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ABSTRACT

The QT interval of the electrocardiogram (ECG) represents the time from the
beginning of depolarization to the end of repolarization of the left and right
ventricles, although it is generally considered as an overall measure of ventricular
repolarization. The relation between the QT interval and the RR interval
(inverse of heart rate) has been thoroughly investigated in the literature. A
prolonged time for QT interval adaptation in response to changes in the RR
interval has been related to high risk of ventricular arrhythmias and sudden
cardiac death (SCD), which could be partially explained by the enhanced
heterogeneity in the repolarization duration across the ventricles due to different
cellular adaptation times.

In previous studies, the response of the QT interval to changes in the
RR interval has been characterized by considering the QT interval time series
as the output of a system whose input is the RR interval time series. The
system has been modeled with two sequential, time-invariant blocks: one block
represents the steady-state relation between the QT interval and the RR interval
and is typically described by a nonlinear memoryless function; the other block
represents the memory of the QT interval in response to RR interval changes
and is described by a linear filter that allows quantifying the QT-RR hysteresis.
This QT-RR model has been evaluated in different scenarios, with a particular
focus on the QT response to abrupt RR changes commonly obtained from
Holter recordings. However, these types of changes are not always present in
ECG recordings. If the linear filter of the proposed model is assumed to be a
first-order system, and consequently fully characterized by its time constant, it
is known from control theory that the time constant can be evaluated as the
delay between a linear ramp input signal and the delayed ramp output signal.

In this work, the dynamics of the relation between the QT and RR intervals
extracted from ECG signals recorded during exercise stress testing (EST) are
investigated. Thus, gradual RR interval changes from EST are considered as the
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input to the system and, based on control theory and the expected response of a
first-order linear system to a ramp function, an alternative method is proposed
to estimate the QT adaptation time lag. The gradual RR interval changes are
identified in both the exercise phase and the recovery phase of the EST. Usually,
these two phases are preceded, or followed in the case of recovery, by a phase
where the RR interval almost remains at a stationary basal state.

The QT adaptation time lag is here proposed to be quantified as the delay
between the time series of the observed QT intervals and a memoryless QT series
estimated from the observed RR intervals in the ECG. This delay is evaluated
in the exercise and recovery phases, separately, by applying both Laplacian
and Gaussian Maximum Likehood estimators. A hyperbolic regression model is
chosen to estimate the memoryless QT series that characterizes the QT interval
according to the observed RR interval values, since it is the model that leads to
the best fit, in terms of mean squared error, out of the tested regression models.
The parameters of the model are estimated for each patient individually. Three
learning windows in the EST are selected to learn the model parameters in
phases where the RR interval can be assumed to remain essentially stationary
(i.e. the series do not present any low-frequency trend): one window in each of
the two basal zones and another around the peak exercise. The last mentioned
window, even questionable in terms of RR interval stationarity, is selected to
cover the widest possible range of RR values so as to guarantee a better fit
of the QT-RR dependency. To compensate for the lack of stationarity at the
peak exercise window, three different choices of the window, and modification of
the corresponding data values, are proposed: (1) the window is selected to be
centered at the peak exercise, so that the dynamics of the heart rate during
exercise are compensated with those of the recovery phase; (2) the window
selection in (1) is complemented by a modification of the QT interval values
inside the window based on a pre-estimated QT delay in exercise calculated
from the first window definition; (3) on top of modifying the data as in (2), the
window is replaced with another that only includes values corresponding to the
exercise phase, where the data correction in (2) is meaningful.

The methods proposed in the Ph.D. thesis are first technically evaluated
in datasets containing simulated ECGs with known QT-RR dependency and
time lag. For this purpose, a simulation environment is generated that allows
to: (a) set a user-defined QT adaptation time lag; (b) add simulated noise
components with characteristics similar to those of the muscle noise present in
exercise ECG stress testing and with different signal-to-noise ratios, so that
the robustness of the methods against this contamination can be studied. The
results show that the QT adaptation time lag is estimated more accurately
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when the model parameter learning is performed using the window at peak
exercise with modified data values and located only in the exercise phase.

Next, the clinical added value of the QT adaptation time lag estimated by
the proposed procedure is evaluated in the exercise phase, in the recovery phase,
and as the difference between these two. This evaluation allows to stratify
patients with different risk of suffering coronary artery disease (CAD) and to
predict SCD and overall mortality. The results show that the delay in the
exercise phase increases as the risk of CAD increases, while the delay in the
recovery phase decreases with the CAD risk. In addition, the recovery delay is
longer in patients with SCD than in survivors and in patients who died due to
any cause versus survivors.

Another technological challenge studied throughout this Ph.D. thesis is
the delineation of the end of the T wave from very noisy exercise ECGs stress
testing, where an overlap between the T wave and the P wave can occur as the
heart rate increases during the exercise phase. This phenomenon, along with
the increased presence of exercise-induced noise, complicates the delineation
of the QT interval series. Therefore, different methods based on two lead
space transformation techniques are proposed to improve the delineation of
the T wave: (a) applying principal component analysis, which maximizes the
signal variance; (b) applying periodic component analysis, which maximizes
the signal beat periodicity. The emphasis of these characteristics are mostly
reflected in the first transformed lead, so the T wave is delineated only in this
one. The results of the delineation with these methods are compared with one
of the most traditional multi-lead based methods, which consists of delineating
each lead individually and applying a rule to obtain a single delineation mark.
The delineation of the T wave end is evaluated in simulated ECG signals using
a reference mark from the same signal with almost no noise, and in clinical
recordings by using the inverse of the signal power of the high-pass filtered
observed QT interval series as a surrogate of the delineation performance. In
both simulated and clinical ECGs, the best results are obtained by delineating
the first transformed lead after applying periodic component analysis, and then
proposed as the choice for the rest of the work.

From the analysis of the clinical ECGs of CAD patients, the delay between
the observed and the memoryless estimated QT series in the exercise phase is
not constant, but it is reduced when approaching the peak exercise. In addition
to the influence of heart rate on the QT interval, the autonomic nervous system
could play a more general role in modulating the ventricular repolarization
and its adaptation to heart rate. This autonomic modulation could occur
both directly via the autonomic innervation of the ventricular myocardium
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and indirectly via the effects on the heart rate. Based on previous studies of
the literature, we hypothesize that an increase in the sympathetic activity as
the peak exercise is approached, that is, an increase in the pre-stimulation
levels of β-adrenoceptors when approaching the peak exercise, could explain
the reduction in the QT interval adaptation time observed at the end of the
exercise. To study the autonomic modulation of the QT adaptation time lag,
the last chapter of this Ph.D. thesis proposes an in silico study to investigate the
dynamics of the ventricular repolarization adaptation in response to β-adrenergic
stimulation, at the cellular and tissue levels and at the ECG. The estimated
QT adaptation time delays in response to the same RR interval changes as in
clinical ECGs are quantified for different patterns of β-adrenergic stimulation
and are compared with those obtained in the clinical recordings. It is concluded
that a time-varying β-adrenergic stimulation pattern better reproduces the QT
adaptation characteristics observed from the analysis of clinical ECGs.

Keywords: QT-RR modeling; QT adaptation time lag; electrocardiogram;
simulated ECGs; T wave end delineation; periodic component analysis; exercise
stress testing; coronary artery disease; sudden cardiac death.



RESUMEN Y CONCLUSIONES

El intervalo QT del electrocardiograma (ECG) representa el tiempo desde el inicio
de la despolarización hasta el final de la repolarización de ambos ventŕıculos,
izquierdo y derecho, aunque generalmente se considera como una medida global
de la repolarización ventricular. Se ha relacionado un tiempo prolongado de
adaptación del intervalo QT en respuesta a cambios en el intervalo RR con un
alto riesgo de arritmias ventriculares y muerte súbita card́ıaca (SCD), lo que
podŕıa explicarse parcialmente por la mayor heterogeneidad en la duración de la
repolarización entre los ventŕıculos debido a diferentes tiempos de adaptación
celular.

En estudios previos, se ha caracterizado la respuesta del intervalo QT a los
cambios en el intervalo RR considerando la serie temporal del intervalo QT
como la salida de un sistema cuya entrada es la serie temporal de los intervalos
RR. Este sistema se modela con dos bloques secuenciales e invariantes en el
tiempo: un bloque que representa la relación en estado estacionario entre el
intervalo QT y el intervalo RR y se describe mediante una función t́ıpicamente
no lineal y sin memoria; y el otro bloque representa la memoria del intervalo
QT en respuesta a cambios en el intervalo RR y se describe mediante un filtro
lineal que permite cuantificar la histéresis QT-RR. Este modelo QT-RR ha sido
evaluado en diferentes escenarios, con un enfoque particular en la respuesta del
QT a cambios abruptos en el RR, t́ıpicamente obtenidos de registros Holter.
Sin embargo, estos tipos de cambios no siempre están presentes en los registros
de ECG. Si se asume que el filtro lineal del modelo propuesto es un sistema
de primer orden, este queda uńıvocamente caracterizado por su constante de
tiempo, la cual, a partir de la teoŕıa de control, puede medirse como el retardo
entre una señal de entrada al sistema tipo rampa lineal y la señal también tipo
rampa lineal retardada que se genera a la salida.

En este trabajo, se investigan las dinámicas de la relación entre los intervalos
QT y RR extráıdos de señales de ECG registradas durante pruebas de esfuerzo
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(EST). Aśı, se consideran los cambios graduales en el intervalo RR durante la
EST como la entrada al sistema y, con la base del modelo antes mencionado,
se propone un método alternativo para estimar el tiempo de adaptación del
intervalo QT. Los cambios graduales en el intervalo RR se identifican tanto en la
fase de ejercicio como en la fase de recuperación de la EST. Normalmente, estas
dos fases están precedidas, o seguidas en el caso de la recuperación, por una fase
donde el intervalo RR permanece en un estado basal esencialmente estacionario.

Se propone cuantificar el tiempo de adaptación del intervalo QT como el
retardo entre la serie temporal de los intervalos QT observados y una serie QT sin
memoria estimada a partir de los intervalos RR observados en el ECG registrado
durante una EST. Este retardo se evalúa en las fases de ejercicio y recuperación,
por separado, aplicando tanto estimadores Laplacianos como Gaussianos de
Máxima Verosimilitud. Se elige un modelo de regresión hiperbólico para estimar
la serie QT sin memoria que caracteriza el intervalo QT según los valores
observados del intervalo RR, ya que es el modelo que conduce al mejor ajuste
en términos de error cuadrático medio entre los modelos de regresión probados.
Los parámetros del modelo se estiman individualmente para cada paciente. Se
definen tres ventanas de aprendizaje para estimar los parámetros del modelo en
fases donde se puede suponer que el intervalo RR permanece prácticamente
estacionario, es decir, sin experimentar ningún cambio en su tendencia: una
ventana en cada una de las dos zonas basales y otra alrededor del pico de
ejercicio. La última ventana mencionada, aunque cuestionable en términos
de estacionariedad del intervalo RR, se selecciona para cubrir el mayor rango
posible de valores de RR, garantizando aśı un mejor ajuste de la dependencia
QT-RR. Para tener en cuenta la falta de estacionariedad en la ventana del
pico de ejercicio, se proponen tres elecciones diferentes de la ventana y los
valores de datos QT de ellas extráıdos: (1) la ventana se centra en el pico
de ejercicio, de modo que las dinámicas de la frecuencia card́ıaca durante el
ejercicio se compensen con las de la fase de recuperación; (2) sobre la misma
ventana en (1) se modifican los valores de QT que se extraen de la ventana
basándose en un retardo estimado en el ejercicio, haciendo uso de la primera
elección de ventana en (1); (3) además de modificar los valores de QT como en
la definición de la ventana (2), la posición de la ventana se cambia para incluir
solo valores correspondientes a la fase de ejercicio donde la corrección de los
datos es significativa, acabando justo en el pico de ejercicio.

Los métodos propuestos en esta tesis doctoral se evalúan primero técni-
camente en conjuntos de datos que contienen señales ECG simuladas con
dependencia QT-RR y retardo conocidos. Para este propósito, se ha generado
un entorno de simulación que permite: (a) establecer un tiempo de adaptación
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del intervalo QT definido por el usuario y (b) añadir componentes de ruido
simulado con caracteŕısticas similares a las del ruido muscular presente en las
pruebas de esfuerzo y con diferentes relaciones señal-ruido, de modo que se
pueda estudiar la robustez de los métodos frente a esta contaminación. Los
resultados muestran que el tiempo de adaptación del intervalo QT se estima
con mayor precisión cuando el cálculo de los parámetros del modelo se realiza
utilizando la ventana con los datos de QT modificados y situada solo en la fase
de ejercicio, es decir, con la ventana mencionada en la definición (3).

A continuación, se evalúa la capacidad cĺınica del parámetro tiempo de
adaptación del intervalo QT estimado mediante el procedimiento propuesto
en la fase de ejercicio, en la fase de recuperación, y como la diferencia entre
estas dos. Esta evaluación permite estratificar a los pacientes con diferentes
riesgos de sufrir enfermedad arterial coronaria (CAD) y predecir SCD o muerte
por cualquier causa. Los resultados muestran que el retraso medido en la
fase de ejercicio aumenta a medida que aumenta el riesgo de CAD, mientras
que el retraso en la recuperación disminuye con el riesgo. Además, el retardo
estimado en la recuperación es mayor en pacientes que han sufrido SCD que en
aquellos que no. También el retardo en la recuperación es mayor en los pacientes
fallecidos por cualquier tipo de causa que en los supervivientes.

Otro desaf́ıo estudiado a lo largo de esta tesis doctoral es la delineación del
final de la onda T en pruebas de esfuerzo con ECG muy ruidosas, donde puede
ocurrir una superposición entre la onda T y la onda P a medida que aumenta
la frecuencia card́ıaca durante la fase de ejercicio. Este fenómeno, junto con
la mayor presencia de ruido inducido por el ejercicio, complica la delineación
de las series de intervalos QT. Por lo tanto, se proponen diferentes métodos
basados en dos técnicas de transformación espacial para mejorar la delineación
de la onda T: (a) aplicando análisis de componentes principales, que maximiza
la varianza de la señal; (b) aplicando análisis de componentes periódicos, que
maximiza la periodicidad de los latidos de la señal. La mayor parte de estas
caracteŕısticas maximizadas se reflejan en la primera derivación transformada,
por lo que la onda T se delinea solo en esta. Los resultados de la delineación
con estos métodos se comparan con uno de los métodos basados en múltiples
derivaciones, que consiste en delinear cada derivación individualmente y aplicar
una regla para obtener una única marca final de delineación. La delineación del
final de la onda T se evalúa en señales de ECG simuladas utilizando una marca
de referencia medida sobre la misma señal cuando está contaminada con casi
nada de ruido, y en registros cĺınicos utilizando la inversa de la potencia de
la señal de intervalos QT observados, después de aplicarle un filtro paso alto,
se usa como un sustituto de la calidad de la delineación. Tanto en los ECG
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simulados como en los cĺınicos, se obtienen los mejores resultados cuando se
delinea el final de la onda T con la primera derivación transformada después de
aplicar el análisis de componentes periódicos, y por tanto es la técnica que se
usa en los estudios clńicos.

A partir del análisis de los ECG cĺınicos de pacientes con CAD, se observa
que el retraso entre la serie QT observada y la serie de QT sin memoria estimada
no es constante, sino que se reduce en la zona de ejercicio a medida que se
acerca el pico de éste. Además de la influencia de la frecuencia card́ıaca en el
intervalo QT, el sistema nervioso autónomo juega un papel en la modulación de
la repolarización ventricular y su adaptación a la frecuencia card́ıaca. Dicha
modulación autonómica ocurre tanto directamente a través de la inervación
autonóma del miocardio ventricular como indirectamente a través de los efectos
sobre la frecuencia card́ıaca. Basándonos en estudios previos, planteamos la
hipótesis de que un aumento en la actividad simpática a medida que se acerca el
pico de ejercicio, es decir, un aumento en los niveles de pre-estimulación de los
β-adrenoceptores al acercarse al pico de ejercicio, podŕıa explicar la reducción en
el tiempo de adaptación del intervalo QT observado al final del ejercicio. Para
estudiar la modulación autonómica del tiempo de adaptación del QT, el último
caṕıtulo de esta tesis doctoral propone un estudio in silico para investigar las
dinámicas de la adaptación de la repolarización ventricular en respuesta a la
estimulación β-adrenérgica, a nivel celular y tisular, aśı como en el ECG. Se
estiman los tiempos de adaptación del intervalo QT en respuesta a los mismos
cambios en el intervalo RR que en los ECG cĺınicos para diferentes patrones de
estimulación β-adrenérgica y se comparan con los obtenidos en los registros
cĺınicos. Se concluye que un patrón de estimulación β-adrenérgica variante en
el tiempo reproduce mejor las caracteŕısticas de adaptación del intervalo QT
observadas en el análisis de los ECG cĺınicos.

Palabras clave: modelado QT-RR; tiempo de adaptación del intervalo QT;
electrocardiograma; ECG simulada; delineació onda T; análisis de las compo-
nentes principales; prueba de esfuerzo; enfermedad de las arterias coronarias;
muerte súbita cardiaca.
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1.1 Motivation

The number of deaths attributable to cardiovascular disease (CVD) around
the world is projected to rise from an estimated 18.9 million in 2020 to more
than 22.2 million in 2030 and 32.3 million in 2050 according to the World
Heart Federation. CVD is one of the leading causes of death worldwide,
accounting for over 32% of all global deaths, and Europe is not exempt from
this alarming trend. The European Research Area Network on Cardiovascular
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Diseases recognized the need for prevention strategies. In 2019, the Strategic
Research Agenda for CVD was published, underscoring the importance of early
disease detection using predictive markers. CVD encompasses a wide range of
conditions affecting the heart and blood vessels, whose unpredictability can
lead to sudden and unexpected deaths. The economic and social consequences
of CVD are significant. The cost of CVD to the European Union economy
is currently 210 billion euros annually. These statistics justify any effort to
implement cost-effective, accessible strategies that reduce the incidence of CVD.

1.2 The Heart

1.2.1 Anatomy

The heart is the central and vital organ of the cardiovascular system. It
is responsible for pumping blood into the pulmonary circulation (from the
right side of the heart) and the systemic circulation (from the left side of the
heart) in order to deliver oxygen and nutrients to metabolically active tissue.
Anatomically, the structure of the human heart is characterized by several key
components, which are represented in Fig. 1.1:

Chambers and valves: the heart consists of four chambers, with the left and
right atria located above the left and right ventricles, and four valves to manage
the proper direction of blood flow during the heart’s contractions. The right
atria receive oxygen-poor blood, which flows into the right ventricle through the
tricuspid valve. Then, the right ventricle pumps the blood into the pulmonary
system through the pulmonary valve. The oxygenated blood returns to the
heart, entering the left atrium and passing through the mitral valve to reach
the left ventricle. Finally, the blood is injected into the systemic circulation
through the aortic valve.

Cardiac muscle: The myocardium consists of specialized muscle cells called
cardiomyocytes and other cell types including fibroblasts and endothelial cells.
The cardiomyocytes along the ventricular wall can have different properties de-
pending on their location in the subendocardium (inner region), midmyocardium
(middle region), and subepicardium (outer region). The cardiomyocytes contract
and relax rhythmically, which allows propelling the blood to the circulatory
system. A double-layered membrane called the pericardium surrounds the heart.
This layer acts as a protective sac and helps to lubricate the heart to prevent
friction with surrounding tissues.

Electrical conduction system: The effective pumping of the heart is ultimately
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dependent on its electrical conduction system, which coordinates its rhythmic
contractions. The cardiac conduction system includes the sinoatrial (SA) node,
atrioventricular (AV) node, bundle of His, and Purkinje fibers. The SA node,
which acts as a self-depolarizing pacemaker located in the right atrium, initiates
the cardiac cycle. Its autonomous function is modulated by the autonomic
nervous system (ANS), with the sympathetic activation accelerating the heart
rate, and the parasympathetic activation decelerating it. The electrical signal
travels from the SA node through the atria, is delayed briefly at the AV node,
and later travels through the bundle of His, which subdivides into two bundle
branches, and, finally, through the Purkinje fibers to ensure an effective heart
function. This specialized electrical conduction system allows for the synchronous
contraction and relaxation cycles of the left and right parts of the heart and the
sequential contraction and relaxation of the atria and ventricles. These two
movements, commonly known as systole and diastole, are critical in maintaining
an efficient heart performance. A schematic of the electrical conduction system
of the heart is represented in Fig. 1.2.

Figure 1.1: Schematic of the structural anatomy of the heart and the blood flow in the frontal
plane. Adapted from https://smart.servier.com/.

1.2.2 Electrophysiology

The cardiomyocytes are enclosed by a semipermeable membrane composed
of a lipid bilayer with various proteins, including ion channels, transporters,
receptors, and enzymes. This membrane serves as a barrier separating the

https://smart.servier.com/
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intracellular and extracellular spaces of the muscle cell. The voltage difference
between the intracellular and extracellular regions of the myocyte is known as
the membrane potential, which is typically negative at rest, representing the
electrical inactivity of the cell. The resting membrane potential is in the range
-65 to -80 mV for atrial myocytes and -90 to -80 mV for ventricular myocytes.

The electrophysiology of the myocardium is a complex process that involves
various ions, including calcium (Ca2`), chloride (Cl´), sodium (Na`), and
potassium (K`). These ions are more abundant in the extracellular space, except
for K`, which is more abundant in the intracellular space. The movement of
these ions through the ion channels located in the membrane of the cardiac cells is
a passive procedure controlled by two main forces: the electrical gradient, which
reflects the difference in potential between the interior and the exterior of the
cell, and the chemical gradient, related to the difference in the ion concentration
between the intracellular and extracellular spaces. In contrast, pumps and
exchangers actively move ions against their gradients, requiring energy derived
from ATP hydrolysis or based on the electrochemical gradients. These ion
movements are influenced by factors such as changes in ion concentrations inside
and outside the cell, alterations in membrane potential, and the presence of
specific ligands.

The cardiac cellular action potential (AP) describes the dynamic changes
in the membrane potential and the ionic flow of a cell. The AP consists of a
depolarization phase (activation) followed by a repolarization one (recovery),
divided into five distinct phases (labeled as phases 0 to 4). A diagram showing
a cardiac AP and the corresponding ion flow is shown in Fig. 1.2.

Phase 0 - Rapid depolarization: This phase is characterized by a rapid
increase in the membrane potential associated with the opening of the fast
inward Na` channels. This fast sodium current INa into the cell produces a
rapid positive membrane potential.

Phase 1 - Early repolarization: This phase is characterized by a transient
repolarization. The fast Na` channels become inactivated and an outward K`

current Ito is produced. The result is a reduction in the membrane potential to
0 V, which is represented as a “notch” in the AP morphology.

Phase 2 - Plateau: The membrane potential is maintained close to 0 V by
a balance between the inward movement of Ca2` through the L-type Ca2`

channels (ICaL current), and the outward movement of K` through slow delayed
rectifier potassium channels (IKs current). This equilibrium is crucial to ensure
the heart’s contraction and efficient blood pumping. The concentration of Ca2`

ions in the cytosol increases due to the movement of Ca2` from the interstitial
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fluid and from the sarcoplasmic reticulum, ultimately triggering the heart’s
contraction. Therefore, the electrical activation of the cardiomyocytes leads to
their mechanical contraction through the above described excitation-contraction
coupling process. The strength of the contraction is directly related to the
myocyte’s Ca2` transient. Analogously, cardiac relaxation and ventricular
refilling are associated with a decline in the cytosolic Ca2` concentration.

Phase 3 - Rapid repolarization: In this phase, the membrane potential returns
to the resting membrane potential. This change is fundamentally produced
by the rapid delayed rectifier K` current IKr and the inwardly rectifying K`

current IK1. The L-type Ca2` channels become closed.

Phase 4 - Slow diastolic depolarization or rest: In this phase, the membrane
potential is stable (for atrial and ventricular myocytes) or presents a slow
depolarization (for cells with spontaneous activity). The cell is prepared for the
next AP cycle. The Na`/K` ATPase pump plays a crucial role in maintaining
this state by actively transporting Na` ions out of the cell and K` ions into the
cell.

-

Figure 1.2: Left: schematic of the electrical conduction in the heart, from the SA node to the
Purkinje fibers. Autonomic nervous system innervation by the sympathetic and parasympa-
thetic nerves is shown too. Top right: schematic of a ventricular cell AP and the ion flow in-
volved in each AP phase. Bottom right: schematic of two consecutive beats from an ECG lead
with their characteristic waves and intervals. Adapted from https://smart.servier.
com/ and https://studmed.uio.no/elaring/fag/hjertesykdommer/en/ecg/.

https://smart.servier.com/
https://smart.servier.com/
https://studmed.uio.no/elaring/fag/hjertesykdommer/en/ecg/


1

6 Chapter 1. Introduction

1.2.3 Autonomic nervous system

The ANS regulates cardiac functions such as the heart rate, atrial and ventricular
refractoriness, conduction, contractility, and blood flow. The ANS has two
branches: the sympathetic and the parasympathetic systems. The sympathetic
branch controls the human body’s reaction to situations of emergency and
during exercise (known as the ”fight-or-flight” response). The parasympathetic
branch regulates restful conditions and facilitates the functions of the internal
organs, such as digestion [1].

The periodicity of the SA node discharge is controlled by a balance between
both autonomic limbs. Sympathetic stimulation increases heart rate and
myocardial contractility, while the parasympathetic nervous system exerts
antagonistic effects on the regulation of heart function, reducing the heart rate
and the AV nodal conduction, and causing vasorelaxation. The cardiac ANS
plays an essential role in cardiac arrhythmogenesis, with certain autonomically-
mediated alterations in cardiac electrical activity being able to generate cardiac
arrhythmias.

The parasympathetic nerves release acetylcholine, while the sympathetic
nerves release norepinephrine. These neurotransmitters modulate the ion flows
described previously and mediate the AP propagation through the atria, the
conduction system, and the ventricles of the heart. For example, in ventricular
myocytes, the activation of the sympathetic system leads to the release of
norepinephrine, which binds to β-adrenergic receptors and stimulated them.
This activates signaling pathways that cause the phosphorylation of cellular
substrates like the ICaL, the IKs and others [2], which altogether modulate the
AP characteristics.

1.3 Electrocardiogram

The cardiac cycle relies on the recruitment of the AP of all cardiomyocytes.
The electrical activity of these cells triggers their mechanical contraction. The
electrical activity of the heart can be easily recorded on the surface of the chest
wall by placing a set of electrodes via an electrocardiogram (ECG). The ECG
is a cost-effective and noninvasive tool used for clinical diagnosis that provides
valuable information on the health of the heart [3]. The voltage difference
measured between a pair of electrodes is known as a lead. The magnitude of the
electrical signal generated by the depolarizing muscle is directly proportional to
the corresponding muscle mass.
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1.3.1 Waveforms

The cardiac cycle, known as heartbeat, is described in the ECG by a series of
waves whose morphology and timing convey information. Their well-recognized
pattern and nomenclature are presented in Fig. 1.2. Each heartbeat in the
ECG is normally composed of a P wave, a QRS complex, and a T wave.
The amplitude of a wave is measured with respect to the ECG baseline level,
commonly defined as the isoelectric line.

The P wave reflects the depolarization of the right and left atria. The
duration of the P wave is typically less than 120 ms, which reflects slow cell-to-
cell propagation of the electrical activity in the atria. Its amplitude is usually
less than 300 µV, with a positive polarity and monophasic morphology in most
leads. From the end of the P wave to the onset of the QRS complex, the
electrical activity is absent, reflecting an isoelectric time window with slow
propagation of the electrical activity through the AV node.

The QRS complex is generated from the summation of the right and
left ventricular AP during their electrical depolarization before mechanical
contraction. The QRS complex has three deflections: the first negative deflection
is denoted as the Q wave, the first positive ones is called the R wave, and the
following negative deflection is denoted as the S wave. The normal heartbeat lasts
for about 70-110 ms. Its amplitude is the largest one of all the ECG waveforms,
sometimes reaching 2-3 mV. This higher amplitude of the QRS complex with
respect to the P wave reflects a greater myocardial mass of the ventricles
when compared to the atria and a much more rapid spread of the electrical
depolarization due to the high speed of the ventricular conduction system. The
repolarization of the atria is hidden within the QRS complex.

After the QRS complex, there is a brief time interval in which no net current
is flowing because the cells are all at nearly the same potential of phase 2 and,
thus, the ECG amplitude returns to the isoelectric line. This time interval
is known as the ST segment. This segment starts at the end of the S wave
(the J point) and proceeds almost horizontally until it curves into the T wave,
which corresponds to the onset of ventricular repolarization. Changes in the
ST segment, such as elevation, depression, or steepness, often indicate the
presence of some underlying cardiac conditions.

Lastly, the T wave represents the repolarization of the ventricles. The T wave
is longer in duration but lower in peak magnitude than the QRS complex. The
repolarization normally occurs in the ventricular muscle between 250 to 350 ms
after depolarization. The temporal location of the T wave in the ECG heartbeat
strongly depends on heart rate and tends to become narrower and closer to
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the QRS complex at higher rates. This rate dependence does not apply to the
P wave or the QRS complex [3]. The normal T wave has a smooth morphology
and a single positive peak in most leads. The T wave is sometimes followed
by another slow wave, the U wave, whose origin is unclear. Some studies have
suggested the presence of after-potentials on some cardiac APs as a possible
explanation for the genesis of the U wave [4, 5].

The ECG contains other commonly measured time intervals. In this thesis,
the RR and QT intervals are of particular interest.

The RR interval represents the time elapsed between two successive R waves
of the QRS complex, and its inverse is the heart rate. The RR interval is a
function of the intrinsic properties of the SA node as well as ANS influences.
This interval is used to characterize abnormal heart rhythms, known as arrhyth-
mias, as well as to study heart rate variability (HRV). During rest, sleep, or
emotional tranquility, heart beats at a rate of about 60-75 beats per minute
[1]. Arrhythmias can occur when the electrical impulses become irregular, too
fast (tachycardia) or too slow (bradycardia). The electrical and mechanical
efficiency and performance of the heart are significantly influenced by factors
such as family history, personal health history, and lifestyle choices.

The QT interval represents the total duration of ventricular depolarization
and repolarization, measured from the onset of the QRS complex to the end
of the T wave. The QT duration is inversely related to the heart rate, i.e.,
the QT interval increases at slower heart rates and decreases at higher heart
rates. At high heart rates, the P wave may merge with the T wave, causing the
T wave endpoint and P wave onset to become indistinct. As a result, eventually
it may become difficult to determine the T wave endpoint. In a resting state,
the normal QT interval is less than 400 to 440 ms, with women typically having
a slightly longer QT interval than men. However, to determine whether the
QT interval is within normal limits, it is necessary to adjust for the heart rate,
and it is referred to as the corrected QT (QTc) interval. Prolongation of the
QT interval has been observed in various cardiac disorders associated with a
higher risk of ventricular arrhythmias and Sudden cardiac death (SCD). The
QTc duration has traditionally been calculated using the Bazett’s formula:

QTc “
QT

?
RR

, (1.1)

where RR is expressed in seconds. This form of correction constitutes a particular
case of correction based on a parabolic relation between the QT and RR interval,
see Sec.2.5. The Bazzet’s formula has been shown to lead to undercorrection
at slower heart rates and overcorrection at faster heart rates in some studies.
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Other formulas, such as the Fridericia’s formula, have been suggested to be
better suited [6]. To obtain even more precise QTc interval measurements, other
studies have suggested to use formulas personalized for each subject, since the
QT-RR dependency can be subject-dependent [7].

Finally, the PQ interval of the ECG represents the distance between the
onset of the P wave and the onset of the QRS complex. In other words, it is the
time interval from the onset of atrial depolarization to the onset of ventricular
depolarization which includes the delay at the AV node. The length of the
PQ interval is slightly dependent on heart rate, with normal ranges between
120 and 200 ms.

Alterations in the magnitude, duration and/or orientation of any PQRST
component may reflect physiological and/or pathological changes in cardiac
structure, function or neural control.

1.3.2 Leads

The ECG is typically recorded with a multiple-lead configuration and presents
different characteristics depending on the location of the recording electrodes.
Each lead represents the movement of the electrical waves through the heart
projected on a different axis, thus offering a specific spatial perspective of the
heart’s electrical activity. If a lead is set up in such a way that the depolarizing
current moves towards that lead while the repolarizing current moves away from
that lead, depolarization and repolarization waves with positive and negative
polarity with regards to the isoelectric line are produced, respectively [3].

There are two main lead types: unipolar or bipolar leads. A so-called
unipolar lead reflects the voltage variation of a single electrode and is measured
with respect to a reference (commonly called the central terminal) whose voltage
remains almost constant throughout the cardiac cycle. A bipolar lead reflects
the voltage difference between two electrodes.

The number of electrodes attached to the body surface depends on the
clinical information that is of interest. The two lead systems that have received
the most attention are the standard 12-lead ECG and the orthogonal lead
system, which are described in the following.

Standard 12-lead ECG: A standard 12-lead ECG is recorded by placing
10 electrodes on the body surface. It contains a combination of three different
lead configurations: bipolar limb leads, augmented unipolar limb leads and
unipolar precordial leads. The first two configurations examine the heart in a
frontal plane while the last one does that from the transverse plane perspective.
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The three bipolar limb leads are denoted I, II, and III and are obtained by
measuring the voltage difference between the left arm, the right arm, and
the left leg. These three electrode positions can be viewed as the corners of
a triangle (“Einthoven’s triangle”) with the heart at its center (see the left
representation of Fig. 1.3). The augmented unipolar leads (aVF, aVL, and aVR)
use the same electrodes as the bipolar limb leads, but are defined as the voltage
differences between one corner of the triangle and the average of the remaining
two corners (see the central representation of Fig. 1.3). The six precordial leads,
by convention labeled from V1 to V6, are unipolar leads positioned on the front
and the left side of the chest, whose central terminal, named “Wilson central
terminal”, is defined as the average of the voltages measured on the right and
left arms, and the left leg (see the right representation of Fig. 1.3). Leads V1
and V2 face the surface of the right ventricle, V3 and V4 face the anterior wall
of the left ventricle, and V5 and V6 face the lateral wall of the left ventricle [3].

Figure 1.3: Electrode placement to obtain the bipolar (left panel), augmented (middle panel)
and precordial (right panel) leads. Adapted from https://cvphysiology.com/.

Orthogonal ECG leads: An orthogonal lead system reflects the electrical
activity as a three-dimensional loop together with its projection onto the XY-,
XZ-, and YZ-planes. The loop is traced out by the tip of the vector that describes
the dominant direction of the electrical wavefront during the cardiac cycle, so
this particular type of recording is referred to as a vectorcardiogram (VCG). The
most widely used orthogonal lead system, known as the Frank lead system [8],
is obtained as linear combinations of 7 electrodes positioned on the chest, back,
neck, and left foot. The resulting leads X, Y and Z view the heart from the left
side, from below, and from the front.

https://cvphysiology.com/
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The 12-lead ECG is the most widely used lead system in the clinical routine,
since this lead system offers information on waveform morphology and well-
established criteria for its interpretation have been defined, while the VCG
provides a time-varying description of how the magnitude and direction of the
dominant vector change [3]. Mathematical transformations have been proposed
to bridge both lead configurations. For example, the inverse Dower matrix [9]
and the more advanced Kors matrix [10] relate the standard and orthogonal lead
configurations, improving the understanding of cardiac activity, and therefore
the diagnostic potential of ECGs.

It is important to realize that the polarity, amplitude, and morphology
of the individual ECG waves are significantly influenced by the position of
the electrodes on the body and by their location in relation to the heart.
This aspect is crucial for interpreting ECG data and assisting clinicians in
diagnosing certain heart conditions by analyzing specific leads. For instance,
this could be considered when assessing if there are damaged areas in the cardiac
muscle, irregular blood flow, or any abnormal patterns of electrical activity
that may increase the likelihood of arrhythmias. In this regard, the integration
of biomedical signal processing can improve the diagnostic capabilities by
extracting relevant clinical information from ECGs using signal processing
techniques. This can aid clinicians when taking diagnostic decisions, customized
to individual cases and informed by the processed results.

1.3.3 Noises and interferences

An acquired ECG is normally contaminated by noises from both technical and
biological origin. The presence of noise complicates the accurate analysis of
the ECG signal, potentially leading to errors in the automated algorithms and
the clinical diagnoses. Among the different noises and artifacts encountered in
the ECG, below is a list of some of the most common sources of noncardiac
noise [3, 11].

Baseline wander is a low-frequency activity in the ECG that interferes with
the signal analysis, leading to inaccurate clinical interpretations due to the not
well-defined isoelectric line. Often induced by exercise, baseline wander can
result from a variety of noise sources, including respiration, body movements,
and poor electrode contact. Its magnitude may exceed the amplitude of the
QRS complex, and its spectral content ranges typically between 0.05 and 1 Hz,
although it may contain higher frequencies during strenuous exercise as the
breathing rate increases.

Electrode motion artifacts are primarily caused by skin stretching, altering
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the skin’s impedance around the electrode. This low-frequency noise represents
a significant challenge due to the considerable spectral overlap with the PQRST
complex (1 to 10 Hz). In the ECG, these artifacts are manifested as high-
amplitude waveforms, which are sometimes mistaken for QRS complexes. Its
presence is more problematic in ambulatory ECG monitoring, where they
represent the main source of falsely detected heartbeats.

Powerline interference comes from improper grounding of ECG equipment
and interference from nearby equipment. The exposure to those electromagnetic
fields introduces frequency noise of around 50-60 Hz.

Electromyographic noise, or muscle noise, results from the electrical activity
of skeletal muscles during contraction, commonly observed in ECGs during
ambulatory monitoring or exercise stress testing (EST). Intermittent or more
stationary in nature, their frequency components can considerably overlap
with those of the QRS complex and also extent into higher frequencies with a
bandwidth between 20 and 1000 Hz. Thus, removal of muscle artifacts without
introducing distortion is quite challenging.

Respiratory activity influences ECG measurements through heart rate and
beat morphology. Chest movements, changes in heart position, and alterations
in lung conductivity lead to beat-to-beat variations in morphology during a
respiratory cycle, modifying the morphology of the dominant direction of the
electrical wave propagation vector. Although variations in QRS amplitude
represent an undesirable signal characteristic, it may be exploited for estimation
of the respiratory frequency.

To minimize the effects of the above described noises and interferences,
robustly ECG acquisition systems are designed to try to mitigate the introduction
of noise through various devices and resistances. Also, the deployment of high-
quality electrodes can prevent voltage drops across the electrode-electrolyte
interface.

1.3.4 ECG recordings

Nowadays, the most common ECG recordings in clinical applications are
resting ECG, ambulatory ECG monitoring, and EST, being indispensable tools
to facilitate accurate diagnosis, risk stratification, and personalized patient
cardiovascular care. While ambulatory monitoring is designed to capture daily
cardiac electrical activity and transient abnormalities, EST evaluates the heart
under controlled physical stress. These types of ECG recordings are briefly
described in the following [3].



1

1.3 Electrocardiogram 13

Resting ECG is one of the most widely used diagnostic tests in the clinical
routine. The standard 12-lead ECG is recorded for 10 s in conditions that are
favorable from a signal quality perspective since the patient is at rest in the
supine position. The brief recording time limits the significance of the test to
heart problems of a permanent nature [3].

Ambulatory ECG monitoring, also called Holter monitoring, is a continuous
recording of the electrical activity of the heart over an extended period, typically
ranging from 24 to 48 hours. This method uses a portable device equipped with
multiple leads, typically two or three, attached to the patient while performing
his/her routine activities [12]. This noninvasive, continuous monitoring is
useful for diagnosing various cardiac conditions, including arrhythmias, syncope,
unexplained chest pain, and transient or infrequent cardiac problems that could
be missed during traditional physical examinations or resting ECGs. This
registry is also used to assess patients on antiarrhythmic drugs or patients at
high risk of SCD after myocardial infarction. In some devices, there is the so
called event button, which can be pressed by the patient whenever a symptom
occurs to facilitate linking symptoms to arrhythmic events. Once the patient
has returned the device to the hospital, the recorded ECG is analyzed by a
physician. The extended duration and large data generated by Holter recordings
usually requires the application of signal processing techniques for efficient
analysis and interpretation. Moreover, these signals are susceptible to external
noise, such as electrical interference and movement artifacts [3].

Exercise ECG stress testing is a common procedure used to evaluate the
heart’s ability to cope with increased myocardial oxygen demand. The test is
typically performed on a treadmill or cycle ergometer and involves gradually
increasing exercise workload, speed and/or slope, while monitoring the 12-lead
ECG. The recovery period post-exercise is also recorded because it can help
to determine if the ECG returns to its basal state before exercise. There
are different stress testing protocols. Most protocols include a resting phase,
an exercise phase, and a recovery phase [13, 14]. The two most widely used
methods are maximal or submaximal exercise tests. In these two methods,
the patient attains his/her highest or 85%-90% of his/her theoretical highest
heart rate, which is calculated based on the age and physical condition [13].
The test concludes when the patient reaches a predefined maximum heart rate,
experiences fatigue or symptoms such as chest pain and shortness of breath,
or when abnormal ECG changes appear. The general response to exercise is
evaluated based on maximum workload, maximum heart rate, ECG changes,
blood pressure, and respiratory rate. Signal processing techniques, especially
during high workloads, are crucial for accurate measurements of the heart’s
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electrical activity due to baseline wander and muscle noise affecting the quality
of the signal. The stress test aids in assessing whether the blood supply to the
heart’s coronary arteries is sufficient to cover the increased demand for oxygen
during exercise. It can help diagnose angina pectoris and identify patients who
may have experienced undiagnosed episodes of silent ischemia. The test can
also reveal abnormalities in patients with severe Coronary artery disease (CAD)
who may present normal resting ECGs. For a detailed clinical interpretation of
EST, please refer to [13].

1.4 Coronary Artery Disease

CVD comprises a number of heart and blood vessel diseases, including CAD
(which can lead to myocardial infarction, also called heart attack), elevated
blood pressure (hypertension), and cerebrovascular disease (including stroke).
Currently, the prevalence of CVDs is increasing due to several factors such as
the obesity epidemic, high blood pressure, and a significant increase in type 2
diabetes. The most important modifiable risk factors associated with CVDs are
smoking, stress, sleep quality, physical inactivity, unhealthy diet and alcohol.
Ethnic background, age, gender and family history of CVD are nonmodifiable
risk factors that can also exert influence.

1.4.1 Concept

CAD, also called coronary heart disease, is the most common type of heart
disease. It occurs when fatty plaque, which is an accumulation of cholesterol and
other substances, builds up in the walls of the heart’s arteries, a condition known
as atherosclerosis. This narrowing of one or more coronary arteries results in a
reduction or block of blood flow to the cardiac muscle, causing a deficiency of
oxygen-rich blood in the myocardium and reducing the elasticity of the vessel
wall. These alterations may cause chest pain, myocardial ischemia, or a heart
attack. Over time, CAD can also lead to heart failure and arrhythmias due to
the induced mechanical and electrical heart alterations [15–19]. Sometimes, the
plaque can break or rupture and the body attempts to repair it by forming a
blood clot over it, named thrombus. The blood clot can completely block blood
flow and cause a heart attack.

Some people may not experience symptoms until they are on the verge of
a serious cardiac event. However, a common symptom of CAD is chest pain
known as angina. It occurs when the heart needs more blood and oxygen than
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the amount it is getting, for example during exercise or stressful situations,
because the demand for oxygen becomes greater than the supply of oxygen
due to narrowed coronary arteries. Additional symptoms may be palpitations,
shortness of breath, and weakness. Other symptoms of CAD may be experienced,
particularly for women, elderly, and/or with diabetes.

1.4.2 Cardiac arrhythmogenesis and sudden cardiac death

An irregular generation or propagation of the electrical pulse can develop into
an arrhythmia, which, depending on its location, is classified as supraventicular
or ventricular. Supraventricular arrhythmias occur in structures above the
ventricles, mainly the atria, and some examples are supraventricular tachycardia
or paroxysmal supraventricular tachycardia, atrial fibrillation (AF), atrial flutter,
and supraventricular premature contractions. Ventricular arrhythmias occur
in the ventricles, as its name implies, and include ventricular tachycardia,
ventricular fibrillation, and premature ventricular contractions.

Arrhythmias can be congenital or can be generated due to some of the above
mentioned risk factors. The presence of symptoms depends on the severity,
frequency, duration, and type of arrhythmia. The most commonly used test
to diagnose an arrhythmia is Holter monitoring. Often, the first step to treat
an arrhythmia is the administration of antiarrhythmic drugs, for example,
digitalis, β´blockers, and calcium channel blockers. Other treatments including
transcatheter interventions, implantable devices, and surgery are required in
severe cases.

SCD is defined as unexpected, nontraumatic death occurring within 1 hour
of the onset of an abrupt change in clinical status and loss of consciousness or,
if unwitnessed, within 24 h of last being seen alive. By definition, a patient with
SCD does not survive. When the patient survives, the event is termed aborted
SCD or sudden cardiac arrest (SCA) [3,20].

Although unexpectedness is a key feature of SCD definition, much of the
progress that has been made to date in profiling risk of SCD has been based
on clinical markers, which primarily identify the extent of disease either at
a myocardial or a vascular level [21, 22]. For example, the initiation and
progression of disease in the coronary arteries, followed by the development of
myocardial scarring/fibrosis, transition of vascular lesions, initiation of acute
coronary syndromes and, finally, acute arrhythmogenesis is a typical cascade of
pathophysiology that leads to SCD [2]. Indicators such as myocardial scarring
revealed by cardiac magnetic resonance imaging and left ventricular volumes
are emerging as markers of potential interest [23,24].
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CAD is the most common underlying substrate of SCD, which is frequently
due to ventricular arrhythmias, from ventricular tachycardia to ventricular
fibrillation [25]. Ventricular fibrillation is a condition characterized by unco-
ordinated electrical impulses due to the division of the cardiac impulse along
multiple pathways, which causes rapid and ineffective ventricular contractions.
Enhanced repolarization heterogeneity can contribute to increase the risk for
SCD. Today, SCD remains a significant public health problem and accounts for
15-20% deaths in Western societies [26].

1.4.3 Diagnosis and treatment

Apart from the family medical history, some of the tests used to diagnose CAD,
and determine the location and severity of the coronary occlusion before treating
it, include:

• A resting standard 12-lead ECG recording to identify an abnormal heart-
beat or damage to the heart muscle.

• EST to evaluate the heart in a stress situation, which may be comple-
mented with nuclear imaging. According to 2019 ESC Guidelines for the
diagnosis and management of chronic coronary syndromes [27], EST may
be considered in case of suspected CAD. Diagnostic imaging tests may be
used to clarify the diagnosis of obstructive CAD. ST-segment changes
evaluated from the ECG can add to other clinical indices like exercise
tolerance, arrhythmias or blood pressure response.

• Echocardiogram to assess mechanical heart function. It can show the
blood flow through the heart’s chambers and valves and the vessels. The
evaluation of ventricular function and the presence of regional wall motion
abnormalities is used in the diagnosis of acute coronary syndrome, while
wall thickening is preferred to locate infarcted myocardium [28].

• Coronary angiography (COR) to test the circulation through the coronary
arteries. In this procedure, a special dye or contrast medium is injected
through a small tube (catheter) to evaluate the diameter of the lumen
(stenosis). Although this technology identifies structural changes in
coronary arteries with an acceptable degree of accuracy, its value is limited
by the fact that identification of the structural abnormality does not
reveal the vulnerability of plaques or specific markers of arrhythmic risk.
Repeated exposure to radiation over time is also considered a limitation
of this as a screening approach [2].
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The degree of stenosis is reported as the estimated percentage of lumen
reduction of the most severely narrowed segment compared to the adjacent
angiographically normal vessel segment, seen in the x-ray projection where the
stenosis is more severe. In some cases, the area stenosis may be greater than the
diameter stenosis, as the lumen is assumed to be circular, whereas the lumen is
usually eccentric. In general, four categories of lesion severity can be assigned:

1. Low, narrowing <50%.

2. Mild or moderate, stenosis between 50% and 75%.

3. High or severe, stenosis between 75% and 95%.

4. Total occlusion.

The treatment of CAD usually begins with lifestyle changes and/or medica-
tions that help the heart work more efficiently and increase the blood flow to
the heart muscle. Nevertheless, an interventional procedure may be required if
symptoms are not controlled or the artery narrowing is too large. Interventional
procedures include the following:

• Balloon agioplasty : a small balloon is inflated within the narrowed portion
of a blocked artery, pushing the plaque against the artery walls and
increasing the blood flow to the heart.

• Percutaneous coronary intervention: this technique, formerly known
as angioplasty with a metallic mesh tube (stent), is delivered on an
angioplasty balloon to the narrowed portion of an artery to permanently
support the artery walls and increase the blood flow. The stent can be
coated with medication to prevent an overgrowth of the artery lining that
can occur as a reaction to stent implantation.

• Bioresorbable vascular scaffold : a nonmetallic mesh tube that is delivered
on an angioplasty balloon to treat a narrowed artery, similar to a stent,
but it slowly dissolves once the blocked artery can function naturally again
and can stay open on its own. This is the latest advance in CAD therapy.

• Coronary bypass surgery : this intervention uses a healthy blood vessel
taken from the chest, leg, or arm to redirect the flow of blood around the
area of blockage.
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Figure 1.4: Infographic about coronary obstruction, the current diagnostic tests and risk
assessment, and the most common treatments for a severe obstruction.

The principal CAD concepts explained in this section are summarized in
Fig. 1.4.

The most common and severe complications of CAD are myocardial infarc-
tion, which occurs when the heart muscle does not receive an adequate amount
of oxygen and the damaged tissue dies, and SCD. To prevent the occurrence
of SCD, implantable cardioverter defibrillators (ICDs) are implanted to treat
arrhythmias. ICDs improve survival in CAD patients with symptomatic heart
failure and left ventricular ejection fraction less than 30% to 35%. Unfortunately,
more than 70% of SCDs due to CAD occur in individuals with left ventricular
ejection fraction greater than 35% who do not qualify for ICDs [29]. The
primary prevention ICD implantation is indeed associated with lower mortality
in CAD, as well as in other pathologies like dilated cardiomyopathy, with its
benefits being less clear in patients with nonischemic heart failure [30]. In any
case, ICDs are invasive and expensive devices. Thus, developing less expensive
and noninvasive tools to aid in risk assessment in the context of CAD is of
great social and technological interest. In this regard, the ECG is a cheap and
noninvasive technology, widely used in the diagnosis, prognosis and treatment of
CAD, myocardial infarction and arrhythmias [3, 31].
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1.4.4 Risk assessment from the ECG

Despite the availability of direct imaging modalities, such as echocardiography,
nuclear scanning, computerized tomography, and magnetic resonance imaging,
the ECG remains the most commonly used cardiovascular diagnostic tool due
to its wide availability, low cost, and rapid interpretation [32,33].

Over the last years, several ECG-derived markers have been proposed to
assess CAD severity and characterize the spatial and temporal heterogeneities
of ventricular repolarization [31]. These markers may be essential to identify
patients who are at risk for events that trigger fatal outcomes [34,35] and may
help to optimize the treatment [36,37]. Some commonly cited markers in the
literature are briefly presented below.

The most conventional ECG index for arrhythmic risk prediction is the
QT interval duration [38]. Since the duration of the QT interval is largely
dependent on the corresponding heart rate, the QTc interval has been used to
standardize the measurements and the clinical capacity of the QTc interval has
been studied in different contexts. A variety of heart rate correction formulas
to compute the QTc interval has been proposed in the literature to compare
QT measurements at different heart rates [39]. The QTc interval has been
shown to be longer in patients with obstructive coronary artery disease (COR
shows more than 50% diameter stenosis) than in those without it, with such a
prolongation increasing with the severity of the disease [40]. Also, prolongation
of the QT interval or of the QTc interval has been recognized in some studies
as a marker of arrhythmic risk [35, 41]. In particular, a longer QTc interval
has been observed in SCD patients with CAD than in CAD patients with no
history of SCD [42].

QT variability (QTV) refers to beat-to-beat temporal variability of the
QT interval due to direct and indirect effects of the ANS activity, that is, the
ANS action on the ventricular myocardium and on the SA node, respectively [43].
QTV can be quantified in the time or the frequency domains and it is usually
adjusted by HRV. Increased beat-to-beat repolarization variability has been
associated with enhanced risk of developing arrhythmic events in post-myocardial
infarction patients [44, 45]. Other forms of measuring QT instability in the
z-domain have been proposed in the literature and shown to be related to the
generation of arrhythmias [46].

QT dynamics is another important phenomenon that accounts for the
relation between the RR and QT intervals, both transiently and at steady state.
The QT-RR adaptation time lag, measured in response to transient RR changes
using different theoretical models, has been identified as a marker of arrhythmic
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risk [47,48]. As the phenomenon of QT adaptation is the central part of this
thesis, a detailed description of this concept is presented in Section 1.5. Another
marker of QT dynamics is the slope of the linear regression between QT and
RR intervals, which has been increasingly used since the incorporation of the
algorithm for its measurement into commercial Holter software [49]. The slope
marker quantifies the steepness of the QT dependence on heart rate under
stationary conditions corresponding to a range of stable heart rates, in contrast
to the phenomenon of QT rate adaptation, which is measured in response to
transient changes in heart rate. Higher QT-RR slopes have been suggested to
indicate decreased vagal tone and increased sympathetic activity, which has
been associated with higher arrhythmic risk [49]. Pathak et al. evaluated the
QT dynamics from 24-hour Holter recordings of chronic heart failure patients
and reported that an increased QT-RR slope was a strong predictor of SCD [50].
Other studies have investigated QT dynamics from the recovery phase of EST.
An abnormally long QT interval at a cycle length of 500 ms, calculated using a
linear regression of the QT-RR relation during early recovery from a treadmill
EST, showed the capacity to predict all-cause mortality (without distinguishing
arrhythmic or cardiac death from other mechanisms due to the lack of available
clinical follow-up information) [51].

Other ECG risk markers include those quantifying T wave characteristics.
Large values of the T wave amplitude have been related to the location of the
acute occlusion of a coronary artery and large T wave width has been associated
with enhanced ventricular repolarization dispersion [52–54]. Nevertheless,
amplitude changes may occur due to other medical conditions (hyperventilation,
increased intracranial pressure, stroke, drugs, etc.) or may even be normal based
on the age or gender of the patient. The T peak-to-T end (Tpe) interval has been
postulated as a measurement of ventricular repolarization. A marker derived
from the relation between the Tpe and the RR intervals has been proposed as
an indirect ECG surrogate of the action potential duration restitution (APDR)
dispersion [55], which quantifies the properties of the ventricular repolarization
dispersion at different heart rates. An increase in APDR dispersion has been
associated with the occurrence of malignant ventricular arrhythmias [56]. T wave
alternans (TWA) is another marker derived from the T wave, which consists
of a periodic beat-to-beat alternating change, i.e. the ABABAB pattern, in
amplitude, duration or morphology of the ST segment and/or the T wave [31,57].
An increase in heart rate is commonly required to trigger TWA, so controlled
tests are usually used, such as EST. It is commonly considered that TWA
should be present at a heart rate above 110-115 bpm. Higher magnitudes of
TWA have been shown to be associated with ventricular arrythmogenesis under
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different conditions [58], and the presence of TWA has been widely validated as
a marker of SCD risk [31]. Recently, T wave time and amplitude variability
quantified by time-warping-derived metrics have been defined as other markers
for identifying cardiac abnormalities in cohorts of patients with chronic heart
failure [59] as well as a SCD predictor index [60].

Finally, ST elevation is usually associated with transmural myocardial
ischemia due to an acute occlusion of a coronary artery [32], while ST depression
is mainly a marker of subendocardial ischemia [2]. However, persistent ST seg-
ment deviation may be indicative of other conditions (aneurysm, secondary
repolarization changes) [61]. Changes in the ST segment can be influenced by
the affected artery. Some studies have suggested that ST elevation in lead aVR
can be a useful clinical tool to identify patients at increased risk for severe
CAD [33], although there is some controversy about this association, particularly
when ST segment changes are computed from EST [62].

1.5 QT-RR adaptation and hysteresis

As described previously, the QT interval duration is influenced by changes
in the heart rate. The QT adaptation to a change in heart rate has been
shown to present two phases: a fast initial phase lasting for around 30-60 s,
followed by a 2-minute slow phase [63,64]. The first phase has been suggested
to be mainly related to the ICa-L and the IKs currents, while the second phase
has been suggested to be driven by intracellular sodium concentration Nai
dynamics [31,65]. The adaptation of the ventricular repolarization duration
has been described both for the QT interval of the surface ECG and for
the action potential duration (APD) at the cellular, tissue and whole-organ
levels [63,65–71]. These fast and slow adaptations of the QT interval in response
to heart rate changes have been modeled in a study by Cabasson et al. [72].
The modeling of the fast adaption phase is based on the electrical restitution
curve that relates the cellular APD and the preceding diastolic interval. The
modeling of the slow adaptation phase, which explains the QT-RR hysteresis, is
supported by experimental studies and allows to obtain a slow step response
similar to the one described for the APD [63]. The separate modeling of both
the fast and the slow adaptation phases considers low-complexity autoregressive
processes.

The time lag of the QT interval accommodation to heart rate changes is in
correspondence to the so called QT-RR hysteresis, which is characterized by
longer QT intervals at a given RR interval while heart rates increase during
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exercise, and shorter QT intervals at the same RR interval while heart rates
decrease during recovery, creating a “hysteresis loop”. The QT-RR hysteresis
was proposed to be quantified to improve the reliability of the QTc interval
measurement. Currently, different studies propose the quantification of the
individual QT-RR hysteresis as a risk marker additional to the conventionally
measured QTc. Different methods for evaluating the magnitude of the QT-
RR hysteresis have been proposed. Gravel et al. reviewed some published
methods to quantify the hysteresis of the repolarization duration [73]. Some
of the most commonly employed methods for quantification of the QT-RR
adaptation or hysteresis are described in the following: 1

• In some studies, the time course of QT adaptation following a provoked
and sustained heart rate change, induced by atrial and/or ventricular
pacing, has been characterized by computing the time to reach 90% of the
total QT variation and by quantifying the adaptation time constant after
fitting an exponential function [64,74–76].

• In other studies, the QT-RR hysteresis has been computed by comparing
the QT response at similar RR interval values during sequential heart
rate acceleration and deceleration. A first approach has been to measure
the difference of QT intervals (∆QT) at the same RR interval during
heart rate increases/decreases, typically based on data from exercise
tests [77–79]. The result is, however, highly dependent on the reference
RR interval chosen to calculate ∆QT. A second approach has been to
measure the area between the QT/RR curves obtained separately during
increasing and decreasing rates [80–82]. Several methods for quantifying
this area have been suggested. Various stress protocols, curve fitting
techniques, reference RR range, and reference timing of measurement
have been proposed, which hampers the comparison of the results from
different studies.

• Yet other studies have characterized the QT-RR adaptation by using
models that relate the QT and RR intervals, from which various memory
parameters describing the QT time lag after RR changes can be estimated.
This methodology is the most extended one. It allows to separately
quantify the QT-RR adaptation and the steady-state QT-RR relation. This
methodology can be applied to a wide range of clinical and experimental
settings, as no requirement on the type of RR changes is imposed [47,83–85].

1For further details on hysteresis quantification until 2017, see [73].
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Graphical diagrams of some of the methods used to quantify the QT-RR
adaptation or hysteresis described previously are shown in Fig. 1.5.

Figure 1.5: (a) QT-RR loop during exercise and recovery. The arrows indicate the temporal
evolution and the dashed line corresponds to the static QT/RR curve. (b) On the top, the
RR interval time course follows two exponential curves corresponding to the exercise and
recovery phases. The QT interval time course is represented on the bottom panel. The
QT interval achieves a stable state after the RR interval does. The linear filter weights
that describe the influence of the previous RR intervals on the repolarization index (i.e. the
QT interval) are represented in the middle panel. The effective RR interval is calculated as a
linear combination of preceding RR intervals with the coefficients of such a combination being
the represented exponentially decaying weights, which have an associated time constant τm.
Adapted from [73].

From a clinical point of view, the QT-RR hysteresis index has been evaluated
in different scenarios. A rise in this index has been associated with severe
arrhythmias, shown to be a predictor of long QT syndrome (LQTS) phenotypes
and genotypes, and proposed as a marker of exercise-induced ischemia in
patients with suspected CAD [37]. The mechanism explaining such clinical
findings is likely not to be unique but may possibly be explained by both
the electrophysiological characteristics of ventricular cells and the influence of
cardiac autonomic modulation on ventricular repolarization [78]. Specifically
regarding the LQTS syndrome, it is caused by genetic mutations that result
in malfunction of cardiac ion channels and an increased risk of syncope and
SCD [37]. The most common types of LQTS are LQTS type 1 and LQTS
type 2, which are mainly related to a decrease in the IKs current and a decrease
in the IKr current, respectively [86]. Alterations in the QT-RR hysteresis in
patients with LQTS have been shown to depend on the LQTS type [37]. Wong
et al. showed that the QT-RR hysteresis was more pronounced in patients with
LQTS type 2 compared with LQTS type 1 and LQTS-negative patients [87].

A variety of studies have evaluated the correlation between CAD and a
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hysteresis index based on the QT-RR loop area during gradual heart rate
acceleration and deceleration controlled by pacing or during EST [37]. The
hysteresis index has been compared with the SYNTAX score (SXscore), results
from angiography or the Duke treadmill score and the role of the ANS in
determining its values has been investigated [81, 82]. Clinically, it has been
shown that the QT-RR hysteresis improves the diagnostic value of the EST
for CAD significantly when combined with other conventional criteria and it is
associated with the severity of CAD [82].

In other works, the QT interval adaptation to sudden heart rate changes has
been shown to provide information on the risk of arrhythmic complications and
SCD [88]. In particular, an increase in the QT rate adaptation time in survivors
of acute myocardial infarction has been associated with a higher probability of
dying from an arrhythmic cause [47,48]. Other studies have measured the rate
adaptation of the QT interval after sudden heart rate changes due to conversion
of AF and have postulated that delayed QT adaptation could be a potential
risk factor for proarrhythmia [89,90]. In other studies conducted in guinea-pig
hearts, the rate adaptation of the APD and the QT interval in response to rapid
cardiac pacing has been shown to be prolonged by arrhythmogenic interventions,
such as quinidine, procainamide, and hypokalemia, but not by a clinically
safe antiarrhythmic agent like lidocaine [71]. The analysis of both in vivo
electrograms from patients and in silico simulations has allowed to show that
the heterogeneity in the slow phase of APD adaptation could be an important
component of arrhythmogenesis [69]. In another study with patients undergoing
an electrophysiological study, a close relation between the rate adaptation of
APD and the rate adaption of the effective refractory period has been shown,
which has led to postulate that the repolarization adaptation can have a large
impact on arrhythmia inducibility and should be accounted for in the design of
stimulation protocols for electrophysiological studies [66]. To shed more light on
the cell and tissue mechanisms underlying the QT-RR adaptation phenomenon
and the relation with arrhythmic risk, experimental, clinical and simulated
electrophysiological methods have been used and potential foundations have
been described [37,46,65,91,92].

Other aspects that have been investigated include the effect of quantifying
the adaptation speed in terms of absolute time or number of cardiac cycles
and the influence of sex and gender on the QT-RR hysteresis [84, 85]. The full
potential of the QT-RR hysteresis as an adjunct tool to conventional clinical
indices to improve the prediction of cardiac risk is yet to be determined.

Another interesting aspect regarding QT-RR hysteresis is the comparison of
the QT-RR hysteresis when it is calculated from ECGs recorded in different
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settings, including a tilt test, EST and a 24-hour Holter. This was investigated
in [84] using different exponential QT-RR hysteresis models, whose associated
time constant parameter was estimated in two conditions separately, which
corresponded to heart rate acceleration and deceleration during tilt test, exercise
and recovery during EST, and day and night in 24-h Holter. During EST, the
time constant was significantly longer during recovery regardless of the model,
while the significance between the two time constant estimates depended on the
model when analyzing ECGs from a tilt test or a 24-hour Holter.

In summary, optimizing the accuracy and refined interpretation of exercise
ECG stress testing by including other exercise variables may improve the
diagnostic accuracy in low-to-intermediate probability patients with CAD,
helping in the prediction of SCD, and reduce the financial burden and medical
resources.

1.6 Objectives and outline of the thesis

This Ph.D. dissertation is focused on the computation of the QT adaptation
time in response to gradual heart rate changes. Most articles in the literature
measure this adaptation time when abrupt heart rate changes are observed. The
novel methods proposed in this Ph.D. can help to evaluate the accommodation of
the repolarization duration in clinical practice by analyzing exercise ECGs stress
testing that offer a more controllable scenario than Holter ECG recordings.
In addition, the markers derived from the proposed analysis can serve to
noninvasively stratify patients according to their level of coronary occlusion and
to predict their risk for SCD.

The content of this Ph.D. thesis is organized into six chapters, describing
the methodology developed to quantify the QT adaptation time and evaluating
the proposed markers for separating patients according to their level of coronary
occlusion and for stratifying patients according to their risk of SCD.

• Chapter 2: This chapter describes the methodology developed to estimate
the QT adaptation time using information from exercise ECG stress
testing. Two main objectives are distinguished: (1) to assess different lead
space reduction techniques for robust computation of the T wave end; (2)
to develop a method to compute the QT adaptation time, proposing three
different markers related to such QT adaptation time in response to a
ramp-like heart rate change. Additionally, this chapter points out that the
QT adaptation time lag can be estimated not only in response to linear
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exercise/recovery heart rate changes along the exercise ECG stress testing,
but also in response to heart rate trends with low-frequency changes. The
performance of the proposed algorithm to estimate the QT adaptation
time lag is compared with other approaches of the literature.

• Chapter 3: This chapter describes our novel contributions to improving
the simulator for paroxysmal AF proposed in [93], providing a new, more
general ECG simulator that is suitable to evaluate the QT adaptation
time lag estimation here proposed.

The following publications are based on the results described in this
chapter:

– L. Bachi, H. Halvaei, C. Pérez et al., “ECG Modeling for Simulation
of Arrhythmias in Time-Varying Conditions,” in IEEE Transactions
on Biomedical Engineering, vol. 70, no. 12, pp. 3449-3460, 2023,
doi: 10.1109/TBME.2023.3288701.

– C. Pérez, E. Pueyo, J. P. Mart́ınez, L. Sörnmo and P. Laguna,
“Simulación de señales ECG incluyendo dinámica del intervalo PQ
con el ritmo cardiaco y ruido muscle variante en el tiempo,” XLI
Congreso Anual de la Sociedad Española de Ingenieŕıa Biomédica
(CASEIB), Valladolid, Spain, 2022, pp. 436-439.

• Chapter 4: This chapter describes different simulated datasets generated
using the simulator described in Chapter 3. In particular, simulated ECG
datasets that are similar to those recorded from EST are produced. The
generated datasets are used to assess the methods described in Chapter 2,
which are related to: (1) the T wave end delineation from exercise ECG
stress testing using different lead space reduction techniques; (2) the
estimation of the QT adaptation time; (3) the study of the influence of the
heart rate trend along the exercise ECG stress testing in the estimation of
the QT adaptation time lags.

The following publications are based on the results described in this
chapter:

– C. Pérez, E. Pueyo, J. P. Mart́ınez, J. Viik, L. Sörnmo and P.
Laguna, “Performance Evaluation of QT-RR Adaptation Time Lag
Estimation in Exercise Stress Testing ,” in IEEE Transactions on
Biomedical Engineering, vol. 71, no. 11, pp. 3170-3180, 2024, doi:
10.1109/TBME.2024.3410008.

https://doi.org/10.1109/TBME.2023.3288701
https://doi.org/10.1109/TBME.2024.3410008
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– S. Romagnoli, C. Pérez, L. Burattini, E. Pueyo, M. Morettini, A.
Sbrollini, J.P. Mart́ınez, P. Laguna, “Model-based Estimators of
QT Series Time Delay in Following Heart-Rate Changes,” Annu Int
Conf IEEE Eng Med Biol Soc., Sidney, Astralia, 2023, pp. 1-4, doi:
10.1109/EMBC40787.2023.10340130.

– C. Pérez, E. Pueyo, J. P. Mart́ınez, L. Sörnmo and P. Laguna,
“Evaluation of a QT Adaptation Time Estimator for ECG Exercise
Stress Test in Controlled Simulation,” 2023 Computing in Cardiology,
Atlanta, USA, 2023, pp. 1-4, doi: 10.22489/CinC.2023.235.

– C. Pérez, E. Pueyo, J. P. Mart́ınez, L. Sörnmo and P. Laguna,
“Estimadores del retardo entre las series de QT y RR en registros
ECG de prueba de esfuerzo: evaluación en simulación,”XLI Congreso
Anual de la Sociedad Española de Ingenieŕıa Biomédica (CASEIB),
Cartagena, Spain, 2023, pp. 606-609.

• Chapter 5: The clinical power of the proposed markers are evaluated in
this chapter. Firstly, the QT adaptation time lag is estimated in exercise
and recovery phases, separately, using exercise ECG stress testing of
patients with different likelihood of suffering CAD. The discriminative
capacity of the proposed markers is assessed. Additionally, the predictive
capacity of the proposed markers is also evaluated using a second clinical
database, in which the purpose is to risk stratify CAD patients according
to their risk of suffering SCD or die due to any cause of mortality. Finally,
the estimated values of the QT adaptation time are compared with those
reported in previous studies that assessed the QT response to abrupt
heart rate changes.

The following publications are based on the results described in this
chapter:

– C. Pérez, E. Pueyo, J. P. Mart́ınez, J. Viik and P. Laguna, “QT in-
terval time lag in response to heart rate changes during stress test for
coronary artery disease diagnosis, “Biomedical Signal Processing and
Control, 2023, vol. 86, p. 105056, doi: 10.1016/j.bspc.2023.10505.

– C. Pérez, E. Pueyo, J. P. Mart́ınez, J. Viik and P. Laguna, “Char-
acterization of impaired repolarization by quantification of the QT
delay in response to heart rate changes from stress test recordings,”
2020 11th Conference of the European Study Group on Cardio-
vascular Oscillations (ESGCO), Pisa, Italy, 2020, pp. 1-2, doi:
10.1109/ESGCO49734.2020.9158186.

https://doi.org/10.1109/EMBC40787.2023.10340130
https://doi.org/10.22489/CinC.2023.235
https://doi.org/10.1016/j.bspc.2023.105056
https://doi.org/10.1109/ESGCO49734.2020.9158186
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– C. Pérez, E. Pueyo, J. P. Mart́ınez, J. Viik and P. Laguna, “Charac-
terization of Impaired Ventricular Repolarization by Quantification
of QT Delayed Response to Heart Rate Changes in Stress Test,”
2020 Computing in Cardiology, Rimini, Italy, 2020, pp. 1-4, doi:
10.22489/CinC.2020.194.

– C. Pérez, E. Pueyo, J. P. Mart́ınez, J. Viik and P. Laguna, “Retardo
entre QT y RR en registros de prueba de esfuerzo como indicador
de la heterogeneidad de la repolarización ventricular,” XXXVIII
Congreso Anual de la Sociedad Española de Ingenieŕıa Biomédica
(CASEIB), Virtual, 2020, pp. 6-9.

– C. Pérez, E. Pueyo, J. P. Mart́ınez, J. Viik and P. Laguna, “Char-
acterization of impaired repolarization by quantification of the QT
delay in response to heart rate changes from stress test recordings,”
45th Annual Conference of International Society for Computerized
Electrocardiology (ISCE), Virtual, 2021.

– Young Investigator Award for the best oral presentation. “Characteri-
zation of Impaired Ventricular Repolarization by Quantification of QT
Delay after Heart Rate Changes in Stress Test,” 17th STAFF/MALT
Symposium, Sirolo, Italy, 2021.

– C. Pérez, A. Mart́ın-Yebra, J. Viik, J. P. Mart́ınez, E. Pueyo and
P. Laguna, “Eigenvector-based spatial ECG filtering improves QT
delineation in stress test recordings,” 2021 55th Asilomar Conference
on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2021,
pp. 261-264, doi: 10.1109/IEEECONF53345.2021.9723261.

• Chapter 6: The methodology presented in Chapter 2 allowed to identify a
phenomenon that is produced around the peak exercise. The work of this
chapter is focused on investigating the role of β-adrenergic stimulation
in the QT adaptation rate. Biophysically-detailed cell models coupling
mathematical formulations of human ventricular electrophysiology and
β-adrenergic signaling are used and pseudo-ECG signals are computed
from modeled transmural ventricular tissue fibers. The main conclusion
is that time-varying β-adrenergic stimulation patterns, rather constant
β-adrenergic stimulation, better explain the QT adaptation phenomenon
measured from CAD patients undergoing EST.

The following publications are based on the results described in this
chapter:

– C. Pérez, R. Cebollada, K.A. Mountris, J.P. Mart́ınez, P. Laguna,

https://doi.org/10.22489/CinC.2020.194
https://doi.org/10.1109/IEEECONF53345.2021.9723261
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E. Pueyo, “The role of β-adrenergic stimulation in QT interval
adaptation to heart rate during stress test,” PLoS One, 2023, vol.
18, no 1, p. e0280901, doi: 10.1371/journal.pone.0280901.

– R. Cebollada, C. Pérez, K. A. Mountris, J. P. Mart́ınez, P. La-
guna and E. Pueyo, “Mechanisms Underlying QT interval Adap-
tation Behind Heart Rate During Stress Test,” 2021 Computing
in Cardiology (CinC), Brno, Czech Republic, 2021, pp. 1-4, doi:
10.23919/CinC53138.2021.9662880

• Chapter 7: This chapter contains the main achievements, conclusions and
limitations of this Ph.D. thesis as well as discussions about future work
directions.

Matlab® software is employed for signal processing and result representation,
while R© software is used for statistical analysis.

https://doi.org/10.1371/journal.pone.0280901
https://doi.org/10.23919/CinC53138.2021.9662880
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CHAPTER 2

QT-RR ADAPTATION TIME LAG ESTIMATES IN
EXERCISE ECG STRESS TESTING

2.1 Motivation

2.2 ECG pre-processing

2.3 Enhancement of T wave end
delineation

2.3.1 Evaluation of T wave
end delineation

2.4 RR and QT series

2.5 QT-RR modeling

2.5.1 Reverted QT-RR mod-
eling

2.6 QT-RR adaptation time lag
estimation

2.7 Modification of the peak exer-
cise window for model fitting

2.8 Conditions on RR and QT
trends for time lag estimation

2.9 Interchangeability of QT-RR
model blocks

2.1 Motivation

Two distinct processes can be disguised in the dynamics of the QT-RR relation:
the steady-state QT-RR dependency, which describes how the steady-state
QT interval varies for a range of physiological RR intervals, and the QT-RR
adaptation, which describes the accommodation of the QT interval to attain
its steady-state following a sustained variation in the RR interval [37]. The
adaptation of the QT interval to RR changes has been characterized by two

31
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distinct phases and is, thus, the result of a combination of a fast and a slow
adaptation phases [74]. Some studies have proposed to model these two phases
separately using autoregressive processes [72] to individually characterize them.
Although addressing the separate modeling of the two phases of QT interval
dynamics allows to better account for the physiological phases observed at the
cellular level (see Sec. 1.5), the estimation is more challenging and many clinical
studies in the literature have focused on a global delay characterization, as will
be performed in this thesis.

In previous studies, the QT-RR relation has been described by a system
composed of two blocks. The first block is defined by a finite impulse response
filter and the second block represents a memoryless transformation. In some of
the studies the filter impulse response and the memoryless transformation vary
along time while in other studies they are constant along time. In any case, a
QT adaptation time lag is calculated from the impulse response of the filter,
[47, 64,75, 83]. This phenomenon occurs on top of the beat-to-beat QT interval
variability, which is commonly quantified under stationary conditions and thus
can provide complementary information to the QT adaptation phenomenon [94].
As described in Sec.1.5, previous works have highlighted the importance of
determining normal and abnormal ranges of QT adaptation time lag in response
to sudden changes in heart rate as a possible way to characterize the risk of
cardiac arrhythmias and SCD [88]. In particular, an increase in the QT rate
adaptation time in survivors of acute myocardial infarction has been associated
with a higher probability of dying from an arrhythmic cause [47, 48]. Other
studies have measured the rate adaptation of the QT interval after sudden
heart rate changes due to conversion of AF and have postulated that a delayed
QT adaptation could be a potential risk factor for proarrhythmia [89,90]. The
presence and availability of abrupt heart rate changes, e.g. in the form of
step-like changes, in Holter recordings, may not always be guaranteed. Although
such type of changes are not required by most of the above cited works, having
smooth changes might hamper the adaptation lag estimation in some occasions.
Also, the distribution of abrupt heart rate changes in a Holter recording can be
very variable from subject to subject.

Theoretically, the time constant T of a first-order system in response to
a step input is measured as the time where the corresponding exponential
output reaches 63.2% of its final value (see Fig. 2.1a). It can be noted that the
ramp-response of the same first-order system is characterized by another ramp
delayed by a lag of the same value as the time constant of the step response
(see Fig. 2.1b). Therefore, the time constant of the same first-order system can
be measured using either a step-like or a ramp-like input [95].
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(a) (b)

u

Figure 2.1: The response cptq of a first-order system when the input is (a) a unit-step uptq
and (b) a ramp rptq. The time constant T of the system can be measured using any of these
inputs. Adapted from [95].

During EST, heart rate changes are also observed. The adaptation time of
the QT interval to heart rate changes may be alternatively estimated in this
type exercise tests. Heart rate changes are easily induced by exercise and a
wide range of change is produced, thus offering the opportunity to assess the
dynamics of the QT interval in response to gradual changes in heart rate [51,80].
These heart rate changes follow a trend comparable to a ramp. Thus, developing
robust individualized methods to estimate the QT adaptation time lag from
exercise ECG stress testing is the main contribution of this thesis. This chapter
describes the methodology to perform such an estimation.

We suggest expressing the QT-RR relation by using the same two separate
blocks proposed by Pueyo et al. [47, 83] and focus on the linear block to
characterize the QT adaptation time lag. We define a methodology to compute
the QT adaptation time lag as the delay between the observed QT intervals
and the QT intervals derived from the observed RR intervals. This estimated
delay should provide clinical information equivalent to that provided by the
time constant of the QT response to a step-like heart rate change.

The procedure proposed here requires measuring the QT interval from
exercise ECG stress testing, where the influence of noise, artifacts, and even
the eventual overlap of the T wave and the P wave at very high heart rates
complicate the delineation of the T wave end. Recent studies investigating
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exercise ECGs stress testing incorporate manual delineation to compute the
T wave end, which implies that the number of patients is necessarily reduced [96],
or do not study the dynamics of the QT interval at high heart rates [81,97].
Therefore, we also study and propose different automated procedures in this
work to improve the T wave end delineation during exercise.

2.2 ECG pre-processing

The ECG is subject to filtering prior to applying any other processing. First,
the influence of high-frequency noise is attenuated by forward–backward filtering
using a sixth-order Butterworth, lowpass filter (cut-off frequency at 50 Hz) to
avoid ECG distortion. Afterwards, baseline wander is attenuated by applying a
third-order Butterworth highpass filter (cut-off frequency at 0.5 Hz).

Areas with large amplitude due to the presence of artifacts (i.e. electrode
movements) are detected by defining a threshold based on the median-envelope
of the signal. The samples contained in a 100-ms window around a sample
whose value is higher than the defined threshold are replaced by 0 mV value.

Finally, a cubic spline interpolation [98] is applied to further improve the
attenuation of the baseline wander. The isoelectric level for each beat is
estimated as the averaged value of the filtered ECG in a 20-ms window starting
80 ms before the QRS fiducial point taken as the R point of the QRS complex.

Detection of ectopic beats is also implemented [99] as these beats are usually
present during the recovery phase in EST.

2.3 Enhancement of T wave end delineation

The T wave end delineation is critical in the analysis of the QT interval. In
recent studies [90], wavelet-based delineation [100] is preceded by lead space
reduction to improve the performance. The lead space reduction is defined
by either principal component analysis (PCA) [101] or generalized periodic
component analysis (GπCAP ) [102], with the latter exploiting the fact that the
T wave is 1-to-P -beat periodic [90]. Using the most significant, transformed
lead, a robust delineation performance is reported for Holter recordings.

These two ECG lead space reduction techniques are applied separately to the
8 independent standard leads (V1–V6, I, II) of an ECG signal. In this way, new
transformed leads are generated, which have higher signal-to-noise ratio (SNR).
The delineation of the waves and the extraction of ECG features are more
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accurate when the transformed leads are considered. This is particularly relevant
in the usually very noisy exercise ECGs stress testing.

The spatial lead transformation is computed by applying a transformation
matrix ΨT to the original leads:

wpnq “ ΨTxpnq. (2.1)

where the columns of xpnq contain the information of each of the L leads of the
filtered ECG at sample n:

xpnq “
“

x1pnq x2pnq . . . xLpnq
‰T
,

and wpnq contains the corresponding transformed leads:

wpnq “
“

w1pnq w2pnq . . . wLpnq
‰T
.

To calculate the transformation matrix Ψ, a time window learning period is
selected, where excerpts from each beat are piled in the matrix Xq. Specifically,
the beat signal excerpts corresponding to the T waves from the K beats are
contained in the selected window. The T wave excerpt for each k-th beat

is taken from sample nQRSpkq ` p25 ` 1.2RR
1{2
m qFs{1000 to sample nQRSpkq `

p300`1.2RR
1{2
m qFs{1000, where nQRSpkq is the QRS complex fiducial point [103],

and RRm is the median RR interval value (in miliseconds) in the learning
window. For the k-th beat, the T wave of the l-th lead has a length of N
samples and is expressed in vector notation as:

xk,l “
“

xk,lp1q xk,lp2q ¨ ¨ ¨ xk,lpNq
‰T
. (2.2)

The T waves from all L leads of the k -th beat are put together into matrix
Xk:

Xk “
“

xk,1 xk,2 ¨ ¨ ¨ xk,L

‰T
, (2.3)

where each column contains the n-th samples from the k-th beat T waves in all
the L leads, resulting in a LˆN matrix.

Finally, the (LˆpNKq) matrix Xq is constructed by concatenating the Xk

matrix from all K beats:

Xq “
“

X1 X2 ¨ ¨ ¨ XK

‰

(2.4)

The PCA technique yields transformed leads guided by a maximum-variance
concentration criterion. The orthogonal transformation matrix, now Ψ ” ΨPCA,
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is the eigenvector decomposition matrix of the 8ˆ8 interlead ECG autocorrelation
matrix RXq ,

RXqΨPCA “ ΨPCAΛ, (2.5)

with RXq estimated from the learning data matrix as

R̂Xq “
1

KN
XqXq

T , (2.6)

and Λ being a diagonal matrix containing the eigenvalues of RXq sorted in
descending order. The columns of ΨPCA contain the corresponding eigenvectors.

The GπCAP technique is alternatively used to maximize a given beat
periodicity in the transformed lead, rather than to maximize the variance
as in the case of PCA. In [104], this GπCAP transformation is proposed to
emphasize the beat-to-beat periodicity in the transformed lead, making use
of the beat-to-beat coherence observed in the ECG signal. In highly noisy
recordings with low SNR, like exercise ECG stress testing, the first transformed
lead (TL1) of PCA can emphasize noise when it is dominant or comparable in
energy (variance) to the true (noiseless) ECG signal.

In this study, we hypothesize that the periodicity maximization criterion
used by GπCAP could better filter out noise, even in cases of low SNR, provided
that it does not have the beat periodicity of the signal. The transformation
matrix, now Ψ ” ΨGπCAP

, is derived as the generalized eigenvector matrix
of a matrix pair, ordered in ascending order of eigenvalue magnitude [104].
Specifically, the generalized eigenvector problem,

RP
∆Xp,q

ΨGπCA “ RXqΨGπCAΛ, (2.7)

including the matrix pair
´

RP
∆Xp,q

,RXq

¯

[90], is solved. The spatial correlation

of the nonperiodic residual, RP
∆X, is estimated as:

RP
∆Xp,q

“
1

PKN

P
ÿ

p“1

∆Xp,q∆XT
p,q, (2.8)

with
∆Xp,q “ Xp,q ´ Xq. (2.9)

The matrix Xp,q is Xq shifted p beats forward.

The selection of the signal excerpt where to learn the transformation matrix
may be relevant for the study. The eigenvector accounts for a kind of smoothed
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version of the different T wave morphologies contained in the learning window,
aiming to generate a transformed lead better suited for T wave delineation.
Nevertheless, the large dynamics of the heart rate in EST could generate doubts
about the stability and suitability of this smoothed eigenvector as the best suited
when derived from the entire recordings. For this reason, we propose exploring
two strategies: unique learning of the transformation matrix in a selected
learning window; and relearning of the transformation matrix every 150 s. The
latter is introduced to better account for the long-term T wave changes (not
beat-to-beat), which are the ones relevant to estimate the QT adaptation time
lag from the QT and RR time series.

Depending on the selected strategy for learning the matrix Ψ, six variants
of the two lead space reduction techniques are proposed:

• GπCA1: the transformation is learned in each window of 150 s, recalcu-
lating the Ψ matrix in each window, for P “ 1.

• GπCA3: the transformation is learned in each window of 150 s, recalcu-
lating the Ψ matrix in each window, for P “ 3.

• GπCA1,o: the Ψ matrix is estimated once using the first 150 s at the
beginning of the signal, and then the same transformation Ψ is applied to
the rest of signal, with P “ 1.

• GπCA3,o: The Ψ matrix is estimated once using the first 150 s at the
beginning of the signal, and then applied to the complete signal, with
P “ 3.

• PCA: The PCA technique is applied with the Ψ matrix being reestimated
in each window of 150 s.

• PCAo: The PCA technique is applied with the Ψ matrix being estimated
once using the first 150 s at the beginning of the signal, and then applied
to the complete signal.

2.3.1 Evaluation of T wave end delineation

To evaluate the performance of the different methods proposed to compute the
T wave end, two different cases are considered:

First, the case of real clinical ECG recordings, where the variability of the
raw QT interval series dQTpkq (see Sec.2.4 for series definition) interpolated at a
rate of 4 Hz, resulting in the QT interval series drQTpnq, is estimated as the power
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PQTV of the 0.04 Hz high-pass filtered interval series, separately in exercise and
recovery phases. Under the assumption that delineation errors are uncorrelated
to the (method-invariant) physiological variability of the QT interval, the power
of the filtered series PQTV includes both the natural variability of QT interval
(common for all methods) and the power of the delineation errors. Therefore,
PQTV is considered a surrogate for the delineation performance when a reference
mark is not available. The lower PQTV, the better the performance.

For the second case with simulated added noise to each ECG contained in a
simulated dataset, the performance is quantified by the root mean square (RMS)
error, denoted as ϵθ, between the T wave ends determined from a noisy and a
reference beat, denoted as θk and θrk, respectively, where k denotes the k-th
beat out of the K total beats.

ϵθ “

g

f

f

e

1

K

K
ÿ

k“1

pθk ´ θrkq2 (2.10)

The reference beat is defined in the same way as the noisy beat except that the
SNR is very high (using the definition in (4.2), the SNR is set to 40 dB). A
totally noise-free reference beat is not used to avoid that matrices manipulation
leads to deal with a singular transformation matrix.

2.4 RR and QT series

The starting point of the QT-RR adaptation time lag estimation is the beat-to-
beat RR and QT interval series, denoted as dRRpkq and dQTpkq, respectively,
with k being the beat index. To obtain these series, the multi-lead wavelet-based
delineation (MLeads) method [100] is used to determine a lead-independent
R wave position, nQRSpkq, leading to the RR series defined by

dRRpkq “ nQRSpkq ´ nQRSpk ´ 1q, (2.11)

and the QRS complex onset nQRSopkq. This technique is applied over the
delineation marks of the 8 independent standard leads to assign unique marks
nQRSpkq and nQRSopkq for each k-th beat. For the identification of the T wave
end mark nTepkq, the single-lead delineation method applied over the TL1,
offering the best performance from Sec. 2.3, is used. Therefore, the QT time
series is defined as

dQTpkq “ nTepkq ´ nQRSopkq, (2.12)

for each k-th beat.
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An example of a clinical ECG with the delineation marks nQRSpkq, nQRSopkq

and nTepkq of the single-lead and multi-lead methodologies, SLead and MLeads,
respectively, is shown in Fig. 2.2.

Figure 2.2: Independent standard 8-lead clinical ECG where both the single-lead and multi-
lead delineation, SLead and MLeads, respectively, of R nQRSpkq, QRS onset QnQRSopkq and
T wave end nTepkq points are marked.

Outlier values of both dRRpkq and dQTpkq series, identified as those deviating
by more than ˘10% or ˘5%, respectively, from the running median of each series
computed over 40 consecutive beats, are replaced with the corresponding median
value. Subsequently, missing points are interpolated using a piecewise cubic
Hermite polynomial. In most cases, these missed points are close to the peak
exercise and no long time intervals are observed without any QT measure. Using
piecewise cubic Hermite polynomial avoids overshoots and a larger oscillation if
the data are not smooth. This process helps to emphasize the series trends
and facilitate the estimation of the QT adaptation time lag. Finally, using
interpolation, the dRRpkq and dQTpkq are resampled at a rate of 4 Hz, resulting
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in the uniformly sampled series dRRpnq and dQTpnq measured in seconds, where
n is the uniform sample index. The 4 Hz resampling rate is selected to be higher
than the frequency content of the QT and RR series, which is under 2 Hz, while
still being sufficiently low to ensure computational efficiency.

2.5 QT-RR modeling

The process to estimate the QT adaptation time lag can be divided in two blocks,
see Fig. 2.3. The first block accounts for the calculation of an instantaneous series
diQTpnq, related to dRRpnq through a memoryless transformation (corresponding
to the memoryless, usually nonlinear, QT-RR dependence at steady-state),
and the second block represents the QT adaptation time lag estimation, which
considers the observed QT interval series dQTpnq and the instantaneous series
diQTpnq series (related by a linear system).

The series diQTpnq represents the QT interval that would correspond to
an RR interval in the series dRRpnq if the conditions were stationary. For
this reason, it can be called the expected instantaneous (memoryless) heart
rate-dependent QT interval.

The instantaneous series diQTpnq is obtained from the RR series dRRpnq by
a differentiable function gf pdRRpnq;α, βq whose values are determined by the
two scalar parameters α and β. The series diQTpnq keeps the same temporal
variation as dRRpnq, but its values are comparable to those of the dQTpnq series.
Taking this into account, it can be seen that, in the model displayed in Fig. 2.3,
the delay between dQTpnq and diQTpnq determines the QT adaptation time lag
τ .

Focusing on the computation of the instantaneous series diQTpnq, the trans-
formation gf pdRRpnq;α, βq accounts for the QT-RR relation under stationary
conditions, understanding “stationary” here in the broader sense as “nonchang-
ing trend”. The four regression models considered to compute diQTpnq are
parabolic (Par) (f”Par), linear (Lin) (f”Lin), hyperbolic (Hyp) (f”Hyp) and
logarithmic (Log) (f”Log):

Parabolic log/log pParq diQTpnq “ gf pdRRpnq;α, βq “ βpdRRpnqqα (2.13)

Linear pLinq diQTpnq “ gf pdRRpnq;α, βq “ β ` α dRRpnq (2.14)

Hyperbolic pHypq diQTpnq “ gf pdRRpnq;α, βq “ β `
α

dRRpnq
(2.15)

Logarithmic pLogq diQTpnq “ gf pdRRpnq;α, βq “ β ` α lnpdRRpnqq (2.16)
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Figure 2.3: The proposed model relating the observed RR series dRRpnq to the observed
QT series dQTpnq. The output of the memoryless transformation gf pdRRpnq;α, βq is an
instantaneous QT series diQTpnq, which results in the modeled QT series dmQTpnq when it is
filtered by a linear, time-invariant, first-order filter hpnq. The observed dQTpnq is modeled as
the sum of dmQTpnq and noise wpnq. The QT-RR adaptation time lag τ is estimated as the
delay between diQTpnq and dQTpnq.

Using the least square technique, the values of the model parameters α and β are
estimated for each tested regression model. Patient-specific values of these two
model parameters are obtained using the data pairs rdQTpnq, dRRpnqs contained
in three disjoint learning windows along the EST.

The positions of the three learning windows are the following (the notation
for each window is within parenthesis): the first 40 s of rest before exercise (Wb),
20 s centered around peak exercise (We), and the last 40 s of late recovery (Wlr).
Thus, for each ECG, α and β are estimated using the data pairs of the three
concatenated windows. Together, the concatenated windows Wb YWe YWlr

should contain a wide range of RR intervals to produce a more reliable least
squares fit. The exercise window is replicated twice to have the three regions
equally weighted in the estimation. Examples of dRRpnq and dQTpnq series from
a clinical ECG are represented in Fig. 2.5(a) together with the learning window
positions.

Initially, the data pairs of these three windows are assumed to be stationary.
This assumption is reasonable only for the resting and the recovery windows, but
not for the exercise window, which is, however, included so as to account for the
whole excursion of RR when evaluating the QT-RR dependency. The defined
exercise window includes QT values from heart rate acceleration and deceleration
phases, with opposite effects on the QT interval. Although we hypothesize that
this window could compensate for the QT dynamics, making the mean QT-RR
relation not far from that under stationary conditions, different definitions of
this window are proposed in Sec. 2.7 to reduce the effect of nonstationarity.
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To select the best model when clinical ECGs are evaluated, the patient-
specific fitting of each regression model is compared by computing the RMS
error using the unified data from the three learning windows, Wb YWe YWlr,
in the 4 Hz interpolated series, with each of windows having a length of 40 s (or
20 s but twice):

εrms “

g

f

f

e

1

3 ˆ 40 ˆ 4

ÿ

nPtWju

´

dQTpnq ´ diQTpnq

¯2
, j P tb, e, lru, (2.17)

where j covers the three learning windows Wb,We or Wlr, allowing n to cover
the samples of the three windows of 40 s sampled at 4 Hz.

2.5.1 Reverted QT-RR modeling

The estimation of the QT adaptation time lag can also be calculated as the
delay between the observed RR intervals and an instantaneous series diRRpnq

related to the observed QT intervals by the inverse linear filter of hpnq, which
becomes hp´nq for a pure delay as its impulse response. We hypothesize that
this late option may offer better performance since the RR series has a greater
range of variation than the QT series from which the delays can be computed.
The corresponding model is shown in Fig. 2.4, where the instantaneous series
diRRpnq is now delayed with respect to dRRpnq. Note that a direct inversion of
the model in Fig. 2.3 would have implied that the model in Fig. 2.4 had the
linear and nonlinear blocks swapped. However, in Sec. 2.9 it is described that,
for the QT and RR series measured during an EST, the swapping of the blocks
is irrelevant to the final result and thus, the two blocks can be interchanged.

2.6 QT-RR adaptation time lag estimation

The QT adaptation time lag to gradual heart rate changes, τ , is estimated as
the time lag between the time series diQTpnq and dQTpnq. This estimation is
performed separately in the exercise and recovery phases using the maximum
likelihood (ML) technique. Both Gaussian and Laplacian estimators of τ ,
depending on the assumption on the noise statistic, are used [105,106].

The estimation of the time delay τ between dQTpnq and diQTpnq during an
episode of heart rate change can be formulated as a two-channel time delay
estimation [3]. To derive the ML time delay estimator, the signal model of the
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Figure 2.4: The proposed model relating the observed QT series dQTpnq to the observed
RR series dRRpnq. The output of the memoryless transformation g´1

f pdQTpnq;α, βq is an
instantaneous RR series diRRpnq, which results in the modeled RR series dmRRpnq when it is
filtered by a linear, time-invariant, first-order filter hp´nq. The observed dRRpnq is modeled
as the sum of dmRRpnq and noise w1

pnq. The QT-RR adaptation time lag τ is, in this case,
estimated as the delay between dRRpnq and diRRpnq.

two series is described as:

y1pnq “ spnq ` v1pnq

y2pnq “ spn´ τq ` v2pnq

*

n “ 0, ..., N ´ 1, (2.18)

where y1pnq and y2pnq correspond to diQTpnq and dQTpnq, respectively. The
observed signal y1pnq is assumed to be composed of an unknown linear trend
corresponding to the signal spnq, representing the QT change trend, and
additive stationary white noise v1pnq with variance σ2v (modeled as Gaussian or
Laplacian). The same assumption applies to the second channel, except that the
QT trend is delayed by an unknown time τ . The QT trend spnq is assumed to
have flat (constant) behavior at the initial and final extremes of the observation
window, with a duration that guarantees that, although the series is delayed by
τ , it still has the same flat value at its initial and final samples (step transition
much shorter than the observation interval). The integer N is the length of the
interval, which contains either the exercise or the recovery trend, where the
estimation of τ is performed.

The ML time delay estimate of τ depends on the assumed distribution of
the series. If v1pnq and v2pnq are assumed to be uncorrelated and with Gaussian
probability distribution function (PDF), the PDF characterizing the observations

yi “
“

yip0q ¨ ¨ ¨ yipN ´ 1q
‰T

i P t1, 2u, with s “
“

sp0q ¨ ¨ ¨ spN ´ 1q
‰T
, results in
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the following expression [3]:

pvpy1,y2; τ, sq “
N´1
ź

n“0

1

2πσ2v
exp

«

´

`

y1pnq´spnq
˘2

`
`

y2pnq´spn´τq
˘2

2σ2v

ff

.
(2.19)

Taking the logarithm and grouping factors independent of τ and s, the
following is obtained:

ln pvpy1,y2; τ, sq “ Constant`

´ 1
2σ2

v

N´1
ÿ

n“0

´

`

y1pnq´spnq
˘2

`
`

y2pnq´spn´τq
˘2

¯

.
(2.20)

Maximization of the log-likelihood function in (2.20) is performed by first
differentiating with respect to spnq for a given τ ,

B ln pvpy1,y2; τ, sq

Bspnq
“

1

σ2v

`

y1pnq`y2pn` τq´2spnq
˘

, (2.21)

which, when set to zero, results in the following estimator for spnq:

ŝpn; τq “
y1pnq ` y2pn` τq

2
. (2.22)

Inserting ŝpn; τq into the log-likelihood function in (2.20) and maximizing
with respect to the other parameter τ leads to:

τ̂“argmin
τ

˜

N´1
ÿ

n“0

`

y1pnq ´ y2pn`τq
˘2

`py2pnq ´ y1pn´τqq
2

¸

(2.23)

Since the signal spnq is supposed to have constant value in intervals wider than
τ at the observation window extremes, the estimator in (2.23) is just the least
square estimate varying τ ,

τ̂G “argmin
τ

N´1
ÿ

n“0

py1pnq ´ y2pn`τqq
2 . (2.24)

The maximum likelihood estimator (MLE) τ̂G is derived from Gaussian noise
assumption. However, features derived from the ECG are better represented
by Laplacian rather than Gaussian distributions, as is the case of the QRS
angles [107] or the Karhunen-Loève transform coefficients for the T wave [108].
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The QT interval is a measure based on the QRS onset and T wave end
identifications that can be largely subject to outliers, thus suggesting the
consideration of Laplacian models when estimating the delay between the
QT series.

The derivation of the ML time delay estimation under Laplacian noise
distribution departs from the same signal model described in (2.18), but now
with Laplacian noise PDF. This results in the following expression for the PDF
characterizing the observation signals [105,106]:

pvpy1,y2; τ, sq “
N´1
ź

n“0

1

2σ2v
exp

„

´

?
2

σv
p|y1pnq´spnq|`|y2pnq´spn´τq|q

ȷ

.
(2.25)

Taking the logarithm and grouping factors independent of τ and s, the
following is obtained:

ln pvpy1,y2; τ, sq “ Constant`

´
?
2

σv

N´1
ÿ

n“0

p|y1pnq´spnq|`|y2pnq´spn´τq|q .
(2.26)

Maximization of the log-likelihood function in (2.26) is performed by first
differentiating with respect to spnq for a given τ ,

B ln pvpy1,y2;τ,sq

Bspnq
“ ´

?
2

σv

´

y1pnq́ spnq

|y1pnq́ spnq|
`

y2pn`τ q́ spnq

|y2pn`τ q́ spnq|

¯

“ ´
?
2

σv
rsgn py1pnq´spnqq ` sgn py2pn` τq´spnqqs ,

(2.27)

which, when set to zero, results in the following estimator:

ŝpn; τq “ med ty1pnq, y2pn` τqu “
y1pnq ` y2pn` τq

2
. (2.28)

Inserting ŝpn; τq into the log-likelihood function in (2.26) and maximizing
with respect to the other parameter τ leads to:

τ̂“argmin
τ

N´1
ÿ

n“0

ˆ

|y1pnq´y2pn` τq|

2
`

|y2pnq´y1pn´ τq|

2

˙

. (2.29)

Making use of the assumption that spnq has a constant value at the extremes
of the observation interval for segments wider than τ , the MLE of τ for Laplacian
noise can be written as:

τ̂L “ argmin
τ

N´1
ÿ

n“0

|y1pnq ´ y2pn` τq| . (2.30)
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From all the above, it can be noted that the expressions for the estimators
can be written in terms of the QT series. Also, grouping the expressions for the
two estimates, they can be expressed as:

τp “ arg min
´IďτďI

nx,e
ÿ

n“nx,o

|diQTpnq ´ dQTpn` τq|p, p “ 1, 2, (2.31)

where τ1 and τ2 relate to the Laplacian and Gaussian noises, respectively, and
the delay τ is contained in the search range r´I, Is. It should be noted that
neither spnq nor the statistical parameters need to be known to compute τp.

Thus, the MLEs are identical to minimizing either the least absolute error
(p “ 1, Laplacian) or the least squares error (p “ 2, Gaussian) between diQTpnq

and dQTpn` τq. The limits nx,o and nx,e refer to the onset and end points of
the selected exercise (x ” e) or recovery (x ” r) phase. Thus, four estimates
τp,x are computed for each exercise ECG stress testing, being p the Laplacian
or Gaussian estimator employed (p “ 1, 2) and x the exercise or recovery phase
selected (x P te, ru).

An automatic procedure is designed to determine the boundaries of the
recovery and exercise ramps. The exercise onset ne,o (analogously, the recovery
end nr,e) is taken as the point that results in the minimum mean squared
differences between diQTpnq series and a piecewise linear approximation consisting
of a plateau (incline, respectively, for nr,e) until the candidate point followed by
a subsequent incline (plateau, respectively, for nr,e). In mathematical terms, the
search for ne,o (or nr,e) results from minimizing the following cost function [109]:

ne,o “ argmin
m

pJpmqq, (2.32)

where

Jpmq“

m´1
ÿ

n“M1

`

diQTpnq´fbpnq
˘2

`

M2
ÿ

n“m

`

diQTpnq´fapnq
˘2
. (2.33)

The functions fbpnq “ ab ` bbn and fapnq “ aa ` ban are the best linear
models fitted in the least squares sense of diQTpnq series before and after the
candidate sample point m, respectively, being M1 “ 1 and M2 “ npe ´ 168,
with npe the sample corresponding to peak exercise value. For the determination
of nr,e, an analogous minimization is performed, but in this case M1 “ npe ` 72
and M2 is the last sample in diQTpnq.

The end of the exercise phase ne,e is defined as the first sample for which
diQTpnq shortened from ne,o by a percentage 100γe% of the total reduction
reached at the peak exercise:
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ne,e“argmin
n

ˇ

ˇγe
`

diQTpne,oq́ diQTpnpeq
˘

´
`

diQTpne,oq́ diQTpnq
˘ˇ

ˇ . (2.34)

Similarly, the onset of the recovery phase nr,o is identified as the first sample
for which diQTpnq increased by a percentage 100γr% of the total increase reached
at nr,e:

nr,o“argmin
n

ˇ

ˇp1́ γrq
`

diQTpnr,eq́ diQTpnpeq
˘

´
`

diQTpnr,eq́ diQTpnq
˘
ˇ

ˇ . (2.35)

With the estimated values of the exercise time lag τp,e and recovery time lag
τp,r, the difference between them is studied as an additional marker:

∆τp “ τp,r ´ τp,e, p “ 1, 2. (2.36)

Therefore, three ECG markers from exercise ECG stress testing are proposed
in this Ph.D. dissertation: the QT adaptation time lag computed from the
exercise and recovery phases, separately, and the difference between them.

An example of diQTpnq and dQTpnq series from a clinical ECG is shown in
Fig. 2.5(b). The time points delimiting the different phases of the test and
the estimated delays using the Gaussian estimator are illustrated. The same
procedure but using dRRpnq and diRRpnq series to estimate the desired delays
can be seen in Fig. 2.5(c).

In the case of simulated ECGs with controlled τ , see Chap. 3, the performance
to estimate the QT adaptation time lag is quantified by the error ϵτ between
the estimated time lag τ̂p,x and the true time lag τp,x imposed in the simulator:

ϵτ pp, xq “ τ̂p,x ´ τp,x, p “ 1, 2; x P te, ru. (2.37)

2.7 Modification of the peak exercise window for model fitting

The estimation of the model parameters α and β is based on the assumption that
the data pairs rdQTpnq, dRRpnqs are observed under stationary conditions in the
three learning windows defined in Section 2.5. Since this assumption rarely holds
for the data pairs in the window centered at the peak exercise, the proposal in
this Ph.D. thesis is to replace rdQTpnq, dRRpnqs with rdQTpnq ´ ∆QT, dRRpnqs.

The decrement ∆QT accounts for the additional shortening of dQTpnq, thus
having QT interval values more similar to those that would have been obtained
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Figure 2.5: Example of the procedure for QT time lag estimation from an exercise ECG stress testing. (a) The time series dRRpnq is
shown together with the boxes defining the three windows, Wb, We and Wlr, used to estimate the values of the parameters α and β.
The time series dQTpnq is additionally shown. (b) The delimitation of the onset and end sample points in the exercise phase (ne,o,
ne,e) and in the recovery phase (nr,o, nr,e) is presented. The corresponding QT lags obtained by minimizing the MSE criteria between
dQTpnq and diQTpn ´ τq obtained using the Gaussian-based estimator are written for each of the two EST phases. (d) Graphical
representation of the procedure proposed to obtain the value of ∆QT, which is used to modify dQTpnq at the We window in peak
exercise using τp,e derived as in (b). (e) The corresponding exercise and recovery time lags obtained after regression estimation from
the modification of the QT values in (d). The two processes for QT delay estimation shown in (a,b) and (c,d), respectively, are
repeated but calculating the delay between dRRpnq and diRRpnq, shown in panel (c), and the delay between dRRpnq and d̃iRRpnq, shown
in panel (f).
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provided that dRRpnq had remained stationary long enough at the peak exercise
until the time when the data pairs rdQTpnq, dRRpnqs would be stationary.

Firstly, the exercise time lag τp,e between dQTpnq and diQTpnq estimated
considering the originally defined windows is used to compute the subtracting
factor ∆QT. Specifically, ∆QT results from multiplying τp,e by the absolute
value of the QT series slope se at the peak exercise: ∆QT “ τp,e ˆ se. The
value of se is calculated as the absolute value of the slope of the linear fit to the
QT series from the selected end of the exercise area, ne,e, defined in Sec. 2.6, to
the point associated with the lowest dQTpnq value. A graphic example of this
process can be seen in Fig. 2.5(d).

Since the use of rdQTpnq ´ ∆QT, dRRpnqs data pairs from the exercise window,
together with the data pairs from the stationary resting and recovery windows,
yields other estimates of α and β, the modified instantaneous QT series is
denoted as d̃iQTpnq. The resulting d̃iQTpnq series and the corresponding τp,e and
τp,r from an exercise ECG stress testing are shown in Fig. 2.5(e). This definition
is also applied when dRRpnq and diRRpnq series are used to estimate the delays.
An example of d̃iRRpnq is shown in Fig. 2.5(f).

To deal with the above assumption even further, the peak exercise window
is redefined. In addition to modifying dQTpnq with ∆QT, the end of the exercise
window We is aligned with the peak exercise time, denoted as W̌e, so that only
data pairs from exercise are used. For the modified and aligned window, the
resulting instantaneous QT series is denoted as ďiQTpnq.

Thus, the following three definitions of instantaneous QT series are studied
separately to render three different estimates of the QT adaptation time lags
(the notation for the associated delay estimates are indicated in parentheses):
diQTpnq (τp,x), d̃

i
QTpnq (τ̃p,x), and ď

i
QTpnq (τ̌p,x). The block diagram in Fig. 2.6

shows the procedure to estimate α and β using the data pairs in the three
concatenated windows Wb Y

`

We or W̌e

˘

YWlr.

2.8 Conditions on RR and QT trends for time lag estimation

The output diQTpnq of the memoryless transformation is fed to a linear, time-
invariant, first-order filter hpnq, which is shown in Fig. 2.3. The impulse response
is given by:

hpnq “ κe´n{τupnq, (2.38)

where τ is the memory time constant, expressed in samples, here considered as
the QT adaptation time lag, κ is a constant whose value is chosen so that the
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Figure 2.6: Estimation of α and β, defining the memoryless transformation g pdRRpnq;α, βq,
which is based on rdQTpnq, dRRpnqs (or corresponding modifications) in the three concatenated
learning windows. In the first case, the estimation uses the unmodified series dQTpnq in
the window We, with the instantaneous QT series being diQTpnq. In the second case, the
estimation uses the series dQTpnq in the window We but modified by subtracting ∆QT, with
the instantaneous QT series being d̃iQTpnq. In the third case, the estimation uses the series
dQTpnq modified by subtracting ∆QT in the window W̌e, with the instantaneous QT series
being ďiQTpnq. LS, least square.

filter has unitary gain and upnq is the unit step function. The output of the
filter hpnq is the modeled QT series dmQTpnq, which results in the time series
dQTpnq after adding the noise wpnq accounting for modeling and delineation
errors.

When dRRpnq is better characterized by a low-frequency trend, denoted as
spnq, that does not exactly correspond to a linear trend, it can be shown that
the first-order system hpnq still behaves as a time-delay system provided that
the spectral content of spnq is below a certain frequency.

The discrete-time Fourier transform of hpnq in (2.38) has the following
expression:

Hpωq “
κ

1 ´ e´1{τe´jω
. (2.39)

For healthy subjects, τ « 25 s [83] and, accordingly, the system has a cut-
off frequency Fc “ p2πτq´1 « 0.006 Hz (ωc « 0.01), so the magnitude of the
frequency response Hpωq can be approximated, for ω ! 0.01, by:

|Hpωq| “
κ

a

1 ´ 2e´1{τ cospwq ` e´2{τ
«

κe1{τ

e1{τ ´ 1
. (2.40)

For 1{τ ! 1, the phase of the frequency response, =Hpωq, can be approximated
by:

=Hpωq “ ´ arctan

ˆ

sinpwq

e1{τ ´cospwq

˙

« ´
ω

e1{τ ´1
« ´ωτ, (2.41)
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thus resulting in the following approximate expression for Hpωq:

Hpωq «
κe1{τ

e1{τ ´ 1
e´jωτ , (2.42)

which is a pure delay system for frequencies below Fc.

Therefore, in order to estimate τ by measuring the delay between dQTpnq

and diQTpnq, the trend spnq does not need to be a linear ramp, as assumed in
(2.18), but it suffices that its frequency content is below Fc. The time series
diQTpnq and dQTpnq can be still be modeled as in (2.18):

diQTpnq “ spnq ` vipnq,

dQTpnq “ spn´ τq ` vpnq,

*

n “ 0, ..., N ´ 1, (2.43)

and the estimates derived in Sec. 2.6 remain as valid ML estimates. Both vipnq

and vpnq account for short-term, beat-to-beat QT variability and delineation
errors. The noise components vipnq and vpnq are statistically independent as
vpnq reflects uncertainty in determining the Q wave onset and T wave end,
whereas vipnq reflects uncertainty in determining the R wave position.

2.9 Interchangeability of QT-RR model blocks

In contrast to the original QT-RR model proposed in [83], illustrated in Fig. 2.7,
gf pdRRpnq;α, βq is here placed before the first-order system hpnq, not after
it (see Fig. 2.3). The two orderings are not mathematically equivalent since
gf pdRRpnq;α, βq is typically nonlinear. In mathematical terms, the modeled

Figure 2.7: QT-RR model with a reversed block order, cf. Fig. 2.3. Note that the so-called
reverted estimate of the QT series drmQTpnq and the so-called reverted model of the delineation
error wr

pnq differ from their equivalent in Fig.2.3 , but the sum results in the observed dQTpnq

series in both cases, dQTpnq “ drmQTpnq ` wr
pnq.

QT series proposed in this Ph.D. thesis (Fig. 2.3) is given by:

dmQTpnq “

8
ÿ

m“0

gf pdRRpn´mqqhpmq. (2.44)
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In the following, the proposed model (Fig. 2.3) is shown to be approximately
equal to the model with the reversed block order, for which the output of
the second block is denoted as drmQTpnq. For convenience, gf pdRRpnq;α, βq is
shortened to gf pdRRpnqq.

The starting point is to truncate the sum in (2.44) to include only up to
the sample M of hpnq, with M « 5τ , as the remaining samples have negligible
significance. Thus,

dmQTpnq «

M
ÿ

m“0

gf pdRRpn´mqqhpmq. (2.45)

Since dRRpn´mq typically exhibits small changes around dRRpnq in the interval
m P r0,M s, the first-order approximation of the Taylor series expansion of
gf pdRRpn´mqq around dRRpnq becomes

dmQTpnq «

M
ÿ

m“0

“

gf pdRRpnqq ` g1
f pdRRpnqqpdRRpn´mq ´ dRRpnqq

‰

hpmq, (2.46)

where g1
f pdRRpnqq denotes the first derivative. Assuming that hpnq has unitary

gain at zero frequency, the first-order approximation becomes:

dmQTpnq « gf pdRRpnqq ` g1
f pdRRpnqqpdiRRpnq ´ dRRpnqq, (2.47)

where diRRpnq “
řM

m“0 dRRpn´mqhpmq. The series diRRpnq can be interpreted as
the expected memoryless RR interval series corresponding to the observed dQTpnq

under stationary conditions. By observing the equation (2.47), it becomes clear
that this expression is a Taylor series approximation around dRRpnq of the
memoryless transformation that relates diRRpnq to dQTpnq and, thus,

dmQTpnq « gf pdiRRpnqq “ gf

˜

M
ÿ

m“0

dRRpn´mqhpmq

¸

« gf

˜

8
ÿ

m“0

dRRpn´mqhpmq

¸

“ drmQTpnq. (2.48)

The above result confirms the interchangeability of the model blocks in Fig. 2.3
under the described assumptions.

The input–output relation of the model in Fig. 2.3 is approximately equal to
the original QT-RR model proposed in [83] if τ is small relative to the span
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required for RR intervals to change significantly, showing that the block order
is interchangeable. It is not clear which of the two orders is better to model
the underlying physiological behavior. The order in Fig. 2.3 is better suited to
estimate τ as it allows diQTpnq to be paired with dQTpnq. The order in Fig. 2.7

is the one to use to pair diRRpnq to dRRpnq, as commented on in Sec. 2.5.1.
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CHAPTER 3

ECG SIMULATOR

3.1 Motivation

3.2 Modeling the dynamics of si-
nus rhythm variability and its
dependency with respiration

3.3 Modeling the influence of
time-varying respiration on
the ECG

3.4 Modeling the influence of
heart rate on the PQ inter-
val

3.5 Modeling the influence of
heart rate on the QT inter-
val

3.6 Modeling of time-varying mus-
cle noise

3.1 Motivation

In Chapter 2, we have defined the methodology to estimate the QT adaptation
time lag from the gradual heart rate changes that can be observed in EST.
These gradual changes, rather than the sudden changes in Holter recordings,
can always be observed during EST and therefore serve as a useful basis for
time lag estimation.

Since a gold standard to determine the true time lag from real exercise ECG
stress testing is lacking, the simulation of ECG signals is particularly well-suited
to evaluate the performance of the proposed time lag estimation in the presence
of QT dynamics with known and controllable properties.

55
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ECG simulation has been shown to represent a powerful tool for evaluation
and comparison of methods performance under controlled conditions. The
simulated ECG signals can range from simple test signals to signals with complex
characteristics, as for instance the signals generated by models to simulate
maternal and fetal ECGs [110–112], TWA [113] and paroxysmal AF [93]. The
cited simulators have in common that they are based on mathematical models
of relevant physiological phenomena, while they do not pretend to model
detailed biophysical mechanisms. Moreover, the purpose of these available ECG
simulation tools is very specific.

Currently, Machine Learning tools are being increasingly used to extract
specific aspects of ECGs, to group individuals based on their ECG signals or
even to make diagnosis based on this signal. However, the models based on
a black box usually neglect the physiological and mathematical aspects that
may be behind cardiac changes [114]. Nonetheless, ECG signals generated by
simulators can be additionally used to train neural networks, which can help
overcome the issue of overfitting. This highlights the importance of simulating
ECG signals based on realistic criteria.

Focusing on the exercise ECG stress testing, although there have been
advances in simulating ECG signals similar to those measured during EST [115–
117], there is a gap in the literature when it comes to including the relationship
between the PR interval and the heart rate in a simulated environment. Some
studies have shown that the length of the PR interval is not constant and has a
certain dependence on heart rate [118,119]. As a consequence, as heart rate
increases, unless including proper modeling of this PR dependence with the
heart rate, an overlap between the P wave and the T wave frequently occurs.
Also, modeling muscle noise (MN) present in ECG signals is also a field that
is poorly researched. Behar et al. [111] defined a model that modified the
frequency spectrum over time slightly, but did not add any variation in power.
Furthermore, defining time-varying conditions, that is, including temporal
variations in the heart rate, noise and respiration, are required to properly
model exercise ECG stress testing. The QT memory time lag in simulations
was first introduced in the work by [90].

To adapt the currently available simulators to our simulation requirements
for exercise ECG stress testing, the work of this Ph.D. thesis contributes to the
improvement of the simulator proposed by [93], resulting in a recently proposed
version which can model various cardiac conditions, including arrhythmias of
atrial and ventricular origin, PQ and QT interval changes related to heart rate,
and a known QT-RR adaptation time lag [120]. Moreover, this simulator offers
statistical, time-varying modeling of MN, motion artifacts, and respiration,
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which are components of particular significance when simulating ECGs recorded
during exercise.

In this chapter, the contributions of this Ph.D. thesis to a new ECG
simulator [120] are presented. Such contributions are necessary to generate
simulated ECGs whose components are similar to those observed in EST.

3.2 Modeling the dynamics of sinus rhythm variability and its
dependency with respiration

The RR intervals in sinus rhythm (SR) can be modeled as an associated HRV
oscillating over a mean RR interval, which can also be time-varying.

Based on the McSharry et al. model [115] and the definition of SR in the
ECG simulator of Petrenas et al. [93], the HRV power spectrum is assumed to
be a bimodal power spectrum composed of a Gaussian, related to baroreflex
regulation (“low-frequency component”) and centered around a low frequency
FLF, and another Gaussian, related to parasympathetic stimulation (“high-
frequency component”) and centered around a time-varying high-frequency (HF)
coincident with the respiratory frequency FHFptq “ Frptq. Here, the model is
enhanced with respect to that in [93] to add the time-varying property. So, for
Ω ě 0, the time-varying HRV power spectrum is defined by:

SRRpt,Ωq “
PLFptq

b

2πσ2LF

e
´

pΩ´2πFLFq2

2σ2
LF `

PHFptq
b

2πσ2HF

e
´

pΩ´2πFrptqq2

2σ2
HF , (3.1)

and, due to symmetry, SRRpt,Ωq “ SRRpt,´Ωq. The powers PLFptq and PHFptq
and the center frequency of the HF component Frptq are time-varying, whereas
the widths σ2LF and σ2HF and the center frequency FLF are time-invariant.

An RR interval signal dRRptq, whose properties are described by (3.1), is
generated by linear filtering of white noise vRRptq so that the LF component
is the output of the time-invariant filter hLFptq and the HF component is the
output of the time-varying filter hHFpt;Frptqq,

dRRptq “

´

a

PLFptqhLFptq `
a

PHFptqhHFpt;Frptqq

¯

˚ vRRptq `mRRptq,

(3.2)

where mRRptq represents the time-varying mean RR interval.

To derive the expression of the impulse responses of the filters, we start by
recalling that the power spectrum of filtered white noise with variance σ2v,RR
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is given by the expression SRRpt,Ωq “ |Hpt,Ωq|2σ2v,RR, which implies that the
frequency response of each of the filters is given by the square root of the power
spectrum of a Gaussian. Applying the square root to each of the two terms in
(3.1), it can be observed that terms of the following form appear:

HpΩq “ e´
|Ω|

σ . (3.3)

Based on the Fourier transform pair e´υ|t| Ñ 2υ
υ2`Ω2 and the property that the

transform of F ptq is 2πfp´Ωq, where F pΩq is the Fourier transform of fptq, the
impulse response hptq, which is the inverse Fourier transform of the expression
in (3.3), results in:

hptq “
1

2π

2
σ

1
σ2 ` t2

. (3.4)

For the particular case where σ2 “ 2σ2LF, the previous expression can be written
as:

hptq “
1

2π

?
2

σLF

1
2σ2

LF
` t2

. (3.5)

Introducing a shift in frequency to obtain Ω ´ ΩLF “ Ω ´ 2πFLF, knowing
that the Fourier transform of fptq cospΩ0tq Ñ 1

2 rF pΩ ´ Ω0q ` F pΩ ` Ω0qs, and
introducing the proper scaling factors in (3.1) and (3.2), the impulse response
hLFptq becomes

hLFptq “
1

π4

b

2πσ2LF

?
2

σLF

1
2σ2

LF
` t2

cosp2πFLFtq. (3.6)

Operating and applying the same transformation to the HF component, the
two filter impulse responses are:

hLFptq “
4

c

32

π5

?
σLF

1 ` 2σ2LFt
2
cosp2πFLFtq, (3.7)

hHFpt;Frptqq “
4

c

32

π5

?
σHF

1 ` 2σ2HFt
2
cosp2πFrptqtq. (3.8)

The discrete-time implementation is achieved by sampling each impulse
response symmetrically around t “ 0 until its envelope falls below 5% of its
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peak value; the same sampling rate as that of dRRptq and Frptq is used. Since
the filters hLFptq and hHFpt;Frptqq are noncausal, each filter needs to be shifted
by half its length to become causal.

Although the definition of a time-dependent frequency in the HF filter
might be questioned, the implemented shift represents the nonstationarity of
respiratory rate. Its inclusion accounts for the HRV frequency range dependent
on respiratory rates, which is restrictive within a frequency band.

3.3 Modeling the influence of time-varying respiration on the
ECG

Respiration is manifested in the ECG by relatively periodic changes in the
electrical axis of the heart as well as changes in heart rate. So, asymmetric filling
and emptying of the lungs produce rotation of the VCG loop and consequently
variations in QRS morphology [121–123]. Since the respiratory frequency
depends on the degree of physical effort, the assumption of a fixed respiratory
frequency in [93] is generalized to become time-varying. Changes in heart rate
due to respiration are modeled by a time-varying respiratory component of the
HRV power spectrum, which has been already described in previous section.

To introduce this effect into the simulated ECG, the starting point is the
respiratory interval tachogram, i.e. a series of successive respiration intervals
Tr,0, Tr,1, . . ., which can be transformed to a time-varying respiratory frequency
Frptq through the use of the inverse interval function [3].

The reference simulated, noise-free VCG signal uVCGptq is transformed by
rotation, defined by the product of three planar rotations around each of the X,
Y, and Z axes,

xptq “ QXptqQYptqQZptquVCGptq, (3.9)

where uVCGptq is a 3 ˆ 1 vector containing the values of the three orthogonal
ECG lead at time t and the rotation matrices

QXptq “

»

–

1 0 0
0 cosφXptq sinφXptq
0 ´ sinφXptq cosφXptq

fi

fl , (3.10)

QYptq “

»

–

cosφYptq 0 sinφYptq
0 1 0

´ sinφYptq 0 cosφYptq

fi

fl , (3.11)
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QZptq “

»

–

cosφZptq sinφZptq 0
´ sinφZptq cosφZptq 0

0 0 1

fi

fl , (3.12)

are defined by the time-varying angle rotations on each respective axis:
φXptq, φYptq, and φZptq.

Introducing a template respiratory cycle ϕptq, the angular variation is
assumed to be proportional to the amount of air in the lungs, modeled as the
product of two logistic functions accounting for inspiration and expiration [123,
124],

ϕpt; δin, δexq “
1

1 ` e´γinpt´δinq

1

1 ` eγexpt´δexq
, (3.13)

where γin and γex define the steepness of inspiration and expiration, respectively,
and δin and δex are positive-valued and uniformly distributed, defining the
approximate duration of inspiration and expiration, respectively. The angular
variation in each of the leads o P tX,Y,Zu is modeled by

φoptq “ ξo

8
ÿ

p“0

αo,pϕ

˜

t´
řp

q“0 Tr,q

sp
; δin,p, δex,p

¸

, (3.14)

where ξo ą 0 is the maximum variation (expressed in degrees), αo,p is a uniformly
distributed amplitude, Tr is the duration of the template respiratory cycle, and
sp “ Tr,p{Tr is a scaling factor ensuring that the p:th cycle has the duration Tr,p.

As an example, for a linearly increasing Frptq and a linearly decreasing
mRRptq, the angular function φXptq and the RR interval signal dRRptq are
illustrated in Figs. 3.1(a) and (b), respectively. The resulting simulated ECG is
illustrated in Fig. 3.1(c).

For the particular cases of simulating an ECG similar to that obtained
from EST, PLF(t) and PHF(t) are modulated by the results from [125]. This
study analyzes both normalized median powers in five different intervals during
maximal EST according to oxygen consumption: the basal phase (before starting
the exercise phase), three intervals during the exercise phase (0-60%, 60-80% and
80-100%), and the recovery phase, named as Ib, I60, I80, I100 and Ir respectively.
These are used to fit the intermediate values linearly along EST. Besides,
the median values are randomly changed in each simulation using a standard
deviation of 0.05.

Figure 3.2(a) represents an example of both mRR(t) and Fr(t) pattern
defined by the user to generate a final dRR(t) (Fig. 3.2(c)), whose HRV is
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Figure 3.1: Time-varying respiratory frequency, linearly increasing from 0.2 to 0.5 Hz in a
60-s interval, influencing (a) the angular function φXptq (radians), partially describing the
variation in the electrical axis, (b) the variation in RR intervals, visible at the end of the
RR interval signal dRRptq (expressed in seconds), and (c) the simulated ECG in lead X. The
noise level gradually increases to mimic an exercise stress test.

calculated based on the time-varying PLF(t) and PHF(t) normalized powers
presented in Fig. 3.2(b).

3.4 Modeling the influence of heart rate on the PQ interval

A model is proposed to account for the dependence of the PQ interval on heart
rate. When simulating ECGs in time-varying conditions it is crucial to deal
with this dependence, since the P wave tends to overlap with the T wave at
high heart rates, e.g. during EST.

A simple nonlinear, memoryless model is introduced in this Ph.D. thesis
to include the PQ interval dependence on heart rate at higher heart rates.
The model builds on the physiological finding that the PR interval depends on
heart rate at higher heart rates, while otherwise independent [118]. However,
since the QR duration does not change significantly at higher heart rates [126],
the dependence of the PQ interval dPQpdRRpkqq on the preceding RR interval
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Figure 3.2: (a) Mean RR intervals mRR(t) and time-varying respiratory frequency Fr(t)
whose patterns are similar to the ones observed from EST. (b) PLF (t) and PHF (t) powers
modulated throughout the test according to the progression of RR intervals. (c) The resulting
dRR(t) series.

dRRpkq of the k-th beat can be modeled by the following expression:

dPQpdRRpkqq “
#

dPQ0
` κPQpdRRpkq ´ dRR,cpq, dRRpkq ă dRR,cp;

dPQ0
, dRRpkq ě dRR,cp,

(3.15)

where dPQ0
is the baseline PQ interval observed at lower heart rates, κPQ

is the slope of the linear dependence, and dRR,cp is the change point for the
dependence. Thus, assuming that the P wave duration is independent of heart
rate, the P wave onset is positioned dPQpdRRpkqq seconds before QRS onset.

The values of the parameters dPQ0
, κPQ, and dRR,cp can be estimated by

analyzing the dependence between PQ and RR intervals in subjects performing
EST. Then, the range of RR intervals is divided into BRR bins of equal width,
and the median of the PQ intervals contained in each bin is computed, resulting
in dmedpbq ” dPQpdRRpbqq, b “ 1, . . . , BRR. The bin corresponding to the change
point is estimated by minimizing the following least square error function with
respect to b0:

εpb0q “

b0
ÿ

b“1

wpbqpdmedpbq ´ dPQ0
´ κPQpdRRpbq ´ dRR,cpqq2

`

BRR
ÿ

b“b0`1

wpbqpdmedpbq ´ dPQ0
q2, (3.16)
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thus yielding d̂RR,cp “ dRRpb̂0q. The weights wpbq are taken as the number of
subjects contributing to the b-th bin.

The estimation procedure is illustrated by analyzing ECGs recorded from
patients with low risk of suffering CAD performing EST. The signals are
selected from the database presented in Sec 5.2.1. The onset of the QRS
complex is obtained by applying a single-lead plus rule wavelet [100] delineation
to the 8 independent standard leads. The onset of the P wave is obtained by
delineating the TL1 after applying spatial periodic component analysis to the
8 independent standard leads to improve the signal quality.

As hysteresis is observed when the PQ-RR relation is studied in the exercise
and recovery phases independently [119], the values of the parameters in (3.15)
are defined for decelerated heart rate using the information of the recovery part
of EST. The estimated parameter values are shown in Table 3.1.

Table 3.1: Estimated values of the PQ interval model parameters in time-varying conditions
for exercise and recovery phases, independently. The baseline PQ interval dPQ0

is selected
randomly an uniform distribution within the defined range using .

dPQ0
d̂PQ0

κ̂PQ d̂RR,cp

Exercise r140 ´ 160s ms 152 ms 0.358 520 ms
Recovery r130 ´ 150s ms 139 ms 0.470 430 ms

Figure 3.3(a) shows the median of all PQ intervals in each of the RR in-
terval bins to which the function in (3.15) is fitted, for exercise and recovery
phases separately. Figures 3.3(b)-(c) show simulated ECGs with and without
the inclusion of the PQ–RR dependence, respectively. Without the PQ–RR
dependence, P waves occur too far away from the QRS complex at high heart
rates, thus not reflecting normal electrophysiological behavior.

Finally, the P wave is modeled as a linear combination of Hermite functions
as in [93]. The duration of this wave can be considered time invariant and
independent of heart rate. The duration of the P wave is set to be 120 ms.

3.5 Modeling the influence of heart rate on the QT interval

To simulate realistic ECGs that account for the QT interval adaptation to
RR interval changes [47], an input–output model is introduced that makes
it possible to simulate ECGs and use them to validate the methodology for
QT lag estimation proposed in this Ph.D. thesis. This improvement in the ECG
simulator is first implemented by Mart́ın-Yebra et al. [90], with the QT interval
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Figure 3.3: (a) The median of the PQ intervals contained in each RR interval bin for exercise
(red curve) and recovery (blue curve), separately. The fitted functions are represented in
black, and the values of d̂RR,cp are indicated by vertical dotted lines. (b) Simulated ECG
with PQ–RR dependence modeled at low and high heart rates. (c) Simulated ECG without
modeling the PQ–RR dependence, causing the P waves to be incorrectly hidden in the T waves
at a high heart rate.

adaptation being composed of a fast, initial phase extending a few RR intervals
and a subsequent slow phase lasting for several minutes [64].

Here, the input–output relation between the preceding RR intervals dRRpnq

and the QT interval dQTpnq (Fig. 2.7) in the ECG simulator is defined by a
finite impulse response filter, whose output is denoted diRRpnq, followed by
a memoryless nonlinear function. The impulse response hpnq is a truncated
exponential,

hpnq “
p1 ´ ϱq

p1 ´ ϱN q
ϱn, n “ 0, . . . , N ´ 1, (3.17)

whose length N corresponds to 300 s based on physiological considerations.
The exponential decay ϱ (0 ă ϱ ă 1) is related to the time constant τ through

ϱ “ e´ 1
τ , where the value of τ can be defined by the user. Based on the
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results in [47], the model output dQTpnq is taken to be inversely related, with a
hyperbolic relation, to diRRpnq,

dQTpnq “ β `
α

diRRpnq
, (3.18)

where the values of α and β are defined according to the results obtained from
the analysis of the clinical database defined in Sec. 5.2.1.

The QT interval of each k-th beat is then modified by resampling the T wave
while maintaining the QRS duration so that the QT interval becomes equal to
that indicated by the model. The model for QT–RR adaptation has proven
useful not only in SR [47] but also in AF [90].

3.6 Modeling of time-varying muscle noise

Noise modeling is an essential part of any simulator aiming to generate realistic
signals that can challenge the performance of a signal processing method. To ac-
count for time-varying spectral characteristics, time-varying autoregressive (AR)
models driven by white Gaussian noise have been proposed for modeling of
baseline wander [110] and MN [111]. In these studies, most of the model param-
eters are estimated from the PhysioNet MIT–BIH Noise Stress Test Database
(NSTDB), resulting either in time-varying filter parameter estimates [110] or
fixed filter parameter estimates made time-varying by letting the position of
related pole pairs vary according to a random walk model [111].

The modeling of MN, commonly observed in EST, receives special attention.
The filtered white noise approach serves as the starting point for MN modeling,
but is altered in several respects to account for prominent characteristics such as
a time-varying level of MN. Hence, the noise added to the noise-free simulated
ECG is assumed to consist of MN xMNpnq. Baseline wander is less critical to
model and therefore not considered here. It should be noted that each lead
is corrupted by individual noise realizations, and, consequently, no interlead
correlation is introduced in the simulated ECG. A diagram of MN modeling is
shown in Fig. 3.4.

Muscle noise xMNpnq is modeled as a nonstationary AR(p) process, defined
by the following difference equation:

xMNpnq “ a1,nxMNpn´ 1q ` ¨ ¨ ¨ ` ap,nxMNpn´ pq ` wpnq, (3.19)

where wpnq is white, Gaussian noise with time-varying variance σ2wpnq and p
is the model order. The time-varying parameters a1,n, . . . , ap,n are estimated
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Figure 3.4: Muscle noise (MN) model with input information from a real MN signal.

using a two-step procedure. Firstly, the parameters of a stationary AR(p)
model, i.e., a1, . . . , ap, are estimated using a PQRST-cancelled, filtered and
amplitude-normalized ECGs, recorded during EST [103]. Filtering is performed
to ensure that the resulting signal closely approximates MN one. First, a
10-80 Hz bandpass filter is applied followed by a nonlinear 50 Hz notch filter
to remove the 50 Hz contamination [3]. The normalization of the amplitude,
achieved by means of the envelope of the canceled signal, is motivated by the
large variation in the noise level. Since the spectral content of MN is confined
to frequencies well below 100 Hz, parameter estimation is performed on signals
sampled at a rate of 200 Hz to ensure a low-order AR model, taken to be p “ 4.
Hence, the sampling rate of the model output needs to be increased to the rate
of the simulated ECG (1000 Hz). Secondly, the poles related to â1, . . . , âp are
made time-varying using a simple random walk model [111].

Although the spectral properties of MN do not vary much over time, the
noise level itself can vary considerably. These two characteristics are illustrated
in Fig. 3.5. The following first-order model of how the standard deviation σwpnq

of wpnq in (3.19) varies over time is proposed:

xσwpn` 1q “ νxσwpnq ` vσwpnq, (3.20)
σwpnq “ maxpσw,min,mσwpnq ` xσwpnqq, (3.21)

where vσwpnq is white, Gaussian noise with variance σ2v ; thus, the variance σ2x of
xσwpnq is σ2x “ σ2v{p1 ´ ν2q. The initial value xσwp0q is set to 0 and the filter
parameter ν is constrained to r0, 1s. The standard deviation σwpnq is composed
of mσwpnq, defining the mean noise level of the simulated ECG, and xσwpnq,
defining its variation. While a constant mean noise level is used as default,
i.e. mσwpnq ” mσw , other definitions are certainly possible, e.g. to let mσwpnq

gradually increase over time to mimic the noise profile of EST. The half-wave
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rectifier in (3.21) is introduced to ensure that σwpnq exceeds a certain minimum
level σw,min.

Noise modeling is illustrated in Fig. 3.6 by simulated, single-lead ECGs
paired with similar-looking real ECGs extracted from recordings made during
EST, ambulatory monitoring, and handheld AF screening.

Figure 3.5: Typical examples of (a) time-varying muscle noise (the envelope is displayed in
red), and (b) several superimposed muscle noise power spectra (logarithmic scale) displayed
up to 100 Hz, computed in successive 1-min intervals. The analyzed signals were recorded
during exercise stress testing [103].

Figure 3.6: Single-lead, 10-s simulated ECG (top) and similar-looking real ECG (bottom)
with muscle noise. The simulated ECG is generated according to equation (3.19).
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4.1 Motivation

In Chapter 2, we defined a new methodology to estimate the QT adaptation time
as the delay between the observed QT intervals and the QT intervals derived
from the observed RR intervals using a memoryless transformation, assuming
that the QT interval time series are corrupted with Gaussian or Laplacian noise.
From the QT adaptation analysis, three markers were proposed: the delay
measured in the exercise phase, the delay measured in the recovery phase and
the difference between these two delays. Before assessing the clinical capacity of
the proposed markers for CAD risk stratification, the validation of the developed
methods is critical to ensure their reliability.

To address the challenges related to the validation of the methods described
in Chapter 2, the open-access ECG simulator introduced in Chapter 3 is used
here to generate simulated ECGs that mimic realistic RR and QT interval time
series during EST, with a known time lag between them, with time-varying
characteristics as in clinical exercise ECGs stress testing and with different noise
levels.

The simulator provides a controlled environment where the performance of
algorithms can be rigorously tested and validated. Here, different datasets with
simulated ECGs are generated to: (1) study the performance of each lead space
reduction technique proposed to delineate the T wave end using a reference
mark; (2) evaluate the error between the estimated and the true QT time lag for
several SNRs and different estimator structures; (3) demonstrate that the time
lag estimation can be applied not only to linearly changing heart rate trends
but also to trends having low-frequency components using simulated ECGs,
mimicking EST heart rate trends; and (4) determine the potential advantages,
in terms of estimation variance, when using RR series rather than QT series for
QT time lag estimation.

Therefore, this chapter emphasizes the importance of simulated ECGs for
the evaluation of both the delineation of the T wave and the estimation of
the QT adaptation time lag using known values to allow characterizing the
corresponding errors. These references for the evaluation, which are here
obtained from simulated ECGs, are often not available when performing clinical
validation, as manual marks annotated by clinicians for e.g. T wave delineation
assessment are required and not always available or they may even be inaccessible,
as in the case of the assessment of the QT adaptation time lag.
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4.2 Simulated datasets

The following features provided by the ECG simulator described in Chap-
ter 3 [120] are of particular relevance for simulating exercise ECGs stress testing:
(a) user-defined heart rate trends; (b) inclusion of MN and motion artifacts
with time-varying properties, commonly observed during exercise and recovery;
(c) PQ interval being dependent on heart rate; and (d) full control of the
QT adaptation time lag τ .

The simulations described in this chapter rely mostly on the default settings
given in [120], including the hyperbolic, memoryless transformation,

gf pdRRpnq;α, βq “ β `
α

dRRpnq
. (4.1)

The modeling of RR intervals, MN, motion artifacts and respiratory rate are
defined to account for pertinent characteristics of the four phases that together
form an EST, i.e., rest (for notation reasons referred to as basal), exercise, early
recovery and late recovery, whose respective endpoints are denoted as tb, te, ter
and tlr, see Fig. 4.1. The statistics of the duration of the exercise and early
recovery phases are determined from 25 tests [103], while the basal and late
recovery phases are set to 10 min.

Four different datasets are generated, each consisting of 400 simulated (500 in
the case of the fourth dataset), standard 12-lead ECGs, sampled at a rate of
1000 Hz. Examples of ECGs from each of these datasets are shown in Fig. 4.1
and are described in the next subsections.

4.2.1 Simulated, typical exercise ECGs

This dataset, named Dt, contains simulated ECGs defined by a template
RR interval pattern mimicking typical EST trends. This template is defined
by four phases: (1) constant mean RR interval during rest, r0, tbs; (2) linearly
decreasing trend of RR interval during exercise; rtb, tes; (3) linearly increasing
trend of RR interval during early recovery; rte, ters, and (4) constant mean
RR interval during late recovery, rter, tlrs. The values defining phase 1, phase 4
and the end of phase 2 of the RR template are obtained by computing the
inter-patient mean of the intra-patient RR interval means at rest, recovery and
exercise learning windows, respectively, using ECGs of 215 patients with low
risk of CAD (see Table 5.1 for dataset details). The series dRRpnq is obtained by
adding variability to the RR interval template trend, using the model in [93] (see
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Section 3.2 for more details). Figure 4.1(a) illustrates a template RR interval
time series and a simulated dRRpnq time series across the four phases.
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Figure 4.1: Template RR interval pattern and observed RR interval series dRRpnq extracted
from the four datasets: (a) Dt, containing typical exercise ECGs with the four phases (rest:
ending at tb; exercise: ending at te; early recovery: ending at ter; and late recovery: ending
at tlr); (b) Dee, containing exercise ECGs with extended exercise; (c) Dr, containing exercise
ECGs using real RR intervals; and (d) Do, containing typical exercise ECGs with oscillatory
exercise|recovery trend.

A template pattern is also provided for the variance of MN, defined by the
four phases: (1) constant; (2) linearly increasing to become four times higher at
te than at tb; (3) linearly decreasing until ter; and (4) identical to the constant
in phase 1. Together with the generated MN, motion artifacts are randomly
included with an occurrence probability of 40% (see [120] for details).

The SNR at peak exercise is defined by

SNR “ 20 log10

ˆ

AQRS

RMSnoise

˙

, (4.2)
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where AQRS is the peak-to-peak amplitude of the ensemble-averaged QRS com-
plex, determined in a 100-ms interval centered around the R-peak ( see [90, 123]
for details). The MN signal is rescaled so that its RMS value in a window of
60 s at peak exercise equals RMSnoise. All leads are assumed to have the same
SNR. Simulated ECGs at different SNRs are exemplified in Fig. 4.2.
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Figure 4.2: Simulated ECGs (lead V4) with different SNRs at (a) low or (b) high heart rate.

The respiratory rate changes across the four phases according to a template
pattern similar to the one defined for the MN variance [123]: (1) constant;
(2) linearly increasing until te; (3) linearly decreasing until ter; and (4) identical
to the constant in phase 1. This respiratory rate modulates heart rate variability
and QRS-T complex morphology [120].

The dataset Dt is obtained by simulating 25 ECGs for all combinations of τ
and SNR values, with the following values being considered:

τs “ t20, 30, 40, 50u s, (4.3)
SNRs “ t27, 30, 35, 40u dB, (4.4)

where the different SNRs correspond to the following RMS values: t45, 32, 18, 10u µV.
Thus, in total, Dt contains 25 ¨ 4 ¨ 4 “ 400 ECGs. The range of τs is based on
the delay estimates obtained from the analysis of ECGs from low CAD risk
patients contained in the database described in Sec. 5.2.1.
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An example of the dRRpnq series extracted for an ECG of this dataset is
illustrated in Fig. 4.3(a), together with the windows that are used to estimate
the values of the parameters α and β in (4.1). Figure 4.3(b) presents the
corresponding diQTpnq series, where the delay between this and the observed
dQTpnq series is clearly discernible, serving as an estimate of τ . The onset and
end of the intervals used for time lag estimation during exercise and recovery are
also depicted. The estimation of the parameter values that define the position
of ne,e and nr,o points according to the methodology presented in Sec. 2.6 are
described in Sec. 5.4.4. The methodology described in Fig. 2.4 is also evaluated,
so the corresponding diRRpnq series is shown in Fig. 4.3(b). In this case, the
delay is estimated between the observed dRRpnq and diRRpnq series, where the
larger range in the RR series transitions as compared to QT series transitions is
evident.
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Figure 4.3: (a) An observed RR series dRRpnq is presented together with the learning windows
positioned at rest (Wb), exercise (We) and late recovery (Wlr), which are indicated by boxes.
(b) An observed QT series dQTpnq and the related instantaneous QT series diQTpnq are shown,
where the intervals for time lag estimation are delimited by ne,o and ne,e for exercise and nr,o

and nr,e for recovery. An observed RR series dRRpnq and the related instantaneous RR series
diRRpnq is also represented. The series dRRpnq and dQTpnq are obtained from a simulated,
typical exercise ECG (see Sec. 4.2.1).
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4.2.2 Simulated exercise ECGs with extended peak exercise

This dataset, named Dee, is generated in exactly the same way as Dt, except
that the peak exercise is extended for 10 min with constant mean RR interval,
constant MN variance and constant respiratory rate (see Fig. 4.1(b)). Therefore,
Dee contains also 400 ECGs. When analyzing Dee, the end of the exercise
learning window is aligned with the onset of early recovery. This position
ensures that both the observed QT interval and the observed heart rate at peak
exercise have become stationary and, consequently, α and β can be estimated
from stationary data in the three learning windows.

Moreover, Dee makes it possible to study the effect of nonstationarity in the
exercise window We separately from the effect of selecting data pairs from only
three windows during EST.

4.2.3 Simulated exercise ECGs using real RR intervals

This dataset, named Dr, is generated using 25 different RR series from clinical
exercise ECG stress testing [127], one of them displayed in Fig. 4.1(c). The use
of real RR series as input to the simulator is motivated by the observation that
RR trends during exercise and recovery can deviate considerably from a linear
ramp, which makes the use of real RR series a valuable complement to simulated
RR series when evaluating the performance of QT time lag estimation. Although
the evaluation could have been based exclusively on simulated linear ramps, the
use of real RR series is a means to validate the derivation in Section 2.8, showing
that the estimate of τ is equally valid as long as the deviation of the trends from
a linear ramp has frequency components of sufficiently low frequency. The same
combination of SNR and τs values described in (4.2) and (4.3), respectively, are
used to generate this dataset.

4.2.4 Simulated exercise ECGs with oscillatory heart rate trend

This dataset, named Do, contains simulated ECGs defined by a linear trend
template of an RR interval pattern mimicking typical EST trends plus an added
low-frequency oscillation of frequency F during both exercise and recovery.
Simulated MN is added to ECGs with an SNR of 40 dB. This dataset is used
to validate our hypothesis that the requirement of a linear heart rate trend can
be relaxed to any change in the trend as long as its frequency content is below a
certain frequency Fc “ 1{p2πτsq.
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The dataset is obtained by simulating 25 ECGs for every combination of τs
from (4.3) and oscillation frequency F , with values:

F P t0.002, 0.004, 0.006, 0.008, 0.01u Hz. (4.5)

The range of F is below and slightly above the Fc imposed by τs.

The values of the parameters defining the mean duration of EST, heart rate
and respiratory rate of the four simulated datasets are listed in Table 4.1.

Table 4.1: User-defined simulation parameters.

Phase Dt Dee Dr Do

Mean duration
of the exercise
stress tests
(min)

rest 10 10 5 10
exercise 12 12 8 12
extended peak exercise – 10 – –
early recovery 5 5 3 5
late recovery 10 10 4 10

Mean heart rate
(beats per min)

rest 80 80 69 80
peak exercise 165 165 139 165
end of early recovery 95 95 81 95

Respiratory
rate (breaths
per min)

rest 15 15 – 15
peak exercise 42 42 – 42
end of early recovery 18 18 – 18

4.3 Results

4.3.1 T wave end delineation

The performance of the T wave end delineation is evaluated by the ϵθ error
described in (2.10) for conditions closely resembling those of EST and using a
T wave end reference. The results from the six delineation methods derived from
different lead space reduction techniques and MLeads, all of them described in
Sec. 2.3, are compared.

For the union of Dt and Dr, the mean bias mϵθ and standard deviation σϵθ
of the delineation error ϵθ among records are presented in Fig. 4.4 for different
types of lead space reduction and SNRs. The results show that the space
reduction techniques GπCAp and PCA always offer better performance than
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MLeads, with the lowest error being obtained for any GπCAp method when the
SNR decreases. The difference in mϵθ between these methods becomes smaller
at higher SNRs. The statistically significant p-values are shown in the table
included in Fig. 4.4. Although the lowest mϵθ is obtained for GπCA1|GπCA3,
the GπCA1,o technique is selected to compute the T wave end required to obtain
QT series (see Sec. 2.5) since this shows similar results and avoids recomputing
the transformation matrix. An additional reason for selecting this technique
related to the variation of the T wave morphology due to the increase|decrease
in heart rate along the EST will be commented on in Sec. 5.4.2. It should be
noted that the statistical significance reported in the table depends on the
number of simulations and, consequently, only comparisons in relative terms are
meaningful.

4.3.2 Estimation of α and β

Table 4.2 presents the mean mα̂ and the standard deviation σα̂ of α̂ and β̂
for the three definitions of the instantaneous QT series given in Sec. 2.7, i.e.
diQTpnq, d̃iQTpnq, and ďiQTpnq. The parameters α and β have been assigned
values identical to those used for the simulation in [120]. The main observation
to be made from Table 4.2 is that α̂ and β̂ are both biased since mα̂ and mβ̂
deviate considerably from their respective true values α and β. This observation
applies to Dt, Dr and Dee.

The origin of the bias can be understood from an experiment in which α
and β are studied using a dataset of 25 simulated ECG (with SNR = 40 dB
and τ = 40 s) whose template RR series decreases step-wise from exercise onset
to end, here taken to be 10 steps, each with a 5-min duration, as illustrated
in Fig. 4.5. The last part of each step is then used as a learning window with
stationary conditions, thereby providing denser sampling of data pairs when
fitting gf pdRRpnq;α, βq than that provided by the typical template RR pattern
from EST. The estimates of α and β resulting from using the data pairs of
each step, denoted as α̂s and β̂s, are much closer to those obtained from Dt, Dr

and Dee (see Table 4.2). This points to the origin of the bias being different
to the fact that the analysis is restricted to the three learning intervals. The
origin can be attributed to the automatic delineation system, whose criterion
for identification of the T wave end applied to wider or narrower T waves,
corresponding to lower or higher heart rates, presents a differential behavior.
In particular, since such criterion uses a threshold based on the derivative, it
generates an artificially different relation between the QT and RR intervals than
that imposed in the simulator, which justifies the bias in the estimation of the
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Figure 4.4: Top panel: mean and standard deviation of the T wave end delineation error ϵθ,
mϵθ ˘σϵθ (ms), for different lead space reduction techniques and different SNRs. The results
are based on Dt YDr and include all values of τ listed in (4.3), yielding a total of 600 ECGs.
Bottom panel: table showing only the statistical significance p-values. The Mann-Whitney U
test is applied for the comparisons between two techniques.

α and β values. Nevertheless, since this will apply to all records and situations,
it is expected not to affect the potential of the method for characterization of
clinical information and patient stratification.

4.3.3 QT-RR adaptation time lag estimation using Dt and Dr

The estimation performance is investigated for the time lags and SNRs given
in (4.3) and (4.4), respectively. The results are expressed in terms of mean bias
mϵτ and standard deviation σϵτ of the time lag error ϵτ , cf. (2.37), and presented
for exercise and recovery, separately. Using diQTpnq, d̃iQTpnq, and ďiQTpnq in
combination with the Laplacian noise assumption, the results obtained from Dt
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Figure 4.5: Template RR interval pattern and observed RR interval series dRRpnq extracted
from the datasets with decreasing RR intervals during exercise. tb ” rest phase, te ” exercise
phase.

Table 4.2: Meanmα̂ and standard deviation σα̂ computed for different datasets and definitions
of the instantaneous QT series.

Simulated value α β

´0.090 0.490

Estimates obtained from dense α̂s β̂s

sampling of gf pdRRpnq;α, βq ´0.078 0.461

Dataset Inst. QT series mα̂ σα̂ mβ̂ σβ̂

Dee diQTpnq ´0.078 0.005 0.459 0.012

Dt

diQTpnq ´0.074 0.004 0.454 0.011
d̃iQTpnq ´0.078 0.004 0.461 0.010
ďiQTpnq ´0.077 0.004 0.459 0.010

Dr

diQTpnq ´0.074 0.005 0.456 0.012
d̃iQTpnq ´0.079 0.005 0.462 0.012
ďiQTpnq ´0.078 0.005 0.461 0.012

and Dr are presented in Fig. 4.7. The reason for considering the results based
on the Laplacian noise assumption rather than on the Gaussian one is provided
at the end of this subsection. Using diQTpnq, τ1,e is typically underestimated
during exercise since mϵτ is negative, while τ1,r is typically overestimated during
recovery since mϵτ is positive. Moreover, mϵτ increases as τ becomes longer.

This tendency can be observed by analyzing the difference between the time
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lag estimates obtained during recovery and exercise, i.e., ∆τ̂1, indicated as “Rec.
minus Exe.” in Fig. 4.7. The larger the time lag, the larger the bias. Since
the time lag in the simulated ECGs is the same during exercise and recovery,
a value of ∆τ̂1 closer to 0 indicates that the method offers a more accurate
estimate. These observations apply to both Dt and Dr, see Figs. 4.7(a)–(d) and
(i)–(l), respectively.

Using d̃iQTpnq and ďiQTpnq, the under- and overestimation become less

pronounced than for diQTpnq, where ďiQTpnq is the better choice of the two.

In addition, mϵτ is essentially independent of τ for d̃iQTpnq and ďiQTpnq. The

estimate ∆τ̂1 is closer to 0 for ďiQTpnq than for d̃iQTpnq, confirming a more
accurate estimation when using the modified and aligned learning window at
exercise W̌e. However, the improvement in mϵτ for d̃iQTpnq and ďiQTpnq is traded

for a larger σϵτ during exercise, whereas σϵτ differs only slightly between diQTpnq,

d̃iQTpnq and ďiQTpnq during recovery. Again, these observations apply to both
Dt and Dr, as shown in Figs. 4.7(e)–(h) and (m)–(p), respectively.

In general, mϵτ is not largely influenced by the SNR value when analyzing
Dt and Dr, whereas σϵτ decreases for increasing SNR. Similar findings to the
ones commented previously can be observed using the Gaussian assumption, see
Fig. 4.8, which leads to results that are very similar to those of the Laplacian
assumption (Fig. 4.7).

The results obtained from Dt and Dr are similar, thus supporting the
derivation in Section 2.8, which shows that spnq does not have to be a linear
ramp, but it can indeed be a trend whose spectral content is below a certain
frequency.

The estimates of τ are also calculated between the observed RR series and
diRRpnq, d̃iRRpnq and ďiRRpnq separately, both for the Laplacian and the Gaussian
noise assumption, presented in Fig. 4.9 and Fig. 4.10, respectively. Although a
slightly lower mϵτ can be observed using the instantaneous RR series than using
the instantaneous QT series, the tendency of the estimated values of τ are the
same as those analyzed using the instantaneous QT series.

To study the statistical distribution of the observed QT intervals, the
histogram of the difference ∆dQTpkq “ dQT pkq ´ d̄QT pkq is calculated, where
dQT pkq is the QT interval of the k-th beat and d̄QT pkq is the running median
QT interval of five consecutive beats. Then, in the least square error sense,
the best fit of the Laplacian and the Gaussian probability density functions
to the histogram is determined, denoted as ϱL and ϱG, respectively. Using
the simulated datasets Dt and Dr, the least square error associated with the
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Laplacian assumption is ϱL “ 0.0076 a.u., while the error associated with the
Gaussian assumption is ϱG “ 0.0099 a.u., which justifies the use of the Laplacian
assumption. The corresponding histogram is represented in Fig. 4.6.
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Figure 4.6: Histogram of ∆dQTpkq and best fitted Gaussian and Laplacian probability density
functions (PDFs) for the simulated dataset Dt. Fitting errors ϱG and ϱL are shown.

4.3.4 QT-RR adaptation time lag estimation using Dee

The peak exercise in Dee is extended by 10 min to ensure that the QT and
RR time series are stationary in the exercise window. Therefore, only diQTpnq is

relevant to use when analyzing this dataset, while d̃iQTpnq and ďiQTpnq are not,
as they aim to reduce the nonstationarity of the exercise window. By comparing
the results obtained from Dee with those from Dt and Dr, the extent to which
the estimation of τ is influenced by the nonstationarity is indicated.

The results from Dee show that τ1,e and τ1,r are over- and underestimated,
respectively, see Figs. 4.14(a)–(d), which stand in contrast to the results obtained
from Dt and Dr where τ1,e and τ1,r are under- and overestimated, respectively,
cf. Sec 4.3.3. This difference in time lag bias is unexpected since the data in the
exercise window is stationary. This result is likely explained by the reduced
RR interval range in this window compared to the exercise window of Dt or Dr.

The importance of having a sufficiently wide RR interval range is illustrated
in Fig. 4.11 where rdQTpnq, dRRpnqs are displayed for the three learning windows

together with the fitted functions gf pdRRpnq; α̂, β̂q. Using diQTpnq on Dt and
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Figure 4.7: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ in exercise, recovery and the difference between the two time
lag estimates, computed for different values of τ (columns), SNRs (horizontal axis) and definitions of the instantaneous QT series. The
results for Dt are shown in (a)–(d) and (e)–(h), respectively. Panels (i)–(l) and (m)–(p) show mϵτ and σϵτ for Dr. Errors computed
with diQTpnq, d̃iQTpnq and ďiQTpnq are represented in blue, orange and green colors, respectively. The results are based on the Laplacian
noise assumption.
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Figure 4.8: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ in exercise, recovery and the difference between the two time
lag estimates, computed for different values of τ (columns), SNRs (horizontal axis) and definitions of the instantaneous QT series. The
results for Dt are shown in (a)–(d) and (e)–(h), respectively. Panels (i)–(l) and (m)–(p) show mϵτ and σϵτ for Dr. Errors computed
with diQTpnq, d̃iQTpnq and ďiQTpnq are represented in blue, orange and green colors, respectively. The results are based on the Gaussian
noise assumption.
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Figure 4.9: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ in exercise, recovery and the difference between the two time
lag estimates, computed for different values of τ (columns), SNRs (horizontal axis) and definitions of the instantaneous QT series. The
results for Dt are shown in (a)–(d) and (e)–(h), respectively. Panels (i)–(l) and (m)–(p) show mϵτ and σϵτ for Dr. Errors computed
with diRRpnq, d̃iRRpnq and ďiRRpnq are represented in blue, orange and green colors, respectively. The results are based on the Laplacian
noise assumption.
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Figure 4.10: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ in exercise, recovery and the difference between the two time
lag estimates, computed for different values of τ (columns), SNRs (horizontal axis) and definitions of the instantaneous QT series. The
results for Dt are shown in (a)–(d) and (e)–(h), respectively. Panels (i)–(l) and (m)–(p) show mϵτ and σϵτ for Dr. Errors computed
with diRRpnq, d̃iRRpnq and ďiRRpnq are represented in blue, orange and green colors, respectively. The results are based on the Gaussian
noise assumption.
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Dee, the best fit is obtained for Dee. However, a still better fit is obtained when
using ďiQTpnq on Dt. These observations corroborate the results in Sec. 4.3.3

and support the selection of ďiQTpnq. The performance achieved with ďiQTpnq is
explained by a better handling of the nonstationarity in the exercise window
and a wider RR interval range of the three learning windows.

In line with the evaluation of the RR range, the estimated values of τ are
also studied by computing the delay between dRRpnq and diRRpnq in combina-
tion with the Laplacian|Gaussian noise assumption. The results presented in
Fig. 4.16|Fig. 4.17 show that these are similar to those obtained using dQTpnq

and diQTpnq.

Figure 4.11: The two data pairs rdQTpnq, dRRpnqs and rdQTpnq ´ ∆QT, dRRpnqs of the three
learning windows, the memoryless transformation gpdRRpnq; α̂, β̂q with estimated parameters,
and the reference gpdRRpnq; α̂s, β̂sq described in Sec. 4.3.2. The three clusters of data pairs
originate from the exercise We, the recovery Wlr and the resting Wb windows (left to right).
The examples are taken from Dt and Dee. For the sake of clarity, the results for d̃iQTpnq are
omitted.
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4.3.5 QT-RR adaptation time lag estimation and its dependence on
heart rate trend frequency content using Do

Examples of dQTpnq and diQTpnq for different values of τ and F are shown in
Fig. 4.12. For the case of Fig. 4.12(d), where the frequency content of the ramps
is higher than the cut-off frequency of the system, F ą Fc, the effect of hpnq

results in a smoothed dQTpnq. In such cases, the model in (2.43) may seem
inappropriate, since spnq is distorted, and even the evaluation in terms of the
error when estimating τ remains to be conducted.

The mean error mϵτ and the standard deviation σϵτ between the estimated
τ̂ and the known simulated time lag τ are calculated separately for each pair
pτ, F q during exercise and recovery and are represented in Fig. 4.13. The mϵτ

value closest to zero, corresponding to τs “ 20 s, has the highest associated
Fc cut-off frequency. For a fixed τ , mϵτ becomes larger, in absolute values,
as F increases. When τ increases, the error mϵτ increases, in absolute values,
for the same F , as it becomes closer to the decreasing Fc. This behavior is
almost vanished for F “ 0.002 Hz, since it is always lower than any Fc. Similar
conclusions and arguments can be drawn for the analysis in terms of σϵτ , as
shown in the bottom panels of Fig. 4.13.

4.4 Discussion

4.4.1 T wave end delineation

To the best of our knowledge, this is the first simulation study evaluating the
performance of the T wave end delineation for conditions closely resembling
those of EST. The results in Fig. 4.4 show that any GπCAP -based method
yields significantly lower delineation errors ϵθ than any PCA-based method at
a low SNR (27 dB), whereas the differences in performance at higher SNRs
are negligible between both lead space reduction techniques. The MLeads
delineation always shows the worst T wave end delineation performance. Thus,
since the SNR is typically low during exercise, the GπCA-based techniques are
better suited for delineation of exercise ECGs stress testing. Accordingly, the
criterion based on the wave periodicity is concluded to be a more adequate
criterion than the criterion based on variance to determine the best transformed
lead for T wave end delineation.

Cabasson et al. [128] proposed a method to enhance the delineation of the
T wave in EST that consisted in a batch processing mode of the improved
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Figure 4.12: Examples of dQTpnq and the instantaneous series diQTpnq for different τ and F .
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Figure 4.13: mean and standard deviation of error ϵτ , mϵτ and σϵτ , respectively, for different
τ and F pairs.
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Figure 4.14: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ for Dee in exercise, recovery and the difference between
the two time lag estimates, computed for different values of τ (columns) and SNRs (horizontal axis) are shown in (a)–(d) and (e)–(h),
respectively. The results are based on diQTpnq and the Laplacian noise assumption.

Figure 4.15: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ for Dee in exercise, recovery and the difference between
the two time lag estimates, computed for different values of τ (columns) and SNRs (horizontal axis) are shown in (a)–(d) and (e)–(h),
respectively. The results are based on diQTpnq and the Gaussian noise assumption.
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Figure 4.16: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ for Dee in exercise, recovery and the difference between
the two time lag estimates, computed for different values of τ (columns) and SNRs (horizontal axis) are shown in (a)–(d) and (e)–(h),
respectively. The results are based on diRRpnq and the Laplacian noise assumption.

Figure 4.17: Mean mϵτ and standard deviation σϵτ of the time lag error ϵτ for Dee in exercise, recovery and the difference between
the two time lag estimates, computed for different values of τ (columns) and SNRs (horizontal axis) are shown in (a)–(d) and (e)–(h),
respectively. The results are based on diRRpnq and the Gaussian noise assumption.
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Woody’s method previously proposed in another study. The method was
evaluated using synthetic data presenting time-varying RT segment duration [72],
with the RT segment defined from the R peak to the T wave peak. The
method was reported to outperform other methods proposed in the literature.
Nevertheless, estimating the QT interval rather than the RT interval should
be better, whenever possible, since the T peak to T end interval may contain
relevant information for risk assessment of arrhythmia risk.

Convolutional neural networks have recently been proposed for QT interval
delineation [129–131], with performance results similar to those obtained with
wavelet analysis [100]. Since the dynamic scenario of EST may prove a challenge
to methods based on machine learning, further studies are warranted to more
thoroughly characterize the performance of those methods.

4.4.2 Estimation of α and β

When identifying the nonlinear transformation in the model of the QT-RR re-
lation shown in Fig. 4.11, the data pairs included in the exercise window are
found to profoundly influence the estimation of the parameters α and β of
such transformation and, consequently, the estimation of the QT adaptation
time lag. This is substantiated by the results obtained from the dataset Dee in
this chapter, which show that rdQTpnq, dRRpnqs should be selected so that the
QT interval achieves its actual stationary value corresponding to the stationary
heart rate value to produce accurate estimates. Since the data pairs in the
exercise window of Dt and Dr are nonstationary, data-dependent modification is
necessary to obtain a better accuracy in the estimation of α and β.

An important point to highlight is the fact that the data pairs from the
exercise window in Dt and Dr include a wider range of the RR intervals, i.e.
from d̃iQTpnq or ďiQTpnq, than the pairs selected in a window with stationary
data, i.e. in Dee (see Fig. 4.11). The wider RR range leads to a better fit
of gf pdRRpnq;α, βq in Dt and Dr with d̃iQTpnq or ďiQTpnq as compared to that

in Dee with diQTpnq.

The discrepancy between α, β and α̂s, β̂s, with the later being the estimated
values obtained when the template RR series decreases step-wise from exercise
onset to end, is likely to be a consequence of how the wavelet-based delineator
handles the T waves at different heart rates, i.e. different T wave widths. The
wavelet-based delineator makes use of time-invariant filters, which modify the
width of the T waves, with these being narrower at high heart rates, since higher
frequencies can be filtered out. Thus, the behavior of the delineator differs for
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T waves at high and low heart rates. Therefore, α̂s and β̂s represent better
reference values than α and β to evaluate the performance, since differences in
the estimated values can only be attributed to differential time lag estimation
performance in data pair selection for computation of diQTpnq, d̃iQTpnq or ďiQTpnq

(see Table 4.2).

4.4.3 QT-RR adaptation time lag estimation

One of the main aims of this chapter is to evaluate whether the time delay
between dQTpnq and an instantaneous QT series, either given by diQTpnq, d̃iQTpnq,

or ďiQTpnq, can serve as a surrogate for estimating the QT-RR adaptation time
lag. The results show that the data-dependent modification of the data pairs in
the exercise window yields better performance than the unmodified data pairs,
i.e., d̃iQTpnq and ďiQTpnq yield better performance than diQTpnq. While the mean

bias mϵτ becomes increasingly larger for diQTpnq when τ increases from 20 to

50 s, mϵτ is essentially independent of τ for d̃iQTpnq and ďiQTpnq (see Fig. 4.7).

Moreover, when using diQTpnq for large values of τ , a large overestimation
during recovery and a large underestimation during exercise can be observed,
which together potentiate ∆τ̂p, defined as the difference between τ̂p,r and τ̂p,e,
cf. (2.37). Consequently, ∆τ̂p is not suitably characterized when using diQTpnq.

In terms of mϵτ , ď
i
QTpnq offers better performance than d̃iQTpnq, since mϵτ is

somewhat closer to 0 for most values of τ and SNRs. As an example, the analysis
of the exercise phase in the database Dt using τ “ 50 s and SNR “ 40 dB
results in mϵτ “ 3.43 s and 1.09 s for d̃iQTpnq and ďiQTpnq, respectively (see
Fig. 4.7(d)). The results in the recovery phase have about the same magnitude
as those of exercise, but with reversed sign, ´2.68 s and ´0.95 s.

As noted in Sec. 4.3.3, the value of mϵτ observed during exercise for d̃iQTpnq

and ďiQTpnq is lower than that observed for diQTpnq, even if this is traded for
a higher standard deviation σϵτ . This result can be explained by the better
learning achieved for data pairs in the exercise window, either only in the first
half of the window when determining ∆QT to compute d̃iQTpnq or entirely when

aligning the window end to peak exercise before ďiQTpnq is computed. It should
be noted that the decrease in mϵτ is greater than the increase in σϵτ .

The under- and overestimation in exercise and recovery delay estimates,
respectively, and its dependency on τ are reduced when the delay is calculated
between the observed RR series and diRRpnq. This bias reduction is observed in
all the analyzed datasets (Fig. 4.9 and Fig. 4.10 for the results from the datasets
Dt and Dr, and Fig. 4.16 and Fig. 4.17 for the results from the dataset Dee).
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The estimates using d̃iRRpnq or ďiRRpnq are practically the same. The value of
mϵτ is also lower when computing any of the instantaneous RR series than when
using any of the instantaneous QT series. These results may be explained by
the wider range of values and the more linear tendency of the RR series that
the QT series (see Fig. 4.3(b)).

4.4.4 Conditions on heart rate and QT trend in time lag estimation

Out of the many parameters defining the simulator, the QT adaptation time lag
and the SNR are deemed to be of primary interest to be investigated. When
it comes to heart rate, which also plays a central role, the results obtained
from simulated ECGs with a linearly increasing heart rate trend during exercise
are almost identical to those obtained from simulated ECGs with a real heart
rate measured during exercise, see Fig. 4.7. The same observation applies to
a linearly decreasing heart rate trend during recovery. These results provide
experimental evidence of the theoretical results derived in Section 2.8. The
dataset Do serves as a support for these results, showing that the requirement of
a linear heart rate trend can be relaxed to any change in the trend as long as its
frequency content is below a certain cut-off frequency Fc, which is related to the
QT adaptation time lag τ . These low-frequency oscillations in real recordings
could be a consequence of the step-like changes in the workload along the EST,
rather than strictly linear changes. This can be corroborated by observing the
RR series computed from clinical ECGs (Fig. 2.5(a)) in which the EST protocol
in Sec. 5.2.1 only includes workload changes during the exercise phase, where
these low-frequency oscillations are more easily visible.

4.4.5 Limitations

The work of this chapter assumes that τ remains constant for each individual,
i.e., it does not vary with time during the exercise phase or the recovery phase
of the EST. Some studies have shown that QT-RR adaptation may depend on
the level of sympathetic activation [92], which will be studied in Chapter 6 of
this Ph.D. thesis. Also, it could be the case that the relation between QT and
RR varied during exercise and recovery. It is unclear whether the differences in
QT adaptation are only due to differences in the adaptation time lag represented
by hpnq or are also due to differences in the QT-RR memoryless relation.
Although the differences between exercise and recovery are accounted for by
computing a time lag estimate for each phase, the changes in sympathetic
activation during exercise, and recovery, suggest that further research is needed
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to fully explore this aspect.

The noise added to simulated, noise-free ECGs is composed of MN and
motion artifacts [120]; baseline wander is not part of the simulator as appropriate
correction techniques are available today. While the MN model is specifically
designed for EST, the motion artifact model is designed for ambulatory ECGs.
Although the simulated motion artifacts resemble those observed during EST,
the model could be improved to closely resemble the investigated scenario, e.g.,
by adjusting the artifact shape and occurrence probability pattern.

The GπCAP shows better performance in extracting the nTepkq points. To
compute the nQRSopkq points, the MLeads over the 8 independent standard
leads is shown to be preferred. This is a consequence of using only information
from the ST-T complex to learn the transformation matrix, not so well adapted
to the QRS complex. If required, a different transformation matrix could be
learned for the QRS complex to improve the nQRSo delineation.

4.5 Conclusions

Using simulated ECGs, the performance evaluation of the proposed method
shows that the estimated QT-RR adaptation time lag agrees well with the
true time lag. The original assumption of linear changes in heart rate trends is
broadened to also apply to more realistic, low-frequency trends. In addition, the
Laplacian-based estimator shows a better fitting of the QT interval statistical
distribution than the Gaussian-based one.



4444



55555

CHAPTER 5

CLINICAL VALIDATION

5.1 Motivation

5.2 Databases

5.2.1 FINCAVAS

5.2.2 ARTEMIS

5.3 Statistical analysis

5.4 Results

5.4.1 Clinical characteristics

5.4.2 T wave end delineation

5.4.3 QT-RR modeling

5.4.4 QT-RR adaptation
time lag and its re-
lation with coronary
artery disease

5.4.5 QT-RR adaptation
and its power for SCD
risk prediction

5.5 Discussion

5.5.1 T wave end delineation

5.5.2 QT-RR adaptation
time lag and its re-
lation with coronary
artery disease

5.5.3 QT-RR adaptation
and its power for SCD
risk prediction

5.5.4 QT-RR modeling

5.5.5 Limitations

5.6 Conclusion

5.1 Motivation

In Chapter 4, the methodology described in Chapter 2 was evaluated in simulated
ECGs that mimic the typical EST trend, concluding that: (1) the lead space
reduction GπCAP technique offers the more accurate T wave end delineation;
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and (2) the QT adaptation time lag can be estimated as the delay between
the observed QT intervals and the QT intervals derived from the observed
RR intervals using a memoryless transformation. The best results are obtained
when the information from the last part of the exercise phase is modified and
then used to calculate the instantaneous QT series. In addition, the Laplacian
estimator fits better to the QT interval statistical distribution.

The proposal in this chapter is, first, to evaluate the methodology that
was tested in Chapter 4 but here from a clinical perspective. Specifically,
the QT adaptation time lag is calculated from clinical ECGs of patients with
different likelihood of suffering CAD. The statistical capacity of the proposed
markers, i.e. τp,e, τp,r and ∆τp, to separate the different CAD risk groups is
studied for the proposed estimators and instantaneous QT series. The results are
also compared to the QT lag estimated from abrupt heart rate changes, whose
relation with arrhythmic risk has been reported in the literature. Additionally,
the capacity of the proposed markers to predict SCD or any cause-mortality
during clinical follow-up is assessed.

5.2 Databases

5.2.1 FINCAVAS

To evaluate the proposed time lag estimators, the clinical database FINCAVAS
was analyzed, which consisted of 528 ECGs recorded from patients undergoing
EST at Tampere University Hospital in Finland [127]. The objective of generating
this database was to characterize patients at high risk of cardiovascular morbidity
and mortality. For each patient, a continuous ECG was recorded at a sampling
frequency of Fs “ 500 Hz with CardioSoft exercise ECG system (Version 4.14,
GE Healthcare, Freiburg, Germany) using the Mason-Likar modified 12-lead
system. The exercise stress test was performed in a bicycle ergometer. The
initial workload varied from 20 W to 30 W, with the load being increased
stepwise by a fixed, patient-specific quantity in the range 10-30 W every minute
(for females 10-20 W) based on physicians evaluation of the patient’s condition.
This patient-specific quantity is not annotated in the database. The workload
was removed immediately after the peak exercise, which corresponds to the
maximum theoretical heart rate (HRmax) calculated as HRmax “ 211´ 0.64vage,
where vage is the age of the subject [132]. The study protocol was approved
by the Ethical Committee of the Hospital District of Pirkanmaa, Finland. All
patients gave informed consent before the interview and the acquisition of the
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recordings, as stipulated in the Declaration of Helsinki. A total of 75 patients
were discarded due to the presence of large artifacts, early finished test or
frequent ectopic beats, which did not allow for the calculation of the QT interval
series along the EST.

In the FINCAVAS database, patients were classified into four groups ac-
cording to their likelihood of suffering CAD. The low-risk ECG (ECG-LR)
group was identified based on the clinical history and the ECG interpretation.
The remaining patients underwent COR within 180 days of EST to determine
the percentage of luminal diameter narrowing in at least one major epicar-
dial coronary artery or main branches, resulting in three groups: low-risk
COR (COR-LR), mild-risk COR (COR-MR) and high-risk COR (COR-HR).
These three groups included patients with an occlusion of less than 50%, between
50 and 75%, and 75% or more, respectively.

The ECG-LR, COR-LR, COR-MR and COR-HR groups contained 215, 59,
25 and 154 patients, respectively. Demographic variables and the average heart
rate and QT interval values at baseline and during the exercise and recovery
phases of the EST for each of the four groups are shown in Table 5.1.

The discriminative capacity of the three proposed markers τp,e, τp,r and
∆τp was assessed. This database was also used to compare the performance of
different methods described in Sec. 2.3 to delineate the T wave end point, nTepkq

and to study the regression models describing the nonlinear transformation
introduced in Sec. 2.5.

5.2.2 ARTEMIS

A second clinical database [133], ARTEMIS, was used to evaluate the capacity
of the proposed markers τp,e, τp,r and ∆τp for stratification of patients according
to their risk of suffering SCD or any cause-mortality. The ARTEMIS database
collected patients with CAD who had undergone coronary angiography at the
Division of Cardiology at Oulu University Hospital, Oulu, Finland [133], with
or without type 2 diabetes (DM2) (ClinicalTrials.gov identifier NCT1426685).
Patients who met the criteria for prophylactic implantation of an ICD, including
those with left ventricular ejection fraction ă35%, were excluded from the
study regardless of whether an ICD was implanted. The study was performed
according to the Declaration of Helsinki and with the approval of the institutional
ethics committee. All the subjects provided written informed consent. The
study population comprised 1886 8-lead standard ECGs recorded during EST.
Of these, 1472 recordings were analyzed, since ECGs with absence of rest phases,
poor ECG or T wave quality and the presence of large areas with non-SR were
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excluded from the analysis. The mean follow-up time was 8.9 years.

Patients were classified according to their CAD degree based on the SXscore,
whose value was calculated by evaluating each coronary lesion with diameter
stenosis ě50% in vessels ě1.5 mm. Patients in this database corresponded to
patients from the COR-MR and COR-HR groups of the FINCAVAS database
if only the results of the diameter stenosis were considered. The low-risk
SXscore (SXscore-LR), mild-risk SXscore (SXscore-MR) and high-risk SXscore
(SXscore-HR) groups correspond to a SYNTAX score of less than 23, between
23 and 33 and higher than 33, respectively [134]. The number of patients in
each group was 1128, 136 and 93, respectively. SXscore values for 115 patients
were not available.

The primary endpoint for this study was SCD or resuscitation from SCA,
whichever occurred first. Secondary endpoints were cardiovascular death
(CVDeath) (including SCD, aborted SCA, and death from a cardiovascular
cause other than SCD, whichever occurred first), non-SCD, and all-cause
mortality. The cause of death was defined by an endpoint committee based on
death certificates, interviews with the closest relatives of victims and autopsy
reports. A total of 49 patients (11 women) died from SCD and 63 patients (12
women) had any cause-mortality.

Demographic variables, the median heart rate and QT interval values at
baseline and during the exercise and recovery phases of the EST for each
SXscore groups are shown in Table 5.2.

5.3 Statistical analysis

All clinical data are presented as median value ˘ interquartile range (IQR).
The QT adaptation time lag estimates are represented in box plot diagrams, in
which both mean and median values are shown. Moreover, the QT adaptation
time lag estimates are presented as mean value ˘ standard deviation to compare
with other studies.

In multiple comparisons, the Kruskal-Wallis test was used to assess differences
in continuous clinical and ECG variables. The Mann-Whitney U test was applied
for the comparison of continuous variables between groups, that is, (1) when
assessing the three proposed markers, i.e. τp,e, τp,r and ∆τp computed by the
instantaneous QT series diQTpnq, d̃iQTpnq or ďiQTpnq; (2) when selecting the best
method to compute T wave end for calculating the observed dQTpnq series;
and (3) in the selection of thresholds γe and γr for exercise and recovery ramp
identification according to the expressions (2.34) and (2.35), respectively. The
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Chi-square test was applied to assess differences in the categorical variable
gender. A p-value p ă 0.05 was considered statistically significant.

The Pearson correlation coefficient was calculated to analyze the relation
between demographic indices and the proposed QT adaptation time lag markers.
A t-test was used to study the differences between the two gender groups.

Also, a linear mixed model was built for each of the three proposed markers,
following the equation:

zij “pλ0`uiq ` λavai,j `λbvbi,j `λgvgi,j `ϵij (5.1)

where the subscripts i and j refer to the i-th risk-group and the j-th patient,
respectively, z is one of the three proposed markers, z P tτp,e, τp,r,∆τpu, λ are
the fixed-effects regression coefficients (constant across risk groups), ui is the
intercept for each of the four risk groups, vai,j is the age, vbi,j is the BMI, vgi,j
is the gender and ϵ represents the residuals.

The Spearman correlation coefficient was computed to study the correlation
between the proposed QT adaptation time lag markers and the degree of
stenosis. As the exact degree of stenosis of each patient was unknown and only
information on the range of stenosis for each risk group was available, a fixed
degree of stenosis was defined for all patients in the same risk group, which
corresponded to the mean value of the corresponding range. Thus, patients
belonging to COR-LR (stenosis < 50%), COR-MR (stenosis between 50 and
75%), and COR-HR groups (stenosis between 75 and 100%) were assigned with
stenosis levels of 25%, 65.5%, and 87.5%, respectively.

Univariable and multivariable Cox regression analyses were performed to
independently determine the predictive value of the risk markers for both
endpoints in the ARTEMIS database. Only variables with an individual
significant association with the endpoint in the univariable analysis were
included to define the multivariable model. The C-index (ranging from 0 to 1)
was used as score statistics to evaluate the model. A value close to 1 has the
best ability to discriminate between patients with a higher and lower risk of
events. A backward-stepwise regression analysis was performed to optimize the
model and retain only the independent variables associated with the endpoint.
Numeric covariables were standardized according to their median and IQR for
both univariable and multivariable Cox regression analyses. For standardized
variables, hazard ratio (HZR) results presented in the tables along this chapter
must be interpreted as the corresponding increase|decrease in the risk for events
corresponding to an increment|decrement of one IQR in the (non-standardized)
variable, with such hazard ratio denoted asHZRIQR).



55555

102 Chapter 5. Clinical Validation

To facilitate clinical interpretation, the HZR of some variables can be
presented along the text following this transformation:

HZRk “ pHZRIQRq
k

IQR (5.2)

Therefore, the probability of suffering from an event can be directly related to
an increase|decrease in k units of this specific variable HZRk.

5.4 Results

5.4.1 Clinical characteristics

Demographic information for each patient group together with median heart
rate and QT intervals in resting, exercise and recovery windows Wj , j P tb, e, lru,
HRWj and QTWj , respectively, are given in Table 5.1 and in Table 5.2 for
FINCAVAS and ARTEMIS databases, respectively. The median (and IQR) of
the age and the BMI and the proportion of males vs females are higher in the
groups with higher CAD risk (or higher SXscore). The median heart rate at
peak exercise, HRWe , decreased significantly with increasing CAD risk (or with
increasing SXscore).

Table 5.1: Demographic information in patient groups from the FINVACAS database, in-
cluding heart rate and QT interval median values (˘ IQR), in windows Wj , j P tb, e, lru,
HRWj and QTWj , respectively.

ECG-LR COR-LR COR-MR COR-HR p-value
Clinical variables

Gender [M|F] 134|81 34|25 16|9 122|32 0.002
Age (years) 49.0 ˘ 20.8 52.0 ˘ 12.8 60.0 ˘ 15.5 63.0 ˘ 14.0 ă 0.001

BMI 25.5 ˘ 5.7 25.4 ˘ 6.9 27.8 ˘ 5.4 26.9 ˘ 4.8 ă 0.001

ECG derived variables
HRWb(bpm) 79.6 ˘ 19.8 74.6 ˘ 15.9 73.3 ˘ 13.5 64.2 ˘ 14.2 ă 0.001
HRWe(bpm) 166.5 ˘ 22.1 153.9 ˘ 33.4 139.4 ˘ 29.2 116.2 ˘ 27.2 ă 0.001
HRWlr (bpm) 98.2 ˘ 20.6 88.3 ˘ 22.5 85.5 ˘ 19.2 72.8 ˘ 14.6 ă 0.001
QTWb(ms) 366.7 ˘ 37.4 385.0 ˘ 41.4 382.4 ˘ 31.8 398.6 ˘ 42.11 ă 0.001
QTWe(ms) 256.1 ˘ 26.6 273.7 ˘ 46.8 295.4 ˘ 33.0 315.5 ˘ 40.2 ă 0.001
QTWlr (ms) 345.0 ˘ 39.9 367.8 ˘ 48.3 373.9 ˘ 40.9 389.1 ˘ 34.2 ă 0.001

Results are statistically significantly different (p ă 0.05) between pairs of groups as follows: Gender:
COR-HR with ECG-LR and COR-LR; BMI: ECG-LR with COR-HR; Age, HRWb

, HRWlr
, QTWb

,
QTWe and QTWlr

: ECG-LR with COR-LR, COR-MR and COR-HR, and COR-HR with COR-LR
and COR-MR. HRWe : all pairs of groups are statistically significant.
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Table 5.2: Demographic information in patient groups from the ARTEMIS database including
heart rate HR and QT interval median values (˘ interquartile range (IQR)), in windows Wj ,
j P tb, e, lru, HRWj and QTWj , respectively.

SXscore-LR SXscore-MR SXscore-HR None p-value
Clinical variables

Gender [M|F] 753|375 103|33 74|19 91|24 0.004
Age (years) 66.0 ˘ 11.0 68.0 ˘ 12.0 68.0 ˘ 11.0 69.0 ˘ 10.0 ă 0.001

BMI 27.0 ˘ 5.0 27.0 ˘ 5.3 27.0 ˘ 4.0 28.0 ˘ 5.4 0.576
ECG derived variables

HRWb(bpm) 59.6 ˘ 12.1 58.5 ˘ 9.6 61.0 ˘ 14.7 59.5 ˘ 11.0 0.113
HRWe(bpm) 126.1 ˘ 29.3 115.0 ˘ 26.9 114.8 ˘ 31.5 106.8 ˘ 25.2 ă 0.001
HRWlr (bpm) 75.5 ˘ 14.4 70.7 ˘ 14.4 73.01 ˘ 15.3 70.3 ˘ 13.2 ă 0.001
QTWb(ms) 415.8 ˘ 41.0 421.9 ˘ 33.0 418.0 ˘ 46.0 423.1 ˘ 33.6 0.082
QTWe(ms) 303.7 ˘ 41.4 317.4 ˘ 42.0 320.7 ˘ 47.0 335.0 ˘ 45.8 ă 0.001
QTWlr (ms) 391.6 ˘ 38.6 400.0 ˘ 34.3 402.0 ˘ 44.0 408.0 ˘ 36.4 ă 0.001

Results are statistically significantly different (p ă 0.05) between pairs of groups as follows: SXscore-
LR/SXscore-MR and SXscore-LR/SXscore-HR for age, HRWe , HRWlr

, QTWe and QTWlr
.

5.4.2 T wave end delineation

An example of the 8 standard leads of an ECG from the FINCAVAS database
and the transformed leads of both lead space reduction techniques are shown in
Fig. 5.1. It can be observed how the T wave in the TL1 of both GπCA1,o and
PCAo, is emphasized, being more remarkable for GπCA1,o.

To compare the different transformed lead methods defined to improve the
delineation of the T wave end, the power of the 0.04 Hz highpass filtered drQTpnq

series, PQTV, was computed in exercise and recovery, separately, using the
ECGs of the FINCAVAS database. The results are shown in Fig. 5.4. Median
PQTV was lower for any lead space reduction technique than when the MLeads
methodology was used to obtain the nTepkq points. Also, GπCAP -based methods
showed better results than PCA, both in exercise and recovery. Besides, these
results showed that there are no significant differences among GπCAP -based
methods. Therefore, GπCA1,o method was also selected for the analysis of the
clinical data. These results are in agreement with those obtained in simulations
in Sec. 4.3.1. An example of the T wave end delineation in an area near the
peak exercise is shown in Fig. 5.3, where it can be observed that the T wave
delineation is more robust using the GπCA1,o method than the MLeads method.

Selecting a method that only requires calculating the transformation matrix
once avoids introducing additional abrupt variations in the QT series, which
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could occasionally appear due to significant transformation matrix changes
when moving along consecutive windows. An example of this anomaly can
be seen in Fig. 5.2(a) and Fig. 5.2(b), where the observed QT interval series
dQTpnq was computed using the seven evaluated methodologies. Moreover, a
representation of TL1 from GπCA1 and GπCA1,o and their respective T wave
end delineation marks are shown in Fig. 5.3, where an abrupt change in the
morphology of the T wave is observed in GπCA1 from 4 to 8 s.

5.4.3 QT-RR modeling

After delineating the T wave end using the TL1 of GπCA1,o and computing
the observed QT series dQTpnq, the instantaneous series diQTpnq was calculated
using the different regression models described in Sec. 2.5. The mean and
standard deviation of the parameters α and β and the fitting error εrms for each
regression model are shown in Table 5.3. The lowest εrms was obtained with the
hyperbolic model, so in the following all instantaneous series diQTpnq, d̃iQTpnq

and ďiQTpnq are calculated with this model.

The statistical distribution of the QT intervals is again studied using the
FINCAVAS database to corroborate the selection of the estimators introduced
in (2.31). The histogram of the difference ∆dQTpkq “ dQT pkq ´ d̄QT pkq is
computed, as defined in Sec. 4.3.3, and is shown in Fig. 5.5. The least square
errors of fitting the Laplacian and the Gaussian probability density functions in
the FINCAVAS database are 0.0029 and 0.0045 a.u., respectively. Thus, the
Laplacian estimator is better suited for the τ delay estimation with any of the
series diQTpnq, d̃iQTpnq and ďiQTpnq, as was also seen in the simulation results.

5.4.4 QT-RR adaptation time lag and its relation with coronary artery
disease

FINCAVAS database

The time points that delimit the exercise and recovery phases are computed
before calculating the QT adaptation time lag. Figure. 5.6 presents the time
lags corresponding to the use of different thresholds γe to set the end of the
exercise ne,e and γr to set the onset of the recovery nr,o. These are computed
for each of the four patient groups according to the CAD risk in the FINCAVAS
database.

The optimal threshold values γ˚
e and γ˚

r are chosen as those that maximize
the significance of the estimated τ in separating the different CAD risk groups.
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Figure 5.1: (a) Example of an ECG with 8 independent standard leads recorded during EST
in mV, (b) the corresponding 8 transformed leads, in mV, obtained with GπCA1,o and (c)
obtained with PCAo, where the emphasized T waves at TL1 can be appreciated.
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Figure 5.2: Examples of dQTpnq series calculated using all GπCAp methods, all PCA methods
and the multi-lead strategy with the 8 independent standard leads. The first and third rows
correspond to the drQTpnq series and the second and fourth rows to the dQTpnq after including
the running median filter for outlier rejection.
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Figure 5.3: 8-lead clinical ECG with independent standard leads and the first transformed
lead (TL1) for GπCA1 and GπCA1,o methods. The T wave end point for each k´beat nTepkq

delineating any TL1 or applying MLeads are marked in each lead.
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Figure 5.4: QT trend fitting error quantified by PQTV calculated both in the exercise and
recovery phases, delineating T wave end from TL1 of each lead space reduction technique
or applying a multi-lead delineation strategy using FINCAVAS database. Box plots are
displayed to show the median values and the upper and lower whiskers, which are defined as
1.5 times the interquartile range (IQR).
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Figure 5.5: Histograms of ∆dQTpkq and best fit with Gaussian and Laplacian probability
density functions (PDFs) in the FINCAVAS clinical dataset. The fitting errors ϱG and ϱG
are written in the figure.
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Table 5.3: Mean and standard deviation of the parameters α and β and the root mean square error εrms, in milliseconds, for different
regression models. Each fitting is computed using all instantaneous QT series diQTpnq, d̃iQTpnq and ďiQTpnq, which depend on how the
peak exercise learning window We data is defined.

f diQTpnq “ gf pdRRpnq;α, βq ECG-LR COR-LR COR-MR COR-HR

Parabolic
log/log (Par)

diQTpnq “ βpdRRpnqqα

diQTpnq

α 0.51 ˘ 0.08 0.48 ˘ 0.09 0.46 ˘ 0.09 0.41 ˘ 0.07
β 0.43 ˘ 0.03 0.44 ˘ 0.03 0.43 ˘ 0.03 0.42 ˘ 0.02

εrms 8.55 ˘ 4.66 9.61 ˘ 6.35 8.95 ˘ 4.76 6.95 ˘ 4.48

d̃iQTpnq

α̃ 0.58 ˘ 0.09 0.55 ˘ 0.10 0.52 ˘ 0.09 0.50 ˘ 0.08

β̃ 0.45 ˘ 0.04 0.44 ˘ 0.03 0.44 ˘ 0.04 0.42 ˘ 0.02
ε̃rms 12.37 ˘ 5.84 13.16 ˘ 7.86 11.59 ˘ 5.05 10.71 ˘ 5.14

ďiQTpnq

α̌ 0.57 ˘ 0.09 0.54 ˘ 0.10 0.51 ˘ 0.09 0.49 ˘ 0.08
β̌ 0.44 ˘ 0.04 0.44 ˘ 0.03 0.44 ˘ 0.04 0.42 ˘ 0.02

ε̌rms 11.94 ˘ 5.78 12.72 ˘ 7.79 11.29 ˘ 4.96 10.52 ˘ 5.04

Linear
(Lin)

diQTpnq “ β ` α dRRpnq

diQTpnq

α 0.30 ˘ 0.07 0.27 ˘ 0.07 0.25 ˘ 0.07 0.22 ˘ 0.05
β 0.16 ˘ 0.03 0.18 ˘ 0.04 0.19 ˘ 0.04 0.21 ˘ 0.03

εrms 10.27 ˘ 5.32 11.11 ˘ 7.00 10.27 ˘ 5.47 7.99 ˘ 5.21

d̃iQTpnq

α̃ 0.33 ˘ 0.07 0.31 ˘ 0.07 0.29 ˘ 0.07 0.26 ˘ 0.05

β̃ 0.13 ˘ 0.03 0.14 ˘ 0.04 0.16 ˘ 0.03 0.17 ˘ 0.03
ε̃rms 14.22 ˘ 6.27 14.97 ˘ 7.99 13.16 ˘ 5.47 12.28 ˘ 5.73

ďiQTpnq

α̌ 0.33 ˘ 0.07 0.31 ˘ 0.07 0.28 ˘ 0.07 0.25 ˘ 0.05
β̌ 0.13 ˘ 0.03 0.15 ˘ 0.04 0.16 ˘ 0.03 0.18 ˘ 0.03

ε̌rms 13.79 ˘ 6.15 14.56 ˘ 7.95 12.88 ˘ 5.40 12.07 ˘ 5.61

Hyperbolic
(Hyp)

diQTpnq “ β ` α
dRRpnq

diQTpnq

α ´0.08 ˘ 0.01 ´0.09 ˘ 0.02 ´0.09 ˘ 0.02 ´0.10 ˘ 0.02
β 0.48 ˘ 0.03 0.49 ˘ 0.04 0.50 ˘ 0.04 0.51 ˘ 0.04

εrms 4.88 ˘ 2.71 6.00 ˘ 3.95 5.22 ˘ 2.63 4.91 ˘ 3.08

d̃iQTpnq

α̃ ´0.08 ˘ 0.01 ´0.09 ˘ 0.02 ´0.10 ˘ 0.02 ´0.11 ˘ 0.03

β̃ 0.48 ˘ 0.03 0.50 ˘ 0.05 0.51 ˘ 0.04 0.52 ˘ 0.04
ε̃rms 5.71 ˘ 2.66 7.05 ˘ 3.94 6.11 ˘ 2.49 6.38 ˘ 3.00

ďiQTpnq

α̌ ´0.08 ˘ 0.01 ´0.09 ˘ 0.02 ´0.10 ˘ 0.02 ´0.11 ˘ 0.03
β̌ 0.48 ˘ 0.03 0.50 ˘ 0.04 0.51 ˘ 0.04 0.52 ˘ 0.04

ε̌rms 5.32 ˘ 2.30 7.27 ˘ 4.12 5.89 ˘ 2.45 6.07 ˘ 2.87

Logarithmic
(Log)

diQTpnq “ β ` α lnpdRRpnqq

diQTpnq

α 0.16 ˘ 0.02 0.16 ˘ 0.03 0.15 ˘ 0.03 0.15 ˘ 0.02
β 0.42 ˘ 0.02 0.42 ˘ 0.03 0.42 ˘ 0.03 0.42 ˘ 0.02

εrms 6.71 ˘ 3.64 8.03 ˘ 5.46 7.56 ˘ 3.92 6.15 ˘ 3.88

d̃iQTpnq

α̃ 0.17 ˘ 0.03 0.17 ˘ 0.03 0.17 ˘ 0.03 0.17 ˘ 0.03

β̃ 0.42 ˘ 0.02 0.43 ˘ 0.03 0.42 ˘ 0.03 0.42 ˘ 0.02
ε̃rms 8.98 ˘ 4.06 10.19 ˘ 5.93 9.27 ˘ 3.84 8.88 ˘ 4.03

ďiQTpnq

α̌ 0.17 ˘ 0.02 0.17 ˘ 0.03 0.17 ˘ 0.03 0.17 ˘ 0.03
β̌ 0.42 ˘ 0.02 0.43 ˘ 0.03 0.42 ˘ 0.03 0.42 ˘ 0.02

ε̌rms 8.65 ˘ 4.05 9.96 ˘ 6.01 9.28 ˘ 3.67 8.72 ˘ 3.97
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γe “ 1 and γr “ 0 are equivalent to placing ne,e and nr,o, respectively, at
the peak exercise. To estimate the significance, the threshold values are first
varied in the range [0.30, 1.00], for exercise, and in the range [0.00, 0.70], for
recovery, in steps of 0.05, to calculate the corresponding delays, as illustrated
in Fig. 5.6(a) and (b). Then, the p-value for the comparison between each
pair of groups is calculated along the different thresholds, Fig. 5.6(c), and
(d). Lastly, the mean p-value mpv of the ones obtained for group pairs which
result in significant differences in more than half of the considered thresholds is
calculated in exercise mpv,e and recovery mpv,r, respectively, Fig. 5.6(e), and (f).
The selected thresholds γ˚

e and γ˚
r are the ones corresponding to the minimum

of mpv,e and mpv,r, for exercise and recovery, respectively.

The pairs of groups selected to calculate mpv,e are those found to be
significantly different for at least half of the analyzed threshold values in
the exercise phase (see Fig. 5.6(c)), with these being ECG-LR/COR-HR and
COR-LR/COR-HR. In the recovery phase, the pairs of groups selected to cal-
culate mpv,r are: ECG-LR/COR-HR, COR-LR/COR-HR, ECG-LR/COR-MR
and COR-LR/COR-MR. It can be observed that the closer the ramp delimita-
tion gets to the peak exercise (higher γe, lower γr), the lowest the significance.
γ˚
e and γ˚

r are taken where mpv,e and mpv,r already converged to a stable
minimum plateau, specifically in the extreme of these plateaus that provided
the largest ramps, that is the largest γe and lowest γr within the plateau, so
as to guarantee reliable τ estimates. After inspection of Fig. 5.6(e) and (f),
the values of γ˚

e “ γ˚
r “ 0.55 are selected. The Laplacian estimator is used to

estimate the time lags τ1,e and τ1,r. The points that delimit both areas are
exemplified in Fig. 2.5(b) and Fig. 2.5(d).

Once the areas for calculation of the time lags are defined, the discriminatory
power to classify different levels of cardiac risk in CAD patients is evaluated for
τp,e, τp,r and ∆τp. These estimates are obtained using the hyperbolic regression
model for the nonlinear transformation, each of the instantaneous QT series
and either the Gaussian or Laplacian estimator.

The estimated QT adaptation time lags are shown in Fig. 5.7, where the
top, middle and bottom rows contain the results using diQTpnq, d̃iQTpnq and

ďiQTpnq series, respectively. The mean exercise time lag mτp,e increases with
the CAD risk (Fig. 5.7(a)), while a reverted behavior is observed for the mean
recovery time lag mτp,r (Fig. 5.7(b)), with the time lag being reduced with
increasing CAD risk. Given this asymmetric behavior, the difference in the
adaptation time ∆τp is found to be larger in the ECG-LR and COR-LR patient
groups than in the COR-MR and COR-HR patient groups.



55555

112 Chapter 5. Clinical Validation

Statistically significant differences between each of the two low-risk groups
and the COR-HR group, and the pair of groups ECG-LR/COR-MR are observed
by analyzing the exercise time lag τ1,e computed with the Laplacian estimator,
while statistical significance is not reached when computing the exercise time
lag τ2,e with the Gaussian estimator. In the recovery, the two low-risk groups
and the COR-HR group can be discriminated using τp,r, p “ 1, 2. Finally,
statistically significant differences between the low-risk groups and the COR-HR
group and the pair of groups ECG-LR/COR-MR are observed when ∆τp is
used.

The effect of modifying the exercise learning window and, therefore, the
QT series at the peak exercise before regression parameter estimation causes
an increase in the estimated exercise time lag and a decrease in the estimated
recovery time lag. However, the tendency of the lag values with CAD risk is
generally the same: the higher the CAD risk, the larger mτ̃e |mτ̌e and the smaller
mτ̃r |mτ̌r . The p-values associated with significant differences when using diQTpnq

decrease when using any modified instantaneous series, with this holding true
for τp,e and ∆τp. Statistical significance of the differences in the pair of groups
ECG-LR/COR-MR is not attained for either the exercise or the recovery delays.

The Laplacian-based estimator offers slightly greater discriminatory power
for ∆τ1. Therefore, these results, together with the better fit of a Laplacian
probability density function to the QT histogram, support that the Laplacian
assumption is advantageous as compared to the Gaussian one.

To show visual examples of the findings exposed previously, the estimated
delays between ďiQTpnq and dQTpnq along the different groups are shown in

Fig. 5.8(a-d). Moreover, the corresponding dQTpnq-ďiQTpnq and QT-RR hys-
teresis curves can be seen in Fig. 5.8(e-h) and Fig. 5.8(i-l), respectively. Both
representations serve to exemplify that the higher the risk, the higher the
hysteresis area. Moreover, the observed QT values at baseline are larger while
the observed RR values at peak exercise are lower in the COR-HR example
than in the low-risk examples.

To better assess the capacity of the proposed markers to discriminate
between low and high CAD risk groups, the analysis is repeated but grouping
the two low-risk groups into a new ALL-LR group and using ďiQTpnq. This
choice is motivated by the better performance obtained in simulated ECG, see
Secs. 4.3.3. Results are shown in Fig. 5.9 and confirm that τp,e, τp,r and ∆τp can
distinguish between low and high CAD risk patients. While τ1,e shows a better
discriminatory capacity than τ2,e, the reverted behavior is observed for τp,r,
although the significance of the differences between the ECG-LR and COR-MR
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groups is borderline.

The QT time lags calculated for the combination of the two low-risk groups
(ECG-LR and COR-LR) and those calculated for the combination of the two
high-risk groups (COR-MR and COR-HR) are clustered to compute the ROC
curve for τ1,e, τ1,r and ∆τ1 (or τ̌1,e, τ̌1,r, and ∆τ̌1), as illustrated in Fig. 5.10(a),
Fig. 5.10(b) and Fig. 5.10(c), respectively. The ROC curves are very similar for
the delays calculated using any of the estimated QT series, although the results
for ďiQTpnq are slightly better. Also, the results point to the ability of the three
QT adaptation time markers to discriminate between low and high CAD risk.
The highest stratification value is attained by the marker ∆τ̌1.

The values of the Spearman correlation coefficient between the defined
degree of stenosis and the proposed QT rate adaptation markers, τ1,e, τ1,r and
∆τ1, are 0.25, -0.21, and -0.31, respectively, when calculating the delays from
the diQTpnq series, and 0.30, -0.22, and -0.31 when calculating the delays from

the ďiQTpnq series.

Finally, the results of the Pearson correlation coefficient between each
proposed QT adaptation time lag marker and the three demographic variables
are presented in Table 5.4. A modest linear relation between the confounding
variables and the proposed markers can be observed, even when the p-values
indicate statistical significance. The linear mixed model of the demographic
variables reflects a variance of the random parameter of 7.6% (55 of 667), 0.7%
(5 of 709) and 4.6% (93 of 1915) for τ̌1,e, τ̌1,r and ∆τ̌1, respectively, of the total
variance of the model, which comprises the variance of the random parameter
and the residual variance.

Table 5.4: Correlation results between the proposed markers and the demographic variables,
being ρ the Pearson correlation coefficient using ďiQTpnq series from FINCAVAS database.

τ̌1,e τ̌1,r ∆τ̌1
ρ p-value ρ p-value ρ p-value

Age 0.24 ă 0.01 ´0.04 0.45 ´0.17 ă 0.01
BMI 0.16 ă 0.01 ´0.18 ă 0.01 ´0.20 ă 0.01

Gender - 0.12 - ă 0.01 - ă 0.01

Estimated time lags and regression models

Although τp,e shows worse performance than τ̌p,e, the former is necessary to
estimate the latter. The QT adaptation time lag estimates are sometimes
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negative when analyzing clinical ECGs, which is not feasible to interpret from
a physiological perspective. Table 5.5 collects the number of τp,e and τp,r
values that are less than 20 s, separately, for each regression model, termed as
“nonusable” values in the FINCAVAS database.

The following rule is defined to reduce the number of nonusable values: in
clinical ECGs where the estimated QT adaptation time lag τp,e is negative or
less than 20 s, τp,e is set between 20 s and 70 s, selecting the first value within
this range that allows obtaining a τ̌p,e equal or higher than 20 s. The value of
20 s for τp,e corresponds to the lowest mean τp,e, that is, the mean τp,e of the
ECG-LR group. In cases in which the search does not provide any results, τp,e
is set to 20 s. This implementation always enables the computation of τ̌p,e.

The percentage of nonusable estimates τ̌p,x is represented in Table 5.5 for the
FINCAVAS database. The results obtained with the hyperbolic regression model
are the most influenced by this rule, where the number of rejected clinical ECGs
is largely reduced after applying the rule described in the previous paragraph.
The differences between the Gaussian and Laplacian estimators are not notable.

Table 5.5: Percent of nonusable τp,x estimates in each regression model using the instan-
taneous QT series diQTpnq or ďiQTpnq where τp,x, p “ 1, 2;x P te, ru for Laplacian|Gaussian
estimator and exercise|recovery phase, respectively, in FINCAVAS database.

Parabolic Linear Hyperbolic Logarithmic

diQTpnq
Nonusable

τp,x

τ1,e 7.9% 4.4% 59.2% 17.2%
τ2,e 7.1% 3.3% 55.2% 14.8%
τ1,r 47.9% 60.5% 17.4% 34.9%
τ2,r 48.8% 61.8% 17.4% 35.1%

ďiQTpnq
Nonusable

τ̌p,x

τ̌1,e 7.1% 3.3% 52.8% 13.9%
τ̌2,e 6.6% 2.6% 49.7% 12.1%
τ̌1,r 69.8% 80.8% 44.6% 52.5%
τ̌2,r 72.0% 81.0% 45.7% 54.7%

ďiQTpnq
Nonusable τ̌p,e

after rule

τ̌1,e 1.8% 0.9% 24.9% 6.2%
τ̌2,e 1.8% 0.7% 22.1% 5.1%
τ̌1,r 69.5% 80.8% 28.9% 51.7%
τ̌2,r 72.0% 80.6% 29.1% 53.9%

Therefore, the CAD discrimination capacity of the proposed markers is now
studied in the FINCAVAS database after applying the above described rule
and removing patients that present negative estimated delays. The results
are shown in the box plots of Fig. 5.11, in which the corresponding groups
ECG-LR, COR-LR, COR-MR and COR-HR are composed of 145, 41, 18 and
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135 patients, respectively. The analysis is repeated by clustering the two low-risk
groups into the ALL-LR group. The results improve in terms of statistical
significance when compared to the results from Fig. 5.7 and Fig. 5.9. Significant
differences can be observed between COR-LR/COR-MR with markers τ̌1,e and
∆τ̌1.

Estimated time lags using the observed diRRpnq series

The results presented above have been calculated based on the model described
in Fig. 2.3. Alternatively, this process is altered to propose to estimate the
QT adaptation time as the delay between the observed RR intervals and a
diRRpnq series based on the observed QT intervals (see Fig. 2.4). The estimated
delays using the ďiRRpnq series and applying the rule described in Sec. 5.4.4 are
shown in Fig. 5.12 using the FINCAVAS database. The trend of the results
is the same as the ones shown in Fig. 5.11, with the Laplacian estimator also
presenting better results than the Gaussian one. Table 5.6 shows that the
number of nonusable delays is smaller than the ones presented in Table 5.5.

Estimated QT lags and hysteresis curves from the same patients as in Fig. 5.8
are calculated using the dRRpnq and ďiRRpnq series, and these are also presented
in Fig. 5.13. The hysteresis curve shows the same behavior as a function of the
analyzed CAD-risk group.

Table 5.6: Percent of nonusable τp,x estimates in each regression model using the instanta-
neous QT series diRRpnq or ďiRRpnq where τp,x, p “ 1, 2;x P te, ru.

Parabolic Linear Hyperbolic Logarithmic

diRRpnq
Nonusable

τp,x

τ1,e 7.3% 4.6% 36.2% 13.5%
τ2,e 7.5% 3.3% 31.6% 11.7%
τ1,r 48.1% 60.5% 19.6% 36.4%
τ2,r 47.7% 60.9% 19.4% 35.3%

ďiRRpnq
Nonusable

τ̌p,x

τ̌1,e 7.1% 3.8% 31.6% 10.4%
τ̌2,e 7.1% 2.4% 28.0% 10.4%
τ̌1,r 69.8% 79.7% 27.8% 52.1%
τ̌2,r 71.3% 80.8% 28.5% 53.0%

ďiRRpnq
Nonusable τ̌p,e

after rule

τ̌1,e 3.3% 1.3% 17.4% 5.7%
τ̌2,e 2.0% 0.9% 15.5% 5.5%
τ̌1,r 69.8% 79.5% 29.1% 52.8%
τ̌2,r 71.7% 80.6% 29.4% 53.9%
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Figure 5.6: (a) τ1,e and (b) τ1,r, values as a function of the position of ne,e, and nr,o, obtained
by varying thresholds γe and γr, respectively. (c), and (d) corresponding p-values from (a)
and (b), respectively, when comparing different pairs of patient groups. The dashed lines
correspond to the significance level, p “ 0.05. (e) Evolution of mpv,e obtained by varying
the thresholds γe and (f) mpv,r by varying γr. For mpv,e and mpv,r calculation, the p-
values corresponding to group pairs having at least half of the studied thresholds resulting
in significant p-values, i.e., below dotted lines in panels (c) and (d), are taken into account.
Selected thresholds γ˚

e and γ˚
r are marked with red arrows.
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Figure 5.7: Box plots of the estimated time delay between diQTpnq and dQTpnq (top row),
between d̃iQTpnq and dQTpnq (middle row) and between ďiQTpnq and dQTpnq (bottom row)
for the four patient groups of the FINCAVAS database, assuming either a Laplacian or a
Gaussian noise model. The estimates are obtained for (a) exercise, resulting in τ̂1,e and τ̂2,e,
and (b) recovery, resulting in τ̂1,r and τ̂2,r. (c) Box plots of the difference between recovery
and exercise, resulting in ∆τ̂1 and ∆τ̂2. The dotted and continuous lines in red correspond
to the mean and the median, respectively. Patient group color code is: ECG-LR (blue),
COR-LR (green), COR-MR (yellow) and COR-HR (red). The p-values in separating patient
groups are plotted on top of the box plot pairs.
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Figure 5.8: Panels (a-d) Examples of the QT series ďiQTpnq and dQTpnq and the estimated QT
lags between them for each CAD-risk group (ECG-LR, COR-LR, COR-MR and COR-HR)
from FINCAVAS database, respectively. Panels (e-h) show the associated dQTpnq-ďiQTpnq

hysteresis curves and panels (i-l) show the corresponding QT-RR hysteresis curves for each
example, in which it can be seen that the higher the risk, the higher the hysteresis area.
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Figure 5.9: Results for the FINCAVAS database considering a new group, ALL-LR, that
includes both low-risk groups. The figure shows box plots of the estimated time delay between
ďiQTpnq and dQTpnq in (a) exercise, resulting in τ̂1,e and τ̂2,e, and (b) recovery, resulting in
τ̂1,r and τ̂2,r. (c) Box plots of the difference between recovery and exercise, resulting in ∆τ̂1
and ∆τ̂2. The dotted and continuous lines in red correspond to the mean and the median,
respectively. Patient group color code is: both low-risk groups (light blue), COR-MR (yellow)
and COR-HR (red). The delay significance, p-values, in separating patient groups are plotted
on top of the box plot pairs.
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Figure 5.10: (a) (b) (c): ROC curves for τ̌1,e, τ̌1,r and ∆τ̌1, respectively, using for the
classification the QT time lag calculated for the low-risk groups (ECG-LR and COR-LR)
and the high-risk groups (COR-MR and COR-HR) of FINCAVAS database. The analyses
are performed for both unmodified (black) and modified (blue) series.
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Figure 5.11: Box plots of the estimated time delay between ďiQTpnq and dQTpnq (top row)
after applying the rule of excluding patients with no meaningful τp,e estimates, required to
compute τ̌p,x, p P t1, 2u; x P te, ru. The estimates are obtained for (a) exercise, (b) recovery,
and (c) the difference between recovery and exercise computed for the four patient groups of
the FINCAVAS database, assuming either a Laplacian or a Gaussian noise model. The dotted
and continuous lines in red correspond to the mean and the median, respectively. Patient
group color code is: ECG-LR (blue), COR-LR (green), COR-MR (yellow), and COR-HR
(red). The delay significance, p-values, in separating patient groups, are plotted above box
plot pairs. (d), (e) and (f) show analogous results in the form of box plots after creating a
new group, ALL-LR, that includes the two low-risk groups of the FINCAVAS database.
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Figure 5.12: Box plots of the estimated time delay between ďiRRpnq and dRRpnq (top row)
after applying a rule to reduce the number of nonusable τp,e estimates, required to compute
τ̌p,x, p P t1, 2u; x P te, ru. The estimates are obtained for (a) exercise, (b) recovery, and
(c) the difference between recovery and exercise computed for the four patient groups of the
FINCAVAS database, assuming either a Laplacian or a Gaussian noise model. The dotted
and continuous lines in red correspond to the mean and the median, respectively. Patient
group color code is: ECG-LR (blue), COR-LR (green), COR-MR (yellow), and COR-HR
(red). The delay significance, p-values, in separating patient groups, are plotted on top of the
box plot pairs. (d), (e) and (f) show analogous results in the form of box plots after creating
a new group that includes the two low-risk groups of the FINCAVAS database.
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Figure 5.13: Panels (a-d) Examples of the RR series dRRpnq and ďiRRpnq and the estimated
QT lags between them for each CAD-risk group (ECG-LR, COR-LR, COR-MR and COR-
HR), respectively, from the same patients as in Fig. 5.8. Panels (e-h) show the associated
ďiRRpnq-dRRpnq hysteresis curves and panels (i-l) show the corresponding QT-RR hysteresis
curves for each example, in which it can also be seen that the higher the risk, the higher the
hysteresis area.
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ARTEMIS database

Once the best suited method to estimate the QT adaptation time lag has been
determined, the statistical power of the proposed markers to separate patients
with different SXscore is also evaluated using the ARTEMIS database. First,
the QT adaptation time lags are estimated between the observed series dQTpnq

and the instantaneous series ďiQTpnq, using only a Laplacian-based estimator due
to the observed superior discriminatory results obtained with the FINCAVAS
database. The results, calculated based on the rule described in Sec. 5.4.4, are
presented in the first row of Fig. 5.14. The groups SXscore-LR, SXscore-MR
and SXscore-HR are composed of 837, 109 and 75 patients, respectively. It can
be seen in Fig. 5.14(a) that the tendency of τ̌1,e observed in the FINCAVAS
data is kept in this database: the higher the risk, the larger τ̌1,e; also, the
higher the risk, the lower ∆τ̌1 (see Fig. 5.14(c)). In addition, statistically
significant differences, or p-values close to 0.05, are obtained in the pair of groups
SXscore-LR/SXscore-HR and SXscore-MR/SXscore-HR for the two mentioned
markers. The distribution of the estimated τ̌1,r values is, however, similar along
groups.

Next, the analysis was repeated using the observed series dRRpnq and the
instantaneous series ďiRRpnq, whose results are shown in the second row of
Fig. 5.14. In this case, SXscore-LR, SXscore-MR and SXscore-HR groups are
composed of 888, 112 and 75 patients, respectively. Statistical significant
differences are observed by evaluating the delay between ďiRRpnq and dRRpnq

in exercise, τ̌1,e, to stratify different SXscore groups. However, no statistical
significance is observed using the other proposed markers.

It should be noted that the results for each risk group of the two databases,
FINCAVAS and ARTEMIS, are not directly comparable since COR-MR and
COR-HR groups from FINCAVAS would comprise all ARTEMIS patients,
which, in turn, are divided into three different groups.

5.4.5 QT-RR adaptation and its power for SCD risk prediction

The ARTEMIS database was also used to study the capacity of the proposed
markers to predict SCD or overall mortality. The estimated delay distributions
for patients who suffer and do not suffer SCD or death by any cause are
represented in the box plots of Fig. 5.15. Markers were calculated using either
the instantaneous series ďiQT or the instantaneous series ďiRR, the Laplacian-
based estimator and the rule described in Sec. 5.4.4. Therefore, the number
of victims and survivors of SCD were 1074 and 39 (1128 and 37 using ďiRR),
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Figure 5.14: Box plots of the estimated time delay between ďiQTpnq and dQTpnq from
ARTEMIS database after applying a rule to reduce the number of nonusable τ1,e estimates,
required to compute τ̌1,x, x P te, ru. The estimates are obtained for (a) exercise, resulting in
τ̂1,e, and (b) recovery, resulting in τ̂1,r. In (c) box plots of the difference between recovery and
exercise, resulting in ∆τ̂1 are displayed. The dotted and continuous lines in red correspond
to the mean and the median, respectively. Syntax Score group color code is: SXscore-LR
(green), SXscore-MR (yellow) and SXscore-HR (red). The delay significance, p-values, in
separating patient groups are plotted on top of the box plot pairs. The analysis is repeated
using ďiRRpnq and dRRpnq series, whose τ̂1,e, τ̂1,r and ∆τ̂1 are displayed in (d), (e) and (f)
graphs, respectively.

respectively, while the number of victims and survivors of any cause-mortality
were 1060 and 53 (1112 and 57 using ďiRR), respectively.

The τ̌1,r marker was the one able to discriminate between victims and sur-
vivors of SCD when the delays were estimated using ďiRR series (Fig. 5.15(e)). The
marker τ̌1,r was larger in patients who suffered SCD (mτ̌1,r “ 53.17 ˘ 27.28 s)
than in those who did not (mτ̌1,r “ 42.96 ˘ 28.02 s), with the differences be-
ing statistically significant. These statistical differences were also observed
using ∆τ̌1 (Fig. 5.15(f)), with m∆τ̌1 “ 1.78 ˘ 45.26 s for SCD survivors and
m∆τ̌1 “ 14.05 ˘ 41.21 s for SCD victims. However, τ̌1,r marker rendered border-
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line significant differences between patients victims and survivors of any-cause
mortality (mτ̌1,r “ 51.62 ˘ 26.10 s and mτ̌1,r “ 42.89 ˘ 28.08 s, respectively).

This last finding was also observed when τ̌1,r marker was calculated using ďiQT

series (Fig. 5.15(b)).
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Figure 5.15: Box plots of the estimated time delay between ďiQTpnq and dQTpnq from
ARTEMIS database after applying a rule to reduce the number of nonusable τ1,e estimates,
required to compute τ̌1,x, x P te, ru. The estimates are obtained for (a) exercise, resulting in
τ̂1,e, and (b) recovery, resulting in τ̂1,r. (c) Box plots of the difference between recovery and
exercise, resulting in ∆τ̂1. The dotted and continuous lines in red correspond to the mean
and the median, respectively. The outcome group color code is: survivor group (green) and
death group (red) for both SCD and any cause-mortality outcomes. The delay significance,
p-values, in separating patient groups are plotted on top of the box plot pairs. The analysis
is repeated using ďiRRpnq and dRRpnq series, whose τ̂1,e, τ̂1,r and ∆τ̂1 are displayed in (d), (e)
and (f) graphs, respectively.

The univariable and multivariable Cox analyses for SCD and any cause-
mortality predictions are summarized in Table 5.7 and Table 5.8, respectively.
The median QTc value for each learning window Wj , j P tb, e, lru was com-
puted using the Fridericia correction and was included in the predictive model
evaluation.
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The best univariable model for SCD was obtained with QTWe (C-index
closed to 0.70) using either ďiRR or ďiQT. In contrast, the best univariable model

for any-cause mortality was obtained with HRWe (C-index = 0.73) using ďiQT

and with HRWe or QTWe (C-index = 0.73) using ďiRR.

The proposed τ̌1,r marker was associated with both SCD and any-cause
mortality when the delay was estimated using ďiRR, with a C-index equal to
0.62 and 0.57, respectively [HZRIQR of 1.55 (95%, CI 1.05-2.30) and 1.44
(95%, CI 1.03-2.01), respectively, resulting in HZR1s “ 1.01 in both cases].
However, when this index was calculated with ďiQT, it was only related to
any cause-mortality, with a C-index equal to 0.58 [HZRIQR of 1.49 (95%, CI
1.13-1.96), resulting in HZR1s “ 1.01]. The markers τ̌e and ∆τ̌ did not yield
statistically significant results.

Using ďiQT series, the best multivariable model for SCD included the variables
sex, HRWb

, HRWe and QTcWb
. The covariables with the greatest influence

were sex, with the fact of being a man implying a 67% increase in the risk of
SCD (HZRIQR of 0.33 (95%, CI 0.15-0.72)), and HRWb

, with an increment of
1 bpm being associated with 7% increase in the risk of SCD (HZR1bpm “ 1.07).
Using ďiRR series, the best multivariable model for SCD included the variables
HRWb

, HRWe , QTcWe and τ̌1,r, with an increment of 1 bpm in HRWb
being

associated with 6% higher probability of suffering SCD (HZR1bpm “ 1.06),
and an increment of 10 s in τ̌1,r being associated with 17% higher likelihood of
suffering SCD (HZR10s “ 1.17).

In the case of any-cause mortality, the best multivariable model included
the variables sex, age, HRWe , QTWlr

, QTcWb
and τ̌1,r, for all the possible series

selected to calculate delays. An inverse relation was found between HRWe and
any cause-mortality. Men and older patients were more likely to die of any
cause-mortality.

All multivariable models had a C-index greater than 0.7, suggesting that
these models can stratify individuals according to their risk of SCD or any-
cause mortality. The values of the C-index were higher than those of the best
univariable model in each case, thus showing that the predictive accuracy was
enhanced with the inclusion of additional covariables.
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Table 5.7: Univariable and multivariable association with SCD in ARTEMIS database.

Series ďiQTpnq ďiRRpnq

Risk factor median ˘ IQR
Univariable analysis Multivariable analysis

median ˘ IQR
Univariable analysis Multivariable analysis

HZRIQR
(95% CI) p-value HZRIQR

(95% CI) p-value HZRIQR
(95% CI) p-value HZRIQR

(95% CI) p-value

Sex (male) 728 male 0.46
(0.21-1.00) 0.05* 0.33

(0.15-0.72) 0.01* 781 male 0.45
(0.20-1.03) 0.06 ... ...

Age (years) 67.0 ˘ 11.0 1.52
(0.96-2.39) 0.07 ... ... 67.0 ˘ 12.0 1.35

(0.83-2.20) 0.23 ... ...

BMI (Kg/m2) 28.0 ˘ 5.8 1.11
(0.75-1.66) 0.60 ... ... 27.0 ˘ 5.0 1.19

(0.84-1.67) 0.33 ... ...

HRWb
(bpm) 59.5 ˘ 11.8 1.56

(1.10-2.20) 0.01* 2.24
(1.50-3.35) ă0.01* 59.3 ˘ 11.7 1.43

(0.99-2.07) 0.05* 1.99
(1.32-3.00) ă0.01*

HRWe (bpm) 119.51 ˘ 27.9 0.40
(0.25-0.65) ă0.01* 0.32

(0.19-0.56) ă0.01* 122.5 ˘ 29.3 0.43
(0.26-0.71) ă0.01* 0.46

(0.23-0.93) 0.03

HRWlr
(bpm) 73.0 ˘ 14.0 0.90

(0.60-1.35) 0.62 ... ... 73.6 ˘ 14.3 0.84
(0.55-1.28) 0.41 ... ...

QTWb
(ms) 418.0 ˘ 39.0 1.21

(0.81-1.78) 0.35 ... ... 417.9 ˘ 38.4 1.27
(0.85-1.88) 0.24 ... ...

QTWe (ms) 313.0 ˘ 42.0 2.20
(1.56-3.11) ă0.01* ... ... 308.0 ˘ 41.6 2.06

(1.46-2.90) ă0.01* ... ...

QTWlr
(ms) 396.0 ˘ 38.0 1.34

(0.92-1.96) 0.13 ... ... 394.0 ˘ 38.4 1.41
(0.96-2.07) 0.08 ... ...

QTcWb
(ms) 416.0 ˘ 28.0 1.69

(1.22-2.34) ă0.01* 1.66
(1.16-2.38) 0.01* 415.7 ˘ 27.0 1.69

(1.22-2.33) ă0.01* ... ..

QTcWe (ms) 392.6 ˘ 26.5 2.00
(1.46-2.72) ă0.01* ... ... 390.6 ˘ 27.1 2.01

(1.46-2.77) ă0.01* 1.50
(0.95-2.39) 0.08

QTcWlr
(ms) 423.2 ˘ 25.8 1.34

(0.93-1.93) 0.11 ... ... 423.0 ˘ 25.5 1.37
(0.95-1.99) 0.09 ... ...

τ̌e (s) 29.3 ˘ 32.5 1.08
(0.76-1.54) 0.67 ... ... 34.5 ˘ 33.8 0.93

(0.62-1.40) 0.74 ... ...

τ̌r (s) 33.0 ˘ 27.3 1.18
(0.82-1.70) 0.37 ... ... 37.5 ˘ 39.5 1.55

(1.05-2.30) 0.03* 1.85
(1.25-2.74) ă0.01*

∆τ̌ (s) 0.75 ˘ 48.3 1.04
(0.71-1.52) 0.85 ... ... 1.5 ˘ 54.5 1.39

(0.93-2.07) 0.11 ... ...

C-index 0.69 (with QTWe ) 0.80 0.68 (with QTWe ) 0.75
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Table 5.8: Univariable and multivariable association with any cause-mortality in ARTEMIS database.

Series ďiQTpnq ďiRRpnq

Risk factor median ˘ IQR
Univariable analysis Multivariable analysis

median ˘ IQR
Univariable analysis Multivariable analysis

HZRIQR
(95% CI) p-value HZRIQR

(95% CI) p-value HZRIQR
(95% CI) p-value HZRIQR

(95% CI) p-value

Sex (male) 728 male 0.37
(0.18-0.76) 0.01* 0.24

(0.11-0.50) ă0.01* 781 male 0.40
(0.20-0.82) 0.01* 0.26

(0.12-0.55) ă0.01*

Age (years) 67.0 ˘ 11.0 3.41
(2.19-5.30) ă0.01* 2.37

(1.49-3.77) ă0.01* 67.0 ˘ 12.0 3.46
(2.18-5.50) ă0.01* 2.23

(1.36-3.66) ă0.01*

BMI (Kg/m2) 28.0 ˘ 5.8 0.92
(0.63-1.32) 0.64 ... ... 27.0 ˘ 5.0 1.02

(0.75-1.39) 0.88 ... ...

HRWb
(bpm) 59.5 ˘ 11.8 1.05

(0.74-1.48) 0.80 ... ... 59.3 ˘ 11.7 1.10
(0.78-1.54) 0.59 ... ...

HRWe (bpm) 119.51 ˘ 27.9 0.27
(0.17-0.42) ă0.01* 0.22

(0.12-0.40) ă0.01* 122.5 ˘ 29.3 0.27
(0.17-0.42) ă0.01* 0.23

(0.13-0.42) ă0.01*

HRWlr
(bpm) 73.0 ˘ 14.0 0.56

(0.39-0.81) ă0.01* ... ... 73.6 ˘ 14.3 0.52
(0.36-0.76) ă0.01* ... ...

QTWb
(ms) 418.0 ˘ 39.0 1.33

(0.96-1.85) 0.09 ... ... 417.9 ˘ 38.4 1.30
(0.93-1.80) 0.12 ... ...

QTWe (ms) 313.0 ˘ 42.0 2.43
(1.83-3.24) ă0.01* ... ... 308.0 ˘ 41.6 2.38

(1.81-3.13) ă0.01* ... ...

QTWlr
(ms) 396.0 ˘ 38.0 1.53

(1.12-2.10) 0.01* 0.42
(0.23-0.78) ă0.01* 394.0 ˘ 38.4 1.61

(1.18-2.21) ă0.01* 0.52
(0.29-0.95) 0.03*

QTcWb
(ms) 416.0 ˘ 28.0 1.42

(1.05-1.92) 0.02* 2.10
(1.26-3.51) ă0.01* 415.7 ˘ 27.0 1.41

(1.06-1.89) 0.02* 1.68
(1.02-2.77) 0.04*

QTcWe (ms) 392.6 ˘ 26.5 1.93
(1.48-2.51) ă0.01* ... ... 390.6 ˘ 27.1 2.00

(1.54-2.61) ă0.01* ... ...

QTcWlr
(ms) 423.2 ˘ 25.8 1.09

(0.78-1.52) 0.61 ... ... 423.0 ˘ 25.5 1.12
(0.80-1.56) 0.51 ... ...

τ̌e (s) 29.3 ˘ 32.5 1.14
(0.85-1.52) 0.39 ... ... 34.5 ˘ 33.8 1.20

(0.89-1.62) 0.23 ... ...

τ̌r (s) 33.0 ˘ 27.3 1.49
(1.13-1.96) 0.01* 1.47

(1.14-1.89) ă0.01* 37.5 ˘ 39.5 1.44
(1.03-2.01) 0.03* 1.59

(1.14-2.21) ă0.01*

∆τ̌ (s) 0.75 ˘ 48.3 1.17
(0.84-1.64) 0.35 ... ... 1.5 ˘ 54.5 1.21

(0.87-1.68) 0.25 ... ...

C-index 0.73 (with HRWe ) 0.82 0.73 (with HRWe or QTWe ) 0.80
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5.5 Discussion

5.5.1 T wave end delineation

Computing the T wave end in ECG signals recorded during EST or high heart
rate values is challenging. Here, we have evaluated different variants of spatial
lead transformation methodologies to delineate the T wave end. The highest
variance is observed when the MLeads methodology is used. Visual examples in
Fig. 5.2 are in agreement with the numerical quantification of the QT variability
power, PQTV, shown in Fig. 5.4. From Fig. 5.2 it can be observed that a larger
outlier contamination introduces a distortion in the median filtered trace which
could affect the time lag estimation. Computing the T wave end in any TL1 is
more stable than applying the multi-lead delineation. In particular, the best
performing methods for ECG delineation during EST are those obtained with
GπCAP -based techniques rather than with PCA-based ones. Results show that
all PCA-based techniques provide similar PQTV results and, analogously, all
GπCAP -based techniques render similar results.

These conclusions are also extracted by evaluating the T wave end delineation
in simulated ECGs, quantified by a reference mark, cf. Sec. 4.3.1. Therefore,
assessing the beat-to-beat variability of the observed QT series, assuming to be
composed of natural variability and delineation errors, can be an alternative
when a reference mark is not available.

Our results are in line with previous studies that used GπCAP -based
techniques to emphasize beat-to-beat periodic components in Holter ECG
[90,104] and found them to present superior performance than PCA or single-
lead delineation strategies when high noise contamination is present. Other
blind source separation methods, such as ICA, could have been considered.
Still, the fact that GπCAP -based incorporates a priori available knowledge of
the beat-to-beat T wave periodicity structure, focusing on the transformation of
the T wave enhancement, has led to restricting the analysis to GπCAP in this
Ph.D. thesis and leave the evaluation of ICA methods for future works.

5.5.2 QT-RR adaptation time lag and its relation with coronary artery
disease

According to the mean QT adaptation time lag estimated in this Ph.D. thesis, the
higher CAD level, the higher the QT adaptation time lag during exercise. This
is in agreement with results reported by Lauer et al. [80] where QT hysteresis
is found to increase with the likelihood of any degree of ischemia or severe
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ischemia. In addition, these values ranging from 20 to 50 s are of the same
order of magnitude as those reported in [47], where the QT adaptation time
constants are estimated from selected step-like heart rate changes and are
reported to reach values ranging from 36 to 62 seconds, depending on the
patients. A comparison of the results obtained in this Ph.D. thesis and those of
other studies can be found in Table II. Taking the study published in [47], the
adaptation time is measured at 50% of the complete QT adaptation time for
abrupt RR changes and is denoted as L50. This percent (50%) is not far from
63%, which corresponds to the time constant in the exponential response of a
first-order system when the input is a step. Thus, this range is compatible with
the hypothesis that the QT adaptation time lag, measured as proposed here,
during the exercise and recovery phases or in response to a sudden step-like
heart rate change could provide equivalent information. Note that the patients
in [47] are survivors of acute myocardial infarction, while the common situation
in this study is that patients are at a certain risk of suffering CAD. Thus, the
cardiac substrate in the patients of the two studies is different.

When comparing the results of the statistical analysis to separate the different
patient groups using each of the three instantaneous QT series estimation
(see Fig. 5.7), a small decrease in the p-values is generally observed using
ďiQTpnq. Statistical significance is not reached when comparing the COR-LR
and COR-MR groups using τ1,e calculated with any modified instantaneous
QT series. Nevertheless, the capacity for discriminating between the COR-LR
and COR-MR groups is statistically significant for the proposed markers τ̌1,e and
∆τ̌1 when the delays are estimated using the ďiQTpnq series and the rule defined
in sec. 5.4.4 (see Fig. 5.11). Consequently, this rule helps to reject patients
from the analysis and in the same way improves the discriminatory capacity of
the proposed markers. The significance of the results remains unchanged after
applying the Bonferroni correction if six comparisons are performed (p ă 0.008
for statistical significance), except for the cases of ECG-LR/COR-MR and
COR-LR/COR-MR with τp,r and ∆τp for p P t1, 2u. The nonuniform results in
terms of statistical significance observed when including the COR-MR group
in the comparisons could be a consequence of its reduced number of patients
compared to other groups.

The trend of the results using ďiRRpnq is the same as the ones estimated using
ďiQTpnq in the FINCAVAS database (see Fig. 5.12) and in the ARTEMIS database
(see Fig. 5.14), although the delays are higher. Focusing on the FINCAVAS
database, there are some changes in terms of the statistical significance when
comparing all low-risk groups and the COR-MR group: statistical significance
is not attained using τ̌1,e, but it is when using τ̌1,r, which leads to statistically
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significant differences for ∆τ̌1 marker. Moreover, Table 5.6 shows that the
number of nonusable delays is smaller than the ones presented in Table 5.5.
The correlation between the proposed markers computed with ďiRRpnq and the
degrees of stenosis, as well as the ROC curves, presents similar results. Thus,
the methodology based on the diRRpnq series could be an improved version of
that based on diQTpnq.

The associated mean values for the ECG-LR group aremτ1,e “ 19.82 ˘ 14.62 s
and mτ1,r “ 50.92 ˘ 26.11 s using diQTpnq series. In [83], the mean time lag of
QT interval adaptation for step-like heart rate changes is studied independently
in response to heart rate acceleration and deceleration in healthy subjects per-
forming postural changes. The values reported in [83] are mτe “ 34.8 ˘ 13.6 s
and mτr “ 48.4 ˘ 25.7 s. The larger adaptation time lag in response to heart
rate decelerations than to heart rate accelerations is consistent with the results
in the present Ph.D. thesis. The computation of the delay using the modified
ďiQTpnq series (or ďiRRpnq series) described in Sec. 2.7 and applying the rule
described in Sec. 5.4.4, mτ̌1,e “ 27.02 ˘ 14.41 s (mτ̌1,e “ 36.32 ˘ 21.57 s) and
mτ̌1,r “ 41.99 ˘ 23.32 s (mτ̌1,r “ 53.17 ˘ 30.09 s), agree better with the values
reported in [83]. These results strengthen that the modification of the QT values
at the peak exercise leads to a better representation of the QT-RR dynamics
and, consequently, more accurate estimates of the QT adaptation time lag.

Axelsson et al. [75] studied the adaptation time of the QT interval following
an abrupt heart rate change in patients with pacemakers. They concluded that
the adaptation of ventricular repolarization duration is longer after the heart
rate decreases than after it increases. This observation is supported by the
results presented here, although the delays in the COR-HR group are practically
the same in the exercise and recovery phases. A comparison of the method
proposed in this Ph.D. thesis to measure the QT adaptation time with those
reported in the literature, including the work reported in [75], is summarized in
Table 5.9.

A modest linear correlation is found between the demographic variables and
the proposed adaptation time markers in this work. Still, the sign of the small
correlation indicates that patients with an elevated risk of suffering CAD are
older, have a larger BMI, and τ̌1,e is higher while both τ̌1,r and ∆τ̌1 are lower.
The means of the adaptation markers are also different according to gender. A
linear mixed model is calculated to express the QT time lag markers of the
four CAD patient groups using a combination of the demographic variables.
Statistically significant p-values are only obtained for variables BMI and gender
(p-values equal to 0.04 and equal to 0.02, respectively) when they are used
together in the linear mixed model to estimate the delay in the recovery phase.
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Nevertheless, the low between-group variance (7.6%, 0.7% and 4.6%) for τ̌1,e,
τ̌1,r and ∆τ̌1 markers, respectively, indicates that large delay differences are not
observed between groups. Moreover, the residual variance is very high, which
suggests that the proposed markers cannot be explained by the demographic
variables.

To corroborate that the last conclusion is not contaminated by the similar
values between the ECG-LR and COR-LR groups, the same linear mixed model
is fitted but with the two low-risk groups merged into one (ALL-LR). Therefore,
only three risk groups are distinguished: All-LR, COR-MR and COR-HR. The
variance of the contributing variables explains 8.9%, 0.8% and 5.9% for τ̌1,e, τ̌1,r
and ∆τ̌1 markers, respectively, observing that the values have increased slightly
but they are still low. Therefore, it can be concluded that the combination
of the three demographic parameters does not provide a linear model that
represents the information of any QT adaptation delay marker. In the case that
the QT time lag estimates were largely influenced by the confounding variables,
a clear difference between intercepts of the different groups would be expected,
together with a well-fitted linear model in which the explained variance would
be high while the residual one would be low.

The correlation values between the degree of stenosis and the three proposed
QT adaptation time lag markers confirm that there is a direct relation between
τp,e and CAD, that is, the degree of stenosis. However, an inverse relation is
found between τp,r and the degree of stenosis, or between ∆τp and the degree of
stenosis. As described in section 5.4, the Spearman correlation coefficient values
do not present significant differences when computed from the diQTpnq or the

ďiQTpnq series.

Therefore, computing the QT adaptation time lag in exercise ECG stress
testing between the instantaneous ďiQTpnq|ďiRRpnq and observed dQTpnq|dRRpnq

series using the Laplacian estimator provides the following information: low
values of τ̌1,r could be an indicator of a high risk of suffering CAD, while low
τ̌1,e values could be indicative of low risk of having CAD. According to ∆̌τ1, its
values decrease as the likelihood of suffering CAD increases, reaching values
close to zero or even negative values. Thus, low ∆̌τ1 values would be indicative
of an elevated CAD risk. These findings are observed using the two clinical
databases, i.e. FINCAVAS and ARTEMIS.

From a clinical perspective, patients in the ARTEMIS database would
correspond to the ones of COR-MR and COR-HR groups from FINCAVAS
database, who presented a stenosis greater than 50%. In the second row of
Fig. 5.12, it can be observed that there are no statistically significant differences
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Table 5.9: Comparison of presents results with published studies.

Authors Subjects Type of heart rate changes QT adaptation time lag
Lau et al. [64] 7 patients with complete

heart block diagnosis.
Abrupt heart rate changes
from a temporary pacing
electrode.

136s in heart rate acceleration, and 189s in
heart rate deceleration for L90.

Lauer et al. [80] 260 patients referred for
treadmill exercise.

QT-RR hysteresis from grad-
ual heart rate changes at
stress test.

QT-RR hysteresis ě 313 s for CAD patients.
QT-RR hysteresis ě 375 s for any ischemia.
Higher QT-RR hysteresis is predictive of
the presence and severity of myocardial is-
chemia.

Pueyo et al. [47] 866 patients survivors of
acute myocardial infarc-
tion, of which 200 patients
with the highest and lowest
changes in heart rate were
selected.

Abrupt heart rate changes
from 24h-Holter recordings.

From 36 to 62 s for L50.

Pueyo et al. [83] 33 healthy subjects. Abrupt heart rate changes
from controlled postural ma-
neuvering.

35 s in heart rate acceleration, and 48 s in
heart rate deceleration for L90.

Axelsson et al. [75] 25 subjects with permanent
pacemakers.

Abrupt heart rate changes
controlled by a pacemaker.

Time constant for the exponential function
of the low QT adaptation phase in ventric-
ular pacing: 50 s in heart rate acceleration,
and 62 s in heart rate deceleration. 110 s in
heart rate acceleration, and 133 s in heart
rate deceleration for L90 in ventricular pac-
ing (this phase includes both the instanta-
neous and the low response of the QT adap-
tation when the heart rate change).

Martín-Yebra et al. [90] 171 patients with chronic
heart failure with permanent
AF.

1-h windows from ambula-
tory ECG recordings.

For nonSCD patients: τ = 50 s and L90 =
111 s. For SCD patients: τ = 67 s and L90

= 136 s.
Proposed 453 patients referred for

a bicycle-ergometer exercise
stress test.

Gradual heart rate changes
at exercise stress testing.

For low-risk CAD patients: 27 s in heart
rate acceleration and 42 s in heart rate de-
celeration. For high-risk CAD patients: 34 s
in heart rate acceleration and 40 s in heart
rate deceleration.

L50 and L90 represent the time required for QT to complete 50% and 90%, respectively, of the change in response to HR changes. τ
is the delay of the first-order system with an impulse response that describing the relation between QT and RR intervals.
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between these two groups for any proposed markers; in contrast to the results
from Fig 5.14(d). Therefore, this observation could be valuable to support the
importance of the SXscore index in the clinical decision.

It can be noted that other variables such as heart rate or QT (Table 5.1)
also significantly discriminate between CAD groups. However, the time lags
estimated from EST can provide complementary information to heart rate
and QT intervals and can have value for arrhythmic risk prediction, as shown
in [47,65] in response to abrupt heart rate changes.

Lastly, related to the identification of the onset and end of the ramps for
the delay computation, two considerations can be made. First, an automatic
algorithm would not be necessary in cases where well-annotated exercise-phase
onset and recovery-phase end were available, but this is not always the case
and requires extra acquisition protocol requirements. This identification can be
easily dealt with the proposed algorithm. Second, the final part of the exercise
ramp and the onset of the recovery ramp coincide with the occurrence of a larger
sympathetic activation. Consequently, the QT time lag might possibly not be
constant and could even decrease with increasing sympathetic activation [92].
This phenomenon is observed between diQTpnq and dQTpnq series, which overlap,
with no significant lag time, when approaching the peak exercise in the exercise
phase, Fig. 2.5(b). Recent findings [92] show that the time lag for ventricular
repolarization adaptation to sympathetic provocation becomes progressively
reduced in response to increasingly higher levels of β-adrenergic stimulation, as
occurs when approaching the peak exercise. Electrophysiological simulations
including concurrent changes in ANS and in heart rate series such as those
studied here can shed light on the basis of this observed behavior. This effect is
also reflected in the selection of the optimal thresholds for patient classification
γ˚
e “ γ˚

r “ 0.55, which are selected in areas far from the peak exercise where
the lag can be considered to remain approximately constant. Defining the end
of the exercise area, or the onset of the recovery area, far from the peak exercise
also avoids estimating the delays in an area where the overlap of the P wave
with the T wave could markedly influence the delineation of the T wave end.

5.5.3 QT-RR adaptation and its power for SCD risk prediction

A major finding of this study is the relevance of the proposed τ̌1,r marker for
(a) stratifying survivors and victims of either SCD or any cause-mortality,
and (b) defining multivariable regression models to predict either SCD or
any cause-mortality when the QT-RR time lag is estimated between ďiRRpnq

and the observed dRRpnq. In contrast to this capacity of the exercise time
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lag, only significant results are obtained for prediction of any cause-mortality
when the recovery time lag is estimated between ďiQTpnq and the observed

dQTpnq. Thus, using ďiRRpnq is more advantageous from a clinical perspective for
both separation of CAD groups and for prediction of either SCD or any-cause
mortality.

The importance of τ̌1,r marker estimated using ďiRRpnq is observed not only
in univariable but also in multivariable analysis, since this variable is part of
the best model to predict SCD or any cause-mortality. An addition of 10 s in
τ̌1,r lead to 17% increase in the risk of SCD and 12% increase in the risk of
dying of any cause.

Also, other demographic variables like gender and ECG-derived variables
measured during peak exercise, such as HRWe and QTWe , show a strong
correlation with the two investigated endpoints.

The multivariable Cox regression model for predicting any-cause mortality
has also been studied using only sex, age, HRWe , HRWlr

and τ̌1,r variables,
that is, removing any variable related to the QT interval. Using information
from the ďiRRpnq series, the final multivariable model after applying Akaike
criterion is composed of HRWe and HRWlr

variables, with their associated
hazard ratios HZRIQR being 0.22 (95%, CI 0.12-0.42) and HZRIQR of 1.50
(95%, CI 0.90-2.50), respectively. In this multivariable model, a direct relation
between HRWlr

variable and any-cause mortality can be observed, with higher
HRWlr

values corresponding to higher mortality risk. However, the HZR value
of this variable in the univariable model is lower than one (HZRIQR of 0.52
(95%, CI 0.36-0.76)), thus presenting an inverse relation with mortality risk (see
Table 5.8). Taken together, our results should be interpreted in light of the
changes in different variables. Particularly in the case of HRWlr

, they should be
interpreted in light of the changes in HRWe . From the multivariable analysis,
our results represent that, when HRWlr

rises for a given HRWe , the risk of
any-cause mortality increases. Clinically, it could mean that patients with a
higher mortality risk achieve an elevated heart rate in the basal area after
recovery, so either they cannot recover totally or have a high heart rate at rest
condition. In terms of RR series, the risk of any-cause mortality increases when
RRWlr

decreases for a given RRWe . This analysis can also explain the opposite
tendency of the HZR value of QTWlr

obtained in the multivariable regression
model in Table 5.8, as compared to the univariable model.

ECG predictors of SCD have been extensively studied in the literature
[25, 135, 136] and their relevance due to their noninvasive nature has been
pointed out [31,60,137]. In this Ph.D. thesis, longer QT-RR adaptation time
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measured in the recovery phase of EST, τ̌1,r, is associated with SCD in patients
from mild- to high-risk of CAD. The predictive capacity of both τ̌1,r and ∆τ̌1
derived from the ECG as noninvasive markers could be valuable from a clinical
perspective.

Some considerations related to Cox analysis should be noted. First, the
SXscore information is not included because a nonsignificant relation between
this variable and any of the two investigated endpoints was found. Second,
standardization of the variables based on their median and the IQR was
performed after observing that not all variables follow a normal distribution.
Dichotomizing the variables would have been another option. This would require
setting a threshold on e.g. τ̌1,r, which has not been studied in the literature yet.

5.5.4 QT-RR modeling

Estimation of α and β

To calculate the instantaneous series diQTpnq, three windows are selected, Wb,
We and Wlr, assumed to contain stationary RR and QT series from where to
estimate the α and β parameters of the nonlinear function gf pdRRpnq;α, βq.
Stationary series guarantee that the dominant dependency between the RR
and QT series is mostly driven by the nonlinear block in the model of Fig. 2.3
and, thus, well suited to estimate α and β. However, the stationarity of those
segments is not ensured, even if they are the most likely available candidates for
that during the EST. If the patients had complementary ECG recordings, with
better stationary conditions and with large enough ranges of RR, the estimated
values of α and β could be obtained from those recordings.

Interchangeability of QT-RR model blocks

Based on the estimated QT time lag values of this Ph.D. thesis, values of
τ of about 25 s during exercise can be considered. The effective length of
hpnq is about 5τ , corresponding to about 125 s, which implies RR changes of
as much as 100 ms (« 5 bpm). During recovery, values of τ corresponding
to about 50 s should rather be considered, implying RR changes as large as
200 ms (« 10 bpm). Several definitions of regression models representing
gf pdRRpnqq were considered in [47] to cover a wide range of possible stationary
QT-RR patterns. For any of those regression models, RR changes as small as
100 ms or 200 ms (in the time span of the QT memory) are well-approximated
by a linear QT-RR dependence, thus supporting the derivation in Sec. 2.9
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and the interchangeability of the model blocks in Fig. 2.3. The basis of this
approximation can be observed in Fig. 2.5(a) for the hyperbolic transformation
defined in (2.15).

5.5.5 Limitations

The robustness of the algorithm for computing the inflection point in (2.33) could
be compromised by the EST protocol. If the ECG recording does not include a
stage before starting the exercise phase or if the recovery period is not long
enough, it would be difficult to calculate the points ne,o and nr,e, respectively.
In such cases, the objective function should be redefined to adapt it to the
patterns of the recordings under analysis. Also, to have a proper estimation
of the instantaneous parametric relation between the QT and RR intervals,
heart rate stationary periods are required, which would suggest prolonging the
pre-test and the recovery recording periods.

The use of biophysical modeling and simulation could help to assess the role
of the sympathetic nervous system in the QT rate adaption measured from
EST. Also, it could eventually help to refine the methodology here described.

5.6 Conclusion

This chapter shows that it is possible to quantify the QT memory in response
to gradual heart rate changes from clinical exercise ECG stress testing. A
prolongation in the QT adaptation time lag during exercise and a shortening
during recovery are associated with an increased risk of CAD. A reduced
difference between these two delays is also observed in high-risk CAD patients.
The Laplacian-based estimator better discriminates patients with different CAD
risk. The adaptation markers proposed in this Ph.D. thesis could be used to
improve the accuracy of CAD diagnosis. Furthermore, the QT-RR adaptation
time evaluated during the recovery phase, and calculated as the delay between
the observed dRRpnq and the instantaneous ďiRRpnq series, has been identified as
a predictor of SCD or any-cause mortality. In contrast, this estimated delay
at recovery using dQTpnq series is marginally significant to predict all-cause
mortality and not significant for SCD, suggesting that estimators based on
dRRpnq are more suitable for stratification of patients according to their risk of
SCD and overall mortality. In addition, the GπCAP method has been shown to
be the best tested strategy to delineate the T wave end.
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Chapter 6. The Role of β-adrenergic Stimulation in QT-RR Adaptation Time Lag during

Exercise Stress Testing: An Electrophysiological simulation study

6.1 Motivation

In previous chapters, the QT interval adaptation time lag to gradual heart rate
changes during EST has been investigated, with this value estimated as the
delay between the observed QT intervals and the QT intervals derived from
the time series of the observed RR intervals. Although a constant time lag
along the exercise phase of the EST is assumed, the ECG recordings from CAD
patients undergoing EST show that close to the peak exercise, the two time
series tended to overlap (see Fig. 2.5), suggesting a nonunique time lag but a
time-varying time lag along the exercise. This led to hypothesize that other
factors, in addition to heart rate, could influence the QT interval adaptation
time lag, with the ANS possibly being a significant contributor [138–140].
The ANS modulates ventricular repolarization directly through its action on
the ventricular myocardium and indirectly through its effects on the heart
rate [141–145].

Previous studies in the literature have assessed the effects of sympathetic
activation on the QT interval during exercise [146, 147], but the results are
inconclusive. In other works, autonomic blockades are used to evaluate QT hys-
teresis during exercise and recovery, providing evidence of the important role of
the ANS in the QT-RR relation [81]. However, subsequent reports suggest that
these conclusions might be affected by factors such as the speed of heart rate
change, also influenced by autonomic factors [85]. Despite the uncertainty on
the ANS role in QT hysteresis, since the ANS can exert an influence not only
on the QT interval duration but also on its adaptation to heart rate changes, it
would be worth investigating its contribution to QT hysteresis modulation. If
that contribution was corroborated, our observations regarding the gradual
reduction in the QT interval adaptation lag when approaching the peak exercise
might potentially be explained by the ANS influence.

In silico studies have investigated the dynamics of cellular repolarization
duration in response to β-adrenergic stimulation [148,149] and have reported
that the APD time lag in response to β-adrenergic stimulation becomes reduced
for higher pre-stimulation levels of β-adrenoceptors [92]. Based on these studies,
we hypothesize that increased sympathetic activity approaching peak exercise,
implying enhanced β-adrenergic stimulation, may play a role in the reduced
QT adaptation time lag observed at the end of the exercise phase. More broadly,
we hypothesize that a time-varying β-adrenergic stimulation pattern during
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EST could help to better explain the QT rate adaptation profiles measured
from CAD patients in response to exercise.

This chapter aims to clarify the role of β-adrenergic stimulation on APD
and QT adaptation time lag following heart rate changes during exercise and
recovery from EST. Importantly, we seek to propose a possible description
of the β-adrenergic stimulation pattern that could explain the repolarization
adaptation after heart rate changes during exercise ECG stress testing. To the
best of our knowledge, no study has yet proposed individualized, time-varying
β-adrenergic stimulation patterns to describe the QT adaptation time lag during
exercise and recovery in CAD patients.

6.2 Methods

6.2.1 In silico ventricular cell models

To investigate the mechanisms underlying the QT interval adaptation to heart
rate changes during EST, an in silico modeling and simulation study covering
multiple scales, from cell to ECG, is conducted. The APD is evaluated in
simulated cells and the QT interval is evaluated in pseudo-ECGs (pECGs) in
response to changes in heart rate as those measured from the clinical ECGs.

At the cellular level, the electrophysiology of human ventricular cardiomy-
ocytes is represented by the O’Hara et al. AP model [150]. In particular, the
three models proposed by O’Hara et al. are used here to describe the electrical
activity of subendocardial, midmyocardial and subepicardial cells across the
ventricular wall. These models include descriptions of the main ionic currents
and fluxes involved in the generation of the AP in the three cell types. The
relation between the ionic currents and fluxes and the transmembrane potential
are obtained by solving the following equation:

Cm
dV ptq

dt
`

ÿ

s

gspV ptq ´ Esq `
ÿ

b

Ibptq `
ÿ

i

Iiptq ` Istptq “ 0 (6.1)

where Cm is the membrane capacitance per unit of area, V is the transmembrane
potential, gs is the conductance of the ionic current for ion species s, Es is the
equilibrium potential of ion s, Ib is the current through pump b, Ii is the current
through exchanger i and Ist is the stimulus current. The formulation of the fast
sodium current in the O’Hara et al. models is replaced with the formulation by
ten Tusscher et al. following the comment by O’Hara and coworkers [150,151]
(comment on article [150] from 05 October 2012).
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The described electrophysiological models for the three types of ventricular
cells are coupled to the Gong et al. model of β-adrenergic receptor signaling [152].
The Gong et al. model represents an adaptation of the Heijman et al. model
originally developed for the canine myocyte [153]. The model describes the AP
response to different concentrations of the β-adrenergic agonist isoproterenol
(Iso) by computing each ionic current or flux as a weighted average of the
phosphorylated and nonphosphorylated fractions of each cellular substrate.
Based on the Heijman et al. model, the Iso -induced changes in individual
substrates like the L-type Ca2` channels, slow delayed rectifier K` channels and
ryanodine receptors were calibrated according to experimental data [152]. Gong
et al. made further adjustments in the model to reproduce healthy whole-cell
human ventricular AP data at maximal β-adrenergic stimulation under a range
of pacing frequencies.

To evaluate the cellular APD response to gradual heart rate changes, the
cells are paced according to real RR intervals taken from twelve ECGs from the
FINCAVAS database introduced in Sec. 5.2. These records are randomly selected
and correspond to four patients of each of the three groups clustered according
to their likelihood of suffering CAD: COR-LR, COR-MR and COR-HR groups.
For each simulated beat, the APD in response to each given RR interval is
computed as the APD at 90% repolarization. The APD time series sampled at
4 Hz is denoted as dAPDpnq.

6.2.2 In silico ventricular tissue models and simulation of ECG signals

Based on the human ventricular cell models described in section 6.2.1, the
response to changes in heart rate of a human ventricular tissue is evaluated.
A ventricular transmural tissue fiber of length L “ 1.5 cm composed of
subendocardial, midmyocardial and subepicardial cells is considered. Electrical
propagation in the tissue is represented by the monodomain model, which
is a simplified version of the bidomain model [154, 155]. The monodomain
model is described by a reaction-diffusion partial differential equation (PDE)
for the transmembrane potential, with the extracellular potential calculated
from another PDE once the transmembrane potential has been solved. The
propagation of the transmembrane potential in the tissue is described by the
following equation:

BV px, tq

Bt
“

´IionpV px, tqq

Cm
`D

B2V px, tq

Bx2
(6.2)
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where
BV px, tq

Bt
is the partial time derivative of the transmembrane potential

at a point x in the tissue fiber and a time t,
B2V px, tq

Bx2
is the second partial

space derivative of the transmembrane potential at a point x in the tissue
fiber and a time t, Iion is the total ionic current (calculated as the sum of all
the terms except for the first one in equation (6.1), with the stimulus current
corresponding to the one in the fiber) and D is the diffusion coefficient. Zero-flux
Neumann boundary conditions are imposed.

Cellular heterogeneities are defined according to the following transmural
distribution across the tissue fiber: 45% of subendocardial cells, 25% of mid-
myocardial cells and 30% of subepicardial cells, according to previous studies
based on experimentally reported values [65,156,157].

The value of the diffusion coefficient D is set to have a conduction velocity
value close to 70 cm/s in the fiber, which is within the physiological ranges
reported in experimental studies [158,159].

The reaction-diffusion PDE of the monodomain model is solved by using the
operator splitting method [160] to decouple the reaction term, which describes
the generation of the cellular AP, and the diffusion term, which describes the
AP propagation in the tissue. The decoupled PDE is solved by the Finite
Element Method (FEM) using the ELECTRA solver [161,162] with a spatial
resolution of 0.015 cm. Numerical time integration is performed using a dual
adaptive explicit time integration algorithm [163].

Taking the simulated transmembrane potentials from the cardiac tissue fiber,
a pECG signal is computed to represent the extracellular potential recorded
by an electrode placed 2 cm away from the subepicardial end of the fiber in
the direction of the fiber axis, as in previous studies investigating ventricular
repolarization from simulated one-dimensional transmural tissues [164]. The
pECG signal ψptq is calculated at each time instant t, with a frequency of
1000 Hz, using the following equation and subsequently normalized to have unit
amplitude:

ψpx1, tq “ ´

ż x“L

x“0
σ ∇xV px, tq ¨ ∇x

ˆ

1

rpx, x1q

˙

dx, (6.3)

where σ is the diffusion coefficient of the electrical medium surrounding the
tissue, L is the fiber length, and rpx, x1q is the distance between a point x within
the fiber and the recording electrode located at a point x’ outside the fiber but
in the fiber axis direction. Figure 6.1 shows the pECG waveforms (restricted to
the ventricular activity) calculated at two-time instants along EST after pacing
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the tissue fiber following the time series of the observed RR intervals dRRpnq

from a selected patient.

Figure 6.1: Main panel: dRRpnq time series, in seconds, from the analyzed ECG recording of
a CAD patient. Insets: normalized pECG ψptq computed from the simulated transmembrane
potentials of the tissue fiber at two time instants.

The QT interval is measured on the pECG by applying the wavelet-based
delineation method [100] in a single lead. The simulated QT time series at 4 Hz
is denoted as dQTpnq.

6.2.3 Simulated β-adrenergic stimulation patterns

The simulated APD responses to heart rate changes are analyzed for four
different patterns of β-adrenergic stimulation.

The first pattern Iso-c is defined by a constant level of β-adrenergic stimula-
tion that corresponds to a fixed Iso concentration of 0.005 µM, considered as a
baseline level.

The second pattern Iso-tv is defined by a time-varying level of β -adrenergic
stimulation that comprises an increase in stimulation when approaching the peak
exercise during the exercise phase and a reduction in stimulation shortly after
starting the recovery phase. In particular, this pattern departs from the baseline
Iso concentration of 0.005 µM and, at a time point n1 during exercise, the Iso
concentration starts to linearly increase until reaching a concentration of 0.01 µM
at peak exercise (n2 “ npe). This concentration value is kept constant at the
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start of the recovery until the time point n3. From the n3 point onwards, Iso
linearly drops until the time point n4, when it reaches the baseline concentration.
The points n1, n2, n3 and n4 are derived from the ECG data of each CAD
patient, as described below.

Two other patterns of β-adrenergic stimulation are investigated departing
from the Iso-tv pattern. For the linearly increasing pattern called Iso-li, the
Iso concentration is initially equal to 0.005 µM and varies linearly from the
exercise onset to peak exercise, where it reaches a value of 0.01 µM. The rest
of the Iso curve is the same as for Iso-tv. For the last proposed pattern, the
abruptly changing pattern called Iso-ab, the Iso concentration rises abruptly
at the exercise onset from 0.005 to 0.01 µM and remains at this value until
the peak exercise. The rest of the Iso curve is the same as Iso-tv. The four
β-adrenergic stimulation patterns are illustrated in Fig. 6.2.

To determine the four time points that define the time-varying β-adrenergic
stimulation pattern, the time series dQTpnq and diQTpnq of each patient are
required, with the time series dQTpnq corresponding to the observed QT intervals
and the time series diQTpnq corresponding to the QT intervals derived from
the observed RR intervals. The four time points are obtained according to the
following criteria, which are based on the examination of the QT and RR time
series of all analyzed patients:

• n1: time point closest to the peak exercise, and prior to it, for which the
slopes of dQTpnq and diQTpnq are equal.

• n2: time point corresponding to peak exercise npe.

• n3: first time point during recovery for which the difference between
dQTpnq and diQTpnq slopes presents a local maximum.

• n4: n3 ` 1, representing an abrupt reduction in the Iso concentration soon
after the start of the recovery phase.

6.3 Results

6.3.1 QT-RR adaptation time in patients

Linear (2.14) and hyperbolic (2.15) regression functions are used to model the
dependence of the instantaneous APD diAPDpnq and the instantaneous series
diQTpnq with the RR interval time series. These models have been reported to
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Figure 6.2: Simulated patterns of Iso concentrations during exercise and recovery. The
constant pattern (Iso-c) is defined by a constant, baseline level of Iso equal to 0.005 µM. The
time-varying pattern (Iso-tv) is defined by time points n1, n2, n3 and n4 determined from the
diQTpnq and dQTpnq series of the analyzed ECG recording from each CAD patient. The linearly
increasing pattern (Iso-li) is defined as the Iso-tv pattern but with an Iso concentration varying
linearly along exercise from the baseline level of 0.005 to 0.01 µM. The abruptly changing
pattern (Iso-ab) is defined as the Iso-tv pattern but with an abrupt change in Iso at the
beginning of exercise from 0.005 to 0.01 µM, which remains at this value until peak exercise.

represent the most common patterns of the QT-RR relation [47]. The model
that generates the lowest residual εrms in the three concatenated windows
Wb YWe YWlr is selected individually for each patient.

An example of [QT RR] datapairs in the three windows Wb, We and Wlr of
a patient and the fitting of the two regression models are presented in Fig. 6.3.
In general, the hyperbolic model allows the best fit according to the quantitative
results presented in Table 6.1.

The QT adaptation time lag estimated separately in the exercise and
recovery phases of the exercise ECG stress testing from the selected CAD
patients is shown in Table 6.1. The middle columns contain the RMS error εrms

calculated for each of the two regression models tested, used to individually
select the optimal model for each patient. The other columns show the estimated
QT adaptation time lag values in the exercise and recovery phases, separately,
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Figure 6.3: Fitting of linear (red) and hyperbolic (black) regression models to [QT, RR]
datapairs from a patient’s ECG. The data clusters correspond to the different windows Wj ,
j P b, e, lr.

for each clinical ECG, using diQTpnq series or ďiQTpnq series, denoted by τ1,e and
τ1,r, or τ̌1,e and τ̌1,r. All results are computed using the Laplacian estimator.
The rule introduced in Sec. 5.4.4 is also applied to compute the time series
ďiAPDpnq|ďiQT.

The methods described in Sec. 2.5 and Sec. 2.7 are used to calculate
instantaneous series diAPDpnq|diQTpnq and ďiAPDpnq|ďiQT for both the analyzed
ECGs of the CAD patients and the simulated cells and pECGs. The procedure
to estimate the QT adaptation is the one introduced in Sec. 2.6. Moreover, the
rule introduced in Sec. 5.4.4 is applied to compute ďiAPDpnq|ďiQT series.

6.3.2 APD-RR adaptation time in simulated cells

Table 6.2 presents the mean and standard deviation values of the QT adaptation
time τ1,e|τ̌1,e and τ1,r|τ̌1,r in each of the three CAD groups estimated from
clinical ECGs, using the time series diQTpnq and ďiQTpnq. In addition, the mean
and standard deviation values of the APD adaptation time lag calculated in a
single endocardial cell are included in the table for the four Iso patterns. As can
be observed, the individual time-varying β-adrenergic stimulation pattern Iso-tv
pattern leads to adaptation delays that are in better agreement with those
measured from the patients than the two other time-varying patterns, Iso-li
and Iso-ab, and the constant pattern Iso-c. These effects on the estimated time
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Table 6.1: Left column: codes used to identify the analyzed patients according to the risk
group and the patient order number # within the group. Middle columns: mean square error
εrms for the linear and hyperbolic regression models. Right columns: estimated QT adapta-
tion time lag values in the exercise and recovery phases for each clinical ECG, using diQTpnq

series or ďiQTpnq series, denoted by τ1,e and τ1,r, or τ̌1,e and τ̌1,r. All the results are computed
using the Laplacian estimator.

εrms (ms) Delays (s)
Lin Hyp τ1,e τ1,r τ̌1,e τ̌1,r

COR-LR1 13.24 3.34 0 92.00 5.25 87.75
COR-LR2 6.16 3.23 17.50 43.50 22.75 39.00
COR-LR3 15.10 5.95 11.75 52.00 20.00 28.25
COR-LR4 8.91 8.28 62.00 7.75 80.50 ´0.50
COR-MR1 13.87 8.06 29.00 32.50 40.00 22.50
COR-MR2 2.72 1.57 7.00 51.75 21.75 49.25
COR-MR3 3.51 2.34 9.00 27.75 20.00 24.25
COR-MR4 4.26 3.89 62.25 34.00 101.25 30.75
COR-HR1 5.57 2.92 33.75 26.75 39.25 26.00
COR-HR2 2.79 3.47 69.00 38.00 88.00 17.75
COR-HR3 7.46 9.96 47.25 38.50 57.00 28.75
COR-HR4 2.34 4.71 74.75 121.50 90.75 113.25

lags are better appreciated during the exercise than during the recovery and
applied to the calculation with either the diAPDpnq or ďiAPDpnq time series. The
obtained results support the conclusion that the Iso-tv pattern more accurately
represents the repolarization time adaptation to heart rate changes observed in
clinical data than the other tested patterns, including the constant one.

The APD adaptation time lag evaluated in an endocardial cell in response
to the heart rate changes corresponding to the RR interval time series computed
from a patient is shown in Fig. 6.4. Panel (a) illustrates the observed time
series dQTpnq and diQTpnq of a patient, whose estimated delays τ1,e and τ1,r are
also indicated. Panels (b) and (c) show the cellular time series dAPDpnq and
diAPDpnq in response to the same changes in the heart rate of the patient and
using constant Iso-c or time-varying Iso-tv Iso concentrations, respectively. The
estimated delay values are also indicated. All top panels of Fig. 6.4 represent
results using diQTpnq|diAPDpnq time series, while the bottom ones show results

from ďiQTpnq|ďiAPDpnq time series.

The time series dAPDpnq simulated for the constant and the time-varying
Iso concentrations take the same values before n1 and after n3, since the Iso
concentration is identical in these time segments (see Fig. 6.2). However, since
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the Iso concentrations are different between these points, that is, around the
peak exercise, the [QT,RR] data pairs in the window We|W̌e are different for
the constant and the time-varying Iso concentrations, thus generating different
instantaneous APD series.

Table 6.2: Mean and standard deviation values of estimated QT adaptation time τ in the
exercise and recovery phases computed for the patients in each of the CAD groups and in asim-
ulated endocardial cell with a constant β-adrenergic stimulation (Iso-c), with the proposed
time-varying β-adrenergic stimulation (Iso-tv) and with other two β-adrenergic patterns, Iso-
li and Iso-ab. These values are computed using either diQTpnq|diAPDpnq or ďiQTpnq|ďiAPDpnq

time series.

τ in Exercise
Estimation

method Iso pattern COR-LR COR-MR COR-HR

diAPDpnq

Iso-c 7.19 ˘ 13.00 ´0.31 ˘ 1.71 37.50 ˘ 18.28
Iso-tv 16.69 ˘ 17.93 15.31 ˘ 22.65 47.50 ˘ 23.75
Iso-li ´3.31 ˘ 22.34 22.00 ˘ 31.37 7.88 ˘ 18.56
Iso-ab ´32.13 ˘ 24.91 ´20.94 ˘ 22.61 ´38.50 ˘ 31.98

diQTpnq
QT adaptation
time in patients 22.81 ˘ 27.12 26.81 ˘ 25.63 56.19 ˘ 19.05

ďiAPDpnq

Iso-c 19.19 ˘ 13.00 21.13 ˘ 1.11 53.94 ˘ 24.64
Iso-tv 32.19 ˘ 24.38 36.50 ˘ 30.52 66.94 ˘ 33.58
Iso-li 3.31 ˘ 24.39 44.69 ˘ 35.25 23.94 ˘ 21.21
Iso-ab ´27.13 ˘ 34.02 ´27.69 ˘ 24.57 ´3.13 ˘ 29.00

ďiQTpnq
QT adaptation
time in patients 32.13 ˘ 33.15 45.75 ˘ 38.09 70.25 ˘ 26.79

τ in Recovery
Estimation

method Iso pattern COR-LR COR-MR COR-HR

diAPDpnq

Iso-c 37.50 ˘ 17.94 35.25 ˘ 11.62 15.12 ˘ 14.20
Iso-tv 38.94 ˘ 22.21 37.19 ˘ 14.40 19.50 ˘ 15.99
Iso-li 32.94 ˘ 17.49 19.75 ˘ 7.33 33.50 ˘ 14.03
Iso-ab 30.56 ˘ 17.22 15.94 ˘ 8.22 30.00 ˘ 12.81

diQTpnq
QT adaptation
time in patients 48.81 ˘ 34.59 36.50 ˘ 10.51 56.19 ˘ 43.88

ďiAPDpnq

Iso-c 23.50 ˘ 20.34 22.75 ˘ 15.84 8.81 ˘ 16.76
Iso-tv 24.69 ˘ 21.74 28.69 ˘ 18.55 10.38 ˘ 20.48
Iso-li 26.44 ˘ 18.21 5.06 ˘ 18.13 23.81 ˘ 9.07
Iso-ab 25.31 ˘ 11.08 25.88 ˘ 17.78 7.94 ˘ 6.10

ďiQTpnq
QT adaptation
time in patients 38.63 ˘ 36.75 31.69 ˘ 12.23 46.44 ˘ 44.79

6.3.3 QT-RR adaptation time in pECGs

The QT adaptation time is also evaluated in simulated ECGs from a tissue
fiber in response to heart rate changes from exercise ECGs stress testing of
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Figure 6.4: (a) QT adaptation time lag estimated between dQTpnq and diQTpnq during exercise and recovery for a CAD patient.
APD adaptation time lag between dAPDpnq and diAPDpnq during exercise and recovery in a simulated endocardial cell (b) for constant
β -adrenergic stimulation and (c) for the proposed time-varying β-adrenergic stimulation using in both cases the same heart rate as
for the patient on the left. Panels (d)-(f) show the estimated delays after modifying and aligning the exercise learning window W̌e,
that is, using ďiQTpnq|ďiAPDpnq. Red markers delimit areas where the delays are calculated.
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CAD patients. An example can be seen in Fig. 6.7. Based on the results at the
cellular level, the simulated QT responses to heart rate changes are analyzed
only for the Iso-c and Iso-tv patterns.

Following the same representation as for the APD series results, panel (a)
from Fig. 6.7 illustrates the observed dQTpnq and diQTpnq time series of a patient.
Figures 6.7 (b)-(c) show the QT series from the tissue fiber pECG under constant
Iso-c and time-varying Iso-tv Iso concentration patterns, respectively. The
estimated delay values are indicated in all cases. The top panels of Fig. 6.7
show results using the time series diQTpnq, while the bottom ones show results

using the time series ďiQTpnq.

Table 6.3 presents the mean and standard deviation values of the estimated
QT adaptation time lags across patients in each of the three CAD groups during
the exercise and recovery phases, separately. These values are also calculated
from the simulated tissue fiber paced according to the RR interval time series of
the same set of patients, using either an Iso-c or Iso-tv β-adrenergic stimulation
pattern. The estimated delay values calculated for the Iso-tv pattern offer
results closer to the clinical ones, with better estimated values in COR-LR
patients for both exercise and recovery delays.

The relation between the QT adaptation time measured in patients and the
QT adaptation time computed from pECGs using either the Iso-c or the Iso-tv
β-adrenergic stimulation is shown in Fig. 6.5(a)-(b) for exercise and recovery,
separately, using diQTpnq series. The results obtained using the ďiQTpnq series
can be seen in Fig. 6.5(c)-(d). The fitted lines for the Iso-tv pattern in the
exercise phase are closer to the diagonal, thus indicating improved results with
respect to those obtained with the Iso-ct pattern.

Finally, the error between the QT adaptation time lag estimated from
the patients’ ECGs and the corresponding estimated values for the simulated
APD|pECG in all cases is presented in Fig. 6.6. The differences between using
the Iso-ct and the Iso-tv pattern are noticeable, particularly during the exercise
phase.

6.4 Discussion

6.4.1 Role of β-adrenergic stimulation in APD-RR and QT-RR adapta-
tion time

An individual time-varying pattern of β-adrenergic stimulation explains the
repolarization adaptation to changes in heart rate better than a constant
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Table 6.3: Mean and standard deviation values of the estimated QT adaptation time τ in
the exercise and recovery phases computed for the patients in each of the CAD groups and
in a simulated tissue fiber with the constant Iso-c and the time-varying Iso-tv β-adrenergic
stimulation patterns. The values are computed using either diQTpnq or ďiQTpnq.

τ in Exercise
Estimation

method Iso pattern COR-LR COR-MR COR-HR

diQTpnq
Iso-c ´0.94 ˘ 21.96 4.63 ˘ 8.76 34.63 ˘ 8.70
Iso-tv 5.69 ˘ 24.09 22.56 ˘ 38.36 39.44 ˘ 20.00

diQTpnq
QT adaptation
time in patients 22.81 ˘ 27.12 26.81 ˘ 25.63 56.19 ˘ 19.05

ďiQTpnq
Iso-c 8.25 ˘ 20.17 26.31 ˘ 5.86 48.19 ˘ 16.68
Iso-tv 28.56 ˘ 14.98 36.00 ˘ 24.54 55.88 ˘ 25.77

ďiQTpnq
QT adaptation
time in patients 32.13 ˘ 33.15 45.75 ˘ 38.09 70.25 ˘ 26.79

τ in Recovery
Estimation

method Iso pattern COR-LR COR-MR COR-HR

diQTpnq
Iso-c 58.64 ˘ 22.57 36.69 ˘ 8.84 17.56 ˘ 9.64
Iso-tv 36.88 ˘ 13.52 25.81 ˘ 17.94 15.13 ˘ 12.15

diQTpnq
QT adaptation
time in patients 48.81 ˘ 34.59 36.50 ˘ 10.51 56.19 ˘ 43.88

ďiQTpnq
Iso-c 34.63 ˘ 8.24 14.81 ˘ 30.98 11.69 ˘ 13.17
Iso-tv 20.06 ˘ 18.51 2.63 ˘ 26.75 7.94 ˘ 15.21

ďiQTpnq
QT adaptation
time in patients 38.63 ˘ 36.75 31.69 ˘ 12.23 46.44 ˘ 44.79
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Figure 6.5: Relation between the QT adaptation time lags calculated from patients (vertical
axis) and from pECGs (horizontal axis) for the constant Iso-c (blue) and the time-varying
Iso-tv (red) patterns, in (a) exercise and (b) recovery phases. Fitted lines are shown in the
corresponding colors, while black lines show the diagonal. The diQTpnq series is used to obtain
the results in the two panels. The same representation is repeated using the dQTpnq series
windowed with W̌e, i.e., ďiQTpnq series, and the results are shown in (c) for the exercise and
(d) for the recovery phases.

Figure 6.6: Distributions of the differences between the estimated APD|QT adaptation time
lag calculated from simulated cell|tissue and the corresponding QT adaptation delays from
the patients, both under constant (Iso-c) and time-varying (Iso-tv) β-adrenegic stimulation,
for exercise and recovery, separately, using the Laplacian estimator and using diQTpnq or
ďiQTpnq series to calculate the associated τ1,x or τ̌1,x, x P te, ru.
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Figure 6.7: (a) QT adaptation time lag estimated between dQTpnq and diQTpnq during exercise and recovery for a CAD patient.
QT adaptation time lag between dQTpnq and diQTpnq during exercise and recovery in a simulated ECG pECG (b) for constant β
-adrenergic stimulation or (c) for the proposed time-varying β-adrenergic stimulation using in both cases the same heart rate as for
the patient on the left. Panels (d)-(f) show the estimated delays after modifying and aligning the exercise learning window W̌e, that
is, using ďiQTpnq. Red markers delimit areas where the delays are calculated.
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baseline β-adrenergic stimulation level in in silico cell and tissue models of
human ventricular electrophysiology. Simulated delays using the time-varying
pattern are in agreement with the delays estimated from clinical ECGs. Other
β-adrenergic stimulation patterns defined by a constant, high Iso concentration
along exercise or by a linearly increasing Iso concentration all along the exercise
phase represent adaptation delays that are not in such good agreement with
those of patients. Thus, a β-adrenergic stimulation pattern with high Iso levels
around the peak shows the best results in terms of replicating the repolarization
adaptation measured from the patients.

The APD|QT interval delays are, in general, lower in the simulated cells and
pECGs than the ones estimated from clinical ECGs. It is important to note that
the APD|QT adaptation time lags estimated during exercise with the time series
diQTpnq and ďiQTpnq and using a time-varying β-adrenergic stimulation pattern
are closer to the QT delays measured from the patients. This is illustrated in
Fig. 6.6, where the distributions of the delay differences between cells and clinical
ECGs (left panel) and between pECGs and clinical ECGs (right panel) are closer
to zero, and in Fig. 6.5(a)|(c), where the fitted line is nearer to the diagonal
in the case of the time-varying pattern, thus pointing to a closer agreement.
During recovery, the differences in the estimated APD|QT adaptation time lags
between the constant and time-varying β-adrenergic stimulation patterns are not
as evident as during exercise. In addition, the variance of the estimated delays is
higher in the recovery than in the exercise phase. All these results on the relevant
role of β-adrenergic stimulation in the adaptation of repolarization duration
agree with previous studies in the literature [68, 92, 140, 165]. Furthermore,
the fact that the QT adaptation time becomes progressively reduced when
approaching the peak exercise is consistent with in silico cell studies reporting
that the higher the pre-stimulation level of β-adrenoceptors, the shorter the
APD adaptation time [92].

The effects of the ANS on the QT interval, and consequently on its adap-
tation, have been investigated in some studies of the literature and no clear
consensus has been reached. Some studies have postulated that heart rate is
the foremost determinant of the QT interval, whereas heart rate-independent
differences in autonomic tone play a small role [81,166]. According to these
studies, no major role of the autonomic tone on the rate adaptation of the
QT interval would be expected. Other studies have compared the QT adaptation
after blocking the parasympathetic activity with atropine [81,140], which can
have both indirect effects on the QT interval due to its dependence on the
RR interval and direct effects on the QT interval associated with the autonomic
innervation of the ventricular myocardium. In some of these studies, the QT-RR
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hysteresis has been reported not to be caused by the different directional
changes in the RR interval during exercise and recovery but by differential
ANS effects [81]. It should be noted, however, that these investigations assess
the autonomic effects only in a restricted range of RR intervals corresponding
to high heart rates and disregard the impact of a longer time for the heart
rate to return to basal levels. In this thesis, a different approach is adopted in
which the RR interval time series are taken from those measured in patients,
thus accounting for both sympathetic and parasympathetic effects on the SA
node. On top of that, the effect of β-adrenergic stimulation on the ventricular
myocardium is accounted for by simulating increases and decreases during the
exercise and recovery, respectively, and evaluating its impact on the QT interval
and its rate adaptation.

6.4.2 Differential role of β-adrenergic stimulation as a function of the
extent of disease

Analyzing the results for the three CAD groups separately, the role of time-
varying β-adrenergic stimulation appears to be more relevant in the COR-LR
group than in the COR-MR and COR-HR groups, although further analysis
with a larger number of patients is required. This observation is confirmed
by the results in Table 6.3, which show that the differences between the
estimated QT delays in simulations under constant and time-varying β-adrenergic
stimulation are larger in the low-risk group than in the high-risk groups.

The estimated exercise delays from simulations using time-varying β-
adrenergic stimulation are closer to the delays computed from clinical ECGs,
but the opposite behavior is observed in the estimated recovery delays. Further
investigations could account for remodeling in ventricular electrophysiology
and/or β-adrenergic signaling as a function of the extent of the disease to
uncover the differential role of β-adrenergic stimulation in the three analyzed
groups [148,167–169]. Moreover, the use of cell and tissue models of diseased
ventricles could lead to larger QT adaptation time lags in the simulations, as
previous studies have reported protracted QT adaptation in diseases associated
with impairment of sodium-potassium pump activity, such as heart failure,
ischemic heart disease, or hypertension [65,69,170–172]. This would be expected
to render QT adaptation time lags from pECGs in better accordance with the
QT adaptation time lags quantified in clinical ECGs (dots in Fig. 6.5 closer to
the diagonal).

Although the inter-patient variability in the QT adaptation lags is very
high, which is in line with prior works on adaptation rate of repolarization
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[47, 64, 68, 83, 89, 173], the QT interval time lag estimated in the exercise
phase between dAPDpnq|dQTpnq and ďiAPDpnq|ďiQTpnq from cell|pECG increases
according to the risk of suffering CAD, being in agreement with the results from
clinical ECGs (see Sec. 5.4).

The significance of our findings can be appreciated in the context of the
increased risk of SCD during or shortly after exercise. Among the potential
causes for this elevated risk, changes in cardiac autonomic modulation associated
with exercise have been cited as important factors [174]. Autonomic alterations
significantly impact ventricular repolarization in general and the QT interval
specifically, due to their effects on the ventricular myocardium as well as on
the heart rate through autonomic control of the SA node activity. As these
changes may be related to the generation of ventricular arrhythmias, assessing
the relation between the QT interval and heart rate in stress test recordings,
especially regarding the QT interval adaptation rate and its mechanisms,
becomes crucial. In particular, the identification of the individual time-varying
β-adrenergic stimulation pattern driving QT rate adaptation during and just
after exercise may elucidate why certain patients are at higher arrhythmic risk
than others and could represent a basis for future research aimed at designing
risk reduction strategies.

6.4.3 QT rate adaptation can be explained by cellular rate adaptation
dynamics

The simulation results presented in this Ph.D. thesis show that the rate
adaptation dynamics of the QT interval and the cellular APD are similar, in
agreement with previous studies investigating repolarization adaptation to other
types of heart rate changes, such as abrupt heart rate changes, at different
ventricular scales [65]. Simulated APD delays in single subendocardial cells are
even closer to the QT delays measured from the patients than the QT delays
from pECGs, as can be observed in Fig. 6.6. This could be partially explained
by the fact that the simulated tissue fiber is composed of subendocardial,
midmyocardial, and subepicardial cells, with quantitative differences in the
APD adaptation delay of the three cell types.

6.5 Limitations

In this modeling and simulation study, a transmural fiber with a unique
transmural composition and without a specific CAD characterization is used.
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Future studies could assess the extent to which the transmural composition and
the degree of CAD-induced remodeling in ventricular electrophysiology and
β-adrenergic signaling impact the simulated QT adaptation time lag. Also,
when modeling the transmural heterogeneities, more advanced methods like
those proposed by Rivolta et.al [175] could be applied in future works. In
those proposed methods, a gradient surface of cells was included to model
the heterogeneities from endocardium to epicardium and was shown to render
repolarization patterns more closely mimicking those observed experimentally
than when fixed layers of endocardial, midmyocardial and epicardial cells were
considered.

Furthermore, this modeling presents limitations in terms of explaining the
QT adaptation time lags during recovery from exercise. Different time-varying
patterns of β-adrenergic stimulation also during the EST recovery phase could
be investigated to improve the results and reproduce the adaptation times
measured from clinical ECGs more closely.

Finally, future works could take the estimated time lag and the parameters
of the optimally fitted regression model and use them to correct the QT interval
for the effects of heart rate, following an approach similar to that proposed in
previous studies [47,48].

6.6 Conclusions

In silico modeling and simulation of cell and tissue ventricular electrophysiology
show that β-adrenergic stimulation modulates the QT interval adaptation time
to gradual heart rate changes produced during EST. Specifically, a time-varying
pattern of β-adrenergic stimulation with higher stimulation levels around the
peak exercise helps to better reproduce the QT adaptation time lags quantified
from CAD patients, particularly during the exercise phase of the test. The
role of β-adrenergic stimulation in the adaptation of the QT interval seems to
be more relevant in patients with low than in those with mild or high risk of
coronary occlusion, and it is well described by the cellular dynamics of APD rate
adaptation.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Discussion of main findings

7.2 Overall conclusion

7.3 Future work

In this Ph.D. thesis, novel methods for characterization of the QT adaptation
time lag after gradual heart rate changes have been proposed. These methods
have been evaluated in the exercise and recovery phases of exercise ECGs stress
testing from CAD patients as well as in simulated ECG signals. Also, an in
silico study has been conducted to assess the role of the sympathetic activity
in modulating such QT adaptation characteristics. This chapter provides a
summary of the analyses performed and the results obtained in the Ph.D. thesis
and outlines potential directions for future research.

7.1 Discussion of main findings

Enhanced heterogeneity in ventricular myocardial repolarization can cause
ventricular fibrillation and SCD. The intrinsic spatial dispersion of repolarization
can be emphasized in response to heart rate changes by varied patterns of
repolarization adaptation in different ventricular cells. Most studies have
investigated this repolarization time lag in response to abrupt heart rate
changes from noninvasive recordings as Holter ECGs or following invasive
pacing. However, these types of changes are not always present in ambulatory
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recordings. In this thesis, and for the first time to the best of our knowledge,
the QT adaptation time lag is estimated from gradual changes in heart rate
observed in EST, as a more feasible alternative to the investigation of sudden
heart rate changes.

Estimation of QT Adaptation Time Lag. The QT adaptation time lag is
characterized as the delay between the observed time series of QT intervals
from the ECG and an estimated memoryless QT time series derived using an
instantaneous transformation of the RR intervals also computed from the ECG.
This delay is estimated and evaluated independently during the exercise and
recovery phases of the EST. To obtain the estimated memoryless QT interval
series based on the observed RR intervals, a hyperbolic regression model is
selected, whose parameters are individually estimated for each patient. For
this purpose, the QT and RR series in three learning windows are extracted,
corresponding to periods where the heart rate remains approximately constant:
one in each basal (pre- and post-exercise) phase and one around the peak
exercise. To account for the questionable signal stationarity at this last window,
different data modification approaches are considered. The best approach
modifies the data in this window based on a first estimate of the QT adaptation
time lag and shifts it to include only values from the exercise phase. The
Laplacian estimator shows more precise estimates than the Gaussian one, as
assessed from simulated ECGs. To determine the limits of the exercise and
recovery phases from which the QT delay is estimated, basal phases are required
to be present and are considered both at the onset and at the end of the test.
Additionally, a reduction in the QT delay, possibly associated with sympathetic
activation, is observed close to the peak exercise, which suggests avoiding this
time segment for the estimation of the exercise delay.

Improvement of T wave end point delineation. An overlap between the
T wave and the P wave may occur at high heart rates, which can often be
present in ECGs recorded during EST. This issue, along with the augmented
noise levels due to physical activity, makes the delineation of the QT interval
series more challenging throughout the EST recording. To deal with it, various
methods using principal component analysis and periodic component analysis
are evaluated here to enhance the delineation of the T wave. Periodic component
analysis demonstrates the highest accuracy in this task and is superior to the
use of multi-lead delineation techniques. The T wave is delineated in the TL1,
emphasizing the beat periodicity of the T wave. This approach exhibits the
best performance in both simulated and clinical ECGs. The transformation
matrix is learned at the beginning of the EST, avoiding relearning, since the
signal morphology changes along EST introduce undesirable discontinuities in
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the QT series estimation when relearning is implemented.

Clinical validation. The clinical impact of the QT adaptation time lag
estimation is assessed by evaluating the delay in the exercise phase, the recovery
phase, and the difference between these two metrics to stratify patients with
varying risks of developing CAD. The findings of this Ph.D. thesis indicate
that the delay during the exercise phase rises with the increasing risk for CAD.
Conversely, the delay during the recovery phase shortens with higher CAD risk.
Moreover, the delay values estimated with the proposed methodology are in
the same range as those reported in the literature when estimated from abrupt
heart rate changes. The predictive capacity of the proposed markers is also
assessed. The delay calculated in the recovery phase is significantly higher in
patients that died from SCD or from any cause-mortality than in survivors.

Electrophysiological model. The delay between the observed and memoryless
estimated QT series during the exercise phase decreases as EST approaches the
peak exercise. This phenomenon and its potential underlying mechanisms are
investigated by assessing the impact of various β-adrenergic stimulation patterns
on ventricular repolarization adaptation using in silico cell and tissue models.
The estimated delays in these simulated scenarios are compared with those
obtained in clinical exercise ECGs stress testing, revealing that a time-varying β-
adrenergic pattern yields results that better align with those obtained clinically.
The observed time-varying QT lag should be accounted for when interpreting
the results from QT adaptation studies conducted over EST recordings.

7.2 Overall conclusion

New estimators of the QT adaptation time lag derived from exercise ECGs
stress testing are proposed, which quantify the QT adaptation time lag behind
gradual heart rate changes present at the test. The QT adaptation time marker
is computed as the delay between the observed QT intervals series and an
estimated memoryless QT series derived from the observed RR intervals, in the
exercise and recovery phases, separately. A hyperbolic regression model is used
to describe the memoryless QT-RR relation, and different learning windows
are defined to estimate the model parameters. The most accurate estimates
are obtained using a data-dependent adjustment of the peak exercise window
and using a Laplacian estimator. The effect of the overlap between the T wave
and the P wave at high heart rates on the delineation of the T wave end point
is mitigated using a spatial lead transformation based on periodic component
analysis. All the proposed methods are tested in simulated ECGs.
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Clinical validation shows that the QT adaptation time lag can stratify patients
by their CAD level and the adaptation estimated during the recovery phase is
helpful to risk stratify patients for SCD or any cause-mortality. Specifically, a
prolonged delay during exercise and a shorter delay during recovery indicate
higher CAD risk. In silico cell and tissue models are used to assess the role of
the ANS, showing that time-varying β-adrenergic stimulation patterns, rather
than constant stimulation, lead to QT adaptation time measures that are more
closely aligned to the QT adaptation time lags measured clinically, suggesting
that this should be taken into account when interpreting any repolarization
adaptation results.

7.3 Future work

The findings and methodologies introduced in this Ph.D. thesis set the basis for
additional studies. Some potential research directions are described below that
could further improve the presented work:

1. Enhancing the QT interval delineation. Delineating the TL1 after ap-
plying periodic component analysis is shown to improve the delineation
performance in signals with a low SNR. In the present work, only the
ST-T complex is used to learn the transformation matrix. It would be
interesting to select a wider part of the ECG to gather more information
and assess the delineation of the R point, the QRS onset and the T wave
end from the same transformed lead. In that way, the computational cost
would be reduced. Moreover, the method could be more cost-efficient
if only the ECG leads with the highest SNR values are selected before
performing the periodic component analysis. Lastly, more elaborate
relearning strategies along time in the exercise ECG stress testing could
further improve the delineation by accounting for the observed T wave
morphology variations over time. Different window lengths for learning
could also be tested, although we hypothesize that the influence would be
minor.

2. QT-RR modeling. Reducing the quantity of nonphysiological, negative
estimated delays is advisable to achieve a more clinically relevant impact
of the proposed markers. Moreover, it would be interesting to test different
regression models to fit the exercise and the recovery phases separately,
thus ensuring to select the best model for each phase. Although the
physiological bases supporting the separate fitting in the exercise and the
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recovery phases are not clear, the results that could be thus obtained
could generate new hypotheses.

3. Simulator improvements. An important aspect of the exercise ECG
stress testing is the time-varying ST-segment morphology. Including
its time-varying behavior and its possible pathology-related morphology
patterns in the ECG simulator would not only be useful to assess the
methods presented in this dissertation, but would also allow to extend
the representation of other heart diseases and obtain larger datasets for
application of machine learning techniques. Moreover, the inclusion of
time-varying QT time lags in the ECG simulator, resembling the behavior
observed at the peak exercise, could help to evaluate the performance of
the proposed estimation methods in a more realistic scenario.

4. Clinical practice. Exercise ECG stress testing is often recorded in other
research fields like sports cardiology or in the evaluation of the effects of
microgravity. Assessing the capacity of the proposed markers in these
research areas, or even studying the evolution of the estimated delays
in longitudinal studies, could demonstrate the capacity of these markers
to detect alterations in the ventricular repolarization or the possible
development of arrhythmias. Besides, a protocol could be designed to
estimate the delays due to abrupt or gradual heart rate changes from
the same Holter recording, and compare with the results from EST to
quantify the comparability of the QT adaptation marker measured in
different scenarios. Finally, the clinical relevance of the markers proposed
in this Ph.D. thesis could be compared with other characteristics, or
markers, extracted from exercise ECGs stress testing such as the area of
the QT-RR hysteresis curve and T wave morphology variations respected
to a normal T wave morphologic reference.

5. Electrophysiological models. In the modeling and simulation study of
this Ph.D. thesis, a transmural ventricular fiber with a unique transmural
composition and with no specific CAD characterization is used. Future
studies could assess the extent to which the transmural composition and
the degree of CAD-induced remodeling in ventricular electrophysiology
and β-adrenergic signaling impact the simulated QT delay. A procedure
could be developed to define the tissue models so that they more closely
reproduce the clinically measured QT delays in different patient groups.
These type of studies, along with others using more personalized in silico
models, possibly based on QT adaptation delays quantified in larger study
populations, could help to confirm the outcomes of our present research
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regarding autonomic modulation of QT adaptation. Moreover, different
time-varying patterns of β-adrenergic stimulation, particularly during
the EST recovery phase, could be identified to more closely replicate
the adaptation times measured from clinical ECGs and establish the
underlying mechanisms more accurately.
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“QT variability strongly predicts sudden cardiac death in asymptomatic
subjects with mild or moderate left ventricular systolic dysfunction: a
prospective study,” European Heart Journal, vol. 28, pp. 1344–1350, 6
2007.

[46] X. Chen and N. A. Trayanova, “A novel methodology for assessing the
bounded-input bounded-output instability in QT interval dynamics: appli-
cation to clinical ECG with ventricular tachycardia,” IEEE Transactions
on Biomedical Engineering, vol. 59, no. 8, pp. 2111–2117, 2011.

[47] E. Pueyo, P. Smetana, P. Caminal, A. Bayes de Luna, M. Malik, and P. La-
guna, “Characterization of QT interval adaptation to RR interval changes
and its use as a risk-stratifier of arrhythmic mortality in amiodarone-
treated survivors of acute myocardial infarction,” IEEE Transactions on
Biomedical Engineering, vol. 51, no. 9, 2004.

[48] P. Smetana, E. Pueyo, K. Hnatkova, V. Batchvarov, P. Laguna, and
M. Malik, “Individual patterns of dynamic QT/RR relationship in survivors
of acute myocardial infarction and their relationship to antiarrhythmic
efficacy of amiodarone,” Journal of Cardiovascular Electrophysiology,
vol. 15, pp. 1147–1154, 10 2004.

[49] W. Zareba and I. Cygankiewicz, The QT Interval, pp. 833–862. Springer,
London, 2010.

[50] A. Pathak, D. Curnier, J. Fourcade, J. Roncalli, P. K. Stein, P. Hermant,
M. Bousquet, P. Massabuau, J.-M. Sénard, J.-L. Montastruc, et al., “QT
dynamicity: a prognostic factor for sudden cardiac death in chronic heart
failure,” European journal of heart failure, vol. 7, no. 2, pp. 269–275, 2005.

[51] N. P. Johnson, T. A. Holly, and J. J. Goldberger, “QT dynamics early
after exercise as a predictor of mortality,”Heart Rhythm, vol. 7, no. 8,
pp. 1077–1084, 2010.



BIBLIOGRAPHY 171

[52] N. J. Verouden, K. T. Koch, R. J. Peters, J. P. Henriques, J. Baan, R. J.
V. D. Schaaf, M. M. Vis, J. G. Tijssen, J. J. Piek, H. J. Wellens, A. A.
Wilde, and R. J. D. Winter, “Persistent precordial “hyperacute” T-waves
signify proximal left anterior descending artery occlusion,”Heart, vol. 95,
pp. 1701–1706, 10 2009.

[53] M. A. Pessah, H. Huhtala, P. Kosonen, M. Eskola, A. R. Pérez-Riera,
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of repolarization variability and its role in cardiac arrhythmogenesis,”
Biophys J, vol. 101, no. 12, pp. 2892–2902, 2011.

[157] E. Drouin, F. Charpentier, C. Gauthier, K. Laurent, and H. L. Marec,
“Electrophysiologic characteristics of cells spanning the left ventricular
wall of human heart: Evidence for presence of M cells,” Journal of the
American College of Cardiology, vol. 26, pp. 185–192, 7 1995.

[158] P. Taggart, P. M. Sutton, T. Opthof, R. Coronel, R. Trimlett, W. Pugs-
ley, and P. Kallis, “Inhomogeneous transmural conduction during early
ischaemia in patients with coronary artery disease,” Journal of Molecular
and Cellular Cardiology, vol. 32, pp. 621–630, 4 2000.

[159] K. Nanthakumar, J. Jalife, S. Massé, E. Downar, M. Pop, J. Asta,
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• C. Pérez, E. Pueyo, J. P. Mart́ınez, J. Viik and P. Laguna, “Retardo
entre QT y RR en registros de prueba de esfuerzo como indicador de la
heterogeneidad de la repolarización ventricular,”XXXVIII Congreso Anual
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1.5 (a) QT-RR loop during exercise and recovery. The arrows indicate
the temporal evolution and the dashed line corresponds to the
static QT/RR curve. (b) On the top, the RR interval time course
follows two exponential curves corresponding to the exercise and
recovery phases. The QT interval time course is represented
on the bottom panel. The QT interval achieves a stable state
after the RR interval does. The linear filter weights that describe
the influence of the previous RR intervals on the repolarization
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The effective RR interval is calculated as a linear combination of
preceding RR intervals with the coefficients of such a combination
being the represented exponentially decaying weights, which have
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2.3 The proposed model relating the observed RR series dRRpnq to
the observed QT series dQTpnq. The output of the memoryless
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is filtered by a linear, time-invariant, first-order filter hpnq. The
observed dQTpnq is modeled as the sum of dmQTpnq and noise
wpnq. The QT-RR adaptation time lag τ is estimated as the
delay between diQTpnq and dQTpnq. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 The proposed model relating the observed QT series dQTpnq to
the observed RR series dRRpnq. The output of the memoryless
transformation g´1

f pdQTpnq;α, βq is an instantaneous RR series

diRRpnq, which results in the modeled RR series dmRRpnq when
it is filtered by a linear, time-invariant, first-order filter hp´nq.
The observed dRRpnq is modeled as the sum of dmRRpnq and
noise w1pnq. The QT-RR adaptation time lag τ is, in this case,
estimated as the delay between dRRpnq and diRRpnq. . . . . . . . . . . . 43
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2.5 Example of the procedure for QT time lag estimation from an
exercise ECG stress testing. (a) The time series dRRpnq is shown
together with the boxes defining the three windows, Wb, We and
Wlr, used to estimate the values of the parameters α and β. The
time series dQTpnq is additionally shown. (b) The delimitation
of the onset and end sample points in the exercise phase (ne,o,
ne,e) and in the recovery phase (nr,o, nr,e) is presented. The
corresponding QT lags obtained by minimizing the MSE criteria
between dQTpnq and diQTpn´ τq obtained using the Gaussian-
based estimator are written for each of the two EST phases.
(d) Graphical representation of the procedure proposed to obtain
the value of ∆QT, which is used to modify dQTpnq at the We

window in peak exercise using τp,e derived as in (b). (e) The
corresponding exercise and recovery time lags obtained after
regression estimation from the modification of the QT values
in (d). The two processes for QT delay estimation shown in (a,b)
and (c,d), respectively, are repeated but calculating the delay
between dRRpnq and diRRpnq, shown in panel (c), and the delay
between dRRpnq and d̃iRRpnq, shown in panel (f). . . . . . . . . . . . . . . 48

2.6 Estimation of α and β, defining the memoryless transforma-
tion g pdRRpnq;α, βq, which is based on rdQTpnq, dRRpnqs (or
corresponding modifications) in the three concatenated learning
windows. In the first case, the estimation uses the unmodified
series dQTpnq in the window We, with the instantaneous QT
series being diQTpnq. In the second case, the estimation uses the
series dQTpnq in the window We but modified by subtracting
∆QT, with the instantaneous QT series being d̃iQTpnq. In the
third case, the estimation uses the series dQTpnq modified by
subtracting ∆QT in the window W̌e, with the instantaneous QT
series being ďiQTpnq. LS, least square. . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 QT-RR model with a reversed block order, cf. Fig. 2.3. Note
that the so-called reverted estimate of the QT series drmQTpnq

and the so-called reverted model of the delineation error wrpnq

differ from their equivalent in Fig.2.3 , but the sum results in the
observed dQTpnq series in both cases, dQTpnq “ drmQTpnq ` wrpnq. 51
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3.1 Time-varying respiratory frequency, linearly increasing from 0.2
to 0.5 Hz in a 60-s interval, influencing (a) the angular function
φXptq (radians), partially describing the variation in the electrical
axis, (b) the variation in RR intervals, visible at the end of the
RR interval signal dRRptq (expressed in seconds), and (c) the
simulated ECG in lead X. The noise level gradually increases to
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3.2 (a) Mean RR intervals mRR(t) and time-varying respiratory
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3.3 (a) The median of the PQ intervals contained in each RR interval
bin for exercise (red curve) and recovery (blue curve), separately.
The fitted functions are represented in black, and the values of
d̂RR,cp are indicated by vertical dotted lines. (b) Simulated ECG
with PQ–RR dependence modeled at low and high heart rates.
(c) Simulated ECG without modeling the PQ–RR dependence,
causing the P waves to be incorrectly hidden in the T waves at a
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3.5 Typical examples of (a) time-varying muscle noise (the envelope is
displayed in red), and (b) several superimposed muscle noise power
spectra (logarithmic scale) displayed up to 100 Hz, computed in
successive 1-min intervals. The analyzed signals were recorded
during exercise stress testing [103]. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Single-lead, 10-s simulated ECG (top) and similar-looking real
ECG (bottom) with muscle noise. The simulated ECG is
generated according to equation (3.19). . . . . . . . . . . . . . . . . . . . . . . 67
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4.1 Template RR interval pattern and observed RR interval series
dRRpnq extracted from the four datasets: (a) Dt, containing
typical exercise ECGs with the four phases (rest: ending at tb;
exercise: ending at te; early recovery: ending at ter; and late
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learning windows positioned at rest (Wb), exercise (We) and late
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QTpnq|ďiAPDpnq. Red markers delimit areas

where the delays are calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Relation between the QT adaptation time lags calculated from
patients (vertical axis) and from pECGs (horizontal axis) for the
constant Iso-c (blue) and the time-varying Iso-tv (red) patterns,
in (a) exercise and (b) recovery phases. Fitted lines are shown in
the corresponding colors, while black lines show the diagonal.
The diQTpnq series is used to obtain the results in the two panels.
The same representation is repeated using the dQTpnq series
windowed with W̌e, i.e., ď
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