000160803 001__ 160803
000160803 005__ 20251017144623.0
000160803 0247_ $$2doi$$a10.1016/j.renene.2025.123248
000160803 0248_ $$2sideral$$a144010
000160803 037__ $$aART-2025-144010
000160803 041__ $$aeng
000160803 100__ $$0(orcid)0000-0001-9967-5806$$aPeña, Begoña$$uUniversidad de Zaragoza
000160803 245__ $$aDevelopment, testing, performance analysis and modelling of a biochar-based catalyst for methanation reaction
000160803 260__ $$c2025
000160803 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160803 5203_ $$aHydrogenation of CO2 to produce synthetic methane is a promising alternative to reduce the dependence on fossil fuels of high-temperature industrial processes hard to be electrified, contributing to mitigation of global warming. To reach enough conversion ratios and reasonable reactor sizes, the Sabatier reaction is usually performed via heterogeneous catalysis. Metallic catalysts, as nickel or ruthenium, are the most used supported over mesoporous alumina.
The present work proposes and fully investigates for the first time the use of olive kernel biochar obtained from pyrolysis as support of methanation catalyst. The so-obtained biochar, with 530 m2/g specific surface area, is evaluated as a cost-effective and sustainable support. A Ni-based (10 wt%) catalyst was synthesized and tested in a fixed-bed methanation pilot plant. The obtained conversion ratios for gas hourly space velocity of 6000 h−1 were above 60 % for stoichiometric ratio and atmospheric pressure. A kinetic model was developed and validated with experimental measurements, finding discrepancies below 10 % between predictions and experiments. Even though the H2-TPR analyses revealed incomplete nickel reduction during the activation stage, the preliminary results are very promising as the achieved performance figures are similar, even higher, than that obtained in pressurized facilities and/or using Ni-Ce catalysts.
000160803 536__ $$9info:eu-repo/grantAgreement/ES/AEI/RYC2022-038283-I$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T46-17R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-126164OB-I00/AEI/10.13039/501100011033
000160803 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000160803 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160803 700__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000160803 700__ $$aLegaz, Jorge
000160803 700__ $$0(orcid)0009-0008-0638-2640$$aBarón, Cristian$$uUniversidad de Zaragoza
000160803 700__ $$aGarlatti, Silvia
000160803 700__ $$aZampilli, M.
000160803 700__ $$aSlopiecka, K.L.
000160803 700__ $$aGuilera, Jordi
000160803 700__ $$aMartín, Elena
000160803 700__ $$aFantozzi, Francesco
000160803 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M.$$uUniversidad de Zaragoza
000160803 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, Pilar$$uUniversidad de Zaragoza
000160803 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000160803 773__ $$g250 (2025), 123248 [10 pp.]$$pRenew. energy$$tRenewable Energy$$x0960-1481
000160803 8564_ $$s5379203$$uhttps://zaguan.unizar.es/record/160803/files/texto_completo.pdf$$yVersión publicada
000160803 8564_ $$s2445362$$uhttps://zaguan.unizar.es/record/160803/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160803 909CO $$ooai:zaguan.unizar.es:160803$$particulos$$pdriver
000160803 951__ $$a2025-10-17-14:22:39
000160803 980__ $$aARTICLE