000160889 001__ 160889
000160889 005__ 20251017144558.0
000160889 0247_ $$2doi$$a10.1002/asia.202401665
000160889 0248_ $$2sideral$$a144082
000160889 037__ $$aART-2025-144082
000160889 041__ $$aeng
000160889 100__ $$0(orcid)0000-0001-7341-0033$$aGonzález-Lainez, Miguel
000160889 245__ $$aApplication of NHC-Based Iridium Pincer Complexes in β-Alkylation of Alcohols and N-Alkylation of Amines: Mechanistic Studies on Precatalyst Activation
000160889 260__ $$c2025
000160889 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160889 5203_ $$aThe iridium(I) complexes [IrBr(cod)(κC‐tBuImCH2PyCH2NRR’)] (NRR’ = NEt2, NHtBu) have been prepared by reaction of the corresponding functionalized imidazolium salt with the appropriate dinuclear compound [Ir(µ‐OR)(cod)]2 (R = OMe, OEt). These compounds react with H2(g) (5 bar) to afford the pincer iridium(III) dihydrido complexes [IrBrH2(κ3C,N,N’‐tBuImCH2PyCH2NRR’)] in good yields. The complexes [IrBr(cod)(κC‐tBuImCH2PyCH2NRR’)] efficiently catalyzed the β‐alkylation of a series of secondary alcohols and the N‐alkylation of a range of aniline derivatives with primary alcohols, with good selectivities for the β‐alkylated alcohol and monoalkylated secondary amine products, respectively at low catalyst loading typically 0.1 mol% and sub‐stoichiometric amount of base in toluene at 383 K. The pincer iridium(III) dihydrido complexes show a catalytic performance similar to that of the iridium(I) complexes in model alkylation reactions. Mechanistic studies on the activation of the catalytic precursors have shown that both types of complexes have the ability to activate benzyl alcohol through the dearomatization of the pyridine ring by selective deprotonation of the methylene linker between the pyridine and the imidazole‐2‐ylidene fragment. DFT calculations suggest that activation of both catalytic precursors could lead to the common pincer iridium(I) hydrido species [IrH(κ3C,N,N‐tBuImCH2PyCH2NEt2)], which may be key to the borrowing hydrogen reaction mechanism.
000160889 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E42-23R$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2019-103965GB-I00
000160889 540__ $$9info:eu-repo/semantics/embargoedAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000160889 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160889 700__ $$0(orcid)0000-0002-0545-9107$$aJiménez, M. Victoria
000160889 700__ $$0(orcid)0000-0002-9633-3285$$aModrego, F. Javier$$uUniversidad de Zaragoza
000160889 700__ $$0(orcid)0000-0002-3327-0918$$aPérez-Torrente, Jesús J.$$uUniversidad de Zaragoza
000160889 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000160889 773__ $$g20, 9 (2025), e202401665 [15 pp.]$$pChem. Asian J.$$tChemistry-An Asian Journal$$x1861-4728
000160889 8564_ $$s7036191$$uhttps://zaguan.unizar.es/record/160889/files/texto_completo.pdf$$yVersión publicada$$zinfo:eu-repo/date/embargoEnd/2026-05-02
000160889 8564_ $$s2970333$$uhttps://zaguan.unizar.es/record/160889/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada$$zinfo:eu-repo/date/embargoEnd/2026-05-02
000160889 909CO $$ooai:zaguan.unizar.es:160889$$particulos$$pdriver
000160889 951__ $$a2025-10-17-14:13:48
000160889 980__ $$aARTICLE