errors when modelling

flooding waves over 2D domains, but also the uncertainty in the 2D model associated

to the discrete representation of the topography in the river bed. The advantages

of representing the main river with a 1D model are conserved, avoiding the required

fine discretization when using a fully 2D model. The correct propagation along

the floodplain is also guaranteed due to the use of the 2D domain out of the river

channel.

Both 1D and 2D models are based on a conservative upwind cell-centered finite vol-

ume approach, using the Roe’s linearization. A new element of discretization called

coupling zone is defined, composed of one 1D cell and a finite number of adjacent

2D triangular cells. This requirement implies a suitable meshing procedure, able to

achieve a perfect match between the 1D and the 2D domains that are geometrically

coupled.

Two possible strategies to couple both models are presented. The Forced Conser-

vative (FC) 1D-2D model is constructed over the complete conservation property,

taking into account the information that leaves each domain. In this approach, two

possible coupling techniques are considered. The Only Mass Conservation (OMC)

technique is derived from a total mass conservation in the coupling zone. A new

common level surface is established from the total water volume existing at the cou-

pling zone. The Mass and Momentum Conservation (MMC) strategy, considered

as an extension of the OMC enforces not only a new common level at the coupling

zone, but also the velocities u and v in x and y direction coming from a strictly
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mass and momentum control. It is important to remark the importance of com-

puting the exact mass and/or momentum conservation, considering the information

that crosses the limits of the 1D or 2D domains. Thus, the use of each strategy

is not transparent to the boundary conditions of the 1D and the 2D models. The

boundary treatment must be revisited and, according to the flow regime, the OMC

or MMC strategy must be used to avoid non-physical results. A similar procedure

can be done for the solute transport equation: a total solute mass is computed over

the coupling zone, which is converted into a common concentration for the 1D and

the 2D coupled cells.

On the other hand, another strategy based on the resolution of the Riemann Problem

across the coupled edges (RCE) is considered. The solver computes the average

values not only at the 1D-1D and the 2D-2D edges as usual, but also at the well-

defined 1D-2D edges. Consequently, it is necessary to determine adequate average

values at these edges, able to maintain the conservation property in the sense of Roe.

For this purpose, the 1D quantities are ’bidimenionalized’, that is, converted into 2D

quantities that allow to characterize the Riemann Problem at the 1D-2D coupled

edge. When dealing with the solute transport equation, the separated strategy

used to compute a numerical flux through both the 1D-1D edges and 2D-2D edges

explained in part I is also applied to the 1D-2D edges, defining the appropriate

variables.

The effectiveness of both FC and RCE 1D-2D models is tested through diverse test

cases where the performed numerical results of the coupling models are compared

with a fully 2D model as well as with experimental and measured data if existing.

It has also been evaluated in two real world configurations, simulating a reach of the

Ebro river (Spain) by means of a 1D model connected with the riverside floodplain

areas which are covered by a 2D domain, and reproducing the flooding event occurred

in the Tiber river (Italy) in 2005, adding the transport of a passive solute. The

results achieved by both FC and RCE 1D-2D models are proved to be accurate with

respect to those obtained by the fully 2D model.

Finally, the computational gain achieved by the proposed coupled models is anal-

ysed in comparison with the CPU time consumed by a complete 2D model. An

appreciable speed-up is highlighted.
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Conclusiones generales

En este trabajo se han desarrollado métodos numéricos eficientes para la resolución

de las ecuaciones de aguas poco profundas unidimensionales (1D) y bidimensionales

(2D) con transporte de soluto. Este desarrollo se basa en métodos numéricos exis-

tentes de la familia de los esquemas upwind expĺıcitos Godunov de primer orden, los

cuales se han modificado o reinterpretado con el objetivo de conseguir métodos más

eficientes, entendida la eficiencia no solo en términos de tiempo de cálculo como en

precisión. Destacan tres contribuciones principales: la discretización adecuada de

los términos fuente presentes en las ecuaciones de aguas poco profundas (Parte I),

el desarrollo y la implementación de modelos Large Time Step tanto para las ecua-

ciones 1D como 2D de aguas poco profundas (Parte II) y el acoplamiento numérico

de los modelos 1D y 2D en un modelo acoplado 1D-2D de aguas poco profundas con

transporte de soluto (Parte III).

La parte I se concibe como una introducción a las leyes de conservación y a los

esquemas sobre los que se basan los desarrollos que se realizan en todo el trabajo.

En primer lugar se presentan las formulaciones diferencial e integral para las leyes de

conservación mencionadas, haciendo énfasis en el concepto de Problema de Riemann

y en sus resolución para ecuaciones y sistemas de ecuaciones tanto lineales como no

lineales. Igualmente se detalla el esquema numérico de Roe en su versión aumentada,

que permite linealizar los sistemas hiperbólicos de ecuaciones con términos fuente y

dar una receta para su resolución numérica.

Las ecuaciones de aguas poco profundas, tanto en su versión 1D como 2D, se ex-

presan en forma de sistema hiperbólico de leyes de conservación, con lo que es

posible aplicar las técnicas mencionadas anteriormente para su resolución numérica.

Asimismo, en este trabajo se adopta una técnica reciente y novedosa para la reso-

lución de la ecuación el transporte de soluto, que permite desacoplarla del sistema

hidrodinámico de manera conservativa.

El tratamiento de los términos fuente y de las fronteras seco-mojado en las ecua-

ciones de aguas poco profundas se aborda en los siguientes caṕıtulos. En primera

instancia, los modelos numéricos deben evitar algunas situaciones no f́ısicas como la

aparición de calados negativos. Con este propósito y basándonos en las soluciones

aproximadas del problema de Riemann en cada pared de cálculo, se propone expresar
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matemáticamente estas restricciones f́ısicas con el fin de limitar de alguna manera la

“cantidad de termino fuente” cuando las ecuaciones se discretizan. Esto permite dis-

tribuir de manera inteligente las contribuciones tanto en fronteras mojado-mojado

como en seco-mojado.

En segundo lugar, se presenta una nueva técnica de discretización del término fuente

de fondo basada en la formulación integral de las ecuaciones. Esta nueva técnica

permite aproximar mejor el flujo en soluciones discontinuas, en donde la formu-

lación diferencial no siempre es válida. Esta aproximación se desarrolla primero

para las ecuaciones 1D con sección rectangular constante y se extiende después para

geometŕıas irregulares.

Los avances relacionados con la discretización de los términos fuente se validan

mediante diferentes casos test, con y sin solución anaĺıtica, en los cuales se evalúan

las formulaciones diferencial e integral en caso de fuertes contracciones y expansiones

de flujo.

En la parte II se presenta el desarrollo y la implementación para las ecuaciones

de aguas poco profundas del esquema Large Time Step (LTS). Este esquema per-

mite relajar la condición de estabilidad asociada a los esquemas expĺıcitos (CFL

condition), consiguiendo pasos de tiempo más grandes y, como consecuencia, una

reducción considerable del tiempo de cálculo.

En primer lugar se plantea el esquema propuesto por Leveque para ecuaciones es-

calares. Las rarefacciones requieren de un tratamiento especial en forma de varias

discontinuidades que se propagan a diferentes velocidades para poder representar

correctamente su comportamiento. La presencia de los términos fuente se analiza

para el caso escalar y se propone una discretización adecuada para el env́ıo correcto

de la información en este tipo de esquemas.

De la misma manera se propone la extensión a sistemas de leyes de conservación 1D,

aplicando las técnicas descritas para el caso escalar a las ecuaciones 1D de aguas

poco profundas y haciendo uso de la linealización de Roe para poder desacoplar

el sistema original de ecuaciones. Los términos fuente juegan un papel importante

en las ecuaciones mencionadas, por lo que se explora la posibilidad de incluir un

limitador dinámico para la elección del número de CFL, permitiendo readaptar

esta condición ante la presencia de importantes términos fuente y grandes discon-

tinuidades. Además, se proponen nuevas técnicas para las condiciones de contorno
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en estos esquemas LTS.

Posteriormente, se aborda la extensión a ecuaciones o sistemas de ecuaciones bidi-

mensionales y se distinguen dos posibles procedimientos: para mallas cuadradas es-

tructuradas y para mallas triangulares, tanto estructuradas como no estructuradas.

La primera aproximación consiste en resolver las ecuaciones o sistemas de ecuaciones

2D en mallas cuadradas estructuradas aproximándolos por sucesivos problemas 1D

(dimensional splitting) que se resuelven en las dos direcciones del espacio. Por

lo tanto es posible aplicar las técnicas desarrolladas en 1D, tanto para ecuaciones

escalares como para sistemas de ecuaciones y conservar los avances relacionados con

la discretización de los términos fuente, las condiciones de contorno y la limitación

del paso de tiempo en presencia de fuertes discontinuidades.

Después, el esquema LTS se formula para mallas triangulares estructuradas y no es-

tructuradas. El razonamiento anterior para empaquetar y enviar las contribuciones

desde cada pared de cálculo tiene que ser redefinido, teniendo en cuenta la infor-

mación que proporcionan las orientaciones de las direcciones normales de los lados

de las celdas aśı como las longitudes de dichos lados. Además, en mallas no estruc-

turadas, se considerará igualmente la distribución de la información según criterios

de áreas.

En los modelos 2D de aguas poco profundas los frentes seco-mojado son extremada-

mente importantes. Por este motivo se propone una estrategia basada en definir

paredes sólidas, a través de las cuales la información no puede pasar y tiene que ser

reflejada. Además se formula conceptualmente de la misma manera para los casos

de mallas cuadradas y triangulares.

El rendimiento y la precisión de este esquema LTS tanto en configuraciones 1D

como 2D se evalúa mediante escenarios diseñados para tal efecto: casos test que

cubren diferentes rangos de dificultad y de interacción con condiciones de contorno,

términos fuente, frentes seco-mojado y campos de velocidad complejos y variables

en espacio y tiempo. El esquema LTS no sólo mantiene el carácter conservativo

sino que además demuestra tener la misma robustez e igual o mayor precisión en los

resultados considerando no obstante una reducción muy importante en el número de

operaciones efectuadas. Esto da como resultado una solución mucho más económica

en términos computacionales y más precisa en términos numéricos.

Por último, se presenta en la parte III el acoplamiento de los modelos 1D y 2D de
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las aguas poco profundas. La implementación de este tipo de modelos acoplados

1D-2D se demuestra como una buena solución ya que elimina no solo las limita-

ciones relacionadas con los modelos 1D y sus errores cuando se modelan llanuras

de inundación, sino también la incertidumbre asociada a la representación discreta

de la batimetŕıa del ŕıo del modelo 2D. Por ello conserva las ventajas de ambos

modelos, permitiendo además acelerar considerablemente el tiempo de cálculo.

En este apartado se construyen dos modelos acoplados 1D-2D, ambos basados en la

propiedad conservativa. Los dos procedimientos requieren de un proceso de mallado

adecuado para permitir que cada celda de cálculo 1D se acople con un número exacto

de celdas 2D.

El modelo Forced-Conservative (FC) se construye teniendo en cuenta la información

que sale de ambos modelos e imponiendo cantidades constantes en las zonas de

acoplamiento. Para ello, se proponen dos posibles ténicas: Only Mass Conservation

(OMC), basada en la conservación de la masa y en la que se impone un nivel común

en la zona de acoplamiento y Mass and Momentum Conservation (MMC), consi-

derada como una extensión de la primera, en la cual se impone, además de un nivel

común, unas velocidades promedio comunes en la zona de acoplamiento. Se propone

un procedimiento similar para la ecuación del transporte de soluto, definiendo una

concentración promedio en la zona de acoplamiento. Las condiciones de contorno

están muy presentes en este modelo acoplado y la decisión de imponer una u otra

estrategia vendrá condicionada por el régimen de flujo (subcŕıtico o supercŕıtico) y

su relación con las condiciones de contorno en ambos modelos.

Por otra parte, se presenta el modelo Riemann Coupled Edges (RCE), basado en la

definición del problema de Riemann en las paredes 1D-2D y en la posterior reso-

lución de éste con las técnicas numéricas explicadas anteriormente. Para ello, las

cantidades provenientes del modelo 1D se bidimensionalizan, es decir, se convierten

en cantidades promediadas del modelo 2D para poder caracterizar el problema de

Riemann en la pared de cálculo. La ecuación de transporte de soluto puede ser

discretizada de la misma manera, definiendo apropiadamente un flujo numérico en

las paredes de cálculo acopladas 1D-2D.

La precisión y el rendimiento de los modelos acoplados propuestos en este trabajo

se compara mediante diferentes casos test con datos experimentales y con modelos

complemente bidimensionales, que se toman como solución de referencia en ausencia



de datos medidos. Los modelos acoplados 1D-2D se demuestran precisos, proporcio-

nando resultados muy similares a los conseguidos por los modelos bidimensionales y

obteniendo además, una ganancia computacional notable. Esto permite pensar en

la utilización de estos modelos acoplados 1D-2D como herramienta potente y fiable

para la simulación de flujo de inundaciones.
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