
Proyecto de Fin de Carrera

Ingenieŕıa Informática

Curso 2013/2014

Caracterización de instrucciones en aplicaciones
de cloud

Alba Pedro Zapater

Director: Dr. Vı́ctor Viñals Yúfera

Departamento de Informática e Ingenieŕıa de Sistemas

Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza

Septiembre 2014

Dedicado a mis padres, por estar siempre ah́ı.

Agradecimientos

Sobre todo quiero agradecer a mi director, Vı́ctor, todo lo que me ha enseñado, su pa-

ciencia, sus ánimos, su tiempo, su buen humor y toda la ayuda que me ha proporcionado

durante este año. Fue uno de mis mejores profesores en la carrera y sin duda ha sido el

mejor director que podŕıa haber tenido. También le doy las gracias a Clemente Rodŕıguez

y a Pablo Ibáñez por el tiempo que me han dedicado y por la gran ayuda que ha sido

lo que me han enseñado. Además, darle las gracias a Marta Ort́ın por estar siempre

dispuesta a resolverme dudas y su rapidez para contestarme a los emails.

También a mis compañeros de carrera que me han sorprendido con grandes dosis de

solidaridad y ayuda mutua frente a la competencia que mueve nuestro mundo . En

especial a Álvaro, Cintia, David y Juan, que han estado siempre para los buenos y los

malos momentos y que sin su apoyo y amistad no hubiera sido posible llegar hasta aqúı.

Para terminar, quiero agradecerles a mis padres por todo lo que me han dado, sin pedir

nada a cambio, tan solo verme feliz. Y a todas las personas que siempre han créıdo en

mi, y de una forma u otra han hecho posible que yo esté ahora escribiendo las últimas

lineas de mi proyecto de fin de carrera.

v

Resumen

Las tendencias de mercado indican que el negocio de los procesadores para grandes

centros de datos va a seguir creciendo, impulsado por la economı́a de la virtualización

y la gran penetración empresarial y social de las aplicaciones que residen en las nubes

(cloud computing). Para diseñar un procesador de futuro adaptado a este mercado es

necesario experimentar con una carga de trabajo apropiada. Por ello, en este proyecto

nos hemos centrado en caracterizar el comportamiento de la cache de instrucciones para

un sistema de cuatro procesadores, usando el conjunto de aplicaciones Cloudsuite 2.0

del laboratorio de investigación Parsa, representativo del cloud computing.

Hemos usado la plataforma de simulación Simics, un simulador de sistema completo,

trabajando con las cinco aplicaciones de Cloudsuite que están acompañadas de check-

points públicos. Además, se ha contribuido con un tutorial de Simics, acompañado de

material práctico, para facilitar y agilizar la fase de formación de otros proyectos que

también utilicen esta plataforma.

Para realizar los experimentos deseados se han programado dos módulos de Simics de

jerarqúıa de memoria basados en el módulo g-cache, que implementan dos algoritmos

eficientes y espećıficos para registrar tasas de fallos y huellas de memoria. Un algoritmo

obtiene resultados para múltiples caches en una sola simulación y el otro está especiali-

zado en caches completamente asociativas.

A partir de estos experimentos hemos analizado los benchmarks en cuanto a su tasa

de fallos, en función de su tamaño y de su asociatividad, sugiriendo configuraciones

prácticas de tamaño y asociatividad para cada aplicación. También se ha examinado

la huella de memoria de instrucciones a lo largo del tiempo, concluyendo que todas las

aplicaciones tardan muchos segundos en entrar en régimen estacionario y que la apari-

ción de varias fases complica la selección de ventanas de simulación. Y finalmente, se

ha calculado el ancho de banda de instrucciones agregado para los cuatro procesadores

simulados, concluyendo que la presión sobre el siguiente nivel puede ser bastante gran-

de, y sugiriendo configuraciones de ese segundo nivel con capacidad para absorber las

demandas del primero.

Contenidos

Agradecimientos V

Resumen VII

Contenidos IX

Lista de Figuras XII

Lista de Tablas XIV

1. Introducción 1

1.1. Contexto del Proyecto . 3

1.2. Objetivos . 3

1.3. Organización de la Memoria . 3

2. Estado del Arte en simulación y cargas de trabajo 5

2.1. Plataformas y estrategias de simulación 5

2.2. Cargas de Trabajo . 6

3. CloudSuite 8

3.1. Caracteŕısticas de los Benchmarks . 9

3.2. Cloudsuite en Simics . 10

4. Metodoloǵıa 11

4.1. Métricas Utilizadas . 11

4.2. Modelo de las 3C . 12

4.2.1. Algoritmos de una sola pasada . 15

4.3. Módulo G-Cache . 18

4.3.1. Módulos en Simics . 18

4.3.2. G-cache . 18

4.4. Experimentos . 19

5. Resumen de Resultados 21

5.1. Mpki por Core . 21

5.1.1. Streaming (Figura 5.1) . 22

5.1.2. Cassandra (Figura 5.2) . 22

5.1.3. Nutch (Figura 5.3) . 23

ix

Contenidos x

5.1.4. Classification (Figura 5.4) . 23

5.1.5. Cloudstone (Figura 5.5) . 23

5.1.6. Conclusiones . 25

5.2. Huella de Memoria . 25

5.2.1. Streaming (Figura 5.7) . 27

5.2.2. Cassandra (Figura 5.8) . 28

5.2.3. Nutch (Figura 5.9) . 29

5.2.4. Classification (Figura 5.10) . 29

5.2.5. Cloudstone (Figura 5.11) . 29

5.2.6. Conclusiones . 30

5.3. Ancho de Banda de instrucciones . 31

5.3.1. Streaming (Figura 5.13) . 32

5.3.2. Cassandra (Figura 5.14) . 32

5.3.3. Nutch (Figura 5.15) . 35

5.3.4. Classification (Figura 5.16) . 35

5.3.5. Cloudstone (Figura 5.17) . 35

5.3.6. Conclusiones . 35

5.4. Comparación con otras cargas de trabajo 40

5.4.1. Conclusiones . 41

6. Conclusiones y lineas abiertas 44

6.1. Conclusiones técnicas . 44

6.2. Lineas abiertas . 45

6.3. Conclusiones personales . 46

A. Carga y Desarrollo del Proyecto 47

A.1. Gestión del tiempo . 47

A.2. Esfuerzo invertido . 48

A.3. Estimación horas CPU . 48

A.4. Problemas encontrados . 49

B. Productividad en Simics 51

C. Módulo G-Cache 58

C.1. Más sobre G-cache . 58

C.2. Algoritmos . 61

C.2.1. Algoritmo para múltiples caches (algoritmo MC) 61

C.2.2. Algoritmo para cache completamente asociativa (algoritmo CCA) 63

D. Simulaciones CloudSuite 66

D.1. Cluster ATPS . 66

D.2. Condor . 67

D.3. Scripts . 67

D.3.1. Shell Scripts . 68

D.3.2. Simics Scripts . 68

Contenidos xi

Bibliograf́ıa 72

Índice de figuras

1.1. Ejemplo de chip multiprocesador contemporáneo. 2

3.1. Esquema de la aplicación Web Frontend. 9

4.1. Memoria cache genérica de tamaño NxSxB bytes. 12

4.2. Ejemplo modelo de las 3C. Streaming, un procesador, 4,5 segundos. . . . 14

4.3. Ejemplo modelo de las 3C con porcentajes agregados. Aplicación Media
Streaming, un procesador, 4,5 segundos de ejecución. 14

4.4. Sistema de cuatro procesadores simulado 15

4.5. Pila de bloques en orden LRU en un conjunto cualquiera. 16

4.6. Aciertos y fallos para una cache LRU con asociatividad 1 16

4.7. Aciertos y fallos para una cache LRU con asociatividad 3 17

4.8. Vector de aciertos acumulados para S=1 y S=3 17

4.9. Experimentos lanzados con algoritmo de varias asociatividades. 20

5.1. Streaming: mpki de la cache de instrucciones en cada core vs. tamaño y
asociatividad. Tamaño de bloque 64B. 22

5.2. Cassandra: mpki de la cache de instrucciones en cada core vs. tamaño y
asociatividad. Tamaño de bloque 64B. 23

5.3. Nutch: mpki de la cache de instrucciones en cada core vs. tamaño y aso-
ciatividad. Tamaño de bloque 64B. 24

5.4. Classification: mpki de la cache de instrucciones en cada core vs. tamaño
y asociatividad. Tamaño de bloque 64B. 24

5.5. Cloudstone: mpki de la cache de instrucciones en cada core vs. tamaño y
asociatividad. Tamaño de bloque 64B. 26

5.6. Huella de recarga de todas las aplicaciones de Cloudsuite. Cien muestras
de 100 ms. Tamaño en KB (210) . 27

5.7. Huellas acumuladas y de recarga de Streaming. 28

5.8. Huellas acumuladas y de recarga de Cassandra. 28

5.9. Huellas acumuladas y de recarga de Nutch. 29

5.10. Huellas acumuladas y de recarga de Classification. 30

5.11. Huellas acumuladas y de recarga de Cloudstone. 30

5.12. Sistema simulado para calcular Bwin, el ancho de banda de instrucciones. 31

5.13. Ancho de banda por asociatividad y tamaño en Streaming. 33

5.14. Ancho de banda por asociatividad y tamaño en Cassandra. 34

5.15. Ancho de banda por asociatividad y tamaño en Nutch. 36

5.16. Ancho de banda por asociatividad y tamaño en Classification. 37

5.17. Ancho de banda por asociatividad y tamaño en Cloudstone. 38

xii

Índice de Figuras xiii

5.18. Dos propuestas para mejorar el suministro de instrucciones desde el si-
guiente nivel. 39

5.19. Comparación MPKI benchmarks. 42

A.1. Diagrama de Gantt del proyecto. 47

A.2. Distribución del tiempo invertido en el proyecto. 49

C.1. Jerarqúıa de caches. 59

C.2. Ejemplo Sistema de Caches multiprocesador con MESI. 59

C.3. Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos internos. 60

C.4. Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos externos. 60

C.5. Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos in-
ternos. 60

C.6. Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos ex-
ternos. 61

D.1. Red de conexiones atps. 67

D.2. Jerarqúıa de cache configurada con el script 71

Índice de tablas

3.1. Aplicaciones CloudSuite 2.0 simuladas. 8

A.1. Horas dedicadas a cada tarea del Proyecto. 50

C.1. Relación de tamaño, asociatividad y aciertos para una ejecución con el
algoritmo MC. 63

xiv

Caṕıtulo 1

Introducción

Las tendencias de mercado indican que el negocio de los procesadores para grandes

centros de datos va a seguir creciendo, impulsado por la economı́a de la virtualización

y la gran penetración empresarial y social de las aplicaciones que residen en las nubes

(cloud computing).

Para diseñar un procesador de futuro adaptado a este mercado es necesario experimentar

con una carga de trabajo apropiada, pero en la actualidad apenas existen programas de

prueba (benchmarks) de esta clase. Una excepción es la denominada CloudSuite 2.0, un

conjunto de aplicaciones cliente/servidor seleccionadas recientemente por el laboratorio

de investigación Parsa de la EPFL en Suiza. Estas aplicaciones están pensadas para

escalar en un centro de datos de forma horizontal (scale-out, es decir, con capacidad para

aumentar el rendimiento a medida que se añaden mas computadores independientes) y

se caracterizan por su paralelismo expĺıcito y por manejar conjuntos de datos de tamaño

muy considerable. Las aplicaciones seleccionadas pretenden ser representativas del futuro

del cloud computing : Data Analytics, Data Caching, Data Serving, Graph Analytics,

Media Streaming, SW Testing, Web Search y Web Serving [EPF].

La experimentación preliminar con estos programas de prueba, publicada en los congre-

sos de arquitectura de computadores, ha revelado un uso intensivo y muy poco eficiente

de la jerarqúıa de cache de instrucciones en chip [FAK+12]. Parece que no solo los

conjuntos de datos son muy grandes, sino también el código que los manipula.

Una memoria cache es una memoria RAM estática (SRAM), pequeña y rápida que

contiene un subconjunto de las direcciones referenciadas por el procesador. Su funciona-

miento es automático, transparente al programador, y se basa en explotar la localidad

temporal y espacial del acceso a memoria durante la ejecución de los programas. En los

chips actuales de altas prestaciones las memorias cache ocupan una parte sustancial del

1

Caṕıtulo 1. Introducción 2

silicio, ya que la velocidad en la ejecución de los programas depende en gran medida del

rendimiento de las caches. Las memorias cache dentro del chip se organizan como una

jerarqúıa multinivel, ver figura 1.1. El primer nivel de memoria cache está separado en

datos e instrucciones para cada procesador; el resto de niveles, hasta dos más, suelen

contener de forma mezclada datos e instrucciones. Un buen diseño de la jerarqúıa de

memoria cache permite acceder poco a la memoria principal RAM dinámica (DRAM)

situada fuera del chip, contribuyendo de forma cŕıtica a la ejecución eficiente de los

programas.

Figura 1.1: Ejemplo de chip multiprocesador contemporáneo, con cuatro procesadores
y tres niveles de memoria cache en chip (SRAM): los dos primeros privados de cada

procesador, y el tercero compartido

En este proyecto nos planteamos una caracterización por simulación del comportamiento

de las instrucciones en CloudSuite 2.0. Seguiremos una metodoloǵıa de experimentación

basada en Simics, un hipervisor de tipo 2 con capacidad de emulación de sistema comple-

to: máquinas cliente y servidor con sus periféricos, sistemas operativos huésped (Oracle

Solaris 11) y procesadores SPARC v9. Simics no está pensado para desplegar máqui-

nas virtuales orientadas a la consolidación de servidores, sino al desarrollo y prueba de

nuevos sistemas hardware y software. Esta orientación permite en nuestro caso confi-

gurar un sistema multiprocesador, capturar la secuencia de direcciones de instrucciones

e inyectarla a un simulador de memoria cache. Si bien este tipo de simulación de sis-

tema completo (aplicación y sistema operativo) es realmente lenta, la precisión de las

conclusiones experimentales es muy elevada.

[Los resultados han sido...]

Caṕıtulo 1. Introducción 3

1.1. Contexto del Proyecto

Este Proyecto Fin de Carrera se ha realizado con el soporte del grupo de investigación en

Arquitectura de Computadores de la Universidad de Zaragoza (gaZ) y ha sido financiado

en parte por el proyecto TIN2010-21291-C02-01 (Gobierno de España y Unión Europea)

y por la dotación anual recibida como grupo consolidado de investigación en Aragón (ref.

T48). Además, durante el curso 2013/2014 he disfrutado de una Beca de Colaboración

del Ministerio de Educación destinada a la iniciación a la investigación.

1.2. Objetivos

El objetivo de este Proyecto Fin de Carrera es analizar el comportamiento de las ins-

trucciones en CloudSuite 2.0. Para ello se han realizado las siguientes tareas:

1. Instalación y despliegue en cluster de los checkpoints necesarios para la simulación

con Simics. Un checkpoint es un registro del estado de los procesadores, memorias

y dispositivos de E/S en un instante dado.

2. Programación de un módulo muy ligero de simulación de cache de instrucciones,

que reduce la sobrecarga de las herramientas convencionales de simulación de je-

rarqúıa de memoria (p.e. Multifacet GEMS Simulator de la U. de Wisconsin)

3. Análisis de tasas de fallos y de huella de memoria de instrucciones a lo largo de

tiempos de ejecución significativos.

4. Conclusiones sobre comportamiento temporal a través de una simulación mues-

treada y sobre la efectividad de una jerarqúıa multinivel de instrucciones.

Tras llevar a cabo estas tareas se han alcanzado todos los objetivos inicialmente plan-

teados. El valor añadido en este proyecto se concentra principalmente en los caṕıtulos

de resultados y conclusiones, dónde se analizan los resultados obtenidos por simulación.

1.3. Organización de la Memoria

El resto del presente documento está organizado del siguiente modo: en el caṕıtulo 2 se

introduce el estado del arte en simulación y cargas de trabajo; en el caṕıtulo 3 se explica

con mayor detalle la suite Cloudsuite; el caṕıtulo 4 explica la metodoloǵıa utilizada para

llevar a cabo los experimentos; en el caṕıtulo 5 se presenta un resumen de los resultados

Caṕıtulo 1. Introducción 4

del proyecto y en el caṕıtulo 6 se recogen las conclusiones y las posibles lineas abiertas.

Se incluyen como anexos:

A. Gestión del proyecto. Incluye la planificación del tiempo durante el proyecto y

el esfuerzo invertido en el mismo.

B. Productividad en Simics. Se adjunta un tutorial de Simics que sirva de docu-

mentación para futuros proyectos.

C. Módulo G-cache. Se amplia la información sobre el módulo de g-cache y los

módulos programados para el proyecto.

D. Simulaciones Cloudsuite. Se presenta dónde y cómo se han llevado a acabo las

simulaciones de la CloudSuite.

Caṕıtulo 2

Estado del Arte en simulación y

cargas de trabajo

La simulación es una herramienta fundamental para diseñar nuevo hardware o mejorar

el rendimiento de los programas. En este caṕıtulo describimos brevemente la plataforma

Simics y el papel de los programas de prueba en la simulación de nuevas jerarqúıas de

memoria.

2.1. Plataformas y estrategias de simulación

Simics de la empresa Virtutech (simplemente Simics a partir de ahora) es un simulador

de sistema completo que podemos configurar para modelar multiprocesadores, sistemas

empotrados, routers de telecomunicaciones, clusters o redes de esos elementos [MCE+02].

Es capaz de ejecutar sistemas operativos sin necesidad de que sean adaptados y simular

aplicaciones realistas ofreciendo resultados precisos. Se trata de un hipervisor comercial

de tipo 2, puede ejecutarse sobre múltiples procesadores y sistemas operativos, y el códi-

go no es libre. En la comunidad de experimentación en arquitectura de computadores,

Simics suele utilizarse conjuntamente con el entorno GEMS (General Execution-Driven

Multiprocessor Simulator) [MSB+05], que fue creado en la Universidad de Wisconsin

y proporciona módulos para el estudio de prestaciones en sistemas multiprocesador de

memoria compartida con jerarqúıas complejas y coherentes de memorias cache. El com-

ponente principal de GEMS se llama Ruby, que simula las memorias cache, el protocolo

de coherencia y la red de interconexión. Simics actúa como un simulador funcional, es

decir, simplemente se ocupa de ejecutar las instrucciones, y se comunica con el módulo

Ruby de GEMS, que se encarga de gestionar los accesos a memoria, temporizándolos de

forma adecuada.

5

Caṕıtulo 2. Estado del arte 6

Un problema muy importante en la simulación de multiprocesadores es el bajo rendi-

miento del simulador, y esto es especialmente cierto en Simics, que como ya hemos dicho

es una máquina virtual de sistema completo. Según el detalle temporal (precisión) de

la simulación, las aplicaciones se ejecutan entre 100 y 1000 veces más lentas que en la

máquina real. En nuestro caso estamos interesados en muy largas simulaciones de fallo-

s/aciertos, sólo para la cache de instrucciones y no nos importa el detalle temporal. Por

ello hemos escogido una solución de menos sobrecarga, aunque conllevará la necesidad

de un mayor esfuerzo de programación. La solución escogida ha sido el módulo g-cache

(que explicaremos en el apartado 4.3), cuyo código fuente acompaña a la distribución

estándar de Simics.

2.2. Cargas de Trabajo

Se llama benchmark al programa de prueba que sirve para evaluar el rendimiento de un

computador completo o de uno de sus subsistemas. [Bon07]. Un conjunto de benchmarks

se denomina suite. Históricamente los programas de prueba han evolucionado en comple-

jidad, desde los primeros programas sintéticos, pasando por pequeñas rutinas intensivas

en cálculo o memoria, hasta los programas reales de la actualidad, representativos de un

campo informático determinado.

La selección de la carga de trabajo tiene una gran importancia, puesto que queremos

obtener conclusiones que sirvan para el diseño de los computadores del futuro. Veamos

algunas suites actuales:

PARSEC 2.1: suite compilada por la universidad de Princeton (Princeton Appli-

cation Repository for Shared-Memory Computers, 2009-10). Está compuesta por

trece aplicaciones paralelas de memoria compartida (multithreaded applications).

Ofrece aplicaciones paralelas t́ıpicas, por ejemplo de High-Performance Compu-

ting (HPC), pero también incluye otro tipo de aplicaciones paralelas emergentes

(p.e. escritorio y servicio WEB). Recoge distintas dominios de aplicación, como

visión por computador, codificación de v́ıdeo, análisis financiero, visualización de

experimentos f́ısicos y proceso de imagenes.[BKSL08]

SPEC CPU2006: suite compilada por la cooperativa SPEC en 2006 (Standard

Performance Evaluation Corporation). Está pensada para medir el rendimiento del

procesador, la jerarqúıa de memoria o el compilador, puesto que no tiene apenas

operaciones de entrada/salida. Contiene dos suites de benchmarks, una intensiva en

cálculo entero (12 programas no paralelos) y otra en coma flotante (19 programas

no paralelos). [CPU06]

Caṕıtulo 2. Estado del arte 7

SPECweb 2009: también de la cooperativa SPEC, busca evaluar el rendimiento

de servidores WEB. Sus cargas de trabajo están pensadas para multiprocesadores

de memoria compartida e incluyen aplicaciones de banca, comercio electrónico o

soporte Web.[web09]

TPC-C: aplicación patrocinada por la cooperativa Transaction Processing Council

desde 1992. En la actualidad está en su versión cinco, y simula un entorno completo

de usuarios realizando transacciones en directo (online) hacia una base de datos.

Aunque no se limita a ninguna actividad en particular modela una empresa que

debe gestionar, vender y/o distribuir un producto o servicio.[TC]

Los anteriores benchmarks son un buen resumen de aplicaciones que se están ejecutando

en los computadores actuales. Sin embargo, unos nuevo tipo de aplicación está emer-

giendo con fuerza en los últimos años: los servicios de la nube (cloud computing). Esta

plataforma está dominando el suministro de servicios escalables online. Estos servicios se

caracterizan por unos enormes working-sets, un alto grado de paralelismo y restricciones

de tiempo real no estricto. Todo esto hace que estas aplicaciones denominadas scale-out

tengan un comportamiento distinto a las aplicaciones tradicionales ya conocidas y que

se recogen en los benchmarks anteriores. Por ello, para estimular la investigación en

el área de los centros de datos y la nube y ya que apenas existen benchmarks de esta

clase, el laboratorio de investigación Parsa de la EPFL en Suiza ha creado CloudSuite,

un benchmark basado en servicios online del mundo real [FAK+12]. Esta es la carga

de trabajo que hemos seleccionado para nuestro proyecto, por lo que explicamos sus

caracteŕısticas con más detalle en el caṕıtulo siguiente.

Caṕıtulo 3

CloudSuite

Como ya hemos introducido en el caṕıtulo anterior, la carga de trabajo que usamos en

este trabajo es Cloudsuite 2.0, un conjunto de aplicaciones cliente/servidor del grupo de

investigación Parsa de la EPFL en Suiza. Estas aplicaciones están pensadas para escalar

en un centro de datos de forma horizontal (scale-out : a más servidores f́ısicos, más

rendimiento) y se caracterizan por su paralelismo expĺıcito y por manejar conjuntos de

datos de tamaño muy considerable. Aunque en su web podemos encontrar disponibles

8 aplicaciones para ejecutar en nativo [EPF], nosotros hemos trabajado solo con 5,

aquellas acompañadas de checkpoints públicos para la simulación en Simics. En la tabla

3.1 podemos ver las aplicaciones con una breve descripción:

Aplicación Descripción

Data
Analytics

Esta aplicación se basa en el paradigma map-reduce, que ha emergido
como una aproximación muy popular para los análisis de datos a gran
escala. Se lanzan peticiones al cluster de procesadores que se simulan,
que en primer lugar filtran y transforman la información (map) y después
unen los resultados (reduce).

Data
Serving

Aplicación de almacenamiento y servicio de datos basada en NoSQL
(Not only SQL). Ha sido diseñada expĺıcitamente para soportar aplica-
ciones web como Facebook, Google Earth y Google Finance, proporcio-
nando almacenamiento escalable, con capacidad de adaptar rápidamente
el esquema de almacenamiento.

Media
Streaming

Los servicios en streaming, tipo Youtube, usan enormes clusters de ser-
vidores que gradualmente empaquetan y transmiten ficheros multimedia
cuyo tamaño puede ir desde los megabytes hasta los gigabytes.

Web
Frontend

Las aplicaciones que dan servicio al alojamiento de páginas web se ca-
racterizan por su gran tolerancia a fallos y su escalabilidad dinámica.

Web
Search

Aplicación basada en un motor de búsqueda, similar a Google, capaz de
indexar terabytes de datos recogidos dinámicamente de fuentes online.

Tabla 3.1: Aplicaciones CloudSuite 2.0 simuladas.

8

Caṕıtulo 3. CloudSuite 9

3.1. Caracteŕısticas de los Benchmarks

Todas estas aplicaciones tienen unas caracteŕısticas similares [FAK+12]:

Operan con grandes conjuntos de datos que se reparten entre un gran número de

máquinas, t́ıpicamente en fragmentos residentes en las memorias principales de los

servidores.

Sirven grandes cantidades de peticiones completamente independientes que no

comparten ningún estado.

Están diseñadas espećıficamente para una infraestructura de servidores t́ıpica de

la nube, donde las conexiones y las máquinas no son del todo fiables.

Usan conectividad entre máquinas solo para las tareas más importantes de coor-

dinación y administración.

En algunas aplicaciones de esta suite llegamos a simular hasta tres computadores com-

pletos conectados por red, como es el caso de Web Frontend, cuyo esquema está re-

presentado en la figura 3.1. Este benchmark consiste en tres componentes principales:

el servidor web, la base de datos y un cliente, cada una es ejecutada en una máquina

distinta y emulan los accesos del mundo real al servidor web. Todo este sistema simulado

nos permite estudiar las instrucciones del servicio cŕıtico: el servidor web que se ejecuta

en una máquina multiprocesador, de cuatro procesadores en nuestro caso.

Figura 3.1: Esquema Aplicación Web Frontend.

Caṕıtulo 3. CloudSuite 10

3.2. Cloudsuite en Simics

Como ya se ha apuntado, únicamente se disponen de forma pública los checkpoints para

Simics de las cinco aplicaciones de la tabla 3.1. Los checkpoints permiten empezar una

simulación en un punto de interés, sin necesidad de configurar todo de nuevo, arrancar

la máquina, y saltar la fase de inicialización. Un checkpoint almacena el contenido de

los registros de los procesadores, de las MMUs, la imagen de la memoria principal, los

contenidos de los discos y el estado de los periféricos (consola, conexiones de red, etc.).

En nuestro caso un checkpoint consiste en varios ficheros que contienen la configuración

del sistema simulado (máquinas para los clientes, para la base de datos y para el servidor

bajo análisis) en un estado estacionario de la ejecución, saltando la fase de inicialización

del sistema que queremos analizar. Para desplegar los checkpoints en ATPS, nuestro

cluster de experimentación, ha sido necesario configurar las rutas que referencian a

los diferentes ficheros de un checkpoint: datos de entrada de la aplicación simulada,

configuración hardware de las máquinas, e imagen del estado hardware en el punto de

inicio de la simulación.

Caṕıtulo 4

Metodoloǵıa

Este caṕıtulo recoge la metodoloǵıa utilizada durante el proyecto. Se presentan las métri-

cas seleccionadas, las herramientas que se han elegido para obtenerlas y cómo se han

usado.

4.1. Métricas Utilizadas

Estamos interesados en estudiar el rendimiento de la cache de instrucciones, en un sis-

tema multiprocesador de memoria compartida, centrándonos en la máquina que ejecuta

el servicio cŕıtico en las cinco aplicaciones seleccionadas de CloudSuite 2.0. El sistema

de interés es el representado en la figura 4.4.

Como se verá en el caṕıtulo siguiente, para analizar el comportamiento durante un tiem-

po significativo, hemos optado por obtener estad́ısticas de forma periódica. El conjunto

de métricas que obtenemos en cada muestra temporal, para cada procesador, forma una

traza temporal que almacenamos para manipulaciones posteriores. De esta forma, podre-

mos estudiar la variación en el tiempo o calcular un agregado, según la escala temporal

que nos interese considerar.

A continuación describimos las métricas y modelos que vamos a usar para analizar el

cómo se referencian las instrucciones y obtener, si es posible, conclusiones de diseño.

Mpki : Número medio de fallos de la cache de instrucciones por cada mil instruc-

ciones ejecutadas (Misses per kilo instruction), en este trabajo nos centramos de

la cache de instrucciones de primer nivel. Recordemos que cada vez que se produce

un fallo, entra el bloque de cache requerido, de 64 bytes.

11

Caṕıtulo 4. Metodoloǵıa 12

BWin: Ancho de banda de instrucciones (Instruction Bandwidth) entrante desde

el siguiente nivel. Se agrega para las cuatro caches. Es el cociente entre el número

de bytes de instrucciones entrante a las caches y el tiempo de ejecución.

Huella de memoria de instrucciones: (Instruction Footprint) Tamaño del pro-

grama referenciado durante la ejecución, en número de bytes. Se trata de contar

instrucciones diferentes. Por ejemplo, un bucle de diez instrucciones que se repite

1000 veces supone una huella de 40 bytes (10 instr. x 4 bytes/instr.)

4.2. Modelo de las 3C

El “modelo de las 3C”(compulsory, capacity, and conflict) es uno de los más usados y

conocidos para el estudio de los fallos en las memorias caches [HS89]. Para entender el

modelo, en la figura 4.1 se presenta una memoria cache genérica, con los parámetros de

diseño a tener en consideración.

Figura 4.1: Memoria cache genérica de tamaño NxSxB bytes. Se escogen log2N bits
de la dirección para indexar conjunto. En caso de fallo, si el conjunto correspondiente

está lleno, se reemplaza al bloque menos recientemente usado (LRU).

El modelo se basa en tres tipos de fallos:

Obligatorios (Compulsory): Son los producidos por la primera referencia de un

bloque en memoria. Este número no se ve afectado por la asociatividad o el tamaño

de la memoria cache. Estos fallos correspondeŕıan a los fallos que tendŕıa una cache

completamente asociativa (un solo conjunto) de tamaño infinito, y contabilizan el

número total de bloques que se cargan desde el siguiente nivel.

De Capacidad (Capacity): Son aquellos fallos que se dan en una cache comple-

tamente asociativa con poĺıtica de reemplazo LRU (least recently used), menos los

fallos obligatorios. Estos fallos aparecen por referenciar mayor cantidad de bloques

Caṕıtulo 4. Metodoloǵıa 13

que los que caben en la memoria, por lo tanto estos fallos dependen del tamaño

de la cache.

De Conflicto (Conflict): Son los fallos totales de la cache menos los de capaci-

dad y los obligatorios. Son dependientes de la asociatividad, ya que corresponden

aquellos fallos que se dan por tener que alojar bloques en el mismo conjunto.

Para representar este modelo se obtienen los fallos para distintos tamaños de cache con

distintas asociatividades, incluyendo siempre la completamente asociativa y la corres-

pondencia directa (o asociatividad 1).

En las gráficas 4.2 y 4.3 vemos un ejemplo de las dos representaciones habituales del

modelo para la cache de instrucciones de la aplicación Media Streaming con un único

procesador, los primeros 4’5 segundos de ejecución y con 32B de tamaño de bloque.

Ambas gráficas muestran fallos en función de la capacidad, desde 2 hasta 2048 KB

en el eje X. El eje Y representa tasa de fallos en mpki o porcentaje relativo de cada

tipo de fallos, respectivamente. En la primera gráfica se observa como las tasas de fallos

disminuyen desde los 15-17 mpki para 2KB, hasta una cifra inapreciable para 2 MB. Para

64 KB, por ejemplo, podemos ver cual es la penalización por disminuir asociatividad:

pasamos progresivamente de los 2,57 mpki en completamente asociativo, hasta los 5,6

mpki de correspondencia directa. En la gráfica 4.3 vemos los porcentajes relativos; para

la cache de 64 KB los fallos obligatorios suponen una porcentaje no apreciable, mientras

que al disminuir la asociatividad (desde completamente asociativo hasta S=1, pasando

por S=4 y 2), los fallos suponen el 46 %, 65,9 %, 89,5 % y 100 %, respectivamente. Dicho

de otra forma, manteniendo el tamaño fijo a 64 KB, si cambiamos la organización de la

cache y pasamos de S=1 (N = 1024 conjuntos) a S=2 (N = 512 conjuntos), los fallos

bajan aproximadamente un 10 %.

La gráfica 4.2 ilustra una anomaĺıa que no suele aparecer en caches de datos y a veces

se observa en caches de instrucciones. Vemos que en la cache de 32KB hay más fallos

para asociatividad 4 que para asociatividad 2. En principio la intuición dice que a ma-

yor asociatividad, menos fallos de conflicto, y menos fallos totales (por cierto, a mayor

asociatividad una cache requiere mas enerǵıa por acceso y resulta en un mayor tiempo

de acierto). Sin embargo, en el punto reseñado no es aśı, ¿porqué?. Consideremos un

ejemplo extremo: dos caches de T bloques, una de correspondencia directa (S=1) y otra

completamente asociativa (N=1). Supongamos un bucle de instrucciones cuyo tamaño

supera en un bloque al tamaño de la cache, es decir, T+1 bloques. En régimen permanen-

te la cache de correspondencia directa se carga con T-1 bloques que no se mueven, pero

hay un conjunto al que van a parar dos bloques en cada iteración; el resultado es una

tasa de fallos muy baja: 2 fallos cada Tx16 referencias (64 Bytes = 16 instrucciones). En

Caṕıtulo 4. Metodoloǵıa 14

cambio, en la cache completamente asociativa, debido al algoritmo de reemplazo LRU,

el régimen permanente resulta en T fallos cada Tx16 referencias, ya que las últimas

referencias sobrescriben a las primeras, las primeras a las segundas y aśı sucesivamente

. . .

Figura 4.2: Ejemplo modelo de las 3C con mpki. Aplicación Media Streaming, un
procesador, 4,5 segundos de ejecución.

Figura 4.3: Ejemplo modelo de las 3C con porcentajes agregados. Aplicación Media
Streaming, un procesador, 4,5 segundos de ejecución.

Caṕıtulo 4. Metodoloǵıa 15

En nuestro proyecto hemos simulado un sistema de cuatro procesadores tal como se

puede ver en la figura 4.4. Para caracterizar caches en sistemas multiprocesador puede

usarse el modelo ampliado de las 4C [CGS99]. La cuarta fuente de fallos (coherence)

proviene de las invalidaciones necesarias para mantener la coherencia, sin embargo este

tipo de fallos no aparece en el flujo de instrucciones, que no están sometidas a escrituras

compartidas.

Figura 4.4: Sistema de cuatro procesadores simulado. Las memorias cache de instruc-
ciones han sido modeladas en detalle.

4.2.1. Algoritmos de una sola pasada

Para construir las gráficas 4.2 y 4.3 podemos ejecutar una simulación por cada tamaño

de cache y por cada asociatividad. Sin embargo este procedimiento requiere mucho tiem-

po de simulación. Alternativamente, podemos usar un algoritmo “de una sola pasada”

que nos permite en una sola simulación obtener los fallos para distintas asociatividades

y tamaños de cache [MGST70]. Estos algoritmos son factibles para poĺıticas de reem-

plazo de tipo pila, para los cuales aumentar la asociatividad manteniendo el número de

conjuntos siempre resulta en una tasa de aciertos mayor. La poĺıtica de reemplazo LRU

(Least Recently Used) cumple esta condición. LRU precisa una pila ordenada en cada

conjunto. En la cima de la pila está el bloque mas recientemente utilizado (MRU, Most

Recently Used), y en el fondo el menos recientemente utilizado (el LRU), es decir el

bloque que será v́ıctima en caso de reemplazo. En la figura 4.5 se ilustran los casos de

acierto y fallo a un conjunto cualquiera. Se puede ver el estado original de la pila LRU

del conjunto, y su nuevo estado al llegar una referencia al bloque C. Cómo ya está en el

conjunto se produce un acierto a distancia 3 en la pila y este bloque pasa a ser el MRU.

La siguiente referencia que llega es al bloque E, que no está en la cache, por lo tanto se

Caṕıtulo 4. Metodoloǵıa 16

produce un fallo. El bloque v́ıctima, el que se expulsa, será el LRU, es decir el bloque

D. Y el bloque E queda en la cima de la pila, es decir la posición MRU.

Figura 4.5: Pila de bloques en orden LRU en un conjunto cualquiera. Acierto en el
bloque C seguido de fallo del bloque E.

Analizando la pila ordenada de bloques de un conjunto cualquiera, vemos que el acierto

a distancia 1 de la cima (la propia cima) se produce si un bloque vuelve a referenciarse

inmediatamente. El acierto a distancia 2 se produce si entre dos referencias al mismo

bloque se referencia uno distinto. Aplicando este razonamiento de forma sucesiva se pue-

de demostrar que, manteniendo fijo el número de conjuntos, una cache de asociatividad

S experimenta los mismos o mas aciertos que una cache de asociatividad S-1, ya existe

una relación de inclusión entre los contenidos de la cache de asociatividad S y la cache

de asociatividad S-1. Esta relación es más fácil de apreciar a través de un ejemplo, para

ello vamos a ayudarnos de las figuras 4.6 y 4.7. En ambas el tiempo transcurre de iz-

quierda a derecha. Entre estado y estado aparece en la parte superior cual es el bloque

referenciado y en la parte inferior si se produce acierto o fallo. En el caso de acierto se

apunta también a que distancia de la cima de la pila LRU se ha producido.

Figura 4.6: Aciertos y fallos para una cache LRU con asociatividad 1

Caṕıtulo 4. Metodoloǵıa 17

Figura 4.7: Aciertos y fallos para una cache LRU con asociatividad 3

En la primera figura, la 4.6, se representa una cache de un solo bloque, y de un solo

conjunto, aśı que si inmediatamente no se referencia al mismo bloque, se produce un

fallo. En el caso de que se produzca un acierto este siempre es a distancia 1, ya que la

pila LRU del conjunto solo tiene un elemento. En el vector de la izquierda de la figura

4.8 podemos ver el resumen de los aciertos y fallos totales de la secuencia de referencias

utilizada (ABCCDBAADA).

Figura 4.8: Vector de aciertos acumulados para S=1 y S=3

Sin embargo la secuencia de estados en la figura 4.7 se complica, ya que corresponde

a una cache de un solo conjunto, pero de asociatividad 3. Ahora aparecen aciertos a

distancias 1, 2 y 3. Aqúı se aprecia lo que explicábamos anteriormente, por ejemplo, el

último acierto se da a distancia 2 porque entre la última referencia al bloque A y la

anterior referencia solo se ha referenciado al bloque D. O en el penúltimo acierto, que se

da a distancia 3 porque entre la última vez que se referencia a D y la anterior sólo se han

Caṕıtulo 4. Metodoloǵıa 18

referenciado dos bloques: el A y el B. En el vector de la derecha de la figura 4.8 recogemos

el número total de fallos y de aciertos, estos últimos clasificados por distancias.

Gracias a las figuras y a las tablas ahora podemos ver mejor porque los aciertos de

asociatividad 1 de una cache están incluidos en los aciertos de una cache con el mismo

número de conjuntos pero mayor asociatividad. Los aciertos a distancia 1 del vector S=3

en 4.8 son los correspondientes a los aciertos de la cache de asociatividad 1 de la figura

4.6 para esa secuencia de referencias a bloques.Y llegamos a la conclusión de que no es

necesario representar una cache de asociatividad 2 con 2 bloques, y un solo conjunto,

para saber su número de aciertos ya que la cache de asociatividad 2 incluirá los de la 1

(2 aciertos) más los de distancia 2 del vector S=3 en 4.7 de la cache de asociatividad 3.

Es decir, para la cache de un conjunto y asociatividad 2 el número de aciertos será 3, y

por lo tanto el número de fallos 7, ya que en total hay 10 referencias a bloques.

Asumiendo reemplazo LRU, ¿cómo concretar estas ideas en un algoritmo?. Una forma es

gestionar un vector de aciertos que contabiliza cuantos aciertos se dan en cada distancia.

El algoritmo en detalle puede consultarse en el anexo C.2.1.

Con este algoritmo podemos obtener, por ejemplo, a partir de la simulación de una cache

de 16KB de asociatividad 4, los aciertos (y por lo tanto también los fallos) de una cache

8KB con asociatividad 2, y de una cache de 4KB con asociatividad 1.

4.3. Módulo G-Cache

4.3.1. Módulos en Simics

Un módulo en Simics es un código ejecutable que se carga dinámicamente en la máquina

virtual. Para tener un uso práctico debe interactuar con Simics, con otros módulos o con

el usuario. Simics proporciona una API (application programming interface) para que

los módulos puedan utilizar diversas funciones. La API soporta los conceptos de clase,

objeto, interfaz y evento. Los módulos pueden programarse en DML (Device Modeling

Language), Python o C/C++.

En este proyecto hemos trabajado modificando un módulo ya definido por Simics, g-

cache, que se explica a continuación.

4.3.2. G-cache

Simics es una máquina virtual con capacidad de ejecución funcional de sistema completo,

tanto de aplicaciones como de sistema operativo. Por tanto no modela las cuestiones de

Caṕıtulo 4. Metodoloǵıa 19

implementación transparentes al lenguaje máquina, como la jerarqúıa de caches. Sin

embargo, incorpora a modo de ejemplo el módulo g-cache que permite modelar una

jerarqúıa multinivel de caches para multiprocesador. G-cache trata las transacciones de

memoria de forma simple: todas las operaciones necesarias (copy-back de bloques sucios

de datos, fetch de instrucciones, etc.) se ejecutan en orden de programa y una sola vez. La

cache devuelve la suma de los ciclos de parada para cada operación. Hemos modificado

este modulo para programar de forma eficiente nuestras caches de instrucciones. Las dos

versiones programadas tienen la siguiente funcionalidad:

Algoritmo para múltiples caches (algoritmo MC): Se aplica la idea del apar-

tado 4.2.1 para recoger en una simulación única los fallos de varias asociatividades

y tamaños.

Algoritmo para caches completamente asociativas (algoritmo CCA): Ya

que las caches completamente asociativas solo tienen un conjunto, los algoritmos

tradicionales de reemplazo LRU es muy costoso de simular para caches grandes, por

tener que recorrer toda la lista LRU una o varias veces cada vez que se produce un

fallo. La mejora original que proponemos es utilizar una cache de correspondencia

directa auxiliar, que permite capturar una gran parte de los aciertos, evitando

tener que buscar el bloque en la cache simulada. Hemos medido una mejora media

en velocidad de un 90,52 % gracias a esta mejora.

En el Anexo C se describen en detalle los dos algoritmos.

4.4. Experimentos

En este trabajo hemos lanzado 6 experimentos con el algoritmo MC, y 5 experimentos

con el algoritmo CCA, por cada aplicación. La gráfica 4.9 muestra los seis primeros

experimentos y a qué cache (asociatividad y tamaño) corresponden los resultados obte-

nidos, cuatro caches distintas por cada experimento. Aśı que con seis ejecuciones hemos

obtenido los datos de 24 caches distintas, suponiendo una muy importante mejora.

El algoritmo CCA se ha ejecutado para las caches de 16KB, 32KB y 64KB, para las que

ya disponemos resultados desde asociatividad 1 a 8, pudiendo aśı completar el modelo

de las 3Cs.

El cuarto experimento con este algoritmo corresponde a la simulación de una cache de

2048KB. Esta cache que al ser lo suficientemente grande nos permite contabilizar los

fallos obligatorios.

Caṕıtulo 4. Metodoloǵıa 20

Figura 4.9: Experimentos lanzados con algoritmo MC.

Cada uno de los experimentos anteriores supone 10 segundos (tiempo en máquina real)

de cada aplicación, recogiendo muestras cada 100ms, es decir se obtienen 100 muestras

por cada experimento y aplicación. Antes de cada muestra las caches y sus estad́ısticas

se inicializan.

Por último, el quinto experimento con el algoritmo CCA corresponde a la obtención de

los fallos obligatorios a lo largo de los 10 segundos (tiempo en máquina real) sin inicializar

las caches ni las estad́ısticas y recogiendo los datos cada 100ms . El experimento se ha

lanzado con un tamaño de 2048KB para todas las aplicaciones excepto para Classification

y Cloudstone que ha sido de 4096KB y 8192KB,respectivamente.

Caṕıtulo 5

Resumen de Resultados

En este capitulo se recogen los resultados de los experimentos realizados, siguiendo las

métricas presentadas en el apartado 4.1.

Los resultados se estructuran en tres apartados; el primero muestra las tasas de fallos

promediadas para todos los cores en toda la duración de las aplicaciones; el segundo

presenta la huella de memoria, estudiando su evolución temporal en intervalos de 100ms;

el tercer apartado presenta el ancho de banda agregado que debe suministrar el siguiente

nivel, también analizando intervalos de 100 ms. Al final de cada apartado se ofrecen unas

conclusiones de comportamiento y, en su caso, de diseño.

5.1. Mpki por Core

Las gráficas presentadas en esta sección (5.1 - 5.5) resumen el comportamiento de las

caches de instrucciones en cuanto a su tasa de fallos expresada en mpki, en función de su

tamaño y de su asociatividad, para un tamaño de bloque de 64 bytes. Para cada tamaño

de cache y para cada core hemos calculado la media aritmética de todas las muestras

temporales1.

En estas gráficas observaremos la importancia relativa del tamaño y la asociatividad en

la tasa de fallos, aśı como la posible diferencia de comportamiento entre cores.

1Estos datos, junto con los del siguiente apartado, permiten descomponer los fallos según el modelo
de las 3Cs. No se ha hecho aśı porque la anomaĺıa de asociatividad aparece, y entonces la representación
pierde utilidad.

21

Caṕıtulo 5. Resumen de Resultados 22

5.1.1. Streaming (Figura 5.1)

Destaca la diferencia de comportamiento entre cores: el core 3 es menos sensible a la

asociatividad y al tamaño (rango total 35-20 mpki), mientras que los cores 1,2 y 4 tienen

comportamientos casi idénticos, presentando unas tasas altas para 16KB (45-50 mpki)

y mucha sensibilidad a la asociatividad para 64 KB.

En los dos grupos de cores aparece la anomaĺıa de asociatividad. Para el core 3, en 64

KB solo la correspondencia directa es peor que completamente asociativo. Para el resto

de cores ocurre algo muy parecido, pero para 32 KB.

Resaltemos esto: la mejor elección de asociatividad se invierte por completo, según el

tamaño y el core considerados, lo cual no es nada bueno desde el punto de vista de

diseño. Escoger una asociatividad 4-8 para todos los cores y tamaños, podŕıa ser un

buen compromiso de diseño.

En definitiva, estamos frente a una aplicación cuya búsqueda de instrucciones puede

convertirse en el cuello de botella del procesador si el tamaño de cache es insuficiente o

la asociatividad no es la apropiada.

Figura 5.1: Streaming: mpki de la cache de instrucciones en cada core vs. tamaño y
asociatividad. Tamaño de bloque 64B.

5.1.2. Cassandra (Figura 5.2)

En esta aplicación basta con descartar diseños de correspondencia directa para obte-

ner un muy buen rendimiento (4-5 mpki), independientemente del tamaño y del core

considerado. En cuanto a comportamiento de cache, parece que esta aplicación paralela

Caṕıtulo 5. Resumen de Resultados 23

usa el mismo código en los cuatro procesadores. No se observa ninguna anomaĺıa de

asociatividad, y la sensibilidad de los fallos al tamaño de cache es reducida.

Figura 5.2: Cassandra: mpki de la cache de instrucciones en cada core vs. tamaño y
asociatividad. Tamaño de bloque 64B.

5.1.3. Nutch (Figura 5.3)

Buen aprovechamiento de la capacidad y de la asociatividad: al aumentar tamaño de

16KB a 64 KB, nos movemos desde la franja 20-10 mpki a 5-1 mpki, para asociatividades

entre 1 y CA, respectivamente. Todos los cores parecen ejecutar el mismo código.

5.1.4. Classification (Figura 5.4)

Podemos apreciar una gran diferencia entre asociatividad 1 y el resto. Independiente-

mente del tamaño,a partir de asociatividad 4-8, la tasa de fallos es inapreciable.Todos

los cores parecen ejecutar el mismo código.

5.1.5. Cloudstone (Figura 5.5)

El core 2 presenta una tasa de fallos (20-15 mpki) superior al resto (15-20 mpki), que

se comportan de forma similar. Independientemente de la asociatividad, todos los cores

experimentan el mismo descenso de mpki al doblar el tamaño, un 21 % aproximadamente.

A partir de asociatividad 4 apenas se aprecia mejora.

Caṕıtulo 5. Resumen de Resultados 24

Figura 5.3: Nutch: mpki de la cache de instrucciones en cada core vs. tamaño y
asociatividad. Tamaño de bloque 64B.

Figura 5.4: Classification: mpki de la cache de instrucciones en cada core vs. tamaño
y asociatividad. Tamaño de bloque 64B.

Caṕıtulo 5. Resumen de Resultados 25

5.1.6. Conclusiones

En base al estudio de las tasas medias de fallos por core, podemos extraer la siguientes

conclusiones para el conjunto de todas las aplicaciones:

Dos aplicaciones, Streaming y Cloudstone, no facilitan un diseño homogéneo de

la cache de instrucciones, ya que un core se desmarca del comportamiento de los

otros tres. Escoger descuidadamente una configuración de tamaño y asociatividad

puede resultar en unas tasas de fallos excesivas para unos y en un diseño sobredi-

mensionado para otros. La existencia de anomaĺıas de asociatividad complica aún

mas la decisión de diseño.

El rango de tasa de fallos observado es grande, destacando Streaming, que puede

llegar a los 50 mpki. Le sigue Cloudstone, presentando entre 20 y 10 mpki. A

continuación, Nutch puede llegar a fallar bastante con pequeños tamaños (20-

10 mpki), pero con suficiente capacidad y asociatividad apenas falla (5-1 mpki).

Finalmente, Cassandra y Classification, con una asociatividad suficiente, apenas

fallan (<4 mpki).

A la vista de los experimentos realizados podemos derivar algunas pautas de diseño

para la cache de instrucciones de primer nivel con tamaño de bloque 64 Bytes: -

Si el tiempo y la enerǵıa de acceso no quedan comprometidas2, el diseño mas

razonable es un tamaño de 64 KB con asociatividad 4-8.

• La opción de 32 KB es mas barata y rápida. Salvo para Streaming seŕıa muy

apropiada. Una asociatividad 4 seŕıa suficiente.

• En caso de optar por 16 KB, la mitad de las aplicaciones funcionaŕıan bien

por debajo de su potencial (Streaming, Nutch y Cloudstone). En esta caso,

una asociatividad 4 también seŕıa suficiente.

5.2. Huella de Memoria

La huella de memoria es el número total de bloques diferentes que un programa visita

cuando se ejecuta. En nuestro caso nos interesa la huella de instrucciones, medida con

una granularidad de 64 bytes, el tamaño de bloque de cache que vamos a utilizar en

2 Tanto el tiempo como la enerǵıa de un acceso de cache crecen más o menos linealmente con el
tamaño y de forma marginal con la asociatividad. Un diseño comercial no sólo considera la tasa de
fallos, sino el tiempo medio de acceso y el posible impacto sobre el tiempo de acceso del procesador
[HP06]

Caṕıtulo 5. Resumen de Resultados 26

Figura 5.5: Cloudstone: mpki de la cache de instrucciones en cada core vs. tamaño y
asociatividad. Tamaño de bloque 64B.

todo este caṕıtulo. Por tanto la huella de instrucciones es equivalente al tamaño efectivo

del código que se ha ejecutado en cada aplicación.

Para observar la evolución temporal, hemos medido en primer lugar la huella de recarga

en intervalos de 100 ms. Para cada core, la huella de recarga mide el número de blo-

ques diferentes que se visitan en cada intervalo. Esta medida se ha realizado mediante

una cache completamente asociativa lo suficientemente grande para que no haya fallos

de conflicto ni de capacidad, solo fallos obligatorios, que son los correspondientes al

número de bloques diferentes referenciados. Al principio de cada intervalo se vaćıa la

cache. Puesto que cada cache tiene su propia dinámica, hemos optado por representar

únicamente la mayor de las cuatro huellas de recarga3.

En las figuras también se presentan los resultados para cada core de la huella acumulada,

que se ha calculado sin perder memoria cada 100 ms. Por tanto la huella acumulada al

final de los 10 s representa el número total de bloques de instrucciones visitado por cada

core.

Hay que prestar especial atención en las figuras ya que no todas están escaladas igual y

no todos los ejes verticales comienzan en el valor cero.

En este apartado nos interesa verificar si las aplicaciones están en régimen estacionario,

como afirman los creadores de los checkpoints. En tal caso, podŕıamos buscar fases de

ejecución que nos permitan simular en una ventana de tiempo mas reducida. Por otra

3En el caṕıtulo de conclusiones y ĺıneas abiertas (Caṕıtulo 6) se comenta un interesante trabajo
futuro relacionado con las posibles similitudes o diferencias entre las huellas de recarga de los cuatro
procesadores.

Caṕıtulo 5. Resumen de Resultados 27

parte, también nos interesa descubrir si existe relación, o no, entre la huellas (acumulada

o de recarga) y las tasas de fallos presentadas en el apartado anterior.

Figura 5.6: Huella de recarga de todas las aplicaciones de Cloudsuite. Cien intervalos
de 100 ms. Tamaño en KB (210)

En la figura 5.6 podemos ver la huella de recarga en KB (210 bytes) para cada una de

las cinco aplicaciones. Podemos observar que Cloudstone es la que más código toca, al

contrario que Streaming y Classification que presentan huellas incluso 7 veces menores.

Sin embargo, estas dos aplicaciones, sobre todo Classification, presentan una variabilidad

relativa muy grande en su recarga. Nutch y Cassandra tocan una cantidad de código

parecida, del orden de los 600-700 KB, mostrando bastante estabilidad en la cantidad

de código que se recarga.

A continuación presentamos los resultados desagregados por aplicación.

5.2.1. Streaming (Figura 5.7)

La huella acumulada en los 10 segundos de simulación se mueve en un rango de entre

800KB para el core 3 y casi 600KB para el core 4. La recarga en cada muestra vaŕıa

entre 200 KB y más de 500 KB.

Al principio de la ejecución los 4 cores cargan el código y después se pueden destacar los

cambios de fase del core 2 y 3, que cargan unos 100 KB de código sobre el segundo 1,5

y el segundo 3, respectivamente. Estos cambios de fase corresponden a picos máximos

en la huella de recarga.

Caṕıtulo 5. Resumen de Resultados 28

Figura 5.7: Huellas acumuladas y de recarga de de Streaming.

5.2.2. Cassandra (Figura 5.8)

Mientras que los cores 1,2 y 4 consumen entre 900 KB y 1200 KB de instrucciones a

lo largo de los 10 segundos, el core 3 alcanza los 2000 KB. Hay varios cambios de fase

en los cores, por ejemplo cerca del segundo 6 aparece una carga de unos 100KB de

instrucciones en el core 1. Sin embargo, el que más destaca es el del core 3 en el segundo

6,4, que es de unos 900 KB. Esto coincide con el pico en la huella de recarga, que es unos

900 KB mayor que la media, media que se mantiene constante a lo largo del tiempo en

unos valores de 500-700KB.

Figura 5.8: Huellas acumuladas y de recarga de Cassandra.

Caṕıtulo 5. Resumen de Resultados 29

5.2.3. Nutch (Figura 5.9)

El número de bloques referenciados en total en los 10 segundos de simulación se mueve

en un rango de entre 1200KB para el core 4 y 1000 KB para el core 3. Y la huella de

recarga oscila entre 600 KB y 800 KB, destacando un punto muy bajo de unos 200KB.

Figura 5.9: Huellas acumuladas y de recarga de Nutch.

5.2.4. Classification (Figura 5.10)

La huella acumulada en los 10 segundos de simulación se mueve en un rango de entre

2500KB para el core 1 y 1800KB para el core 2. Aunque las huellas de recarga son

relativamente bajas, moviéndose en su mayoŕıa por debajo de los 500KB, existen picos

significativos que corresponden con los cambios de fase de las huellas acumuladas.

5.2.5. Cloudstone (Figura 5.11)

Alcanzamos una huella acumulada superior a los 4000KB, mucho más alto que en el resto

de las aplicaciones. Observamos que los 4 cores tienen un comportamiento prácticamente

idéntico, trazando una función de aspecto logaŕıtmico. Al principio se cargan grandes

tamaños, del orden de 100KB, y al final casi no se cargan nuevos bloques de instrucciones.

No hay cambios de fase claros ya que la carga es progresiva, y esto se puede apreciar en

la huella de recarga, ya que varia poco y no tienen ningún pico significativo.

Caṕıtulo 5. Resumen de Resultados 30

Figura 5.10: Huellas acumuladas y de recarga de Classification.

Figura 5.11: Huellas acumuladas y de recarga de Cloudstone.

5.2.6. Conclusiones

Los creadores de los checkpoints afirman que el punto de inicio de ejecución corres-

ponde a un régimen estacionario. Sin embargo todas las aplicaciones no estabilizan

sus huellas hasta bien entrada la ejecución. En concreto, a partir del segundo 4

para Streaming, 6,4 para Cassandra, 7,2 para Nutch, 7 para Cloudstone y 9 pa-

ra Classification. Sin embargo seŕıa necesario simular unos 10 segundos más para

ver si realmente se ha llegado a un comportamiento estable en cuanto a huella

acumulada y recarga.

Caṕıtulo 5. Resumen de Resultados 31

Cuando hablamos de un cambio de fase, nos referimos a que recargamos del orden

de 100 o más KB de instrucciones. Estos cambios de fase, que se dan en todas

las aplicaciones excepto en Cloudstone, complican escoger una ventana de tiempo

representativa.

No existe correlación entre las huellas de memoria y las tasas de fallos observadas

en el apartado anterior. Por ejemplo, Streaming no destaca ni por el tamaño final

de la huella ni por sus valores de recarga, pero es la aplicación que mas falla: se vi-

sita poco código, pero con poca localidad. Por el contrario, a veces se visita mucho

código, pero con gran localidad. En este grupo caen Cassandra y Cloudstone. Cas-

sandra falla realmente poco, aunque su huellas acumuladas y de recarga son de las

mayores de la suite. Cloudstone es con diferencia la que tiene huellas acumuladas

y de recarga mas grandes. Sin embargo, sus tasas de fallos son medias.

5.3. Ancho de Banda de instrucciones

Como ya hemos indicado en el apartado 4.1, la métrica BWin es el ancho de banda

de instrucciones que entra desde el siguiente nivel, agregado para las cuatro caches. La

figura 5.12 recuerda el sistema simulado y resalta la agregación de los tráficos entrantes

a las cuatro caches de instrucciones.

Figura 5.12: Sistema simulado para calcular Bwin, el ancho de banda de instrucciones.

La siguiente formula concreta como se calcula dicho ancho de banda a partir de las tasas

de fallos en mpki, asumiendo un procesador de 2 GHz que ejecuta a un ritmo de un ciclo

Caṕıtulo 5. Resumen de Resultados 32

por instrucción:

BWin(GBps) =
4∑

K=1

mpkicore K ×
64B

1000 instrucciones× 1 ciclo
instrucción × 0, 5 ns

ciclo

=

4∑
K=1

mpkicore K × 0, 128× 109

230
GBps

(5.1)

Vamos a presentar en tres gráficas la evolución temporal de BWin para cada tamaño

de cache (16KB, 32KB, 64KB); en cada gráfica se detalla el comportamiento para cada

asociatividad.

5.3.1. Streaming (Figura 5.13)

En concordancia con sus elevadas tasas de fallos, Streaming es la aplicación que puede

presionar más al siguiente nivel, presentando picos de hasta 25 GBps para la cache mas

sencilla (16 KB, S=1). Al igual que en todo el resto de aplicaciones, si consideramos la

evolución temporal como una señal, podemos ver como el aumento de tamaño y asocia-

tividad actúa como un filtro paso bajo con gran reducción de la componente continua.

En este caso, al pasar de 16 KB con S=1 a 64 KB con S=2, BWin se reduce, en media,

en un orden de magnitud.

Al aumentar el tamaño de cache, el BWin es más sensible a la asociatividad: para 16

KB apenas se nota la diferencia entre asociatividades, mientras que para 64 KB cada

vez que doblamos la asociatividad, el BWin desciende apreciablemente. Hay que resaltar

que el resto de aplicaciones van a presentar justo el comportamiento contrario: a mayor

tamaño, menor impacto de la asociatividad.

5.3.2. Cassandra (Figura 5.14)

Hay que destacar la gran diferencia entre correspondencia directa y el resto de asocia-

tividades, aunque ésta disminuye bastante al aumentar el tamaño de la cache. También

observamos que a partir de una asociatividad mı́nima (S >2), apenas hay diferencias de

ancho de banda.

La influencia del tamaño de la cache sobre el filtrado de ruido y la disminución de la

componente continua sigue el patrón general.

Caṕıtulo 5. Resumen de Resultados 33

Figura 5.13: Ancho de banda por asociatividad y tamaño en Streaming.

Caṕıtulo 5. Resumen de Resultados 34

Figura 5.14: Ancho de banda por asociatividad y tamaño en Cassandra.

Caṕıtulo 5. Resumen de Resultados 35

5.3.3. Nutch (Figura 5.15)

Destaca la gran variabilidad temporal del ancho de banda, sobre todo para 16KB y 32KB.

Al aumentar el tamaño de la cache el rango del ancho de banda se reduce apreciable-

mente, aunque el escalado es variable (e.g. en media, el cociente entre BWin para S=1 y

para CA, es del orden de 2, 1,7 y 6, para las caches de 16, 32 y 64 KB, respectivamente).

La influencia del tamaño de la cache sobre el filtrado de ruido y la disminución de la

componente continua sigue el patrón general.

5.3.4. Classification (Figura 5.16)

Salvo con una cache de correspondencia directa, esta aplicación es la que menos presiona

al siguiente nivel de memoria. Observamos una gran diferencia entre asociatividad 1 y

el resto de asociatividades. Además, al aumentar el tamaño de la cache, la sensibilidad

a la asociatividad es menor.

La influencia del tamaño de la cache sobre el filtrado de ruido y la disminución de la

componente continua sigue el patrón general.

5.3.5. Cloudstone (Figura 5.17)

Junto con la aplicación Nutch, Cloudstone destaca por gran variabilidad temporal. Pero

en este caso, apenas es apreciable el filtrado paso bajo que se observa en el resto de

aplicaciones al aumentar el tamaño de cache. Observamos que la diferencia absoluta

entre las distintas asociatividades es casi constante, independientemente del tamaño de

la cache.

5.3.6. Conclusiones

Con tan solo cuatro procesadores las aplicaciones estudiadas pueden ejercer una

presión notable sobre el siguiente nivel de memoria cache. Si asumimos que la

recarga de instrucciones se produce regularmente, sin ráfagas (lo cual no suele ser

cierto), podemos calcular a partir de BWin el número medio de ciclos entre las

transacciones de 64 B, mediante la siguiente formula (procesadores de 2GHz):

119, 2

BWin(GBps)
· ciclos

transaccion
(5.2)

Esto significa que un ancho de banda de 10 GBps, observado en mas de una aplica-

ción y configuración, supone en media un acceso cada 12 ciclos, aproximadamente.

Caṕıtulo 5. Resumen de Resultados 36

Figura 5.15: Ancho de banda por asociatividad y tamaño en Nutch.

Caṕıtulo 5. Resumen de Resultados 37

Figura 5.16: Ancho de banda por asociatividad y tamaño en Classification.

Caṕıtulo 5. Resumen de Resultados 38

Figura 5.17: Ancho de banda por asociatividad y tamaño en Cloudstone.

Caṕıtulo 5. Resumen de Resultados 39

En la actualidad, las latencias de las caches de segundo nivel están en ese orden de

magnitud, lo cual hace pensar en la necesidad de un diseño espećıfico. Una posibi-

lidad seŕıa un siguiente nivel de memoria cache de instrucciones privado para cada

core, que disminuiŕıa el tráfico por cuatro, ver figura 5.18(a). Otra posibilidad seŕıa

un siguiente nivel multibanco para datos e instrucciones, que permita el servicio

simultáneo del tráfico de datos (que no ha sido considerado en este trabajo) y so-

porte la presencia de ráfagas de fallos, cuya serialización también comprometeŕıa

las prestaciones, ver figura 5.18(b).

Figura 5.18: Dos propuestas para mejorar el suministro de instrucciones desde
el siguiente nivel.(a)Segundo nivel de cache de instrucciones privado para cada co-

re.(b)Segundo nivel de cache compartido (datos + instrucciones) y multibanco.

Una buena forma de entender como afecta el aumento de tamaño y asociatividad

consiste en observar la evolución temporal del ancho de banda como si fuera una

señal, y considerar a la cache como un filtro paso bajo, que de acuerdo a su tamaño

y asociatividad, reduce progresivamente el nivel de la componente continua y su

frecuencia de corte. Esta es una hipótesis interesante, que debeŕıa ser contrastada

de forma rigurosa, pero que excede del alcance de este trabajo.

Desde el punto de vista de muestreo, es decir, de la posibilidad de extraer con-

clusiones válidas observando únicamente una parte pequeña de toda la evolución

temporal, podemos dividir las aplicaciones en dos grupos. El primero está formado

por Nutch y Cloudstone; su variabilidad es grande y no parece que pueda esco-

gerse un trozo pequeño representativo. El segundo está formado por Streaming,

Cassandra y Classification; en estos casos, no parecen verse fases claras, parecien-

do cualquier tramo similar y susceptible de ser representativo. Por supuesto estas

reflexiones valen únicamente para experimentos encaminados a probar el siguiente

nivel, cargándolo con un tráfico representativo.

Caṕıtulo 5. Resumen de Resultados 40

5.4. Comparación con otras cargas de trabajo

Según los creadores de Cloudsuite una de sus principales caracteŕısticas es que sus bench-

marks ejercen una fuerte presión contra la cache de instrucciones [FAK+12]. Para con-

trastar esta afirmación vamos a comparar las tasas de fallos que hemos obtenido experi-

mentalmente con los suyos y con otras fuentes disponibles. A continuación presentamos

un resumen de los trabajos que hemos consultado:

Evaluating associativity in CPU caches. Este es el trabajo en el que Hill y

Smith proponen el modelo de las 3Cs [HS89]. Además, en él realizan un estudio

para arquitecturas maduras de 32 bits, mediante simulaciones hechas con 28 tra-

zas de computadores IBM 370 (sistema operativo MVS) y DEC VAX-11 (sistemas

operativos VMS y ULTRIX). Los datos que reproducimos corresponden a unos

promedios ajustados que sus autores denominan ”design target miss ratios”, pen-

sados para caracterizar de forma tabular el comportamiento ”medio”de una cache

y no tener que simular. En la figura 5.19 están recogidos los mpki para caches de

instrucciones de tamaño 16KB y 32KB y asociatividades desde 1 a 8, con tamaño

de bloque 64B.

Filtering Directory Lookups in CMPs. En esta tesis Ana Bosque recoge la

tasa de fallos para las aplicaciones de la suite SPLASH2, una suite usada para

estudios cient́ıficos de máquinas paralelas con memoria compartida [LVIB11]. Las

simulaciones se realizaron con SIMICS, con binarios compilados para SPARC v9

en Solaris 8, y corresponden a una cache de instrucciones de primer nivel de 16

KB, con tamaño de bloque 32B y asociatividad 8. En la figura 5.19 se reproducen

las tasas de fallos obtenidas para toda la sección paralela de cada benchmark.

Memory System Behavior of Java-Based Middleware . En este trabajo,

Karlsson, Moore, Hagersten y Wood usan dos benchmarcks: SPECjbb y ECperf

[KMHW03]. Las simulaciones se realizaron con SIMICS, con binarios compilados

para SPARC v9 en Solaris 8. SPECjbb está diseñado para medir la habilidad de

un sistema para ejecutar aplicaciones Java en el lado del servidor. Esta aplicación

conecta a los clientes con la base de datos a través de la lógica de negocio, pero

para hacer el benchmark más portable y fácil de usar, no usan una base de datos

comercial, almacenando directamente las tablas en memoria como objetos de tipo

árbol de Java. ECperf está diseñado para comprobar el rendimiento y la escalabi-

lidad de un sistema de 3 niveles (cliente, servidor y base de datos), modelando un

negocio online. Los benchmarks se simulan para distintos tamaños de cache, con

asociatividad 4 y tamaño de bloque 64B.

Caṕıtulo 5. Resumen de Resultados 41

Clearing the clouds. Este es el trabajo que motiva en parte nuestro estudio. En

él, Ferdman et al. del laboratorio Parsa realizan un estudio de la Cloudsuite en

un hardware real, bajo sistema operativo Linux y utilizando contadores de presta-

ciones. La máquina que aloja los benchmarks a monitorizar es un Dell PowerEdge

M1000e, con dos procesadores Intel X5670 y 24GB de RAM en cada blade. Cada

procesador Intel X5670 incluye seis cores agresivos con ejecución fuera de orden,

con una jerarqúıa de tres niveles de cache. El primer nivel es privado y separado

para datos e instrucciones. El segundo también es privado, pero contiene datos e

instrucciones. Finalmente, el tercer y último nivel es compartido por los seis cores.

La cache L1 de instrucciones real tiene tamaño 32KB, asociatividad 4 y tamaño de

bloque 64B. Sus tasas de fallos recogen 180 segundos por cada carga de trabajo,

una vez que se ha completado la fase de inicialización de carga y se supone que el

sistema ha entrado en un régimen estacionario[FAK+12]. Se supone que las tasas

de fallos que reproducimos promedian el comportamiento de los 12 procesadores,

aunque esto no está explicitado en su art́ıculo.

Nuestro trabajo. Para comparar con un número único se ha calculado la mediana

en cada benchmark de todas las muestras temporales para los cuatro procesadores.

La información derivada de estos trabajos se ha resumido en la tabla de la figura 5.19.

En la columna de la izquierda está la fuente. En la segunda columna presentamos las

aplicaciones. En las siguientes columnas aparecen las tasas de fallos de instrucciones

para diferentes tamaños y asociatividades, siempre que ha sido posible para tamaño de

bloque 64 B. En la última columna se hace referencia a la naturaleza de las instrucciones

consideradas, ya sea de sólo de usuario (u), o de sistema y usuario a la vez (u+s y u∪s).

En la suite SPLASH2 únicamente se considera actividad de usuario, pero al tratarse de

aplicaciones cient́ıficas, es conocido que suponen una carga de sistema despreciable. En

el trabajo de referencia de Cloudsuite se desagrega la actividad de usuario y de sistema

(u+s) [FAK+12], mientras que en el resto de trabajos no se dispone de ese detalle (u∪s).

5.4.1. Conclusiones

Los datos recogidos son heterogéneos y escasos, pero comparando nuestras tasas con las

del resto de los autores, podemos extraer algunas conclusiones:

Trabajo de Hill y Smith [HS89]. Si comparamos la media de nuestras apli-

caciones con sus números, ambos resultados son muy similares. Si descartamos

a Streaming y Classification por at́ıpicos (outliers), entonces nuestros resultados

suponen tasas de fallos menores.

Caṕıtulo 5. Resumen de Resultados 42

Figura 5.19: Comparación MPKI benchmarks. Tipo de actividad hace referencia a si
los datos son de usuario (u) o de sistema (s)

Tesis de Ana Bosque [LVIB11]. La media de estas aplicaciones ronda los 30

mpki, superior a nuestra media, pero destaca la gran influencia del at́ıpico Radio-

sity y el efecto, notable, de utilizar un tamaño de bloque de 32 B. Si descartamos

los at́ıpicos, la media de este trabajo queda por debajo de la nuestra, lo cual es

razonable para cargas cient́ıficas.

Trabajo de Karlsson et al. [KMHW03]. Muy comparable a nuestros resulta-

dos. Podŕıamos colocarlos como propios y pasaŕıan desapercibidos.

Trabajo de Ferdman et al. [FAK+12]. Esta comparación tiene un gran interés,

puesto que estamos hablando de las mismas aplicaciones. Sin embargo, en la con-

frontación uno a uno, tan solo la aplicación Nutch presenta tasas comparables. El

resto de aplicaciones presenta tasas significativamente mayores en las ejecuciones

reales del Parsa. ¿Cómo explicarlo?. No lo sabemos. Es cierto que hay dos factores

diferenciales que juzgamos importantes, el tamaño de la muestra y el sistema ope-

rativo. Nosotros simulamos 10 s y ellos ejecutan 180 s. Nuestro sistema operativo

Caṕıtulo 5. Resumen de Resultados 43

es Solaris y el suyo Linux. Pero estos elementos no debeŕıan causar una distorsión

tan grande. Además, en nuestro caso no se ha podido distinguir entre la actividad

de usuario y la de sistema, lo cual hace más dif́ıcil el análisis.

En resumen, la comparación con las tres primeras fuentes, con aplicaciones diferen-

tes, parece reforzar la veracidad de nuestros resultados, mientras que el contraste

directo con los creadores de Cloudsuite coloca nuestras simulaciones en unas tasas

de fallos demasiado bajas. Está claro que es necesario realizar mas trabajo para

llegar a una explicación satisfactoria.

Caṕıtulo 6

Conclusiones y lineas abiertas

6.1. Conclusiones técnicas

El objetivo de este proyecto ha sido caracterizar el comportamiento de las instrucciones

en la suite Cloudsuite 2.0, un conjunto de aplicaciones cliente/servidor del grupo de

investigación Parsa de la EPFL en Suiza.

Para ello hemos usado la plataforma de simulación Simics,un simulador de sistema com-

pleto, trabajando con las cinco aplicaciones de la suite que están acompañadas de check-

points públicos para su simulación en Simics. Además, se ha escrito un tutorial de Simics,

acompañado de material práctico, para facilitar y agilizar la fase de formación de otros

proyectos que también utilicen esta plataforma.

Para realizar los experimentos deseados se han programado dos módulos de Simics de

jerarqúıa de memoria basados en el módulo g-cache que implementan dos algoritmos

eficientes y espećıficos para registrar tasas de fallos y huellas de memoria. Un algoritmo

obtiene resultados para múltiples caches en una sola simulación (Algoritmo MC) y el

otro está especializado en caches completamente asociativas (Algoritmo CCA). Se han

realizado 6 y 5 experimentos respectivamente por cada aplicación, con una duración de

10 s para cada aplicación, destacando los siguientes resultados experimentales:

Hemos analizado el comportamiento de las caches de instrucciones en cuanto a su

tasa de fallos expresada en mpki, en función de su tamaño y de su asociatividad.

En la comparación de los valores obtenidos con diferentes fuentes bibliográficas

destaca la discrepancia con los creadores de Cloudsuite, que podŕıa atribuirse a

la diferente longitud de la simulación, o al uso de sistemas operativos diferentes.

Además, en base a las tasas de fallos obtenidas, se han sugerido configuraciones

prácticas de tamaño y asocitividad para cada aplicación.

44

Caṕıtulo 6. Conclusiones 45

Hemos obtenido la evolución temporal de la huella de memoria de instrucciones,

es decir, el tamaño efectivo del código que se ha ejecutado en cada aplicación. Esto

se ha hecho tanto para la huella acumulada como para la de recarga. A partir del

estudio de las huellas concluimos que todas las aplicaciones no entran en régimen

estacionario hasta transcurridos muchos segundos de la aplicación, y que aparecen

bastantes fases, lo cual va a complicar la selección de ventanas de simulación,

representativas y de corta duración.

Finalmente hemos obtenido la evolución temporal de BWin, el ancho de banda de

instrucciones agregado para las cuatro caches que entra desde el siguiente nivel,

para cada tamaño de cache y asociatividad. A partir de esta métrica se ha consta-

tado que la presión ejercida sobre el siguiente nivel puede ser realmente grande, y

se han sugerido configuraciones de ese segundo nivel con capacidad para absorber

las demandas del primero.

6.2. Lineas abiertas

A partir de este trabajo han aparecido unas ĺıneas de continuación que no han podido

ser abordadas, ya que exced́ıan del alcance previsto y del tiempo disponible:

Estudiar las posibles similitudes o diferencias entre las huellas de recarga de los

cuatro procesadores a través de algún procedimiento estad́ıstico riguroso. En el

fondo se trata de conocer, de forma sencilla, si cada procesador está ejecutando el

mismo código o no.

Para el diseño de las caches no sólo es necesario tener en cuenta la asociatividad y

el tamaño de la cache, si no también su tiempo de acceso (latencia) y su consumo

energético. Para realizar un estudio más profundo se podŕıan utilizar herramientas

como CACTI1, que devuelve éstos parámetros f́ısicos a partir de una configuración

dada (tamaño, asociatividad, tamaño de bloque, etc.). Con esta información se

puede reevaluar la utilidad de la cache en términos de tiempo efectivo de acceso,

que es mas preciso que la tasa de fallos.

Tal y como ya apuntábamos en el apartado 5.4, en nuestros resultados nos hemos

encontrado con unas tasas de fallos significativamente menores que las ejecuciones

reales que realiza Parsa con Cloudsuite. Una de las principales diferencias con su

ejecución es que ellos simulan 180 segundos frente a los 10 segundos nuestros. Por

ello se propone, para seguir contrastando estos datos, lanzar nuevos experimentos

cuya ejecución sean 180 segundos de aplicación real.

1http://www.hpl.hp.com/research/cacti/

Caṕıtulo 6. Conclusiones 46

En el apartado5.3 hemos observado que si analizamos las gráficas del ancho de

banda como si fueran una señal parece que la cache puede verse como un filtro

paso bajo, que reduce progresivamente el nivel de la componente continua y su fre-

cuencia de corte, en función de su tamaño y asociatividad crecientes. Parece muy

atractivo recurrir a la teoŕıa de procesado de señal para formalizar esta hipóte-

sis, realizando el análisis espectral correspondiente, y decidiendo si es necesario

aumentar la frecuencia de muestreo.

6.3. Conclusiones personales

Este proyecto me ha permitido aplicar aptitudes y conocimientos adquiridos en la

carrera pero también adquirir algunos totalmente nuevos referentes al mundo de

la investigación.

He conocido nuevas herramientas y una nueva forma de trabajar. En investigación

no sabes cuales van a ser los resultado inicialmente, aśı que aunque sigue siendo

muy necesaria una buena planificación, es inevitable que algo no salga tal cual

se hab́ıa planeado. Aunque esto puede resultar muy frustrante, también puede

tener resultados muy positivos. También he aprendido que en estos proyectos es

indispensable la cooperación con otras personas que te ayuden a ver los problemas

desde distintas perspectivas, ya que se existen muchas variables a tener en cuenta.

Además, ha sido muy gratificante aplicar lo estudiado en las asignaturas de arqui-

tectura de computadores y ver su utilidad en el mundo real.

En cuanto a mi futuro profesional me ha dado conocer un nuevo camino a consi-

derar, el de la investigación, antes prácticamente desconocido para mı́.

Apéndice A

Carga y Desarrollo del Proyecto

Este apéndice contiene detalles acerca de la gestión del tiempo y el esfuerzo inver-

tido durante el proyecto, aśı como algunos problemas encontrados a lo largo de su

desarrollo.

A.1. Gestión del tiempo

Este proyecto se ha desarrollado desde finales de septiembre de 2013 hasta agosto

de 2014, en dedicación a tiempo parcial. En el diagrama de Gantt que se presenta

en la figura A.1 se puede ver cómo se han distribuido las diferentes tareas a lo

largo del tiempo.

Figura A.1: Diagrama de Gantt del proyecto.

A continuación incluimos un pequeño resumen del trabajo que engloba cada tarea:

47

Apéndice A. Carga y Desarrollo del Proyecto 48

• Formación. La formación es una de las partes más importantes del proyecto,

que se extiende en prácticamente su totalidad. Tanto las herramientas, cómo

la forma de trabajar ya que es un proyecto de investigación, eran desconocidas

y requirieron una gran cantidad de esfuerzo. En esta tarea está incluido el

estudio del Estado del arte de Simuladores, de cargas de trabajo y de las

herramientas necesarias para el análisis. En estas herramientas está incluido

el aprendizaje del uso del programa R para producir las gráficas necesarias

que nos servirán para analizar los resultados.

• Familiarización con el entorno de trabajo. Esta tarea consiste en el

aprendizaje del simulador SIMICS, y la configuración y puesta a punto de la

Cloudsuite en el cluster ATPS.

• Programación. Ha sido necesario programar módulos de jerarqúıa de me-

moria de Simics para conseguir los resultado deseados y los scripts necesarios

para realizar los experimentos.

• Caracterización de CloudSuite. Esta es la tarea que realiza el objetivo

principal del proyecto, dentro de la cual se encuentra el diseño y ejecución de

los experimentos necesarios para caracterizar la CloudSuite y la recopilación

y análisis de los resultados.

• Documentación. Esta parte se corresponde con la redacción de la memoria

en LaTeX. También a la redacción de un tutorial de iniciación a Simics que

permita ayudar a otros en futuros proyectos.

Durante el desarrollo del proyecto se llevaron a cabo todas las tareas planeadas y

el trabajo se finalizó en la fecha prevista.

A.2. Esfuerzo invertido

Este proyecto a conllevado la inversión de un total de unas 700 horas. En la gráfica

A.2 se presenta el porcentaje de horas dedicadas a cada tarea. Cómo ya indicába-

mos la parte más importante del proyecto, la caracterización de la CloudSuite, ha

requerido la mayor parte del tiempo seguida de la formación. En la tablaA.1 se

muestra de manera más detallada la cantidad de horas invertidas en las actividades

que componen cada tarea.

A.3. Estimación horas CPU

Para los experimentos realizados se ha consumido un total de aproximadamente

949 horas de CPU, sin embargo si añadimos también todos aquellos experimentos

Apéndice A. Carga y Desarrollo del Proyecto 49

Figura A.2: Distribución del tiempo invertido en el proyecto.

que por errores, u otras razones fueron descartados esta estimación, como sucede

en todos los trabajos de investigación de arquitectura de computadores, podŕıa

hasta triplicarse.

Estas horas de simulación corresponden a 550 segundos de aplicación real. Hacien-

do los cálculos apropiados vemos que la máquina virtual funciona a una velocidad

equivalente de 1’59 MIPS para el algoritmo MC (múltiples caches) y 1’17 MIPS

para el algoritmo CCA (cache completamente asociativa). Dado que los procesa-

dor f́ısicos del cluster ATPS tiene una frecuencia de 3Ghz, y podemos suponer

que sostienen un ritmo de 2 instrucciones/ciclo, lo cual correspondeŕıa a 6 GIPS,

podemos apreciar un slowdown de 3770 y de 5128, respectivamente.

A.4. Problemas encontrados

El primer problema con el que nos encontramos es la falta de una documentación

para iniciarse en Simics y para resolver dudas que iban surgiendo en su uso, ya

que el manual de uso del simulador resulta insuficiente.

Uno de los problemas generales de los trabajos de simulación en arquitectura es

que estas son muy costosas en tiempo, algunas costaban varios d́ıas, aśı que cual-

quier error en la simulación conlleva retrasos considerables. Una punto débil del

algoritmo MC es que en caso de fallo el algoritmo recorre todo el conjunto (de 8

bloques), para mejorarlo podŕıa proponerse el uso de un algoritmo que con poco

coste nos dijera que un bloque no está en la cache. Una propuesta podŕıa ser el

uso de un filtro de Bloom [Blo70], una estructura de datos probabiĺıstica concebida

Apéndice A. Carga y Desarrollo del Proyecto 50

Tarea Número de horas

Formación 160

Estado del arte de Simuladores 71

Estado del arte de las cargas de trabajo 33

Herramientas para el análisis 56

Familiarización con el entorno de
trabajo

119

Primeros usos de Simics 59

Iniciación y configuración CloudSuite 60

Programación 120

Programación módulos caches 90

Programación Scripts 30

Caracterización CloudSuite 195

Diseño y ejecución de experimentos 75

Análisis de Resultados 120

Documentación 105

Tutorial Simics 43

Memoria 62

Total 699

Tabla A.1: Horas dedicadas a cada tarea del Proyecto.

por Burton Howard Bloom en 1970 que se usa para saber si un elemento forma

parte de un conjunto. El test determina con seguridad si un elemento no está en

el conjunto, o de forma insegura si lo está (o quizás no, es un falso positivo).

Otro de los problemas encontrados para la realización del proyecto es que el cluster

utilizado, ATPS, dejó de funcionar dos veces: en diciembre y en agosto. Está última

coincide con las tareas de mantenimiento de la universidad pero su restablecimiento

se retrasó debido a problemas en Danae, otro cluster del que depende, administrado

por el Dpto. de Informática e Ingenieŕıa de Sistemas. Además coincidió con la etapa

de mayor intensidad de experimentos y algunos de ellos fueron interrumpidos y

tuvieron que repetirse después.

Apéndice B

Productividad en Simics

Uno de los objetivos de este proyecto era producir documentación para posteriores

proyectos, ya sean de grado, máster o investigación que requieran Simics como

plataforma de simulación. Y de esta manera facilitar y agilizar la fase de formación

de estos proyectos. En este tutorial se guiará la ejecución de Simics y sus principales

funciones en el cluster ATPS del grupo Gaz de la Universidad de Zaragoza. El

tutorial está basado y hace referencias al “Simics User Guide For Unix”.

51

GRUPO DE ARQUITECTURA DE COMPUTADORES DE LA UNIVERSIDAD DE ZARAGOZA

Tutorial de Simics

Este tutorial guiará a través de los primeros pasos para la ejecución de Simics y su configu-
ración en el cluster ATPS del grupo Gaz de la Universidad de Zaragoza.

1. DIRECTORIOS DE TRABAJO

Primero debemos crear un directorio de trabajo. Como estamos trabajando en ATPS para
que el directorio de trabajo sea visible por los nodos debemos crearlo en: /export/home/i-
duser Siendo iduser vuestro nombre de usuario de atps, podemos crear una carpeta llamada
common y crear alli el workspace, siendo su ruta: /export/home/iduser/common/workspace
Para configurar este workspace debemos ejecutar workspace-setup que se encuentra en el
directorio de instalación de Simics (/usr/local/pkg/simics-3.0.31/bin/workspace-setup en
atps). Para trabajar más cómodamente podemos linkar esta carpeta commons en nuestro
home usando el comando “ln -s”.

Además del workspace necesitaremos tres directorios más: Checkpoints, Craffs y tmp, ya
que los archivos que escribiremos allí van a ser bastante grandes se crearan en nuestra carpeta
de export/scratch/users/iduser. El directorio scratch tiene gran capacidad pero no realiza
copias de seguridad, así que tenemos que tener cuidado y encargarnos de realizarlas.

2. CONFIGURACIÓN ATPS

Veámos ahora cómo hay que configurar ATPS para ejecutar Simics. Primero hay que mo-
dificar $HOME/.software y añadir la palabra “simics”. Además, en el .profile hay que indicar
dónde buscar la licencia, escribimos: LM_LICENSE_FILE=1726@atps.cps.unizar.es Para que
estos cambios tengan efecto hay que salir y acceder de nuevo a atps.

Si al ejecutar Simics la ventana que muestra la máquina target (máquina que estamos
simulando) no se abriera, se puede probar modificando .profile. Para ello hay que comentar

1

las 5 líneas de código que aparecen tras el comentario #who i am (aparece la palabra DISPLAY
en ellas, así que son fáciles de localizar).

3. INICIAR EL SIMULADOR

Hay que tener instalado un sistema operativo en la máquina que emulamos. En este caso
usaremos una máquina SPARC que ejecute Solaris.

Los ficheros system-01.disk.craff, system-sol10.disk.craff, abisko-sol10.state y abisko-sol10.run.simics
a los que se hace referencia a continuación se proporcionan en el DVD adjunto:“Ficheros
Tutorial Simics”.

Primero copiamos system-01.disk.craff y system-sol10.disk.craff en el directorio que había-
mos creado para los craffs (/export/scratch/users/iduser/craffs) Los archivos .craff son copias
de disco duro (no confundir con los checkpoints) y más adelante veremos que se pueden
crear para reutilizar datos de una simulación y poder usarlos para crear checkpoints con otras
configuraciones. Después copiamos abisko-sol10.state y abisko-sol10.run.simics en nuestro
(..)/workspace/targets/serengenti

Tenemos que modificar las tres líneas que contienen paths en abisko-sol10.state:
Checkpoint_path apuntará a este mismo directorio ((..)/workspace/targets/serengenti) Los
otros path tienen que apuntar a los craffs que hemos copiado antes, así que hay que escribir la
ruta completa.

Los parámetros para configurar la máquina se encuentran en abisko-sol10.run.simics, en
este caso se han añadido los siguientes parámetros:
$num_cpus=1 (1 procesador)
$megs_per_cpu=1024 (1GB de memoria por procesador)
$cpu_class = ultrasparc-iii-plus (máquina con un thread por cpu, ultrasparc-iv tiene dos
threads)

Finalmente ejecutamos:
$ simics -stall -x abisko-sol10-run.simics
Con este comando le estamos indicando que ejecute el script abisko-sol10-run.simics, “-stall”
indica que queremos que las transacciones de memoria se envíen a la jerarquía de memoría
que haya conectada y “-x” que el fichero de entrada que le pasamos es un script.

Los comandos básicos de Simics son: c y ctrl+c, continuar la ejecución del target y detenerla,
respectivamente. Para salir de Simics se usa q o exit.

Antes de iniciar la simulación del target hay que indicarle a Simics dónde guardar los archi-
vos temporales, si no tendremos problemas más adelante a la hora de copiar archivos en el
target, guardar checkpoints y craffs. Para ello antes de darle a continuar (c) escribimos:
prefs->swap-dir=/export/scratch/users/userid/tmp

Depués introducimos c, y entonces el sistema operativo solaris se cargará. Estará listo
cuando aparezca el prompt (#).

Como hemos ido apuntando tenemos dos máquinas, la simulada (target) y la real (host). Es
posible la comunicación y la transferencia de archivos, y gracias a los archivos de configuración
proporcionados para acceder a los archivos almacenados en el host(atps) desde el target(sparc-

2

solaris) solo hay que ejecutar en el target:
mount /host
Se habrá creado una carpeta host que enlazará con nuestra máquina, por ejemplo para llegar
a nuestra home la ruta será /host/home/userid.

4. CREACIÓN DE CHECKPOINTS

Los checkpoints nos permiten volver a un mismo punto después sin necesidad de arrancar
la máquina de nuevo. Además, también se guarda el contenido del disco. En el punto que
deseemos de ejecución, hacemos ctrl+c en el terminal del simulador y ejecutamos:
simics> write-configuration ruta_check_point/micheckpoint.check

Si queremos iniciar Simics desde ese checkpoint ejecutaremos:
$simics -stall -c ruta_check_point/micheckpoint.check
Podemos ver que usamos el flag “-c” cuando iniciamos Simics desde un checkpoint.

Tambien se puede iniciar Simics y desde alli el checkpoint con:
simics> read-configuration ruta_check_point/micheckpoint.check

Hay que tener mucho cuidado al organizar los directorios en nuestra carpeta de checkpoints
porque si cambiamos un checkpoint de lugar no funcionará y habrá que modificar los path de
sus archivos.
Otro aspecto a tener en cuenta sobre los checkpoints es que son incrementales. Es decir, si
inicias el sistema desde un checkpoint (chk1) y en un punto creas otro checkpoint (chk2), para
iniciar el sistema con chk2, chk1 será necesario.

5. COMANDOS ÚTILES

Aquí tenemos algunos comandos que pueden resultarnos útiles en Simics.

list-modules: Lista todos los módulos que pueden ser cargados en Simics, indicando
los que ya lo están.

run-command-file: para ejecutar scripts. Más adelante hablaremos de estos scripts,
pueden tener código en Python y comandos de Simics.

list-objects: lista todos los objetos así como información de su clase.

output-file-start y output-file-stop: para guardar la salida de Simics (no del target) en
un fichero.

help : Comando de ayuda, si se ejecuta help y un objeto proporciona toda la información
sobre ese objeto: sus atributos, sus comandos, su clase...

print-time -all: Muestra para cada procesador el número de instrucción, de ciclo y el
tiempo en segundos en el que se encuentra. Si queremos ver los ciclos de un procesador
en concreto podemos ejecutar cpu0.print-time.

3

6. CREACIÓN DE CRAFFS

Los Craffs son similares a los checkpoints pero permiten guardar solamente el estado
persistente de una máquina, por ejemplo, los datos que permanecen cuando la máquina
está apagada (CRAFF = Compressed Random Access File Format). Normalmente esto quiere
decir las imagenes del disco, la memoria flash o el contenido NVRAM. De forma muy similar
a los checkpoints se guardan y se cargan con los comandos “save-persistent-state path” y
“load-persistent-state path” respectivamente.

¿Para que nos puede ser útil? Copiar grandes archivos desde el host hasta el target puede
ser costoso en tiempo, para ello una vez copiados puede guardarse un checkpoint para volver
al mismo punto. Sin embargo si cambiamos la configuración de la máquina, por ejemplo 2
cpus en vez de 1 cpu, tendríamos que volver a realizar la operación. En este caso Simics nos
permite cargar el craff sobre la nueva configuración, como resultado los ficheros anteriores
estarán ya cargados en el target.

7. CREACIÓN DE SCRIPTS

Los scripts de Simics pueden llevar tanto comandos Simics como código Python. Las lineas
de código Python deben ir precedidas del carácter , y si algún comando de Simics quiere ser
invocado en Python hay que usar “@run_command”. Veamos algún ejemplo de código Python
en Simics:
simics> @print “This is a Python line”
This is a Python line
simics> @if SIM_number_processors() > 1:
....... print “Wow, an MP system!”
....... else:
....... print “Only single pro :-(”
.......
Wow, an MP system!
simics> @run_command(“print-time”)
processor steps cycles time [s]
cpu0 27828281475 27828281475 371.044

El propósito de invocar un comando de Simics en Python es la potencia de este lenguaje, lo
cual nos permitiría, por ejemplo, ejecutar un bucle con comandos de Simics. En el siguiente
script podemos ver un ejemplo:

prefs−>swap−dir =/ export / scratch / users / iduser /tmp
#Cargamos checkpoint
read−configuration / export / scratch / users / iduser / checkpoints /mi_checkpoint
@sizeKB=8
@numlines=(sizeKB *1024)/64

4

#configuracion caches
#==
@cache = pre_conf_object (’ cache ’ , ’ g−cache ’)
@cache . cpus = conf . cpu0
@cache . config_line_number = numlines
@cache . c o n f i g _ l i n e _ s i z e = 64
@cache . config_assoc = 8
@cache . config_virtual_index = 0
@cache . c o n f i g _ v i r t u a l _ t a g = 0
@cache . config_write_back = 0
@cache . config_write_al locate = 1
@cache . config_replacement_policy = ’ l ru ’
@cache . penalty_read = 0
@cache . penalty_write = 0
@cache . penalty_read_next = 0
@cache . penalty_write_next = 0

#Add Configuration
@SIM_add_configuration ([cache] , None) ;
#===
#Timing Model
@conf .cpu0_mem. timing_model= conf . cache
#Ejecucion
@time=0
@run_command("cd /home/ iduser /experimentos")
@for x in range (0 , 1 0 0) :

f i l e =open("muestra"+ s t r (sizeKB)+ "time"+ s t r (time) , ’ a ’)
time=time+10
f i l e . write ("Numero i n i c i a l de instrucciones : \n")
f i l e . write (s t r (conf . cpu0 . steps))
run_command("c 200000000")
f i l e . write (" \nNumero f i n a l de instrucciones : \n")
f i l e . write (s t r (conf . cpu0 . steps))
f i l e . write (" \ nEstadist icas instrucciones \n")
f i l e . write (" \nCpu0")
f i l e . write (" \nOperaciones de lectura : "+ s t r (conf . cache . stat_data_read))
f i l e . write (" \ nFallos en operaciones de lectura : "+ s t r (conf . cache . stat_inst_data_read_miss))
f i l e . close ()
run_command("cache . reset−s t a t i s t i c s ")
run_command("cache . reset−cache−l i n e s ")

e x i t

Los dos primero comandos son de Simics, indicamos dónde guardar los archivos temporales
y cargamos el checkpoint. A continuación ejecutamos dos instrucciones de Python, las cuales

5

modifican unas variables que nos permitirán configurar la simulación.
En el siguiente conjunto de instrucciones configuramos un objeto llamado “cache” que se

declara como objeto de la clase “g-cache”. Podemos ver como las variables pueden ser usadas
para la configuración u otros objetos (cpu0 a través de conf.cpu0).

Finalmente llamamos a la función SIM_add_configuration() que añade el objeto cache a la
configuración de Simics. Esta función forma parte de la API de Simics que recoge todas las
instrucciones que permiten la comunicación entre Simics y Python. Una vez que el objeto
forma parte de la configuración de Simics lo conectamos con el espacio de memoria de la
cpu0.

En este punto la configuración de la memoria cache a terminado y procedemos a la eje-
cución, para guardar los resultados de nuestros experimentos en una carpeta determinada
podemos usar el comando cd path como en linux. El ejecutarlo a través de Python en vez
de como simplemente un comando Simics puede permitirnos cambiar la ruta a través de
variables, por ejemplo.
Y finalmente tenemos un bucle de 100 iteraciones que crea un fichero, escribe atributos de
objetos de Simics en él, ejecuta la simulación por un número determinado de instrucciones.
Tras ello escribe los atributos de estadísticas de lecturas de la cache, cierra el fichero y ejecuta
los comandos de Simics que inicializan la cache y sus estadísticas. Al acabar el bucle se ejecuta
exit para salir del simulador.

Los scripts pueden ser ejecutados tanto desde el propio Simics:
simics> run-command-file script
Cómo al lanzar Simics:
$ simics -stall -x script

8. SOBRE ESTE TUTORIAL

Este tutorial fue parte del proyecto de fin de carrera “Caracterización de instrucciones en
aplicaciones de cloud” presentado en Septiembre de 2014 por la alumna de Ingeniería Informá-
tica, Alba Pedro Zapater. El objetivo de la creación de este tutorial fue producir documentación
para posteriores proyectos, ya fueran de grado, máster investigación que requieran Simics
como plataforma de simulación. Y de esta manera facilitar y agilizar la fase de formación de
estos proyectos.

6

Apéndice C

Módulo G-Cache

En este apéndice vamos a ampliar la información sobre el módulo g-cache que ya

presentábamos en el apartado 4.3 y sobre los algoritmos que hemos programado.

C.1. Más sobre G-cache

Para el estudio tanto de g-cache como de la simulación de caches en general se

acudió al capitulo 18 del “Simics User Guide For Unix” y al código de g-cache que se

encuentra dentro del directorio de instalación de Simics en [simics]/src/extensions.

G-cache nos permite simular desde una cache sencilla, definiendo su tamaño de

bloque, número de bloques, asociatividad, poĺıtica de reemplazo, si es copy-back, si

es write-allocate y ciclos de penalización por escrituras y lecturas, hasta jerarqúıas

más complicadas. Por ejemplo la de la figura C.1, en la que dos niveles de cache

son simulados, y el primer nivel está dividido en cache de instrucciones y cache

de datos. G-cache también permite tanto conectar una memoria cache a varias

CPUs cómo diseñar un sistema multiprocesador con un protocolo de coherencia

MESI. G-cache nos proporciona además las estad́ısticas sobre el número total

de transacciones, número de lecturas, de escrituras, de instrucciones, número de

fallos en cada una de estas categoŕıas, número de operaciones en copy-back, y

número de invalidaciones, y cambios de estado para el protocolo MESI. Podemos

ilustrar g-cache a través de sus diagramas de estado, para ello vamos a usar como

ejemplo el sistema de la figura C.2. En ella podemos observar dos niveles de cache,

con protocolo de coherencia MESI entre las caches de nivel 2. De este sistema

podemos obtener cuatro diagramas de estados: Transiciones por eventos internos

de las caches de nivel 2 (C.3), transiciones por eventos externos, correspondientes

al protocolo MESI entre caches del nivel 2 (C.4), transiciones por eventos internos

de las caches de nivel 1 (C.5) y por último, transiciones por eventos externos,

58

Apéndice C. G-Cache 59

Figura C.1: Jerarqúıa de caches.

Figura C.2: Ejemplo Sistema de Caches multiprocesador con MESI.

correspondientes al protocolo MESI desde caches del nivel 2 a sus caches del nivel

1 (C.6) Veamos los eventos que aparecen en estos diagramas:

• Internos:Son aquellos que derivan de los fallos (miss) y aciertos (hits) en

escritura (write) y lectura (read) de bloques en la cache o del reemplazo de

un bloque. En los diagramas aparecen como rh,wh,wm,rm y rpl.

• Externos: Son aquellos que se reciben desde otras caches.

◦ inv: Invalidación del bloque.

◦ rB: Otra cache va a leer ese bloque.

Y sus acciones asociadas:

• Mp(write/read, x): Env́ıa una lectura o escritura de ese bloque a memoria

principal (Mp), a su cache de nivel 2 (Mc2) o a su cache de nivel 1 (Mc1)

Apéndice C. G-Cache 60

Figura C.3: Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos internos.

Figura C.4: Diagrama de Estados Cache Copy-Back Nivel 2 debido a eventos externos.

Figura C.5: Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos
internos.

Apéndice C. G-Cache 61

Figura C.6: Diagrama de Estados Cache Write-Through Nivel 1 debido a eventos
externos.

• inv, rB: Env́ıa estos eventos a través del Bus para que lo reciban el resto de

caches de nivel 2.

C.2. Algoritmos

Basándonos en el código original del módulo g-cache hemos programado nuestras

propias versiones para obtener con eficiencia el comportamiento de múltiples con-

figuraciones de una cache de instrucciones.

C.2.1. Algoritmo para múltiples caches (algoritmo MC)

Como ya hemos descrito en el apartado 4.2.1, la idea de este algoritmo es obtener

en una sola simulación la tasa de fallos para distintos tamaños y asociativida-

des. Para ello hemos programado un algoritmo de reemplazo y aplicado algunas

modificaciones al módulo g-cache.

Las principales estructuras de datos del algoritmo son:

• Vector de punteros a bloque (Vmru): Un vector con dimensión el número

de conjuntos, cada componente apunta al bloque MRU de cada conjunto.

• Lista LRU dinámica: Cada bloque apunta al siguiente bloque de su conjun-

to en orden LRU, el último (el LRU) apunta nulo. (bloque->sig, el puntero

al siguiente bloque en el seudocódigo)

• Vector de aciertos (H): Un vector de contadores con dimensión la asocia-

tividad. Cada componente recoge el número de aciertos que se han dado en

Apéndice C. G-Cache 62

esa posición en la lista LRU. Por ejemplo, si el acierto se ha producido en la

posición 2 de la lista LRU, se incrementará en uno el elemento 2 del vector.

Como resultado al final de la ejecución tenemos el vector con el número de

aciertos en cada posición LRU.

Aqui podemos ver el algoritmo en seudocódigo:

//Búsqueda de bloque

set= obtener_set (mem_op) //Obtenemos el número de conjunto al que pertenece el bloque de

// la operación de memoria

bloque=Vmru[set]

numbloque=-1

posacierto =0

ant=null

Si bloque != invalido y bloque == obtener_bloque(mem_op) entonces

{

numbloque=bloque.num

}

Si (bloque != invalido y bloque ->sig!=NULL) {

hacer{

bloque=bloque ->sig

posacierto=posacierto +1;

ant=bloque;

bloque=ant ->sig;

Si bloque == obtener_bloque(mem_op){

numbloque=bloque.num

}

}mientras ((numbloque ==-1) y (bloque ->sig!=NULL) && (bloque != invalido));

}

Si (numbloque !=-1){//Acierto

H[posacierto]=H[posacierto] + 1

}

if (ant==null){//Primer elemento invalido, o solo un elemento o el primer elemento
era el acierto

devolver numbloque}

sino {

//Hay que reordenar la lista LRU, en caso de fallo el primer elemento es el bloque vı́ctima,
en caso de acierto el primer bloque es el referenciado

ant ->sig=bloque ->sig;

bloque ->sig=Vmru[set]; //El bloque MRU anterior

Vmru[set]= bloque

devolver numbloque

En caso de fallo, cuando el algoritmo principal de g-cache solicite el bloque v́ıctima

será aquel que este en primer lugar en la lista, ya que anteriormente lo hemos

modificado, y será reemplazado por el nuevo bloque. Las estad́ısticas se obtienen

posteriormente procesando los datos obtenidos. El número total de instrucciones y

los fallos de la cache simulada ya los proporciona g-cache. En la tabla C.1 tenemos

un ejemplo de las estad́ısticas que se pueden obtener a partir del vector de aciertos

H para una cache de asociatividad 8 y tamaño “Size”.

Apéndice C. G-Cache 63

Tamaño Asociatividad Aciertos

Size/8 1 H[0]

Size/4 2 H[0] + H[1]

Size/2 4 H[0] + H[1] + H[2] + H[3]

Size 8 Suma(H)

Tabla C.1: Relación de tamaño, asociatividad y aciertos para una ejecución con el
algoritmo MC.

C.2.2. Algoritmo para cache completamente asociativa (algoritmo

CCA)

Para simular una cache completamente asociativa (un sólo conjunto) de forma

clásica, para cada referencia se visitan los bloques en orden, desde el mas al menos

reciente. Tras encontrar el bloque buscado se actualiza la lista y se incrementa

el contador de aciertos. En caso contrario, tras haber visitado todos los bloques,

se reemplaza el bloque v́ıctima (el bloque LRU), se ajusta la ordenación y se

incrementa el contador de fallos.

Este algoritmo precisa recorrer y ordenar una lista cuyo tamaño medio coincide con

la distancia media de acierto, que suele ser del orden de las decenas. Esto supone

un alto coste en tiempo, por lo cual vamos proponemos una alternativa mas rápida.

Nuestra propuesta se basa en utilizar una estructura de datos auxiliar, en forma

de una cache de correspondencia directa (puede verse como una estructura hash

de aceleración, caux, en el seudocódigo). Los bloques deben estar ordenados por

orden de uso, pero esta ordenación puede conseguirse de forma expĺıcita, como

en el algoritmo anterior, o de forma impĺıcita, usando marcas de tiempo, como

haremos ahora. Cada bloque tiene una marca de tiempo que indica en que ciclo

fue usado por ultima vez.

Las caracteŕısticas principales del algoritmo CCA son:

• El tamaño de la cache auxiliar debe de ser al menos del tamaño de la cache

principal, pero es recomendable que sea lo más grande posible.

• Para evitar el coste de gestión de listas ordenadas, la ordenación LRU se ha

implementado con marcas de tiempo en cada bloque, que consignan el ciclo

en el que ha sido referenciado por última vez.

• Un acierto en la cache auxiliar garantiza acierto en la cache principal, aunque

un fallo no determina si el bloque está o no en la principal. Sin embargo,

debido a la localidad temporal y espacial, la mayoŕıa de los aciertos se pro-

ducen en los bloques de la cache de correspondencia directa, como podemos

observar en la gráfica de las 3Cs, ver figura 4.2.

Apéndice C. G-Cache 64

• En caso de fallo en la cache auxiliar, se recorre la cache principal. Si se en-

cuentra el bloque, se produce un acierto, y la cache auxiliar debe actualizarse

para contenerlo.

• El mayor coste es para los fallos con cache llena, ya que hay que recorrer

toda la cache. En este mismo recorrido se descubre el bloque v́ıctima, es decir

aquel cuya marca de tiempo sea más antigua.

Aqúı podemos ver el algoritmo en seudocódigo:

//Búsqueda de bloque

bloquevictima =-1

lru_tiempo=max_enteros

set=obtener_set_caux(mem_op)

numbloque=caux[set]

Si (numbloque !=-1) {

Si(cache[numbloque]== obtener_bloque(mem_op)){

devolvemos numbloque

}

}

Desde i=0 a numerobloques{

Si (cache[i]== invalido){//fallo, hemos llegado a los
inválidos

bloquevictima=i;

devolvemos -1;

}

Si(cache[numbloque]== obtener_bloque(mem_op)){//

acierto

devolvemos numbloque

}

Si (cache[i]. marcadetiempo < lru_tiempo) {//Busca LRU

lru_bloque = i;

lru_tiempo = cache[i]. marcadetiempo;

}

}

//Fallo, habrá un bloque victima válido: lru bloque

set=obtener_set_caux(lru_bloque)

numbloque=caux[set];

Si (numbloque == lru_bloque) {

caux[set]=-1; //Invalidamos

}

bloquevictima=lru_bloque;

devolver -1; //Es fallo, la cache está llena, devolvemos el
lru.

//Actualización caux tras fallo o acierto

//bloque es el bloque que acabamos de referenciar

bloque.marcadetiempo= obtener_ciclo_CPU ();

set=obtener_set_caux(bloque);

caux[set]= bloque.numero;//Actualizamos la cache auxiliar

Apéndice C. G-Cache 65

Se ha observado una mejora en el tiempo de ejecución de un 90,52 % al usar este

algoritmo frente a usar el algoritmo original de LRU de g-cache que esta basado

en una lista única con marcas de tiempo.

Apéndice D

Simulaciones CloudSuite

En este Apéndice vamos a presentar dónde y cómo se han llevado a acabo las

simulaciones de la CloudSuite.

D.1. Cluster ATPS

Los experimentos han sido realizados en el cluster ATPS. El cluster ATPS es una

infraestructura de computación de altas prestaciones financiada por el grupo de

Arquitectura de Computadores de la Universidad de Zaragoza (gaZ). ATPS se

usa principalmente para simular modelos funcionales y temporales a nivel micro-

arquitectura (procesadores, caches y redes de interconexión). ATPS es un cluster

que se usa fundamentalmente en modo de productividad. Se lanzan múltiples ex-

perimentos (variaciones de un modelo con distintos parámetros) que se ejecutan

independientemente en las máquinas del cluster. El cluster consta de 6 chasis de

dos tipos:

• 3 chasis 1U, cada uno con 2 nodos 2x Intel Xeon X5365 (4Cores, 3.00 GHz,

8 MB L2), en total 6 nodos, uno se dedica al front-end y los otros dedicados

a computación. En cada nodo hay pues un total de 8 cores compartiendo 16

GB RAM.

• 3 chasis 2U modelo Superserver SYS-6026TT-TRF, cada uno con 4 nodos

2xIntel Xeon X5650 (Westmere, 6 Cores, 2.67 GHz, 12 MB L3), en total 12

nodos, todos dedicados a computación. En total en cada nodo hay 12 cores

(24 threads) compartiendo 48 GB RAM.

En la figura D.1 podemos ver el esquema de conexiones de red que permite sim-

plificar la administración de los distintos equipos, ya que todos los nodos están

conectados al front-end a través de la misma dirección IP.

66

Apéndice D. Simulaciones CloudSuite 67

Figura D.1: Red de conexiones atps.

D.2. Condor

Condor es un sistema de gestión de carga para tareas de computación intensivas

que soporta un gestor de colas, con poĺıticas de planificación de ejecución, esquema

de prioridades, monitorización y gestión de recursos. Es decir, desde el front-end

se lanzan los trabajos a través de Condor que se encarga de distribuirlos en los

nodos. A continuación podemos ver un script muy sencillo para lanzar un trabajo,

aunque Condor permite muchas más opciones de configuración para necesidades

más sofisticadas.

Example submit file for vanilla job

Universe = vanilla

Executable = hello_world.sh

input = /dev/null

output = hello.out

error = hello.error

Queue

Lo habitual es lanzar las tareas a los nodos de ATPS a través de condor, sin

embargo al compartir la máquina con un entorno de producción que limitaba

los recursos que pod́ıamos utlizar, pasamos a programar shell scripts para lanzar

manualmente los trabajos en el número limitado de nodos que nos fueron asignados.

D.3. Scripts

En esta sección detallamos los scripts usados para las simulaciones a las que se

hace referencia en el apartado 4.4.

Apéndice D. Simulaciones CloudSuite 68

D.3.1. Shell Scripts

Un script por cada aplicación. En el ejemplo ilustramos el lanzamiento de una

simulación de la aplicación Cassandra.

size=8

for ((i=0;i<6;i++))

do

oldsize=$size

size=‘expr $size * 2‘

string ="s/@sizeKB=$oldsize/@sizeKB=$size/"

sed -i $string /home/albapz/common/workspacenodos/scripts/OptCassan4cpu

echo $size

./ simics -stall -no-win -x /home/albapz/common/workspacenodos/scripts/

OptCassan4cpu

done

El script anterior permite lanzar 6 ejecuciones de Simics a través de un bucle.

En cada iteración con el comando “sed” se modifica el script de Simics “OptCas-

san4cpu”. Concretamente modifica la variable que define el tamaño de la cache,

doblando este valor en cada iteración. Tras esto Simics ejecuta el script menciona-

do. Al lanzar Simics se le indica a través del flag -no-win que desactive la apertura

de ventanas externas (las del target o cualquier otra externa).

D.3.2. Simics Scripts

Los scripts de Simics pueden contener comandos de Simics y/o código Python (se

indica con el śımbolo @ al principio de la linea de código). Al lanzar Simics con

el flag -x indicamos que tiene que ejecutar el script que se pasa como parámetro.

Veamos un ejemplo:

prefs ->swap -dir=/ export/scratch/users/albapz/tmp

#Cargamos checkpoint

read -configuration /export/extra/data/trazas/parsa/cloudsuite/images/

cassandra /4cpu/4s-4gb -2c-4gb

@sizeKB =8

@numlines =(sizeKB *1024) /64

configuracion caches

istc -disable

@conf.server_cpu0.instruction_fetch_mode ="instruction -fetch -trace"

@conf.server_cpu1.instruction_fetch_mode ="instruction -fetch -trace"

@conf.server_cpu2.instruction_fetch_mode ="instruction -fetch -trace"

@conf.server_cpu3.instruction_fetch_mode ="instruction -fetch -trace"

@conf.client_cpu0.instruction_fetch_mode ="instruction -fetch -trace"

@conf.client_cpu1.instruction_fetch_mode ="instruction -fetch -trace"

===

Transaction staller for memory

===

@staller0 = pre_conf_object(’staller0 ’, ’trans -staller ’)

Apéndice D. Simulaciones CloudSuite 69

@staller0.stall_time = 0

==

===

L1 - Instruction Cache : L1 Inst0

@ic0 = pre_conf_object(’ic0’, ’g-cache’)

@ic0.cpus = conf.server_cpu0

@ic0.config_line_number = numlines

@ic0.config_line_size = 64

@ic0.config_assoc = 8

@ic0.config_virtual_index = 0

@ic0.config_virtual_tag = 0

@ic0.config_write_back = 0

@ic0.config_write_allocate = 1

@ic0.config_replacement_policy = ’lruopt ’

@ic0.penalty_read = 0

@ic0.penalty_write = 0

@ic0.penalty_read_next = 0

@ic0.penalty_write_next = 0

@ic0.timing_model = staller0

===

ID splitter for L1 cache

@id0 = pre_conf_object(’id0’, ’id-splitter ’)

@id0.ibranch = ic0

@id0.dbranch = staller0

===

L1 - Instruction Cache : L1 Inst1

@ic1 = pre_conf_object(’ic1’, ’g-cache’)

@ic1.cpus = conf.server_cpu1

@ic1.config_line_number = numlines

@ic1.config_line_size = 64

@ic1.config_assoc = 8

@ic1.config_virtual_index = 0

@ic1.config_virtual_tag = 0

@ic1.config_write_back = 0

@ic1.config_write_allocate = 1

@ic1.config_replacement_policy = ’lruopt ’

@ic1.penalty_read = 0

@ic1.penalty_write = 0

@ic1.penalty_read_next = 0

@ic1.penalty_write_next = 0

@ic1.timing_model = staller0

===

ID splitter for L1 cache

@id1 = pre_conf_object(’id1’, ’id-splitter ’)

@id1.ibranch = ic1

@id1.dbranch = staller0

=====================================

#Add Configuration

@SIM_add_configuration ([staller0 ,ic0 , id0 , ic1 , id1], None);

===

#Timing Model

Apéndice D. Simulaciones CloudSuite 70

@conf.server_cpu0_mem.timing_model= conf.id0

@conf.server_cpu1_mem.timing_model= conf.id1

Ejecucion

@time=0

@run_command("cd /home/albapz/common/workspacenodos/experimients/lruopt/

cassan")

@for x in range (0 ,100):

file=open("cassanopt2cpus"+str(sizeKB)+"time"+str(time),’a’)

time=time +10

file.write("Numero inicial de instrucciones: \n")

file.write(str(conf.server_cpu0.steps))

run_command("c 200000000")

file.write("\nNumero final de instrucciones: \n")

file.write(str(conf.server_cpu0.steps))

file.write("\nEstadisticas instrucciones \n")

file.write("\nCpu0")

file.write("\nInstruction Fetch transactions: "+str(conf.ic0.

stat_inst_fetch))

file.write("\nInstruction Fetch misses: "+str(conf.ic0.

stat_inst_fetch_miss))

file.write("\nVector Hits: "+str(conf.ic0.lruopt_hits))

file.write("\nCpu1")

file.write("\nInstruction Fetch transactions: "+str(conf.ic1.

stat_inst_fetch))

file.write("\nInstruction Fetch misses: "+str(conf.ic1.

stat_inst_fetch_miss))

file.write("\nVector Hits: "+str(conf.ic1.lruopt_hits))

file.close()

run_command("ic0.reset -statistics")

run_command("ic0.reset -cache -lines")

run_command("ic1.reset -statistics")

run_command("ic1.reset -cache -lines")

conf.ic0.lruopt_hits =[0,0,0,0,0,0,0,0]

conf.ic1.lruopt_hits =[0,0,0,0,0,0,0,0]

exit

En este script podemos destacar:

• El parámetro -sizeKB indica el tamaño de la cache a simular. Este parámetro

es el que se modifica desde el Shell Script. numlines indica el número de

bloques.

• Simics usa internamente unas caches software (de datos y de instrucciones)

para acelerar las simulaciones, a las que llama STC (Simulator Translation

Cache) que evitan que todas las transacciones tengan que pasar por la je-

rarqúıa de memoria. Sin embargo en el caso de las instrucciones esto implica

estad́ısticas incorrectas, por lo cual procedimos a su desactivación con el co-

mando istc-disable.

Apéndice D. Simulaciones CloudSuite 71

• Por defecto, y también para acelerar las simulaciones, Simics no env́ıa las

búsquedas de instrucciones a la jerarqúıa de memoria. Para evitar este com-

portamiento hay que cambiar el modo de simulación de las cpus a

instruction-fetch-trace

• Staller representa el acceso a la memoria principal, sin embargo en este caso

la penalización por acceso a memoria principal es 0.

• Se configuran dos caches de instrucciones, una por cada procesador. En este

caso la poĺıtica de reemplazo lruopt corresponde al algoritmo MC descrito

en el apartado C.2.1.

• Se declara un ID Splitter para cada procesador; este objeto de Simics separa

las transacciones de datos de las de instrucciones.

• Todos los objetos declarados se añaden a la configuración de Simics y se co-

necta cada ID Splitter al timing model de los procesadores cuyas caches

de instrucciones queremos simular (los procesadores que ejecutan los servi-

dores de interés en cada aplicación). Al timing model puede conectarse un

objeto para que tenga acceso a la transacción de memoria, antes de que ésta

se ejecute. En nuestro caso ese objeto es nuestra jerarqúıa de memoria.

• Finalmente comienza la ejecución de la simulación, para ello un bucle en

Python ejecuta 100 veces 200 millones de instrucciones (por cada procesador,

ya que trabajan en paralelo) y tras cada ejecución se escriben las estad́ısticas

en un fichero, inicializando de nuevo tanto las estad́ısticas como las caches.

La figura D.2, representa la jerarqúıa de memoria configurada en el script de ejem-

plo.

Figura D.2: Jerarqúıa de cache configurada con el script.

Bibliograf́ıa

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.

The parsec benchmark suite: Characterization and architectural im-

plications. In Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques, October 2008.

http://parsec.cs.princeton.edu/ [Online; accessed 23-Agosto-2014].

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM, 13(7):422–426, July 1970.

[Bon07] Jan Lodewijk Bonebakker. Finding representative workloads for com-

puter system design. Technical report, Sun Microsystems, Inc. Moun-

tain View, CA, USA, 2007.

[CGS99] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Para-

llel Computer Architecture: A Hardware/Software Approach. Morgan

Kaufmann Publishers Inc., 1999.

[CPU06] SPEC CPU2006. https://www.spec.org/cpu2006/, 2006. [Online; ac-

cessed 23-Agosto-2014].

[EPF] PARSA EPFL. Cloudsuite official webpage. http://parsa.epfl.

ch/cloudsuite/cloudsuite.html.

[FAK+12] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,

Djordje Jevdjic Mohammad Alisafaee, Cansu Kaynak, Adrian Daniel

Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds.

a study of emerging scale-out workloads on modern hardware. In 17th

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS 2012), March 2012.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture,

Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publis-

hers Inc., San Francisco, CA, USA, 2006.

72

http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://parsa.epfl.ch/cloudsuite/cloudsuite.html

Bibliograf́ıa 73

[HS89] M.D. Hill and A.J. Smith. Evaluating associativity in cpu caches.

Computers, IEEE Transactions on, 38(12):1612–1630, Dec 1989.

[KMHW03] Martin Karlsson, Kevin Moore, Erik Hagersten, and David Wood.

Memory System Behavior of Java-Based Middleware. pages 217–228,

Anaheim, California, USA, February 2003.

[LVIB11] José Maŕıa Llabeŕıa, Vı́ctor Viñals, Pablo Ibáñez, and Ana

Bosquel. Filtering directory lookups in CMPS. PhD the-

sis, Zaragoza, Universidad de Zaragoza, Zaragoza, Ago 2011.

http://zaguan.unizar.es/record/6812?ln=es.

[MCE+02] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-

berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A

full system simulation platform. Computer, 35(2):50–58, Feb 2002.

[MGST70] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation

techniques for storage hierarchies. IBM Syst. J., 9(2):78–117, June

1970.

[MSB+05] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Mi-

chael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,

Mark D. Hill, , and David A. Wood. Multifacet’s general execution-

driven multiprocessor simulator (gems) toolset. SIGARCH Comput.

Archit. News, 33:92–99, Nov 2005.

[TC] TPC-C. http://www.tpc.org/tpcc/. [Online; accessed 23-Agosto-

2014].

[web09] SPEC web2009. http://www.spec.org/web2009/, 2009. [Online; ac-

cessed 23-Agosto-2014].

	Agradecimientos
	Resumen
	Contenidos
	Lista de Figuras
	Lista de Tablas
	1 Introducción
	1.1 Contexto del Proyecto
	1.2 Objetivos
	1.3 Organización de la Memoria

	2 Estado del Arte en simulación y cargas de trabajo
	2.1 Plataformas y estrategias de simulación
	2.2 Cargas de Trabajo

	3 CloudSuite
	3.1 Características de los Benchmarks
	3.2 Cloudsuite en Simics

	4 Metodología
	4.1 Métricas Utilizadas
	4.2 Modelo de las 3C
	4.2.1 Algoritmos de una sola pasada

	4.3 Módulo G-Cache
	4.3.1 Módulos en Simics
	4.3.2 G-cache

	4.4 Experimentos

	5 Resumen de Resultados
	5.1 Mpki por Core
	5.1.1 Streaming (Figura 5.1)
	5.1.2 Cassandra (Figura 5.2)
	5.1.3 Nutch (Figura 5.3)
	5.1.4 Classification (Figura 5.4)
	5.1.5 Cloudstone (Figura 5.5)
	5.1.6 Conclusiones

	5.2 Huella de Memoria
	5.2.1 Streaming (Figura 5.7)
	5.2.2 Cassandra (Figura 5.8)
	5.2.3 Nutch (Figura 5.9)
	5.2.4 Classification (Figura 5.10)
	5.2.5 Cloudstone (Figura 5.11)
	5.2.6 Conclusiones

	5.3 Ancho de Banda de instrucciones
	5.3.1 Streaming (Figura 5.13)
	5.3.2 Cassandra (Figura 5.14)
	5.3.3 Nutch (Figura 5.15)
	5.3.4 Classification (Figura 5.16)
	5.3.5 Cloudstone (Figura 5.17)
	5.3.6 Conclusiones

	5.4 Comparación con otras cargas de trabajo
	5.4.1 Conclusiones

	6 Conclusiones y lineas abiertas
	6.1 Conclusiones técnicas
	6.2 Lineas abiertas
	6.3 Conclusiones personales

	A Carga y Desarrollo del Proyecto
	A.1 Gestión del tiempo
	A.2 Esfuerzo invertido
	A.3 Estimación horas CPU
	A.4 Problemas encontrados

	B Productividad en Simics
	C Módulo G-Cache
	C.1 Más sobre G-cache
	C.2 Algoritmos
	C.2.1 Algoritmo para múltiples caches (algoritmo MC)
	C.2.2 Algoritmo para cache completamente asociativa (algoritmo CCA)

	D Simulaciones CloudSuite
	D.1 Cluster ATPS
	D.2 Condor
	D.3 Scripts
	D.3.1 Shell Scripts
	D.3.2 Simics Scripts

	Bibliografía

