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Introduccion

La tecnologia espacial es responsable de una buena parte de los avances tecnolégicos
actuales. Desde el ano 1957, cuando se lanzo al espacio el primer satélite artificial, se
han realizado una gran variedad de misiones espaciales con objetivos muy diferentes.
Una de las partes fundamentales de cada proyecto es el andlisis de mision, que
consiste en la determinacion previa de la 6rbita que seguira el satélite para cumplir las
especificaciones de la mision (Wergy & Larson, 2010). El poder imponer el
cumplimiento de determinadas condiciones para una 6rbita ha permitido alcanzar con
éxito muchos de los objetivos de las misiones realizadas hasta hoy.

De entre toda la variedad de orbitas de satélites artificiales terrestres las mas
conocidas, por su utilidad para las comunicaciones, son las llamadas o6rbitas
geoestacionarias. Las primeras ideas sobre las orbitas geoestacionarias fueron
publicadas por Herman Potoc¢nik en 1928 en su trabajo “El problema del viaje
espacial - El motor cohete”. Afios después, en 1945, Arthur C. Clarke hace mencién
a las ventajas que puede tener el uso de esta 6rbita para las comunicaciones, pues con
solo tres satélites es suficiente para establecer comunicacién con cualquier punto del
planeta, exceptuando regiones cerca de los polos. En el afio 1963 es lanzado, y puesto
en Orbita, el Syncom-2, que es el primer satélite de comunicaciones en orbita
geoestacionaria. Esto confirmo las ideas de Arthur C. Clarke y constituye un avance
fundamental en distintas disciplinas o areas de conocimiento como son: las
telecomunicaciones, climatologia, oceanografia, geodesia, militar, entre muchas otras

’

mas.

Las 6rbitas geoestacionarias pertenecen a un conjunto mas amplio, que llamaremos
orbitas geosincronas, caracterizadas por su sincronfa con la rotacion de la Tierra, de
manera que el periodo orbital del satélite, que es funcion del semieje mayor de la elipse
orbital, coincide con el periodo de rotacion terrestre, esto es, un dia sidéreo (23h 56m
4.09s). Para que ésto sea asi, el semieje (o el radio si son circulares) debe medir 42164
km. Si ademas de la sincronizacién de periodos hacemos que la inclinacion de la 6rbita
sobre el ecuador terrestre sea nula, esto es, que el satélite esté siempre en el ecuador,
conseguimos que el satélite sea visible desde la Tierra como un punto fijo en el
ecuador, de ahi que a estas Orbitas se las llame drbitas geoestacionarias, y que una
simple antena fija permita una recepcion y transmision de datos de forma continua.
Una detallada descripcion de las caracteristicas dindmicas de estas Orbitas puede verse
en Soop (1994). El objetivo de esta memoria es construir una teorfa analitica, basada
en un conjunto especial de variables canénicas, para describir y analizar el movimiento

de los satélites geoestacionarios o proximos a geoestacionarios.




La primera aproximacién al movimiento orbital nos la dan las ecuaciones del
movimiento kepleriano, que no son sino las ecuaciones derivadas de las leyes de
Newton cuando existen fuerzas de atraccion gravitacional entre masas puntuales. La
integraciéon de estas ecuaciones conduce a un movimiento que puede describirse a
partir de las conocidas leyes de Kepler. Las leyes de Kepler nos aseguran o6rbitas
planas y conicas y en ocasiones, cuando la conica es una elipse, periddicas. Sin
embargo, la realidad nos da 6rbitas muy proximas a las descritas por las leyes de
Kepler pero no exactamente iguales, lo que se debe a la apariciéon de otras fuerzas,
gravitacionales o no, que actuan sobre el sistema modificandolo. Entre las fuerzas mas
importantes que perturban la 6rbita de un satélite artificial tenemos: que la Tierra no
es un punto sino un cuerpo no esférico; el rozamiento producido por la atmésfera
cuando el satélite esta dentro de ella; la fuerza gravitacional producida por el Sol y la
Luna, la fuerza de radiacién solar, etc. (Abad, 2012; Danby, 1988; Kovalevsky, 1967).

El problema principal del satélite artificial consiste en el estudio de su movimiento
orbital considerando un modelo kepleriano perturbado por el achatamiento de la
Tierra (o de cualquier otro planeta). El achatamiento de un planeta constituye la
principal perturbacién sobre la 6rbita kepleriana de un satélite artificial; cualquier otra

perturbacion tiene una magnitud mucho menor que ésta.

Las perturbaciones separan el satélite de su posicion prevista, lo que obliga a encender
los motores del satélite, cada cierto tiempo, para situarlo de nuevo en esa posicion.
Naturalmente ese gasto de combustible determina el coste y duracién de la mision
espacial, por lo que un buen conocimiento previo de la 6rbita que seguira el satélite
incide en su coste final. Por ello resulta de gran utilidad la obtenciéon de un modelo
analitico del movimiento del satélite considerando el mayor numero posible de

perturbaciones que permita integrar el modelo.

A pesar de la simplicidad de un sistema dindmico kepleriano, la dinamica del
movimiento orbital se complica notablemente cuando afnadimos cualquier tipo de
perturbaciéon. Tanto si afladimos un tercer cuerpo al sistema orbital como si
consideramos la perturbaciéon producida por el achatamiento obtenemos sistemas
dinamicos “no integrables” que nos conducen a la necesidad de aplicar métodos
numéricos o desarrollos asintéticos para el analisis de los sistemas. L.a tnica
posibilidad de obtener sistemas integrables consiste en restringir alguna de las
caracteristicas del movimiento, por ejemplo, si en el problema principal nos limitamos
a orbitas ecuatoriales, el problema, que llamaremos problema principal-ecuatorial,

se convierte en integrable.

Por su integrabilidad consideraremos el problema principal-ecuatorial del satélite para
trazar la orbita preliminar del satélite en sustitucion de su 6rbita kepleriana. Aunque
existen diversas soluciones analiticas a este problema (Jezewski 1983 y Martinusi &
Gurfil 2013), ninguna de ellas permite su posterior utilizacion para el estudio del efecto




de otras perturbaciones de menor magnitud, como el efecto gravitacional de la luna o
la radiacion solat, etc.

En este trabajo se propone un nuevo enfoque en la solucioén de este problema, basado
en la aplicacién de la ecuaciéon de Hamilton-Jacobi para la obtencién de un nuevo
conjunto de variables canodnicas, similares a las obtenidas por Delaunay para el
movimiento de la Luna (Delaunay 1860), donde, al afiadir la perturbacion del problema
principal-ecuatorial como un término ©* /13, se introducen expresiones dependientes

de funciones e integrales elipticas que seran obtenidas a partir de las relaciones que

aparecen en Byrd & Friedman (1971).

Las variables de Delaunay, cuyo significado esta intimamente relacionadas con los
elementos orbitales, han jugado un papel fundamental en la obtencién de las teorias
analiticas del movimiento orbital. La primera de estas variables es la anomalia media,
[ que no es sino una funcioén lineal del tiempo que varfa de 0 a 2 T en cada periodo,
por lo que su uso equivale a usar explicitamente la variable tiempo en las expresiones
de la teorfa. Una de las caracteristicas del problema kepleriano es que resulta
imposible la obtencion de expresiones analiticas cerradas (que no usen desarrollo en
serie de potencias) para ninguno de los parametros dinamicos que describen el
problema, en particular la distancia r entre el satélite y el planeta. Para resolver esto
se usa, en lugar de la anomalia media, otra variable angular, llamada anomalia
excéntrica, E, cuya relacion con la anomalfa media viene dada a partir de la llamada
ecuacion de Kepler, | = E —esinE, donde e es la excentricidad. Esta relacion
resulta de enorme importancia en el tratamiento del movimiento orbital.

En nuestro caso, aparecera el mismo problema, esto es, no podremos expresar
explicitamente ningin parametro a partir de la primera de las variables obtenidas, por
lo que deberemos desarrollar un procedimiento para encontrar la expresion
equivalente a la ecuaciéon de Kepler, que nosotros llamaremos ecuaciéon de Kepler
generalizada y que jugara, en este problema, un papel similar al de la ecuacién de
Kepler en el movimiento kepleriano. La ecuacion de Kepler generalizada se obtendra
de manera indirecta reformulando el problema principal-ecuatorial como un oscilador
armonico perturbado que se resolvera aplicando el método de Krylov-Bogoliuvov-
Mitropolsky (explicado en el apéndice B y que, a partir de ahora, sera llamado por
brevedad método KBM)

La presente memoria se presenta en tres capitulos que presentan respectivamente: la
formulacion del problema principal-ecuatorial del satélite; la obtencién de unas
variables similares a las de Delaunay adecuadas a este problema (junto con la
integraciéon del mismo); y la obtencién de la ecuacién de Kepler generalizada.
Finalmente, después de las conclusiones, se presentan varios apéndices con las
herramientas basicas usadas a lo largo de la memoria, y la bibliografia utilizada.







1. Formulacidén del problema principal-ecuatorial.

Movimiento kepleriano

El problema kepleriano consiste en el estudio del movimiento de una particula P,
que llamaremos orbitadorl, relativo a otra particula O, que llamaremos cuerpo
central?, Las ecuaciones del movimiento kepleriano estan representadas por el

siguiente sistema de ecuaciones diferenciales:

donde Fj(x, 1) es la fuerza kepleriana, siendo x = OP el vector de posicién de P
respecto de O, r = ||x|| la distancia y g = G(ny + mp) la constante gravitatoria
resultado del producto de la constante de gravitacion universal G por la suma de las

masas de ambos cuerpos.

El sistema diferencial anterior, de orden dos, puede ponerse como un sistema de

ecuaciones de orden uno en la forma

X=X, (1.1)
: T
X = —r—gx,

donde X es el vector velocidad.

El problema kepleriano puede ser también expresado en forma hamiltoniana. Para
ello supondremos un sistema dindmico cuyo hamiltoniano, que llamaremos
hamiltoniano kepleriano, tendra la forma

1 U
HxX)=T+V, ==X X——,
2 [1xIl
donde X representa las coordenadas y X los momentos y hemos llamado energia
cinética del movimiento relativo al primer sumando y energfa potencial del

movimiento relativo al segundo.

! Entre los distintos tipos de orbitadores encontramos, entre otros, planetas, asteroides, cometas, satélites
naturales y artificiales, etc.
2 Estrellas como el Sol, planetas, etc.




Las ecuaciones de Hamilton correspondientes al hamiltoniano H}, son
X = VX ‘(]_[k = X,

X=-V,H, = —r”—gx,

y por tanto son idénticas a las ecuaciones (1.1) del movimiento kepleriano, por ello,
podemos concluir que éste esta representado por un sistema dinamico de

hamiltoniano H,.

Variables de estado: vector de estado

Llamaremos Orbita kepleriana y la denotaremos con el simbolo O, a la solucién de
las ecuaciones del problema kepleriano para unas condiciones iniciales dadas.
Entenderemos por orbita no solo la trayectoria del orbitador, sino todos sus

parametros, tanto estaticos-constantes como dinamicos-variables.

Las ecuaciones del problema kepleriano constituyen un sistema de seis ecuaciones
diferenciales de orden uno. De acuerdo con la teoria de ecuaciones diferenciales
ordinarias la solucién general de dicho sistema vendr4 dada como x = x(t, €), donde
C = (Cy,C,,C3,Cy, Cs, Cg,) representa un vector de seis constantes funcionalmente
independientes que llamaremos variables de estado porque permiten determinar

cualquier parametro de la 6rbita en cualquier instante, es decir, caracterizan la orbita.

Los seis elementos que componen las variables de estado son constantes de la 6rbita
o variables dinamicas particularizadas para un instante dado. En este ultimo caso hay

que dar el valor de éstas y el instante £y en que han sido calculadas.

Una vez determinado el conjunto de variables de estado, la orbita quedara
caractetizada por éste, y pondremos O(C) si los elementos del vector de estado son

constantes de la 6rbita y O (g, €) si son variables particularizadas en t,.

Las variables de estado pueden ser elegidas de diversas maneras. La mas natural, desde
el punto de vista de las ecuaciones diferenciales, es a través de los valores del vector
de posicion, X, y la velocidad, X, para un instante dado. El vector de dimension seis
formado por las componentes de los vectores Xy y Xg se llama vector de estado. De

esta forma una 6rbita kepleriana podra ser representada como O(tg, Xg, Xo).

El vector de estado es la forma mas natural de representar una 6rbita desde el punto
de vista de las ecuaciones diferenciales que rigen la evolucion del sistema, sin embargo
existen otros conjuntos de variables de estado que se adaptan mejor a diferentes

aspectos del movimiento kepleriano.




Por un lado los elementos orbitales constituyen la forma mas natural, desde el punto
de vista geométrico y astronémico, de visualizar y comprender como son las 6rbitas
de los astros. Por otro lado, existen otros conjuntos de variables de estado, como son
las variables polares-nodales y las variables de Delaunay que por su caracter de
variables canodnicas permiten el estudio del movimiento con técnicas de dinamica

hamiltoniana.

Elementos orbitales

Para representar una orbita de forma mucho mas descriptiva, tanto desde un punto
de vista geométrico como astronémico y dinamico, se utilizan unas variables de estado
que se adaptan completamente a la descripcion del movimiento dada por las leyes de
Kepler: los elementos orbitales.

En primer lugar
tomaremos  los  dos
elementos que
caracterizan la  conica
descrita por un cuerpo
que sigue las leyes de
Kepler, esto es, el
semieje mayor (o el

semi-lado recto p) y la

7 e
’ excentricidad e, que
% representan
' respectivamente las

dimensiones y la forma de

Lo ) ) la conica.
Orbita kepleriana en el espacio

Para completar la informacién sobre la trayectoria necesitaremos situarla en el espacio,
para lo cual basta observar la figura que se muestra arriba y recordar que la 6rbita esta
contenida en un plano perpendicular al vector momento angular G = x X X o, lo que
es igual, a su direccién N. Supondremos, por ahora, que la érbita no coincide con el

plano Oxy del sistema espacial, esto es, que n X ez # 0.

Puesto que el plano de la 6rbita y el plano fundamental del sistema espacial Oxy no
son paralelos, necesariamente se cortaran en una recta que pasa por O y pertenece a
ambos planos y que llamaremos Iinea de los nodos. Tomaremos como direccion



positiva de dicha recta la que contiene el nodo ascendente, o punto de la 6rbita en el
que el orbitador pasa de coordenadas z negativas a positivas. El vector unitario [
define la linea de los nodos y forma un angulo (), llamado dngulo del nodo, con e;.

y 8 =1 1

El angulo ) puede tomar cualquier valor entre 0 y 27.

El angulo que forman el vector 1 con e3 sera llamado inclinacion, y denotado por
[, y representa también el angulo entre el plano Oxy y el de la 6rbita. El angulo i

puede tomar un valor cualquiera entre 0 y 7.

El vector m representa también el sentido de la rotacién de la particula pues, debido
a su definicion, ésta tiene siempre lugar en sentido contrario a las agujas del reloj si se
observa desde el extremo de n. De acuerdo con esto, el angulo i que forma n con eg

indica el sentido de giro observado desde un punto cualquiera de la parte positiva del

. , . . . , , . . . . .
eje 0z. Un angulo i entre 0 y 2 indicara una 6rbita directa (sentido de giro contrario

. . . . . ., s . . , , .
a las agujas del reloj), mientras que una inclinacion entre Sy indicara una 6rbita

retrograda (sentido de giro igual al de las agujas del reloj).

Los dos angulos, {) e i representan la posicion del plano de la 6rbita en el espacio,
pero para poder representar con exactitud la situacioén de la conica hay que determinar
la direccion del eje de la misma dentro de su plano. El eje de la cénica, también
llamado Iinea de los dpsides, lleva la direccion de un vector @, que forma un angulo
W con la linea de los nodos. Dicho angulo sera llamado argumento del periastro,
representa la posicion relativa de la cénica en su plano y es la tercera variable angular

de la 6rbita. El argumento del periastro toma un valor cualquiera entre 0 y 2.

Se han completado asf los cinco elementos que caracterizan la geometria de la rbita,
esto es, la forma, dimensiones y situaciéon de la curva que recorre el orbitador. Para
completar la caracterizacion de la 6rbita bastara un elemento que describa la dindmica,
o lo que es igual, que nos informe acerca del punto de la curva o trayectoria en el que

se encuentra el orbitador en cada instante t.
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Anomalias en el movimiento kepleriano




Para ello recordemos que si se elige un sistema de coordenadas polares (7, f), en el
plano de la 6rbita (ver figura anterior), con origen en el cuerpo central O, y con eje de
coordenadas polares segin la direccion del periastro, entonces la ecuaciéon de una

conica nos da la relacion

P
14+ecosf’

donde f es llamada anomalia verdadera.

Para encontrar la relacién de f con t se introducen dos nuevas variables angulares: la

anomalia excéntrica E y1a anomalia medial = n(t — T), siendon = \/u/a? , el

movimiento medio, y T la época o instante de paso del orbitador por el periastro. Las

relaciones entre las tres anomalfas vienen dadas por la expresion

. f_ 1+et E
anz = |-——tan-,

que permite obtener ficilmente f en funcién de E, y E en funcién de f, y por otro
lado por

l=F —esenk, (1.2)

llamada ecuacion de Kepler, que juega un papel fundamental en la Astrodinamica, y
que nos da la relacién de | con E, y por tanto con f. Asi como la relacion anterior
ente f y E es facilmente invertible, la ecuaciéon de Kepler no lo es y permite obtener
facilmente [ conocido E, sin embargo, para obtener E a partir de [, debemos aplicar
un método numérico u obtener la inversa a partir de un desarrollo en serie de

potencias de la excentricidad.

Para caracterizar su dinamica basta considerar finalmente la constante? T, puesto que
a partir de ella y las relaciones entre las anomalias puede obtenerse la posicion del

orbitador en su trayectoria.

Llamaremos elementos orbitales al conjunto de seis constantes (a,e,i,Q,w,T). La
obtencion de los elementos orbitales a partir de las condiciones iniciales (&g, Xo, X;)
y viceversa, cuya demostraciéon puede verse en Abad (2012), demuestra la equivalencia
entre ambos, y en consecuencia los elementos orbitales constituyen un conjunto de
variables de estado. Por tanto, la Orbita kepleriana se puede caracterizar como
O(a,e, i,Q,w,T) o bien como O(ty, xq, X;)-

3 Aunque el elemento T es constante hay que tener en cuenta que, para Orbitas elipticas, éste vatfa de una
vuelta a otra aumentando en una cantidad igual al periodo orbital P.




Variables polares-nodales

Se puede definir otro conjunto de variables que nos serviran igualmente para
caractetizar una Orbita dada. Al conjunto de variables (7,0,Vv,R,0,N) sec le llama
variables polares-nodales y en otras ocasiones variables de Hill o variables de
Whitaker y constituyen un conjunto de variables candnicas donde (r,8,Vv) son las

variables y (R, 0, N) los momentos.

La relacion de estas variables con los elementos orbitales viene dada por las

expresiones
T ; 0=w+f ;o v=1,
R=7 ; =G ;7 N=G(es-n) =Gcosi.

Notemos que R representa la velocidad radial y N la proyeccion del momento

angular sobre el eje OZ. A la variable 0 se le llama argumento de latitud”.

Al constituir las variables polares-nodales un conjunto de variables canodnicas,
podremos expresar el hamiltoniano del modelo kepleriano en estas variables, para lo

cual basta tener en cuenta

. 02
2 _ 22 2fF2 _ p2
X =r“+r“f¢2=R +r2'

por lo que la funcién de Hamilton del problema kepleriano podra ponerse como

}fk=1<R2+@—2>—5. (1.3)

Variables de Delaunay

Otro conjunto de variables muy util e importante en el estudio del movimiento orbital
son las variables de Delaunay (Delannay, 1860) introducidas por éste para el estudio
del movimiento de la Luna.

4 Angulo comprendido entre las rectas que unen el centro de masas del cuerpo principal con el nodo
ascendente y el periastro de la 6rbita de un satélite.




Las variables de Delaunay (1, g, h,L,G, H), constituyen también un conjunto de

variables canonicas, donde (I, g,h), representan las variables y (L, G, H), los
momentos, y que se definen por las expresiones

l=n(t—-T) ; g=w ; h=2Q,
L=\ua ; G ; H = G cosi,

donde puede destacarse que la primera variable representa la anomalia media, o lo que

es igual el tiempo multiplicado por una constante.

Al igual que en el caso de las variables polares-nodales, las variables de Delaunay son
canoénicas, por lo que podremos representar® el hamiltoniano del problema en estas

variables en la forma

Movimiento Orbital

En la realidad, ademas de la fuerza kepleriana aparecen una serie de perturbaciones
que modifican las ecuaciones y la trayectoria de la 6rbita, entre las que podemos

destacar:

» Potencial gravitatorio del cuerpo central debido a la distribucién de masa no
esférica de los cuerpos celestes.

> Atraccion gravitatoria de otros cuerpos del sistema distintos del central: la
Luna y el Sol en el caso de orbitas terrestres, y la Tierra para 6rbitas lunares,
etc.

» Rozamiento o resistencia de la atmosfera en aquellos cuerpos que la poseen.

» Presion de radiacion solar.

» Efectos de mareas, relatividad y otros.
Las anteriores perturbaciones pueden formularse por medio de una fuerza adicional
P que modifica las ecuaciones del movimiento (1.1) en la forma:

X
itps=">, (1.4)

5> La demostracién de esto puede verse en Abad (2012) y es similar a la que aparece para las variables de tipo
Delaunay en el apartado segundo de esta memoria.




o expresado como un sistema de orden uno
x =X, (1.5)

X=—%x+?.
r

Cuando el vector perturbacion vale cero, P = 0, el movimiento coincide con el
movimiento kepleriano, mientras que cuando se verifique la condicién |[P|| < Tu—z,
esto es, cuando la aceleracién que produce la perturbacion sea mucho menor que la
kepleriana, la solucién de (1.4) o (1.5) sera llamada movimiento kepleriano
perturbado o, simplemente, movimiento orbital En este caso el comportamiento
del movimiento orbital es muy préximo al del movimiento kepleriano, sirviendo éste
como primera aproximacion para comprender y estudiar el movimiento de los
cuerpos en el espacio. De hecho, la forma practica para visualizar este movimiento
orbital supone considerar que la 6rbita es instantineamente kepleriana, esto es que en
cada instante se puede describir como una particula describiendo una conica (6rbita

osculatriz) cuyos elementos van variando lentamente con el tiempo.
Si existe una funcién V, que verifique

P=-V.,
podemos definir el hamiltoniano H, del movimiento orbital

1 7
HxX)=H, +V,==X-X——+1,
TP T x|l =7

como suma del hamiltoniano kepleriano Hjy y la funciéon V,, que llamaremos

potencial perturbador.

Las ecuaciones de Hamilton aplicadas a este hamiltoniano coinciden con las
ecuaciones (1.5) del movimiento orbital, por lo que ambos sistemas son equivalentes

y llamaremos a H (x, X) hamiltoniano del movimiento orbital.

Problema principal ecuatorial del satélite artificial

Las ecuaciones diferenciales del modelo kepleriano estan basadas en la ley de
gravitacion universal de Newton que formula la fuerza de atraccion entre dos masas
puntuales. En un caso mas general dicha fuerza de atracciéon puede extenderse a
solidos homogéneos de forma esférica. Sin embargo en el caso del satélite artificial los
dos cuerpos involucrados son el satélite y la Tierra (o planeta). La pequefia masa y
dimensiones del satélite comparada con la de la Tierra permite considerar éste como




un punto, sin embargo la forma de la Tierra no es esférica, de hecho, ni siquiera es un
solido, sino un fluido con movimientos internos de masas y una densidad no
constante, a pesar de lo cual consideraremos como aproximacion suficiente una Tierra
o planeta solido de densidad constante. En lo que sigue formularemos el modelo de
potencial gravitatorio producido por un sélido homogéneo sobre una masa puntual.

Tal y como se ve en la figura de la
izquierda, cada punto P de un sélido,
de masa dm, ejerce sobre un
orbitador S una fuerza de atraccion

cuyo potencial viene dado por la

., dm .
expresion —G - e siendo A la

distancia entre Py S, y G la constante
de gravitacion universal. Ademas
tomaremos como unidad de masa la

de S y llamaremos dm al elemento

diferencial de masa del punto P.

El potencial creado por el sélido en S vendra dado por la integral extendida a toda la

masa del solido

V= dm 1.6
-5 T (1.6)

Si X, X, representan los vectores de posicion respectivos de S y P, referidos a un

sistema con centro en el centro de masas del sélido, y Y el angulo entre dichos

vectores, tendremos
2
N =(x—x,) =x*>+x2— 2|x||xp|c051/) = |x]2(1 — 2xa + x?).

x|

NE a = cosy. Finalmente,

Donde en la dltima expresiéon hemos llamado x =
puesto que T = |x|, podemos poner

1 1 1 1.7
A r J1—2xa+x2 '

El término 1/V1 — 2xa + x? suele sustituirse por su desarrollo en serie de potencias

1
Vi-—2xa+2® Z Fa(a)x™ = Z By (cosyp)a™,

nz0 nz=0




cuyos coeficientes son los polinomios de Legrende, definidos por la expresion

dTL
_(2_1)11

Pn(t) = ol dEn

que en particular para, el orden dos, se puede poner como

P(t) = %(Bt2 —-1). (1.8)

Para calcular la integral (1.6) a lo largo de toda la masa del solido formularemos el
problema en un sistema de coordenadas planetograficas® donde llamaremos (4, ¢),
respectivamente a la longitud y latitud planetografica del satélite y (A, @) a las de un
punto P del planeta y de igual modo vamos a llamar X y X,, a las direcciones de los

vectores de posicion, en coordenadas cartesianas, del planeta y del satélite

respectivamente.

El coseno del angulo ¥ entre estos dos vectores vendra dado por el producto escalar

de ambos, lo que lleva a la expresion
cosy = X - X, = seng sen® + cos¢p cosP cos(A — 2).

La relacién anterior, llevada a los polinomios de Legrende, permite obtener la
siguiente propiedad

P,(cosy) = B,(sen¢)P,(send)

ZZ( _])'Pn](S€n¢)Pn](SenCD)COS](A A). (1.9

donde P representan los polinomios asociados de Legendre (Abad, 2012) definidos

a partir de las derivadas de los polinomios de Legendre.

Por otro lado, la expresion (1.6) del potencial del sélido, haciendo uso de (1.7), se

podra poner como

dem le 1 p
= — _— = —_ m
m A T V1 —2xa+ x2

¢ La longitud planetografica se mide en el ecuador del planeta desde un meridiano principal definido y
aceptado internacionalmente. La latitud planetografica se mide en el arco que une el ecuador con la posicion
del punto en cuestion.




de donde, usando la relacion (1.9) llegamos a

V= —ﬂ + %Z (r?p)n JnPr(sene)

r T
nz2

n
- Z Py; (Senqb)(an cosjA + Sy senjl) , (1.10)

j=1

siendo 7, el radio ecuatorial del planeta, M la masa del mismo y donde [y, Gy, Snj ,
llamadas coeficientes armonicos’, son constantes para cada solido  que
corresponden a las expresiones de las integrales después de separar los términos que
dependen tnicamente de la posicion del orbitador. Si conocemos la distribucion de
masas del solido estas constantes pueden ser calculadas por integracion, sin embargo,
en el caso de los planetas y la Tierra dichas constantes inicamente pueden ser medidas
en forma indirecta a partir de un detallado analisis de las Orbitas de los satélites
artificiales.

Los términos J,, son llamados armdnicos zonales, mientras que Cyj, Syj son los
armonicos teserales. Si el solido tiene simetria de revolucidon, los términos
dependientes de la longitud A desaparecen, y nos quedamos unicamente con los
términos zonales J,. En particular el término J, corresponde al achatamiento

planetario, esto es a la diferencia entre los radios ecuatorial y polar.

Por lo que respecta a su magnitud el armoénico J, es en general mucho mas grande
que el resto de los arménicos, en el caso de la Tierra éste tiene una magnitud de 1073,
mientras que el resto de arménicos es del orden de 107°. Esto significa que la
expresion (1.10) puede separarse en tres sumandos. El primer sumando corresponde
al término

GM
Ve = -2,
. r

que representa el potencial del planeta si fuese un punto o un sélido homogéneo, esto

es el potencial kepleriano. El segundo sumando

_M
T

Y

() ). Potseng),

corresponde a la accién del achatamiento terrestre o lo que es igual a considerar el

planeta como un elipsoide homogéneo de revolucion. Finalmente, el tercer sumando

corresponde a la parte de la expresion (1.10) excluyendo los sumandos Vi y 1.

7 Eligiendo el centro de masas del sélido como origen del sistema de referencia los términos [, C11, 511 =

0, por lo cual el sumatorio (1.9) comienza en el indice n = 2 y no en n=1.




Como se ha dicho en el apartado anterior la primera aproximacion al movimiento
orbital del satélite artificial se obtiene utilizando el modelo kepleriano, lo que equivale
a considerar V = V. Si queremos una mejor aproximacion a la 6rbita real debemos
afladir a éste el potencial debido al achatamiento terrestre, esto es, considerar el

potencial

V=V, +V, = —E+”( ) J, P,(seng), (1.11)
siendo 4 = GM. Al modelo obtenido sustituyendo el potencial kepleriano por (1.11)
se le denomina problema principal del satélite.

En nuestro caso, como se ha dicho en la introduccién, no consideraremos este
modelo, sino una aproximacién al mismo, que llamaremos problema principal-
ecuatorial que consiste en suponer que el satélite se encuentra en una 6rbita que no
abandona el plano ecuatorial, por lo que en todo momento ¢ = 0, o lo que es igual,
sen¢ = 0. De esta forma se tendra, de acuerdo con (1.9), que P,(sen¢) = —1/2,

y por tanto el potencial para el problema principal ecuatorial se expresard, a partir de
(1.11) como

*

V=V +V, = —E+f—3, (1.12)

donde p = GM y u* = —QMrpzjz/Z.

Una vez conocido el potencial podemos obtener facilmente la expresion del
Hamiltoniano de este problema que, de acuerdo con (1.3), puede expresarse en

variables polares-nodales como
1 2 *
7{:—<R2+—>—E+H—. (1.13)

Si tenemos en cuenta que el factor J, es del orden de la milésima podemos concluir
que u* K u,y por tanto poner 4* = & g, donde € es un pequefio pardimetro y 0 es

del mismo orden que U. De este modo, podemos expresar (1.13) en la forma
#=—(R2+ o +em 1.14
== — | —=+e— .
2 r2 r ( )
esto es, como un desarrollo en serie de potencias de un pequefio parametro &, cuyo

orden cero corresponde con el hamiltoniano kepleriano y el orden uno, /73,

representa la perturbacién del problema principal ecuatorial.




2. Nuevas variables tipo “Delaunay” para la
integracion del problema

Para encontrar unas nuevas variables canénicas adecuadas para el problema principal-
ecuatorial partitemos del hamiltoniano del mismo expresado en variables polares-

nodales, que como hemos visto en el apartado anterior puede expresarse como

1 0%\ u
H(r,0,0,RO,N) ==|R2+— | -S+=, 2.1
(r,6,u,R,0,N) 2( +r2> - +5 2.1)

donde, como vemos, no aparecen explicitamente ni la variable v ni el momento N.

La no aparicién de v (angulo del nodo) y N (proyeccién del momento angular sobre
el eje OZ) permite dejar fijos estos elementos en la transformaciéon canoénica que

buscamos, de manera que trataremos de encontrar una transformacion
(r,0,u,R,0,N) o  (4y,vATLN),

que transforme tnicamente las variables (7, 8) en (4,¥), y los momentos en (R, 0)

en (A T).

El procedimiento que seguiremos para obtener esta transformacion es similar al usado
en Abad (2012) para la obtencion de las variables de Delaunay con la diferencia de que
alli se parte del Hamiltoniano del problema kepleriano y aqui se parte del hamiltoniano
(2.1) cuyo término adicional, p*/r3, complica las expresiones de las nuevas variables
al aparecer integrales elipticas en las expresiones. En Abad (1985) se aplica un proceso
similar para el estudio del movimiento de una estrella en un sistema triple.

Este procedimiento estd basado en la busqueda de una funcién generatriz
S(r,8,A,T), dependiente de las vatiables viejas y los nuevos momentos, que cumpla
la ecuacion de Hamilton-Jacobi, en la forma que se muestra en el apéndice A. Las
expresiones (A.4) del apéndice indican que la transformacién canénica se obtendra a

partir de las relaciones

R_GS @_65 A_GS _ 0§ 2 9
~or 90’ AT (2.2)
mientras que la funcién generatriz, de acuerdo con (A.5), debe verificar

1[0s\* 105\’ wu w

== —|l==| |[-——+==A, 2.3

2[(6r> +r2(69) ] r+r3 (2:3)

donde como se ve se ha elegido la energfa del sistema como el primer momento A.




Obtencién de la funcién generatriz

Para encontrar una funcién generatriz que verifique (2.3) ensayaremos una funciéon
S(rl 9; A) F) = Sl(rﬁ A) F) + 52 (G,A, F);

que sea separable en otras dos, cada una de las cuales depende tnicamente de una de
las variables antiguas. De esta forma podremos poner

oS 9S, _ aS 95,
or  or ’ 00 00’

por lo cual, la ecuaciéon (2.3) toma la forma:

1[/0S\* 1 /9S\°] wu u
5[(5) 2 (5) | r =

que , reorganizando términos, se transforma en:

35,\° 35\ 2u*
— | =2r?A—r? (—) + 2ur ——,
( 08 ) or # r

donde el término de la izquierda solo depende de los nuevos momentos y de 8,
mientras que el de la derecha solo depende de los momentos y de 7. Asi pues esto
obliga a que ambos términos sean independientes de las vatiables 7 y 8, por lo que
cualquier funcién de A y T verificara la igualdad. Por ello elegimos el momento I

como el valor de la igualdad, de forma que se tendra
0S:\* . L (0S1\’ 2w
(%) =2r°A—r (W) +2,UT'—T—F . (24-)
Igualando el primer y el tercer término de la igualdad (2.4) se tiene que

05,\°
(ﬁ) =T2 > —2=4T - §,(0) =+,

donde hemos elegido un limite inferior @ = 0 para la integracién. Aunque cualquiera
de las dos soluciones es valida elegiremos, para simplificar, la expresiéon con signo

positivo, asi se tendra
S,(6,A,T)=T86.

De igual modo usando el primer y segundo término de (2.4) observamos que

35\’ 2u°
2r2A — 2(—1) +2ur — — =T2,
r r or Hr T




que reordenando queda:

oS 2 rz 2u " 2 rz 2u
io faa+E_— 2R —>51(r)=j n+E - g
or r r?z r3 ro r r?z r3

donde el limite inferior de integracion 1y sera elegido como la minima distancia entre
el orbitador y el origen de coordenadas, o lo que es igual, la distancia en el periastro.

Hemos hallado, por tanto, unas expresiones para S; y Sy, por lo que ahora podemos

expresar la funcién generatriz S de la transformacién como

dr. (2.5)

r 2 r2 2u*
S(r,a,A,r)=r9+j on+ 28D
To r r r

De aqui en adelante, con objeto de simplificar las expresiones, llamaremos

2 rz 2u*
R(r)=\/2A+—‘u——2— ‘lz;
r r r

y de ahi podremos poner

S(r,0,A,T) =T6 + er(r) dr. (2.6)

To

Significado de los nuevos momentos

Una vez obtenida la funcién generatriz, usaremos las expresiones dadas en (2.2) para

obtener las relaciones que definen las nuevas variables canonicas.

Las dos primeras expresiones (2.2) nos conducen a las expresiones

as

R=—=R(), (2.7)
N

0=-5=T. (2.8)

De (2.8) se deduce que el segundo momento de las nuevas variables coincide, al igual
que para las variables de Delaunay, con el segundo momento de las variables polares-
nodales, esto es, con la norma del momento angular. De esta forma hemos dado
significado a los nuevos momentos:

» A representa la energia del sistema, como se establecio en la pigina 20.




» T eslanorma del momento angular - I'=0 =G.

Obtencion de las nuevas variables

Las dos ultimas relaciones (2.2) se podran poner como

1 as (" dr 29
oA ) R() (2.9)
_0S 0 J‘r I'dr 2 10
Y=%r~ o T2R(r) (2.10)
En primer lugar, realizaremos el cambio de variables 7 = 1/z, que conduce a las
expresiones
z dz
A= —f , (2.11)
20 222N + 2uz — 272 — 2u*73
z I'dz
y=0-— , (2.12)

20 20 + 2uz — 222 — 2u* 73

1
donde zy = —.
To

Las expresiones anteriores, una vez integradas y después de deshacer el cambio de

variables, se podran poner como:

A= A(r), y=6— f(r). (2.13)

Obtencién de las funciones A(1) v f(r).

La expresion de las funciones (2.11) y (2.12) se obtendra mediante la integracion de
expresiones en las que aparece la rafz cuadrado de un polinomio de grado tres. Este
tipo de expresiones conduce a integrales elipticas que pueden obtenerse haciendo uso

de las relaciones que aparecen en el libro Byrd & Friedpman (1971).




Las expresiones de estas integrales se obtienen factorizando los polinomios y
aplicando un determinado cambio de variables en funciéon del valor relativo del

extremo de integracién con respecto a las raices a,by c¢ del polinomio. Asi,
tendremos los siguientes casos:

» Casol = a>b=>y>c,
» Caso2 = a>b>y=>c,
» Caso3 = a=2y>b>c,
» Casod = a>y=>b>c.

En lo que sigue se hara uso de las siguientes integrales elipticas:

> Integral eliptica incompleta de primera especie

F( k)_f"’ do
@ o V1—k2sen2@

» Integral eliptica completa de segunda especie

)
E(p, k) = f 1 — k?sen20 dé@ .
0

> Integral eliptica incompleta de tercera especie

(e, a2, k) fD i
,as, = .
¢ o (1—a?sen?20)V1—k2sen28

Asi como de las funciones elipticas de Jacobi sn (u, k), cn (u, k) y dn (u, k),
definidas a partir de las siguientes relaciones

sn (u, k) = sen [am(u, k)] .

cn(u, k) = cos [am(u, k)] .

dn(u, k) = \/1 — k?sen?[am(u, k)] .
donde @ = am (u, k) es lainversa de la integral eliptica de primera especie, es deci,
Yp=amuk) e u=F@k)

Una detallada descripcion de las propiedades de estas funciones puede verse también
en Byrd & Friedman (1971).




A continuacion se presenta la expresion de las distintas integrales, necesarias para el
calculo de (2.11) y (2.12) segun el valor del limite de integracion. En todos los casos
se indica también el cambio de variables necesario para llegar a ese resultado y el
namero de la formula donde aparece en Byrd & Friedman (1971). Se escribe en negrita
el resultado final y sin negrita algunos de los resultados intermedios de la aplicacion
de la transformacion.

Casol.a (233.18)

fy dz g (" du
c o f@=Db-0E-0 T (1_c=boa,)"
c
g " du g ™ du g
=_mf Zom? —’m=2—’—zj =2
c™ ), (1—a2sn?u)m c?), (1—a?sn?u)? c?

_9 1
T c22(a? - 1)(k? -

o lazE(u) + (k* — a®)u

atsn(u) cn(u) dn(u)

21,2 2 4 2 2
+(20£ k +20£ - _3k )H((P;a 'k)_ 1_azsn2u

siendo
c—b 5 b—c 2 5 zZ—¢C
=7 ’ kza—c P 9= 1 pSPUE T
(a—c)2
1
. -c\2 . z—cC b—c
@ = sin 1(y—) ; u=Flarcsm< —), —l )
b—c b—c a—c

Caso2.a  (234.17)

jb dz g J‘”l dn*™udu
y @ DG-DG-0 P (18 )

g (™ dn®™ u du _bimem - (a? — k?)Im!
bm), (1—a?snfu)m a?m _Oszj!(m—j)! J
]=




% 2(a? — k?)

_) — .
at LKz -
]=

con
Vo = fdu =u=F(p,k); V; =[I(g,a?k)
vV, = ! a’E() + (k% — a®)u
27 2(a? = D)(k? — a?)
a*sn(u) ecn(u) dn(uw)
+ 2a?k? + 2a? — a* — 3k®)[[(p, a? k) — T )
siendo
b- 2 k2 (a—c)(b-2)
K=t 5 g=—= 5 at=T- 5 snfus <Z_5><a_§f
(a-c)2
@ = sin! /—(a_c)(b_y) u=F [arcsin (\/—(Q_C)(b_z)) JE] .
(b—c)(a-y) (b—c)(a-2z) a-c
Caso3.a (235.19)
fy dz g f“l dn*™u du
b zn(@a-2)B-2)(z-¢) b (1- £5n2u>m
b

g k*m = (a? — k?)Im!

g (" dn®Mudu
Sy (L-aswPym b atm Lkt =)
]:

gk* 2 2(a? — k%)

7 blat, LI -
]=

m=2

con
Vo = jdu —u=Flpk)  ;  Vi=Tl(p,a% k)

! ) [azE(u) + (k? — a®)u

V= @Dk =
a*sn(u) ecn(uw) dn(u)

+ a*k? + 2a® — a* = 3kH)[[(p, a? k) — 1 — a?sn?u



siendo

5 _(a—c)(z—b) _ kz_a—b_ 2 B (a—c)(y—»b)
S T R e SR [CEs Ty
, ck? 3 _ (a—c)(z—b) a—>b
a =3 ; u = F |arcsin @=b)z—0) P

Caso 4.2 (236.19)

J-a dz :ijul du
y z%J(a—z)(b—2)(z—c) 2" Jo [1—a;bsn2u]m

_9 (™ du _9y
“am), [1-a2sn2u]m™  am ™
9
m:Z s a2V2
_9 1 2 2 _ 2
= 22 - DIE - oD la E(u) + (k* — a®)u

atsn(u) cn(u) dn(u)
1 — a?snu

+ (2a?k? + 2a? — a* — 3k®)[[(@, a? k) —

Caso 1.b  (233.00)

dz
¢ J(@a—2)(b—2)(z—-c)

Ug
=gf du=gu, = g-sn~'(sing, k) =g - F(y, k),




siendo

2
g= T ;
(a—c)2

Caso 2.b  (234.00)

1

P =sin™? (Z : z)i :

b dz Uz L o
-];z\/(a—z)(b_z)(z_c)zg . du = gu, = g-sn *'(sing,k) = g-F(e,k),
siendo

1
2 _ . (la=)b=y)\2 _ _b-c
g_(a—c)% ’ v ((b—c)(a—y)) ' kz_a—c'

Caso 3.b  (235.00)

Y dz U o o
LJM—@@—@@—O_go du=guy =g-sn(sing.k) = g Flo. k),
siendo

1

__ 2 o (l@a=)(y—b)\? _ _a-b

ey T <(a—b>(y—c)) P K =oTe

Caso 4.b (236.00)

dz

fy J@-2)(b—-2z)(z-c)

siendo

Uq
=gf du = gu, = g-sn”*(sing, k) = g-F(Y, k),
0

a—y\3
a—b)

Y =sin™?! ( : k2 =

a—c




Significado de las nuevas variables

Aunque el problema queda resuelto una vez obtenidas las expresiones de las funciones
A(r) vy f(r), éstas no nos permiten comprender facilmente el significado de estas
variables y su relacion con las variables clasicas de Delaunay.

Por un lado, si tenemos en cuenta que el primer momento de las variables de Delaunay
coincide la velocidad radial, se tendra la relacion dr = R dt, que de acuerdo (2.7) se

podri poner como dr = R(r) dt, y llevada a (2.9) conduce a

(T dr (fR(@)dt B
A_LOR(T) A ToRR L (2.14)

lo que nos indica que la primera variable es el tiempo relativo al periastro, ya que el

instante T corresponde al instante de paso por el periastro.

Por otro lado, de acuerdo con la definicion de momento angular se tiene que 1% f =

@ =T, olo esigual r?df =T dt,donde f representa la anomalia verdadera o
angulo entre la direcciéon del periastro y la del orbitador. Teniendo en cuenta esta
relacion y la relacion anterior dr = R(r) dt, y llevando ambas a (2.10) se tendra

" TI'dr s
y=9—£om=9—ﬁdf= 0—f. (2.15)

que es una relacion idéntica a la de las variables de Delaunay pero donde al anomalia
verdadera tiene un valor diferente por el hecho de que la posicion del periastro varia
por la perturbacion.

Asi pues el significado de las nuevas variable es el siguiente

» A representa el tiempo (relativo al periastro)

> ¥ es similar del argumento del petiastro.




Expresiones explicitas de la transformacién

De acuerdo con las relaciones anteriores podemos encontrar facilmente la relacion

explicita que nos da las nuevas variables candnicas (4,¥,A,T) en funcién de las
antiguas® (1,6, R, ©)

A= Ar),
y=6-f(),

_1(p2 O _r &
A_Z(R +r2) r+ ’
r=0,

donde las funciones A(r) y f () han sido calculadas anteriormente.

Suponiendo que la expresién 7 = 1(1) representa la inversa de la funcién A = A(r),

para calcular las variables (r,0,R,0), conocidas las variables (4,y,A,T"), bastara
aplicar las igualdades

> r=r(l),
> 0=y+f(),
2 *
> R= J2A+2—“—P—22—2“3,
T r r
> 0= T.

Para completar el proceso de calculo de unas variables en funcién de otras es
necesatio el conocimiento de la expresion r = (1) = r(t —T), o lo que es igual,
la expresion de r en funcién del tiempo. Esta relacién ya es complicada en el caso
kepleriano, donde no puede ser obtenida si no es a partir de un método numérico o
bien a través de desarrollos en serie de potencias de la excentricidad de la érbita que
permiten invertir la ecuacion de Kepler. Para el modelo dindmico tratado en esta
memoria este proceso resulta mucho mas complejo y sera abordado en el siguiente
capitulo donde se obtendra la expresién equivalente, para este problema de la
ecuaciéon de Kepler, que llamaremos ecuacion de Kepler generalizada.

8 No se consideran la variable U y el momento N, puesto que ambos coinciden en los dos conjuntos de
variables.




Integracion del problema principal ecuatorial en las nuevas variables

Finalmente abordaremos el problema de la integraciéon del modelo principal-

ecuatorial del satélite para el que la funcién hamiltoniana, expresada en las nuevas

variables sera

HA,y,u,AT,N) =A,

por lo que las ecuaciones de Hamilton podran ponerse como

=20
=5
,_67{_0
T
._67{_0
VTN T
que integradas nos daran
A=t-T ;

A=A0 5

Y =%Yoo
F=FO ;

V =YV,
N=N0,

Donde (yq, Vo, Mg, Ty, Np) representa el valor constante de las variables en el instante

inicial T.



3. Obtencion de la distancia r en funciéon del
tiempo t. Ecuacion de Kepler Generalizada.

Expresion de la relacién entrer v t como un oscilador armoénico

perturbado

Como se ha dicho en el apartado anterior, para completar la definicién de las variables
del tipo “Delaunay” en el problema principal-ecuatorial, y la integracion del
movimiento orbital en estas variables, es necesario obtener la relacionr = r(t — T).

Para ello volveremos de nuevo a la expresion (1.14) del hamiltoniano del problema

1 0%\ u o
H=-(R*+—|—=+e=.
2( r2> r e

Si aplicamos a dicho hamiltoniano las ecuaciones de Hamilton correspondientes a las

variables 1, R se obtendr3?

dr_aH_R

dt oR '
dR 6H_3£J+®2 U
dt  or r* 3 2’

de donde podemos poner

d’r dR ©*> yu 3eo

—=——=———+—F. 3.1
dtz dt r3 r? * r# 3.1
A continuacion introduciremos el siguiente cambio de variables
1 df du U
- . 2 _ . - . =
u=_ +p ;T 0 ; % af ; B oz
que permite obtener las siguientes relaciones
du 1dr dr du duds du
—_— = — = —r2—= _r2__= -0 — ,
dt rz2dt dt dt df dt df
d*r dOdu d /du d*u ds 0\ d*u d*u
() ot ()0 -
dt? dt df dt\df df?dt r2) df? df?

9 El resto de variables tienen derivada nula por lo que son todas constantes.




que llevadas a (3.1) nos dan para el término de la izquierda la expresion

d?r d*u
—=—-0%(u—-B)>* —
dt? w=h) g

mientras que para el término de la derecha de (3.1) se tendra

2
?—3—%+ ei—j =0%(u—pB) —ulu—p)?*+e¢l3a(u—p)*.

Igualando y dividiendo por —02(u — B)? se tiene

d*u u
a7 —(u—-p) tozt e[3o(u—p)?],
Como B = —u/0?% podremos poner
d*u

d_f2 +u = &[3a(u® — 2up + )],

y finalmente llegamos a la expresion
d*u X
d—f2+u=e(k0+k1u+k2u), 3.2)
donde kO = 3O-ﬂ2 ; kl = _60-ﬁ ; kz = 30.

La expresion anterior corresponde a la ecuacion de un oscilador armoénico perturbado,
del tipo dado en (A.6), con una frecuencia w = 1, y donde el tiempo es la anomalia

verdadera f. Para integrar dicha ecuacién aplicaremos el método KBM del apéndice
B.

Aplicacién del método KBM

El método KBM consiste en ensayar una solucion

"= 5cos¢+2%un(5,lp) =Z%un(5,l/)), (3.3)

nz1 nz0

donde cada uno de los u,(8,y) es una funcién 2m-periodica de . De forma que

tanto § como Y varfan de acuerdo con la relacion diferencial:

ds en "
ﬁ = ZEAn(6) = Z;An(a)i AO = 0’ (34)

nz1 n=0




dy en & _
=1 FDZB®) = ) B, Bo=1 (3.5

nz1 nz0
Observemos que la segunda relacién nos indica que Y = f + e P(65), esto es,

representa una pequefa perturbacion de la anomalia verdadera.

En primer lugar calcularemos los valores Fj ,, que conforman la ecuacién que aparece

indicada en el apéndice B (A.13):

gn
F(u,v;e) = Z FFO'" ,

nz0

du , . .,
dOﬁdC v = E , termino que no aparece en nuestra CXpI‘CSlOI‘l.

Para hacerlo sustituimos en (3.2) los valores de u por el desarrollo en serie (3.3),

donde si nos quedamos en el orden dos!” tendremos

&2
u=u0+eu1+?u2.

Por lo tanto

d?u ( )
72 +u=FQuve
2

> 2
€ €
=¢|ky+ k4 <u0+eu1 +?u2>+k2 <u0+eu1 +?u2> .

Si nos quedamos con los términos de €™ tal que n < 2, tendremos finalmente
F(u,v,¢) = e(ky + kyug + kud) + e2(u kg + 2uqu ky) .
Asi que, emparejando términos obtenemos que
Fo; = ko + kqugy + kyul ; Fop = urky + 2uguqk, . (3.6)

Tal y como viene explicado en el apéndice B, vamos a suponer que cada uno de los
valores de U,, puede ser expresado mediante una expansion de serie de Fourier de una
funcién 2m-periodica. Para ello comencemos calculando los términos U, mediante
la aplicacion de la féormula (A.13) en la que necesitaremos conocer tanto el valor de

Fy n (valores hallados en (3.6)) como el del w,, correspondiente.

Para hallar el valor de cada uno de los w,, haremos uso de la formula (A.11) que

necesita de los valores de 4,,_1, B—1 y Un—1, s decir, exactamente un orden inferior

10 De aqui en adelante se obtendra una teoria de orden 2. Para teorias de orden mayor la complejidad
de las expresiones que aparecen se hace muy grande y es necesario usar procesadores simbélicos para
su obtencion.




(por lo que son valores previamente hallados). Aplicando este proceso iterativo

podemos calcular los valores de u,, hasta el orden que queramos.

Ahora vamos a establecer los valores iniciales. Tal y como aparece en (A.8) y (A.9)
tenemos que Ug = 6 cosy, Ay = 0y By = 1. De igual modo, se tiene que wy = 0,

por lo que finalmente obtenemos que Uy = Fyo —wy = 0.

Continuamos del mismo modo, ahora para hallar los términos n = 1. Aplicando las

mismas férmulas que en el parrafo anterior, obtenemos que:
w; =0
Uy = Fy1 —wy = ko + kqug + kyud = ko + k.68 cosyp + k,6% cos? ),
Si como se dice en el apéndice B, llamamos ¢; Ny S (f) alos coeficientes respectivos

de los términos en cosjy y senji del desarrollo en setie de Fourier de la funcion

f () podremos poner finalmente, para U,

k 52 k 62
co(Uy) = ko + 22 ; c;(Uy) = k6 ; c;(Uy) = 22

Con los datos anteriores, y haciendo uso de las expresiones (A.15) y (A.16),
tendremos que

A1=0,

k,
B, = ——
1 2

co(uy) = (ko + k,6%/2),
C1(u1) =0,

k52
6 )

c;(uy) = —

mientras que el resto de los coeficientes ¢, (Uy), S, (1) del desarrollo en serie de

Fourier de u; son iguales a a cero. Finalmente la expresiéon de U4 se podra poner
como

k,6% k52

2 6

u, = (ko + c0521/J>,

Siguiendo exactamente el mismo proceso calculamos ahora los términos de un orden

superior. Comenzamos con el valor de Fy ,:

FO,Z B u1k1 + 2u0u1k2




Sustituyendo el valor de U4, previamente hallado, queda que

kyk, 82

F,, = kk
0,2 <10+ >

— 2k263 cosy cos2y .

) + 6k, (2kg + ky6%)cosy — kyk,82 cos 21 cos 2y

Tal y como se explica en el apéndice B, obtenemos el valor de w, por medio de la
relacion (A.11)

wy = 2(W110 + Wio1 + Wo11),
donde, de acuerdo con (A.12) se tiene

kZ8cosy kik,52

) ; Wi01 = Wo11 = —

Wi = — cos2y,

por lo que al final podemos poner
ki6
Wy =——~ (3kycosy + 8k,b6cos2y).

Asf que ya estamos en condiciones de hallar el valor de U, = F;, — w, que resulta

SE€r

kik, 82 k%  5k,5%
U2 == k1k0 + + 6k2 Zko +—— COSIIJ + 7k1k262 COSZIP
2 2k, 6
— k3683cos3y.

Continuando el proceso como en el orden anterior obtendremos

A2 = 0,

5 K2
Bz = kz gkz& - 2k0 _Z_kz )
Cl(uZ) = 01

7
c;(uy) = _Ekﬂ‘fzf;2 ,

C3(u2) = k%63 ’

lo que permite expresar el valor de U, en la forma

7
uz = (klko + k1k262) - E (k1k252)C0521/J + k263C053¢ .




A partir de Uy, Uy ¥ Uy, obtenemos la expresion aproximada al orden dos de u, que

sera

k,6% k,6%
u=d6cosy + ¢l ky+ > e cos2y

2

£ 7
+ ) <(k1k0 + k,k,6%) — E(klkzdz)cosmp + k263c0531/)> :

De igual modo también nos interesa hallar la expresion de v. Para ello aplicamos la

formula (A.10)
Vn = Z i\ Aas TGy )

i+j=n

a pattir de la condicién inicial vy = —§seny.

Para el orden uno se tendra:

1 (A 6u0+B 8u0)+ 1! (A 6u1+B 6u1)
1T o\ s TPty ) Tori\ 0 s T 0y )

por lo que
v, = k,8senyp + k,6%sen2y .

Para el orden dos tendremos:

2! du, du, 2! Jdu, Jdu,
V2 =m(f‘2%+32 a¢)+ 1!1!<A1 96 +31W)
2! Ju, du,
+0!2!(A° a5 T Bo aw)’

y finalmente
2

K2 5
— — —k,6% | seny + 4k k,6%sen2y — k,63 sen3y.

vz = k25 <2k0 + Zk 6
2

Por lo tanto la expresion de v, hasta el orden dos, sera
v = —bseny + (k.6 seny + k,6% sen2y)

&2 k? 5
+ —|ky6 | 2ky + — — = k,6% | seny + 4k k,5% sen2y
2 2k, 6

— k,63 sen3¢] :




Finalmente si tenemos en cuenta la expresion (3.4) y los valores obtenidos para A4 y

A,, se tendrd que la derivada de 6§ respecto de f vale cero por lo que § resulta ser una

constante.

Por otro lado, puesto que las funciones By y B, solo dependen de &, y ésta es
constante, las funciones By y B, son también constantes, por lo que llevadas a (3.5)
obtendremos

dy g’

siendo Ny, una constante. Integrando ésta se tendra finalmente

Yp=nyf, (3.7)

de ahi, que la variable ¥ que no es sino la anomalia verdadera ¥ multiplicada por una
constante proxima a la unidad sera llamada anomalia media generalizada.

Relacién dercon Y y f

Si ahora tenemos en cuenta la relacion entre r y u indicada en la pagina 32, u = -+

P , podremos expresat 1 en funcién de P

1 k82 ky82
;zu—ﬁ=(6cosw—ﬁ)+e ko + T e

cosZt,b)

2

£ 7
+ ? <(k1k0 + k1k262) - E(klkZSZ)COSZI,D + k263C033¢> )

por otro lado, si introducimos las siguientes igualdades

__1 : _9 : __P
p_ ) e = 1] a_l_ezl

B B

donde p, e,a son respectivamente el semi-lado recto, la excentricidad y el semieje
mayor, podremos poner
1 1+ ecosy

IRELTIN
r p

ky6% k52

2 6

cosZz/))

2

&
+ ?(klko + k1k262 - 7k1k262C052¢ + k263C053¢) .




Para obtener r haremos uso de las expresiones

Z_Cn_ n ’

n=0 Zn>0 T dn

donde los coeficientes de la serie pueden obtenerse de forma iterativa en la forma
n

1 1 n

Co=—, Cp=——7 (')aicn—ii

a a l
0 0=

Aplicando dicha relacién a 1/7, tendremos

COZ_
a,’

R
1+ ecosy . i/t
1=

~ p? ke? ko
(1 + ecosy)? 2 6 °° V)
2
_ p n
C = —mz (1) AiCr—i
i=1
_ p? p kad® ka? Y’
(1 +ecosy)?| (1+ ecosy) 2 6 cos2yp

2

kik,6
+ 2| kiky + I Tk k,6%cos2y + k,8%cos3y || .

Con lo que podremos expresar el valor de 7 en la forma

= P + P’ k +k262 kod” 2
"~ 1+ecosy ¢ (1+ecosy)2\ ° 2 6 ° v
£ 2 k,6°
2 (1+ecosy)?| (1+ecosy) 2
k52 g
c cos2y

kik,62 7
2 k1k0+T—Ek1k262 cos 2y + k,6% cos 3y ||| .



Ecuacién de Kepler generalizada

En el apartado anterior se ha obtenido la relacién 7(y), por lo que para obtener la

relacion 7 (t), es necesario encontrar la relacion P (t).

Reuniendo las expresiones

ayp ,af
E—nw ; T'E—G,

podemos encontrar la relacion diferencial entre el tiempo y la anomalia verdadera

generalizada 1,
n,0dt = r?dy , (3.8)

cuya integracion permitira obtener la relacion que nos falta para determinar la funciéon

P(8).

En primer lugar calculamos el valor de 1%, que llevado a (3.8) transforma esta

relacion en la siguiente:

p* - dy 2p°
(1 + ecos)? +e [_ (1 +ecosy)

ny,0dt = (ks — ks cos 2y) | dy

PP, — ke cos 2+ Ky cos 3)
2 |1+ecosy * 6 COS 29 7 €05 3y

p*
+(1+eCOS¢)4(k8+k9c0521/)
donde
ks = ko + kad”
3 — 0 2 ]
kik,6%
k, = kiky + ———,
2
k, 52
ks = c
7
k6 _k1k26 )




k, = k,82,
2k0k2624_k§64

ke = k2 )

By _ k38*  2kok,86%  2k36*

27 36 6 12 '
k, 52

ki, = )

10 6

Enlo que sigue usaremos los polinomios T, de Chebyshev de primer tipo!l, definidos

a partir de la relacién de recurrencia
To(x) =1, T, (x) = x, Toe1(x) = 2x T(x) = Tp_q(x).
Esta familia de polinomios tiene como propiedad fundamental:

cosnyp = T, (cos ),

lo que los hace especialmente utiles para su uso con funciones trigonométricas.
Si introducimos la variable q por medio de la relacion
q= 1+ecosy,

tendremos entonces que

q—1
COSTll/J=Tn< p ),

que llevada a (3.9) y después de realizar la integral en ambos lados, se obtiene, tras

laboriosos calculos, la expresion!?

ny 0 (t—T) =Alfq‘2d¢+e(A3fq‘1d1/)—2A3fq‘2d¢+Bljq‘3d1,b)
+82—2(Agjq3d¢—3A9fq2dl/J+szqd¢+B3 dy
+B4fq‘1d1/)+35jq‘2d1p+36jq‘3d1/)

+B, f q—4d¢) (5.7) (3.10)

1 Los polinomios de Chebyshev de primer tipo son una familia de polinomios ortogonales definidos de
forma recursiva.

12'Todas las integrales de esta expresion son integrales definidas en el intervalo [0, l/)] sin embargo por
simplicidad, de aqui en adelante, se han omitido los limites de integracién en la expresion.




donde

2p3k, 5%
A, =p*, Ay = —2p%k; , A3=peTz'
47,2 o4 204 4 2.4
p*k56* 2 k56 p*  k3k,6%p
A, = 2p*k? —p*k, k.62 42 ,
4 p k3 + 18 + 329 2K30° +p K5 + 36 + 3
B 2p4k§64 4 1k§(‘)‘4p4 A = 2p4k§(‘)‘4 4p4k2k352 4k§54p4
5T 9 et 9 et ' ©7 9 36e2 3 g2 36e2
14pk k,5%e? 29pk,k,6°
A, = 4pk, + 902 , Ag = T ez
k262 3k252e2
9T 12¢3 Ao =~ g5
B1:A2+A3, BZZA8+3A9+A10, 83:A5_2A8_A9_A10,
B4 = _4A5 + A7 + A8 ) BS = 6A5 + A6 )
BG=_4A5_2A6 ) B7=A4_+A5 +A6 .

La expresion (3.10) nos da la relacion entre t y Y, a partir de las integrales del tipo
[ q™dy, donde n puede ser positivo o negativo. Si tenemos en cuenta la expresion
de g, cuando n > 0 el integrando resulta una expresiéon polinémica de funciones
circulares por lo que la integral resulta sencilla de realizar, sin embargo cuandon < 0,
el integrando se convierte en una expresion racional de funciones circulares, mucho
mas dificil de integrar. Esta dificultad, que aparece en muchos problemas de la
Astrodinamica, se solventa con facilidad combinando el uso de la anomalia verdadera
con la excéntrica a partir del cambio de variables correspondiente. En nuestro caso el
cambio equivalente viene definido por

Vv1—e?senE cosE —e

; senyf) = ———
’ 2 1—ecosE’

cosyp = 1—ecosE




en la que Y, E representan respectivamente las anomalias verdadera y excéntrica

generalizadas. Usando estas relaciones encontramos que

p Vi-—e?

—=qa(l — E ; d dE
1+ ecosy a1 —ecosE) ’ v ’

- 1—ecosE

De esta forma las integrales de potencias de g se podran poner como

j(l + e cosyY)"dy, n=0
[ araw -
I j(l —ecos E)™™1dE, n<o

donde n =+vV1—e?.

Asi tendremos finalmente

[aaw=w [a-eccospyas,
[aaw = [ - ccos by,
[a2ap=w [a-ccosmyaz,
[ataw=n

[aw=wu,

[adw = [+ ecospray,
[a2ap = [+ ecosyyray,

fq3d1/J = j(l + e cos)3diy.

Con lo que en todos los casos las integrales tienen la forma de un polinomio de
funciones trigonométricas. Aunque estas integrales resultan sencillas de realizar, la
cantidad de calculos necesarios para completar la integracion, y el volumen de los

resultados nos impide escribir estos en el texto.




A pesar de todo nos fijaremos en la forma que adquiere dicha expresién observando,
en primer lugar los términos de orden cero de (3.10). Escribiendo la parte no
perturbada del orden cero tendremos que

ny O (t—T) = p? j q %dy = p*n? j(l —ecosE) dE = p*n3(E — e sin E),
que puede ponerse también como
n(t—T)= (E—esinkE),

lo que equivale a la ecuacion de Kepler. Si consideramos todos los términos de la
perturbaciéon podemos deducir que (3.10) se transforma en

£=n(t—-T)=E—esenkE +Z§_:<j_:Yij(E;¢))

i1

que llamaremos ecuacion de Kepler generalizada.







Conclusiones

En la presente memoria se estudia el problema principal-ecuatorial del satélite
artificial, para ello se ha analizado la dinamica del movimiento orbital considerando la
perturbaciéon producida por el achatamiento de la Tierra considerando un modelo

limitado a orbitas ecuatoriales o cuasi-ecuatoriales.

Mediante la aplicacion de la ecuacion de Hamilton-Jacobi se ha conseguido, partiendo
del hamiltoniano en el que se considera los términos que expresan la no-esfericidad
de la Tierra, obtener un nuevo conjunto de variables candnicas, similares en forma a
las conocidas variables de Delaunay. Se ha formulado la relacién explicita, tanto
directa como inversa, de estas variables con las variables polares-nodales. Estas
relaciones aparecen en funcién de integrales elipticas y funciones de Jacobi.
Finalmente se ha procedido a integrar el problema principal-ecuatorial en estas nuevas

variables.

Con objeto de invertir la expresion de las funcién A(r) se ha reformulado el problema
principal-ecuatorial como si se tratara de un oscilador armoénico perturbado, y tras ser
tratado con el método KBM se ha obtenido la expresion inversa de la anterior (1)),
donde ¥ es la anomalia verdadera generalizada. Finalmente, se ha obtenido la
ecuacion de Kepler generalizada, similar a la ecuaciéon de Kepler del problema no
perturbado, que nos da la relacién entre la variables P y 4, o lo que es igual, el tiempo

t. Con ello se obtiene la relacién de r con t.







Apéndices

A continuacién vamos a realizar una presentacion teérica de las herramientas
matematicas que se han utilizado durante la realizacién del trabajo. Se presentan

Unicamente los resultados fundamentales sin demostracién.

Apéndice A: Elementos de dinimica hamiltoniana v ecuacién de Hamilton-]acobi.

Supondremos un sistema dindmico formado por N puntos P;, i = 1, ..., N, de masas
m; y cuya posicion viene expresada, en un sistema inercial, por los vectores Xx;. La
dinamica de este sistema de puntos viene descrita por el conjunto de ecuaciones
resultante de la aplicaciéon de la ecuacion fundamental de Newton a cada una de las

particulas:

_dp;
Codt’

F; i=1,..,N, siendop; = mXx,. (A.1)
Los puntos P; no se mueven libremente sino que pueden estar sujetos a una serie de
relaciones funcionales entre los vectores de posicion, llamadas ligaduras, del tipo:

f(xl,xz, ...,xN; t) = 0.

En general un sistema de N puntos viene representado por 3N coordenadas. Cada
ligadura permite expresar una cualquiera de estas coordenadas en funcién del resto,
lo que reduce en una unidad el nimero de coordenadas independientes. Por ello, si el
sistema tiene k ligaduras, entonces podran introducirse n = 3N — k coordenadas
independientes, q = (qy, ..., n), de forma que podremos expresar las posiciones de

las particulas como:
x; = x;(q,t), i=1,..,N. (A.2)

Este conjunto de coordenadas independientes se llama coordenadas generalizadas,
y el espacio n-dimensional de coordenadas libres se llama espacio de configuracion.
Las derivadas de las coordenadas generalizadas § = (g, ..., ) son las velocidades
generalizadas. El nimero n de coordenadas libres del sistema se llama nmiimero de
grado de libertad.



Se llama energia cinética de un sistema dindmico a la funcion

)

i=0

m;x2.

N[ =

Para expresar la energia cinética en funcién de las coordenadas generalizadas

tendremos en cuenta la relaciéon (A.2), cuya derivada serd

. ax dq ax

Por tanto vemos que la energia cinética de un sistema dinamico puede depender tanto

de las coordenadas, como de las velocidades generalizadas, es decir, T = T(q, g, t).

Por otro lado, sea F el conjunto de fuerzas que actda sobre el sistema y supongamos
que existe! un escalar V, cuyo gradiente respecto de las coordenadas generalizadas

coincide con - F, esto es

Fe_uy— (GV 6V)
dq," ' 0q,/)

Esta funcion V =V(q), que no depende de las velocidades generalizadas, sera
llamada energia potencial de un sistema dindamico.

Con todo lo anterior, se llama funcion lagrangiana de un sistema dindmico a la

expresion

L(q,q,t) =T(q,q,t) +V(q).

Puede demostrarse facilmente que las ecuaciones del movimiento de un sistema

dinamico se pueden expresar, en términos de la funcién lagrangiana, en la forma

d <6L) oL

—dVL V,.L=0 A3
anl _(Q)_q_' ()

Estas ecuaciones son las llamadas ecuaciones de Lagrange.

Se definen los momentos generalizados, p = (py, ..., Py), a pattir de las igualdades

oL
04,

pi =

Estas funciones nos permiten expresar las velocidades generalizadas ¢, en la forma

1= ql(q' p, t).

13 En este caso la fuerza se dice conservativa.




Al espacio 2n dimensional (g, p) se le llama espacio fasico.

Llamaremos funcion hamiltoniana o hamiltoniano H a la transformacion de

Legrende de la funcién lagrangiana considerada como funcién de @, esto es

H(gq,p.t) =p-q(q,p,t) — L(q,4(q,p, 1), 0).
Las ecuaciones de Newton (A.1) y el sistema de ecuaciones de Lagrange (A.3) son
equivalentes a las ecuaciones:

oH oH

=— =V, ; ) = —V 1,
op P p

q _—=
aq 1

que son las llamadas ecuaciones de Hamilton del sistema. As{ como las ecuaciones

de Newton y de Lagrange representan sistemas de ecuaciones diferenciales de orden

dos, las ecuaciones de Hamilton constituyen un sistema de orden uno.

Se puede utilizar una notacién mas compacta llamando x = (q,p) € R™ X R" al
vector de coordenadas y momentos por lo que el Hamiltoniano se expresara como

H(x,t) =H(q,p,t).

Con todo lo anterior, la evoluciéon dinamica del sistema viene dada por las ecuaciones

de Hamilton, que ahora se pueden expresar como
x=JV,H,

Donde J es la matriz antisimétrica

0 I
a=(_r o).
_In On
Que verifica J 1 =J7 = -7, y donde 0y, I, representan, respectivamente, las
matrices nula y unidad de orden n.

La formulacion hamiltoniana constituye una de las herramientas mas potentes para el
estudio de los sistemas dinamicos. Las propiedades geométricas del espacio fasico nos
dan idea del comportamiento global del sistema, por lo que una buena elecciéon de
este espacio fasico nos simplifica su estudio. En lo que sigue se estudiaran las
transformaciones canonicas que, por sus propiedades, se adaptan perfectamente a este
proposito.




Sea la transformacion del espacio fasico P: R*™ - R*™: x = (q,p) » y = (Q, P),
definida por las expresiones ¥ = y(x, t), que supondremos de clase C™ y tal que

detl’ # 0 en el dominio (x, t) que se considere, siendo I' la matriz jacobiana

Z f’yl\
dy; dxy 0%y

yx X ax] \ayzn . ayzn/
0x4 0X3n

Una transformacién 1 que satisface las condiciones anteriores se dice
transformacion canonica, si y solo si, existe una constante U tal que se satisface la
telacion TJrT = uJ. La constante u es llamada multiplicador de Ia
transformacion. Cuando p =1, la transformaciéon se llama transformacion
completamente candnica.

El conjunto de transformaciones canodnicas tiene una estructura de grupo respecto a
la composiciéon de transformaciones. El elemento neutro de este grupo es la
transformacion identidad, mientras que la inversa de una transformacién canoénica de

matriz jacobiana I' y multiplicador g es otra transformaciéon canénica de matriz

jacobiana I'"! y multiplicador i

En lo que sigue, y por simplificar, consideraremos unicamente transformaciones
canonicas ¥ = Y(x) que no dependan del tiempo t puesto que en este caso, que es
el considerado en el ejemplo de la memoria, las propiedades se simplifican

notablemente.

La propiedad mas importante de las transformaciones canoénicas nos dice que si
aplicamos una transformacién y = y(x) a un sistema dindmico auténomo de
hamiltoniano H (x) entonces las ecuaciones diferenciales del sistema mantienen la

forma hamiltoniana, esto es, se pueden expresar como
y=JV,K(y),
siendo K(y) = uH (x(y)) el hamiltoniano transformado.

Aunque existen diversos métodos para obtener transformaciones candnicas, nos
fijaremos aqui unicamente en las transformaciones de contacto. Para ello,

supongamos que se busca una transformacién de (q,p) — (Q, P).




Puede demostrarse que dada una funcién cualquiera S ,P llamada funcién
b
generatriz, la transformacion definida por las ecuaciones

p =V,S, Q =VpS, (A.4)
es una transformacién completamente canonica.

Aunque S puede ser cualquier funcién, no todas nos definen una transformacion
candnica que sea util para el estudio de nuestro sistema dinamico. Por ello haremos

uso de la propiedad que nos dice que si S(q, P) satisface la ecuacion de Hamilton-
Jacobi

#(q,V,S) =h, (A.5)

donde h es la energia del sistema, entonces las nuevas variables y momentos (Q, P)

son constantes del sistema dindmico de hamiltoniano H. .

La busqueda de una transformacién candnica se convierte en la busqueda de una
funcién S que verifique la ecuaciéon de Hamilton-Jacobi; o lo que es igual, la busqueda
de una integral primera de una ecuacién en derivadas parciales.

Apéndice B: Método de Krylov-Bogoliubov-Mitropolsky.

Krylov y Bogoliubov (1947) desarrollaron un método analitico de resolucion del
problema de un oscilador arménico perturbado que fue ampliado y justificado por
Bogoliubov y Mitropolsky (1961). Calvo (1971) aplica por primera vez dicho método
al problema principal del satélite artificial, mientras que Caballero (1971) lo usa para

tratar un modelo en el que se incluyen los armoénicos zonales J,, J3 v /4.

El método propuesto por Krylov, Bogoliubov y Mitropolski se usa para obtener
aproximaciones asintéticas para cualquier ecuacion no linear de segundo orden que
tenga la siguiente forma:

u
—+w?u =F(u,v;¢), (A.6)

du , ~ ,
donde v = —; ¥ € es un parametro pequefio. Ademis, F debe poder ser expresada

como una serie de potencias de € cuyo orden cero es nulo, esto es

F(u,v;e) = ef(u,v;¢e) = Zi—ran_o(u, v), Foolu,v)=0. (A7)

nz0




Cuando € = 0, la ecuacién diferencial corresponde a un oscilador arménico cuya
soluciéon se puede escribir como u = § cosy con una amplitud constante § y un

angulo de rotacion de fase uniforme P = w t + 3.

El método KBM supone que la solucién de la ecuacion diferencial bajo estudio (A.7)
puede ser expresada como un desarrollo asintético de la siguiente forma:

U = Scosp + Z;—Tun(& ) = Z;—Tun(&lp), u, = 6costy,  (A.8)

nz1 nz0

donde cada uno de los u, (8, P) es una funcién 2m-periodica de P. De igual manera,

supondremos que tanto 6 como P varfan de acuerdo con la relacién diferencial:

ds n "
= L= ) @, Ao =0, ‘49

nz1 n=0

dy en en
=W D SB8) = ) —B(©), By=w.

nz1 nz=0

Para la realizacién de los célculos presentados en este apéndice haremos uso de la
generalizacion de la formula de Cauchy

k . :
et gt i!
l_[ Z —a™ | = Z,— Z ————a®a? .a
it i! Jiljol e it 1 2 Jk
n=1 \iz0 i20 Jitjat+jk
Diferenciando (A.8) con respecto al tiempo, obtenemos

du Z e"du, \dé N Z e"du, \dy

vV=—= _ | — —_ | —
dt n! 9§ |dt n! oy | dt
nz0 nz0

L s _d
donde si sustituimos los valores de o d—lf dados en (A.9), obtenemos

_\& _ n! ou; du;
v _van(&w), vn(8,9) = Z i!j!<Ai o5 B alp) (A.10)

n=0 i+j=n

Vo = —wd siny .




Si diferenciamos de nuevo v con respecto del tiempo se tendra

—+W u_Zn' wiu,

n=0

N Z n! AdAjauk+A dB; 0y AAaZuk
iLjlk!\"" ds a6 ldaaw ¥ 962

i+j+k=n

+ BB 0"u —X 4+ 24,B; 0w
I ay? UFYE

Considerando los valores de ug, 49, By y particularizando en la expresiéon anterior

todos los términos de i,j o k iguales a n, encontramos los siguientes términos no

nulos:

, , 2u, 0%u,

i =n, j=0, k=0- 2AB’666¢ 2A, 306601/) —2wA,siny,
0%uy, 0%u,

i=n, j=0, k=0- BB— 2 = BnB(,a—lp2 = —wB, 6cosy,
0%uy, 0%u,

i=0, j=mn, k=0- BBi— PNE = ByB,,—— ENE = —wB, 6cosy,

2 0%u, , 07Uy,

i=0, j=0  k=no BB](M2 BoBo 5z = —W' G

Por lo tanto podremos escribir

d?u en 0%u,
— +wiu = Z —(W =+ w?u,, — 2wA,siny — 2wB, 8cosy + Wn>,

dt? i\ g2
nz=0
donde
n!
W = Z i1 Wik (411
i+jtk=n
i,j,k#n
siendo
dA auk+ dB] auk+AA azuk-l_BB azuk
Wik =\ %75 95 " “ias ap | i gsz T ViR g2

2

d°uy
+ 2A;Bj ——— 2590 ) (A.12)




Todo lo hallado previamente representa la parte izquierda de la ecuacién (A.6) en
funciéon de § y . La parte derecha de la misma ecuacion se puede obtener

expandiendo como series de potencia de € la funcién F (u, v; €) en la siguiente forma:

en en en en
F(u,v;e)=Z;Fn_0 Zgun,zgvn, =Z;F0_n, (A.13)

nz=0 nz0 nz=0 nz=0

donde Fyp = Fou(Uo, Uy vy Un—1, Vo, V1, o) V1)

Igualando orden a orden ambas expresiones previas para cada n = 1 nos queda

0%u
w2 (61/)3 + un> = 2wAysiny + 2wB, 6cosy + U,, U, = Fy,, —w,, (A.14)

donde U, solo depende de A,, By, U, p <n — 1.

Llamando ¢;(f) y s;(f) a los coeficientes respectivos de los términos en cosji y

sinji del desarrollo en serie de Fourier de la funcién f(3) podremos poner
finalmente

(@) = o) + ) (u)cosjp + 5w )sinj,

j=1

Un@) = co(Un) + ) 6 (Up)cosjip + 55 (Uy)singip.

j=1

Con esta notacion, se sustituimos Uy, U, de la expresion (A.14) por su expansion de
Fourier e identificamos término a término, obtenemos
S1 (Un) €1 (Un)

_ . B = , A.15
2w n 2wé ( )

n

asi como los coeficientes de la expansion de u,, de la forma

U (U,
co(up) = Cos,zn); ¢j(un) = %
si(uy,) = M j=>2, (A.16)

! w?(1 - j2)

Los coeficientes ¢; (Uy,), S1(Uy,) quedan, por definicién, indeterminados, y pueden ser
elegidos iguales a cero.

Con todo lo anterior, al ser un proceso iterativo, podemos ir hallando orden a orden
los diferentes coeficientes de la expansion de Fourier y podemos hallar el valor tanto

de u como de v hasta el orden que deseemos.




6. Bibliografia

Abad, A. (1985) Problema Estelar Triple Jerarquizado: Integracion en unas

nuevas variables. Actas X Jornadas Hispano-lusas de Matematicas. Pag: 115-121.

Abad, A. (2012). Astrodinamica. Editor Bubok Publishing S.1.. Esparia.

Byrd, Paul F. Friedman, Morris D. (1971). Handbook of Elliptic Integrals
for engineers and scientists. Second Edition. Springer-1”erlag New Y ork Heidelberg.

Bogoliubov, N. N. and Mitropolsky, Y. A (1961). Asymptotic Method in
the Theory of Nonlinear Oscillations. Gordon and Breach, New York.

Caballero, J. A. (1975). Movimiento de un satélite artificial bajo la accién
gravitatoria terrestre. Teorfa de segundo orden en variables de Hill. PA.D.

Thesis, University of Zaragoza.

Calvo, M. (1971). Aplicacién del método de promedios al estudio del

movimiento de satélites artificiales. Ph.D. Thesis, University of Zaragoza.

Danby, J. M. A. (1988). Fundamentals of Celestial Mechanics. Willmann-Bell,
Virginia.




Deprit, A and Rom, A. (1970), “The main problem of artificial satellite
theory for small and moderate eccentricities”. Celest. Mech. And Dyn. Astr. 2,
166-206.

Delaunay, C. (1860). Théorie du movement de la lune, Mem. 28; 29 (1867),
Acad. Sci. France, Paris.

Jezewski, D.J (1983). An analytic Solution for the J, Perturbed Equatorial
Orbit. Celestial Mechanics. Pag. 367-371. Reidel Publishing Company.

Kovalevsky, J. (1967). Introduction to Celestial Mechanics. Springer, New
York.

Martinusi, V & Gurfil, P (2013). Analytical solutions for J,-perturbed
unbounded equatorial orbits. Celestial Mechanics & Dynamical Astronomy Vol 115,
pag 35-57.

Soop, E. M. (1994). Handbook of Geostationary Orbits. Kiuwer Academic,

London and Microcosm, Ine, California.

Wertz, J.R. and Larson, W. J. (2010). Space Mission Analysis and Design.
Microcosm Press, Hawthorne, CA and Springer, New York.



