Escuela de
Ingenieria y Arquitectura

Universidad Zaragoza

Proyecto de Fin de Carrera

Ingenieria Informatica
Curso 2013/2014

Caracterizacion de instrucciones en aplicaciones

de cloud

Alba Pedro Zapater

Director: Dr. Victor VINALS YUFERA

Departamento de Informatica e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura

Universidad de Zaragoza

Septiembre 2014

Dedicado a mis padres, por estar siempre ahi.

Agradecimientos

Sobre todo quiero agradecer a mi director, Victor, todo lo que me ha ensefiado, su pa-
ciencia, sus animos, su tiempo, su buen humor y toda la ayuda que me ha proporcionado
durante este ano. Fue uno de mis mejores profesores en la carrera y sin duda ha sido el
mejor director que podria haber tenido. También le doy las gracias a Clemente Rodriguez
v a Pablo Ibafiez por el tiempo que me han dedicado y por la gran ayuda que ha sido
lo que me han ensenado. Ademads, darle las gracias a Marta Ortin por estar siempre

dispuesta a resolverme dudas y su rapidez para contestarme a los emails.

También a mis companieros de carrera que me han sorprendido con grandes dosis de
solidaridad y ayuda mutua frente a la competencia que mueve nuestro mundo . En
especial a Alvaro, Cintia, David y Juan, que han estado siempre para los buenos y los

malos momentos y que sin su apoyo y amistad no hubiera sido posible llegar hasta aqui.

Para terminar, quiero agradecerles a mis padres por todo lo que me han dado, sin pedir
nada a cambio, tan solo verme feliz. Y a todas las personas que siempre han creido en
mi, y de una forma u otra han hecho posible que yo esté ahora escribiendo las ultimas

lineas de mi proyecto de fin de carrera.

Resumen

Las tendencias de mercado indican que el negocio de los procesadores para grandes
centros de datos va a seguir creciendo, impulsado por la economia de la virtualizacién
y la gran penetracién empresarial y social de las aplicaciones que residen en las nubes
(cloud computing). Para disenar un procesador de futuro adaptado a este mercado es
necesario experimentar con una carga de trabajo apropiada. Por ello, en este proyecto
nos hemos centrado en caracterizar el comportamiento de la cache de instrucciones para
un sistema de cuatro procesadores, usando el conjunto de aplicaciones Cloudsuite 2.0

del laboratorio de investigacién Parsa, representativo del cloud computing.

Hemos usado la plataforma de simulacién Simics, un simulador de sistema completo,
trabajando con las cinco aplicaciones de Cloudsuite que estdan acompanadas de check-
points publicos. Ademads, se ha contribuido con un tutorial de Simics, acompanado de
material practico, para facilitar y agilizar la fase de formacion de otros proyectos que

también utilicen esta plataforma.

Para realizar los experimentos deseados se han programado dos moédulos de Simics de
jerarquia de memoria basados en el médulo g-cache, que implementan dos algoritmos
eficientes y especificos para registrar tasas de fallos y huellas de memoria. Un algoritmo
obtiene resultados para multiples caches en una sola simulacién y el otro esta especiali-

zado en caches completamente asociativas.

A partir de estos experimentos hemos analizado los benchmarks en cuanto a su tasa
de fallos, en funcién de su tamano y de su asociatividad, sugiriendo configuraciones
practicas de tamano y asociatividad para cada aplicaciéon. También se ha examinado
la huella de memoria de instrucciones a lo largo del tiempo, concluyendo que todas las
aplicaciones tardan muchos segundos en entrar en régimen estacionario y que la apari-
cion de varias fases complica la seleccién de ventanas de simulacién. Y finalmente, se
ha calculado el ancho de banda de instrucciones agregado para los cuatro procesadores
simulados, concluyendo que la presion sobre el siguiente nivel puede ser bastante gran-
de, y sugiriendo configuraciones de ese segundo nivel con capacidad para absorber las

demandas del primero.

Contenidos

[Agradecimientos|

[Resumenl

[Lista de Figuras|

[Lista de Tablas|

T Tacadnl

[1.1. Contexto del Proyecto]
[1.2. Objetivos|
[1.3. Organizacion de la Memorial

[2. Estado del Arte en simulacion y cargas de trabajo|

[2.1. Platatormas y estrategias de simulacion|
[2.2. Cargas de Trabajo|

3. _CloudSuite

4.4. Experimentos| e

5. Resumen de Resultados|

b.1. Mpkipor Corel
[5.1.1. Streaming (Figuralp.1)) |
[5.1.2. Cassandra (Figura/s.2])|.,
[5.1.3. Nutch (Figural5.3)|

IX

VII

IX

XII

XIV

10

11
11
12
15
18
18
18
19

Contenidos X

[5.1.4. Classification (Figura[s.4)| 23
[5.1.5. Cloudstone (Figura[5.5)(. 23
b.1.6. Conclusionesl o oL 25
6.2, Huellade Memorial 25
[5.2.1. Streaming (Figura[5.7)|. 27
[5.2.2. Cassandra (Figura[b.8)] 28
[5.2.3. Nutch (Figura5.9)[.o o000 29
[5.2.4. Classification (Figura[5.10)] 29
[5.2.5. Cloudstone (Figura[5.11)[. 29
(£.2.6. Conclusionedo o Lo 30
b.3. Ancho de Banda de instruccioneso oL 31
[5.3.1. Streaming (Figural5.13)| 0oL 32
[5.3.2. Cassandra (Figura[s.14)| 32
[5.3.3. Nutch (Figura[5.15)[. o000 35
[5.3.4. Classification (Figura[5.16)] 35
[5.3.5. Cloudstone (Figuras.17)] 35
b.3.6. Conclusionesl 35

[b.4. Comparacion con otras cargas de trabajo| 40
(.41, Conclusioned oo 41

[6. Conclusiones y lineas abiertas| 44
[6.1. Conclusiones técnicas| Lo Lo 44
6.2, Tineas abiertas| 45
[6.3. Conclusiones personales| 46
[A. Carga y Desarrollo del Proyecto| 47
[A. 1. Gestion del tiempo| L 47

[C.2. Algoritmos| o 61
[C.2.1. Algoritmo para multiples caches (algoritmo MC)[. 61

[C.2.2. Algoritmo para cache completamente asociativa (algoritmo CCA)| 63

D Sinlad ClondSimiEe 66
D1 CIuster ATDPS .« o v oo oo e e e e e e, 66
D2 Condorl o 67
D.3. SCIIPTS| - -« o o v o e e e e 67

D31, Shell SCripts] . « v v v e e e 68

ID.3.2. Simics Scripts]. 68

Contenidos

XI

72

Indice de figuras

|1.1. Ejemplo de chip multiprocesador contemporaneo.| 2
13.1. Esquema de la aplicacion Web Frontend.|. 9
4.1. Memoria cache genérica de tamano Nx5xB bytes.|. 12
|4.2. Fjemplo modelo de las 3C. Streaming, un procesador, 4,5 segundos.| 14
4.3. Ejemplo modelo de las 3C con porcentajes agregados. Aplicacion Media |
| Streaming, un procesador, 4,5 segundos de ejecucion.| 14
|4.4. Sistema de cuatro procesadores simuladof.00 15
4.5. Pila de bloques en orden LRU en un conjunto cualquiera. 16
|4.6. Aciertos y fallos para una cache LRU con asociatividad 1| 16
4.7. Aciertos y tallos para una cache LRU con asociatividad 3| 17
|4.8. Vector de aciertos acumulados para S=1y S=3| 17
14.9. Experimentos lanzados con algoritmo de varias asociatividades.| 20
[5.1. Streaming: mpki de la cache de instrucciones en cada core vs. tamano y |
| asociatividad. Tamano de bloque 64B.] 22
[5.2. Cassandra: mpki de la cache de instrucciones en cada core vs. tamano y |
| asociatividad. Tamano de bloque 64B.] 23
[5.3. Nutch: mpki de la cache de instrucciones en cada core vs. tamano y aso- |
| ciatividad. Tamano de bloque 64B.| 24
[5.4. Classification: mpki de la cache de instrucciones en cada core vs. tamano |
| vy asociatividad. Tamano de bloque 64B. 24
[5.5. Cloudstone: mpki de la cache de instrucciones en cada core vs. tamano y |
| asociatividad. Tamano de bloque 64B.| 26
[5.6. Huella de recarga de todas las aplicaciones de Cloudsuite. Cien muestras |
| de 100 ms. Tamano en KB (2'%) 27
[5.7. Huellas acumuladas y de recarga de Streaming.| 28
15.8. Huellas acumuladas y de recarga de Cassandra.| 28
5.9. Huellas acumuladas y de recarga de Nutch.| 29
15.10. Huellas acumuladas y de recarga de Classification.| 30
[5.11. Huellas acumuladas y de recarga de Cloudstone.| 30
[5.12. Sistema simulado para calcular Bwin, el ancho de banda de instrucciones.| 31
[5.13. Ancho de banda por asociatividad y tamano en Streaming.| 33
[5.14. Ancho de banda por asociatividad y tamano en Cassandra. 34
15.15. Ancho de banda por asociatividad y tamano en Nutch.|. 36
[5.16. Ancho de banda por asociatividad y tamano en Classification.|. 37
[5.17. Ancho de banda por asociatividad y tamano en Cloudstonef 38

XII

Indice de Figuras X111

15.18. Dos propuestas para mejorar el suministro de instrucciones desde el si- |

guiente nivel.|o oo 39
5.19. Comparacion MPKI benchmarks.|. 42
|A.1. Diagrama de Gantt del proyecto.| L. 47
[A.2. Distribucion del tiempo invertido en el proyecto 49
|C.1. Jerarquia de caches.| 59
|C.2. Ejemplo Sistema de Caches multiprocesador con MESL.| 59

|C.3. Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos internos.| 60
|C.4. Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos externos.| 60
|C.5. Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos in- |

[ternos] 60
|C.6. Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos ex- |
[ternos] 61
ID.1. Red de conexiones atps.| oo 67

[D.2. Jerarquia de cache configurada con el script| 71

Indice de tablas

[3.1. Aplicaciones CloudSuite 2.0 simuladas.|. 8

|A.1. Horas dedicadas a cada tarea del Proyecto.| 50

|C.1. Relacion de tamano, asociatividad y aciertos para una ejecucion con el

algoritmo MC.|o 63

XIV

Capitulo 1

Introduccion

Las tendencias de mercado indican que el negocio de los procesadores para grandes
centros de datos va a seguir creciendo, impulsado por la economia de la virtualizacién
y la gran penetracién empresarial y social de las aplicaciones que residen en las nubes

(cloud computing).

Para disenar un procesador de futuro adaptado a este mercado es necesario experimentar
con una carga de trabajo apropiada, pero en la actualidad apenas existen programas de
prueba (benchmarks) de esta clase. Una excepcién es la denominada CloudSuite 2.0, un
conjunto de aplicaciones cliente/servidor seleccionadas recientemente por el laboratorio
de investigacion Parsa de la EPFL en Suiza. Estas aplicaciones estdn pensadas para
escalar en un centro de datos de forma horizontal (scale-out, es decir, con capacidad para
aumentar el rendimiento a medida que se anaden mas computadores independientes) y
se caracterizan por su paralelismo explicito y por manejar conjuntos de datos de tamano
muy considerable. Las aplicaciones seleccionadas pretenden ser representativas del futuro
del cloud computing: Data Analytics, Data Caching, Data Serving, Graph Analytics,
Media Streaming, SW Testing, Web Search y Web Serving [EPE].

La experimentacién preliminar con estos programas de prueba, publicada en los congre-
sos de arquitectura de computadores, ha revelado un uso intensivo y muy poco eficiente
de la jerarquia de cache de instrucciones en chip [FAK™12|. Parece que no solo los

conjuntos de datos son muy grandes, sino también el cédigo que los manipula.

Una memoria cache es una memoria RAM estatica (SRAM), pequena y répida que
contiene un subconjunto de las direcciones referenciadas por el procesador. Su funciona-
miento es automatico, transparente al programador, y se basa en explotar la localidad
temporal y espacial del acceso a memoria durante la ejecucion de los programas. FEn los

chips actuales de altas prestaciones las memorias cache ocupan una parte sustancial del

Capitulo 1. Introduccion 2

silicio, ya que la velocidad en la ejecucién de los programas depende en gran medida del
rendimiento de las caches. Las memorias cache dentro del chip se organizan como una
jerarquia multinivel, ver figura El primer nivel de memoria cache estd separado en
datos e instrucciones para cada procesador; el resto de niveles, hasta dos mads, suelen
contener de forma mezclada datos e instrucciones. Un buen disefio de la jerarquia de
memoria cache permite acceder poco a la memoria principal RAM dindmica (DRAM)

situada fuera del chip, contribuyendo de forma critica a la ejecucion eficiente de los

programas.
Memoria Principal (DRAM)
LT » CHIP
H H Multiprocesador
NiueIS_ ___________))
compartido Mc i+d Mc i+d
i i
Red iSRSt ek ;Ei:z:[.lacziaoc::s y datos
_____________ I i i i
E:::"E:;D ' Mc i+d Mc i+d Mc i+d Mci+d
S N e A A I AN
Ni@' 1 Mci||Mcd Mci || Mcd Mci j (Mcd Mciff[Mcd M i memoria cache de instrucciones
pr_l_.r??? ________ \L ‘LT \l/ \LT J/ iT \L LT Mc d: memoria cache de datos
CPUO CPU1 CPU 2 CPU3

FI1GURA 1.1: Ejemplo de chip multiprocesador contemporaneo, con cuatro procesadores
y tres niveles de memoria cache en chip (SRAM): los dos primeros privados de cada
procesador, y el tercero compartido

En este proyecto nos planteamos una caracterizacién por simulacién del comportamiento
de las instrucciones en CloudSuite 2.0. Seguiremos una metodologia de experimentacion
basada en Simics, un hipervisor de tipo 2 con capacidad de emulacion de sistema comple-
to: maquinas cliente y servidor con sus periféricos, sistemas operativos huésped (Oracle
Solaris 11) y procesadores SPARC v9. Simics no estd pensado para desplegar maqui-
nas virtuales orientadas a la consolidacion de servidores, sino al desarrollo y prueba de
nuevos sistemas hardware y software. Esta orientacién permite en nuestro caso confi-
gurar un sistema multiprocesador, capturar la secuencia de direcciones de instrucciones
e inyectarla a un simulador de memoria cache. Si bien este tipo de simulacién de sis-
tema completo (aplicacién y sistema operativo) es realmente lenta, la precisién de las

conclusiones experimentales es muy elevada.

[Los resultados han sido...]

Capitulo 1. Introduccion 3

1.1. Contexto del Proyecto

Este Proyecto Fin de Carrera se ha realizado con el soporte del grupo de investigacion en
Arquitectura de Computadores de la Universidad de Zaragoza (gaZ) y ha sido financiado
en parte por el proyecto TIN2010-21291-C02-01 (Gobierno de Espana y Unién Europea)
y por la dotacién anual recibida como grupo consolidado de investigacién en Aragén (ref.
T48). Ademas, durante el curso 2013/2014 he disfrutado de una Beca de Colaboracién

del Ministerio de Educacién destinada a la iniciacién a la investigacién.

1.2. Objetivos

El objetivo de este Proyecto Fin de Carrera es analizar el comportamiento de las ins-

trucciones en CloudSuite 2.0. Para ello se han realizado las siguientes tareas:

1. Instalacién y despliegue en cluster de los checkpoints necesarios para la simulacion
con Simics. Un checkpoint es un registro del estado de los procesadores, memorias

y dispositivos de E/S en un instante dado.

2. Programacién de un médulo muy ligero de simulaciéon de cache de instrucciones,
que reduce la sobrecarga de las herramientas convencionales de simulacién de je-

rarquia de memoria (p.e. Multifacet GEMS Simulator de la U. de Wisconsin)

3. Andlisis de tasas de fallos y de huella de memoria de instrucciones a lo largo de

tiempos de ejecucién significativos.

4. Conclusiones sobre comportamiento temporal a través de una simulaciéon mues-

treada y sobre la efectividad de una jerarquia multinivel de instrucciones.

Tras llevar a cabo estas tareas se han alcanzado todos los objetivos inicialmente plan-
teados. El valor anadido en este proyecto se concentra principalmente en los capitulos

de resultados y conclusiones, dénde se analizan los resultados obtenidos por simulacién.

1.3. Organizacién de la Memoria

El resto del presente documento esta organizado del siguiente modo: en el capitulo [2] se
introduce el estado del arte en simulacién y cargas de trabajo; en el capitulo [3|se explica
con mayor detalle la suite Cloudsuite; el capitulo [4] explica la metodologia utilizada para

llevar a cabo los experimentos; en el capitulo [5|se presenta un resumen de los resultados

Capitulo 1. Introduccion 4

del proyecto y en el capitulo [0] se recogen las conclusiones y las posibles lineas abiertas.

Se incluyen como anexos:
= A. Gestion del proyecto. Incluye la planificacién del tiempo durante el proyecto y
el esfuerzo invertido en el mismo.

= B. Productividad en Simics. Se adjunta un tutorial de Simics que sirva de docu-

mentacién para futuros proyectos.

= C. Médulo G-cache. Se amplia la informacién sobre el médulo de g-cache y los

moédulos programados para el proyecto.

= D. Simulaciones Cloudsuite. Se presenta dénde y cémo se han llevado a acabo las

simulaciones de la CloudSuite.

Capitulo 2

Estado del Arte en simulacion y

cargas de trabajo

La simulacién es una herramienta fundamental para disenar nuevo hardware o mejorar
el rendimiento de los programas. En este capitulo describimos brevemente la plataforma
Simics y el papel de los programas de prueba en la simulacion de nuevas jerarquias de

memoria.

2.1. Plataformas y estrategias de simulacion

Simics de la empresa Virtutech (simplemente Simics a partir de ahora) es un simulador
de sistema completo que podemos configurar para modelar multiprocesadores, sistemas
empotrados, routers de telecomunicaciones, clusters o redes de esos elementos [MCE™(2].
Es capaz de ejecutar sistemas operativos sin necesidad de que sean adaptados y simular
aplicaciones realistas ofreciendo resultados precisos. Se trata de un hipervisor comercial
de tipo 2, puede ejecutarse sobre miltiples procesadores y sistemas operativos, y el cédi-
go no es libre. En la comunidad de experimentacién en arquitectura de computadores,
Simics suele utilizarse conjuntamente con el entorno GEMS (General Execution-Driven
Multiprocessor Simulator) [MSBT05], que fue creado en la Universidad de Wisconsin
y proporciona médulos para el estudio de prestaciones en sistemas multiprocesador de
memoria compartida con jerarquias complejas y coherentes de memorias cache. El com-
ponente principal de GEMS se llama Ruby, que simula las memorias cache, el protocolo
de coherencia y la red de interconexion. Simics actia como un simulador funcional, es
decir, simplemente se ocupa de ejecutar las instrucciones, y se comunica con el médulo
Ruby de GEMS, que se encarga de gestionar los accesos a memoria, temporizandolos de

forma adecuada.

Capitulo 2. FEstado del arte 6

Un problema muy importante en la simulacién de multiprocesadores es el bajo rendi-
miento del simulador, y esto es especialmente cierto en Simics, que como ya hemos dicho
es una maquina virtual de sistema completo. Segun el detalle temporal (precisién) de
la simulacion, las aplicaciones se ejecutan entre 100 y 1000 veces més lentas que en la
maquina real. En nuestro caso estamos interesados en muy largas simulaciones de fallo-
s/aciertos, sélo para la cache de instrucciones y no nos importa el detalle temporal. Por
ello hemos escogido una solucién de menos sobrecarga, aunque conllevara la necesidad
de un mayor esfuerzo de programacion. La solucion escogida ha sido el médulo g-cache
(que explicaremos en el apartado , cuyo cbédigo fuente acompana a la distribucion

estandar de Simics.

2.2. Cargas de Trabajo

Se llama benchmark al programa de prueba que sirve para evaluar el rendimiento de un
computador completo o de uno de sus subsistemas. [Bon07]. Un conjunto de benchmarks
se denomina suite. Historicamente los programas de prueba han evolucionado en comple-
jidad, desde los primeros programas sintéticos, pasando por pequenas rutinas intensivas
en calculo o memoria, hasta los programas reales de la actualidad, representativos de un

campo informaético determinado.

La seleccién de la carga de trabajo tiene una gran importancia, puesto que queremos
obtener conclusiones que sirvan para el diseno de los computadores del futuro. Veamos

algunas suites actuales:

» PARSEC 2.1: suite compilada por la universidad de Princeton (Princeton Appli-
cation Repository for Shared-Memory Computers, 2009-10). Estd compuesta por
trece aplicaciones paralelas de memoria compartida (multithreaded applications).
Ofrece aplicaciones paralelas tipicas, por ejemplo de High-Performance Compu-
ting (HPC), pero también incluye otro tipo de aplicaciones paralelas emergentes
(p-e. escritorio y servicio WEB). Recoge distintas dominios de aplicacién, como
vision por computador, codificacién de video, andlisis financiero, visualizaciéon de

experimentos fisicos y proceso de imagenes.[BKSLOS]

» SPEC CPU2006: suite compilada por la cooperativa SPEC en 2006 (Standard
Performance Evaluation Corporation). Estd pensada para medir el rendimiento del
procesador, la jerarquia de memoria o el compilador, puesto que no tiene apenas
operaciones de entrada/salida. Contiene dos suites de benchmarks, una intensiva en

calculo entero (12 programas no paralelos) y otra en coma flotante (19 programas
no paralelos). [CPUQ6]

Capitulo 2. FEstado del arte 7

= SPECweb 2009: también de la cooperativa SPEC, busca evaluar el rendimiento
de servidores WEB. Sus cargas de trabajo estdn pensadas para multiprocesadores
de memoria compartida e incluyen aplicaciones de banca, comercio electrénico o
soporte Web. [web09]

= TPC-C: aplicacion patrocinada por la cooperativa Transaction Processing Council
desde 1992. En la actualidad esté en su versién cinco, y simula un entorno completo
de usuarios realizando transacciones en directo (online) hacia una base de datos.
Aunque no se limita a ninguna actividad en particular modela una empresa que

debe gestionar, vender y/o distribuir un producto o servicio.[TC]

Los anteriores benchmarks son un buen resumen de aplicaciones que se estan ejecutando
en los computadores actuales. Sin embargo, unos nuevo tipo de aplicacion estd emer-
giendo con fuerza en los ultimos anos: los servicios de la nube (cloud computing). Esta
plataforma estd dominando el suministro de servicios escalables online. Estos servicios se
caracterizan por unos enormes working-sets, un alto grado de paralelismo y restricciones
de tiempo real no estricto. Todo esto hace que estas aplicaciones denominadas scale-out
tengan un comportamiento distinto a las aplicaciones tradicionales ya conocidas y que
se recogen en los benchmarks anteriores. Por ello, para estimular la investigacién en
el drea de los centros de datos y la nube y ya que apenas existen benchmarks de esta
clase, el laboratorio de investigacién Parsa de la EPFL en Suiza ha creado CloudSuite,
un benchmark basado en servicios online del mundo real [FAKT12]. Esta es la carga
de trabajo que hemos seleccionado para nuestro proyecto, por lo que explicamos sus

caracteristicas con mas detalle en el capitulo siguiente.

Capitulo 3

CloudSuite

Como ya hemos introducido en el capitulo anterior, la carga de trabajo que usamos en

este trabajo es Cloudsuite 2.0, un conjunto de aplicaciones cliente/servidor del grupo de

investigacion Parsa de la EPFL en Suiza. Estas aplicaciones estan pensadas para escalar

en un centro de datos de forma horizontal (scale-out: a més servidores fisicos, més

rendimiento) y se caracterizan por su paralelismo explicito y por manejar conjuntos de

datos de tamano muy considerable. Aunque en su web podemos encontrar disponibles

8 aplicaciones para ejecutar en nativo [EPE], nosotros hemos trabajado solo con 5,

aquellas acompaiiadas de checkpoints ptblicos para la simulacién en Simics. En la tabla

podemos ver las aplicaciones con una breve descripcién:

Aplicacion

Descripcion

Data
Analytics

Esta aplicacién se basa en el paradigma map-reduce, que ha emergido
como una aproximacién muy popular para los andlisis de datos a gran
escala. Se lanzan peticiones al cluster de procesadores que se simulan,
que en primer lugar filtran y transforman la informacién (map) y después
unen los resultados (reduce).

Data
Serving

Aplicacién de almacenamiento y servicio de datos basada en NoSQL
(Not only SQL). Ha sido diseniada explicitamente para soportar aplica-
ciones web como Facebook, Google Earth y Google Finance, proporcio-
nando almacenamiento escalable, con capacidad de adaptar rapidamente
el esquema de almacenamiento.

Media
Streaming

Los servicios en streaming, tipo Youtube, usan enormes clusters de ser-
vidores que gradualmente empaquetan y transmiten ficheros multimedia
cuyo tamano puede ir desde los megabytes hasta los gigabytes.

Web
Frontend

Las aplicaciones que dan servicio al alojamiento de pdginas web se ca-
racterizan por su gran tolerancia a fallos y su escalabilidad dindmica.

Web
Search

Aplicacién basada en un motor de buisqueda, similar a Google, capaz de
indexar terabytes de datos recogidos dinamicamente de fuentes online.

TABLA 3.1: Aplicaciones CloudSuite 2.0 simuladas.

Capitulo 3. CloudSuite 9

3.1. Caracteristicas de los Benchmarks

Todas estas aplicaciones tienen unas caracteristicas similares [FAK™12]:

= Operan con grandes conjuntos de datos que se reparten entre un gran nimero de
maquinas, tipicamente en fragmentos residentes en las memorias principales de los

servidores.

= Sirven grandes cantidades de peticiones completamente independientes que no

comparten ningun estado.

= Estdn disefiadas especificamente para una infraestructura de servidores tipica de

la nube, donde las conexiones y las maquinas no son del todo fiables.

= Usan conectividad entre méquinas solo para las tareas mas importantes de coor-

dinacion y administracion.

En algunas aplicaciones de esta suite llegamos a simular hasta tres computadores com-
pletos conectados por red, como es el caso de Web Frontend, cuyo esquema esté re-
presentado en la figura Este benchmark consiste en tres componentes principales:
el servidor web, la base de datos y un cliente, cada una es ejecutada en una maquina
distinta y emulan los accesos del mundo real al servidor web. Todo este sistema simulado
nos permite estudiar las instrucciones del servicio critico: el servidor web que se ejecuta

en una maquina multiprocesador, de cuatro procesadores en nuestro caso.

Client [’Web Server ‘l Database Server

I

' I
<.CET00 o Query |
POST()! . |

A\ - /l

|
|
_______ -

FicuraA 3.1: Esquema Aplicacion Web Frontend.

Capitulo 3. CloudSuite 10

3.2. Cloudsuite en Simics

Como ya se ha apuntado, inicamente se disponen de forma publica los checkpoints para
Simics de las cinco aplicaciones de la tabla Los checkpoints permiten empezar una
simulacién en un punto de interés, sin necesidad de configurar todo de nuevo, arrancar
la méquina, y saltar la fase de inicializacion. Un checkpoint almacena el contenido de
los registros de los procesadores, de las MMUs, la imagen de la memoria principal, los
contenidos de los discos y el estado de los periféricos (consola, conexiones de red, etc.).
En nuestro caso un checkpoint consiste en varios ficheros que contienen la configuracién
del sistema simulado (maquinas para los clientes, para la base de datos y para el servidor
bajo andlisis) en un estado estacionario de la ejecucion, saltando la fase de inicializacién
del sistema que queremos analizar. Para desplegar los checkpoints en ATPS, nuestro
cluster de experimentacién, ha sido necesario configurar las rutas que referencian a
los diferentes ficheros de un checkpoint: datos de entrada de la aplicacién simulada,
configuracién hardware de las méaquinas, e imagen del estado hardware en el punto de

inicio de la simulacién.

Capitulo 4

Metodologia

Este capitulo recoge la metodologia utilizada durante el proyecto. Se presentan las métri-
cas seleccionadas, las herramientas que se han elegido para obtenerlas y cémo se han

usado.

4.1. Meétricas Utilizadas

Estamos interesados en estudiar el rendimiento de la cache de instrucciones, en un sis-
tema multiprocesador de memoria compartida, centrdndonos en la maquina que ejecuta
el servicio critico en las cinco aplicaciones seleccionadas de CloudSuite 2.0. El sistema

de interés es el representado en la figura [4.4

Como se verd en el capitulo siguiente, para analizar el comportamiento durante un tiem-
po significativo, hemos optado por obtener estadisticas de forma periddica. El conjunto
de métricas que obtenemos en cada muestra temporal, para cada procesador, forma una
traza temporal que almacenamos para manipulaciones posteriores. De esta forma, podre-
mos estudiar la variacién en el tiempo o calcular un agregado, segiin la escala temporal

que nos interese considerar.

A continuacion describimos las métricas y modelos que vamos a usar para analizar el

cémo se referencian las instrucciones y obtener, si es posible, conclusiones de diseno.

= Mpki : Nimero medio de fallos de la cache de instrucciones por cada mil instruc-
ciones ejecutadas (Misses per kilo instruction), en este trabajo nos centramos de
la cache de instrucciones de primer nivel. Recordemos que cada vez que se produce

un fallo, entra el bloque de cache requerido, de 64 bytes.

11

Capitulo 4. Metodologia 12

» BWin: Ancho de banda de instrucciones (Instruction Bandwidth) entrante desde
el siguiente nivel. Se agrega para las cuatro caches. Es el cociente entre el niimero

de bytes de instrucciones entrante a las caches y el tiempo de ejecucién.

» Huella de memoria de instrucciones: (Instruction Footprint) Tamano del pro-
grama referenciado durante la ejecucién, en nimero de bytes. Se trata de contar
instrucciones diferentes. Por ejemplo, un bucle de diez instrucciones que se repite

1000 veces supone una huella de 40 bytes (10 instr. x 4 bytes/instr.)

4.2. Modelo de las 3C

El “modelo de las 3C” (compulsory, capacity, and conflict) es uno de los més usados y
conocidos para el estudio de los fallos en las memorias caches [HS89]. Para entender el
modelo, en la figura [4.1] se presenta una memoria cache genérica, con los parametros de

disenio a tener en consideracion.

tag (marca) ne conjunto nEbh:;E:n unavia
direccion P
d ; =<—— un blogue
e memaoria ndamero i de cache
L5 de (tamafio B bytes)
conjuntos : -

: : | <=——unconjunto
O m) j

\ J
A

asociatividad = ndmero de vias (5)

FiGurA 4.1: Memoria cache genérica de tamano NxSxB bytes. Se escogen loga N bits
de la direccion para indexar conjunto. En caso de fallo, si el conjunto correspondiente
estd lleno, se reemplaza al bloque menos recientemente usado (LRU).

El modelo se basa en tres tipos de fallos:

» Obligatorios (Compulsory): Son los producidos por la primera referencia de un
bloque en memoria. Este niimero no se ve afectado por la asociatividad o el tamano
de la memoria cache. Estos fallos corresponderian a los fallos que tendria una cache
completamente asociativa (un solo conjunto) de tamano infinito, y contabilizan el

numero total de bloques que se cargan desde el siguiente nivel.

» De Capacidad (Capacity): Son aquellos fallos que se dan en una cache comple-
tamente asociativa con politica de reemplazo LRU (least recently used), menos los

fallos obligatorios. Estos fallos aparecen por referenciar mayor cantidad de bloques

Capitulo 4. Metodologia 13

que los que caben en la memoria, por lo tanto estos fallos dependen del tamano

de la cache.

» De Conflicto (Conflict): Son los fallos totales de la cache menos los de capaci-
dad y los obligatorios. Son dependientes de la asociatividad, ya que corresponden

aquellos fallos que se dan por tener que alojar bloques en el mismo conjunto.

Para representar este modelo se obtienen los fallos para distintos tamafnos de cache con
distintas asociatividades, incluyendo siempre la completamente asociativa y la corres-

pondencia directa (o asociatividad 1).

En las gréficas y vemos un ejemplo de las dos representaciones habituales del
modelo para la cache de instrucciones de la aplicacién Media Streaming con un uUnico
procesador, los primeros 4’5 segundos de ejecuciéon y con 32B de tamano de bloque.
Ambas graficas muestran fallos en funcién de la capacidad, desde 2 hasta 2048 KB
en el eje X. El eje Y representa tasa de fallos en mpki o porcentaje relativo de cada
tipo de fallos, respectivamente. En la primera grafica se observa como las tasas de fallos
disminuyen desde los 15-17 mpki para 2KB, hasta una cifra inapreciable para 2 MB. Para
64 KB, por ejemplo, podemos ver cual es la penalizacién por disminuir asociatividad:
pasamos progresivamente de los 2,57 mpki en completamente asociativo, hasta los 5,6
mpki de correspondencia directa. En la gréfica vemos los porcentajes relativos; para
la cache de 64 KB los fallos obligatorios suponen una porcentaje no apreciable, mientras
que al disminuir la asociatividad (desde completamente asociativo hasta S=1, pasando
por S=4 y 2), los fallos suponen el 46 %, 65,9 %, 89,5 % y 100 %, respectivamente. Dicho
de otra forma, manteniendo el tamano fijo a 64 KB, si cambiamos la organizacién de la
cache y pasamos de S=1 (N = 1024 conjuntos) a S=2 (N = 512 conjuntos), los fallos

bajan aproximadamente un 10 %.

La grafica ilustra una anomalia que no suele aparecer en caches de datos y a veces
se observa en caches de instrucciones. Vemos que en la cache de 32KB hay mas fallos
para asociatividad 4 que para asociatividad 2. En principio la intuiciéon dice que a ma-
yor asociatividad, menos fallos de conflicto, y menos fallos totales (por cierto, a mayor
asociatividad una cache requiere mas energia por acceso y resulta en un mayor tiempo
de acierto). Sin embargo, en el punto resefiado no es asi, ;{porqué?. Consideremos un
ejemplo extremo: dos caches de T bloques, una de correspondencia directa (S=1) y otra
completamente asociativa (N=1). Supongamos un bucle de instrucciones cuyo tamafio
supera en un bloque al tamano de la cache, es decir, T+1 bloques. En régimen permanen-
te la cache de correspondencia directa se carga con T-1 bloques que no se mueven, pero
hay un conjunto al que van a parar dos bloques en cada iteracién; el resultado es una

tasa de fallos muy baja: 2 fallos cada Tx16 referencias (64 Bytes = 16 instrucciones). En

Capitulo 4. Metodologia 14

cambio, en la cache completamente asociativa, debido al algoritmo de reemplazo LRU,
el régimen permanente resulta en T fallos cada Tx16 referencias, ya que las ultimas

referencias sobrescriben a las primeras, las primeras a las segundas y asi sucesivamente

-1
-2
4
-+ CA
+Qbligatorios

Mp ki

o p - P - - - -
Ly L Ly

2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1024 KB 2048 KB

Capacidad Cache

Ficura 4.2: Ejemplo modelo de las 3C con mpki. Aplicacién Media Streaming, un
procesador, 4,5 segundos de ejecucion.

100 - - - - T - T - T 0

90

80

70
o
=
g % -1
@ +2
® 50 4
g “CA
& +- Obligatorios
; 40 19
&
=
£ 30

20

10

an , - R 4

2KB 4 KB 8 KB 16 KB 32 KB 64KB 128KB 256KB 512KB 1024 KB 2048 KB

FiGurA 4.3: Ejemplo modelo de las 3C con porcentajes agregados. Aplicacion Media
Streaming, un procesador, 4,5 segundos de ejecucion.

Capitulo 4. Metodologia 15

En nuestro proyecto hemos simulado un sistema de cuatro procesadores tal como se
puede ver en la figura [£.4] Para caracterizar caches en sistemas multiprocesador puede
usarse el modelo ampliado de las 4C [CGS99]. La cuarta fuente de fallos (coherence)
proviene de las invalidaciones necesarias para mantener la coherencia, sin embargo este

tipo de fallos no aparece en el flujo de instrucciones, que no estan sometidas a escrituras

compartidas.
Memoria Principal
Red de interconexidn
K K
Mei || Med Mei | |Med Mei || Med Mci | | Mcd Mc i: memoria cache de instrucciones
J{ lT l, \l(l{ \l(l{ \l, Mc d: memoria cache de datos
CPUO CPU 1 CPU 2 CPU 3

FI1GURA 4.4: Sistema de cuatro procesadores simulado. Las memorias cache de instruc-
ciones han sido modeladas en detalle.

4.2.1. Algoritmos de una sola pasada

Para construir las gréaficas [£.2] y [£.3] podemos ejecutar una simulacién por cada tamanio
de cache y por cada asociatividad. Sin embargo este procedimiento requiere mucho tiem-
po de simulacién. Alternativamente, podemos usar un algoritmo “de una sola pasada”
que nos permite en una sola simulacién obtener los fallos para distintas asociatividades
y tamanos de cache [MGST70]. Estos algoritmos son factibles para politicas de reem-
plazo de tipo pila, para los cuales aumentar la asociatividad manteniendo el niimero de
conjuntos siempre resulta en una tasa de aciertos mayor. La politica de reemplazo LRU
(Least Recently Used) cumple esta condicién. LRU precisa una pila ordenada en cada
conjunto. En la cima de la pila estd el bloque mas recientemente utilizado (MRU, Most
Recently Used), y en el fondo el menos recientemente utilizado (el LRU), es decir el
bloque que serd victima en caso de reemplazo. En la figura [£.5] se ilustran los casos de
acierto y fallo a un conjunto cualquiera. Se puede ver el estado original de la pila LRU
del conjunto, y su nuevo estado al llegar una referencia al bloque C. Cémo ya esta en el
conjunto se produce un acierto a distancia 3 en la pila y este bloque pasa a ser el MRU.

La siguiente referencia que llega es al bloque E, que no esta en la cache, por lo tanto se

Capitulo 4. Metodologia 16

produce un fallo. El bloque victima, el que se expulsa, serd el LRU, es decir el bloque

D. Y el bloque E queda en la cima de la pila, es decir la posicién MRU.

C E
MRU LRU MRU LRU MRU LRU
lA/B/c|D|] [c[]A[B|D| [E[C|A]|B|
Acierto Fallo
dist=3
|
Tiempo

FiGurA 4.5: Pila de bloques en orden LRU en un conjunto cualquiera. Acierto en el
bloque C seguido de fallo del bloque E.

Analizando la pila ordenada de bloques de un conjunto cualquiera, vemos que el acierto
a distancia 1 de la cima (la propia cima) se produce si un bloque vuelve a referenciarse
inmediatamente. El acierto a distancia 2 se produce si entre dos referencias al mismo
bloque se referencia uno distinto. Aplicando este razonamiento de forma sucesiva se pue-
de demostrar que, manteniendo fijo el nimero de conjuntos, una cache de asociatividad
S experimenta los mismos o mas aciertos que una cache de asociatividad S-1, ya existe
una relacién de inclusion entre los contenidos de la cache de asociatividad S y la cache
de asociatividad S-1. Esta relacion es mas facil de apreciar a través de un ejemplo, para
ello vamos a ayudarnos de las figuras y En ambas el tiempo transcurre de iz-
quierda a derecha. Entre estado y estado aparece en la parte superior cual es el bloque
referenciado y en la parte inferior si se produce acierto o fallo. En el caso de acierto se

apunta también a que distancia de la cima de la pila LRU se ha producido.

Cache: N=1, S=1

Secuencia de referencias: ABCCDBAADA

A B C C D B A A D A
\WI (c] [c] [po] [B] [A] [A] [D] [A]
Fallo Fallo Fallo Acierto Fallo Fallo Fallo Acierto Fallo Fallo

dist=1 dist=1
|
Tiempo

FI1GURA 4.6: Aciertos y fallos para una cache LRU con asociatividad 1

Capitulo 4. Metodologia 17

Cache: N=1, S=3
Secuencia de referencias: ABCCDBAADA

A B C C D
MRU LRU ¢ MRU LRU ¢ MRU LRU # MRU LRU MRU LRU MRU LRU
| \wl | [BTA] | [e[B]A] [c]B[A] [D]Cc[B]
Fallo Fallo Falio Acierto Fallo
dist=1
B A A D A

MRU LRU MRU LRU #MRU LRU # MRU LRU ¢ MRU LRU MRU LRU

[p[c[B] [B[D]c]|] [A[B[D]| [A[B][D]|] [DJ]AJB] [A[D][B]
Acierto Fallo Acierto Acierto Acierto
dist=3 dist=1 dist=3 dist =2
Tiempo

FIGURA 4.7: Aciertos y fallos para una cache LRU con asociatividad 3

En la primera figura, la se representa una cache de un solo bloque, y de un solo
conjunto, asi que si inmediatamente no se referencia al mismo bloque, se produce un
fallo. En el caso de que se produzca un acierto este siempre es a distancia 1, ya que la
pila LRU del conjunto solo tiene un elemento. En el vector de la izquierda de la figura
[4:8 podemos ver el resumen de los aciertos y fallos totales de la secuencia de referencias
utilizada (ABCCDBAADA).

Vectores de aciertos

acumulados
Cache: N=1, S=1 Cache: N=1, S=3
dist =1 2
dist=2 1
dist=3 2

F1GURA 4.8: Vector de aciertos acumulados para S=1y S=3

Sin embargo la secuencia de estados en la figura [4.7] se complica, ya que corresponde
a una cache de un solo conjunto, pero de asociatividad 3. Ahora aparecen aciertos a
distancias 1, 2 y 3. Aqui se aprecia lo que explicibamos anteriormente, por ejemplo, el
dltimo acierto se da a distancia 2 porque entre la 1ltima referencia al bloque A y la
anterior referencia solo se ha referenciado al bloque D. O en el penultimo acierto, que se

da a distancia 3 porque entre la dltima vez que se referencia a D y la anterior s6lo se han

Capitulo 4. Metodologia 18

referenciado dos bloques: el A y el B. En el vector de la derecha de la figura .8 recogemos

el nimero total de fallos y de aciertos, estos dltimos clasificados por distancias.

Gracias a las figuras y a las tablas ahora podemos ver mejor porque los aciertos de
asociatividad 1 de una cache estan incluidos en los aciertos de una cache con el mismo
nimero de conjuntos pero mayor asociatividad. Los aciertos a distancia 1 del vector S=3
en son los correspondientes a los aciertos de la cache de asociatividad 1 de la figura
para esa secuencia de referencias a bloques.Y llegamos a la conclusién de que no es
necesario representar una cache de asociatividad 2 con 2 bloques, y un solo conjunto,
para saber su numero de aciertos ya que la cache de asociatividad 2 incluira los de la 1
(2 aciertos) mas los de distancia 2 del vector S=3 en de la cache de asociatividad 3.
Es decir, para la cache de un conjunto y asociatividad 2 el nimero de aciertos serd 3, y

por lo tanto el numero de fallos 7, ya que en total hay 10 referencias a bloques.

Asumiendo reemplazo LRU, ;cémo concretar estas ideas en un algoritmo?. Una forma es
gestionar un vector de aciertos que contabiliza cuantos aciertos se dan en cada distancia.

El algoritmo en detalle puede consultarse en el anexo [C.2.1]

Con este algoritmo podemos obtener, por ejemplo, a partir de la simulacién de una cache
de 16KB de asociatividad 4, los aciertos (y por lo tanto también los fallos) de una cache

8KB con asociatividad 2, y de una cache de 4KB con asociatividad 1.

4.3. Mobdulo G-Cache

4.3.1. Moébdulos en Simics

Un modulo en Simics es un c6digo ejecutable que se carga dindmicamente en la maquina
virtual. Para tener un uso préctico debe interactuar con Simics, con otros médulos o con
el usuario. Simics proporciona una API (application programming interface) para que
los médulos puedan utilizar diversas funciones. La API soporta los conceptos de clase,
objeto, interfaz y evento. Los médulos pueden programarse en DML (Device Modeling

Language), Python o C/C++.

En este proyecto hemos trabajado modificando un médulo ya definido por Simics, g-

cache, que se explica a continuacién.

4.3.2. G-cache

Simics es una maquina virtual con capacidad de ejecucion funcional de sistema completo,

tanto de aplicaciones como de sistema operativo. Por tanto no modela las cuestiones de

Capitulo 4. Metodologia 19

implementacion transparentes al lenguaje méaquina, como la jerarquia de caches. Sin
embargo, incorpora a modo de ejemplo el mdédulo g-cache que permite modelar una
jerarquia multinivel de caches para multiprocesador. G-cache trata las transacciones de
memoria de forma simple: todas las operaciones necesarias (copy-back de bloques sucios
de datos, fetch de instrucciones, etc.) se ejecutan en orden de programa y una sola vez. La
cache devuelve la suma de los ciclos de parada para cada operacién. Hemos modificado
este modulo para programar de forma eficiente nuestras caches de instrucciones. Las dos

versiones programadas tienen la siguiente funcionalidad:

» Algoritmo para multiples caches (algoritmo MC): Se aplica la idea del apar-
tado para recoger en una simulacién tnica los fallos de varias asociatividades

y tamanos.

» Algoritmo para caches completamente asociativas (algoritmo CCA): Ya
que las caches completamente asociativas solo tienen un conjunto, los algoritmos
tradicionales de reemplazo LRU es muy costoso de simular para caches grandes, por
tener que recorrer toda la lista LRU una o varias veces cada vez que se produce un
fallo. La mejora original que proponemos es utilizar una cache de correspondencia
directa auxiliar, que permite capturar una gran parte de los aciertos, evitando
tener que buscar el bloque en la cache simulada. Hemos medido una mejora media

en velocidad de un 90,52 % gracias a esta mejora.

En el Anexo[C]se describen en detalle los dos algoritmos.

4.4. Experimentos

En este trabajo hemos lanzado 6 experimentos con el algoritmo MC, y 5 experimentos
con el algoritmo CCA, por cada aplicacion. La grafica muestra los seis primeros
experimentos y a qué cache (asociatividad y tamano) corresponden los resultados obte-
nidos, cuatro caches distintas por cada experimento. Asi que con seis ejecuciones hemos

obtenido los datos de 24 caches distintas, suponiendo una muy importante mejora.

El algoritmo CCA se ha ejecutado para las caches de 16KB, 32KB y 64KB, para las que
ya disponemos resultados desde asociatividad 1 a 8, pudiendo asi completar el modelo
de las 3Cs.

El cuarto experimento con este algoritmo corresponde a la simulacién de una cache de
2048KB. Esta cache que al ser lo suficientemente grande nos permite contabilizar los

fallos obligatorios.

Capitulo 4. Metodologia 20

Numero de experimento

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp6

0 = 2KB

10 =+=4KB

2 8KB

= 16KB

_{g 3 +32KB
T oy 64KB
(&)
o +128KB
g 9 256KB

6 =*#512KB

7

8 [|

9

F1GURA 4.9: Experimentos lanzados con algoritmo MC.

Cada uno de los experimentos anteriores supone 10 segundos (tiempo en maquina real)
de cada aplicacion, recogiendo muestras cada 100ms, es decir se obtienen 100 muestras
por cada experimento y aplicacién. Antes de cada muestra las caches y sus estadisticas

se inicializan.

Por tltimo, el quinto experimento con el algoritmo CCA corresponde a la obtencién de
los fallos obligatorios a lo largo de los 10 segundos (tiempo en méaquina real) sin inicializar
las caches ni las estadisticas y recogiendo los datos cada 100ms . El experimento se ha
lanzado con un tamano de 2048KB para todas las aplicaciones excepto para Classification

y Cloudstone que ha sido de 4096KB y 8192KB,respectivamente.

Capitulo 5

Resumen de Resultados

En este capitulo se recogen los resultados de los experimentos realizados, siguiendo las

métricas presentadas en el apartado

Los resultados se estructuran en tres apartados; el primero muestra las tasas de fallos
promediadas para todos los cores en toda la duraciéon de las aplicaciones; el segundo
presenta la huella de memoria, estudiando su evolucién temporal en intervalos de 100ms;
el tercer apartado presenta el ancho de banda agregado que debe suministrar el siguiente
nivel, también analizando intervalos de 100 ms. Al final de cada apartado se ofrecen unas

conclusiones de comportamiento y, en su caso, de diseno.

5.1. Mpki por Core

Las gréaficas presentadas en esta seccién - resumen el comportamiento de las
caches de instrucciones en cuanto a su tasa de fallos expresada en mpki, en funcién de su
tamafo y de su asociatividad, para un tamano de bloque de 64 bytes. Para cada tamafio
de cache y para cada core hemos calculado la media aritmética de todas las muestras

temporaleq!}

En estas graficas observaremos la importancia relativa del tamafio y la asociatividad en

la tasa de fallos, asi como la posible diferencia de comportamiento entre cores.

'Estos datos, junto con los del siguiente apartado, permiten descomponer los fallos segtin el modelo
de las 3Cs. No se ha hecho asi porque la anomalia de asociatividad aparece, y entonces la representacién
pierde utilidad.

21

Capitulo 5. Resumen de Resultados 22

5.1.1. Streaming (Figura

Destaca la diferencia de comportamiento entre cores: el core 3 es menos sensible a la
asociatividad y al tamano (rango total 35-20 mpki), mientras que los cores 1,2 y 4 tienen
comportamientos casi idénticos, presentando unas tasas altas para 16KB (45-50 mpki)

y mucha sensibilidad a la asociatividad para 64 KB.

En los dos grupos de cores aparece la anomalia de asociatividad. Para el core 3, en 64
KB solo la correspondencia directa es peor que completamente asociativo. Para el resto

de cores ocurre algo muy parecido, pero para 32 KB.

Resaltemos esto: la mejor eleccién de asociatividad se invierte por completo, segin el
tamano y el core considerados, lo cual no es nada bueno desde el punto de vista de
diseno. Escoger una asociatividad 4-8 para todos los cores y tamanos, podria ser un

buen compromiso de diseno.

En definitiva, estamos frente a una aplicaciéon cuya busqueda de instrucciones puede
convertirse en el cuello de botella del procesador si el tamano de cache es insuficiente o

la asociatividad no es la apropiada.

Streaming core 1 As:1,2,4,8,CA Cap:16-32-64KB Streaming core 2 As:1,2,4,8,CA Cap:16-32-64KB

5=1
5=2
S=4
58
s=ca

5=1
5=2
S=4
5=8
S=CA

Mpki
10 20 3 40 =0
|
Mpki
10 20 3 40 =0
.

0
0

16KB 32KB 64KB 16KB 32KB 64KB

Capacity (KB) Capacity (KB)

Streaming core 3 As:1,2,4,8,CA Cap:16-32-64KB Streaming core 4 As:1,2,4,8,CA Cap:16-32-64KB

5=1
sz
S=4
5=8
S=CA

Mpki
Mpki

10 20 30 40 S50
I

10 20 30 40 S0
L

1]
1]

16KB 32KB 64KB 16KB 32KB 64KB

Capacity (KB) Capacity (KB)

F1cURrA 5.1: Streaming: mpki de la cache de instrucciones en cada core vs. tamafio y
asociatividad. Tamano de bloque 64B.

5.1.2. Cassandra (Figura)

En esta aplicaciéon basta con descartar disenos de correspondencia directa para obte-
ner un muy buen rendimiento (4-5 mpki), independientemente del tamano y del core

considerado. En cuanto a comportamiento de cache, parece que esta aplicacién paralela

Capitulo 5. Resumen de Resultados 23

usa el mismo cdédigo en los cuatro procesadores. No se observa ninguna anomalia de

asociatividad, y la sensibilidad de los fallos al tamafio de cache es reducida.

Cassandra core 1 As:1,2,4,8,CA Cap:16-32-64KB Cassandra core 2 As:1,2,4,8,CA Cap:16-32-64KB

5=1
5=2
S=4
58
s=ca

bl

10 15 20 25

Mpki

10 15 220 25
Mpki

5
L
>
S
L

0
I
0
L

@
z
= 4
]
@
-y
]

16KB 32KB 32KB 64KB
Capacity (KB) Capacity (KB)
Cassandra core 3 As:1,2,4,8,CA Cap:16-32-64KB Cassandra core 4 As:1,2,4,8,CA Cap:16-32-64KB
—_— 3=1 — 3=1
& o 5=2 & [52
- | © et - b 5ed
o & 5=8 o & 3-8
= w | S=CA = w | S=CA
£ =2 £ 2
= =
2 B
B B
P - [P T - T
- e n - e - 'y
o =
T T T T T T
16KB 32KB 64KB 16KB 32KB 64KB
Capacity (KB) Capacity (KB)

F1cURrRA 5.2: Cassandra: mpki de la cache de instrucciones en cada core vs. tamafno y
asociatividad. Tamano de bloque 64B.

5.1.3. Nutch (Figura [5.3))

Buen aprovechamiento de la capacidad y de la asociatividad: al aumentar tamano de
16KB a 64 KB, nos movemos desde la franja 20-10 mpki a 5-1 mpki, para asociatividades

entre 1 y CA, respectivamente. Todos los cores parecen ejecutar el mismo codigo.

5.1.4. Classification (Figura [5.4])

Podemos apreciar una gran diferencia entre asociatividad 1 y el resto. Independiente-
mente del tamano,a partir de asociatividad 4-8, la tasa de fallos es inapreciable.Todos

los cores parecen ejecutar el mismo cédigo.

5.1.5. Cloudstone (Figura [5.5))

El core 2 presenta una tasa de fallos (20-15 mpki) superior al resto (15-20 mpki), que
se comportan de forma similar. Independientemente de la asociatividad, todos los cores
experimentan el mismo descenso de mpki al doblar el tamano, un 21 % aproximadamente.

A partir de asociatividad 4 apenas se aprecia mejora.

Capitulo 5. Resumen de Resultados

24

Mpki

Mpki

Mpki

Mpki

Nutch core1 As:1,2,4,8,CA Cap:16-32-64KB

Nutch core 2 As:1,2,4,8,CA Cap:16-32-64KB

§ -

T T T L T T T
16KB 32KB 64KB 16KB 32KB 64KB
Capacity (KB) Capacity (KB)

Nutch core 3 As:1,2,4,8,CA Cap:16-32-64KB Nutch core 4 As:1,2,4,8,CA Cap:16-32-64KB
z

16KB 32KB 64KB 16KB 32KB 64KB
Capacity (KB) Capacity (KB)
FicurA 5.3: Nutch: mpki de la cache de instrucciones en cada core vs. tamano y

asociatividad. Tamano de bloque 64B.

Classification core 1 As:1,2,4,8,CA Cap:16-32-64KB

Classification core 2 As:1,2,4,8,CA Cap:16-32-64KB

R
16KB 32KB 64KB 16KB 32KB 64KB
Capacity (KB) Capacity (KB)
Classification core 3 As:1,2,4,8,CA Cap:16-32-64KB Classification core 4 As:1,2,4,8,CA Cap:16-32-64KB
—e 5= 1 —e— s
o sz i - 52
TTA D
4 | D
S=cA - S-CA
R
S 1o
£ &) s g
: . ; :
16KB 32KB 64KB 16KB 32KB 64KB

Capactty (KB)

Capactty (KB)

FiGURA 5.4:

Classification: mpki de la cache de instrucciones en cada core vs. tamarto
y asociatividad. Tamano

de bloque 64B.

Capitulo 5. Resumen de Resultados 25

5.1.6. Conclusiones

En base al estudio de las tasas medias de fallos por core, podemos extraer la siguientes

conclusiones para el conjunto de todas las aplicaciones:

= Dos aplicaciones, Streaming y Cloudstone, no facilitan un diseno homogéneo de
la cache de instrucciones, ya que un core se desmarca del comportamiento de los
otros tres. Escoger descuidadamente una configuracién de tamano y asociatividad
puede resultar en unas tasas de fallos excesivas para unos y en un diseno sobredi-
mensionado para otros. La existencia de anomalias de asociatividad complica atin

mas la decisién de diseno.

= Kl rango de tasa de fallos observado es grande, destacando Streaming, que puede
llegar a los 50 mpki. Le sigue Cloudstone, presentando entre 20 y 10 mpki. A
continuacién, Nutch puede llegar a fallar bastante con pequenios tamanos (20-
10 mpki), pero con suficiente capacidad y asociatividad apenas falla (5-1 mpki).
Finalmente, Cassandra y Classification, con una asociatividad suficiente, apenas

fallan (<4 mpki).

= A la vista de los experimentos realizados podemos derivar algunas pautas de disefio
para la cache de instrucciones de primer nivel con tamano de bloque 64 Bytes: -
Si el tiempo y la energia de acceso no quedan coxnprometidasﬂ7 el diseno mas

razonable es un tamano de 64 KB con asociatividad 4-8.

e La opcion de 32 KB es mas barata y rapida. Salvo para Streaming seria muy

apropiada. Una asociatividad 4 seria suficiente.

e En caso de optar por 16 KB, la mitad de las aplicaciones funcionarian bien
por debajo de su potencial (Streaming, Nutch y Cloudstone). En esta caso,

una asociatividad 4 también seria suficiente.

5.2. Huella de Memoria

La huella de memoria es el nimero total de bloques diferentes que un programa visita
cuando se ejecuta. En nuestro caso nos interesa la huella de instrucciones, medida con

una granularidad de 64 bytes, el tamano de bloque de cache que vamos a utilizar en

2 Tanto el tiempo como la energia de un acceso de cache crecen més o menos linealmente con el
tamafio y de forma marginal con la asociatividad. Un disefio comercial no sélo considera la tasa de
fallos, sino el tiempo medio de acceso y el posible impacto sobre el tiempo de acceso del procesador
[HPO6]

Capitulo 5. Resumen de Resultados 26

Cloudstone core1 As:1,2,4,8,CA Cap:16-32-64KB Cloudstone core2 As:1,2,4,8,CA Cap:16-32-64KB

s=1
52
54 8 1
se

s-ca

bod

Mpki
2
Mpki
2

16KB 32KB 64KB 16KB 32KB 64KB

Capacity (KB) Capacity (KB)

Cloudstone core 3 As:1,2,4,8,CA Cap:16-32-64KB Cloudstone core 4 As:1,2,4,8,CA Cap:16-32-64KB

Mpki
2
Mpki
2

Capacity (KB) Capacity (KB)

Ficura 5.5: Cloudstone: mpki de la cache de instrucciones en cada core vs. tamano y
asociatividad. Tamano de bloque 64B.

todo este capitulo. Por tanto la huella de instrucciones es equivalente al tamano efectivo

del cédigo que se ha ejecutado en cada aplicacién.

Para observar la evolucion temporal, hemos medido en primer lugar la huella de recarga
en intervalos de 100 ms. Para cada core, la huella de recarga mide el nimero de blo-
ques diferentes que se visitan en cada intervalo. Esta medida se ha realizado mediante
una cache completamente asociativa lo suficientemente grande para que no haya fallos
de conflicto ni de capacidad, solo fallos obligatorios, que son los correspondientes al
numero de bloques diferentes referenciados. Al principio de cada intervalo se vacia la
cache. Puesto que cada cache tiene su propia dindmica, hemos optado por representar

unicamente la mayor de las cuatro huellas de recargaﬂ

En las figuras también se presentan los resultados para cada core de la huella acumulada,
que se ha calculado sin perder memoria cada 100 ms. Por tanto la huella acumulada al
final de los 10 s representa el nimero total de bloques de instrucciones visitado por cada

core.

Hay que prestar especial atencién en las figuras ya que no todas estan escaladas igual y

no todos los ejes verticales comienzan en el valor cero.

En este apartado nos interesa verificar si las aplicaciones estan en régimen estacionario,
como afirman los creadores de los checkpoints. En tal caso, podriamos buscar fases de

ejecucién que nos permitan simular en una ventana de tiempo mas reducida. Por otra

3En el capitulo de conclusiones y lineas abiertas (Capitulo @) se comenta un interesante trabajo
futuro relacionado con las posibles similitudes o diferencias entre las huellas de recarga de los cuatro
procesadores.

Capitulo 5. Resumen de Resultados 27

parte, también nos interesa descubrir si existe relacién, o no, entre la huellas (acumulada

o de recarga) y las tasas de fallos presentadas en el apartado anterior.

Huella de Memoria Muestreada

1600

B ———— Streaming
---@--- Cassandra

- Classification

e Nutch

Cloudstone

1400

1200

1000

KB

800
I

8o ek as
Aafh 85 0 0 B D

600
I

400
L

Tiempo (seg)

FiGUrA 5.6: Huella de recarga de todas las aplicaciones de Cloudsuite. Cien intervalos
de 100 ms. Tamaio en KB (219)

En la figura podemos ver la huella de recarga en KB (2! bytes) para cada una de
las cinco aplicaciones. Podemos observar que Cloudstone es la que més codigo toca, al
contrario que Streaming y Classification que presentan huellas incluso 7 veces menores.
Sin embargo, estas dos aplicaciones, sobre todo Classification, presentan una variabilidad
relativa muy grande en su recarga. Nutch y Cassandra tocan una cantidad de cédigo
parecida, del orden de los 600-700 KB, mostrando bastante estabilidad en la cantidad

de cédigo que se recarga.

A continuacién presentamos los resultados desagregados por aplicacion.

5.2.1. Streaming (Figura

La huella acumulada en los 10 segundos de simulacién se mueve en un rango de entre

800KB para el core 3 y casi 600KB para el core 4. La recarga en cada muestra varia
entre 200 KB y més de 500 KB.

Al principio de la ejecucién los 4 cores cargan el cédigo y después se pueden destacar los
cambios de fase del core 2 y 3, que cargan unos 100 KB de cédigo sobre el segundo 1,5
y el segundo 3, respectivamente. Estos cambios de fase corresponden a picos maximos

en la huella de recarga.

Capitulo 5. Resumen de Resultados 28

Huella de Memoria Streaming

800
|

— Coed
s Core 2000000007
3 Core 3
sede Cored
Muestreada

700
I

O GEC0E06006 M 08858000808 8s FREGE0E 08 6000 00E0R0EEE 60 8GE0ERE IR0 EER EGEGaLE0EE

i
o OOV ICTREITRREEY a8

= P
8 7 : ALASAAALLLA

ADLS

fetct B DBLLAL

KB

200
I

Tiempo (seg)

FicurA 5.7: Huellas acumuladas y de recarga de de Streaming.

5.2.2. Cassandra (Figura |5.8))

Mientras que los cores 1,2 y 4 consumen entre 900 KB y 1200 KB de instrucciones a
lo largo de los 10 segundos, el core 3 alcanza los 2000 KB. Hay varios cambios de fase
en los cores, por ejemplo cerca del segundo 6 aparece una carga de unos 100KB de
instrucciones en el core 1. Sin embargo, el que méas destaca es el del core 3 en el segundo
6,4, que es de unos 900 KB. Esto coincide con el pico en la huella de recarga, que es unos
900 KB mayor que la media, media que se mantiene constante a lo largo del tiempo en
unos valores de 500-700KB.

Huella de Memoria Cassandra

2000

—— Core1 GGCEHH00ED
—-B-- Core2 o6
< Core 3 ;
Sohe-s Cored
Musstreada

1500

KB

1000

ABALLAANADLANS LA

EfE0E 008080800 800300006 0E8666H 8680808688

ETGIOTI0V00

Tiempo (seg)

FiGurA 5.8: Huellas acumuladas y de recarga de Cassandra.

Capitulo 5. Resumen de Resultados 29

5.2.3. Nutch (Figura [5.9)

El nimero de bloques referenciados en total en los 10 segundos de simulaciéon se mueve
en un rango de entre 1200KB para el core 4 y 1000 KB para el core 3. Y la huella de
recarga oscila entre 600 KB y 800 KB, destacando un punto muy bajo de unos 200KB.

Huella de Memoria Nutch

1200

+—=— Corefl
———————— Core 2 ;
@ Core 3 AAAAAAA&AAAMM&éMAA PﬁgﬂgﬂgﬂgaﬁnagﬁgﬂﬂﬂEHEEBEH}EIDBE

B et Core d ! 2
Muestreada

] $00900COIVOOOOS

o BEEEEE.
AnfooEDE0ESEEDR0E5E0E8EE
1 gggggwa‘; Oﬂgg oOQQﬂoo<><><m<><><>oo@@oooooooooooooeo
4 3
AAOA% 3 f=ts]
o e

1000

EECE

800

KB

600
I

400
I

Tiempo (seg)

F1GURA 5.9: Huellas acumuladas y de recarga de Nutch.

5.2.4. Classification (Figura [5.10))

La huella acumulada en los 10 segundos de simulacién se mueve en un rango de entre
2500KB para el core 1 y 1800KB para el core 2. Aunque las huellas de recarga son
relativamente bajas, moviéndose en su mayoria por debajo de los 500KB, existen picos

significativos que corresponden con los cambios de fase de las huellas acumuladas.

5.2.5. Cloudstone (Figura |5.11))

Alcanzamos una huella acumulada superior a los 4000KB, mucho maés alto que en el resto
de las aplicaciones. Observamos que los 4 cores tienen un comportamiento practicamente
idéntico, trazando una funcién de aspecto logaritmico. Al principio se cargan grandes
tamanos, del orden de 100KB, y al final casi no se cargan nuevos bloques de instrucciones.
No hay cambios de fase claros ya que la carga es progresiva, y esto se puede apreciar en

la huella de recarga, ya que varia poco y no tienen ningun pico significativo.

Capitulo 5. Resumen de Resultados 30

Huella de Memoria Classification

2500

—— Coeft

---mess Core2

© Core 3

-~ Cored Ak
Muestreada aasLEAMMNN

sl ol L Loln L
e Prfiritivy

2000

GOCEOT
EoEacacanaSE8
=g

BALLALAN
AAAAAAAL LK D G D OEOEGEBEI0nnETE00 08 e gnEOEaEEE enacEanaad
A -

1500

GEoG
066000606 00EEBEEETEOTHIOD
P

KB

SEO0O0e0eeY

1000

i Dﬁnamaua“ QGOOOO
B

folvarasiede s siavs

500

Tiempo (seg)

FicurA 5.10: Huellas acumuladas y de recarga de Classification.

Huella de Memoria Cloudstone

—— Coret 000G
S-emess Core2
e Cored RRERR
o avet
~edieee Cored EECEEERS

EDEDﬂaaaﬂauauan—ﬁmgaaﬂanaﬂrjé
ERERE

Muestreada

4000
L

KB
3000
I

2000

1000

Tiempo (seg)

F1GURA 5.11: Huellas acumuladas y de recarga de Cloudstone.

5.2.6. Conclusiones

= Los creadores de los checkpoints afirman que el punto de inicio de ejecucion corres-
ponde a un régimen estacionario. Sin embargo todas las aplicaciones no estabilizan
sus huellas hasta bien entrada la ejecucién. En concreto, a partir del segundo 4
para Streaming, 6,4 para Cassandra, 7,2 para Nutch, 7 para Cloudstone y 9 pa-
ra Classification. Sin embargo seria necesario simular unos 10 segundos mas para
ver si realmente se ha llegado a un comportamiento estable en cuanto a huella

acumulada y recarga.

Capitulo 5. Resumen de Resultados 31

5.3.

Cuando hablamos de un cambio de fase, nos referimos a que recargamos del orden
de 100 o més KB de instrucciones. Estos cambios de fase, que se dan en todas
las aplicaciones excepto en Cloudstone, complican escoger una ventana de tiempo

representativa.

No existe correlacién entre las huellas de memoria y las tasas de fallos observadas
en el apartado anterior. Por ejemplo, Streaming no destaca ni por el tamano final
de la huella ni por sus valores de recarga, pero es la aplicaciéon que mas falla: se vi-
sita poco cédigo, pero con poca localidad. Por el contrario, a veces se visita mucho
c6digo, pero con gran localidad. En este grupo caen Cassandra y Cloudstone. Cas-
sandra falla realmente poco, aunque su huellas acumuladas y de recarga son de las
mayores de la suite. Cloudstone es con diferencia la que tiene huellas acumuladas

y de recarga mas grandes. Sin embargo, sus tasas de fallos son medias.

Ancho de Banda de instrucciones

Como ya hemos indicado en el apartado la métrica BWin es el ancho de banda

de instrucciones que entra desde el siguiente nivel, agregado para las cuatro caches. La

figura recuerda el sistema simulado y resalta la agregacion de los traficos entrantes

a las cuatro caches de instrucciones.

Siguiente Nivel

BWin ¢

Red de interconexidn

N4

Bwin 0 \E Bwin 1 ¥ Bwin 2 Vv Bwin 3

Mc i Mc i Mc i Mci Mci:

memoria cache

\l(\L \L de instrucciones

CPUO CPU 1 CPU 2 CPU 3

FiGUuraA 5.12: Sistema simulado para calcular Bwin, el ancho de banda de instrucciones.

La siguiente formula concreta como se calcula dicho ancho de banda a partir de las tasas

de fallos en mpki, asumiendo un procesador de 2 GHz que ejecuta a un ritmo de un ciclo

Capitulo 5. Resumen de Resultados 32

por instruccién:

4

64B
BWin(GBps) = mpki X i =
(GBps) Kz::l Phtcore I 1000 tnstrucciones X 171.”;;5[00@6” x 0,5
- . 10°
Z mphicore ik X 0,128 X —35G Bps
K=1

(5.1)

Vamos a presentar en tres graficas la evolucién temporal de BWin para cada tamarno
de cache (16KB, 32KB, 64KB); en cada gréfica se detalla el comportamiento para cada

asociatividad.

5.3.1. Streaming (Figura [5.13)

En concordancia con sus elevadas tasas de fallos, Streaming es la aplicacién que puede
presionar mas al siguiente nivel, presentando picos de hasta 25 GBps para la cache mas
sencilla (16 KB, S=1). Al igual que en todo el resto de aplicaciones, si consideramos la
evolucién temporal como una senal, podemos ver como el aumento de tamano y asocia-
tividad actda como un filtro paso bajo con gran reduccién de la componente continua.
En este caso, al pasar de 16 KB con S=1 a 64 KB con S=2, BWin se reduce, en media,

en un orden de magnitud.

Al aumentar el tamano de cache, el BWin es mads sensible a la asociatividad: para 16
KB apenas se nota la diferencia entre asociatividades, mientras que para 64 KB cada
vez que doblamos la asociatividad, el BWin desciende apreciablemente. Hay que resaltar
que el resto de aplicaciones van a presentar justo el comportamiento contrario: a mayor

tamano, menor impacto de la asociatividad.

5.3.2. Cassandra (Figura |5.14)

Hay que destacar la gran diferencia entre correspondencia directa y el resto de asocia-
tividades, aunque ésta disminuye bastante al aumentar el tamano de la cache. También
observamos que a partir de una asociatividad minima (S >2), apenas hay diferencias de

ancho de banda.

La influencia del tamafnio de la cache sobre el filtrado de ruido y la disminucién de la

componente continua sigue el patrén general.

Capitulo 5. Resumen de Resultados 33

Streaming Cap 16 KB As:1,2,4,8,CA

o
&
(=3
&
2 o |
g 2
[
=
=
m
o |
o 4
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Streaming Cap 32 KB As:1,2,4,8,CA
w |
&
o
&
T
g =2
[
£
£
m
o
o 4
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Streaming Cap 64 KB As:1,2,4,8,CA
F —e— 5=1
a- 8=2
“ 5=4
g | & G=8
S=CA
2 w
& 2
e
<
=
m
o |
= % . . P
& = DO 2, @ ©, @ & 9 @ 0e D, TOE G, Ve 2,
oot s 08 2 " u, 00%, 00000000600 o 0O Fo %0;“’00 e . e 0@ 5% OAOOOA0QO o
w4 TR0 s 8,00 aa o, GOR © ST, Pt ahp sl BOLEA aa B n o By BB a8 Lo B
PN, e Bl O YEN ¥ p Y, AT & B Ml
T T T T T
0 1 2 3 4 5 6 7 8 9 10

Tiempo(sec)

FIGURA 5.13: Ancho de banda por asociatividad y tamafio en Streaming.

Capitulo 5. Resumen de Resultados

34

Cassandra Cap 16 KB As:1,2,4,8,CA

12
I

10

T o 4
m
e
<
=
m ©
< 4
~
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Cassandra Cap 32 KB As:1,2,4,8,CA
o
o |
7 o
m
e
£
ES
m © -
<
~ 4
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Cassandra Cap 64 KB As:1,2,4,8,CA
—— 8=t
o --3-- §=2
<~ S=4
-~ G=8
o | 8=C
7 o
m
e
c
=
m ©0

Tiempo(sec)

FiGUurA 5.14: Ancho de banda por asociatividad y tamano en Cassandra.

Capitulo 5. Resumen de Resultados 35

5.3.3. Nutch (Figura [5.15))

Destaca la gran variabilidad temporal del ancho de banda, sobre todo para 16KB y 32KB.
Al aumentar el tamano de la cache el rango del ancho de banda se reduce apreciable-
mente, aunque el escalado es variable (e.g. en media, el cociente entre BWin para S=1y

para CA, es del orden de 2, 1,7 y 6, para las caches de 16, 32 y 64 KB, respectivamente).

La influencia del tamafnio de la cache sobre el filtrado de ruido y la disminucion de la

componente continua sigue el patrén general.

5.3.4. Classification (Figura [5.16)

Salvo con una cache de correspondencia directa, esta aplicacion es la que menos presiona
al siguiente nivel de memoria. Observamos una gran diferencia entre asociatividad 1 y
el resto de asociatividades. Ademés, al aumentar el tamano de la cache, la sensibilidad

a la asociatividad es menor.

La influencia del tamafo de la cache sobre el filtrado de ruido y la disminucién de la

componente continua sigue el patrén general.

5.3.5. Cloudstone (Figura [5.17))

Junto con la aplicacion Nutch, Cloudstone destaca por gran variabilidad temporal. Pero
en este caso, apenas es apreciable el filtrado paso bajo que se observa en el resto de
aplicaciones al aumentar el tamano de cache. Observamos que la diferencia absoluta
entre las distintas asociatividades es casi constante, independientemente del tamano de

la cache.

5.3.6. Conclusiones

= Con tan solo cuatro procesadores las aplicaciones estudiadas pueden ejercer una
presién notable sobre el siguiente nivel de memoria cache. Si asumimos que la
recarga de instrucciones se produce regularmente, sin rafagas (lo cual no suele ser
cierto), podemos calcular a partir de BWin el nimero medio de ciclos entre las

transacciones de 64 B, mediante la siguiente formula (procesadores de 2GHz):

119,2 ciclos

. 2
BWin(GBps) transaccion (52)

Esto significa que un ancho de banda de 10 GBps, observado en mas de una aplica-

cién y configuracion, supone en media un acceso cada 12 ciclos, aproximadamente.

Capitulo 5. Resumen de Resultados 36

Nutch Cap 16 KB As:1,2,4,8,CA

12

10

BWin (GBps)
8
L

T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Tiempo(sec)

Nutch Cap 32 KB As:1,2,4,8,CA

12

10

BWin (GBps)
6
L

0 1 2 3 4 5 6 7 8 9 10

Tiempo(sec)

Nutch Cap 64 KB As:1,2,4,8,CA

—— g=1
a- §=2
e & S=4
Ao 5=8
S=CA
&
& o4
s
m
o~ L] E‘\ 'D\ a, =™
D E\UAB o Oy W e Dﬂﬂg‘j d o ebga, B
P gggﬁggﬁﬁgghﬁ‘ &3388323388

Tiempo(sec)

FIGURA 5.15: Ancho de banda por asociatividad y tamano en Nutch.

Capitulo 5. Resumen de Resultados 37

Classification Cap 16 KB As:1,2,4,8,CA

o |
© 4
& © 4
%
m
e
=
=
m
< 4
)
Eene g leaneneantent TP0eT8 patEPERE, o0l BogePoE 0o, B0 0aanonBesEsd Eﬂuﬂaﬁﬂdmﬂnﬁaﬂﬂﬂﬂ,ﬂﬂﬂ aoefeed, 80
o~ o b ful '
.}
&
@00()00000()()0(}%000(}OQ()<><)00()(}<><)O0()()00@&0<)@QQO<><>00(7()-4)-0{)4)000{)0(}{)(}()00()0Q4)()0000069000600000000900000(}(?000
ot A, P na
o 4
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Classification Cap 32 KB As:1,2,4,8,CA
o |
© -
w9
4
m
<A
<
=
ii]
< 4
~ 4
aaagﬁwnﬂaﬂauauaaﬁnﬁnﬁuaaﬁEﬂDawauaaauﬂnamDaaﬁuaaanﬁn-ﬁuaaanﬁmaﬁauqeua&anaaugnaa—ﬁuuuﬁuagﬁaﬂaaaﬂanaa
o 4
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Classification Cap 64 KB As:1,2,4,8,CA
e | —— 8=1
A 8=2
© 8=4
®© 4 -A- 5=8
S=CA
& © 4
2
m
e
<
=
m
< 4
o~ 4
o 4

Tiempo(sec)

FIGURA 5.16: Ancho de banda por asociatividad y tamano en Classification.

Capitulo 5. Resumen de Resultados

38

Cloudstone Cap 16 KB As:1,2,4,8,CA

12

10

I
m
e
<
=
o o
< 4
~ 4
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Cloudstone Cap 32 KB As:1,2,4,8,CA
o
o |
z o
m
e
£
ES
m o
<
~ 4
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Tiempo(sec)
Cloudstone Cap 64 KB As:1,2,4,8,CA
—— 8=t
o - 8=2
<~ S=4
A& =8
= S=CA
R
m
e
c
=
m

Tiempo(sec)

FiGurA 5.17: Ancho de banda por asociatividad y tamano en Cloudstone.

Capitulo 5. Resumen de Resultados 39

En la actualidad, las latencias de las caches de segundo nivel estan en ese orden de
magnitud, lo cual hace pensar en la necesidad de un disefio especifico. Una posibi-
lidad serfa un siguiente nivel de memoria cache de instrucciones privado para cada
core, que disminuirfa el trafico por cuatro, ver figura[5.18(a). Otra posibilidad serfa
un siguiente nivel multibanco para datos e instrucciones, que permita el servicio
simultaneo del tréfico de datos (que no ha sido considerado en este trabajo) y so-

porte la presencia de rafagas de fallos, cuya serializacion también comprometeria
las prestaciones, ver figura b).

Nivel 2 compartide y multibanco

Nivel 2 privado
Banco 0 Banco 1 o0 Banco 2"
L2 Mci L2 Mci 12 Mci L2 Mci Red de interconexién

y

J vl
) B B BRI o

! ! |

CPUO CPU1 CPU 2 CPU 3 CPUO CPU 1 CPU 2 CPU 3

Mec i memoria cache de instrucciones, primer nivel
Me d: memoria cache de datos, primer nivel

() (b)

Figura 5.18: Dos propuestas para mejorar el suministro de instrucciones desde
el siguiente nivel.(a)Segundo nivel de cache de instrucciones privado para cada co-

re.(b)Segundo nivel de cache compartido (datos + instrucciones) y multibanco.

= Una buena forma de entender como afecta el aumento de tamano y asociatividad

consiste en observar la evolucién temporal del ancho de banda como si fuera una
senial, y considerar a la cache como un filtro paso bajo, que de acuerdo a su tamano
y asociatividad, reduce progresivamente el nivel de la componente continua y su
frecuencia de corte. Esta es una hipdtesis interesante, que deberia ser contrastada

de forma rigurosa, pero que excede del alcance de este trabajo.

Desde el punto de vista de muestreo, es decir, de la posibilidad de extraer con-
clusiones validas observando unicamente una parte pequena de toda la evolucién
temporal, podemos dividir las aplicaciones en dos grupos. El primero esta formado
por Nutch y Cloudstone; su variabilidad es grande y no parece que pueda esco-
gerse un trozo pequeno representativo. El segundo estd formado por Streaming,
Cassandra y Classification; en estos casos, no parecen verse fases claras, parecien-
do cualquier tramo similar y susceptible de ser representativo. Por supuesto estas
reflexiones valen Unicamente para experimentos encaminados a probar el siguiente

nivel, cargdndolo con un trafico representativo.

Capitulo 5. Resumen de Resultados 40

5.4.

Comparacion con otras cargas de trabajo

Segun los creadores de Cloudsuite una de sus principales caracteristicas es que sus bench-

marks ejercen una fuerte presién contra la cache de instrucciones [FAK™12|. Para con-

trastar esta afirmacion vamos a comparar las tasas de fallos que hemos obtenido experi-

mentalmente con los suyos y con otras fuentes disponibles. A continuacién presentamos

un resumen de los trabajos que hemos consultado:

FEvaluating associativity in CPU caches. Este es el trabajo en el que Hill y
Smith proponen el modelo de las 3Cs [HS89]. Ademas, en él realizan un estudio
para arquitecturas maduras de 32 bits, mediante simulaciones hechas con 28 tra-
zas de computadores IBM 370 (sistema operativo MVS) y DEC VAX-11 (sistemas
operativos VMS y ULTRIX). Los datos que reproducimos corresponden a unos
promedios ajustados que sus autores denominan ”design target miss ratios”, pen-
sados para caracterizar de forma tabular el comportamiento ”medio” de una cache
y no tener que simular. En la figura [5.19] estdn recogidos los mpki para caches de
instrucciones de tamano 16KB y 32KB y asociatividades desde 1 a 8, con tamafo
de bloque 64B.

Filtering Directory Lookups in CMPs. En esta tesis Ana Bosque recoge la
tasa de fallos para las aplicaciones de la suite SPLASH2, una suite usada para
estudios cientificos de maquinas paralelas con memoria compartida [LVIB11]. Las
simulaciones se realizaron con SIMICS, con binarios compilados para SPARC v9
en Solaris 8, y corresponden a una cache de instrucciones de primer nivel de 16
KB, con tamano de bloque 32B y asociatividad 8. En la figura se reproducen

las tasas de fallos obtenidas para toda la seccién paralela de cada benchmark.

Memory System Behavior of Java-Based Middleware. En este trabajo,
Karlsson, Moore, Hagersten y Wood usan dos benchmarcks: SPECjbb y ECperf
[KMHWO3]. Las simulaciones se realizaron con SIMICS, con binarios compilados
para SPARC v9 en Solaris 8. SPECjbb esta disenado para medir la habilidad de
un sistema para ejecutar aplicaciones Java en el lado del servidor. Esta aplicacién
conecta a los clientes con la base de datos a través de la légica de negocio, pero
para hacer el benchmark mas portable y facil de usar, no usan una base de datos
comercial, almacenando directamente las tablas en memoria como objetos de tipo
arbol de Java. ECperf estd disenado para comprobar el rendimiento y la escalabi-
lidad de un sistema de 3 niveles (cliente, servidor y base de datos), modelando un
negocio online. Los benchmarks se simulan para distintos tamanos de cache, con

asociatividad 4 y tamano de bloque 64B.

Capitulo 5. Resumen de Resultados 41

= Clearing the clouds. Este es el trabajo que motiva en parte nuestro estudio. En
él, Ferdman et al. del laboratorio Parsa realizan un estudio de la Cloudsuite en
un hardware real, bajo sistema operativo Linux y utilizando contadores de presta-
ciones. La maquina que aloja los benchmarks a monitorizar es un Dell PowerEdge
M1000e, con dos procesadores Intel X5670 y 24GB de RAM en cada blade. Cada
procesador Intel X5670 incluye seis cores agresivos con ejecuciéon fuera de orden,
con una jerarquia de tres niveles de cache. El primer nivel es privado y separado
para datos e instrucciones. El segundo también es privado, pero contiene datos e
instrucciones. Finalmente, el tercer y ultimo nivel es compartido por los seis cores.
La cache L1 de instrucciones real tiene tamano 32KB, asociatividad 4 y tamano de
bloque 64B. Sus tasas de fallos recogen 180 segundos por cada carga de trabajo,
una vez que se ha completado la fase de inicializacién de carga y se supone que el
sistema ha entrado en un régimen estacionario[FAKT12]. Se supone que las tasas
de fallos que reproducimos promedian el comportamiento de los 12 procesadores,

aunque esto no estd explicitado en su articulo.

s Nuestro trabajo. Para comparar con un niimero tnico se ha calculado la mediana

en cada benchmark de todas las muestras temporales para los cuatro procesadores.

La informacién derivada de estos trabajos se ha resumido en la tabla de la figura [5.19
En la columna de la izquierda esta la fuente. En la segunda columna presentamos las
aplicaciones. En las siguientes columnas aparecen las tasas de fallos de instrucciones
para diferentes tamanos y asociatividades, siempre que ha sido posible para tamano de
bloque 64 B. En la tdltima columna se hace referencia a la naturaleza de las instrucciones
consideradas, ya sea de sélo de usuario (u), o de sistema y usuario a la vez (u+s y uUs).
En la suite SPLASH2 unicamente se considera actividad de usuario, pero al tratarse de
aplicaciones cientificas, es conocido que suponen una carga de sistema despreciable. En
el trabajo de referencia de Cloudsuite se desagrega la actividad de usuario y de sistema

(u+s) [FAKT12|, mientras que en el resto de trabajos no se dispone de ese detalle (uUs).

5.4.1. Conclusiones

Los datos recogidos son heterogéneos y escasos, pero comparando nuestras tasas con las

del resto de los autores, podemos extraer algunas conclusiones:

» Trabajo de Hill y Smith [HS89]. Si comparamos la media de nuestras apli-
caciones con sus numeros, ambos resultados son muy similares. Si descartamos
a Streaming y Classification por atipicos (outliers), entonces nuestros resultados

suponen tasas de fallos menores.

Capitulo 5. Resumen de Resultados 42

MPKI de instrucciones

Tamaiio 16KB 32KB | 64KB Tipo de
Asociatividad 4 8 4 4 |Actividad
[H589] Trazas 19 18 11 - uws
Bames - 4 - -
Fmm - 16 - -
SPLASH2 Ocean - 8 - -
Radiosity - 177 - -
1995 u
Bloques Raytrace - 8 - -
de32B Volrend - 30 - -
Water-nsquared - 1 - -
Water-spatial - 1 - -
SPECjbb 12 - - B
[KMHWO03] uus
ECperf 17 - - 10,5
Streaming - - 35+35 -
Cassandra - - 24+21 -
[FAK#12] U+s
CloudStone - - 20+22 -
Nutch - - 7+3 -
Streaming 466 | 46,2 | 33,70 | 13,1
Cassandra 49 47 3,7 2.8
Propios
(Mediana) CloudStone 13,3 13,1 9,7 6.8 uws
Nutch " 95 6,10 22
Classification 1.4 0,2 0.1 0,1

FiguraA 5.19: Comparacién MPKI benchmarks. Tipo de actividad hace referencia a si
los datos son de usuario (u) o de sistema (s)

» Tesis de Ana Bosque [LVIB11]. La media de estas aplicaciones ronda los 30
mpki, superior a nuestra media, pero destaca la gran influencia del atipico Radio-
sity y el efecto, notable, de utilizar un tamafno de bloque de 32 B. Si descartamos
los atipicos, la media de este trabajo queda por debajo de la nuestra, lo cual es

razonable para cargas cientificas.

» Trabajo de Karlsson et al. [KMHWO03|. Muy comparable a nuestros resulta-

dos. Podriamos colocarlos como propios y pasarian desapercibidos.

» Trabajo de Ferdman et al. [FAKT12]. Esta comparacién tiene un gran interés,
puesto que estamos hablando de las mismas aplicaciones. Sin embargo, en la con-
frontacion uno a uno, tan solo la aplicacién Nutch presenta tasas comparables. El
resto de aplicaciones presenta tasas significativamente mayores en las ejecuciones
reales del Parsa. ; Como explicarlo?. No lo sabemos. Es cierto que hay dos factores
diferenciales que juzgamos importantes, el tamano de la muestra y el sistema ope-

rativo. Nosotros simulamos 10 s y ellos ejecutan 180 s. Nuestro sistema operativo

Capitulo 5. Resumen de Resultados 43

es Solaris y el suyo Linux. Pero estos elementos no deberian causar una distorsion
tan grande. Ademds, en nuestro caso no se ha podido distinguir entre la actividad

de usuario y la de sistema, lo cual hace mas dificil el andlisis.

= En resumen, la comparacién con las tres primeras fuentes, con aplicaciones diferen-
tes, parece reforzar la veracidad de nuestros resultados, mientras que el contraste
directo con los creadores de Cloudsuite coloca nuestras simulaciones en unas tasas
de fallos demasiado bajas. Esta claro que es necesario realizar mas trabajo para

llegar a una explicacion satisfactoria.

Capitulo 6

Conclusiones y lineas abiertas

6.1. Conclusiones técnicas

El objetivo de este proyecto ha sido caracterizar el comportamiento de las instrucciones
en la suite Cloudsuite 2.0, un conjunto de aplicaciones cliente/servidor del grupo de

investigacién Parsa de la EPFL en Suiza.

Para ello hemos usado la plataforma de simulacién Simics,un simulador de sistema com-
pleto, trabajando con las cinco aplicaciones de la suite que estdan acompanadas de check-
points piblicos para su simulacién en Simics. Ademaés, se ha escrito un tutorial de Simics,
acompanado de material practico, para facilitar y agilizar la fase de formacién de otros

proyectos que también utilicen esta plataforma.

Para realizar los experimentos deseados se han programado dos moédulos de Simics de
jerarquia de memoria basados en el médulo g-cache que implementan dos algoritmos
eficientes y especificos para registrar tasas de fallos y huellas de memoria. Un algoritmo
obtiene resultados para multiples caches en una sola simulacién (Algoritmo MC) y el
otro estd especializado en caches completamente asociativas (Algoritmo CCA). Se han
realizado 6 y 5 experimentos respectivamente por cada aplicacién, con una duracién de

10 s para cada aplicacion, destacando los siguientes resultados experimentales:

= Hemos analizado el comportamiento de las caches de instrucciones en cuanto a su
tasa de fallos expresada en mpki, en funcién de su tamano y de su asociatividad.
En la comparacién de los valores obtenidos con diferentes fuentes bibliograficas
destaca la discrepancia con los creadores de Cloudsuite, que podria atribuirse a
la diferente longitud de la simulacion, o al uso de sistemas operativos diferentes.
Ademsds, en base a las tasas de fallos obtenidas, se han sugerido configuraciones

practicas de tamano y asocitividad para cada aplicacién.

44

Capitulo 6. Conclusiones 45

= Hemos obtenido la evolucién temporal de la huella de memoria de instrucciones,
es decir, el tamanio efectivo del codigo que se ha ejecutado en cada aplicacién. Esto
se ha hecho tanto para la huella acumulada como para la de recarga. A partir del
estudio de las huellas concluimos que todas las aplicaciones no entran en régimen
estacionario hasta transcurridos muchos segundos de la aplicacién, y que aparecen
bastantes fases, lo cual va a complicar la selecciéon de ventanas de simulacién,

representativas y de corta duracién.

= Finalmente hemos obtenido la evolucién temporal de BWin, el ancho de banda de
instrucciones agregado para las cuatro caches que entra desde el siguiente nivel,
para cada tamafo de cache y asociatividad. A partir de esta métrica se ha consta-
tado que la presion ejercida sobre el siguiente nivel puede ser realmente grande, y
se han sugerido configuraciones de ese segundo nivel con capacidad para absorber

las demandas del primero.

6.2. Lineas abiertas

A partir de este trabajo han aparecido unas lineas de continuacién que no han podido

ser abordadas, ya que excedian del alcance previsto y del tiempo disponible:

= Estudiar las posibles similitudes o diferencias entre las huellas de recarga de los
cuatro procesadores a través de algin procedimiento estadistico riguroso. En el
fondo se trata de conocer, de forma sencilla, si cada procesador estd ejecutando el

mismo c6digo o no.

= Para el diseno de las caches no sélo es necesario tener en cuenta la asociatividad y
el tamano de la cache, si no también su tiempo de acceso (latencia) y su consumo
energético. Para realizar un estudio mas profundo se podrian utilizar herramientas
€omo CACT]EL que devuelve éstos pardmetros fisicos a partir de una configuracion
dada (tamano, asociatividad, tamano de bloque, etc.). Con esta informacién se
puede reevaluar la utilidad de la cache en términos de tiempo efectivo de acceso,

que es mas preciso que la tasa de fallos.

= Tal y como ya apuntdbamos en el apartado en nuestros resultados nos hemos
encontrado con unas tasas de fallos significativamente menores que las ejecuciones
reales que realiza Parsa con Cloudsuite. Una de las principales diferencias con su
ejecucion es que ellos simulan 180 segundos frente a los 10 segundos nuestros. Por
ello se propone, para seguir contrastando estos datos, lanzar nuevos experimentos

cuya ejecucion sean 180 segundos de aplicacion real.

"http://www.hpl.hp.com/research /cacti/

Capitulo 6. Conclusiones 46

» En el apartadd5.3] hemos observado que si analizamos las graficas del ancho de
banda como si fueran una senal parece que la cache puede verse como un filtro
paso bajo, que reduce progresivamente el nivel de la componente continua y su fre-
cuencia de corte, en funcion de su tamano y asociatividad crecientes. Parece muy
atractivo recurrir a la teoria de procesado de senal para formalizar esta hipote-
sis, realizando el andlisis espectral correspondiente, y decidiendo si es necesario

aumentar la frecuencia de muestreo.

6.3. Conclusiones personales

Este proyecto me ha permitido aplicar aptitudes y conocimientos adquiridos en la
carrera pero también adquirir algunos totalmente nuevos referentes al mundo de

la investigacion.

He conocido nuevas herramientas y una nueva forma de trabajar. En investigacién
no sabes cuales van a ser los resultado inicialmente, asi que aunque sigue siendo
muy necesaria una buena planificacién, es inevitable que algo no salga tal cual
se habia planeado. Aunque esto puede resultar muy frustrante, también puede
tener resultados muy positivos. También he aprendido que en estos proyectos es
indispensable la cooperacién con otras personas que te ayuden a ver los problemas

desde distintas perspectivas, ya que se existen muchas variables a tener en cuenta.

Ademds, ha sido muy gratificante aplicar lo estudiado en las asignaturas de arqui-

tectura de computadores y ver su utilidad en el mundo real.

En cuanto a mi futuro profesional me ha dado conocer un nuevo camino a consi-

derar, el de la investigacién, antes practicamente desconocido para mi.

Apéndice A
Carga y Desarrollo del Proyecto

Este apéndice contiene detalles acerca de la gestion del tiempo y el esfuerzo inver-
tido durante el proyecto, asi como algunos problemas encontrados a lo largo de su

desarrollo.

A.1. Gestién del tiempo

Este proyecto se ha desarrollado desde finales de septiembre de 2013 hasta agosto
de 2014, en dedicacion a tiempo parcial. En el diagrama de Gantt que se presenta
en la figura [A.1] se puede ver cémo se han distribuido las diferentes tareas a lo

largo del tiempo.

2013 2014
Sep Oct MNow Dic Ene Feb Mar Abr Mayo Jun Jul Ago Sep

Caracterizacion de CloudSuite
Disefio y ejecucion de i

Documentacion
Tutorial Simics
Memoria

FicUurA A.1: Diagrama de Gantt del proyecto.

A continuacién incluimos un pequeno resumen del trabajo que engloba cada tarea:

47

Apéndice A. Carga y Desarrollo del Proyecto 48

e Formacion. La formacién es una de las partes mas importantes del proyecto,
que se extiende en practicamente su totalidad. Tanto las herramientas, cémo
la forma de trabajar ya que es un proyecto de investigacion, eran desconocidas
y requirieron una gran cantidad de esfuerzo. En esta tarea estd incluido el
estudio del Estado del arte de Simuladores, de cargas de trabajo y de las
herramientas necesarias para el andlisis. En estas herramientas esta incluido
el aprendizaje del uso del programa R para producir las graficas necesarias

que nos serviran para analizar los resultados.

e Familiarizacion con el entorno de trabajo. Esta tarea consiste en el
aprendizaje del simulador SIMICS, y la configuracién y puesta a punto de la

Cloudsuite en el cluster ATPS.

e Programacion. Ha sido necesario programar moédulos de jerarquia de me-
moria de Simics para conseguir los resultado deseados y los scripts necesarios

para realizar los experimentos.

e Caracterizacién de CloudSuite. Esta es la tarea que realiza el objetivo
principal del proyecto, dentro de la cual se encuentra el diseno y ejecucién de
los experimentos necesarios para caracterizar la CloudSuite y la recopilacion

y andlisis de los resultados.

e Documentacion. Esta parte se corresponde con la redaccién de la memoria
en LaTeX. También a la redaccién de un tutorial de iniciacién a Simics que

permita ayudar a otros en futuros proyectos.

Durante el desarrollo del proyecto se llevaron a cabo todas las tareas planeadas y

el trabajo se finaliz6 en la fecha prevista.

A.2. Esfuerzo invertido

Este proyecto a conllevado la inversién de un total de unas 700 horas. En la grafica
se presenta el porcentaje de horas dedicadas a cada tarea. Cémo ya indicaba-
mos la parte mas importante del proyecto, la caracterizacién de la CloudSuite, ha
requerido la mayor parte del tiempo seguida de la formacién. En la tablgA.l] se
muestra de manera més detallada la cantidad de horas invertidas en las actividades

que componen cada tarea.

A.3. Estimacion horas CPU

Para los experimentos realizados se ha consumido un total de aproximadamente

949 horas de CPU, sin embargo si anadimos también todos aquellos experimentos

Apéndice A. Carga y Desarrollo del Proyecto 49

B Formacion
B Familiarizacion con el entorno
de trabajo
Programaciaon
M Caracterizacion CloudSuite
27,90% B Documentacion

17,17%

F1cURA A.2: Distribucién del tiempo invertido en el proyecto.

que por errores, u otras razones fueron descartados esta estimacion, como sucede
en todos los trabajos de investigacion de arquitectura de computadores, podria

hasta triplicarse.

Estas horas de simulacién corresponden a 550 segundos de aplicacién real. Hacien-
do los célculos apropiados vemos que la méquina virtual funciona a una velocidad
equivalente de 1’59 MIPS para el algoritmo MC (multiples caches) y 1’17 MIPS
para el algoritmo CCA (cache completamente asociativa). Dado que los procesa-
dor fisicos del cluster ATPS tiene una frecuencia de 3Ghz, y podemos suponer
que sostienen un ritmo de 2 instrucciones/ciclo, lo cual corresponderia a 6 GIPS,

podemos apreciar un slowdown de 3770 y de 5128, respectivamente.

A.4. Problemas encontrados

El primer problema con el que nos encontramos es la falta de una documentacion
para iniciarse en Simics y para resolver dudas que iban surgiendo en su uso, ya

que el manual de uso del simulador resulta insuficiente.

Uno de los problemas generales de los trabajos de simulacién en arquitectura es
que estas son muy costosas en tiempo, algunas costaban varios dias, asi que cual-
quier error en la simulacion conlleva retrasos considerables. Una punto débil del
algoritmo MC es que en caso de fallo el algoritmo recorre todo el conjunto (de 8
bloques), para mejorarlo podria proponerse el uso de un algoritmo que con poco
coste nos dijera que un bloque no estd en la cache. Una propuesta podria ser el

uso de un filtro de Bloom [Blo70], una estructura de datos probabilistica concebida

Apéndice A. Carga y Desarrollo del Proyecto 50

Tarea Numero de horas
Formacion 160
Estado del arte de Simuladores 71
Estado del arte de las cargas de trabajo 33
Herramientas para el andlisis 56
Familiarizacién con el entorno de 119
trabajo

Primeros usos de Simics 59
Iniciacién y configuracién CloudSuite 60
Programacion 120
Programacién médulos caches 90
Programacién Scripts 30
Caracterizacién CloudSuite 195
Disefio y ejecucién de experimentos 75
An4lisis de Resultados 120
Documentacién 105
Tutorial Simics 43
Memoria 62
Total 699

TABLA A.1: Horas dedicadas a cada tarea del Proyecto.

por Burton Howard Bloom en 1970 que se usa para saber si un elemento forma
parte de un conjunto. El test determina con seguridad si un elemento no estd en

el conjunto, o de forma insegura si lo estd (o quizas no, es un falso positivo).

Otro de los problemas encontrados para la realizacion del proyecto es que el cluster
utilizado, ATPS, dejé de funcionar dos veces: en diciembre y en agosto. Esta ultima
coincide con las tareas de mantenimiento de la universidad pero su restablecimiento
se retraso debido a problemas en Danae, otro cluster del que depende, administrado
por el Dpto. de Informatica e Ingenieria de Sistemas. Ademas coincidié con la etapa
de mayor intensidad de experimentos y algunos de ellos fueron interrumpidos y

tuvieron que repetirse después.

Apéndice B

Productividad en Simics

Uno de los objetivos de este proyecto era producir documentacién para posteriores
proyectos, ya sean de grado, master o investigacion que requieran Simics como
plataforma de simulacién. Y de esta manera facilitar y agilizar la fase de formacion
de estos proyectos. En este tutorial se guiara la ejecucién de Simics y sus principales
funciones en el cluster ATPS del grupo Gaz de la Universidad de Zaragoza. El

tutorial estd basado y hace referencias al “Simics User Guide For Unix”.

51

GRUPO DE ARQUITECTURA DE COMPUTADORES DE LA UNIVERSIDAD DE ZARAGOZA

Tutorial de Simics

Este tutorial guiard a través de los primeros pasos para la ejecucion de Simics y su configu-
racion en el cluster ATPS del grupo Gaz de la Universidad de Zaragoza.

1. DIRECTORIOS DE TRABAJO

Primero debemos crear un directorio de trabajo. Como estamos trabajando en ATPS para
que el directorio de trabajo sea visible por los nodos debemos crearlo en: /export/home/i-
duser Siendo iduser vuestro nombre de usuario de atps, podemos crear una carpeta llamada
common y crear alli el workspace, siendo su ruta: /export/home/iduser/common/workspace
Para configurar este workspace debemos ejecutar workspace-setup que se encuentra en el
directorio de instalacién de Simics (/usr/local/pkg/simics-3.0.31/bin/workspace-setup en
atps). Para trabajar mas comodamente podemos linkar esta carpeta commons en nuestro
home usando el comando “In -s”.

Ademads del workspace necesitaremos tres directorios mds: Checkpoints, Craffs y tmp, ya
que los archivos que escribiremos alli van a ser bastante grandes se crearan en nuestra carpeta
de export/scratch/users/iduser. El directorio scratch tiene gran capacidad pero no realiza
copias de seguridad, asi que tenemos que tener cuidado y encargarnos de realizarlas.

2. CONFIGURACION ATPS

Vedmos ahora c6mo hay que configurar ATPS para ejecutar Simics. Primero hay que mo-
dificar SHOME/.software y afiadir la palabra “simics”. Adem4s, en el .profile hay que indicar
dénde buscar la licencia, escribimos: LM_LICENSE_FILE=1726@atps.cps.unizar.es Para que
estos cambios tengan efecto hay que salir y acceder de nuevo a atps.

Si al ejecutar Simics la ventana que muestra la maquina target (méquina que estamos
simulando) no se abriera, se puede probar modificando .profile. Para ello hay que comentar

las 5 lineas de c6digo que aparecen tras el comentario #who i am (aparece la palabra DISPLAY
en ellas, asi que son fé4ciles de localizar).

3. INICIAR EL SIMULADOR

Hay que tener instalado un sistema operativo en la maquina que emulamos. En este caso
usaremos una mdquina SPARC que ejecute Solaris.

Los ficheros system-01.disk.craff, system-sol10.disk.craff, abisko-sol10.state y abisko-sol10.run.simics
a los que se hace referencia a continuacién se proporcionan en el DVD adjunto:“Ficheros
Tutorial Simics”.

Primero copiamos system-01.disk.craff y system-sol10.disk.craff en el directorio que habia-
mos creado para los craffs (/export/scratch/users/iduser/craffs) Los archivos .craff son copias
de disco duro (no confundir con los checkpoints) y més adelante veremos que se pueden
crear para reutilizar datos de una simulacién y poder usarlos para crear checkpoints con otras
configuraciones. Después copiamos abisko-sol10.state y abisko-sol10.run.simics en nuestro
(..)/workspace/targets/serengenti

Tenemos que modificar las tres lineas que contienen paths en abisko-sol10.state:
Checkpoint_path apuntard a este mismo directorio ((..)/workspace/targets/serengenti) Los
otros path tienen que apuntar a los craffs que hemos copiado antes, asi que hay que escribir la
ruta completa.

Los pardmetros para configurar la maquina se encuentran en abisko-sol10.run.simics, en
este caso se han afiadido los siguientes pardmetros:
$num_cpus=1 (1 procesador)
$megs_per_cpu=1024 (1GB de memoria por procesador)
$cpu_class = ultrasparc-iii-plus (méquina con un thread por cpu, ultrasparc-iv tiene dos
threads)

Finalmente ejecutamos:
$ simics -stall -x abisko-sol10-run.simics
Con este comando le estamos indicando que ejecute el script abisko-sol10-run.simics, “-stall”
indica que queremos que las transacciones de memoria se envien a la jerarquia de memoria
que haya conectada y “-x” que el fichero de entrada que le pasamos es un script.

Los comandos bésicos de Simics son: c y ctrl+c, continuar la ejecucién del target y detenerla,
respectivamente. Para salir de Simics se usa q o exit.

Antes de iniciar la simulacién del target hay que indicarle a Simics dénde guardar los archi-
vos temporales, si no tendremos problemas mads adelante a la hora de copiar archivos en el
target, guardar checkpoints y craffs. Para ello antes de darle a continuar (c) escribimos:
prefs->swap-dir=/export/scratch/users/userid/tmp

Depués introducimos c, y entonces el sistema operativo solaris se cargard. Estara listo
cuando aparezca el prompt (#).

Como hemos ido apuntando tenemos dos médquinas, la simulada (target) y la real (host). Es
posible la comunicacion y la transferencia de archivos, y gracias a los archivos de configuracion
proporcionados para acceder a los archivos almacenados en el host(atps) desde el target(sparc-

solaris) solo hay que ejecutar en el target:

mount /host

Se habra creado una carpeta host que enlazard con nuestra maquina, por ejemplo para llegar
anuestra home la ruta serd /host/home/userid.

4. CREACION DE CHECKPOINTS

Los checkpoints nos permiten volver a un mismo punto después sin necesidad de arrancar
la méquina de nuevo. Ademads, también se guarda el contenido del disco. En el punto que
deseemos de ejecucién, hacemos ctrl+c en el terminal del simulador y ejecutamos:
simics> write-configuration ruta_check_point/micheckpoint.check

Si queremos iniciar Simics desde ese checkpoint ejecutaremos:
$simics -stall -c ruta_check_point/micheckpoint.check
Podemos ver que usamos el flag “-c” cuando iniciamos Simics desde un checkpoint.

Tambien se puede iniciar Simics y desde alli el checkpoint con:
simics> read-configuration ruta_check_point/micheckpoint.check

Hay que tener mucho cuidado al organizar los directorios en nuestra carpeta de checkpoints
porque si cambiamos un checkpoint de lugar no funcionard y habra que modificar los path de
sus archivos.

Otro aspecto a tener en cuenta sobre los checkpoints es que son incrementales. Es decir, si
inicias el sistema desde un checkpoint (chkl) y en un punto creas otro checkpoint (chk2), para
iniciar el sistema con chk2, chkl sera necesario.

5. COMANDOS UTILES

Aqui tenemos algunos comandos que pueden resultarnos ttiles en Simics.

= list-modules: Lista todos los médulos que pueden ser cargados en Simics, indicando
los que ya lo estén.

= run-command-file: para ejecutar scripts. Mdas adelante hablaremos de estos scripts,
pueden tener c6digo en Python y comandos de Simics.

= list-objects: lista todos los objetos asi como informacién de su clase.

= output-file-start y output-file-stop: para guardar la salida de Simics (no del target) en
un fichero.

= help: Comando de ayuda, si se ejecuta help y un objeto proporciona toda la informacion
sobre ese objeto: sus atributos, sus comandos, su clase...

= print-time -all: Muestra para cada procesador el niimero de instruccion, de ciclo y el
tiempo en segundos en el que se encuentra. Si queremos ver los ciclos de un procesador
en concreto podemos ejecutar cpu0.print-time.

6. CREACION DE CRAFFS

Los Craffs son similares a los checkpoints pero permiten guardar solamente el estado
persistente de una mdaquina, por ejemplo, los datos que permanecen cuando la maquina
estd apagada (CRAFF = Compressed Random Access File Format). Normalmente esto quiere
decir las imagenes del disco, la memoria flash o el contenido NVRAM. De forma muy similar
a los checkpoints se guardan y se cargan con los comandos “save-persistent-state path” y
“load-persistent-state path” respectivamente.

;Para que nos puede ser util? Copiar grandes archivos desde el host hasta el target puede
ser costoso en tiempo, para ello una vez copiados puede guardarse un checkpoint para volver
al mismo punto. Sin embargo si cambiamos la configuracién de la maquina, por ejemplo 2
cpus en vez de 1 cpu, tendriamos que volver a realizar la operacién. En este caso Simics nos
permite cargar el craff sobre la nueva configuracion, como resultado los ficheros anteriores
estardn ya cargados en el target.

7. CREACION DE SCRIPTS

Los scripts de Simics pueden llevar tanto comandos Simics como cddigo Python. Las lineas
de cédigo Python deben ir precedidas del carécter , y si algtin comando de Simics quiere ser
invocado en Python hay que usar “@run_command”. Veamos algiin ejemplo de c6digo Python
en Simics:
simics> @print “This is a Python line”

This is a Python line

simics> @if SIM_number_processors() > 1:
....... print “Wow, an MP system!”

....... else:

....... print “Only single pro :-(”

Wow, an MP system!

simics> @run_command(“print-time”)
processor steps cycles time [s]

cpu0 27828281475 27828281475 371.044

El propésito de invocar un comando de Simics en Python es la potencia de este lenguaje, lo
cual nos permitiria, por ejemplo, ejecutar un bucle con comandos de Simics. En el siguiente
script podemos ver un ejemplo:

prefs —>swap—dir=/export/scratch/users/iduser/tmp

#Cargamos checkpoint

read—configuration /export/scratch/users/iduser/checkpoints/mi_checkpoint
@sizeKB=8

@numlines=(sizeKBx1024)/64

#configuracion caches
#:
@cache = pre_conf_object(’cache’, ’'g—cache’)
@cache.cpus = conf.cpu0

@cache. config_line_number = numlines

@cache. config_line_size = 64
@cache. config_assoc = 8
@cache. config_virtual_index =
@cache. config_virtual_tag = 0
@cache. config_write_back = 0
@cache. config_write_allocate = 1
@cache. config_replacement_policy = ’lru
@cache.penalty_read = 0

@cache. penalty_write = 0

@cache. penalty_read_next = 0

@cache. penalty_write_next = 0

0

’

#Add Configuration
@SIM_add_configuration ([cache], None);
#:
#Timing Model
@conf.cpu0_mem. timing model= conf.cache
#Ejecucion
@time=0
@run_command("cd,_ /home/iduser/experimentos")
@for x in range(0,100):
file=open("muestra"+str (sizeKB)+"time"+str (time), 'a’)
time=time+10
file . write ("Numero_inicial_de_instrucciones:_\n")
file . write (str (conf.cpu0.steps))
run_command (" c¢_200000000")
file . write ("\nNumero_final_de_instrucciones:_\n")
file . write (str (conf.cpu0.steps))
file . write ("\nEstadisticas_instrucciones_\n")
file . write ("\nCpu0")
file . write ("\nOperaciones_de_lectura:_"+str (conf.cache.stat_data_read))
file.write ("\nFallos_en_operaciones_de_lectura: /"+str (conf.cache.stat_inst_data_
file.close ()
run_command ("cache.reset—statistics")
run_command ("cache.reset—cache—-lines")

exit

Los dos primero comandos son de Simics, indicamos dénde guardar los archivos temporales
y cargamos el checkpoint. A continuacién ejecutamos dos instrucciones de Python, las cuales

modifican unas variables que nos permitirdn configurar la simulacion.

En el siguiente conjunto de instrucciones configuramos un objeto llamado “cache” que se
declara como objeto de la clase “g-cache”. Podemos ver como las variables pueden ser usadas
para la configuracion u otros objetos (cpu0 a través de conf.cpu0).

Finalmente llamamos a la funcién SIM_add_configuration() que afiade el objeto cache a la
configuracion de Simics. Esta funcion forma parte de la API de Simics que recoge todas las
instrucciones que permiten la comunicacién entre Simics y Python. Una vez que el objeto
forma parte de la configuracién de Simics lo conectamos con el espacio de memoria de la
cpud.

En este punto la configuracién de la memoria cache a terminado y procedemos a la eje-

cucioén, para guardar los resultados de nuestros experimentos en una carpeta determinada
podemos usar el comando cd path como en linux. El ejecutarlo a través de Python en vez
de como simplemente un comando Simics puede permitirnos cambiar la ruta a través de
variables, por ejemplo.
Y finalmente tenemos un bucle de 100 iteraciones que crea un fichero, escribe atributos de
objetos de Simics en él, ejecuta la simulacién por un numero determinado de instrucciones.
Tras ello escribe los atributos de estadisticas de lecturas de la cache, cierra el fichero y ejecuta
los comandos de Simics que inicializan la cache y sus estadisticas. Al acabar el bucle se ejecuta
exit para salir del simulador.

Los scripts pueden ser ejecutados tanto desde el propio Simics:
simics> run-command-file script
Coémo al lanzar Simics:
$ simics -stall -x script

8. SOBRE ESTE TUTORIAL

Este tutorial fue parte del proyecto de fin de carrera “Caracterizacién de instrucciones en
aplicaciones de cloud” presentado en Septiembre de 2014 por la alumna de Ingenieria Informa-
tica, Alba Pedro Zapater. El objetivo de la creacién de este tutorial fue producir documentacién
para posteriores proyectos, ya fueran de grado, mdster investigaciéon que requieran Simics
como plataforma de simulacién. Y de esta manera facilitar y agilizar la fase de formacién de
estos proyectos.

Apéndice C

Modulo G-Cache

En este apéndice vamos a ampliar la informacién sobre el médulo g-cache que ya

presentabamos en el apartado y sobre los algoritmos que hemos programado.

C.1. Mas sobre G-cache

Para el estudio tanto de g-cache como de la simulaciéon de caches en general se
acudio al capitulo 18 del “Simics User Guide For Unix” y al cédigo de g-cache que se
encuentra dentro del directorio de instalacién de Simics en [simics]/src/extensions.
G-cache nos permite simular desde una cache sencilla, definiendo su tamano de
bloque, nimero de bloques, asociatividad, politica de reemplazo, si es copy-back, si
es write-allocate y ciclos de penalizacion por escrituras y lecturas, hasta jerarquias
mas complicadas. Por ejemplo la de la figura en la que dos niveles de cache
son simulados, y el primer nivel estd dividido en cache de instrucciones y cache
de datos. G-cache también permite tanto conectar una memoria cache a varias
CPUs cémo disenar un sistema multiprocesador con un protocolo de coherencia
MESI. G-cache nos proporciona ademéds las estadisticas sobre el nimero total
de transacciones, nimero de lecturas, de escrituras, de instrucciones, nimero de
fallos en cada una de estas categorias, nimero de operaciones en copy-back, y
nimero de invalidaciones, y cambios de estado para el protocolo MESI. Podemos
ilustrar g-cache a través de sus diagramas de estado, para ello vamos a usar como
ejemplo el sistema de la figura En ella podemos observar dos niveles de cache,
con protocolo de coherencia MESI entre las caches de nivel 2. De este sistema
podemos obtener cuatro diagramas de estados: Transiciones por eventos internos
de las caches de nivel 2 , transiciones por eventos externos, correspondientes
al protocolo MESI entre caches del nivel 2 , transiciones por eventos internos

de las caches de nivel 1 (C.5) y por ultimo, transiciones por eventos externos,

58

Apéndice C. G-Cache

99

‘ CPU

R

]7: id-splitter —l
splitter splitter
‘ L1 Instruction Cache ‘ l L1 Data Cache ‘
l]
v 1
‘ L2 Cache
trans-staller

Ficura C.1: Jerarquia de caches.

L2 L2 NIVEL 2 Copy-Back, Write-Allocate

MIVEL 1 Write-Through, Write-Allocate

&) &)

Ficura C.2: Ejemplo Sistema de Caches multiprocesador con MESI.

correspondientes al protocolo MESI desde caches del nivel 2 a sus caches del nivel

1 (C.6) Veamos los eventos que aparecen en estos diagramas:

e Internos:Son aquellos que derivan de los fallos (miss) y aciertos (hits) en
escritura (write) y lectura (read) de bloques en la cache o del reemplazo de

un bloque. En los diagramas aparecen como rh,wh,wm,rm y rpl.
e Externos: Son aquellos que se reciben desde otras caches.

o inv: Invalidacion del bloque.

o rB: Otra cache va a leer ese bloque.
Y sus acciones asociadas:

e Mp(write/read, x): Envia una lectura o escritura de ese bloque a memoria

principal (Mp), a su cache de nivel 2 (Mc2) o a su cache de nivel 1 (Mc1)

Apéndice C. G-Cache 60

wh,th

Modified

ral:Mpdnrite,

ki

i Mpiread,

Inwalid Share the

rncrE Mpiread, ©

Ficura C.3: Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos internos.

rB:Mpdwrite, &) Met(rB,)

Modified Share
tB:Mc1irE, ¥
<
irw M farite, ¥ Metdiny 3

Ficura C.4: Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos externos.

i Me iy, ¥

th rh
weh:Mc 2 (write, 1)

4//’/\

Exclusive

whME 2 fwrite,)

ral;
rpl:

Invalid

Figura C.5: Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos
internos.

rmchc2{Read, ¥
wim:Mec2{Read,)

Apéndice C. G-Cache 61

rB:

B:
Exclusive " ’/P Share

in: i
Invalid

Ficura C.6: Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos
externos.

e inv, rB: Envia estos eventos a través del Bus para que lo reciban el resto de

caches de nivel 2.

C.2. Algoritmos

Basandonos en el codigo original del médulo g-cache hemos programado nuestras
propias versiones para obtener con eficiencia el comportamiento de multiples con-

figuraciones de una cache de instrucciones.

C.2.1. Algoritmo para miltiples caches (algoritmo MC)

Como ya hemos descrito en el apartado la idea de este algoritmo es obtener
en una sola simulacién la tasa de fallos para distintos tamanos y asociativida-
des. Para ello hemos programado un algoritmo de reemplazo y aplicado algunas

modificaciones al médulo g-cache.

Las principales estructuras de datos del algoritmo son:

e Vector de punteros a bloque (Vmru): Un vector con dimensién el niimero
de conjuntos, cada componente apunta al bloque MRU de cada conjunto.
e Lista LRU dinamica: Cada bloque apunta al siguiente bloque de su conjun-

to en orden LRU, el dltimo (el LRU) apunta nulo. (bloque->sig, el puntero

al siguiente bloque en el seudocédigo)

e Vector de aciertos (H): Un vector de contadores con dimensién la asocia-

tividad. Cada componente recoge el nimero de aciertos que se han dado en

Apéndice C. G-Cache 62

esa posicion en la lista LRU. Por ejemplo, si el acierto se ha producido en la
posicién 2 de la lista LRU, se incrementara en uno el elemento 2 del vector.
Como resultado al final de la ejecucién tenemos el vector con el nimero de

aciertos en cada posicion LRU.

Aqui podemos ver el algoritmo en seudocédigo:

//Bisqueda de bloque

set= obtener_set (mem_op) //Obtenemos el numero de conjunto al que pertenece el bloque de
// la operacién de memoria

bloque=Vmrul[set]

numbloque=-1

posacierto=0

ant=null
Si bloque != invalido y bloque==obtener_bloque (mem_op) entonces
{

numbloque=bloque.num

Si (bloque != invalido y bloque->sig!=NULL) {

hacer{
bloque=bloque->sig
posacierto=posacierto+1;
ant=bloque;
bloque=ant->sig;
Si bloque==obtener_bloque (mem_op){
numbloque=bloque.num
}
}mientras ((numbloque==-1) y (bloque->sig!=NULL) && (bloque != invalido));
}
Si (numbloque!=-1){//Acierto
H[posacierto]l=H[posacierto] + 1
}

if (ant==null){//Primer elemento invalido, o solo un elemento o el primer elemento
era el acterto
devolver numbloquel

sino {

//Hay que reordenar la lista LRU, en caso de fallo el primer elemento es el bloque victima,
en caso de acierto el primer bloque es el referenciado

ant->sig=bloque->sig;
bloque->sig=Vmrulset]; //El bloque MRU anterior
Vmru[set]=bloque

devolver numbloque

En caso de fallo, cuando el algoritmo principal de g-cache solicite el bloque victima
serd aquel que este en primer lugar en la lista, ya que anteriormente lo hemos
modificado, y sera reemplazado por el nuevo bloque. Las estadisticas se obtienen
posteriormente procesando los datos obtenidos. El nimero total de instrucciones y
los fallos de la cache simulada ya los proporciona g-cache. En la tabla tenemos
un ejemplo de las estadisticas que se pueden obtener a partir del vector de aciertos

H para una cache de asociatividad 8 y tamafio “Size”.

Apéndice C. G-Cache 63

Tamaifio Asociatividad Aciertos

Size/8 1 HI0]

Size/4 2 H[0] + H[1]

Size/2 4 H[0] + H[1] + H[2] + H[3]
Size 8 Suma(H)

TaBLA C.1: Relaciéon de tamano, asociatividad y aciertos para una ejecucién con el
algoritmo MC.

C.2.2. Algoritmo para cache completamente asociativa (algoritmo
CCA)

Para simular una cache completamente asociativa (un sélo conjunto) de forma
clésica, para cada referencia se visitan los bloques en orden, desde el mas al menos
reciente. Tras encontrar el bloque buscado se actualiza la lista y se incrementa
el contador de aciertos. En caso contrario, tras haber visitado todos los bloques,
se reemplaza el bloque victima (el bloque LRU), se ajusta la ordenacién y se

incrementa el contador de fallos.

Este algoritmo precisa recorrer y ordenar una lista cuyo tamano medio coincide con
la distancia media de acierto, que suele ser del orden de las decenas. Esto supone
un alto coste en tiempo, por lo cual vamos proponemos una alternativa mas rapida.
Nuestra propuesta se basa en utilizar una estructura de datos auxiliar, en forma
de una cache de correspondencia directa (puede verse como una estructura hash
de aceleracién, caux, en el seudocédigo). Los bloques deben estar ordenados por
orden de uso, pero esta ordenacién puede conseguirse de forma explicita, como
en el algoritmo anterior, o de forma implicita, usando marcas de tiempo, como
haremos ahora. Cada bloque tiene una marca de tiempo que indica en que ciclo

fue usado por ultima vez.

Las caracteristicas principales del algoritmo CCA son:

e FEl tamano de la cache auxiliar debe de ser al menos del tamano de la cache

principal, pero es recomendable que sea lo mas grande posible.

e Para evitar el coste de gestién de listas ordenadas, la ordenaciéon LRU se ha
implementado con marcas de tiempo en cada bloque, que consignan el ciclo

en el que ha sido referenciado por dltima vez.

e Un acierto en la cache auxiliar garantiza acierto en la cache principal, aunque
un fallo no determina si el bloque estd o no en la principal. Sin embargo,
debido a la localidad temporal y espacial, la mayoria de los aciertos se pro-
ducen en los bloques de la cache de correspondencia directa, como podemos

observar en la grafica de las 3Cs, ver figura [4.2]

Apéndice C. G-Cache 64

e En caso de fallo en la cache auxiliar, se recorre la cache principal. Si se en-
cuentra el bloque, se produce un acierto, y la cache auxiliar debe actualizarse

para contenerlo.

e El mayor coste es para los fallos con cache llena, ya que hay que recorrer
toda la cache. En este mismo recorrido se descubre el bloque victima, es decir

aquel cuya marca de tiempo sea mas antigua.

Aqui podemos ver el algoritmo en seudocédigo:

//Busqueda de bloque
bloquevictima=-1
lru_tiempo=max_enteros
set=obtener_set_caux (mem_op)
numbloque=caux [set]
Si (numbloque!=-1) {
Si(cache [numbloque]==obtener_bloque (mem_op)){

devolvemos numbloque

}

Desde i=0 a numerobloques{

Si (cachel[il==invalido){//fallo, hemos llegado a los

invdlidos
bloquevictima=1i;
devolvemos -1;
}
Si(cache [numbloque]==obtener_bloque (mem_op)){//
acierto
devolvemos numbloque
}
Si (cache[i] .marcadetiempo < lru_tiempo) {//Busca LRU
lru_bloque = i;
lru_tiempo = cache[i].marcadetiempo;
}
}
//Fallo, habrd un bloque victima vdlido: lru_bloque
set=obtener_set_caux(lru_bloque)
numbloque=caux[set];
Si (numbloque==1lru_bloque) {
caux [set]l=-1; //Invalidamos
}
bloquevictima=lru_bloque;
devolver -1; //Es fallo, la cache estd llena, devolvemos el
lru.

//Actualizacion caux tras fallo o acierto
//bloque es el bloque que acabamos de referenciar
bloque .marcadetiempo= obtener_ciclo_CPU();
set=obtener_set_caux(bloque);

caux [set]=bloque.numero; //Actualizamos la cache auziliar

Apéndice C. G-Cache 65

Se ha observado una mejora en el tiempo de ejecucién de un 90,52 % al usar este
algoritmo frente a usar el algoritmo original de LRU de g-cache que esta basado

en una lista tinica con marcas de tiempo.

Apéndice D

Simulaciones CloudSuite

En este Apéndice vamos a presentar dénde y cémo se han llevado a acabo las

simulaciones de la CloudSuite.

D.1. Cluster ATPS

Los experimentos han sido realizados en el cluster ATPS. El cluster ATPS es una
infraestructura de computacién de altas prestaciones financiada por el grupo de
Arquitectura de Computadores de la Universidad de Zaragoza (gaZ). ATPS se
usa principalmente para simular modelos funcionales y temporales a nivel micro-
arquitectura (procesadores, caches y redes de interconexién). ATPS es un cluster
que se usa fundamentalmente en modo de productividad. Se lanzan multiples ex-
perimentos (variaciones de un modelo con distintos pardmetros) que se ejecutan
independientemente en las maquinas del cluster. El cluster consta de 6 chasis de

dos tipos:

e 3 chasis 1U, cada uno con 2 nodos 2x Intel Xeon X5365 (4Cores, 3.00 GHz,
8 MB L2), en total 6 nodos, uno se dedica al front-end y los otros dedicados

a computacion. En cada nodo hay pues un total de 8 cores compartiendo 16
GB RAM.

e 3 chasis 2U modelo Superserver SYS-6026TT-TRF, cada uno con 4 nodos
2xIntel Xeon X5650 (Westmere, 6 Cores, 2.67 GHz, 12 MB L3), en total 12

nodos, todos dedicados a computacién. En total en cada nodo hay 12 cores
(24 threads) compartiendo 48 GB RAM.

En la figura podemos ver el esquema de conexiones de red que permite sim-
plificar la administracién de los distintos equipos, ya que todos los nodos estan

conectados al front-end a través de la misma direccion IP.

66

Apéndice D. Simulaciones CloudSuite 67

axtarior
(155,210,134, 254)
atps-n001
swilch 3Com

alps- alps- atps- alps- alps- alps- alps- atps- switeh

o007 | | noos | | nooa | | mot0 nOHI i QGRS slpsnCld | | s o017 alied
atps- atps- atps- atps- atps- atps- atps-
w002 | | nooz 004 005 w06 | | nots | | not8

FicGurA D.1: Red de conexiones atps.

D.2. Condor

Condor es un sistema de gestién de carga para tareas de computacion intensivas
que soporta un gestor de colas, con politicas de planificacién de ejecucion, esquema
de prioridades, monitorizacién y gestién de recursos. Es decir, desde el front-end
se lanzan los trabajos a través de Condor que se encarga de distribuirlos en los
nodos. A continuacién podemos ver un script muy sencillo para lanzar un trabajo,
aunque Condor permite muchas més opciones de configuracién para necesidades

mas sofisticadas.

Example submit file for vanilla job

Universe = vanilla
Executable = hello_world.sh
input = /dev/null

output = hello.out

error = hello.error

Queue

Lo habitual es lanzar las tareas a los nodos de ATPS a través de condor, sin
embargo al compartir la maquina con un entorno de produccién que limitaba
los recursos que podiamos utlizar, pasamos a programar shell scripts para lanzar

manualmente los trabajos en el niimero limitado de nodos que nos fueron asignados.

D.3. Scripts

En esta seccién detallamos los scripts usados para las simulaciones a las que se

hace referencia en el apartado [£.4]

Apéndice D. Simulaciones CloudSuite 68

D.3.1. Shell Scripts

Un script por cada aplicacion. En el ejemplo ilustramos el lanzamiento de una

simulacién de la aplicaciéon Cassandra.

size=8
for ((i=0;i<6;i++))
do

oldsize=$§size

size=‘expr $size * 2°¢

string="s/@sizeKB=$o0ldsize/@sizeKB=$size/"

sed -i $string /home/albapz/common/workspacenodos/scripts/OptCassanédcpu

echo $size

./simics -stall -no-win -x /home/albapz/common/workspacenodos/scripts/
OptCassand4cpu

done

El script anterior permite lanzar 6 ejecuciones de Simics a través de un bucle.
En cada iteracion con el comando “sed” se modifica el script de Simics “OptCas-
sandcpu”. Concretamente modifica la variable que define el tamafio de la cache,
doblando este valor en cada iteracion. Tras esto Simics ejecuta el script menciona-
do. Al lanzar Simics se le indica a través del flag -no-win que desactive la apertura

de ventanas externas (las del target o cualquier otra externa).

D.3.2. Simics Scripts

Los scripts de Simics pueden contener comandos de Simics y/o cédigo Python (se
indica con el simbolo @ al principio de la linea de c6digo). Al lanzar Simics con
el flag -x indicamos que tiene que ejecutar el script que se pasa como parametro.

Veamos un ejemplo:

prefs->swap-dir=/export/scratch/users/albapz/tmp

#Cargamos checkpoint

read-configuration /export/extra/data/trazas/parsa/cloudsuite/images/
cassandra/4cpu/4s-4gb-2c-4gb

@sizeKB=8

@numlines=(sizeKB*1024) /64

#configuracion caches

istc-disable

Qconf.server_cpuO.instruction_fetch_mode ="instruction-fetch-trace"
@conf .server_cpul.instruction_fetch_mode ="instruction-fetch-trace"
@conf.server_cpu2.instruction_fetch_mode ="instruction-fetch-trace"
@conf.server_cpu3.instruction_fetch_mode ="instruction-fetch-trace"
@conf.client_cpuO.instruction_fetch_mode ="instruction-fetch-trace"
@conf.client_cpul.instruction_fetch_mode ="instruction-fetch-trace"
#===

@staller0 = pre_conf_object(’staller0’, ’trans-staller’)

Apéndice D. Simulaciones CloudSuite

@stallerO.stall_time = O

L1 - Instruction Cache : L1 InstO
@icO0 = pre_conf_object(’ic0’, ’g-cache’)
@icO.cpus = conf.server_cpul
@icO.config_line_number = numlines
Q@icO.config_line_size = 64
@icO.config_assoc = 8
Q@icO.config_virtual_index = 0

@icO.config_virtual_tag = 0

@icO.config_write_back = 0
@icO.config_write_allocate = 1
@icO.config_replacement_policy = ’lruopt’

@icO.penalty_read = O
@icO.penalty_write = 0
@icO.penalty_read_next = 0
@icO.penalty_write_next = 0
@icO.timing_model = stallerO

ff===
ID splitter for L1 cache
@id0 = pre_conf_object(’id0’, ’id-splitter’)

@idO.ibranch = icO
@idO.dbranch = stallerO

L1 - Instruction Cache : L1 Instl
@icl = pre_conf_object(’icl’, ’g-cache’)
@icl.cpus = conf.server_cpul
Qicl.config_line_number = numlines
Qicl.config_line_size = 64
@icl.config_assoc = 8
@icl.config_virtual_index = 0

Qicl.config_virtual_tag = 0

@icl.config_write_back = 0
@icl.config_write_allocate = 1
@icl.config_replacement_policy = ’lruopt’

Qicl.penalty_read = 0
@icl.penalty_write = 0
@icl.penalty_read_next = 0

@icl.penalty_write_next = 0

Qicl.timing_model = stallerO
#===
ID splitter for L1 cache

@idl = pre_conf_object(’idl’, ’id-splitter’)

@idl.ibranch = icl
@idl.dbranch = stallerO

#Add Configuration
@SIM_add_configuration([staller0,ic0, id0, icl, id1], Nome);

#Timing Model

Apéndice D. Simulaciones CloudSuite

70

@conf.server_cpuO_mem.timing_model= conf.id0

Qconf.server_cpul_mem.timing_model= conf.idl

#Ejecuction

Q@time=0

@run_command ("cd /home/albapz/common/workspacenodos/experimients/lruopt/

cassan")

@for x in range (0,100):

file=open("cassanopt2cpus"+str(sizekKB)+"time"+str(time),’a’)

time=

time+10

file.write("Numero inicial de instrucciones: \n")

file.write(str (conf.server_cpu0.steps))
run_command ("¢ 200000000")

file
file

.write("\nNumero final
.write(str(conf.server
file.
file.
file.

write ("\nEstadisticas
write ("\nCpuO")

write("\nInstruction

stat_inst_fetch))

file.

write("\nInstruction

stat_inst_fetch_miss))

file.
file.
file.

write("\nVector Hits:
write ("\nCpul")

write("\nInstruction

stat_inst_fetch))

file.

write("\nInstruction

stat_inst_fetch_miss))

file.
file.

write("\nVector Hits:

close ()

run_command ("icO.reset-sta

run_command ("icO

run_command ("icl.reset-sta

run_command ("icl

de instrucciones: \n")
_cpul.steps))
instrucciones \n")
Fetch transactions: "+str(conf.icO.
Fetch misses: "+str(conf.icO.
"+str(conf.icO.lruopt_hits))
Fetch transactions: "+str(conf.icl.
Fetch misses: "+str(conf.icl.

"+str (conf.icl.lruopt_hits))

tistics")

.reset-cache-lines")

tistics")

.reset-cache-lines")

conf.ic0O.lruopt_hits=[0,0,0,0,0,0,0,0]
conf.icl.lruopt_hits=[0,0,0,0,0,0,0,0]

exit

En este script podemos destacar:

e El parametro -sizeKB indica el tamano de la cache a simular. Este pardmetro

es el que se modifica desde el Shell Script. numlines indica el nimero de

bloques.

e Simics usa internamente unas caches software (de datos y de instrucciones)

para acelerar las simulaciones, a las que llama STC (Simulator Translation

Cache) que evitan que todas las transacciones tengan que pasar por la je-

rarquia de memoria. Sin embargo en el caso de las instrucciones esto implica

estadisticas incorrectas, por lo cual procedimos a su desactivacién con el co-

mando istc-disable.

Apéndice D. Simulaciones CloudSuite 71

e Por defecto, y también para acelerar las simulaciones, Simics no envia las
busquedas de instrucciones a la jerarquia de memoria. Para evitar este com-
portamiento hay que cambiar el modo de simulacién de las cpus a

instruction-fetch-trace

e Staller representa el acceso a la memoria principal, sin embargo en este caso

la penalizacién por acceso a memoria principal es 0.

e Se configuran dos caches de instrucciones, una por cada procesador. En este
caso la politica de reemplazo lruopt corresponde al algoritmo MC descrito
en el apartado

e Sedeclaraun ID Splitter para cada procesador; este objeto de Simics separa

las transacciones de datos de las de instrucciones.

e Todos los objetos declarados se afiaden a la configuracién de Simics y se co-
necta cada ID Splitter al timing model de los procesadores cuyas caches
de instrucciones queremos simular (los procesadores que ejecutan los servi-
dores de interés en cada aplicacién). Al timing model puede conectarse un
objeto para que tenga acceso a la transaccién de memoria, antes de que ésta

se ejecute. En nuestro caso ese objeto es nuestra jerarquia de memoria.

e Finalmente comienza la ejecucion de la simulacién, para ello un bucle en
Python ejecuta 100 veces 200 millones de instrucciones (por cada procesador,
ya que trabajan en paralelo) y tras cada ejecucién se escriben las estadisticas

en un fichero, inicializando de nuevo tanto las estadisticas como las caches.

La figura[D.2] representa la jerarquia de memoria configurada en el script de ejem-

plo.

‘ CPU ‘ CPU
id—splitter ig-splitter

Trans-staller

FiGURA D.2: Jerarquia de cache configurada con el script.

Bibliografia

[BKSLOS]

[Blo70]

[Bon07]

[CGS99]

[CPUOG]

[EPF]

[FAK+12]

[HPOG6]

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The parsec benchmark suite: Characterization and architectural im-
plications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, October 2008.
http://parsec.cs.princeton.edu/ [Online; accessed 23-Agosto-2014].

Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422-426, July 1970.

Jan Lodewijk Bonebakker. Finding representative workloads for com-
puter system design. Technical report, Sun Microsystems, Inc. Moun-
tain View, CA, USA, 2007.

David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Para-
llel Computer Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers Inc., 1999.

SPEC CPU2006. https://www.spec.org/cpu2006/, 2006. [Online; ac-
cessed 23-Agosto-2014].

PARSA EPFL. Cloudsuite official webpage. http://parsa.epfl.
ch/cloudsuite/cloudsuite.htmll

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Djordje Jevdjic Mohammad Alisaface, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds.
a study of emerging scale-out workloads on modern hardware. In 17th

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS 2012), March 2012.

John L. Hennessy and David A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publis-
hers Inc., San Francisco, CA, USA, 2006.

72

http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://parsa.epfl.ch/cloudsuite/cloudsuite.html

Bibliografia

73

[HS89]

[KMHWO03]

[LVIB11]

IMCE*02]

[MGST70]

[MSB+05]

M.D. Hill and A.J. Smith. FEvaluating associativity in cpu caches.
Computers, IEEE Transactions on, 38(12):1612-1630, Dec 1989.

Martin Karlsson, Kevin Moore, Erik Hagersten, and David Wood.
Memory System Behavior of Java-Based Middleware. pages 217-228,
Anaheim, California, USA, February 2003.

José Maria Llaberia, Victor Vinals, Pablo Ibanez, and Ana
Bosquel. Filtering directory lookups in CMPS. PhD the-
sis, Zaragoza, Universidad de Zaragoza, Zaragoza, Ago 2011.

http://zaguan.unizar.es/record /68127In=es.

P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A
full system simulation platform. Computer, 35(2):50-58, Feb 2002.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Syst. J., 9(2):78-117, June
1970.

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Mi-
chael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,
Mark D. Hill, , and David A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (gems) toolset. SIGARCH Comput.
Archit. News, 33:92-99, Nov 2005.

TPC-C. http://www.tpc.org/tpcc/. [Online; accessed 23-Agosto-
2014)].

SPEC web2009. http://www.spec.org/web2009/, 2009. [Online; ac-
cessed 23-Agosto-2014].

	Agradecimientos
	Resumen
	Contenidos
	Lista de Figuras
	Lista de Tablas
	1 Introducción
	1.1 Contexto del Proyecto
	1.2 Objetivos
	1.3 Organización de la Memoria

	2 Estado del Arte en simulación y cargas de trabajo
	2.1 Plataformas y estrategias de simulación
	2.2 Cargas de Trabajo

	3 CloudSuite
	3.1 Características de los Benchmarks
	3.2 Cloudsuite en Simics

	4 Metodología
	4.1 Métricas Utilizadas
	4.2 Modelo de las 3C
	4.2.1 Algoritmos de una sola pasada

	4.3 Módulo G-Cache
	4.3.1 Módulos en Simics
	4.3.2 G-cache

	4.4 Experimentos

	5 Resumen de Resultados
	5.1 Mpki por Core
	5.1.1 Streaming (Figura 5.1)
	5.1.2 Cassandra (Figura 5.2)
	5.1.3 Nutch (Figura 5.3)
	5.1.4 Classification (Figura 5.4)
	5.1.5 Cloudstone (Figura 5.5)
	5.1.6 Conclusiones

	5.2 Huella de Memoria
	5.2.1 Streaming (Figura 5.7)
	5.2.2 Cassandra (Figura 5.8)
	5.2.3 Nutch (Figura 5.9)
	5.2.4 Classification (Figura 5.10)
	5.2.5 Cloudstone (Figura 5.11)
	5.2.6 Conclusiones

	5.3 Ancho de Banda de instrucciones
	5.3.1 Streaming (Figura 5.13)
	5.3.2 Cassandra (Figura 5.14)
	5.3.3 Nutch (Figura 5.15)
	5.3.4 Classification (Figura 5.16)
	5.3.5 Cloudstone (Figura 5.17)
	5.3.6 Conclusiones

	5.4 Comparación con otras cargas de trabajo
	5.4.1 Conclusiones

	6 Conclusiones y lineas abiertas
	6.1 Conclusiones técnicas
	6.2 Lineas abiertas
	6.3 Conclusiones personales

	A Carga y Desarrollo del Proyecto
	A.1 Gestión del tiempo
	A.2 Esfuerzo invertido
	A.3 Estimación horas CPU
	A.4 Problemas encontrados

	B Productividad en Simics
	C Módulo G-Cache
	C.1 Más sobre G-cache
	C.2 Algoritmos
	C.2.1 Algoritmo para múltiples caches (algoritmo MC)
	C.2.2 Algoritmo para cache completamente asociativa (algoritmo CCA)

	D Simulaciones CloudSuite
	D.1 Cluster ATPS
	D.2 Condor
	D.3 Scripts
	D.3.1 Shell Scripts
	D.3.2 Simics Scripts

	Bibliografía

