000160782 001__ 160782
000160782 005__ 20251017144551.0
000160782 0247_ $$2doi$$a10.3390/axioms14040232
000160782 0248_ $$2sideral$$a143970
000160782 037__ $$aART-2025-143970
000160782 041__ $$aeng
000160782 100__ $$0(orcid)0000-0002-1340-0666$$aPeña, Juan M.$$uUniversidad de Zaragoza
000160782 245__ $$aEigenvalue Localization for Symmetric Positive Toeplitz Matrices
000160782 260__ $$c2025
000160782 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160782 5203_ $$aGiven a real symmetric matrix, several inclusion and exclusion intervals containing its eigenvalues can be given. In this paper, for symmetric positive Toeplitz matrices, we provide an inclusion interval and, under an additional hypothesis, we also give two disjoint intervals contained in the previous one and containing all the eigenvalues. Examples are included, showing that these two intervals are necessary and that they can provide precise information on the localization of the eigenvalues. Sufficient conditions for positive definiteness are included. Necessary and sufficient conditions for the total positivity of symmetric positive Toeplitz matrices are presented. A characterization of symmetric totally positive circulant matrices is also obtained.
000160782 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E41-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
000160782 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000160782 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160782 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000160782 773__ $$g14, 4 (2025), 232 [12 pp.]$$pAxioms$$tAxioms$$x2075-1680
000160782 8564_ $$s267331$$uhttps://zaguan.unizar.es/record/160782/files/texto_completo.pdf$$yVersión publicada
000160782 8564_ $$s2405849$$uhttps://zaguan.unizar.es/record/160782/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160782 909CO $$ooai:zaguan.unizar.es:160782$$particulos$$pdriver
000160782 951__ $$a2025-10-17-14:11:50
000160782 980__ $$aARTICLE