000160809 001__ 160809
000160809 005__ 20251017144652.0
000160809 0247_ $$2doi$$a10.1016/j.cam.2025.116728
000160809 0248_ $$2sideral$$a144011
000160809 037__ $$aART-2025-144011
000160809 041__ $$aeng
000160809 100__ $$0(orcid)0000-0003-1263-1996$$aClavero, Carmelo$$uUniversidad de Zaragoza
000160809 245__ $$aAn efficient numerical method for 1D singularly perturbed parabolic convection–diffusion systems with repulsive interior turning points
000160809 260__ $$c2025
000160809 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160809 5203_ $$aIn this work, we propose and study a numerical method to solve efficiently one-dimensional parabolic singularly perturbed systems of convection–diffusion type, for which the convection coefficient is zero at an interior point of the spatial domain. We focus our attention on the case of having the same diffusion parameter in both equations; as well we assume adequate signs on the convective coefficients in order to the interior turning point is of repulsive type. Under these conditions, if the data of the problem are composed by continuous functions, the exact evolutionary solution, in general, has regular boundary layers at the end points of the spatial domain. To solve this type of problems, we combine the fractional implicit Euler method and the classical upwind scheme, defined on a special mesh of Shishkin type. The resulting numerical method reach uniform convergence of first order in time and almost first order in space. Numerical results obtained for different test problems are shown which corroborate in practice the uniform convergence of the numerical algorithm and also their computational efficiency in comparison with classical numerical methods used for the same type of problems.
000160809 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E24-17R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-136441NB-I00
000160809 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000160809 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160809 700__ $$aJorge, Juan Carlos
000160809 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000160809 773__ $$g470 (2025), 116728 [17 pp.]$$pJ. comput. appl. math.$$tJournal of Computational and Applied Mathematics$$x0377-0427
000160809 8564_ $$s2137131$$uhttps://zaguan.unizar.es/record/160809/files/texto_completo.pdf$$yVersión publicada
000160809 8564_ $$s1707121$$uhttps://zaguan.unizar.es/record/160809/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160809 909CO $$ooai:zaguan.unizar.es:160809$$particulos$$pdriver
000160809 951__ $$a2025-10-17-14:36:54
000160809 980__ $$aARTICLE